-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcapsule.py
128 lines (108 loc) · 6.17 KB
/
capsule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import tensorflow as tf
import numpy as np
class CapsLayer(object):
def __init__(self, aspect, batch_size, num_outputs, vec_len, iter_routing, with_routing=True, layer_type='FC'):
self.num_outputs = num_outputs
self.vec_len = vec_len
self.with_routing = with_routing
self.layer_type = layer_type
self.batch_size = batch_size
self.iter_routing = iter_routing
self.aspect = aspect
def __call__(self, input, mode=None, kernel_size=None, stride=None, embedding_dim=None):
if self.layer_type == 'CONV':
self.kernel_size = kernel_size
self.stride = stride
if not self.with_routing:
'''
Feature Capsules
'''
w, b = get_weights_and_biases([self.kernel_size, embedding_dim, 1, self.num_outputs * self.vec_len],
[self.num_outputs * self.vec_len], 'pc1{}'.format(self.kernel_size))
input_len = input.shape[1].value
capsule_len = input_len - self.kernel_size + 1#76
context_conv = tf.nn.conv2d(
input=tf.reshape(input, [self.batch_size, input_len, embedding_dim, 1]),
filter=w,
strides=[1, 1, 1, 1],
padding="VALID",
name="capsules_context{}".format(self.kernel_size)) # [b, 78, 1, 30*16]
context_conv = tf.nn.bias_add(context_conv,b)
'''
Semantic Capsules
'''
w_asp, b_asp = get_weights_and_biases([self.kernel_size, embedding_dim, 1, self.num_outputs],
[self.num_outputs], 'pc2{}'.format(self.kernel_size))
aspect_info = tf.contrib.layers.fully_connected(self.aspect, 1, weights_initializer=
tf.random_uniform_initializer(minval=-0.01, maxval=0.01, seed=0.05), activation_fn=None)
aspect_conv = tf.nn.conv2d(
input=tf.reshape(input, [self.batch_size, input_len, embedding_dim, 1]),
filter=w_asp,
strides=[1, 1, 1, 1],
padding="VALID",
name="capsules_aspect{}".format(self.kernel_size)) # [b, 78, 1, 30]
aspect_gate = tf.nn.sigmoid(aspect_conv + tf.tile(tf.expand_dims(aspect_info,1),[1,capsule_len,1,self.num_outputs]))
aspect_gate = tf.reshape(tf.tile(tf.expand_dims(aspect_gate, -1), [1,1,1,1,self.vec_len]), [self.batch_size, -1, 1, self.num_outputs * self.vec_len])
# Aspect Routing
capsules_ASC = tf.expand_dims(context_conv * aspect_gate, -1)
capsules_DSC = tf.expand_dims(context_conv, -1)
capsules_concat = tf.concat([capsules_ASC, capsules_DSC], -1) # b, 78, 1, 256, 2
mode = tf.tile(tf.reshape(mode, [-1, 1, 1, 1, 2]), [1, capsules_concat.shape[1].value, 1, capsules_concat.shape[3].value, 1]) # b, 78, 1, 256, 2
capsules = tf.reduce_sum(capsules_concat * mode, -1)
# element-wise maximum
capsules = tf.transpose(tf.reduce_max(tf.transpose(capsules, [0, 3, 2, 1]), -1, keepdims=True), [0, 3, 2, 1])
capsules = tf.reshape(capsules, (self.batch_size, self.num_outputs, self.vec_len, 1)) # [b, 16, 16, 1]
capsules = squash(capsules)
return (capsules)
if self.layer_type == 'FC':
if self.with_routing:
'''
Class Capsules
'''
incap_num = input.shape[1].value
incap_dim = input.shape[-2].value
self.input = tf.reshape(input, shape=(self.batch_size, -1, 1, input.shape[-2].value, 1))
with tf.variable_scope('routing'):
b_IJ = tf.constant(np.zeros([1, incap_num, self.num_outputs, 1, 1], dtype=np.float32))
capsules = dynamic_routing(self.input, b_IJ, self.num_outputs, self.vec_len, self.iter_routing, incap_num, incap_dim)
capsules = tf.squeeze(squash(capsules), axis=1)
return(capsules)
def get_weights_and_biases(w_shape,b_shape,name = None):
with tf.name_scope(name):
w_form = tf.truncated_normal(shape = w_shape,stddev= 0.1)
b_form = tf.constant(0.1,shape = b_shape)
return [tf.Variable(w_form),tf.Variable(b_form)]
def squash(vector):
epsilon = 1e-9
vec_squared_norm = tf.reduce_sum(tf.square(vector), -2, keepdims=True)
scalar_factor = vec_squared_norm / (1 + vec_squared_norm) / tf.sqrt(vec_squared_norm + epsilon)
vec_squashed = scalar_factor * vector # element-wise
return(vec_squashed)
def dynamic_routing(input, b_IJ, num_caps_j, len_v_j, iter_routing, incap_num, incap_dim):
batch_size = tf.shape(input)[0]
pc_num = incap_num #16
pc_dim = incap_dim #10
sc_num = num_caps_j
sc_dim = len_v_j
W = tf.get_variable('RoutingWeight', shape=(1, pc_num, sc_num, pc_dim, sc_dim), dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.01))
biases = tf.get_variable('bias', shape=(1, 1, num_caps_j, len_v_j, 1))
input = tf.tile(input, [1, 1, sc_num, 1, 1])
W = tf.tile(W, [batch_size, 1, 1, 1, 1])
u_hat = tf.matmul(W, input, transpose_a=True) # [batch_size, pc_num, sc_num, sc_dim, 1]
u_hat_stopped = tf.stop_gradient(u_hat, name='stop-gradient')
for r_iter in range(iter_routing):
with tf.variable_scope('iter_' + str(r_iter)):
c_IJ = tf.nn.softmax(b_IJ, axis=2)
if r_iter == iter_routing -1:
s_J = tf.multiply(c_IJ, u_hat)
s_J = tf.reduce_sum(s_J, axis=1, keepdims=True) + biases
v_J = squash(s_J)
elif r_iter < iter_routing - 1:
s_J = tf.multiply(c_IJ, u_hat_stopped)
s_J = tf.reduce_sum(s_J, axis=1, keepdims=True) + biases
v_J = squash(s_J)
v_J_tiled = tf.tile(v_J, [1, pc_num, 1, 1, 1])
u_produce_v = tf.reduce_sum(u_hat_stopped * v_J_tiled, axis=3, keepdims=True)
b_IJ += u_produce_v
return(v_J)