-
Notifications
You must be signed in to change notification settings - Fork 0
/
TestResults.Rmd
529 lines (423 loc) · 20.7 KB
/
TestResults.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
---
title: "Results from test models"
author: "Sarah Gaichas"
date: "`r Sys.Date()`"
output:
html_document:
code_fold: hide
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,
message = FALSE,
warning = FALSE)
library(tidyverse)
library(here)
library(DT)
library(ggiraph)
library(patchwork)
```
# Background
These are all exploratory test models. I've done no model selection. There are no covariates included yet.
Each is a univariate model. I've looked at *Calanus finmarchicus* (calfin), total Euphausiids (euph), total Hyperiids (hyper), and total zooplankton volume (zoopvolume).
All models but zoopvolume are estimating spatial and spatio-temporal random effects and anisotropy parameters for both the first and second linear predictors, set `purpose = "index2"` with the default `ObsModel = c(2,1)` meaning a Poisson-link function, and all but zoopvolume FALL appeared to converge. This setup was universally chosen based on model selection for other VAST models I've run, but I still need to do model selection to see if it makes sense for the zooplankton data.
Zoopvolume models could not be fit with the default link function because zoopvolume is measured at all stations, so the model can't estimate encounter probability at 1 in the first linear predictor, we need to fix it at 1. Reading the code and documentation, I *think* I use `ObsModel = c(2,4)`, which should be Poisson-link function similar to the default used for other models, but fixing encounter probability=1 for any year where all samples encounter the species.
Zoopvolume models were initially estimating spatial or spatio-temporal random effects parameters close to 0, so these parameters were turned off in the results here: FALL has no spatial random effects for the second linear predictor. SPRING has no spatio-temporal random effects in the first linear predictor and no spatial random effects for the second linear predictor.
Most models are using the half year split for seasons where SPRING = months 1-6 and FALL = months 7-12.
One set of calfin models attempted the split into 4 seasons to have spring (months 3-5) and fall (months 9-11) matching trawl survey months and winter and summer in between. There are large data gaps in winter and summer and apparently also spring. Only the fall model ran and results are included below under the name `_fall_4season_`.
# Table of current model stats
```{r}
# from each output folder in pyindex,
outdir <- here::here("pyindex_tests")
moddirs <- list.dirs(outdir)
moddirs <- moddirs[-1]
# keep folder name
modnames <- list.dirs(outdir, full.names = FALSE)
# function to apply extracting info
getmodinfo <- function(d.name){
# read settings
modpath <- stringr::str_split(d.name, "/", simplify = TRUE)
modname <- modpath[length(modpath)]
settings <- read.table(file.path(d.name, "settings.txt"), comment.char = "",
fill = TRUE, header = FALSE)
n_x <- as.numeric(as.character(settings[(which(settings[,1]=="$n_x")+1),2]))
grid_size_km <- as.numeric(as.character(settings[(which(settings[,1]=="$grid_size_km")+1),2]))
max_cells <- as.numeric(as.character(settings[(which(settings[,1]=="$max_cells")+1),2]))
use_anisotropy <- as.character(settings[(which(settings[,1]=="$use_anisotropy")+1),2])
fine_scale <- as.character(settings[(which(settings[,1]=="$fine_scale")+1),2])
bias.correct <- as.character(settings[(which(settings[,1]=="$bias.correct")+1),2])
#FieldConfig
if(settings[(which(settings[,1]=="$FieldConfig")+1),1]=="Component_1"){
omega1 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+2),2])
omega2 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+3),1])
epsilon1 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+4),2])
epsilon2 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+5),1])
beta1 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+6),2])
beta2 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+7),1])
}
if(settings[(which(settings[,1]=="$FieldConfig")+1),1]=="Omega1"){
omega1 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+3),1])
omega2 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+4),1])
epsilon1 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+3),2])
epsilon2 <- as.character(settings[(which(settings[,1]=="$FieldConfig")+4),2])
beta1 <- "IID"
beta2 <- "IID"
}
#RhoConfig
rho_beta1 <- as.numeric(as.character(settings[(which(settings[,1]=="$RhoConfig")+3),1]))
rho_beta2 <- as.numeric(as.character(settings[(which(settings[,1]=="$RhoConfig")+3),2]))
rho_epsilon1 <- as.numeric(as.character(settings[(which(settings[,1]=="$RhoConfig")+4),1]))
rho_epsilon2 <- as.numeric(as.character(settings[(which(settings[,1]=="$RhoConfig")+4),2]))
# read parameter estimates, object is called parameter_Estimates
if(file.exists(file.path(d.name, "parameter_estimates.RData"))) {
load(file.path(d.name, "parameter_estimates.RData"))
AIC <- parameter_estimates$AIC[1]
converged <- parameter_estimates$Convergence_check[1]
fixedcoeff <- unname(parameter_estimates$number_of_coefficients[2])
randomcoeff <- unname(parameter_estimates$number_of_coefficients[3])
}else if(file.exists(file.path(d.name, "parameter_estimates.txt"))){
reptext <- readLines(file.path(d.name, "parameter_estimates.txt"))
AIC <- as.double(reptext[grep(reptext, pattern = "AIC")+1])
converged <- reptext[grep(reptext, pattern = "Convergence_check")+1]
fixedcoeff <- as.integer(stringr::str_split(reptext[grep(reptext, pattern = "number_of_coefficients")+2],
boundary("word"))[[1]][2])
randomcoeff <- as.integer(stringr::str_split(reptext[grep(reptext, pattern = "number_of_coefficients")+2],
boundary("word"))[[1]][3])
}else{
AIC <- NA_real_
converged <- NA_character_
fixedcoeff <- NA_integer_
randomcoeff <- NA_integer_
}
#index <- read.csv(file.path(d.name, "Index.csv"))
# return model attributes as a dataframe
out <- data.frame(modname = modname,
n_x = n_x,
grid_size_km = grid_size_km,
max_cells = max_cells,
use_anisotropy = use_anisotropy,
fine_scale = fine_scale,
bias.correct = bias.correct,
omega1 = omega1,
omega2 = omega2,
epsilon1 = epsilon1,
epsilon2 = epsilon2,
beta1 = beta1,
beta2 = beta2,
rho_epsilon1 = rho_epsilon1,
rho_epsilon2 = rho_epsilon2,
rho_beta1 = rho_beta1,
rho_beta2 = rho_beta2,
AIC = AIC,
converged = converged,
fixedcoeff = fixedcoeff,
randomcoeff = randomcoeff#,
#index = index
)
return(out)
}
modcompare <- purrr::map_dfr(moddirs, getmodinfo)
modselect <- modcompare %>%
dplyr::mutate(season = case_when(str_detect(modname, "_fall_") ~ "Fall",
#str_detect(modname, "_fall_4season_") ~ "Fall4seas",
str_detect(modname, "_spring_") ~ "Spring",
#str_detect(modname, "_spring_4season_") ~ "Spring4seas",
str_detect(modname, "_summer_") ~ "Summer",
str_detect(modname, "_winter_") ~ "Winter",
str_detect(modname, "_annual_") ~ "Annual",
TRUE ~ as.character(NA))) %>%
dplyr::mutate(converged2 = case_when(str_detect(converged, "no evidence") ~ "likely",
str_detect(converged, "is likely not") ~ "unlikely",
TRUE ~ as.character(NA))) %>%
dplyr::mutate(zoogroup = case_when(str_detect(modname, "calfin") ~ "calfin",
str_detect(modname, "euph") ~ "euphausiids",
str_detect(modname, "hyper") ~ "hyperiids",
str_detect(modname, "zoopvolume") ~ "zoop volume",
TRUE ~ as.character(NA))) %>%
#dplyr::mutate(modname = str_extract(modname, '(?<=allagg_).*')) |>
dplyr::group_by(zoogroup, season) %>%
#dplyr::mutate(deltaAIC = AIC-min(AIC)) %>%
dplyr::select(modname, season, #deltaAIC,
fixedcoeff,
randomcoeff, use_anisotropy,
omega1, omega2, epsilon1, epsilon2,
beta1, beta2, AIC, converged2) %>%
dplyr::arrange(zoogroup, season) #, AIC)
# DT::datatable(modselect, rownames = FALSE,
# options= list(pageLength = 25, scrollX = TRUE),
# caption = "Comparison of delta AIC values using Restricted Maxiumum Likelihood (REML) for alternative fixed and random effects model structures. See text for model descriptions.")
flextable::flextable(modselect) %>%
#dplyr::select(-c(use_anisotropy,
#omega1, omega2, epsilon1, epsilon2,
#beta1, beta2))
#) %>%
flextable::set_header_labels(modname = "Model name",
season = "Season",
#deltaAIC = "dAIC",
fixedcoeff = "N fixed",
randomcoeff = "N random",
converged2 = "Convergence") |>
#flextable::set_caption("Comparison of delta AIC (dAIC) values using Restricted Maxiumum Likelihood (REML) for alternative fixed and random effects model structures, with number of fixed (N fixed) and random (N random) coefficients. See text for model descriptions associated with each model name.") %>%
flextable::fontsize(size = 9, part = "all") %>%
flextable::colformat_double(digits = 2) |>
flextable::set_table_properties(layout = "autofit", width = 1)
```
# Preliminary indices by model
## Spatial strata for reference
Model results are presented in seven spatial strata:
* AllEPU is the area covered by green, orange, red, and purple in the EPUs plot on the left
* her_sp is the Atlantic herring spring NEFSC bottom trawl survey strata (yellow in center plot)
* her_fa is the Atlantic herring fall NEFSC bottom trawl survey strata (yellow in right plot)
* MAB is the Mid Atlantic Bight, green in the left plot
* GB is Georges Bank, orange in the left plot
* GOM is the Gulf of Maine, red in the left plot
* SS is the Scotian Shelf, purple in the left plot
The brown grid is the full Northwest Atlantic grid built into VAST, we are not using the area south of Cape Hatteras.
```{r}
theme_set(theme_bw())
herring_spring <- c(01010, 01020, 01030, 01040, 01050, 01060, 01070, 01080, 01090,
01100, 01110, 01120, 01130, 01140, 01150, 01160, 01170, 01180,
01190, 01200, 01210, 01220, 01230, 01240, 01250, 01260, 01270,
01280, 01290, 01300, 01360, 01370, 01380, 01390, 01400, 01610,
01620, 01630, 01640, 01650, 01660, 01670, 01680, 01690, 01700,
01710, 01720, 01730, 01740, 01750, 01760)
herring_fall <- c(01050, 01060, 01070, 01080, 01090, 01100, 01110, 01120, 01130,
01140, 01150, 01160, 01170, 01180, 01190, 01200, 01210, 01220,
01230, 01240, 01250, 01260, 01270, 01280, 01290, 01300, 01360,
01370, 01380, 01390, 01400)
herring_springgrid <- FishStatsUtils::northwest_atlantic_grid %>%
filter(stratum_number %in% herring_spring)
herring_fallgrid <- FishStatsUtils::northwest_atlantic_grid %>%
filter(stratum_number %in% herring_fall)
MAB <- c(1010:1080, 1100:1120, 1600:1750, 3010:3450, 3470, 3500, 3510)
GB <- c(1090, 1130:1210, 1230, 1250, 3460, 3480, 3490, 3520:3550)
GOM <- c(1220, 1240, 1260:1290, 1360:1400, 3560:3830)
SS <- c(1300:1352, 3840:3990)
# Mid Atlantic Bight EPU
MABgrid <- FishStatsUtils::northwest_atlantic_grid %>%
dplyr::filter(stratum_number %in% MAB)
# Georges Bank EPU
GBgrid <- FishStatsUtils::northwest_atlantic_grid %>%
dplyr::filter(stratum_number %in% GB)
# gulf of maine EPU (for SOE)
GOMgrid <- FishStatsUtils::northwest_atlantic_grid %>%
dplyr::filter(stratum_number %in% GOM)
# scotian shelf EPU (for SOE)
SSgrid <- FishStatsUtils::northwest_atlantic_grid %>%
dplyr::filter(stratum_number %in% SS)
EPUs <- ggplot(data = ecodata::coast) +
geom_sf() +
geom_point(data = FishStatsUtils::northwest_atlantic_grid, aes(x = Lon, y = Lat), colour = "coral4", size=0.05, alpha=0.1) +
geom_point(data = MABgrid, aes(x = Lon, y = Lat), colour = "green", size=0.05, alpha=0.1) +
geom_point(data = GBgrid, aes(x = Lon, y = Lat), colour = "orange", size=0.05, alpha=0.1) +
geom_point(data = GOMgrid, aes(x = Lon, y = Lat), colour = "red", size=0.05, alpha=0.1) +
geom_point(data = SSgrid, aes(x = Lon, y = Lat), colour = "purple", size=0.05, alpha=0.1) +
coord_sf(xlim =c(-78.5, -65.5), ylim = c(33, 45)) + #zoomed to Hatteras and N
xlab("") +
ylab("") +
ggtitle("EPUs eco prod units")+
theme(plot.margin = margin(0, 0, 0, 0, "cm"))
Fall <- ggplot(data = ecodata::coast) +
geom_sf() +
geom_point(data = FishStatsUtils::northwest_atlantic_grid, aes(x = Lon, y = Lat), colour = "coral4", size=0.05, alpha=0.1) +
geom_point(data = herring_fallgrid, aes(x = Lon, y = Lat), colour = "yellow", size=0.05, alpha=0.1) +
coord_sf(xlim =c(-78.5, -65.5), ylim = c(33, 45)) + #zoomed to Hatteras and N
xlab("") +
ylab("") +
ggtitle("Fall herring BTS")+
theme(plot.margin = margin(0, 0, 0, 0, "cm"))
Spring <- ggplot(data = ecodata::coast) +
geom_sf() +
geom_point(data = FishStatsUtils::northwest_atlantic_grid, aes(x = Lon, y = Lat), colour = "coral4", size=0.05, alpha=0.1) +
geom_point(data = herring_springgrid, aes(x = Lon, y = Lat), colour = "yellow", size=0.05, alpha=0.1) +
coord_sf(xlim =c(-78.5, -65.5), ylim = c(33, 45)) + #zoomed to Hatteras and N
xlab("") +
ylab("") +
ggtitle("Spring herring BTS")+
theme(plot.margin = margin(0, 0, 0, 0, "cm"))
EPUs + Spring + Fall
```
## Indices by group, season, and region
```{r}
stratlook <- data.frame(Stratum = c("Stratum_1",
"Stratum_2",
"Stratum_3",
"Stratum_4",
"Stratum_5",
"Stratum_6",
"Stratum_7"),
Region = c("AllEPU",
"her_sp",
"her_fa",
"MAB",
"GB",
"GOM",
"SS"))
# function to apply extracting info
getmodindex <- function(d.name){
# read settings
modpath <- stringr::str_split(d.name, "/", simplify = TRUE)
modname <- modpath[length(modpath)]
if(file.exists(file.path(d.name,"Index.csv"))){
index <- read.csv(file.path(d.name, "Index.csv"))
}else{
stopifnot()
}
# return model indices as a dataframe
out <- data.frame(modname = modname,
index
)
return(out)
}
modcompareindex <- purrr::map_dfr(moddirs, purrr::possibly(getmodindex, otherwise = NULL))
splitoutput <- modcompareindex %>%
dplyr::mutate(Season = modname |> map(str_split, pattern = "_") |> map_chr(c(1,2))) %>%
dplyr::mutate(Data = modname |> map(str_split, pattern = "_") |> map_chr(c(1,1))) %>%
dplyr::mutate(Estimate = ifelse(Estimate == 0, NA, Estimate)) |>
dplyr::left_join(stratlook) #%>%
#dplyr::filter(Region %in% c(GOM", "GB", "MAB","SS", "AllEPU")) use all regions
zoomax <- max(splitoutput$Estimate, na.rm=T)
zootsmean <- splitoutput %>%
dplyr::group_by(modname, Region) %>%
dplyr::mutate(fmean = mean(Estimate, na.rm=T))
```
```{r, fig.height=10}
plot_zooindices <- function(splitoutput, plotdata, plotregions, plottitle){
filterEPUs <- plotregions #c("her_sp", "her_fa", "MAB", "GB", "GOM", "SS", "AllEPU")
seasons <- splitoutput |> dplyr::filter(Data==plotdata) |> dplyr::select(Season) |> dplyr::distinct()
ncols <- dim(seasons)[1]
currentMonth <- lubridate::month(Sys.Date())
currentYear <- lubridate::year(Sys.Date())
if (currentMonth > 4) {
endShade <- currentYear
} else {
endShade <- currentYear - 1
}
shadedRegion <- c(endShade-9,endShade)
shade.alpha <- 0.3
shade.fill <- "lightgrey"
lwd <- 1
pcex <- 2
trend.alpha <- 0.5
trend.size <- 2
hline.size <- 1
line.size <- 2
hline.alpha <- 0.35
hline.lty <- "dashed"
label.size <- 5
hjust.label <- 1.5
letter_size <- 4
errorbar.width <- 0.25
x.shade.min <- shadedRegion[1]
x.shade.max <- shadedRegion[2]
setup <- list(
shade.alpha = shade.alpha,
shade.fill =shade.fill,
lwd = lwd,
pcex = pcex,
trend.alpha = trend.alpha,
trend.size = trend.size,
line.size = line.size,
hline.size = hline.size,
hline.alpha = hline.alpha,
hline.lty = hline.lty,
errorbar.width = errorbar.width,
label.size = label.size,
hjust.label = hjust.label,
letter_size = letter_size,
x.shade.min = x.shade.min,
x.shade.max = x.shade.max
)
fix<- splitoutput |>
dplyr::filter(Data %in% plotdata, #c("calfin"),
Region %in% filterEPUs) |>
dplyr::group_by(Region, Season) |>
dplyr::summarise(max = max(Estimate, na.rm=T))
p <- splitoutput |>
dplyr::filter(Data %in% plotdata, #c("calfin"),
Region %in% filterEPUs) |>
dplyr::group_by(Region, Season) |>
dplyr::left_join(fix) |>
dplyr::mutate(#Value = Value/resca,
Mean = as.numeric(Estimate),
SE = Std..Error.for.Estimate,
Mean = Mean/max,
SE = SE/max,
Upper = Mean + SE,
Lower = Mean - SE) |>
ggplot2::ggplot(ggplot2::aes(x = Time, y = Mean, linetype = modname, group = modname))+
ggplot2::annotate("rect", fill = setup$shade.fill, alpha = setup$shade.alpha,
xmin = setup$x.shade.min , xmax = setup$x.shade.max,
ymin = -Inf, ymax = Inf) +
ggplot2::geom_ribbon(ggplot2::aes(ymin = Lower, ymax = Upper, fill = Season), alpha = 0.5)+
ggplot2::geom_point()+
ggplot2::geom_line()+
ggplot2::ggtitle(plottitle)+
ggplot2::ylab(expression("Relative abundance"))+
ggplot2::xlab(ggplot2::element_blank())+
ggplot2::facet_wrap(Region~Season, ncol = ncols,
labeller = label_wrap_gen(multi_line=FALSE))+
ecodata::geom_gls()+
ecodata::theme_ts()+
ecodata::theme_facet()+
ecodata::theme_title() +
ggplot2::theme(legend.position = "bottom")
return(p)
}
plot_zooindices(splitoutput = splitoutput,
plotdata = "calfin",
plotregions = c("her_sp", "her_fa", "MAB", "GB", "GOM", "SS", "AllEPU"),
plottitle = "Calanus finmarchicus")
```
Compare calfin annual VAST (blue) with SOE annual anomalies (black)
```{r}
VASTmean <- splitoutput |>
dplyr::filter(Data %in% c("calfin"),
Season %in% c("annual"),
Region %in% c("MAB", "GB", "GOM")) |>
dplyr::group_by(Region, Season) |>
dplyr::summarise(tsmean = mean(Estimate))
VASTanom <- splitoutput |>
dplyr::filter(Data %in% c("calfin"),
Season %in% c("annual"),
Region %in% c("MAB", "GB", "GOM")) |>
dplyr::left_join(VASTmean) |>
dplyr::group_by(Region, Season) |>
dplyr::mutate(#Value = Value/resca,
Mean = as.numeric(Estimate),
SE = Std..Error.for.Estimate,
Mean = (Mean-tsmean)/tsmean,
SE = (SE-tsmean)/tsmean,
Upper = Mean + SE,
Lower = Mean - SE) |>
dplyr::rename(EPU = Region)
SOEcalfin <- ecodata::zoo_abundance_anom |>
dplyr::mutate(Value = as.numeric(Value)) |>
dplyr::filter(Var == "Calfin") |>
ggplot2::ggplot(aes(x = Time, y = Value)) +
ggplot2::geom_point() +
ggplot2::geom_line() +
ecodata::geom_gls() +
ggplot2::geom_line(data = VASTanom, aes(x=Time, y=Mean), color = "blue") +
ecodata::theme_facet() +
ggplot2::facet_wrap(~EPU)
SOEcalfin
```
Other species
```{r, fig.height=10}
plot_zooindices(splitoutput = splitoutput,
plotdata = "euph",
plotregions = c("her_sp", "her_fa", "MAB", "GB", "GOM", "SS", "AllEPU"),
plottitle = "Euphausiids")
```
```{r, fig.height=10}
plot_zooindices(splitoutput = splitoutput,
plotdata = "hyper",
plotregions = c("her_sp", "her_fa", "MAB", "GB", "GOM", "SS", "AllEPU"),
plottitle = "Hyperiids")
```
```{r, fig.height=10}
plot_zooindices(splitoutput = splitoutput,
plotdata = "zoopvolume",
plotregions = c("her_sp", "her_fa", "MAB", "GB", "GOM", "SS", "AllEPU"),
plottitle = "Zooplankton volume")
```