forked from fh295/semanticCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
#opts.lua#
57 lines (53 loc) · 2.79 KB
/
#opts.lua#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
local M = { }
function M.parse(arg)
local cmd = torch.CmdLine()
cmd:text()
cmd:text('Torch-7 Imagenet Training script')
cmd:text()
cmd:text('Options:')
------------ General options --------------------
, 'Default preferred GPU')
cmd:option('-nGPU', 1, 'Number of GPUs to use by default')
cmd:option('-backend', 'nn', 'Options: cudnn | nn')
------------- Data options ------------------------
cmd:option('-nDonkeys', 2, 'number of donkeys to initialize (data loading threads)')
cmd:option('-imageSize', 256, 'Smallest side of the resized image')
cmd:option('-cropSize', 224, 'Height and Width of image crop to be used as input layer')
cmd:option('-nClasses', 733, 'number of classes in the dataset')
------------- Training options --------------------
cmd:option('-nEpochs', 55, 'Number of total epochs to run')
cmd:option('-epochSize', 10000, 'Number of batches per epoch')
cmd:option('-epochNumber', 1, 'Manual epoch number (useful on restarts)')
cmd:option('-batchSize', 128, 'mini-batch size (1 = pure stochastic)')
---------- Optimization options ----------------------
cmd:option('-LR', 0.0, 'learning rate; if set, overrides default LR/WD recipe')
cmd:option('-momentum', 0.9, 'momentum')
cmd:option('-weightDecay', 5e-4, 'weight decay')
---------- Model options ----------------------------------
cmd:option('-netType', 'alexnet', 'Options: alexnet | overfeat | alexnetowtbn | vgg | googlenet')
cmd:option('-crit', 'sem', 'Options: Semantic | ClassNLL')
cmd:option('-margin', 0.5, 'Margin for semantic training with Embedding criterion')
cmd:option('-neg_samples',0,'Negative samples')
cmd:option('-wvectors','word2vec','Directory where word vectors are')
cmd:option('-wvectors_dim',500, ' The dimensionality of the word vectors')
cmd:option('-retrain', 'none', 'provide path to model to retrain with')
cmd:option('-optimState', 'none', 'provide path to an optimState to reload from')
cmd:text()
local opt = cmd:parse(arg or {})
-- add commandline specified options
opt.save = paths.concat(opt.cache,
cmd:string(opt.netType, opt,
{netType=true, retrain=true, optimState=true, cache=true, data=true}))
-- add date/time
opt.save = paths.concat(opt.save, '' .. os.date():gsub(' ',''))
return opt
end
return M