diff --git a/SOE-MAFMC-2022.Rmd b/SOE-MAFMC-2022.Rmd index 3751f91..f761ad6 100644 --- a/SOE-MAFMC-2022.Rmd +++ b/SOE-MAFMC-2022.Rmd @@ -146,7 +146,7 @@ Single species management objectives (1. maintaining biomass above minimum thres ```{r stock-status, fig.cap = paste0("Summary of single species status for ",council_abbr," and jointly federally managed stocks (Spiny dogfish and both Goosefish). The dotted verticxal line is the target bioomass reference point of Bmsy. The dashed lines are the management trehsolds of one half Bmsy (vertical) or Fmsy (horizontal). Stocks in green are below the biomass threshold (overfished), stocks in orange are above the biomass threshold but below the biomass target, and stocks in purple are above the biomass target. Only one stock, Atlantic mackerel, has fishing mortality above the limit (subject to overfishing)."), code = readLines("https://raw.githubusercontent.com/NOAA-EDAB/ecodata/master/chunk-scripts/human_dimensions_MAB.Rmd-stock-status.R"), fig.width = 7.5, fig.asp = 0.5} ``` -Stock status affects catch limits established by the Council, which in turn may affect landings trends. Summed across all MAFMC managed species, total Acceptable Biological Catch or Annual Catch Limits (ABC or ACL) have been relatively stable 2012-2020 (Fig. \ref{fig:abcacl-stacked}). With the addition of blueline tilefish management in 2017, an additional ABC and ACL contribute to the total 2017-2020. Discounting blueline tilefish, the recent total ABC or ACL is lower relative to 2012-2013, with much of that decrease due to declining Atlantic mackerel ABC. +Stock status affects catch limits established by the Council, which in turn may affect landings trends. Summed across all MAFMC managed species, total Acceptable Biological Catch or Annual Catch Limits (ABC or ACL) have been relatively stable 2012-2020 (Fig. \ref{fig:abcacl-stacked}). The recent total ABC or ACL is lower relative to 2012-2013, with much of that decrease due to declining Atlantic mackerel ABC. This is true even with the addition of blueline tilefish management in 2017 contributing an additional ABC and ACL to the total 2017-2020, due to that fishery's small relative size. ```{r abcacl-stacked, fig.cap="Sum of catch limits across all MAFMC managed fisheries.", code = readLines("https://raw.githubusercontent.com/NOAA-EDAB/ecodata/master/chunk-scripts/human_dimensions_MAB.Rmd-abcacl-stacked.R"), fig.width = 5, fig.asp = 0.5} @@ -356,7 +356,7 @@ Bycatch management measures have been implemented to maintain bycatch below PBR The number of gray seals in U.S. waters has risen dramatically in the last three decades. Based on a survey conducted in 2016, the size of the gray seal population in the U.S. during the breeding season was approximately 27,000 animals, while in Canada the population was estimated to be roughly 425,000. The population in Canada is increasing at roughly 4% per year, and contributing to rates of increase in the U.S., where the number of pupping sites has increased from one in 1988 to nine in 2019. Mean rates of increase in the number of pups born at various times since 1988 at four of the more data-rich pupping sites (Muskeget, Monomoy, Seal, and Green Islands) ranged from no change on Green Island to high rates of increase on the other three islands, with a maximum increase of 26.3% (95\%CI: 21.6 - 31.4\%; @wood_rates_2020, and see the 2021 New England report^[https://repository.library.noaa.gov/view/noaa/29524]). These high rates of increase provide further support for the hypothesis that seals from Canada are continually supplementing the breeding population in U.S. waters. -Strong evidence exists to suggest that interactions between right whales and both the fixed gear fisheries in the U.S. and Canada and vessel strikes in the U.S. are contributing substantially to the decline of the species [@hayes_north_2018]. Further, right whale distribution has changed since 2010. New research suggests that recent climate driven changes in ocean circulation have resulted in right whale distribution changes driven by increased warm water influx through the Northeast Channel, which has reduced the primary right whale prey (*Calanus finmarchicus*) in the central and eastern portions of the Gulf of Maine [@hayes_north_2018; @record_rapid_2019; @sorochan_north_2019]. +Strong evidence exists to suggest that interactions between right whales and both the fixed gear fisheries in the U.S. and Canada and vessel strikes in the U.S. are contributing substantially to the decline of the species [@hayes_north_2018]. Further, right whale distribution has changed since 2010. New research suggests that recent climate driven changes in ocean circulation have resulted in right whale distribution changes driven by increased warm water influx through the Northeast Channel, which has reduced the primary right whale prey (*Calanus finmarchicus*) in the central and eastern portions of the Gulf of Maine [@hayes_north_2018; @record_rapid_2019; @sorochan_north_2019]. Additional potential stressors include offshore wind development, which overlaps with important habitat areas used year-round by right whales, including mother and calf migration corridors and foraging habitat [@quintana-rizzo_residency_2021; @schick_striking_2009]. This area is also the only known right whale winter foraging habitat. Additional information can be found in the [offshore wind risks section](#other-ocean-uses-offshore-wind). The UMEs are under investigation and are likely the result of multiple drivers. For all three large whale UMEs, human interaction appears to have contributed to increased mortalities, although investigations are not complete. An investigation into the cause of the seal UME so far suggests phocine distemper virus as a potential cause. @@ -695,13 +695,13 @@ As of February 2022, 24 offshore wind development projects are proposed for cons ```{r wind-proposed-dev, fig.cap='Proposed wind development on the northeast shelf.', code=readLines("https://raw.githubusercontent.com/NOAA-EDAB/ecodata/master/chunk-scripts/human_dimensions_MAB.Rmd-wind-proposed-dev.R")} ``` - -Just over 2,500 foundations and more than 7,000 miles of inter-array and offshore export cables are proposed to date. The colored chart in Fig. \ref{fig:wind-dev-cumul} also presents the offshore wind development timeline in the Greater Atlantic region with the estimated year that foundations would be constructed (matches the color of the wind areas). These timelines and data estimates are expected to shift but represent the most recent information available as of February 2022. Based on current timelines, the areas affected would be spread out such that it is unlikely that any one particular area would experience full development at one time. Future wind development areas are also presented. Additional lease areas, totalling over 488,000 acres in the NY Bight are available for BOEM's 2022 lease sale. It’s anticipated that the NY Bight leases will fulfill outstanding offshore wind energy production goals for NY and NJ. VA and NC have outstanding goals that cannot be fulfilled within the existing lease areas, and it is expected that these will be fulfilled with future development off the Delmarva Peninsula. ```{r wind-dev-cumul, fig.cap = "All Northeast Project areas by year construction ends (each project has 2 year construction period).", out.width='90%'} #knitr::include_url("https://raw.githubusercontent.com/NOAA-EDAB/ecodata/master/docs/images/All_2021128_needsgraph-01.jpg") knitr::include_graphics("images/offshore_wind_timeline.png") ``` +Just over 2,500 foundations and more than 7,000 miles of inter-array and offshore export cables are proposed to date. The colored chart in Fig. \ref{fig:wind-dev-cumul} also presents the offshore wind development timeline in the Greater Atlantic region with the estimated year that foundations would be constructed (matches the color of the wind areas). These timelines and data estimates are expected to shift but represent the most recent information available as of February 2022. Based on current timelines, the areas affected would be spread out such that it is unlikely that any one particular area would experience full development at one time. Future wind development areas are also presented. Additional lease areas, totalling over 488,000 acres in the NY Bight are available for BOEM's 2022 lease sale. It’s anticipated that the NY Bight leases will fulfill outstanding offshore wind energy production goals for NY and NJ. VA and NC have outstanding goals that cannot be fulfilled within the existing lease areas, and it is expected that these will be fulfilled with future development off the Delmarva Peninsula. + Based on federal vessel logbook data, average commercial fishery revenue from trips in the current offshore wind lease areas and the New York Bight leasing areas identified in the proposed sale notice represented 2-20% of the total annual revenue for the most affected fisheries in federal waters from 2008-2019 (Fig. \ref{fig:wea-spp-rev}). ```{r wea-spp-rev, fig.cap="Wind energy revenue in the Mid-Atlantic.", code=readLines("https://raw.githubusercontent.com/NOAA-EDAB/ecodata/master/chunk-scripts/human_dimensions_MAB.Rmd-wea-spp-rev.R"), fig.width=5, fig.asp=.4} @@ -782,7 +782,8 @@ Current plans for rapid buildout of offshore wind in a patchwork of areas spread Up to 20% of total average revenue for major Mid-Atlantic commercial species in lease areas could be forgone or reduced and associated effort displaced if all sites are developed. Displaced fishing effort can alter historic fishing area, timing, and method patterns, which can in turn change habitat, species (managed and protected), and fleet interactions. Several factors, including fishery regulations, fishery availability, and user conflicts affect where, when, and how fishing effort may be displaced. -Right whales have been observed foraging in proposed wind areas (Fig \ref{fig:whales-wind}). Altered local oceanography could affect right whale prey availability. +Planned development overlaps right whale mother and calf migration corridors and a significant foraging habitat that is used throughout the year [@quintana-rizzo_residency_2021] (Fig \ref{fig:whales-wind}). Turbine presence and extraction of energy from the system could alter local oceanography [@christiansen_emergence_2022] and may affect right whale prey availability. Proposed wind development areas also bring increased vessel strike risk from construction and operation vessels. In addition, there are a number of potential impacts to whales from pile driving and operational noise such as displacement, increased levels of communication masking, and elevated stress hormones. + ```{r whales-wind, out.width="60%", fig.cap="Northern Right Whale persistent hotspots and Wind Energy Areas."} knitr::include_graphics("images/NARW_hotpsot_persistence_2_1_2022_TPW.png") @@ -796,7 +797,7 @@ The increase of offshore wind development can have both positive (e.g., employme **Editors** (NOAA NMFS Northeast Fisheries Science Center, NEFSC): Sarah Gaichas, Kimberly Bastille, Geret DePiper, Kimberly Hyde, Scott Large, Sean Lucey, Chris Orphanides, Laurel Smith -**Contributors** (NEFSC unless otherwise noted): Aaron Beaver (Anchor QEA), Andy Beet, Ruth Boettcher (Virginia Department of Game and Inland Fisheries), Mandy Bromilow and CJ Pellerin (NOAA Chesapeake Bay Office), Joseph Caracappa, Doug Christel (GARFO), Patricia Clay, Lisa Colburn, Jennifer Cudney and Tobey Curtis (NMFS Atlantic HMS Management Division), Geret DePiper, Dan Dorfman (NOAA-NOS-NCCOS), Hubert du Pontavice, Emily Farr and Grace Roskar (NMFS Office of Habitat Conservation), Michael Fogarty, Paula Fratantoni, Kevin Friedland, Marjy Friedrichs (VIMS), Sarah Gaichas, Ben Galuardi (GAFRO), Avijit Gangopadhyay (School for Marine Science and Technology, University of Massachusetts Dartmouth), James Gartland (Virginia Institute of Marine Science), Glen Gawarkiewicz (Woods Hole Oceanographic Institution), Sean Hardison, Kimberly Hyde, John Kosik, Steve Kress and Don Lyons (National Audubon Society’s Seabird Restoration Program), Young-Oh Kwon and Zhuomin Chen (Woods Hole Oceanographic Institution), Andrew Lipsky, Sean Lucey, Chris Melrose, Shannon Meseck, Ryan Morse, Brandon Muffley (MAFMC), Kimberly Murray, Chris Orphanides, Richard Pace, Tom Parham (Maryland DNR), Charles Perretti, Grace Saba and Emily Slesinger (Rutgers University), Vincent Saba, Sarah Salois, Chris Schillaci (GARFO), Dave Secor (CBL), Angela Silva, Adrienne Silver (UMass/SMAST), Laurel Smith, Talya ten Brink (GARFO), Bruce Vogt (NOAA Chesapeake Bay Office), Ron Vogel (University of Maryland Cooperative Institute for Satellite Earth System Studies and NOAA/NESDIS Center for Satellite Applications and Research), John Walden, Harvey Walsh, Changhua Weng, Mark Wuenschel +**Contributors** (NEFSC unless otherwise noted): Kimberly Bastille, Aaron Beaver (Anchor QEA), Andy Beet, Ruth Boettcher (Virginia Department of Game and Inland Fisheries), Mandy Bromilow and CJ Pellerin (NOAA Chesapeake Bay Office), Joseph Caracappa, Doug Christel (GARFO), Patricia Clay, Lisa Colburn, Jennifer Cudney and Tobey Curtis (NMFS Atlantic HMS Management Division), Geret DePiper, Dan Dorfman (NOAA-NOS-NCCOS), Hubert du Pontavice, Emily Farr and Grace Roskar (NMFS Office of Habitat Conservation), Michael Fogarty, Paula Fratantoni, Kevin Friedland, Marjy Friedrichs (VIMS), Sarah Gaichas, Ben Galuardi (GAFRO), Avijit Gangopadhyay (School for Marine Science and Technology, University of Massachusetts Dartmouth), James Gartland (Virginia Institute of Marine Science), Glen Gawarkiewicz (Woods Hole Oceanographic Institution), Sean Hardison, Kimberly Hyde, John Kosik, Steve Kress and Don Lyons (National Audubon Society’s Seabird Restoration Program), Young-Oh Kwon and Zhuomin Chen (Woods Hole Oceanographic Institution), Andrew Lipsky, Sean Lucey, Chris Melrose, Shannon Meseck, Ryan Morse, Brandon Muffley (MAFMC), Kimberly Murray, Chris Orphanides, Richard Pace, Tom Parham (Maryland DNR), Charles Perretti, Grace Saba and Emily Slesinger (Rutgers University), Vincent Saba, Sarah Salois, Chris Schillaci (GARFO), Dave Secor (CBL), Angela Silva, Adrienne Silver (UMass/SMAST), Laurel Smith, Talya ten Brink (GARFO), Bruce Vogt (NOAA Chesapeake Bay Office), Ron Vogel (University of Maryland Cooperative Institute for Satellite Earth System Studies and NOAA/NESDIS Center for Satellite Applications and Research), John Walden, Harvey Walsh, Changhua Weng, Mark Wuenschel \newpage diff --git a/SOE-MAFMC-2022.tex b/SOE-MAFMC-2022.tex index 4e753d2..c01e278 100644 --- a/SOE-MAFMC-2022.tex +++ b/SOE-MAFMC-2022.tex @@ -115,7 +115,7 @@ \fancyheadinit{% \ifthenelse{\value{page}=4}% - {\fancyhead[R]{\includegraphics[width=40pt]{images/NOAA_logo.png} \\ \textsf{\emph{March 7, 2022}}} + {\fancyhead[R]{\includegraphics[width=40pt]{images/NOAA_logo.png} \\ \textsf{\emph{March 17, 2022}}} \fancyhead[L]{\textsf{\LARGE State of the Ecosystem 2022: Mid-Atlantic}} }% {\fancyhead[R]{} @@ -383,11 +383,11 @@ \subsubsection{Implications}\label{implications}} turn may affect landings trends. Summed across all MAFMC managed species, total Acceptable Biological Catch or Annual Catch Limits (ABC or ACL) have been relatively stable 2012-2020 (Fig. -\ref{fig:abcacl-stacked}). With the addition of blueline tilefish -management in 2017, an additional ABC and ACL contribute to the total -2017-2020. Discounting blueline tilefish, the recent total ABC or ACL is -lower relative to 2012-2013, with much of that decrease due to declining -Atlantic mackerel ABC. +\ref{fig:abcacl-stacked}). The recent total ABC or ACL is lower relative +to 2012-2013, with much of that decrease due to declining Atlantic +mackerel ABC. This is true even with the addition of blueline tilefish +management in 2017 contributing an additional ABC and ACL to the total +2017-2020, due to that fishery's small relative size. \begin{figure} @@ -1001,6 +1001,14 @@ \subsubsection{Implications}\label{implications-5}} prey (\emph{Calanus finmarchicus}) in the central and eastern portions of the Gulf of Maine {[}\protect\hyperlink{ref-hayes_north_2018}{6}--\protect\hyperlink{ref-sorochan_north_2019}{8}{]}. +Additional potential stressors include offshore wind development, which +overlaps with important habitat areas used year-round by right whales, +including mother and calf migration corridors and foraging habitat +{[}\protect\hyperlink{ref-quintana-rizzo_residency_2021}{9},\protect\hyperlink{ref-schick_striking_2009}{10}{]}. +This area is also the only known right whale winter foraging habitat. +Additional information can be found in the +\protect\hyperlink{other-ocean-uses-offshore-wind}{offshore wind risks +section}. The UMEs are under investigation and are likely the result of multiple drivers. For all three large whale UMEs, human interaction appears to @@ -1088,7 +1096,7 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, A marine heatwave is a warming event that lasts for five or more days with sea surface temperatures warmer than 90\% of previously observed (1982-2011) temperatures for that date -{[}\protect\hyperlink{ref-hobday_hierarchical_2016}{9}{]}. Marine +{[}\protect\hyperlink{ref-hobday_hierarchical_2016}{11}{]}. Marine heatwaves measure not just high temperature, but how long the ecosystem is subjected to the high temperature. They are driven by both atmospheric and oceanographic factors and can have dramatic impacts on @@ -1119,17 +1127,17 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, Variability of the Gulf Stream is one of the major drivers of changes in the oceanographic conditions of the Slope Sea and subsequently the Northeast U.S. continental shelf -{[}\protect\hyperlink{ref-gangopadhyay_census_2020}{10}{]}. Changes in +{[}\protect\hyperlink{ref-gangopadhyay_census_2020}{12}{]}. Changes in the Gulf Stream and Slope Sea can affect large-scale climate phenomena as well as local ecosystems and coastal communities. During the last decade, the Gulf Stream has become less stable and shifted northward -{[}\protect\hyperlink{ref-andres_recent_2016}{11},\protect\hyperlink{ref-caesar_observed_2018}{12}{]} +{[}\protect\hyperlink{ref-andres_recent_2016}{13},\protect\hyperlink{ref-caesar_observed_2018}{14}{]} (Fig. \ref{fig:GSI}). A more northern Gulf Stream position is associated with warmer ocean temperature on the northeast shelf -{[}\protect\hyperlink{ref-zhang_role_2007}{13}{]}, a higher proportion +{[}\protect\hyperlink{ref-zhang_role_2007}{15}{]}, a higher proportion of Warm Slope Water in the Northeast Channel, and increased sea surface height along the U.S. east coast -{[}\protect\hyperlink{ref-goddard_extreme_2015}{14}{]}. +{[}\protect\hyperlink{ref-goddard_extreme_2015}{16}{]}. \begin{figure} @@ -1143,7 +1151,7 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, Since 2008, the Gulf Stream has moved closer to the Grand Banks, reducing the supply of cold, fresh, and oxygen-rich Labrador Current waters to the Northwest Atlantic Shelf -{[}\protect\hyperlink{ref-goncalves_neto_changes_2021}{15}{]}. Nearly +{[}\protect\hyperlink{ref-goncalves_neto_changes_2021}{17}{]}. Nearly every year since 2010, warm slope water made up more than 75\% of the annual slope water proportions entering the Gulf of Maine. In 2017 and 2019, almost no cooler Labrador Slope water entered the Gulf of Maine @@ -1153,7 +1161,7 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, water continued to dominate (86.1\%) inputs to the Gulf of Maine. The 2022 position of the north wall of the Gulf Stream is forecasted to be similar to 2021 -{[}\protect\hyperlink{ref-silver_forecasting_2021}{16}{]}, extending +{[}\protect\hyperlink{ref-silver_forecasting_2021}{18}{]}, extending this pattern. \begin{figure} @@ -1168,13 +1176,13 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, The increased instability of the Gulf Stream position and warming of the Slope Sea may also be connected to the regime shift increase in the number of warm core rings formed annually in the Northwest Atlantic -{[}\protect\hyperlink{ref-gangopadhyay_census_2020}{10},\protect\hyperlink{ref-gangopadhyay_observed_2019}{17}{]} +{[}\protect\hyperlink{ref-gangopadhyay_census_2020}{12},\protect\hyperlink{ref-gangopadhyay_observed_2019}{19}{]} (Fig. \ref{fig:wcr}). Timing of ring formation may also be changing. In 2021, a remarkable number of rings were observed simultaneously near the shelf break in June. When warm core ring water moves onto the continental shelf, it can alter the habitat and disrupt seasonal movements of fish -{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{18}{]}. +{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{20}{]}. \begin{figure} @@ -1187,29 +1195,29 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, When warm core rings and eddies interact with the continental slope they can transport warm, salty water to the continental shelf -{[}\protect\hyperlink{ref-chen_mesoscale_2022}{19}{]}, and this is now +{[}\protect\hyperlink{ref-chen_mesoscale_2022}{21}{]}, and this is now happening more frequently -{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{18},\protect\hyperlink{ref-gawarkiewicz_increasing_nodate}{20}{]}. +{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{20},\protect\hyperlink{ref-gawarkiewicz_increasing_nodate}{22}{]}. These interactions can be significant contributors to marine heatwaves in the Mid-Atlantic Bight -{[}\protect\hyperlink{ref-chen_mesoscale_2022}{19},\protect\hyperlink{ref-gawarkiewicz_characteristics_2019}{21}{]} +{[}\protect\hyperlink{ref-chen_mesoscale_2022}{21},\protect\hyperlink{ref-gawarkiewicz_characteristics_2019}{23}{]} as well as the movement of shelf-break species inshore -{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{18},\protect\hyperlink{ref-potter_horizontal_2011}{22},\protect\hyperlink{ref-worm_predator_2003}{23}{]}. +{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{20},\protect\hyperlink{ref-potter_horizontal_2011}{24},\protect\hyperlink{ref-worm_predator_2003}{25}{]}. Changes in ocean temperature and circulation alter habitat features such as the seasonal cold pool, a 20--60 m thick band of cold, relatively uniform near-bottom water that persists from spring to fall over the mid and outer shelf of the MAB and southern flank of Georges Bank -{[}\protect\hyperlink{ref-lentz_seasonal_2017}{24},\protect\hyperlink{ref-chen_seasonal_2018}{25}{]}. +{[}\protect\hyperlink{ref-lentz_seasonal_2017}{26},\protect\hyperlink{ref-chen_seasonal_2018}{27}{]}. The cold pool plays an essential role in the structuring of the MAB ecosystem. It is a reservoir of nutrients that feeds phytoplankton productivity, is essential fish spawning and nursery habitat, and affects fish distribution and behavior -{[}\protect\hyperlink{ref-lentz_seasonal_2017}{24},\protect\hyperlink{ref-miles_offshore_2021}{26}{]}. +{[}\protect\hyperlink{ref-lentz_seasonal_2017}{26},\protect\hyperlink{ref-miles_offshore_2021}{28}{]}. The average temperature of the cold pool is getting warmer over time -{[}\protect\hyperlink{ref-miller_state-space_2016}{27},\protect\hyperlink{ref-du_pontavice_incorporating_nodate}{28}{]}, +{[}\protect\hyperlink{ref-miller_state-space_2016}{29},\protect\hyperlink{ref-du_pontavice_incorporating_nodate}{30}{]}, the area is getting smaller -{[}\protect\hyperlink{ref-friedland_middle_2022}{29}{]}, and the +{[}\protect\hyperlink{ref-friedland_middle_2022}{31}{]}, and the duration is getting shorter (Fig. \ref{fig:cold-pool}). \begin{figure} @@ -1239,7 +1247,7 @@ \subsubsection{Climate Change Indicators: ocean temperature, heatwaves, pool subsurface and bottom water, which is cut off from mixing with surface water by strong stratification. Fall mixing and slope water intrusions act to increase the pH in outer shelf waters -{[}\protect\hyperlink{ref-wrightfairbanks_autonomous_2020}{30}{]}. +{[}\protect\hyperlink{ref-wrightfairbanks_autonomous_2020}{32}{]}. \begin{figure} @@ -1311,7 +1319,7 @@ \subsubsection{Ecosystem Productivity Indicators: phytoplankton, throughout the Northeast shelf and in the Slope Sea during other summer 2021 scientific surveys, which may be associated with water mass intrusions at the shelf break -{[}\protect\hyperlink{ref-madin_periodic_2006}{31},\protect\hyperlink{ref-deibel_predictability_2009}{32}{]}. +{[}\protect\hyperlink{ref-madin_periodic_2006}{33},\protect\hyperlink{ref-deibel_predictability_2009}{34}{]}. Salps are filter feeders feeding on phytoplankton and other small particles and may have contributed to the below average phytoplankton biomass in summer 2021 (Fig. \ref{fig:chl-weekly}). @@ -1331,7 +1339,7 @@ \subsubsection{Ecosystem Productivity Indicators: phytoplankton, studies (10.6-9.4 kJ/ g wet weight). Silver hake, longfin squid (\emph{Loligo} in figure) and shortfin squid (\emph{Illex} in figure) were also lower than previous estimates -{[}\protect\hyperlink{ref-steimle_energy_1985}{33},\protect\hyperlink{ref-lawson_important_1998}{34}{]}. +{[}\protect\hyperlink{ref-steimle_energy_1985}{35},\protect\hyperlink{ref-lawson_important_1998}{36}{]}. Energy density of alewife, butterfish, sand lance, and Atlantic mackerel varies seasonally, with seasonal estimates both higher and lower than estimates from previous decades. @@ -1352,7 +1360,7 @@ \subsubsection{Ecosystem Productivity Indicators: phytoplankton, shape condition indices (i.e., weight at a given length) such as relative condition index, which is the ratio of observed weight to predicted weight based on length -{[}\protect\hyperlink{ref-le_cren_length-weight_1951}{35}{]}. Heavier +{[}\protect\hyperlink{ref-le_cren_length-weight_1951}{37}{]}. Heavier and fatter fish at a given length have higher relative condition which is expected to improve growth, reproductive output, and survival. A pattern of generally good condition was observed across many MAB species @@ -1483,9 +1491,9 @@ \subsubsection{Habitat Risk Indicators: habitat assessments, submerged As part of the NRHA work, climate vulnerability information from NOAA's Habitat Climate Vulnerability Assessment -{[}\protect\hyperlink{ref-farr_assessment_2021}{36}{]} and the Northeast +{[}\protect\hyperlink{ref-farr_assessment_2021}{38}{]} and the Northeast Fish and Shellfish Climate Vulnerability Assessment -{[}\protect\hyperlink{ref-hare_vulnerability_2016}{37}{]}\footnote{\url{https://www.fisheries.noaa.gov/new-england-mid-atlantic/climate/northeast-vulnerability-assessment}} +{[}\protect\hyperlink{ref-hare_vulnerability_2016}{39}{]}\footnote{\url{https://www.fisheries.noaa.gov/new-england-mid-atlantic/climate/northeast-vulnerability-assessment}} is synthesized for approximately 70 species in the northeast region. For example, black sea bass, scup, and summer founder have been linked to several highly vulnerable nearshore habitats from salt marsh, submerged @@ -1530,7 +1538,7 @@ \subsubsection{Habitat Risk Indicators: habitat assessments, submerged menhaden). An integrated measure of multiple water quality criteria shows a significantly increasing proportion of Chesapeake Bay waters meeting or exceeding EPA water quality standards over time -({[}\protect\hyperlink{ref-zhang_chesapeake_2018}{38}{]}; Fig. +({[}\protect\hyperlink{ref-zhang_chesapeake_2018}{40}{]}; Fig. \ref{fig:cb-attainment}). This pattern was statistically linked to total nitrogen reduction, indicating responsiveness of water quality status to management actions implemented to reduce nutrients. Water quality trends @@ -1613,12 +1621,12 @@ \subsubsection{Implications}\label{implications-6}} Warmer winter temperatures may benefit Chesapeake Bay blue crabs, an important commercial and forage species. Above-average fall and winter temperatures in 2021 may have reduced overwintering mortality -{[}\protect\hyperlink{ref-bauer_temperature-_2010}{39}--\protect\hyperlink{ref-rome_linking_2005}{41}{]} +{[}\protect\hyperlink{ref-bauer_temperature-_2010}{41}--\protect\hyperlink{ref-rome_linking_2005}{43}{]} and contributed to increased productivity of blue crabs going into 2022. Longer growth seasons are associated with increased production of blue crabs and oysters in Chesapeake Bay. Blue crabs are moving northward with warming temperatures and have been documented in the Gulf of Maine -{[}\protect\hyperlink{ref-johnson_savory_2015}{42}{]}, with implications +{[}\protect\hyperlink{ref-johnson_savory_2015}{44}{]}, with implications for both their management and for the inshore ecosystems. \hypertarget{eastern-oyster}{% @@ -1628,7 +1636,7 @@ \subsubsection{Implications}\label{implications-6}} Oyster reefs provide habitat for several managed fish species including juvenile black sea bass and summer flounder. Increased Chesapeake Bay salinity has been linked to high juvenile oyster abundance -{[}\protect\hyperlink{ref-kimmel_relationship_2014}{43}{]}. In 2021, +{[}\protect\hyperlink{ref-kimmel_relationship_2014}{45}{]}. In 2021, high oyster spat set was predicted based on high summer salinity\footnote{\url{https://content.buoybay.noaa.gov/sites/default/files/NCBOSeasonalSummary2021Summer.pdf}}, and was observed in Maryland during fall 2021. Virginia oyster @@ -1656,7 +1664,7 @@ \subsubsection{Implications}\label{implications-6}} Ocean acidification also has different implications, depending on the species and life stage. Recent lab studies have found that surf clams exhibited metabolic depression in a pH range of 7.46-7.28 -{[}\protect\hyperlink{ref-pousse_energetic_2020}{44}{]}. Computer models +{[}\protect\hyperlink{ref-pousse_energetic_2020}{46}{]}. Computer models are in development to help determine the long term implications of growth on surf clam populations. Aggregated data from 2007-2021 show that summer bottom ocean pH (7.69-8.07, Fig. \ref{fig:mab-oa}) has not @@ -1685,19 +1693,19 @@ \subsubsection{Implications}\label{implications-6}} While marine heatwaves lasting over days may disturb the marine environment, long lasting events such as the warming in 2012 (Fig. \ref{fig:heatwave}) can have significant impacts to the ecosystem -{[}\protect\hyperlink{ref-gawarkiewicz_characteristics_2019}{21}{]}. The +{[}\protect\hyperlink{ref-gawarkiewicz_characteristics_2019}{23}{]}. The 2012 heatwave affected the lobster fishery most notably, but other species also shifted their geographic distributions and seasonal cycles -{[}\protect\hyperlink{ref-mills_fisheries_2013}{45}{]}. The 2012 +{[}\protect\hyperlink{ref-mills_fisheries_2013}{47}{]}. The 2012 heatwave was caused by a shift in the atmospheric Jet Stream, whereas the 2017 marine heatwave in the Mid-Atlantic was associated with a strong positive salinity anomaly and is likely related to cross-shelf flow driven by the presence of a warm core ring adjacent to the shelfbreak south of New England -{[}\protect\hyperlink{ref-gawarkiewicz_characteristics_2019}{21}{]}. +{[}\protect\hyperlink{ref-gawarkiewicz_characteristics_2019}{23}{]}. During the 2017 event, warm water fish typically found in the Gulf Stream were caught in shallow waters near Block Island, RI -{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{18}{]}. Ocean +{[}\protect\hyperlink{ref-gawarkiewicz_changing_2018}{20}{]}. Ocean temperatures in 2021 rivaled or exceeded the record temperatures in 2012 in some seasons, but the impacts to fisheries have yet to be determined. @@ -1717,21 +1725,21 @@ \subsubsection{Implications}\label{implications-6}} recruitment, and migration timing for multiple federally managed species. Southern New England-Mid Atlantic yellowtail flounder recruitment and settlement are related to the strength of the cold pool -{[}\protect\hyperlink{ref-miller_state-space_2016}{27}{]}. The +{[}\protect\hyperlink{ref-miller_state-space_2016}{29}{]}. The settlement of pre-recruits during the cold pool event represents a bottleneck in yellowtail life history, during which a local and temporary increase in bottom temperature negatively impacts the survival of the settlers. Including the effect of cold pool variations on yellowtail recruitment reduced retrospective patterns and improved the skill of short-term forecasts in a stock assessment model -{[}\protect\hyperlink{ref-miller_state-space_2016}{27},\protect\hyperlink{ref-du_pontavice_incorporating_nodate}{28}{]}. +{[}\protect\hyperlink{ref-miller_state-space_2016}{29},\protect\hyperlink{ref-du_pontavice_incorporating_nodate}{30}{]}. The cold pool also provides habitat for the ocean quahog -{[}\protect\hyperlink{ref-friedland_middle_2022}{29},\protect\hyperlink{ref-powell_ocean_2020}{46}{]}. +{[}\protect\hyperlink{ref-friedland_middle_2022}{31},\protect\hyperlink{ref-powell_ocean_2020}{48}{]}. Growth rates of ocean quahogs in the MAB (southern portion of their range) have increased over the last 200 years whereas little to no change has been documented in the northern portion of their range in southern New England, likely a response to a warming and shrinking cold -pool {[}\protect\hyperlink{ref-pace_two-hundred_2018}{47}{]}. +pool {[}\protect\hyperlink{ref-pace_two-hundred_2018}{49}{]}. \hypertarget{distribution-shift-impacts}{% \paragraph{Distribution shift @@ -1775,7 +1783,7 @@ \subsubsection{Implications}\label{implications-6}} 1990s and early 2000s high relative abundance of smaller bodied copepods and a lower relative abundance of \emph{Calanus finmarchicus} was associated with regime shifts to lower fish recruitment -{[}\protect\hyperlink{ref-perretti_regime_2017}{48}{]}. The +{[}\protect\hyperlink{ref-perretti_regime_2017}{50}{]}. The unprecedented climate signals along with the trends toward lower productivity across multiple managed species indicate a need to continually evaluate whether management reference points remain @@ -1809,6 +1817,15 @@ \subsubsection{Indicators: development timeline, revenue in lease areas, \caption{Proposed wind development on the northeast shelf.}\label{fig:wind-proposed-dev} \end{figure} +\begin{figure} + +{\centering \includegraphics[width=0.9\linewidth]{images/offshore_wind_timeline} + +} + +\caption{All Northeast Project areas by year construction ends (each project has 2 year construction period).}\label{fig:wind-dev-cumul} +\end{figure} + Just over 2,500 foundations and more than 7,000 miles of inter-array and offshore export cables are proposed to date. The colored chart in Fig. \ref{fig:wind-dev-cumul} also presents the offshore wind development @@ -1827,15 +1844,6 @@ \subsubsection{Indicators: development timeline, revenue in lease areas, that these will be fulfilled with future development off the Delmarva Peninsula. -\begin{figure} - -{\centering \includegraphics[width=0.9\linewidth]{images/offshore_wind_timeline} - -} - -\caption{All Northeast Project areas by year construction ends (each project has 2 year construction period).}\label{fig:wind-dev-cumul} -\end{figure} - Based on federal vessel logbook data, average commercial fishery revenue from trips in the current offshore wind lease areas and the New York Bight leasing areas identified in the proposed sale notice represented @@ -1970,7 +1978,7 @@ \subsubsection{Indicators: development timeline, revenue in lease areas, for-hire fishing industry due to disruptions to fish populations, restrictions on navigation and increased vessel traffic, as well as existing vulnerabilities of low-income workers to economic impacts -{[}\protect\hyperlink{ref-boem_vineyard_2020}{49}{]}. +{[}\protect\hyperlink{ref-boem_vineyard_2020}{51}{]}. Top fishing communities high in environmental justice concerns (i.e., Atlantic City, NJ, Newport News, VA, Hobucken and Beaufort, NC) should @@ -1997,9 +2005,17 @@ \subsubsection{Implications}\label{implications-7}} and user conflicts affect where, when, and how fishing effort may be displaced. -Right whales have been observed foraging in proposed wind areas (Fig -\ref{fig:whales-wind}). Altered local oceanography could affect right -whale prey availability. +Planned development overlaps right whale mother and calf migration +corridors and a significant foraging habitat that is used throughout the +year {[}\protect\hyperlink{ref-quintana-rizzo_residency_2021}{9}{]} (Fig +\ref{fig:whales-wind}). Turbine presence and extraction of energy from +the system could alter local oceanography +{[}\protect\hyperlink{ref-christiansen_emergence_2022}{52}{]} and may +affect right whale prey availability. Proposed wind development areas +also bring increased vessel strike risk from construction and operation +vessels. In addition, there are a number of potential impacts to whales +from pile driving and operational noise such as displacement, increased +levels of communication masking, and elevated stress hormones. \begin{figure} @@ -2032,31 +2048,31 @@ \section{Contributors}\label{contributors}} Sarah Gaichas, Kimberly Bastille, Geret DePiper, Kimberly Hyde, Scott Large, Sean Lucey, Chris Orphanides, Laurel Smith -\textbf{Contributors} (NEFSC unless otherwise noted): Aaron Beaver -(Anchor QEA), Andy Beet, Ruth Boettcher (Virginia Department of Game and -Inland Fisheries), Mandy Bromilow and CJ Pellerin (NOAA Chesapeake Bay -Office), Joseph Caracappa, Doug Christel (GARFO), Patricia Clay, Lisa -Colburn, Jennifer Cudney and Tobey Curtis (NMFS Atlantic HMS Management -Division), Geret DePiper, Dan Dorfman (NOAA-NOS-NCCOS), Hubert du -Pontavice, Emily Farr and Grace Roskar (NMFS Office of Habitat -Conservation), Michael Fogarty, Paula Fratantoni, Kevin Friedland, Marjy -Friedrichs (VIMS), Sarah Gaichas, Ben Galuardi (GAFRO), Avijit -Gangopadhyay (School for Marine Science and Technology, University of -Massachusetts Dartmouth), James Gartland (Virginia Institute of Marine -Science), Glen Gawarkiewicz (Woods Hole Oceanographic Institution), Sean -Hardison, Kimberly Hyde, John Kosik, Steve Kress and Don Lyons (National -Audubon Society's Seabird Restoration Program), Young-Oh Kwon and -Zhuomin Chen (Woods Hole Oceanographic Institution), Andrew Lipsky, Sean -Lucey, Chris Melrose, Shannon Meseck, Ryan Morse, Brandon Muffley -(MAFMC), Kimberly Murray, Chris Orphanides, Richard Pace, Tom Parham -(Maryland DNR), Charles Perretti, Grace Saba and Emily Slesinger -(Rutgers University), Vincent Saba, Sarah Salois, Chris Schillaci -(GARFO), Dave Secor (CBL), Angela Silva, Adrienne Silver (UMass/SMAST), -Laurel Smith, Talya ten Brink (GARFO), Bruce Vogt (NOAA Chesapeake Bay -Office), Ron Vogel (University of Maryland Cooperative Institute for -Satellite Earth System Studies and NOAA/NESDIS Center for Satellite -Applications and Research), John Walden, Harvey Walsh, Changhua Weng, -Mark Wuenschel +\textbf{Contributors} (NEFSC unless otherwise noted): Kimberly Bastille, +Aaron Beaver (Anchor QEA), Andy Beet, Ruth Boettcher (Virginia +Department of Game and Inland Fisheries), Mandy Bromilow and CJ Pellerin +(NOAA Chesapeake Bay Office), Joseph Caracappa, Doug Christel (GARFO), +Patricia Clay, Lisa Colburn, Jennifer Cudney and Tobey Curtis (NMFS +Atlantic HMS Management Division), Geret DePiper, Dan Dorfman +(NOAA-NOS-NCCOS), Hubert du Pontavice, Emily Farr and Grace Roskar (NMFS +Office of Habitat Conservation), Michael Fogarty, Paula Fratantoni, +Kevin Friedland, Marjy Friedrichs (VIMS), Sarah Gaichas, Ben Galuardi +(GAFRO), Avijit Gangopadhyay (School for Marine Science and Technology, +University of Massachusetts Dartmouth), James Gartland (Virginia +Institute of Marine Science), Glen Gawarkiewicz (Woods Hole +Oceanographic Institution), Sean Hardison, Kimberly Hyde, John Kosik, +Steve Kress and Don Lyons (National Audubon Society's Seabird +Restoration Program), Young-Oh Kwon and Zhuomin Chen (Woods Hole +Oceanographic Institution), Andrew Lipsky, Sean Lucey, Chris Melrose, +Shannon Meseck, Ryan Morse, Brandon Muffley (MAFMC), Kimberly Murray, +Chris Orphanides, Richard Pace, Tom Parham (Maryland DNR), Charles +Perretti, Grace Saba and Emily Slesinger (Rutgers University), Vincent +Saba, Sarah Salois, Chris Schillaci (GARFO), Dave Secor (CBL), Angela +Silva, Adrienne Silver (UMass/SMAST), Laurel Smith, Talya ten Brink +(GARFO), Bruce Vogt (NOAA Chesapeake Bay Office), Ron Vogel (University +of Maryland Cooperative Institute for Satellite Earth System Studies and +NOAA/NESDIS Center for Satellite Applications and Research), John +Walden, Harvey Walsh, Changhua Weng, Mark Wuenschel \newpage @@ -2183,15 +2199,31 @@ \section*{References}\label{references}} 2019;41: 687--708. doi:\href{https://doi.org/10.1093/plankt/fbz044}{10.1093/plankt/fbz044}} -\leavevmode\hypertarget{ref-hobday_hierarchical_2016}{}% +\leavevmode\hypertarget{ref-quintana-rizzo_residency_2021}{}% \CSLLeftMargin{9. } +\CSLRightInline{Quintana-Rizzo E, Leiter S, Cole TVN, Hagbloom MN, +Knowlton AR, Nagelkirk P, et al. Residency, demographics, and movement +patterns of {North} {Atlantic} right whales {Eubalaena} glacialis in an +offshore wind energy development area in southern {New} {England}, +{USA}. Endangered Species Research. 2021;45: 251--268. +doi:\href{https://doi.org/10.3354/esr01137}{10.3354/esr01137}} + +\leavevmode\hypertarget{ref-schick_striking_2009}{}% +\CSLLeftMargin{10. } +\CSLRightInline{Schick RS, Halpin PN, Read AJ, Slay CK, Kraus SD, Mate +BR, et al. Striking the right balance in right whale conservation. +Canadian Journal of Fisheries and Aquatic Sciences. 2009;66: 1399--1403. +doi:\href{https://doi.org/10.1139/F09-115}{10.1139/F09-115}} + +\leavevmode\hypertarget{ref-hobday_hierarchical_2016}{}% +\CSLLeftMargin{11. } \CSLRightInline{Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. A hierarchical approach to defining marine heatwaves. Progress in Oceanography. 2016;141: 227--238. doi:\href{https://doi.org/10.1016/j.pocean.2015.12.014}{10.1016/j.pocean.2015.12.014}} \leavevmode\hypertarget{ref-gangopadhyay_census_2020}{}% -\CSLLeftMargin{10. } +\CSLLeftMargin{12. } \CSLRightInline{Gangopadhyay A, Gawarkiewicz G, Silva ENS, Silver AM, Monim M, Clark J. A {Census} of the {Warm}-{Core} {Rings} of the {Gulf} {Stream}: 1980--2017. Journal of Geophysical Research: Oceans. 2020;125: @@ -2199,21 +2231,21 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1029/2019JC016033}{10.1029/2019JC016033}} \leavevmode\hypertarget{ref-andres_recent_2016}{}% -\CSLLeftMargin{11. } +\CSLLeftMargin{13. } \CSLRightInline{Andres M. On the recent destabilization of the {Gulf} {Stream} path downstream of {Cape} {Hatteras}. Geophysical Research Letters. 2016;43: 9836--9842. doi:\href{https://doi.org/10.1002/2016GL069966}{10.1002/2016GL069966}} \leavevmode\hypertarget{ref-caesar_observed_2018}{}% -\CSLLeftMargin{12. } +\CSLLeftMargin{14. } \CSLRightInline{Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V. Observed fingerprint of a weakening {Atlantic} {Ocean} overturning circulation. Nature. 2018;556: 191--196. doi:\href{https://doi.org/10.1038/s41586-018-0006-5}{10.1038/s41586-018-0006-5}} \leavevmode\hypertarget{ref-zhang_role_2007}{}% -\CSLLeftMargin{13. } +\CSLLeftMargin{15. } \CSLRightInline{Zhang R, Vallis GK. The {Role} of {Bottom} {Vortex} {Stretching} on the {Path} of the {North} {Atlantic} {Western} {Boundary} {Current} and on the {Northern} {Recirculation} {Gyre}. @@ -2221,21 +2253,21 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1175/JPO3102.1}{10.1175/JPO3102.1}} \leavevmode\hypertarget{ref-goddard_extreme_2015}{}% -\CSLLeftMargin{14. } +\CSLLeftMargin{16. } \CSLRightInline{Goddard PB, Yin J, Griffies SM, Zhang S. An extreme event of sea-level rise along the {Northeast} coast of {North} {America} in 2009--2010. Nature Communications. 2015;6. doi:\href{https://doi.org/10.1038/ncomms7346}{10.1038/ncomms7346}} \leavevmode\hypertarget{ref-goncalves_neto_changes_2021}{}% -\CSLLeftMargin{15. } +\CSLLeftMargin{17. } \CSLRightInline{Gonçalves Neto A, Langan JA, Palter JB. Changes in the {Gulf} {Stream} preceded rapid warming of the {Northwest} {Atlantic} {Shelf}. Communications Earth \& Environment. 2021;2: 1--10. doi:\href{https://doi.org/10.1038/s43247-021-00143-5}{10.1038/s43247-021-00143-5}} \leavevmode\hypertarget{ref-silver_forecasting_2021}{}% -\CSLLeftMargin{16. } +\CSLLeftMargin{18. } \CSLRightInline{Silver A, Gangopadhyay A, Gawarkiewicz G, Taylor A, Sanchez-Franks A. Forecasting the {Gulf} {Stream} {Path} {Using} {Buoyancy} and {Wind} {Forcing} {Over} the {North} {Atlantic}. Journal @@ -2243,7 +2275,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1029/2021JC017614}{10.1029/2021JC017614}} \leavevmode\hypertarget{ref-gangopadhyay_observed_2019}{}% -\CSLLeftMargin{17. } +\CSLLeftMargin{19. } \CSLRightInline{Gangopadhyay A, Gawarkiewicz G, Silva ENS, Monim M, Clark J. An {Observed} {Regime} {Shift} in the {Formation} of {Warm} {Core} {Rings} from the {Gulf} {Stream}. Scientific Reports. 2019;9: @@ -2251,7 +2283,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1038/s41598-019-48661-9}{10.1038/s41598-019-48661-9}} \leavevmode\hypertarget{ref-gawarkiewicz_changing_2018}{}% -\CSLLeftMargin{18. } +\CSLLeftMargin{20. } \CSLRightInline{Gawarkiewicz G, Todd R, Zhang W, Partida J, Gangopadhyay A, Monim M-U-H, et al. The {Changing} {Nature} of {Shelf}-{Break} {Exchange} {Revealed} by the {OOI} {Pioneer} {Array}. Oceanography. @@ -2259,21 +2291,21 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.5670/oceanog.2018.110}{10.5670/oceanog.2018.110}} \leavevmode\hypertarget{ref-chen_mesoscale_2022}{}% -\CSLLeftMargin{19. } +\CSLLeftMargin{21. } \CSLRightInline{Chen K, Gawarkiewicz G, Yang J. Mesoscale and {Submesoscale} {Shelf}-{Ocean} {Exchanges} {Initialize} an {Advective} {Marine} {Heatwave}. Journal of Geophysical Research: Oceans. 2022;127: e2021JC017927. doi:\url{https://doi.org/10.1029/2021JC017927}} \leavevmode\hypertarget{ref-gawarkiewicz_increasing_nodate}{}% -\CSLLeftMargin{20. } +\CSLLeftMargin{22. } \CSLRightInline{Gawarkiewicz G, Fratantoni P, Bahr F, Ellertson A. Increasing {Frequency} of {Mid}-depth {Salinity} {Maximum} {Intrusions} in the {Middle} {Atlantic} {Bight}. Journal of Geophysical Research: -Oceans. "In Review"; } +Oceans. In Review; } \leavevmode\hypertarget{ref-gawarkiewicz_characteristics_2019}{}% -\CSLLeftMargin{21. } +\CSLLeftMargin{23. } \CSLRightInline{Gawarkiewicz G, Chen K, Forsyth J, Bahr F, Mercer AM, Ellertson A, et al. Characteristics of an {Advective} {Marine} {Heatwave} in the {Middle} {Atlantic} {Bight} in {Early} 2017. Frontiers @@ -2281,28 +2313,28 @@ \section*{References}\label{references}} \url{https://www.frontiersin.org/article/10.3389/fmars.2019.00712}} \leavevmode\hypertarget{ref-potter_horizontal_2011}{}% -\CSLLeftMargin{22. } +\CSLLeftMargin{24. } \CSLRightInline{Potter IF, Galuardi B, Howell WH. Horizontal movement of ocean sunfish, {Mola} mola, in the northwest {Atlantic}. Marine Biology. 2011;158: 531--540. doi:\href{https://doi.org/10.1007/s00227-010-1578-2}{10.1007/s00227-010-1578-2}} \leavevmode\hypertarget{ref-worm_predator_2003}{}% -\CSLLeftMargin{23. } +\CSLLeftMargin{25. } \CSLRightInline{Worm B, Lotze HK, Myers RA. Predator diversity hotspots in the blue ocean. Proceedings of the National Academy of Sciences. 2003;100: 9884--9888. doi:\href{https://doi.org/10.1073/pnas.1333941100}{10.1073/pnas.1333941100}} \leavevmode\hypertarget{ref-lentz_seasonal_2017}{}% -\CSLLeftMargin{24. } +\CSLLeftMargin{26. } \CSLRightInline{Lentz SJ. Seasonal warming of the {Middle} {Atlantic} {Bight} {Cold} {Pool}. Journal of Geophysical Research: Oceans. 2017;122: 941--954. doi:\href{https://doi.org/10.1002/2016JC012201}{10.1002/2016JC012201}} \leavevmode\hypertarget{ref-chen_seasonal_2018}{}% -\CSLLeftMargin{25. } +\CSLLeftMargin{27. } \CSLRightInline{Chen Z, Curchitser E, Chant R, Kang D. Seasonal {Variability} of the {Cold} {Pool} {Over} the {Mid}-{Atlantic} {Bight} {Continental} {Shelf}. Journal of Geophysical Research: Oceans. @@ -2310,7 +2342,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1029/2018JC014148}{10.1029/2018JC014148}} \leavevmode\hypertarget{ref-miles_offshore_2021}{}% -\CSLLeftMargin{26. } +\CSLLeftMargin{28. } \CSLRightInline{Miles T, Murphy S, Kohut J, Borsetti S, Munroe D. Offshore {Wind} {Energy} and the {Mid}-{Atlantic} {Cold} {Pool}: {A} {Review} of {Potential} {Interactions}. Marine Technology Society @@ -2318,7 +2350,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.4031/MTSJ.55.4.8}{10.4031/MTSJ.55.4.8}} \leavevmode\hypertarget{ref-miller_state-space_2016}{}% -\CSLLeftMargin{27. } +\CSLLeftMargin{29. } \CSLRightInline{Miller TJ, Hare JA, Alade LA. A state-space approach to incorporating environmental effects on recruitment in an age-structured assessment model with an application to southern {New} {England} @@ -2327,13 +2359,13 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1139/cjfas-2015-0339}{10.1139/cjfas-2015-0339}} \leavevmode\hypertarget{ref-du_pontavice_incorporating_nodate}{}% -\CSLLeftMargin{28. } +\CSLLeftMargin{30. } \CSLRightInline{Pontavice H du, Miller TJ, Stock BC, Chen Z, Saba VS. Incorporating environmental effects from ocean models improves a marine -fish stock assessment. ICES Journal of Marine Science. "In Review"; } +fish stock assessment. ICES Journal of Marine Science. In Review; } \leavevmode\hypertarget{ref-friedland_middle_2022}{}% -\CSLLeftMargin{29. } +\CSLLeftMargin{31. } \CSLRightInline{Friedland KD, Miles T, Goode AG, Powell EN, Brady DC. The {Middle} {Atlantic} {Bight} {Cold} {Pool} is warming and shrinking: {Indices} from in situ autumn seafloor temperatures. Fisheries @@ -2341,7 +2373,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1111/fog.12573}{10.1111/fog.12573}} \leavevmode\hypertarget{ref-wrightfairbanks_autonomous_2020}{}% -\CSLLeftMargin{30. } +\CSLLeftMargin{32. } \CSLRightInline{Wright‐Fairbanks EK, Miles TN, Cai W-J, Chen B, Saba GK. Autonomous {Observation} of {Seasonal} {Carbonate} {Chemistry} {Dynamics} in the {Mid}-{Atlantic} {Bight}. Journal of Geophysical @@ -2349,7 +2381,7 @@ \section*{References}\label{references}} doi:\url{https://doi.org/10.1029/2020JC016505}} \leavevmode\hypertarget{ref-madin_periodic_2006}{}% -\CSLLeftMargin{31. } +\CSLLeftMargin{33. } \CSLRightInline{Madin LP, Kremer P, Wiebe PH, Purcell JE, Horgan EH, Nemazie DA. Periodic swarms of the salp {Salpa} aspera in the {Slope} {Water} off the {NE} {United} {States}: {Biovolume}, vertical migration, @@ -2358,21 +2390,21 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1016/j.dsr.2005.12.018}{10.1016/j.dsr.2005.12.018}} \leavevmode\hypertarget{ref-deibel_predictability_2009}{}% -\CSLLeftMargin{32. } +\CSLLeftMargin{34. } \CSLRightInline{Deibel D, Paffenhofer G-A. Predictability of patches of neritic salps and doliolids ({Tunicata}, {Thaliacea}). Journal of Plankton Research. 2009;31: 1571--1579. doi:\href{https://doi.org/10.1093/plankt/fbp091}{10.1093/plankt/fbp091}} \leavevmode\hypertarget{ref-steimle_energy_1985}{}% -\CSLLeftMargin{33. } +\CSLLeftMargin{35. } \CSLRightInline{Steimle F, Terranova R. Energy {Equivalents} of {Marine} {Organisms} from the {Continental} {Shelf} of the {Temperate} {Northwest} {Atlantic}. Journal of Northwest Atlantic Fishery Science. 1985;6. doi:\href{https://doi.org/10.2960/J.v6.a11}{10.2960/J.v6.a11}} \leavevmode\hypertarget{ref-lawson_important_1998}{}% -\CSLLeftMargin{34. } +\CSLLeftMargin{36. } \CSLRightInline{Lawson JW, Magalhães AM, Miller EH. Important prey species of marine vertebrate predators in the northwest {Atlantic}: Proximate composition and energy density. Marine Ecology Progress @@ -2380,14 +2412,14 @@ \section*{References}\label{references}} \url{https://www.jstor.org/stable/24825521}} \leavevmode\hypertarget{ref-le_cren_length-weight_1951}{}% -\CSLLeftMargin{35. } +\CSLLeftMargin{37. } \CSLRightInline{Le Cren ED. The {Length}-{Weight} {Relationship} and {Seasonal} {Cycle} in {Gonad} {Weight} and {Condition} in the {Perch} ({Perca} fluviatilis). Journal of Animal Ecology. 1951;20: 201--219. doi:\href{https://doi.org/10.2307/1540}{10.2307/1540}} \leavevmode\hypertarget{ref-farr_assessment_2021}{}% -\CSLLeftMargin{36. } +\CSLLeftMargin{38. } \CSLRightInline{Farr ER, Johnson MR, Nelson MW, Hare JA, Morrison WE, Lettrich MD, et al. An assessment of marine, estuarine, and riverine habitat vulnerability to climate change in the {Northeast} {U}.{S}. PLOS @@ -2395,7 +2427,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1371/journal.pone.0260654}{10.1371/journal.pone.0260654}} \leavevmode\hypertarget{ref-hare_vulnerability_2016}{}% -\CSLLeftMargin{37. } +\CSLLeftMargin{39. } \CSLRightInline{Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, et al. A {Vulnerability} {Assessment} of {Fish} and {Invertebrates} to {Climate} {Change} on the {Northeast} {U}.{S}. @@ -2403,7 +2435,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1371/journal.pone.0146756}{10.1371/journal.pone.0146756}} \leavevmode\hypertarget{ref-zhang_chesapeake_2018}{}% -\CSLLeftMargin{38. } +\CSLLeftMargin{40. } \CSLRightInline{Zhang Q, Murphy RR, Tian R, Forsyth MK, Trentacoste EM, Keisman J, et al. Chesapeake {Bay}'s water quality condition has been recovering: {Insights} from a multimetric indicator assessment of thirty @@ -2412,14 +2444,14 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1016/j.scitotenv.2018.05.025}{10.1016/j.scitotenv.2018.05.025}} \leavevmode\hypertarget{ref-bauer_temperature-_2010}{}% -\CSLLeftMargin{39. } +\CSLLeftMargin{41. } \CSLRightInline{Bauer LJ, Miller TJ. Temperature-, {Salinity}-, and {Size}-{Dependent} {Winter} {Mortality} of {Juvenile} {Blue} {Crabs} ( {Callinectes} sapidus ). Estuaries and Coasts. 2010;33: 668--677. Available: \url{https://www.jstor.org/stable/40663676}} \leavevmode\hypertarget{ref-hines_predicting_2011}{}% -\CSLLeftMargin{40. } +\CSLLeftMargin{42. } \CSLRightInline{Hines AH, Johnson EG, Darnell MZ, Rittschof D, Miller TJ, Bauer LJ, et al. Predicting {Effects} of {Climate} {Change} on {Blue} {Crabs} in {Chesapeake} {Bay}. Biology and {Management} of @@ -2428,7 +2460,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.4027/bmecpcc.2010.22}{10.4027/bmecpcc.2010.22}} \leavevmode\hypertarget{ref-rome_linking_2005}{}% -\CSLLeftMargin{41. } +\CSLLeftMargin{43. } \CSLRightInline{Rome MS, Young-Williams AC, Davis GR, Hines AH. Linking temperature and salinity tolerance to winter mortality of {Chesapeake} {Bay} blue crabs ({Callinectes} sapidus). Journal of Experimental Marine @@ -2436,14 +2468,14 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1016/j.jembe.2004.06.014}{10.1016/j.jembe.2004.06.014}} \leavevmode\hypertarget{ref-johnson_savory_2015}{}% -\CSLLeftMargin{42. } +\CSLLeftMargin{44. } \CSLRightInline{Johnson DS. The {Savory} {Swimmer} {Swims} {North}: {A} {Northern} {Range} {Extension} of the {Blue} {Crab} {Callinectes} {Sapidus}? Journal of Crustacean Biology. 2015;35: 105--110. doi:\href{https://doi.org/10.1163/1937240X-00002293}{10.1163/1937240X-00002293}} \leavevmode\hypertarget{ref-kimmel_relationship_2014}{}% -\CSLLeftMargin{43. } +\CSLLeftMargin{45. } \CSLRightInline{Kimmel DG, Tarnowski M, Newell RIE. The {Relationship} between {Interannual} {Climate} {Variability} and {Juvenile} {Eastern} {Oyster} {Abundance} at a {Regional} {Scale} in {Chesapeake} {Bay}. @@ -2451,7 +2483,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1080/02755947.2013.830999}{10.1080/02755947.2013.830999}} \leavevmode\hypertarget{ref-pousse_energetic_2020}{}% -\CSLLeftMargin{44. } +\CSLLeftMargin{46. } \CSLRightInline{Pousse E, Poach ME, Redman DH, Sennefelder G, White LE, Lindsay JM, et al. Energetic response of {Atlantic} surfclam {Spisula} solidissima to ocean acidification. Marine Pollution Bulletin. 2020;161: @@ -2459,7 +2491,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1016/j.marpolbul.2020.111740}{10.1016/j.marpolbul.2020.111740}} \leavevmode\hypertarget{ref-mills_fisheries_2013}{}% -\CSLLeftMargin{45. } +\CSLLeftMargin{47. } \CSLRightInline{Mills K, Pershing A, Brown C, Chen Y, Chiang F-S, Holland D, et al. Fisheries {Management} in a {Changing} {Climate}: {Lessons} {From} the 2012 {Ocean} {Heat} {Wave} in the {Northwest} @@ -2467,7 +2499,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.5670/oceanog.2013.27}{10.5670/oceanog.2013.27}} \leavevmode\hypertarget{ref-powell_ocean_2020}{}% -\CSLLeftMargin{46. } +\CSLLeftMargin{48. } \CSLRightInline{Powell EN, Ewing AM, Kuykendall KM. Ocean quahogs ({Arctica} islandica) and {Atlantic} surfclams ({Spisula} solidissima) on the {Mid}-{Atlantic} {Bight} continental shelf and {Georges} {Bank}: @@ -2477,7 +2509,7 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1016/j.palaeo.2019.05.027}{10.1016/j.palaeo.2019.05.027}} \leavevmode\hypertarget{ref-pace_two-hundred_2018}{}% -\CSLLeftMargin{47. } +\CSLLeftMargin{49. } \CSLRightInline{Pace SM, Powell EN, Mann R. Two-hundred year record of increasing growth rates for ocean quahogs ({Arctica} islandica) from the northwestern {Atlantic} {Ocean}. Journal of Experimental Marine Biology @@ -2485,20 +2517,28 @@ \section*{References}\label{references}} doi:\href{https://doi.org/10.1016/j.jembe.2018.01.010}{10.1016/j.jembe.2018.01.010}} \leavevmode\hypertarget{ref-perretti_regime_2017}{}% -\CSLLeftMargin{48. } +\CSLLeftMargin{50. } \CSLRightInline{Perretti C, Fogarty M, Friedland K, Hare J, Lucey S, McBride R, et al. Regime shifts in fish recruitment on the {Northeast} {US} {Continental} {Shelf}. Marine Ecology Progress Series. 2017;574: 1--11. doi:\href{https://doi.org/10.3354/meps12183}{10.3354/meps12183}} \leavevmode\hypertarget{ref-boem_vineyard_2020}{}% -\CSLLeftMargin{49. } +\CSLLeftMargin{51. } \CSLRightInline{BOEM. Vineyard {Wind} 1 {Offshore} {Wind} {Energy} {Project} {Supplement} to the {Draft} {Environmental} {Impact} {Statement}. {OCS} {EIS}/{EA}, {BOEM} 2020-025 {[}Internet{]}. 2020. Available: \url{https://www.boem.gov/sites/default/files/documents/renewable-energy/Vineyard-Wind-1-Supplement-to-EIS.pdf}} +\leavevmode\hypertarget{ref-christiansen_emergence_2022}{}% +\CSLLeftMargin{52. } +\CSLRightInline{Christiansen N, Daewel U, Djath B, Schrum C. Emergence +of {Large}-{Scale} {Hydrodynamic} {Structures} {Due} to {Atmospheric} +{Offshore} {Wind} {Farm} {Wakes}. Frontiers in Marine Science. 2022;9. +Available: +\url{https://www.frontiersin.org/article/10.3389/fmars.2022.818501}} + \end{CSLReferences} \end{document} diff --git a/latex/header1.tex b/latex/header1.tex index c1f3e1f..529931d 100644 --- a/latex/header1.tex +++ b/latex/header1.tex @@ -49,7 +49,7 @@ \fancyheadinit{% \ifthenelse{\value{page}=4}% - {\fancyhead[R]{\includegraphics[width=40pt]{images/NOAA_logo.png} \\ \textsf{\emph{March 7, 2022}}} + {\fancyhead[R]{\includegraphics[width=40pt]{images/NOAA_logo.png} \\ \textsf{\emph{March 17, 2022}}} \fancyhead[L]{\textsf{\LARGE State of the Ecosystem 2022: Mid-Atlantic}} }% {\fancyhead[R]{}