From 6cd9867bf85f20ae0360a7ea2702eb2f41e67634 Mon Sep 17 00:00:00 2001 From: Paul Date: Tue, 1 Oct 2024 11:22:25 -0600 Subject: [PATCH 1/5] typo --- .../005_optimize_yaw_aep_parallel.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py b/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py index ab4c3f02b..d1688cb0e 100644 --- a/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py +++ b/examples/examples_control_optimization/005_optimize_yaw_aep_parallel.py @@ -23,7 +23,7 @@ from floris.optimization.yaw_optimization.yaw_optimizer_sr import YawOptimizationSR -# When using parallel optimization it is importat the "root" script include this +# When using parallel optimization it is important the "root" script include this # if __name__ == "__main__": block to avoid problems if __name__ == "__main__": From 622f9e8e03727377722bdf4f7062f5e95d22640f Mon Sep 17 00:00:00 2001 From: Paul Date: Tue, 1 Oct 2024 11:22:53 -0600 Subject: [PATCH 2/5] Move example 9 to 10 --- ...with_neighbor.py => 010_compare_farm_power_with_neighbor.py} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename examples/{009_compare_farm_power_with_neighbor.py => 010_compare_farm_power_with_neighbor.py} (97%) diff --git a/examples/009_compare_farm_power_with_neighbor.py b/examples/010_compare_farm_power_with_neighbor.py similarity index 97% rename from examples/009_compare_farm_power_with_neighbor.py rename to examples/010_compare_farm_power_with_neighbor.py index c67465f31..6ea23abd8 100644 --- a/examples/009_compare_farm_power_with_neighbor.py +++ b/examples/010_compare_farm_power_with_neighbor.py @@ -1,4 +1,4 @@ -"""Example 9: Compare farm power with neighboring farm +"""Example 10: Compare farm power with neighboring farm This example demonstrates how to use turbine_weights to define a set of turbines belonging to a neighboring farm which impacts the power production of the farm under consideration From 7698ad31db657aba27c29b824a49a6ad4a73514f Mon Sep 17 00:00:00 2001 From: Paul Date: Tue, 1 Oct 2024 11:23:15 -0600 Subject: [PATCH 3/5] Add parallel example --- examples/009_parallel_models.py | 95 +++++++++++++++++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 examples/009_parallel_models.py diff --git a/examples/009_parallel_models.py b/examples/009_parallel_models.py new file mode 100644 index 000000000..a7f4e241d --- /dev/null +++ b/examples/009_parallel_models.py @@ -0,0 +1,95 @@ +"""Example 9: Parallel Models + +This example demonstrates how to use the ParFlorisModel class to parallelize the +calculation of the FLORIS model. ParFlorisModel inherits from the FlorisModel +and so can be used in the same way with a consistent interface.The ParFlorisModel + replaces the ParallelFlorisModel + +""" + +import numpy as np + +from floris import ( + FlorisModel, + ParFlorisModel, + TimeSeries, + UncertainFlorisModel, +) + + +# When using parallel optimization it is important the "root" script include this +# if __name__ == "__main__": block to avoid problems +if __name__ == "__main__": + # Instantiate the FlorisModel + fmodel = FlorisModel("inputs/gch.yaml") + + # The ParFlorisModel can be instatiated either from a FlorisModel or from + # the input file. + pfmodel_1 = ParFlorisModel("inputs/gch.yaml") # Via input file + pfmodel_2 = ParFlorisModel(fmodel) # Via FlorisModel + + # The ParFlorisModel has additional inputs which define the parallelization + # but don't effect the output. + pfmodel_3 = ParFlorisModel( + fmodel, + interface="multiprocessing", # Default + max_workers=2, # Defaults to num_cpu + n_wind_condition_splits=2, # Defaults to max_workers) + ) + + # Define a simple inflow with just 1 wind speed + time_series = TimeSeries( + wind_speeds=np.arange(1, 25, 0.5), wind_directions=270.0, turbulence_intensities=0.06 + ) + + # Demonstrate that interface and results are the same + fmodel.set(wind_data=time_series) + pfmodel_1.set(wind_data=time_series) + pfmodel_2.set(wind_data=time_series) + pfmodel_3.set(wind_data=time_series) + + fmodel.run() + pfmodel_1.run() + pfmodel_2.run() + pfmodel_3.run() + + # Compare the results + powers_fmodel = fmodel.get_turbine_powers() + powers_pfmodel_1 = pfmodel_1.get_turbine_powers() + powers_pfmodel_2 = pfmodel_2.get_turbine_powers() + powers_pfmodel_3 = pfmodel_3.get_turbine_powers() + + print( + f"Testing if outputs of fmodel and pfmodel_1 are " + f"close: {np.allclose(powers_fmodel, powers_pfmodel_1)}" + ) + print( + f"Testing if outputs of fmodel and pfmodel_2 are " + f"close: {np.allclose(powers_fmodel, powers_pfmodel_2)}" + ) + print( + f"Testing if outputs of fmodel and pfmodel_3 are " + f"close: {np.allclose(powers_fmodel, powers_pfmodel_3)}" + ) + + # Given that ParFlorisModel is a subclass of FlorisModel, it can also be used as + # an input to the UncertainFlorisModel class. This allows for parallelization of + # the uncertainty calculations. + ufmodel = UncertainFlorisModel(fmodel) + pufmodel = UncertainFlorisModel(pfmodel_1) + + # Demonstrate matched results + ufmodel.set(wind_data=time_series) + pufmodel.set(wind_data=time_series) + + ufmodel.run() + pufmodel.run() + + powers_ufmodel = ufmodel.get_turbine_powers() + powers_pufmodel = pufmodel.get_turbine_powers() + + print("--------------------") + print( + f"Testing if outputs of ufmodel and pufmodel are " + f"close: {np.allclose(powers_ufmodel, powers_pufmodel)}" + ) From 05169149d0fece1782ba0adb083a8d81c1c75750 Mon Sep 17 00:00:00 2001 From: Paul Date: Tue, 1 Oct 2024 12:44:12 -0600 Subject: [PATCH 4/5] Add docs for floris models --- docs/_toc.yml | 3 +- docs/floris_models.ipynb | 295 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 297 insertions(+), 1 deletion(-) create mode 100644 docs/floris_models.ipynb diff --git a/docs/_toc.yml b/docs/_toc.yml index 4b78b0821..2dd0f99e1 100644 --- a/docs/_toc.yml +++ b/docs/_toc.yml @@ -12,8 +12,9 @@ parts: - caption: User Reference chapters: - file: intro_concepts - - file: advanced_concepts - file: wind_data_user + - file: floris_models + - file: advanced_concepts - file: heterogeneous_map - file: floating_wind_turbine - file: turbine_interaction diff --git a/docs/floris_models.ipynb b/docs/floris_models.ipynb new file mode 100644 index 000000000..b52cfccab --- /dev/null +++ b/docs/floris_models.ipynb @@ -0,0 +1,295 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "(floris_models)=\n", + "\n", + "# FLORIS Models\n", + "\n", + "This notebook provides information on the three provided FlorisModels. [](concepts_intro) introduced `FlorisModel` as the base class for all models in the FLORIS package. This notebook introduces the `UncertainFlorisModel` and `ParFlorisModel` classes, which are subclasses or compositions of `FlorisModel`.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parallelized FLORIS Model\n", + "\n", + "The `ParFlorisModel` class is a subclass of `FlorisModel` that parallelizes the FLORIS calculations. This class is designed to \n", + "have an interface that is the same as `FlorisModel`, but the calculations are parallelized. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Instantiation\n", + "\n", + "The `ParFlorisModel` class can be instantiated in the same way as the `FlorisModel` class, or else it can be instantiated by passing a `FlorisModel` object to the constructor. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from floris import FlorisModel, ParFlorisModel, TimeSeries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "fmodel = FlorisModel(\"gch.yaml\")\n", + "\n", + "# Instantiation using yaml input file\n", + "pfmodel = ParFlorisModel(\"gch.yaml\")\n", + "\n", + "# Instantiation using fmodel\n", + "pfmodel = ParFlorisModel(fmodel)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "The `ParFlorisModel` class has additional parameters the define the parallelization. These parameters are:\n", + "\n", + "**interface**: The parallelization interface to use. Options are \"multiprocessing\",\n", + " \"pathos\", and \"concurrent\", with possible future support for \"mpi4py\"\n", + "\n", + "**max_workers**: The maximum number of workers to use. Defaults to -1, which then\n", + " takes the number of CPUs available.\n", + "\n", + "**n_wind_condition_splits**: The number of wind conditions to split the simulation over.\n", + " Defaults to the same as max_workers.\n", + "\n", + "**return_turbine_powers_only**: Whether to return only the turbine powers.\n", + "\n", + "**print_timings** (bool): Print the computation time to the console. Defaults to False." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Alternative parameters\n", + "pfmodel = ParFlorisModel(fmodel, max_workers=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Usage\n", + "\n", + "The `ParFlorisModel` class can be used in the same way as the `FlorisModel` class. The only difference is that the calculations are parallelized. \n", + "\n", + "```python" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Set to a two turbine layout\n", + "layout_x = [0, 500]\n", + "layout_y = [0, 0]\n", + "fmodel.set(layout_x=layout_x, layout_y=layout_y)\n", + "pfmodel.set(layout_x=layout_x, layout_y=layout_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "wind_directions = np.arange(240, 300, 0.5)\n", + "time_series = TimeSeries(\n", + " wind_directions=wind_directions, wind_speeds=8.0, turbulence_intensities=0.06\n", + ")\n", + "fmodel.set(wind_data=time_series)\n", + "pfmodel.set(wind_data=time_series)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8xklEQVR4nO3dd3gU1f7H8femQ0ISegi99xKKEHqTZgG7iIKC2K9YsGC5ovcqNlT8XUVsgAoioIiFogKht9B7CVUNRFpCSE/m98fubDZkE5KwyaZ8Xs8zz2bPmZn97rBhvznnzDkWwzAMREREREoJD3cHICIiIuJKSm5ERESkVFFyIyIiIqWKkhsREREpVZTciIiISKmi5EZERERKFSU3IiIiUqoouREREZFSRcmNiIiIlCpKbkRERKRUKdPJzapVq7jhhhsIDQ3FYrHw448/5vschmHw7rvv0qRJE3x9falZsyavv/6664MVERGRPPFydwDudOnSJdq2bcvo0aO5+eabC3SOcePG8dtvv/Huu+/SunVrzp07x7lz51wcqYiIiOSVRQtnWlksFhYsWMCwYcPsZcnJybz44ot8++23XLhwgVatWvHWW2/Ru3dvAPbt20ebNm3YvXs3TZs2dU/gIiIikkWZ7pa6kscee4z169czZ84cdu7cyW233cagQYM4dOgQAD///DMNGjTgl19+oX79+tSrV4/7779fLTciIiJupOQmBydOnGD69OnMmzePHj160LBhQ8aPH0/37t2ZPn06AEeOHOH48ePMmzePr776ihkzZrBlyxZuvfVWN0cvIiJSdpXpMTe52bVrF+np6TRp0iRLeXJyMpUrVwYgIyOD5ORkvvrqK/t+X3zxBR06dODAgQPqqhIREXEDJTc5iI+Px9PTky1btuDp6ZmlLiAgAIAaNWrg5eWVJQFq3rw5YG35UXIjIiJS9JTc5CAsLIz09HRiYmLo0aOH0326detGWloaUVFRNGzYEICDBw8CULdu3SKLVURERDKV6bul4uPjOXz4MGBNZt577z369OlDpUqVqFOnDnfffTdr165l8uTJhIWF8c8//7Bs2TLatGnDddddR0ZGBp06dSIgIIAPPviAjIwMHn30UQIDA/ntt9/c/O5ERETKpjKd3ERERNCnT59s5aNGjWLGjBmkpqby3//+l6+++oq//vqLKlWq0KVLF1599VVat24NwN9//82//vUvfvvtN/z9/Rk8eDCTJ0+mUqVKRf12REREhDKe3IiIiEjpo1vBRUREpFRRciMiIiKlSpm7WyojI4O///6bChUqYLFY3B2OiIiI5IFhGFy8eJHQ0FA8PHJvmylzyc3ff/9N7dq13R2GiIiIFMDJkyepVatWrvuUueSmQoUKgPXiBAYGujkaERERyYu4uDhq165t/x7PTZlLbsyuqMDAQCU3IiIiJUxehpRoQLGIiIiUKkpuREREpFRRciMiIiKlipIbERERKVWU3IiIiEipouRGREREShUlNyIiIlKqKLkRERGRUkXJjYiIiJQqSm5ERESkVClzyy+42ocffsjx48fdHUahutJU15fXm88tFkuWn81HDw8Pe52npyceHh72zdPT0755eXnh7e1tf/Tx8cHPzw9fX198fX0pX748/v7+BAQEEBAQQFBQED4+PoVwBUSkpDIMg0uXLhEbG8ulS5e4dOkSCQkJJCQkkJycbN9SUlJITU0lLS2N1NRU0tPTs2wZGRn2zTCMbI/mZr6m4+tfHs+V4i1tXn31VQICAor0NS1GabySuYiLiyMoKIjY2FiXrC3VtWtX1q9f74LIxBXKlStHcHAwlSpVonr16oSEhBASEkJoaCj169enQYMGNGjQQOuKiZRwaWlp/Pnnnxw7dsy+RUdHc/r0aWJiYoiJieH8+fPExsaSnp7u7nDLtH/++YcqVapc9Xny8/2tlhsXagjckof9MoB3LyvrD7TPw7FRwPeXlY0FKubh2D+ArQ7Pg4EH8nAcwKfABYfn7YBrc9jXcHi8AHxxWf11QH1bfcZlW7rDdhCIvOzYa4A0IBlIAOKBS0Ci7XyJiYkkJiYSHR3Nnj17cnw/1atXp23btrRr146wsDA6duxIw4YN87Qgm4gUraSkJDZu3EhkZCS7du1i586d7N27l+Tk5HydxwMIAcrbNj/A17b5YP1C9LY9LgFiHY5tCvSxncPi5BHb4yVg2mWvez3Q3GGfnOwGFl1W9rgtziv5Gdjn8DwEGJmH4wA+BJIcnocDPfJw3Cngq8vK7gLOYb1+bmWUMbGxsQZgxMbGuuR84eHhBtbvVeN6MIw8bMm2/R23/8vjsT85OfZgHo999LLjGuTxOAOMhpcd+3AejzvsJN4f83jsJ06OvZjDvulgnAPjCBhbbf8Wjsf5gdEZjKpOzmludevWNe6//37ju+++M86dO+eSz4eIFMzWrVuN//73v0bfvn0NPz8/p7+zvmA0BmMAGA+A8art/40fwFgDxh2X/47n4/+81pcdOyqPx0U7iXNWHo+d4eTYM3k8dvhlx3XIx3utdNmxL+TxuM1O4l0JxqeXlf3zzz8u+Uzk5/tbLTdSqAwnZXkdxZ7qpCynv2A8sLZeVXR47qgVsMH280Wsf+Fsd9i2AMePH+fzzz/n888/x9vbmzvuuIPHH3+cTp065TFiEbka8fHxfPvtt3zyySds3bo1x/2+AroBDa5wvp8ve34pH7F4XvY8Ix/HivspuXGhSGBYHvZz9oX/GdZuoys55aTsEcA/D8fudHKuYXk4ztnrLgFucrKfY/Os2UR7uXeBb8narOuB9T8Tx22Xk2M/xNqE7Ie1WdnftlUAgshMcC6Pt6HDzxWwdm9d41CWAKwCfgc+BpJSU/nmm2/45ptvCA8PZ9y4cdx66614el7+X56IXK3jx48zefJkZsyYwcWLFwHr7/n1WH/Pv75s/4ZcObHBdqyjeKzd+glYu7KTsHZxJwEpWP+gSrM9/nXZsWuBUViTHIPMrnTHJgrI2r1jeh+Y5/Dc2XcAwEknZSOxdpVdyZbLnkeR9//fL172fD6Qc6d+pgtOyl7Eep3dTQOKr5IGFJcMnbH+J9EAaGR7dNaCdA6oivO/0po1a8a///1vbr/9diU5Ii6wf/9+3nzzTWbNmkVaWhoAjYEHgXuBysBxoN5lx30CjMD6BXwEOAocA04Ap4EY4B+ct/5K0XPHgGIlN1dp4cKFxMTEuCCykiGnj4tZ7ljvWHb55nhLpfn88lsvzVsyzS0lJYWkpCSSk5NJTEwkISHBfmvnxYsXiY2NJTY2NscYHfkDbbAOjO6MdUB3Tax/sdx22b6DgY1YEx+A5s2b89prr3HLLbdoALJIAfz999+MHz+eOXPm2H9f+wHP4fxGhYZYkxiTP9bWl7x8efn4+BAcHExQUBABAQH4+/tTvnx5ypUrl2VqCV9fX7y9ve3TT3h5eWWZmsLT0zPLVBaOU1pcvoHzKTFyUtr/H7nnnnvw88vLsOjcKbnJhauTGyle0tPTiYuL48yZM5w6dYpTp04RHR3NsWPHOHLkCEeOHOHw4cMkJiZmO7Y51u6w3Q5lFchsnv4QmAyctz2/7rrrmDZtGjVr1izEdyRSemRkZDBt2jSef/554uLisAA3Ai+QtZsYrN07c7F2YUfgvLsnNDSUxo0bU69ePerVq0fdunUJCQmhWrVqVK9encqVK1OuXLnCfEtShJTc5ELJjaSnp3Po0CG2bdvGtm3bWLVqFZs3byYjI3tn1L+wJjWmOOA94E2sffVBQUF88MEHjBo1qtT/9SVyNfbs2cMDDzzAunXrAOsfDquwtp46OgxMBWaQ2VoKUKVKFXr37k337t1p27YtrVu3pnLlyoUfuBQbSm5yoeRGnDl//jwrVqzghx9+YO7cuaSmWnvrawETgPuxzoNh2gfch7W7CmDIkCF8/fXXVKpUqSjDFikRvvnmG+6///5s89J8C9xp+3kb8AbwA5lj3urWrcvYsWO58cYbadmyJR4eWjGoLFNykwslN3Ilp06d4tNPP2Xq1KmcOmW976oO1iRnNJlJTjrWVpx/Y20yb9KkCb/++iuNGjVyQ9QixU96ejoTJkzgnXfecVpfHZiN9Q7KxQ7l1113HY888ggDBw7U4H2xU3KTCyU3klfJycl88cUXvPHGG/z1l3XkTUtgOuA4881urLesHgcqV67MwoUL6datW5HHK1KcxMbGctddd7FokXXO3ReA1bbNGQ8PD4YPH87zzz9Pq1atiipMKUHy8/2tNj6RHPj6+vLII49w+PBh/u///o9q1aqxB+vU5M9jHXMD1ttUg20/nz17ln79+jFnzpyiD1ikmIiOjqZr164sWrSIcsAc4HWsc8zUcbL/nXfeycGDB/nmm2+U2IhLKLkRuQI/Pz8ee+wx9u7dy91330068BbWtcD2ALcDOxz2T05OZvjw4cycOdMd4Yq4VUxMDP369WPv3r3UAtYAd9jqKmNdn8lUr149Fi9ezLfffkvDhg2znUukoJTciORR5cqV+frrr1m4cCEhISHsBdqSdayAozFjxrBw4cIijFDEvc6dO8e1117Lvn37qIX1bihzQeCLwFDATPmfeOIJdu/ezaBBg9wRqpRySm5E8unGG29k586ddO3alXQn9S9gvZMqPT2dO+64g4iIiKINUMQNYmNjGTBgADt37iQEWA7Ut9VFAV2AX7C2hM6ePZv3338ff/+8LBwjkn9KbkQKoGrVqixbtow77rgjS/lkrGMLPsO69lZycjI33ngjkZGRbohSpGgkJydz3XXXsWXLFqoCy7AuowBwCOgB7AVq1qzJ6tWrGT58uLtClTJCyY1IAZl/gb7wwgvZ6jyxzuHRF7h48SKDBw/m5Elny+KJlHz/+c9/WLt2LRWxLgDcwlZ+FOvvQDTQpk0bNm/eTMeOHd0VppQhSm5EroKHhwevv/46kyZNAmA81plVwbqq8UKgA3DmzBkeeeSRPK17JVKS7Ny5k7feeguAR7Gu2QbWRSz7An8CLVq04I8//qBGjRruCVLKHCU3Ii7w3HPPMX78eAyssxn/aCsPAL7BOvHfL7/8ogHGUqqkp6dz//3321f0/i/W1bwPYF0I8xjQuHFj/vjjD6pWrequMKUMUnIj4gIWi4W3336b0aNHk451SnlzaYZmWFt0AP71r38RHx/vlhhFXO3//u//2Lx5c5aymVi7pQ4D9evXZ/ny5WqxkSKn5EbERSwWC9OmTWPo0KEkAw8Aaba6l4AGwJ9//snEiRPdFaKIyxw7dowXX3zRaV0G4Onpyffff0+tWrWKNjARlNyIuJSXlxeff/45lSpVYifwga28HPA/288ffPABO3fudEt8Iq5gGAYPPfQQCQkJdAWudbLP+PHjCQsLK+rQRAAlNyIuV6VKFftCgRMB8x6ptkAo1nEKDz30EBkZGc5PIFLMLVy4kKVLl+KHdQD9b1jXXCtvq2/YsCGvvPKKu8ITUXIjUhjuvfdeunfvziXgX8AUrGNv/rbVr1+/nlmzZrktPpGCSk1N5dlnnwXgaTLns2kMJNp+/uyzzyhXrpwbohOxUnIjUgg8PDyYOnUqXl5eLASewDr9vKOXX36Z5OTk7AeLFGPTpk3j0KFDVMe6gCxYx5Y9ANa7Be+/nz59+uR4vEhRUHIjUkhatWrF008/nWP98ePH+eSTT4owIpGrExsbax8QPxHrVAcAn2Kdgbhq1aq8/fbbbolNxJGSG5FC9PLLL2e7WyQEGGH7+T//+Q+xsbFFHpdIQUyaNImzZ8/SHBhrK4vDmugAvPrqq1SsWNEtsYk4UnIjUoj8/f157bXX7M+fxTr/x0ysY3DOnj3Lu+++66boRPLuxIkTfPDBBwC8jXWJEYBJwD9As2bNuP/++90TnMhllNyIFLKRI0fSsmVLwPoL54/1i+ENW/17773HqVOn3BSdSN68+OKLJCcn0xe43lZ2kszpDt5++228vb3dEpvI5ZTciBQyT09P+9pTU8i8Y+omoAuQkJCQpXVHpLjZuXMn33zzDRbAsZ3xBSAJ6N27N9dff73zg0XcQMmNSBG4/vrr6d69O4mA4+wfb9keP/30U44cOeKGyESuzJyzpgqQYCvbCpiTGbz77rtYLBY3RCbinJIbkSJgsVjsKydPB/bbynsCg7BO7PfGG2/kcLSI+0RGRvLjjz8C1rE13YHBwGNYb/0eMWIEHTp0cFt8Is64NbmZOHEiFosly9asWbNcj5k3bx7NmjXDz8+P1q1bs2jRoiKKVuTqdO3alaFDh5KOda0pk9mSM3PmTI4ePeqGyERy9vLLL2crWwKsB7y9vfnvf/9b5DGJXInbW25atmxJdHS0fVuzZk2O+65bt47hw4czZswYtm3bxrBhwxg2bBi7d+8uwohFCu6NN97AYrHwA7DLVtYFGACkpaWp9UaKlTVr1rBkyZIc68eOHUu9evWKLiCRPLIYhmG468UnTpzIjz/+yPbt2/O0/x133MGlS5f45Zdf7GVdunShXbt2eZ4MLS4ujqCgIGJjYwkMDCxI2CJX5c477+S7777jVmCerWwd0A3rwpuHDh3SF4a4nWEY9OnTh5UrV3IDcAlY7lDv5+dHVFQUoaGhbopQypr8fH+7veXm0KFDhIaG0qBBA0aMGMGJEydy3Hf9+vX0798/S9nAgQNZv359jsckJycTFxeXZRNxp5dffhmLxcL3gNnm2BCoibX1xryzSsSdli9fzsqVK/EFPgaWYU1u/Gz1jzzyiBIbKbbcmtx07tyZGTNmsGTJEqZOncrRo0fp0aMHFy9evgqP1alTp6hevXqWsurVq+c6R8ikSZMICgqyb7Vr13bpexDJr5YtW3LrrbdiABOAJ4H6wF+2+unTp+ea5IsUBfMOqQcBc47tOKy3fvv7+/Pcc8+5KTKRK3NrcjN48GBuu+022rRpw8CBA1m0aBEXLlxg7ty5LnuNCRMmEBsba99OnjzpsnOLFNS///1vAH7BOglaokNdamqqWm/ErTZv3szatWvxwZqAm/5texw3bhzVqlVzQ2QieeP2bilHwcHBNGnShMOHDzutDwkJ4fTp01nKTp8+TUhISI7n9PX1JTAwMMsm4m6tWrXi1ltvzbH+yy+/5J9//inCiEQyTZkyBYA7sa6FBvA9sBMICgpi/PjxbopMJG+KVXITHx9PVFQUNWrUcFofHh7OsmXLspT9/vvvhIeHF0V4Ii5ltt44qoK1CyAlJYUvvviiyGMSiY6Otreej3Mof8/2+Pjjj2txTCn23JrcjB8/npUrV3Ls2DHWrVvHTTfdhKenJ8OHDwesa/JMmJDZKDpu3DiWLFnC5MmT2b9/PxMnTiQyMpLHHnvMXW9BpMBat27NzTffDEA1YAbWtXrMWUOmTp1KWlqae4KTMmvq1KmkpqbSDWhvK4vEekeft7c3jzzyiPuCE8kjtyY3f/75J8OHD6dp06bcfvvtVK5cmQ0bNlC1alXAugptdHS0ff+uXbsye/ZsPv30U9q2bcv8+fP58ccfadWqlbvegshVMZv347AuRuiHtSugCtbPv+O0ByKFLSkpyT6thmOrzRTb45133pnrMACR4sKt89y4g+a5keLEMAw6dOjAtm3beBt4xlY+AXgT6NevH3/88Yf7ApQyZcaMGdx3333UBo4AXsApoC6QgnUpBi21IO5Soua5ESnLLBaLvVt1KpBhK38I8ASWLVvGvn373BSdlCWGYdgHEt+CNbEB6+cyBejWrZsSGykxlNyIuNnw4cOpVKkSRwFzpbS6WLupAD7++GP3BCZlyurVq+2zxX+AdYHM7wBz7vdx48Y5PU6kOFJyI+Jm5cqVY8yYMQD8z6HcHCY/Y8YMzawthe6jjz7K8nwt1vFfMUDt2rW56aab3BGWSIEouREpBh5++GEsFgu/AYdsZf2BZlinSPj666/dF5yUeufOnePHH3/Msf7RRx/Fy8srx3qR4kbJjUgxUL9+fa677joMrOv4mB61PU6bNs0NUUlZMWfOHFJSUpx+IZQrV46xY8cWeUwiV0PJjUgxYQ4snoF1BWaAuwFfYNeuXezYscM9gUmpN2PGDAAmA6uBMUA5W91tt91GpUqV3BOYSAEpuREpJq699loaNWrEBWA+sAPrhH5mZ4C6pqQw7Nmzh82bN+MNjMA6kPh/gI+t/t5773VXaCIFpuRGpJjw8PCwf5E8CLTD+pe02Yoze/Zs0tPT3RKblF4zZ84E4Dqgqq1sARAL1K1bl169erkpMpGCU3IjUoyMGDECgGQnddHR0dnWVhO5GmlpafYWwXsdymfYHkeNGoWHh74mpOTRp1akGKlXrx49e/bMsV5dU+JKv/32G6dOnaIa1pYbgL8Ac07skSNHuicwkauk5EakmLnnnnuyPG9D5jo/P/zwA/Hx8UUek5RO5kDiu8gc2/UV1pmye/bsScOGDd0TmMhVUnIjUszceuut+Pr6AjAb68DiD4AmQEJCAgsWLHBfcFJqnDt3joULFwJwn0P5TNvjfffdl+0YkZJCyY1IMRMcHMwNN9wAQKRD+d22R3VNiSt89913pKSk0A5r6yDAeuAA4O/vz6233uq22ESulpIbkWLI7JqaDZj3R90NWLAupvn333+7KTIpLebOnQuAYyfoDNvjrbfeSkBAQFGHJOIySm5EiqFBgwZRuXJlTpE5uLM+0A3IyMhg9uzZ7gtOSrzTp0+zatUqAKpjHWOTAsy11Y8aNcpNkYm4hpIbkWLIx8eHO++8EwDHTqgRtsd58+YVeUxSevz4449kZGQA1hbBUOAW4AJQo0YNzW0jJZ6SG5FiyuyaWgAk2MpuwvpLu2nTJk6ePOmmyKSkmz9/fpbnp4FfbD/fcsstmttGSjx9gkWKqWuuuYb69euTACyxlVUHutp+zm0VZ5GcnDlzhhUrVuRYr4HEUhoouREppiwWCzfddBMAPziU32x7/OGHH7IdI3IlCxcuJD09nXJYB6g7qlatGt27d3dHWCIupeRGpBi7+WZrKvMLkGqW2R5XrVrFmTNn3BGWlGBml9RLwElgCtYxN2D9vHl6eropMhHXUXIjUoyFh4cTEhJCLNaxN7OAp7H+4mZkZPDTTz+5NT4pWc6fP88ff1jvv7sNqAk8CqTZ6tUlJaWFkhuRYszDw4Nhw4YBcAfWO1u+x3rrLqhrSvLnp59+Ii0tjdZAY1vZKiAGqFy5su6SklJDyY1IMWd2TTnz+++/ExcXV4TRSElmdkk5ts+Y903ddNNNeHl5ZTtGpCRSciNSzPXu3Zvg4GCndSkpKSxatKhoA5ISKTY2lt9++w3ITG4yyBysri4pKU2U3IgUc97e3tx444325/5YJ1wzS9Q1JXmxePFiUlJSaA60sJWtAU4BFStWpG/fvu4LTsTFlNyIlABm11RlrOMj5gMv2+oWLVpEYmKimyKTksJstbnOocxMi4cOHYq3t3eRxyRSWJTciJQAAwYMoHz58pwF9tnKOgJ1gEuXLvH777+7Lzgp9gzDsH9GBjiUmx2aQ4cOLfKYRAqTkhuREqBcuXIMGTIEyDqhn/mVtHjx4iKPSUqOAwcO8Oeff+IH9LCVHQcOAZ6envTp08d9wYkUAiU3IiWEOVux48w25l/hZpeDiDPm56Mp1tW/Acy2vi5duhAUFOSOsEQKjZIbkRJi4MCBWCwWdgPRtrI+gA9w5MgRoqKi3BecFGtml9QOrOO2umGdmRjg2muvdVNUIoVHyY1ICVG5cmU6dOgAZP7V7Q+E237WuBtxJiUlJctCmWnAOmC37bmSGymNlNyIlCADBlg7ohw7odQ1JbnZsGEDly5dcloXGBjINddcU8QRiRQ+JTciJYiZ3PzhUGb+3b1s2TLS0tKyHSNlW25Jb9++fTUrsZRKSm5ESpDw8HD8/f05DWy3lXXAOo4iLi6OTZs2uS02KZ7M7sr/Ab8C44Dytjp1SUlppeRGpATx8fGhd+/eACwFIoE3AU9bvcbdiKNz584RGRkJwE3AEOB1MlcBN1sCRUobJTciJYz5hfQ80Al4EeusxaBxN5LV8uXLycjIoAUQaitbifV28Hr16tGwYUP3BSdSiJTciJQwuf21vXHjRi5cuFB0wUix5mxWYrNt79prr8VisRR5TCJFQcmNSAnTtGlTateu7bQuPT09y22/UnYZhmFvyXMcWWO27alLSkozJTciJYzFYsn2xdQIaG37WV1TAnD48GGOHTuGD9DLVvYXsBfrZ0irgEtppuRGpAQy73IJAY5gXSPoDVudBhULwNKlSwHoinWyR8icQqBjx45UqlTJHWGJFAklNyIlUL9+/bBYLJwCytnKegPeQFRUlJZiEHtyM9CxzPaoLikp7ZTciJRAVapUsS/FYHZCBWD9Kx3UelPWOS65YCY3GWQOJh44cKCzw0RKDSU3IiWUlmKQnKxdu5ZLly5RBQizlW0FzgAVKlSgS5cu7gtOpAgouREpoZwtxWAmN1qKoWwzu6TOAPWAB4H3bHX9+/fH29vbPYGJFBElNyIllLOlGNoDVdBSDGWdmdwAHAc+Bb61PVeXlJQFSm5ESigfHx/69OkDZHZNeQD9bD+ra6psOn36NNu3b8+xXsmNlAVKbkRKMI27kcvl9u/epEkT6tWrV3TBiLiJkhuREsxMbtYAiWaZ7VFLMZRNZpfUvcDbWFvyfGx1arWRskLJjUgJ1qRJE+rUqUMy1gURLwJbgApARkYGy5cvd2t8UrQyMjLsLTf3Ac9gHXBuLpqp5EbKCiU3IiWY41IM9wGVgGFYkxxQ11RZs337dv755x8qAOG2soPAMaxjtHr37u2u0ESKlJIbkRLOTG5OAZff/L106VIMwyjymMQ9zC6pvlhnq4bMWYm7d++Ov7+/s8NESh0lNyIlnLkUgzPHjh3TUgxlSG5LLqhLSsoSJTciJVylSpXo1KlTljJvIMj2s7qmyoaEhATWrVsHZA4qTwEibD8ruZGyRMmNSClgdk01Bn4GzgHP2+qU3JQNa9euJTU1lbpAQ1vZOuASEBISQps2bdwXnEgRKzbJzZtvvonFYuGJJ57IcZ8ZM2ZgsViybH5+fkUXpEgxZSY3F4DrsS6iaf71vnz5clJTU90TmBQZ8864Po5ltsfcui5FSqNikdxs3ryZadOm5ekvi8DAQKKjo+3b8ePHiyBCkeKtS5cuBAQE8A/WBRLBuhRDZeDixYts2bLFfcFJkcgtuenbt2+RxyPiTm5PbuLj4xkxYgSfffYZFStWvOL+FouFkJAQ+1a9evUiiFKkePP29rYvxeA4s00v22NERERRhyRFKDY2lsjISMB6pxRYu6PM1cWU3EhZ4/bk5tFHH+W6666jf//+edo/Pj6eunXrUrt2bYYOHcqePXsKOUKRksFMblY4ltkeV6xYkW1/KT1Wr15NRkYGFuAR4ANgJpAK1KtXT0suSJnj5c4XnzNnDlu3bmXz5s152r9p06Z8+eWXtGnThtjYWN599126du3Knj17qFWrltNjkpOTSU5Otj+Pi4tzSewixY2Z3KzGOt+NF5nJzZo1a0hJScHHxyeHo6UkM7ukDKwDyn92qFOrjZRFbmu5OXnyJOPGjWPWrFl5HhQcHh7OyJEjadeuHb169eKHH36gatWqTJs2LcdjJk2aRFBQkH2rXbu2q96CSLHSpk0bKlasaF+CAaAlUA3rbcJ5/SNCSp7cltlQciNlkduSmy1bthATE0P79u3x8vLCy8uLlStX8uGHH+Ll5UV6evoVz+Ht7U1YWBiHDx/OcZ8JEyYQGxtr306ePOnKtyFSbHh4eNCrl3WUjWMnlDnuRl1TpdPZs2fZsWNHjvVmi55IWeK25KZfv37s2rWL7du327eOHTsyYsQItm/fjqen5xXPkZ6ezq5du6hRo0aO+/j6+hIYGJhlEymtzC+yCMcy26OSm9LJHCxeB7gbqOlQ17RpU0JDQ50cJVK6uW3MTYUKFWjVqlWWMn9/fypXrmwvHzlyJDVr1mTSpEkAvPbaa3Tp0oVGjRpx4cIF3nnnHY4fP879999f5PGLFEdmcrMG62BSb6CJrW7dunUkJyfj6+vrpuikMJhdUkOBD21l9wNfoC4pKbvcfrdUbk6cOEF0dLT9+fnz5xk7dizNmzdnyJAhxMXFsW7dOlq0aOHGKEWKj5YtW1KlShUuAbcCDQDzPsSkpCQ2btzovuCkUJgtco5pjDm6Sl1SUlZZjDK2ZHBcXBxBQUHExsaqi0pKpVtvvZXvv//ead3EiRN55ZVXijgiKSzR0dGEhobiAZwFgoEzWAeRG0BMTAxVq1Z1Y4QirpOf7+9i3XIjIvmX21/rGndTupj/nmFYExuwDiY3sN49p8RGyiolNyKlTG7Jzfr160lMTCzCaKQwmcmN47+4mb6qS0rKMiU3IqVM8+bNqVatGgCdgbeAjVjvoklJSWHDhg1ujE5caeXKlYDWkxK5nJIbkVLGYrHQu3dvAIYAzwLXAL1t9eqaKh1OnTrFoUOH8AC62cpOAwewfgZ69uzpvuBE3EzJjUgppPluSr/Vq1cD0AYIspWtsj22bduW4OBgN0QlUjzke56bjIwMVq5cyerVqzl+/DgJCQlUrVqVsLAw+vfvr+UNRIoBM7lZDyQDvmTOVLxp0yaSkpLyvOyJFE9mctPDscz22KNHj2z7i5QleW65SUxM5L///S+1a9dmyJAhLF68mAsXLuDp6cnhw4d55ZVXqF+/PkOGDFGfvoibNWnShJCQEJKATbayRkAI1nE3Wmeq5DOTm2is42wSyGy5UXIjZV2ek5smTZqwc+dOPvvsM+Li4li/fj3ff/8933zzDYsWLeLEiRNERUXRo0cP7rzzTj777LPCjFtEcmGxWOxfcKsdys2vPPOLUUqmCxcu2NeTmg/0w3or+E5bvZIbKevynNz89ttvzJ07lyFDhuDt7e10n7p16zJhwgQOHTqkkfoibta9e3cga3LT3fa4Zs2aIo9HXGfdunVcPv9qKtb5bRo3bkxISIhb4hIpLvKc3DRv3jzPJ/X29qZhw4YFCkhEXMP86309kGGW2R7Xrl1Lenq6O8ISF8it5U2tNiL5vFuqbt263HfffXz11VecPHmysGISERdo06YNgYGBxJLZXdEWCMQ6jfmuXbvcF5xclVWrrKNragCWy+qU3IjkM7m57777OHr0KA8++CD16tWjUaNGjB07lm+//ZZTp04VVowiUgCenp507doVyOya8gC62n5W11TJlJiYaB8Qvgb4B/jWoV7z24jkM7mZOHEiERERXLhwgd9//50RI0Zw8OBB7rvvPmrWrEnz5s159NFHCytWEcknc9zNj8BkYBjWbirQoOKSatOmTaSmphKKddX3ylhbcABCQ0OpX7+++4ITKSYKNImfr68vffv25dVXX2XlypVER0czYcIE/v77bz755BNXxygiBWR2USwHxgMLgVhb3erVq7MNSpXiz9n8No63gFssl3dUiZQ9+Z7ED6zzZKxfv56IiAgiIiLYuHEjNWvW5NZbb6VXr15XPoGIFIlrrrkGHx8fUlJSstVFR0dz5MgRDf4vYczxNo6dT5q8TySrfCU3r732mj2ZqVu3Lj179uSBBx5g1qxZhIaGFlaMIlJAfn5+dOrUibVr1zqtX7NmjZKbEiQtLY31660di2Yak05mV6PG24hY5Su5mThxInXq1GHy5MncdtttVK5cubDiEhEX6d69uz25qYt1rpszwFKsXRyjRo1yY3SSH9u3byc+Pp6KQGtb2TYgHqhYsSItW7Z0X3AixUi+xtwsXryYO++8kxkzZhAaGkrr1q3517/+xfz58/nnn38KK0YRuQpmV0Uj4BjwDfCYrU6DiksW89+ru2OZ7bFbt254eGgtZBHIZ3IzcOBA3nzzTTZs2MCZM2d46623KF++PG+//Ta1atWiZcuWPPbYY1c+kYgUma5du2KxWDgMxNjKumGdH+XgwYPExMTkfLAUK2YLnLPkRl1SIpkKnOZXqFCBIUOG8MYbbzBlyhSeeuop/vzzT6ZOnerK+ETkKlWsWJFWrVoB1nlRACoCrWw/a76bksEwDHty09Wh3BxNZd72LyIFSG4yMjLYtGkTb731FoMHD6ZixYp0796d2bNnc9NNN/Hll18WRpwichWcLaJpfhWqa6pkOH78OKdOncIDMGeyMVvjfH19ad++vfuCEylm8jWgePDgwaxbt46LFy8SGhpKnz59eP/99+nTpw8NGjQorBhF5Cr16NGDjz/+GMc2mu7AVKyLMErxZ/47ZQC1gSZAdVtdx44d8fX1dVNkIsVPvpKb4OBg3nnnHfr06UPjxo0LKyYRcTGzy2I7kACUB8Jtddu2bSMxMZFy5cq5JzjJE8ck1AAO2DbAvsyGiFjlq1vq22+/5YEHHsj1P8ENGzZcdVAi4lq1atWidu3apAGbbGX1gRAgNTWVLVu2uC84yZOc5ioCJTcilyvQgOIBAwZw7ty5bOVr165l0KBBVx2UiLheeLi1rcaxE8psvVHXVPF28eJFdu7cmWO9+W8rIlYFSm66dOnCgAEDuHjxor1s1apVDBkyhFdeecVlwYmI65h/3a93LLM9mrPeSvG0adMmMjIyqAP8AbwGdLLVNWzYkOrVq+d8sEgZVKDk5vPPP6dOnTrccMMNJCcns2LFCq677jpee+01nnzySVfHKCIuYP51vx6IA34H9tnq1q1bp0U0izGzZa0b0A94GRhsq1OXlEh2BUpuPDw8mDNnDt7e3vTt25cbb7yRSZMmMW7cOFfHJyIu0q5dO/z8/DiLdZ6bAYA5cUNMTAxHjx51X3CSKzO5cUxjzI5EJTci2eX5biln/b0TJ05k+PDh3H333fTs2dO+T5s2bVwXoYi4hI+PD506dWL16tVkOKlft26dpnQohjIyMuzdhmYakwFstP2s5EYkuzwnN+3atcNisWRpujafT5s2jU8//RTDMLBYLKSnpxdKsCJydcLDw3OctG/dunXcfffdRRyRXMm+ffuIjY0lAGhrK9sFXMQ6U7wWyxTJLs/JjZqsRUq+y//KtwA1gL/RoOLiyuySugbwNMtsj126dMHT09PZYSJlWp6Tm7p16xZmHCJSBBxvGZ6DddxNIlATa9fzxYsXqVChgpuiE2c03kYk//I8oDg/k/MlJCSwZ8+eAgUkIoWnWrVqNGzYELAOKq4IhAJ1yFw3TooXZ4tlKrkRyV2ek5t77rmHgQMHMm/ePC5duuR0n7179/LCCy/QsGFDzXgqUkyZX4iO0/Zpvpvi6Z9//uHQoUNYyJxw8TRwBOuYxy5durgvOJFiLM/Jzd69e7nuuut46aWXCA4OpmXLllx77bXccMMNdO/enSpVqtC+fXuOHj3Kb7/9xsiRIwszbhEpoNwm89NMxcWLmWw2B4JtZeYiDK1btyYwMNANUYkUf3kec+Pt7c3jjz/O448/TmRkJGvWrOH48eMkJibStm1bnnzySfr06UOlSpUKM14RuUrmuJuNWG8p9iCzVWDDhg1kZGTg4VGgKbDExcwuqT+BO7FO4mfeAq4lF0Rylq9VwU0dO3akY8eOro5FRIpAq1atCAgIIDY+nj1Aa6Ad1pXCz58/z4EDB2jevLlbYxSrNWvWANYZpb+zbaZu3bq5IySREkF/nomUMZ6ennTu3BnI7JryInOtotxWn5aik5SURGRkZI71Sm5EcqbkRqQMcjao2PyqVHJTPGzZsoWUlBSndSEhIdSvX7+IIxIpOZTciJRB5l/9axzKutseza4QcS/z36ENcAsQ4lDXvXt3LBaLO8ISKRGU3IiUQeHh4Xh4eBAFnLKVNbI9Hj58mFOnTuVwpBQVswVtFDAfiAb62+rUJSWSu3wnN6mpqfTr149Dhw4VRjwiUgQCAwPtC9yOAJrYNpNab9zLMAz7bfmOaYw5e5iSG5Hc5Tu58fb2drpCuIiULD169ABgOXD5nypKbtzrwIEDnD17lnJAe1vZXuA8UL58edq1a+e22ERKggJ1S91999188cUXro5FRIpQ9+7dc6xTcuNe5vW/BvA2y2yPnTt3xtvb29lhImJToHlu0tLS+PLLL/njjz/o0KED/v7+Werfe+89lwQnIoUnt66Nbdu2aRFNNzLH2zj+C5n3sKlLSuTKCpTc7N69m/btrY2lBw8ezFKnEfwiJUPNmjWpX78+R48epRMwDOsdU6OAYxkZbNiwgWuvvdatMZZVZnLj2Lam5EYk7wqU3KxYscLVcYiIG/To0YOjR48yCHjBVtYdOIa1a0TJTdE7ffq008Uyo7D+8ahlF0Su7KpuBT98+DBLly4lMTERsI7wF5GSwxx3s9qxzPa4evXqbPtL4TPvkmpJ5mKZ5nib1q1bExQU5IaoREqWAiU3Z8+epV+/fjRp0oQhQ4YQHR0NwJgxY3j66addGqCIFB4zudkEpNrKetgeN2zYQGpqqrPDpBCpS0rk6hUouXnyySfx9vbmxIkTlC9f3l5+xx13sGTJEpcFJyKFq1mzZlSuXJkEYKutrAVQGUhMTGTbtm3uC66MMpObc1hb1JJQciOSXwVKbn777TfeeustatWqlaW8cePGHD9+3CWBiUjhs1gs9tYbx5u/u9oe1TVVtBITE9myxTpV31ygJxAEmMtnKrkRyZsCJTeXLl3K0mJjOnfuHL6+vlcdlIgUndzG3Wi+m6K1efPmbF2BKUAG1rvb6tat65a4REqaAiU3PXr04KuvvrI/t1gsZGRk8Pbbb9OnTx+XBScihc9MbhzXAjfH3axZs0Y3ChSh3FZk79atm6baEMmjAt0K/vbbb9OvXz8iIyNJSUnh2WefZc+ePZw7dy7XX04RKX7at29PuXLlOJOYyH6gGdABKAecOXOGAwcO0KxZM/cGWUaY/38GAxcuq1OXlEjeFajlplWrVhw8eJDu3bszdOhQLl26xM0338y2bdto2LChq2MUkULk4+ND586dgcxxNz5AJ9vP5q3JUrgyMjLs1/o3rKuAzyfzP2klNyJ5V+B5boKCgnjxxReZO3cuixYt4r///S81atQocCBvvvkmFouFJ554Itf95s2bR7NmzfDz86N169YsWrSowK8pIlbmF+ePwBTgdmCXrU6tsUVj//79nD9/nvJAGBACNMU63sbf35+2bdu6NT6RkqRAyU3Pnj3597//zfLly0lKSrrqIDZv3sy0adNo06ZNrvutW7eO4cOHM2bMGLZt28awYcMYNmwYu3fvvuoYRMoyM7n5FXgCmId1BWpQy01RMZPIa8gcL2CmlZ07d8bLq0CjCETKpAIlNwMGDGDDhg3ceOONBAcH0717d1566SV+//13EhIS8nWu+Ph4RowYwWeffUbFihVz3XfKlCkMGjSIZ555hubNm/Of//yH9u3b87///a8gb0NEbLp06ZJj3f79+zl79mwRRlM2abFMEdcpUHLz0ksv8dtvv3HhwgVWrFjB9ddfT2RkJNdddx2VKlXK17keffRRrrvuOvr373/FfdevX59tv4EDB7J+/focj0lOTiYuLi7LJiJZVaxYkZYtW+ZYr9abwqfkRsR1rmptqSNHjrBr1y527NjBzp07qVChAoMHD87z8XPmzGHr1q1MmjQpT/ufOnWK6tWrZymrXr06p06dyvGYSZMmERQUZN9q166d5/hEyhLHL9BQ4DbAbM9RclO4Tp8+zeHDh7MslnkKOIJ1qo3cWtZEJLsCJTd33XUXNWvWpGvXrixZsoQuXbqwePFizpw5w4IFC/J0jpMnTzJu3DhmzZqFn59fQcLIkwkTJhAbG2vfTp48WWivJVKSde1qnZf4GuAvrDPkjrXVaVBx4XK2WKZ5xbVYpkj+FWiE2pw5c6hSpQr3338/ffv2pXv37k5nLM7Nli1biImJoX379vay9PR0Vq1axf/+9z+Sk5Px9PTMckxISAinT5/OUnb69GlCQkJyfB1fX1/NmiySB2bLzQ4gGfAls4tk8+bNpKSk4OPj46boSjd1SYm4VoFXBf/8889JSUlhwoQJVKlSha5du/LCCy/w22+/5ekc/fr1Y9euXWzfvt2+dezYkREjRrB9+/ZsiQ1AeHg4y5Yty1L2+++/Ex4enm1fEcmfhg0bUq1aNZKBLbaypkAVICkpSYtoFiIlNyKuVaDkpmLFitx444289957bNmyhZ07d9KkSRPeeeedPI+5qVChAq1atcqy+fv7U7lyZVq1agXAyJEjmTBhgv2YcePGsWTJEiZPnsz+/fuZOHEikZGRPPbYYwV5GyLiwGKx2LumHEfYmH86qGuqcCQlJdkXy2xtK0sEzFRSyY1I/hW45eaHH37g8ccfp02bNjRr1oxffvmFG264gffee89lwZ04cYLo6Gj7865duzJ79mw+/fRT2rZty/z58/nxxx/tyZCIXB3zi9QxjTG/WjWouHBERkbaF8vsALQB7gJSgdDQUC2WKVIABRpzU61aNapUqUKPHj0YO3YsvXv3pnXr1lc+8AoiIiJyfQ5w2223cdttt131a4lIds5abrraHteuXYthGFq80cUcW8QysM4Mbc4OrcUyRQqmQMnNzp07c50TQ0RKpg4dOuDr60tMcjKHgUZY15jywToVw7Fjx6hfv757gyxlrrQSuIjkX4G6pczE5p9//mHNmjWsWbOGf/75x6WBiUjR8/X1pWPHjkBm15QfYN7TqHE3rmUYRq7dfUpuRAqmQMnNpUuXGD16NDVq1KBnz5707NmT0NBQxowZk+/lF0SkeMmta0rjblwrKiqKs2fP4gf8DPybzGtdvnx5LZYpUkAFSm6eeuopVq5cyc8//8yFCxe4cOECCxcuZOXKlTz99NOujlFEipDjoOIEIAIwh/Wr5ca1NmzYAFhXAb8eeBUYY6vr1KkT3t7ebopMpGQr0Jib77//nvnz59O7d2972ZAhQyhXrhy33347U6dOdVV8IlLEzHmj9gJBQJpD3a5du4iLiyMwMNAdoZU6GzduBDKXuQDYYHvUkgsiBVeglpuEhIRsazyB9S4qdUuJlGzVqlWjcePGGGRNbMA6RiQyMtIdYZVKZsuNYxqz0fbYuXPnIo9HpLQoUHITHh7OK6+8QlJSkr0sMTGRV199VbMFi5QCubUamK0NcnUSExPZvn07AGYaEw/ssf2s5Eak4ArULfXBBx8wcOBAatWqZR/wtmPHDvz8/Fi6dKlLAxSRotelSxe+/vrrLGVBQCyZrQ1ydbZt20ZaWho1AHOavs1AOlCnTh1CQ0PdF5xICVeg5KZ169YcPnyY2bNns2/fPgCGDx/OiBEjKFeunEsDFJGiZ7YaeAI/YO02icJ6J8/GjRs1mZ8LmEmiY/uMuqREXCPfyc2GDRv4+eefSUlJoW/fvtx///2FEZeIuFGbNm3w8/MjKSmJpkA1rC03PsDp06c5fvw49erVc2uMJZ2z5EaDiUVcI19jbubPn0+3bt2YMmUKn3/+Oddffz3vvvtuYcUmIm7i7e1Nhw4dgMzWBF/AnHVF426unrM7pcyrquRG5OrkK7mZNGkSY8eOJTY2lvPnz/Pf//6XN954o7BiExE3Mr9gHUfYmF+5GndzdaKjozlx4gSeWJe3ADgOnAK8vLwICwtzX3AipUC+kpsDBw4wfvx4PD09AXj66ae5ePEiMTExhRKciLiPOe7DsY3G7EJRy83VMa+fJ/AIMBWYbatr166dxi6KXKV8jblJSEjIMnmXj48Pfn5+xMfHU61aNZcHJyLuY7bc7AQSgXJkttxs3bqVlJQUfHx83BRdyWa2fKUAX9k2k7qkRK5evgcUf/755wQEBNifp6WlMWPGDKpUqWIve/zxx10TnYi4Ta1atahRowbR0dFsAboDDYEqwJnkZHbs2EGnTp1yP4k4lVu3nu6UErl6FsMwjLzuXK9evSve/mmxWDhy5MhVB1ZY4uLiCAoKIjY2VlPIi1zBzTffzIIFC3gXMFeNux74Ffjwww/517/+5b7gSqi0tDSCg4O5dOmS0/pDhw7RqFGjIo5KpPjLz/d3vlpujh07djVxiUgJ07lzZxYsWJBlUHFnrMnNxo0bldwUwJ49e7h06RIBQC+sY5rO2OoqV65Mw4YN3RecSClRoOUXRKRsMMd/OA4fbmd71B1TBeO4ntQvwD9YVwMHazKpyRFFrp6SGxHJUYcOHfDw8OAkcA/QEhhmq4uKiuLMmTM5HivOmXdKOY6sOWB71GBiEddQciMiOQoICKB169YAfAPsBTIc6nVLeP5t2rQJ0LILIoVJyY2I5Cq3L1wlN/kTHx9vX4/PvM/sLNZ1uwDdfSbiIkpuRCRXuXWVaNxN/mzdupWMjAxqAyG2skjbY+PGjalYsaKbIhMpXQq0KrgpJiaGmJgYMjIyspS3adPmqoISkeLDseVmENbulCrAv4DNmzdrhfB82Lx5M5DZagOw2faoVhsR1ylQcrNlyxZGjRrFvn37MKfJsVgs9v/k0tPTXRqkiLhPs2bNqFChAhcvXuRtoDWQBjwLXLhwgcOHD9O4cWP3BllCOEtuzJYbJTcirlOgbqnRo0fTpEkT1q1bx5EjRzh69GiWRxEpPTw8POwrhJutDF5k3hJufmHLlanlRqRoFKjl5siRI3z//feaRVOkjOjUqRMRERFsBkabZcB6rF/Yd911l/uCKyHOnj3LkSNHsAAdbWV/2zZPT0+tBC7iQgVquenXrx87duxwdSwiUkyZrQqObTRmO4NabvImMtLaAVUJOIh10UzzyrVs2ZLy5cu7KTKR0qdALTeff/45o0aNYvfu3bRq1Qpvb+8s9TfeeKNLghOR4sFMbnYCyYAvma0PW7duJS0tDS+vq7o/odQzk8CzwDWAD2DeG6UuKRHXKtD/RuvXr2ft2rUsXrw4W50GFIuUPnXr1qVKlSqcOXOGHVi/nJsBgUBcYiJ79+7VXZJXcHkLVwpw2vazkhsR1ypQt9S//vUv7r77bqKjo8nIyMiyKbERKX0sFovTrqkOtkd1TV1ZbteoY8eOOdaJSP4VKLk5e/YsTz75JNWrV3d1PCJSTGncTcH99ddfREdHO63z8fGxL3EhIq5RoOTm5ptvZsWKFa6ORUSKMSU3BWden9bAUWAucL2trl27dvj4+LgpMpHSqUBjbpo0acKECRNYs2YNrVu3zjag+PHHH3dJcCJSfJjJzX5gJbAbWGar27lzJ0lJSfj5+bkpuuLNTG6uAerZNnPhCo23EXG9At8tFRAQwMqVK1m5cmWWOovFouRGpBSqXr06tWvX5uTJk/S+rC4tLY0dO3ZoVescaPI+kaKV7+TGMAwiIiKoVq0a5cqVK4yYRKSY6tSpEydPnnRat3nzZiU3ThiGYZ/jxkxj0oGttp+V3Ii4Xr7H3BiGQePGjfnzzz8LIx4RKcZy+yLWuBvnoqKiOH/+PL5Yx9wA7AMuAQEBATRt2tR9wYmUUvlObjw8PGjcuDFnz54tjHhEpBi7PLmphgYVX4l5XdoB5uhE80p16NABT09PN0QlUroV6G6pN998k2eeeYbdu3e7Oh4RKcbMBTTB2q1yGvjF9nz//v1cvHjRHWEVa2aXlONMNhpvI1K4CpTcjBw5kk2bNtG2bVvKlStHpUqVsmwiUjoFBwfTpEkTIHN23WpAHaxd1lu2bHFXaMWWeU0ck5tI26Mm7xMpHAW6W+qDDz5wcRgiUlJ06tSJgwcPshkYZJYBJ7B2wfTu3dttsRU3GRkZbN1qHTpstnmlYl2jC5TciBSWAiU3o0aNcnUcIlJCdOrUiVmzZmWbzO97MrtgxOrw4cNcvHiRckALW9kerIuPBgcH06BBA/cFJ1KKXfUyvklJSaSkpGQpCwwMvNrTikgxZY4TcUxjzFYJdUtlZV6PFCAc63VKtNW1b98ei8XipshESrcCJTeXLl3iueeeY+7cuU7vmtLimSKlV7t27fDw8CA6I4NooAbQ3lYXFRXFhQsXCA4Odl+AxYiZ3KRjHUTs2NrVvn17Z4eIiAsUaEDxs88+y/Lly5k6dSq+vr58/vnnvPrqq4SGhvLVV1+5OkYRKUbKly9P8+bNATDbaSoB9W0/m2NMJPdr4XjnmYi4VoGSm59//pmPP/6YW265BS8vL3r06MFLL73EG2+8waxZs1wdo4gUM+YXs2MnlLqmsjIMQ8mNiJsUKLk5d+6cfSBcYGAg586dA6B79+6sWrXKddGJSLFk3uWj5CZnUVFRxMbG4geMB/oAQba6wMBAGjZs6L7gREq5AiU3DRo04OjRowA0a9aMuXPnAtYWHfW1i5R+l7fcpADmbQRKbqzM69AWeAdYDrxvq2vfvj0eHgX671dE8qBAv1333XcfO3bsAOD555/no48+ws/PjyeffJJnnnnGpQGKSPFjDir+G+uyAgHAo7a6w4cPExsb67bYigszuXEcNmymfeqSEilc+bpb6siRI9SvX58nn3zSXta/f3/279/Pli1baNSoEW3atHF5kCJSvJiDivfs2cMOJ/Vbt26lT58+RR5XcWImN45pjJIbkaKRr5abxo0b888//9if33HHHZw+fZq6dety8803K7ERKUNy+4Iu611TjoOJzauUDvZEUMmNSOHKV3JjGEaW54sWLeLSpUsuDUhESgYlNzk7cuQIFy5cwBdoaSvbi3UCvwoVKtCoUSP3BSdSBlz1DMUiUjaZyY0n8CzWFoqLwH1oGQYzuWsDeJtltkcNJhYpfPlKbiwWS7bpwjV9uEjZZA4qTs/I4HEgBDhnqzMHFQcFBeVyhtLr8i4p0HgbkaKUr+TGMAzuvfdefH19Aeu6Ug899BD+/v5Z9vvhhx9cF6GIFEv+/v40a9aMvXv3sgW4DutMxfWAY5TtQcXOBhOb0/lp2QWRwpevttFRo0ZRrVo1goKCCAoK4u677yY0NNT+3NzyaurUqbRp04bAwEACAwMJDw9n8eLFOe4/Y8YMe+uRufn5+eXnLYiIC2mm4uwMw8iW3KQD220/q+VGpPDlq+Vm+vTpLn3xWrVq8eabb9K4cWMMw2DmzJkMHTqUbdu20bJlS6fHBAYGcuDAAftzdYuJuE+HDh34+uuvsyU331N2k5tjx45x/vx5wLpyuheQASQAAQEBNGnSxI3RiZQNbh1QfMMNN2R5/vrrrzN16lQ2bNiQY3JjsVgICQkpivBE5ArUcpOd43pSD9gezSbysLAwDSYWKQLF5rcsPT2dOXPmcOnSJcLDw3PcLz4+nrp161K7dm2GDh3Knj17ijBKEXFkDir+CzhtKzOTm0OHDpXJmYqdLZaZYXtUl5RI0XB7crNr1y4CAgLw9fXloYceYsGCBbRo0cLpvk2bNuXLL79k4cKFfPPNN2RkZNC1a1f+/PPPHM+fnJxMXFxclk1EXCMgIIBmzZoBma03lYG6tp+3bdvmjrDcKrf3rMHEIkXD7clN06ZN2b59Oxs3buThhx9m1KhR7N271+m+4eHhjBw5knbt2tGrVy9++OEHqlatyrRp03I8/6RJk7IMdq5du3ZhvRWRMslZ11RH22NZ65pyHEzs66Q+LCysaAMSKaPcntz4+PjQqFEjOnTowKRJk2jbti1TpkzJ07He3t6EhYVx+PDhHPeZMGECsbGx9u3kyZOuCl1EcJ7cmF/hZa3lJjo6mpiYGDyBs8B+rCuCA/j5+dlbuUSkcBW7GYozMjJITk7O077p6ens2rWLIUOG5LiPr6+vfV4eEXE9s6tlM/AZ1vlcImx1zsaflGZmMtcM8AeaknkLeJs2bfDyKnb/5YqUSm79TZswYQKDBw+mTp06XLx4kdmzZxMREcHSpUsBGDlyJDVr1mTSpEkAvPbaa3Tp0oVGjRpx4cIF3nnnHY4fP87999/vzrchUqa1a9cOgL/JvDvItH//fi5dupRtos/SykzmHEfWmG1XGm8jUnTcmtzExMQwcuRIoqOjCQoKok2bNixdupRrr70WgBMnTmS5bfL8+fOMHTuWU6dOUbFiRTp06MC6detyHIAsIoWvQoUKNGnShIMHD2arMwyDHTt20LVrVzdEVvTMlhvHkTVm25XG24gUHbcmN1988UWu9REREVmev//++7z//vuFGJGIFERYWJjT5AasX/hlJbkxW24c0xi13IgUPbcPKBaRks/xi7si0BcwZ6sqK+Nuzp07x/Hjx7GQmdycBM4AXl5etGrVyn3BiZQxGt0mIlfNTG7qA0dsZT8CN1F2khuzS6o+YK6wZ7batGjRQuvgiRQhtdyIyFUzx5McA8xpMs22nN27d+f5DsiSzExuHDuftBK4iHsouRGRq1a5cmXq1q2LQWZrRR2gCpCWlsbu3bvdF1wRyW28jQYTixQtJTci4hJm64RjJ5T5lV4WuqbUciNSfCi5ERGXMFsnnCU3pX2m4vj4eA4cOADA7UBP4FHgT8BisdC2bVs3RidS9mhAsYi4hLOWG7O9orS33OzYsQPDMAC4CKy2bQCNGzemQoUK7gpNpExSy42IuISZ3BwAEswy2+OOHTtIS0tzR1hFIreWKY23ESl6Sm5ExCVq1KhBSEgI6cBOW1ljIBBISkpi//797guukOXWMqXxNiJFT8mNiLiMs66pdrbH0tw1ZbbcPAb8C+hG5n+uarkRKXpKbkTEZRyTm3RgF1DOVldak5vk5GT7re7jgQ+BRYBhq1dyI1L0NKBYRFzG/CL/FpgNJDrUldbkxhxPVAWoa5ZhTW5q165NlSpV3BecSBml5EZEXMZsuUlwUrd9+3YyMjLw8ChdDcabNm0CoJNjme2xQ4cORR6PiKhbSkRcqG7dulSsWNFp3cWLFzl06FARR1T4zOSms0PZRttj586ds+0vIoVPyY2IuIzFYsn17iAzEShNzPd0jWOZ7fGaa67Jtr+IFD4lNyLiUp06WTtoWgBfAweBJ2x1pS25uXDhgn1mYjONiQGOY030Onbs6K7QRMo0jbkREZcyWyu8gLttZV1sjxs3bnR2SIkVGRkJQAOgsq3MTN+aN29OYGCgO8ISKfPUciMiLmWOM9kDXLKVma0a27dvJykpyR1hFQozWVOXlEjxouRGRFwqNDSUWrVqkQ5ssZXVB6oCqamp7Nixw33BuZizwcRKbkTcT8mNiLic+cXu2AllJgClpWvKMAz7e1mLdV6fw8BmW72SGxH3UXIjIi5ndk2V5uTmzz//5PTp0wDMB0ZgXUvrHODr60vr1q3dGJ1I2abkRkRczkxuHO+NMtsxSssdU7m9j/bt2+Pj41OE0YiIIyU3IuJyHTp0wMPDg5NAtK3sGsACHD58mLNnz7ovOBfJLblRl5SIeym5ERGXCwgIoGXLlkBm600w0MT2c2lovTHfQ0MyFwc1KbkRcS8lNyJSKJyNuyktXVPp6en2OW4WAnHABqwtU6DkRsTdlNyISKEwk5ufgSeBbsA8W11JH1S8b98+4uPjqQA0xzphoSfWlcArVapEw4YN3RqfSFmnGYpFpFCYrRe7bZujTZs2YRgGFosl23Elgdny1IHMvxAd57cpqe9LpLRQy42IFIqWLVvi7+/vtO7s2bMcOXKkiCNyHS2WKVK8KbkRkULh6emZ68KRJblryoxdMxOLFE9KbkSk0JjjbnyAcKyrgw+y1ZXU5CYuLo6dO3cC1vcE1gHF+20/m6uii4j7aMyNiBQasxWjJbDOVjYbWELJvWNq/fr1ZGRk0ACoYStbh3UwcYMGDahWrZr7ghMRQC03IlKIzJabXUCirayL7XHr1q0kJiY6O6xYW7NmDQA9HMpW2x579OiRbX8RKXpKbkSk0NSqVYvQ0FDSyByT0gCoCaSkpLBhwwb3BVdAq1dbU5nuDmVrbI9KbkSKByU3IlKoevbsCUCEQ1kv22NERAQlSUpKin2skNn5lEJm4ta9e3dnh4lIEVNyIyKFqnfv3kDW5Ka37bGkJTdbtmwhKSkJgKFAJaAfkARUrVqVJk2a5HK0iBQVJTciUqjM5GYDkGyW2R43bNhQosbdmONtTOfJ7JLq3r27Ju8TKSaU3IhIoWrSpAnVq1cnicx1phpTMsfdmONtnNF4G5HiQ8mNiBQqi8XitGvKHHezcuXKIo6oYDIyMli7dm2O9RpvI1J8KLkRkUJXGsbd7Nu3j3PnzuGPda2sz4DrbXX+/v6EhYW5LzgRyUKT+IlIoXMcdxOFddK7Jba6DRs2kJSUhJ+fn3uCyyNzvE0XrJMStgRSgV+A8PBwvLz036lIcaGWGxEpdE2bNqV69eokAo2AkcAPtrrk5OQSMe4mt/lt1CUlUrwouRGRQmexWOjVq1eO9SWha0ozE4uUHEpuRKRImF1TzhT35ObkyZMcP34cLzKXjzgBnAS8vLzsy0yISPGg5EZEisTlyU0AWee7MSfHK47MVpswwN9WZrbatG/fHn9/f2eHiYibKLkRkSLRrFkz+4rZU7FOgLcC68raycnJ9mUNiqNVq1YBGm8jUlIouRGRIuE47uYMmbdqloR1pn7//XcA+jiUabyNSPGl5EZEioyz+W7MhGHZsmVFHE3eHDlyhKioKLzJjPUUsAdrwqaWG5HiR8mNiBQZM7lZR+Y6U9faHtevX09cXJwbosqd2WrTBes4IYDfbY8dOnSgSpUq7ghLRHKh5EZEikzz5s2pUaMGiWSOWamPde6btLS0Ytk1ZSY364FuwETgG1vdtdde6/wgEXErJTciUmQsFgsDBgwA4DeH8oG2x6VLlxZ5TLlJS0uzd5elYW1xepXM2M33IiLFi5IbESlSZkLgmMaYKUJxS24iIyO5cOGC07ry5csTHh5etAGJSJ4ouRGRInXttddisVjYCZy2lfUBvIGoqCiioqLcF9xlzC4pZ3r37o2vr28RRiMieaXkRkSKVNWqVWnfvj0Gmd07FYCutp9/++035we6gRnLo8ATQAuHOnVJiRRfSm5EpMhd3jW1BTDbQIpL11RcXJx9Qc/xwPtY4yxnq9dgYpHiS8mNiBS5gQOtQ4h/BKoBHclsxVm+fDmpqanuCcxBREQEaWlpNALq2crWAIlAzZo1ad68udtiE5HcuTW5mTp1Km3atCEwMJDAwEDCw8NZvHhxrsfMmzePZs2a4efnR+vWrVm0aFERRSsirhIeHk5AQACXgH8uq7t48aK9xcSdzC4px84nMwEzxw2JSPHk1uSmVq1avPnmm2zZsoXIyEj69u3L0KFD2bNnj9P9161bx/DhwxkzZgzbtm1j2LBhDBs2jN27dxdx5CJyNXx8fOjTp0+O9cWha8ocTOyY3JjDizXeRqR4sxiGYbg7CEeVKlXinXfeYcyYMdnq7rjjDi5dusQvv/xiL+vSpQvt2rXjk08+ydP54+LiCAoKIjY2lsDAQJfFLSL589FHH/HYY49lKasMnAU6derEpk2b3BIXwLFjx6hfvz5etngCgRggBDCA06dP2xcBFZGikZ/v72Iz5iY9PZ05c+Zw6dKlHOeOWL9+Pf37989SNnDgQNavX5/jeZOTk4mLi8uyiYj7meNuAN4GDgO7bM8jIyM5c+aMO8ICMrukOmNNbMDaamMAYWFhSmxEijm3Jze7du0iICAAX19fHnroIRYsWECLFi2c7nvq1CmqV6+epax69eqcOnUqx/NPmjSJoKAg+1a7dm2Xxi8iBdOwYUPq168PQHOgIVADaAMYhsEff/zhtth+/fVXAAY7lKlLSqTkcHty07RpU7Zv387GjRt5+OGHGTVqFHv37nXZ+SdMmEBsbKx9O3nypMvOLSIFZ7FY7K03jjPbDLI9mglGUUtMTLSPt7neody81cGxxUlEiie3Jzc+Pj40atSIDh06MGnSJNq2bcuUKVOc7hsSEsLp06ezlJ0+fZqQkJAcz+/r62u/G8vcRKR4MBMFx3skzYTi119/JS0trchjWrFiBYmJidQG2trKNmIdcxMYGEj37t2LPCYRyR8vdwdwuYyMDJKTk53WhYeHs2zZMp544gl72e+//14o67ukp6cXi7k2pOTz9vbG09PT3WEUS/3798fHx4fDKSnsw9o91RWoApw5f55169bRs2fPIo3JvGHhAjAaa7K11lY3aNAgvL29izQeEck/tyY3EyZMYPDgwdSpU4eLFy8ye/ZsIiIi7LeBjhw5kpo1azJp0iQAxo0bR69evZg8eTLXXXcdc+bMITIykk8//dRlMRmGwalTp3JcLE+kIIKDgwkJCdHcKJcJCAigb9++LFmyhJ+wJjeewBDgK+Cnn34q0uTGMAx7cnMRmG7bTNdff72zw0SkmHFrchMTE8PIkSOJjo4mKCiINm3asHTpUvu05idOnMDDI7PnrGvXrsyePZuXXnqJF154gcaNG/Pjjz/SqlUrl8VkJjbVqlWjfPny+jKSq2IYBgkJCcTExABQo0YNN0dU/Nx4440sWbKEn4HnbGU3kJncvPvuu0UWy65du3Icl2exWBg8eLDTOhEpXordPDeFLbf75NPT0zl48CDVqlWjcuXKbopQSqOzZ88SExNDkyZN1EV1mT///JPatWvjgXWV8CpYW02qACnA/v37adq0aZHE8sYbb/Diiy86revatStr1651Wiciha9EznNTHJhjbMqXL+/mSKS0MT9TGseVXa1atQgLCyMDMO+PqgD0tv38008/FVksZpfUnVhnJvZ1qFOXlEjJoeTGCXVFiavpM5W7G2+8EQAzjYkDatl+Lqrk5p9//rGvaTUZ64rlJ8nsu1dyI1JyKLkpA3r37p3lDrOCuvfeexk2bNhVn8dVjh07hsViYfv27Xk+xlXXQlzrhhtuAKwJRX+sXVJf2urWrVtXJLMVL168GMMwCANCbWUbgTSgTp06Lh3bJyKFS8lNKXHvvfdisViybYcPH3bZa0yZMoUZM2bkad+JEydisVgYNGhQtrp33nkHi8VC7969XRablGzt27cnNDSUS8AywLHzLiMjg0WLFhV6DGaX1HWOZbbH66+/Xq1vIiWIkptSZNCgQURHR2fZzOntr0Z6ejoZGRkEBQURHByc5+Nq1KjBihUr+PPPP7OUf/nll9SpU+eq45LSw2Kx2LumnCnsrqmUlBT7FBSOnU/mGCB1SYmULEpuclGhQgV8fX3dulWoUCHP8fr6+hISEpJlc3Znzvnz5xk5ciQVK1akfPnyDB48mEOHDtnrZ8yYQXBwMD/99BMtWrTA19eXEydOZOuWmj9/Pq1bt6ZcuXJUrlyZ/v37c+nSJXt9tWrVGDBgADNnzrSXmV0M113n+Pex9a/z1157jVq1auHr60u7du1YsmRJln02bdpEWFgYfn5+dOzYkW3btmV7b7t372bw4MEEBARQvXp17rnnHrcuwCh5Z3ZNOTIH9C5dujTHyT1dYdmyZcTFxVEd62KZANuBP7EOBu/Tp0+hvbaIuJ6Sm1ykpKQUi83V7r33XiIjI/npp59Yv349hmEwZMiQLHfyJCQk8NZbb/H555+zZ8+ebKsgR0dHM3z4cEaPHs2+ffuIiIjg5ptv5vKZBUaPHp2lK+vLL79kxIgR+Pj4ZNlvypQpTJ48mXfffZedO3cycOBAbrzxRnvSFR8fz/XXX0+LFi3YsmULEydOZPz48VnOceHCBfr27UtYWBiRkZEsWbKE06dPc/vtt7viskkh69u3r/2ushuxDi4+h3X8S3x8vH29p8Lw7bffAnCbQ9nPtsf+/fvj5+dXaK8tIq6n5KYU+eWXXwgICLBvt912W7Z9Dh06xE8//cTnn39Ojx49aNu2LbNmzeKvv/7ixx9/tO+XmprKxx9/TNeuXWnatGm22+Ojo6NJS0vj5ptvpl69erRu3ZpHHnmEgICALPtdf/31xMXFsWrVKi5dusTcuXMZPXp0trjeffddnnvuOe68806aNm3KW2+9Rbt27fjggw8AmD17NhkZGXzxxRe0bNmS66+/nmeeeSbLOf73v/8RFhbGG2+8QbNmzQgLC+PLL79kxYoVHDx4sIBXVYqKn5+ffcXtMKwT+ZUnM+GYPXt2obxuYmKi/bN/p0P5d7bH4jSIXkTyRslNKdKnTx+2b99u3z788MNs++zbtw8vLy86d+5sL6tcuTJNmzZl37599jIfHx/atGmT42u1bduWfv360bp1a2677TY+++wzzp8/n20/b29v7r77bqZPn868efNo0qRJtvPGxcXx999/061btyzl3bp1s8e0b98+2rRpk+Uv6MvXFNuxYwcrVqzIkuA1a9YMgKioqBzfixQfZiLxnUPZCNvjwoULiY+Pd/lrLlq0iIsXL1IHMD+Bu4A9WH8PbrrpJpe/pogULiU3pYi/vz+NGjWyb1cz1X+5cuVyvTvE09OT33//ncWLF9OiRQv+7//+j6ZNm3L06NFs+44ePZp58+bx0UcfOW21cZX4+HhuuOGGLAne9u3bOXToUJEvvigFc9NNN+Hn58d+YKutrBPQGGtXqWProquYXVKOrTZzbI9DhgzJ1yB6ESkelNyUMc2bNyctLY2NGzfay86ePcuBAwdo0aJFvs5lsVjo1q0br776Ktu2bcPHx4cFCxZk269ly5a0bNmS3bt3c9ddd2WrDwwMJDQ0NNvU9mvXrrXH1Lx5c3bu3ElSUpK93pxwzdS+fXv27NlDvXr1siR5jRo1wt/fP1/vTdwjMDDQftfULIdys/Vm1qxZ2Y65GnFxcfz6q/WeqF+Ad4ATZCY3w4cPd+nriUjRUHKTCx8fn2KxuVLjxo0ZOnQoY8eOZc2aNezYsYO7776bmjVrMnTo0DyfZ+PGjbzxxhtERkZy4sQJfvjhB/755x+aN2/udP/ly5cTHR2d41/BzzzzDG+99RbfffcdBw4c4Pnnn2f79u2MGzcOgLvuuguLxcLYsWPZu3cvixYtyrag4qOPPsq5c+cYPnw4mzdvJioqiqVLl3LfffeRnp6e5/cm7jVihDWVmQNkmGW2x99//92+CKkrLFy40J4w7wWeBeoCR7C2hOoWcJGSya2rghd3Fy9edHcIhWL69OmMGzeO66+/npSUFHr27MmiRYvw9vbO8zkCAwNZtWoVH3zwAXFxcdStW5fJkyfnuGrylVpOHn/8cWJjY3n66aeJiYmhRYsW/PTTTzRu3BiAgIAAfv75Zx566CHCwsJo0aIFb731Frfccov9HGbrz3PPPceAAQNITk6mbt26DBo0KMvq8lK8DRo0iEqVKvH3uXOsAPoBjYBrgE3p6Xz33Xf861//cslrzZkzJ8e6oUOHap05kRJKq4I7SEpK4ujRo9SvX1+3fopL6bOVPw899BDTpk3jPjKXYfgQGAd07tw5W5dkQZw9e5aQkBDS0tKc1v/8889quREpRrQquIiUaGbX1PeAOcrqDsATa5eoK5YVmT9/PmlpabQAniJzoU6AihUr2m9LF5GSR8mNiBQ73bp1o06dOsSRub7TCTIXtHTFnDfmOe7Fugr4ScAcdXbLLbe4fLybiBQdJTciUux4eHjYW2/+DTTFOubmpK3+m2++ISMjI4ejr2zXrl2sWrUKT8C8HyoVWG37WXdJiZRsSm5EpFgyk5t9wOXzSx86dOiqVgp/7733ALiFzO6oxViXewgJCaFXr14FPreIuJ+SGxEpllq2bEnbtm1zrH/77bcLdN7o6Gj7fDlPO5R/YHu8++67nS44KyIlh5IbESm2xowZk+W5Bbge8AFWr17N+vXr833Ojz/+mNTUVLpi7eoC6wrgK7DOvO2q28xFxH2U3IhIsTV69GgqVaoEQB9gN9bVuu+21b/11lv5Ol9CQgJTp04FrHdImd6zPd5+++3UqVPnKiIWkeJAyY2IFFv+/v489thjAFwCzAVCnsHairNw4UL279+f5/N99dVXnD17lgaAuRzm32Qut/DUU085P1BEShQlNyJSrD322GOUK1eOTUCErawZcKPt53feeSdP58nIyOD9998HrJMBmv/5/R/WO6V69OhBx44dXRS1iLiTkhspsHvvvZdhw4Zd9XkmTpxIu3btrvo8rmSxWPK1ArWrroVkV7VqVftq8o6dUM/ZHr/++mv+/vvvK57nl19+4eDBg3hiHbcD1tagabafn376aecHikiJo+SmlLj33nuxWCxYLBZ8fHxo1KgRr732Wo5Ty+fFxIkT7ed03P744w8XRg7jx49n2bJledp3xowZWCwWpwt0zps3D4vFQr169Vwan7jfU089hYeHB0uAnbaycKA7kJqayquvvprr8bGxsfaBwulAS+B+4FXgPNCoUSMttSBSiii5KUUGDRpEdHQ0hw4d4umnn2bixIl5brJ3lJ6ebp8grWXLlkRHR2fZevbs6ZJ4DcMgLS2NgIAAKleunOfj/P39iYmJyXanzBdffKHBoKVUgwYNuP322wFwvAH8Naxjbz799FN++OGHHI8fN24cJ06csD9PAr4AzN+OJ554Qrd/i5QiSm5KEV9fX0JCQqhbty4PP/ww/fv356effuK9996jdevW+Pv7U7t2bR555BHi4+Ptx82YMYPg4GB++uknWrRoga+vr/2LwMvLi5CQkCxbTtPSJycn8/jjj1OtWjX8/Pzo3r07mzdvttdHRERgsVhYvHgxHTp0wNfXlzVr1mTrloqIiOCaa67B39+f4OBgunXrxvHjx+31Xl5e3HXXXXz55Zf2sj///JOIiAjuuuuubHFNnTqVhg0b4uPjQ9OmTfn666+z1B86dIiePXvi5+dHixYt+P3337Od4+TJk9x+++0EBwdTqVIlhg4dyrFjx3L/BxGXevbZZwH4DjhmK+uDdXAxWO+scvZv8v333zNz5swcz1uxYkXuvfde1wUqIm6n5KYUK1euHCkpKXh4ePDhhx+yZ88eZs6cyfLly+1fFKaEhATeeustPv/8c/bs2UO1atXy/XrPPvus/Ytk69atNGrUiIEDB3Lu3Lks+z3//PO8+eab7Nu3jzZt2mSpS0tLY9iwYfTq1YudO3eyfv16HnjgASwWS5b9Ro8ezdy5c0lISACsCdqgQYOoXr16lv0WLFjAuHHjePrpp9m9ezcPPvgg9913HytWrACsg0xvvvlmfHx82LhxI5988gnPPfdclnOkpqYycOBAKlSowOrVq1m7di0BAQEMGjSIlJSUfF8nKZiwsDAGDRpEGjAGMBdfeB1rF1VsbCzDhw8nNTXVfkx0dDQPPvggAA9g7ca63CuvvIK/v3+hxi4iRcwoY2JjYw3AiI2NzVaXmJho7N2710hMTMx+4OTJhlGz5pW3G27IfuwNN+Tt2MmTC/y+Ro0aZQwdOtQwDMPIyMgwfv/9d8PX19cYP358tn3nzZtnVK5c2f58+vTpBmBs3749y36vvPKK4eHhYfj7+9u3Tp06OX3N+Ph4w9vb25g1a5a9PiUlxQgNDTXefvttwzAMY8WKFQZg/Pjjj9lep23btoZhGMbZs2cNwIiIiHD6PqdPn24EBQUZhmEY7dq1M2bOnGlkZGQYDRs2NBYuXGi8//77Rt26de37d+3a1Rg7dmyWc9x2223GkCFDDMMwjKVLlxpeXl7GX3/9Za9fvHixARgLFiwwDMMwvv76a6Np06ZGRkaGfZ/k5GSjXLlyxtKlS7NdC2dy/WxJnh04cMDw9/c3AOM1MAwwLoFxGxjYtrvuuss4evSoERERYbRr184AjDAwUsBIB+O/Dvv26dPHSE9Pd/fbEpE8yO37+3Je7kmpSqC4OPjrryvvV7t29rJ//snbsXFx+Y/LwS+//EJAQACpqalkZGRw1113MXHiRP744w8mTZrE/v37iYuLIy0tjaSkJBISEihfvjwAPj4+2VpRAJo2bcpPP/1kf+7r6+v0taOiokhNTaVbt272Mm9vb6655hr27duXZd/cbretVKkS9957LwMHDuTaa6+lf//+3H777dSoUSPbvqNHj2b69OnUqVOHS5cuMWTIEP73v/9l2Wffvn088MADWcq6devGlClT7PW1a9cmNDTUXh8eHp5l/x07dnD48GEqVKiQpTwpKYmoqKgc34u4XpMmTfj4448ZNWoUrwLVsS6b4PgJmz17Nt9++y2GYQDgD3wDeNvqDdtjYGAgM2bMwMNDDdgipY2Sm7wKDISaNa+8X9WqzsvycmxgYP7jctCnTx+mTp2Kj48PoaGheHl5cezYMa6//noefvhhXn/9dSpVqsSaNWsYM2YMKSkp9uSmXLly2bp+APudV650pS6A6dOn8/jjj7NkyRK+++47XnrpJX7//Xe6dOmSZb8RI0bw7LPPMnHiRO655x68vArn4xwfH0+HDh3s6xE5qurs31sK1ciRI1m+fDkzZ87kQSf1TYCDhoE3MBZ4GQix1W3BOggZ4KOPPtIAdJFSSslNXj31lHUrCIeWj8Lk7++fLRHZsmULGRkZTJ482f4X6ty5c13+2uaA3bVr11K3bl3AOlZl8+bNPPHEE/k+X1hYGGFhYUyYMIHw8HBmz56dLbmpVKkSN954I3PnzuWTTz5xep7mzZuzdu1aRo0aZS9bu3YtLVq0sNefPHmS6Ohoe+vQhg0bspyjffv2fPfdd1SrVo3Aq0xAxTX+97//sWHDBg4cOJClPAhrAnMcKAc0cKi7CNyDdcK+2267zb7quIiUPmqPLeUaNWpEamoq//d//8eRI0f4+uuvc0wEroa/vz8PP/wwzzzzDEuWLGHv3r2MHTuWhISEbIsf5ubo0aNMmDCB9evXc/z4cX777TcOHTrkdF4bsA4kPnPmDM2aNXNa/8wzzzBjxgymTp3KoUOHeO+99/jhhx8YP348AP3796dJkyaMGjWKHTt2sHr1al588cUs5xgxYgRVqlRh6NChrF69mqNHjxIREcHjjz/On3/+mef3Jq4TEBDA3Llzs3WT3g8EYJ3HxjGxmQ90wNp9VaNGDaZOneq0pVJESgclN6Vc27Ztee+993jrrbdo1aoVs2bNYtKkSYXyWm+++Sa33HIL99xzD+3bt+fw4cMsXbqUihUr5vkc5cuXZ//+/dxyyy00adKEBx54gEcffdR+x8vlypUrl+scOcOGDWPKlCm8++67tGzZkmnTpjF9+nR69+4NgIeHBwsWLCAxMZFrrrmG+++/n9dffz1bTKtWraJOnTrcfPPNNG/enDFjxpCUlKSWHDdq06YN33zzDX5+fvayXcBqh31+AzoCtwGHgPr16xMREZGveZVEpOSxGOaouzIiLi6OoKAgYmNjs30xJSUlcfToUerXr5/lP0yRq6XPVuHZvn07zz//PEuXLrWXtQB8gO225xUqVODpp5/mySefVEIqUkLl9v19ObXciEiJ1q5dO5YsWcKePXt44IEH8PPzYy/WxMbX15ennnqKI0eO8MorryixESkjNKBYREqFFi1aMG3aNN5++20iIyNJTEykZ8+eSmhEyiAlNyJSqgQFBdGvXz93hyEibqRuKRERESlVlNyIiIhIqaLkxokydgOZFAF9pkREio6SGwfe3tbVZ8yVpkVcxfxMmZ8xEREpPBpQ7MDT05Pg4GBiYmIA6+RtmsVUroZhGCQkJBATE0NwcDCenp7uDklEpNRTcnOZkBDrEntmgiPiCsHBwfbPloiIFC4lN5exWCzUqFGDatWqkZqa6u5wpBTw9vZWi42ISBFScpMDT09PfSGJiIiUQBpQLCIiIqWKkhsREREpVZTciIiISKlS5sbcmJOpxcXFuTkSERERySvzezsvk6KWueTm4sWLANSuXdvNkYiIiEh+Xbx4kaCgoFz3sRhlbF74jIwM/v77bypUqODyCfri4uKoXbs2J0+eJDAw0KXnLm10rfJH1yt/dL3yR9crf3S98s6V18owDC5evEhoaCgeHrmPqilzLTceHh7UqlWrUF8jMDBQH/g80rXKH12v/NH1yh9dr/zR9co7V12rK7XYmDSgWEREREoVJTciIiJSqii5cSFfX19eeeUVfH193R1KsadrlT+6Xvmj65U/ul75o+uVd+66VmVuQLGIiIiUbmq5ERERkVJFyY2IiIiUKkpuREREpFRRcnMFkyZNolOnTlSoUIFq1aoxbNgwDhw44HRfwzAYPHgwFouFH3/8MUvdiRMnuO666yhfvjzVqlXjmWeeIS0trQjeQdHJy7Xq3bs3Fosly/bQQw9l2acsXCvI+2dr/fr19O3bF39/fwIDA+nZsyeJiYn2+nPnzjFixAgCAwMJDg5mzJgxxMfHF+VbKRJXul7Hjh3L9tkyt3nz5tn30+cr06lTp7jnnnsICQnB39+f9u3b8/3332fZpyx8vvJyraKiorjpppuoWrUqgYGB3H777Zw+fTrLPmXhWgFMnTqVNm3a2OeuCQ8PZ/Hixfb6pKQkHn30USpXrkxAQAC33HJLtmtV6L+HhuRq4MCBxvTp043du3cb27dvN4YMGWLUqVPHiI+Pz7bve++9ZwwePNgAjAULFtjL09LSjFatWhn9+/c3tm3bZixatMioUqWKMWHChCJ8J4UvL9eqV69extixY43o6Gj7Fhsba68vK9fKMPJ2vdatW2cEBgYakyZNMnbv3m3s37/f+O6774ykpCT7PoMGDTLatm1rbNiwwVi9erXRqFEjY/jw4e54S4XqStcrLS0ty+cqOjraePXVV42AgADj4sWL9n30+cr8fF177bVGp06djI0bNxpRUVHGf/7zH8PDw8PYunWrfZ+y8Pm60rWKj483GjRoYNx0003Gzp07jZ07dxpDhw41OnXqZKSnp9vPUxaulWEYxk8//WT8+uuvxsGDB40DBw4YL7zwguHt7W3s3r3bMAzDeOihh4zatWsby5YtMyIjI40uXboYXbt2tR9fFL+HSm7yKSYmxgCMlStXZinftm2bUbNmTSM6OjpbcrNo0SLDw8PDOHXqlL1s6tSpRmBgoJGcnFxUoRc5Z9eqV69exrhx43I8pqxeK8Nwfr06d+5svPTSSzkes3fvXgMwNm/ebC9bvHixYbFYjL/++qtQ43W3nH4XHbVr184YPXq0/bk+X1mvl7+/v/HVV19l2a9SpUrGZ599ZhhG2f18XX6tli5danh4eGT5Q+zChQuGxWIxfv/9d8Mwyu61MlWsWNH4/PPPjQsXLhje3t7GvHnz7HX79u0zAGP9+vWGYRTN76G6pfIpNjYWgEqVKtnLEhISuOuuu/joo48ICQnJdsz69etp3bo11atXt5cNHDiQuLg49uzZU/hBu4mzawUwa9YsqlSpQqtWrZgwYQIJCQn2urJ6rSD79YqJiWHjxo1Uq1aNrl27Ur16dXr16sWaNWvsx6xfv57g4GA6duxoL+vfvz8eHh5s3LixaN9AEcvp82XasmUL27dvZ8yYMfYyfb6yXq+uXbvy3Xffce7cOTIyMpgzZw5JSUn07t0bKLufr8uvVXJyMhaLJctcLX5+fnh4eNh/H8vqtUpPT2fOnDlcunSJ8PBwtmzZQmpqKv3797fv06xZM+rUqcP69euBovk9VHKTDxkZGTzxxBN069aNVq1a2cuffPJJunbtytChQ50ed+rUqSz/iID9+alTpwovYDfK6VrdddddfPPNN6xYsYIJEybw9ddfc/fdd9vry+K1AufX68iRIwBMnDiRsWPHsmTJEtq3b0+/fv04dOgQYL0m1apVy3IuLy8vKlWqVOau1+W++OILmjdvTteuXe1l+nxlvV5z584lNTWVypUr4+vry4MPPsiCBQto1KgRUDY/X86uVZcuXfD39+e5554jISGBS5cuMX78eNLT04mOjgbK3rXatWsXAQEB+Pr68tBDD7FgwQJatGjBqVOn8PHxITg4OMv+1atXt1+Hovg9LHMLZ16NRx99lN27d2f5y/mnn35i+fLlbNu2zY2RFT/OrhXAAw88YP+5devW1KhRg379+hEVFUXDhg2LOsxiw9n1ysjIAODBBx/kvvvuAyAsLIxly5bx5ZdfMmnSJLfEWhzk9PkyJSYmMnv2bF5++eUijqx4yul6vfzyy1y4cIE//viDKlWq8OOPP3L77bezevVqWrdu7aZo3cvZtapatSrz5s3j4Ycf5sMPP8TDw4Phw4fTvn37K65OXVo1bdqU7du3Exsby/z58xk1ahQrV650d1h2Sm7y6LHHHuOXX35h1apVWVYVX758OVFRUdmy1FtuuYUePXoQERFBSEgImzZtylJvjhx31o1V0uV0rZzp3LkzAIcPH6Zhw4Zl7lpBzterRo0aALRo0SLL/s2bN+fEiROA9ZrExMRkqU9LS+PcuXNl7no5mj9/PgkJCYwcOTJLuT5fmdcrKiqK//3vf+zevZuWLVsC0LZtW1avXs1HH33EJ598UuY+X7l9tgYMGEBUVBRnzpzBy8uL4OBgQkJCaNCgAVD2fhd9fHzsLXwdOnRg8+bNTJkyhTvuuIOUlBQuXLiQ5Xvx9OnT9utQJL+HLhm5U4plZGQYjz76qBEaGmocPHgwW310dLSxa9euLBtgTJkyxThy5IhhGJmDp06fPm0/btq0aUZgYGCWu15KuitdK2fWrFljAMaOHTsMwyg718owrny9MjIyjNDQ0GwDitu1a2e/q8AcxBgZGWmvX7p0aakcxJifz1evXr2MW265JVu5Pl+Zdu7caQDG3r17s5QPGDDAGDt2rGEYZefzVZD/u5YtW2ZYLBZj//79hmGUnWuVkz59+hijRo2yDyieP3++vW7//v1OBxQX5u+hkpsrePjhh42goCAjIiIiyy2mCQkJOR5DDreCDxgwwNi+fbuxZMkSo2rVqqXu9tMrXavDhw8br732mhEZGWkcPXrUWLhwodGgQQOjZ8+e9nOUlWtlGHn7bL3//vtGYGCgMW/ePOPQoUPGSy+9ZPj5+RmHDx+27zNo0CAjLCzM2Lhxo7FmzRqjcePGpfL207z+Lh46dMiwWCzG4sWLs51Dn6/M65WSkmI0atTI6NGjh7Fx40bj8OHDxrvvvmtYLBbj119/tZ+nLHy+8vLZ+vLLL43169cbhw8fNr7++mujUqVKxlNPPZXlPGXhWhmGYTz//PPGypUrjaNHjxo7d+40nn/+ecNisRi//fabYRjWW8Hr1KljLF++3IiMjDTCw8ON8PBw+/FF8Xuo5OYKAKfb9OnTcz3GMbkxDMM4duyYMXjwYKNcuXJGlSpVjKefftpITU0t3OCL2JWu1YkTJ4yePXsalSpVMnx9fY1GjRoZzzzzTJbbKw2jbFwrw8j7Z2vSpElGrVq1jPLlyxvh4eHG6tWrs9SfPXvWGD58uBEQEGAEBgYa9913n31el9Ikr9drwoQJRu3atbPMP+JIn6/p9n0OHjxo3HzzzUa1atWM8uXLG23atMl2a3hZ+Hzl5Vo999xzRvXq1Q1vb2+jcePGxuTJk42MjIws5ykL18owDGP06NFG3bp1DR8fH6Nq1apGv3797ImNYRhGYmKi8cgjjxgVK1Y0ypcvb9x0001GdHR0lnMU9u+hVgUXERGRUqVsDvMWERGRUkvJjYiIiJQqSm5ERESkVFFyIyIiIqWKkhsREREpVZTciIiISKmi5EZERERKFSU3IiIiUqoouREpIyIiIrBYLFy4cOGqznPvvfcybNgwl8TkynMV59f+4osvGDBgQJHHs2TJEtq1a2dfYV6krFByI1LCfPLJJ1SoUIG0tDR7WXx8PN7e3vTu3TvLvmZCExUVRdeuXYmOjiYoKKhQ4zNf02Kx4OHhQVBQEGFhYTz77LNER0dn2XfKlCnMmDGjUOM5duwYFouF7du3F/lrAyQlJfHyyy/zyiuvFPprXW7QoEF4e3sza9asIn9tEXdSciNSwvTp04f4+HgiIyPtZatXryYkJISNGzeSlJRkL1+xYgV16tShYcOG+Pj4EBISgsViKZI4Dxw4wN9//83mzZt57rnn+OOPP2jVqhW7du2y7xMUFERwcHCO50hJSSm0+K702q4yf/58AgMD6datW6G/ljP33nsvH374oVteW8RdlNyIlDBNmzalRo0aRERE2MsiIiIYOnQo9evXZ8OGDVnK+/TpY//ZsVtqxowZBAcHs3TpUpo3b05AQACDBg3K0rqSnp7OU089RXBwMJUrV+bZZ58lr8vRVatWjZCQEJo0acKdd97J2rVrqVq1Kg8//LB9n8u7Ynr37s1jjz3GE088QZUqVRg4cCAAu3fvZvDgwQQEBFC9enXuuecezpw5Yz8uIyODt99+m0aNGuHr60udOnV4/fXXAahfvz4AYWFhWCwWe+vW5a+dnJzM448/TrVq1fDz86N79+5s3rw5y7W0WCwsW7aMjh07Ur58ebp27cqBAwdyvQ5z5szhhhtuyFKWl+uakZHBpEmTqF+/PuXKlaNt27bMnz8/yz4//fQTjRs3xs/Pjz59+jBz5sxsXY833HADkZGRREVF5RqnSGmi5EakBOrTpw8rVqywP1+xYgW9e/emV69e9vLExEQ2btxoT26cSUhI4N133+Xrr79m1apVnDhxgvHjx9vrJ0+ezIwZM/jyyy9Zs2YN586dY8GCBQWKuVy5cjz00EOsXbuWmJiYHPebOXMmPj4+rF27lk8++YQLFy7Qt29fwsLCiIyMZMmSJZw+fZrbb7/dfsyECRN48803efnll9m7dy+zZ8+mevXqAGzatAmAP/74g+joaH744Qenr/vss8/y/fffM3PmTLZu3UqjRo0YOHAg586dy7Lfiy++yOTJk4mMjMTLy4vRo0fn+r7XrFlDx44ds5Tl5bpOmjSJr776ik8++YQ9e/bw5JNPcvfdd7Ny5UoAjh49yq233sqwYcPYsWMHDz74IC+++GK2169Tpw7Vq1dn9erVucYpUqq4bH1xESkyn332meHv72+kpqYacXFxhpeXlxETE2PMnj3b6Nmzp2EYhrFs2TIDMI4fP24YhmGsWLHCAIzz588bhmEY06dPNwDj8OHD9vN+9NFHRvXq1e3Pa9SoYbz99tv256mpqUatWrWMoUOH5hjb5a/jaPHixQZgbNy40TAMwxg1alSWc/Xq1csICwvLcsx//vMfY8CAAVnKTp48aQDGgQMHjLi4OMPX19f47LPPnMZz9OhRAzC2bduWpdzxtePj4w1vb29j1qxZ9vqUlBQjNDTU/v7N9/XHH3/Y9/n1118NwEhMTHT62ufPnzcAY9WqVVnKr3Rdk5KSjPLlyxvr1q3LctyYMWOM4cOHG4ZhGM8995zRqlWrLPUvvvii02sfFhZmTJw40WmMIqWRl5tyKhG5Cr179+bSpUts3ryZ8+fP06RJE6pWrUqvXr247777SEpKIiIiggYNGlCnTp0cz1O+fHkaNmxof16jRg17q0psbCzR0dF07tzZXu/l5UXHjh3z3DV1OfO43Mb9dOjQIcvzHTt2sGLFCgICArLtGxUVxYULF0hOTqZfv34Fisk8T2pqapZxMd7e3lxzzTXs27cvy75t2rSx/1yjRg0AYmJinF7nxMREAPz8/Oxlebmuhw8fJiEhgWuvvTbL+VJSUggLCwOsY5o6deqUpf6aa65x+v7KlStHQkJCDu9epPRRciNSAjVq1IhatWqxYsUKzp8/T69evQAIDQ2ldu3arFu3jhUrVtC3b99cz+Pt7Z3lucViKXDikhdmolCvXr0c9/H398/yPD4+nhtuuIG33nor2741atTgyJEjLo3xShyvmZmk5XSrdeXKlbFYLJw/fz5frxEfHw/Ar7/+Ss2aNbPU+fr65utcAOfOnaNq1ar5Pk6kpNKYG5ESqk+fPkRERBAREZHlFvCePXuyePFiNm3alOt4mysJCgqiRo0abNy40V6WlpbGli1bCnS+xMREPv30U3r27JmvL9r27duzZ88e6tWrR6NGjbJs/v7+NG7cmHLlyrFs2TKnx/v4+ADWQbw5Me8mW7t2rb0sNTWVzZs306JFizzH6uy1W7Rowd69e+1lebmuLVq0wNfXlxMnTmR7z7Vr1wasA8sd75gDsgyANiUlJREVFWVv8REpC5TciJRQffr0Yc2aNWzfvt3ecgPQq1cvpk2bRkpKylUlNwDjxo3jzTff5Mcff2T//v088sgjeZ4EMCYmhlOnTnHo0CHmzJlDt27dOHPmDFOnTs1XDI8++ijnzp1j+PDhbN68maioKJYuXcp9991Heno6fn5+PPfcczz77LN89dVXREVFsWHDBr744gvAetdWuXLl7AORY2Njs72Gv78/Dz/8MM888wxLlixh7969jB07loSEBMaMGZOveC83cOBA1qxZk6XsSte1QoUKjB8/nieffJKZM2cSFRXF1q1b+b//+z9mzpwJwIMPPsj+/ft57rnnOHjwIHPnzrXP2+PY7bdhwwZ8fX0JDw+/qvchUpKoW0qkhOrTpw+JiYk0a9bMfmcQWJObixcv2m8ZvxpPP/000dHRjBo1Cg8PD0aPHs1NN93kNEG4XNOmTbFYLAQEBNCgQQMGDBjAU089RUhISL5iCA0NZe3atTz33HMMGDCA5ORk6taty6BBg/DwsP599vLLL+Pl5cW///1v/v77b2rUqMFDDz0EWMezfPjhh7z22mv8+9//pkePHlluoze9+eabZGRkcM8993Dx4kU6duzI0qVLqVixYr7ivdyYMWPo2LEjsbGx9gkU83Jd//Of/1C1alUmTZrEkSNHCA4Opn379rzwwguA9Rb3+fPn8/TTTzNlyhTCw8N58cUXefjhh7N0XX377beMGDGC8uXLX9X7EClJLEZhdrCLiAi33XYb7du3Z8KECYX6Oq+//jqffPIJJ0+eBODMmTP27itzvh+RskDdUiIiheydd95xerfX1fr444/ZvHkzR44c4euvv+add95h1KhR9vpjx47x8ccfK7GRMkctNyIiJdSTTz7Jd999x7lz56hTpw733HMPEyZMwMtLIw6kbFNyIyIiIqWKuqVERESkVFFyIyIiIqWKkhsREREpVZTciIiISKmi5EZERERKFSU3IiIiUqoouREREZFSRcmNiIiIlCpKbkRERKRU+X9EB6DSJxDMGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fmodel.run()\n", + "pfmodel.run()\n", + "\n", + "farm_power = fmodel.get_farm_power()\n", + "pfarm_power = pfmodel.get_farm_power()\n", + "\n", + "# Show the results are the same\n", + "fig, ax = plt.subplots()\n", + "ax.plot(wind_directions, farm_power, label=\"FlorisModel\", color='k', lw=5)\n", + "ax.plot(wind_directions, pfarm_power, label=\"ParFlorisModel\", color='r', ls='--', lw=2)\n", + "ax.set_xlabel(\"Wind Direction (deg)\")\n", + "ax.set_ylabel(\"Farm Power (kW)\")\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## UncertainFlorisModel\n", + "\n", + "The `UncertainFlorisModel` class is a composition of `FlorisModel` that adds uncertainty to the input conditions. It's interface is meant to made similar to `FlorisModel`, but with the addition of uncertainty in wind direction." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Instantiation\n", + "\n", + "The `UncertainFlorisModel` class can be instantiated in the same way as the `FlorisModel` class, or else it can be instantiated by passing a `FlorisModel` object to the constructor. Alternatively a `ParFlorisModel` object can be passed to the constructor which ensures the underlying calculations are parallelized according to the `ParFlorisModel` parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from floris import UncertainFlorisModel\n", + "\n", + "# Instantiation options\n", + "ufmodel = UncertainFlorisModel(\"gch.yaml\") # Using input yaml\n", + "ufmodel = UncertainFlorisModel(fmodel) # Using a FlorisModel object\n", + "ufmodel = UncertainFlorisModel(pfmodel) # Using a ParFlorisModel object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "To include uncertainty into the wind direction, the `UncertainFlorisModel` class, for each findex run, the result for a wind direction is provided by performing a gaussian blend over results from multiple wind directions nearby wind directions. To reduce the total number of calculations required, a resolution of wind direction, wind speed, turbulence intensity and control inputs are specified and repeated calculations are only calculated once. See the class API for complete details but some key parameters are:\n", + "\n", + "**wd_resolution, ws_resolution, ti_resolution, yaw_resolution, and power_setpoint_resolution**: Define the granularity of calculations for wind direction, wind speed, turbulence intensity, yaw angle, and power setpoints respectively.\n", + "\n", + "**wd_std**: The standard deviation of wind direction, used in the Gaussian blending.\n", + "\n", + "**wd_sample_points**: Specific wind direction points to sample for expanded conditions.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Define the uncertainty to have a wd_std of 5 degrees and blend over 10 degrees\n", + "ufmodel = UncertainFlorisModel(fmodel, wd_std=5, wd_sample_points=[-5, -4, -3, -2, -1, 0, 1, 2,3, 4, 5], wd_resolution=0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Usage\n", + "\n", + "Usage of `UncertainFlorisModel` is similar to `FlorisModel` however the results will now include the effects of gaussian blending\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOG0lEQVR4nO3dd1hT1xsH8G/CCBsUZblwoSCguHGCA0TFUa2te1Wrta2ztdQ6qq3WVq1tf1Y73B2uqrV1i+BARIY4ERWxOEBU9h45vz+uCYkkIZORvJ/nuY8399x77sk1kJczeYwxBkIIIYQQPcGv6QIQQgghhGgTBTeEEEII0SsU3BBCCCFEr1BwQwghhBC9QsENIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwQwghhBC9QsENIYQQQvQKBTeEEEII0SsGHdycP38ewcHBcHFxAY/Hw+HDh1XOgzGGdevWwc3NDQKBAI0aNcKXX36p/cISQgghRCnGNV2AmpSfn4/27dtj2rRpeOONN9TKY+7cuTh16hTWrVsHLy8vZGRkICMjQ8slJYQQQoiyeLRwJofH4+HQoUMYMWKE+FhxcTGWLFmCP//8E1lZWfD09MTatWvh5+cHAEhISIC3tzdu3ryJNm3a1EzBCSGEECLFoJulqvL+++8jMjISe/bswfXr1/Hmm29i0KBBuHfvHgDgn3/+QYsWLfDvv/+iefPmcHV1xTvvvEM1N4QQQkgNouBGjpSUFGzfvh379+9H79690bJlSyxatAi9evXC9u3bAQAPHjzAf//9h/3792PXrl3YsWMHYmNjMXr06BouPSGEEGK4DLrPjSI3btxAeXk53NzcpI4XFxfD3t4eACAUClFcXIxdu3aJz9u6dSs6deqExMREaqoihBBCagAFN3Lk5eXByMgIsbGxMDIykkqzsrICADg7O8PY2FgqAHJ3dwfA1fxQcEMIIYRUPwpu5PDx8UF5eTnS09PRu3dvmef07NkTZWVlSEpKQsuWLQEAd+/eBQA0a9as2spKCCGEkAoGPVoqLy8P9+/fB8AFMxs2bIC/vz/q16+Ppk2bYsKECYiIiMD69evh4+OD58+fIzQ0FN7e3hgyZAiEQiG6dOkCKysrbNy4EUKhEHPmzIGNjQ1OnTpVw++OEEIIMUwGHdyEh4fD39+/0vHJkydjx44dKC0txRdffIFdu3bhyZMnaNCgAbp3747PP/8cXl5eAICnT5/igw8+wKlTp2BpaYmgoCCsX78e9evXr+63QwghhBAYeHBDCCGEEP1DQ8EJIYQQolcouCGEEEKIXjG40VJCoRBPnz6FtbU1eDxeTReHEEIIIUpgjCE3NxcuLi7g8xXXzRhccPP06VM0adKkpotBCCGEEDU8evQIjRs3VnhOjQY358+fxzfffIPY2FikpqZWWrhSlt9//x1ff/017t27B1tbWwQFBeGbb74RzxpcFWtrawDcw7GxsdH0LRBCCCGkGuTk5KBJkybi73FFajS4yc/PR/v27TFt2jS88cYbVZ4fERGBSZMm4dtvv0VwcDCePHmCWbNmYcaMGTh48KBS9xQ1RdnY2FBwQwghhNQxynQpqdHgJigoCEFBQUqfHxkZCVdXV3z44YcAgObNm+Pdd9/F2rVrdVVEQgghhNQxdWq0lK+vLx49eoRjx46BMYZnz57hwIEDGDx4sNxriouLkZOTI7URQgghRH/VqeCmZ8+e+P333/HWW2/B1NQUTk5OsLW1xaZNm+Res2bNGtja2oo36kxMCCGE6Lc6Fdzcvn0bc+fOxbJlyxAbG4sTJ07g4cOHmDVrltxrQkJCkJ2dLd4ePXpUjSUmhBBCSHWrU0PB16xZg549e+Kjjz4CAHh7e8PS0hK9e/fGF198AWdn50rXCAQCCASC6i4qIYQQQmpInaq5KSgoqDRxj5GREQBuch9CCCGEkBoNbvLy8hAfH4/4+HgAQHJyMuLj45GSkgKAa1KaNGmS+Pzg4GAcPHgQmzdvxoMHDxAREYEPP/wQXbt2hYuLS028BUIIIYTUMjXaLBUTEwN/f3/x6wULFgAAJk+ejB07diA1NVUc6ADAlClTkJubi//9739YuHAh7Ozs0K9fPxoKTgghhBAxHjOw9pycnBzY2toiOzubJvEjhBBC6ghVvr/rVJ8bQgghhJCq1KnRUrXRsWPHEBoaWtPF0Kmqprp+PV3W69c3Pp8v/ldy38jISGozNjaGiYmJ+F/R6DeBQABzc3NYWlrCwsIClpaWsLa2hq2trbiTOSGEAEBRURGysrKQl5eHgoIC8VZUVITi4mLxVlpairKyMpSVlaG0tBTl5eUQCoXif1/fGGNgjIn3AYiPSarqtbJpddWkSZPQvn37ar0nBTcaunjxIjZs2FDTxSASrKysYGdnh4YNG8LBwQGOjo5wdHREs2bN4OrqKt4sLS1ruqiEEDWJZql/+PCheHv8+DHS09Px7NkzpKenIyMjA1lZWSgpKanp4ho0X19fCm7qqs4A/GUcfz0Gl/da8l/hq39f34QS/8rayiW2sldbqcS/JRJb8aut6NVW+CoPfZCXl4e8vDw8fvxY4XnNmzeHt7c3vL290b59e/Tq1QuOjo7VVEpCiLKEQiGuX7+OqKgoXL9+HdevX8eNGzeQnZ1d00WrViYAzAGYvdoErzbTV2mif41f24wkNr6MjffavrwNMv6FguN7ANTUtLkU3GhJLwBf13QhNFQEoABAPoCcV1sugCwAGa+2TADPATx7taW9+rcuBkbJyclITk7G33//LT7m7u6Ovn37ol+/fggKCoKVlVUNlpAQw3X37l0cPXoU4eHhuHDhAjIzM2u6SFphAcAZgKPEZg+g/qutHgCbV5v1q83y1XV17Qs7ChTckFpA9NdAfRWvKwPwGEAKgP8A3ANwF0Diq38LtFhGXUtISEBCQgK2bNkCc3NzDBkyBG+99RaGDBkCc3Pzmi4eIXotOTkZ+/btw549e8Tzn9VFLgDcXm1tALQA0PTV1qAGy2VIKLjRkn8APHztmLxqO8nXr1f3VbWJqg2NJP7lo3K1o2SVpInEZoqKqkwBuGDG/NVm8WqzQsVfDMowBuD6anudEMB9AFcBxAOIAXAZQJ6SedekwsJCHDhwAAcOHIC1tTVmzJiBefPm0eKrhGgRYwynTp3CN998UycHZ7gC6AGgI4AOrzZ7LeRbCq7mPBdcbXrBq60QFd0JilHRzaDk1TWirQwVXRRE3RWEr/0r2c1BUZcIKHgt6fVuFrc0eQAaouBGS5JebfqEBy7AsUVFlak9AAdUVKc6A2jyapP1FwkfFX/BvPXqWBm4QOcCgLMAQsH9wNZmubm52LBhA77//nuMGzcOH330ETw9PWu6WITUWWVlZdi7dy++/vprXL9+vaaLo7RmAIIA9AXQG0AjJa+TrOF+goqm/Wfgmvolm/6zwQUvRH00iZ+GoqOj63T1qaoUfVyMi4th9fw5bNPTYfvsGeyePUO9p09h//QpjEtL5V5XamyMRy1b4n6bNkhwd0eOpSXKy8tRXl6O0tJS8fDMkpISqWGbhYWFyM/PR0FBAfLy8pCTk4OsrCzk5+fr4q1XMn36dHz11Vdo0IAqmglRRVhYGObMmYOEhASd34vP58POzg62trawtrYWTx9hYWEBc3Nz8dQSpqamMDU1lZp+wsjICEZ8Ppo+eYI2CQlomZiIBs+eKbxfvo0NXjZujExnZ2Q7OCDb0RHZDg4orFcPjC97armqptuo6/r3748WLVponI8q398U3BDdKysDEhOBuDggMhK4cAG4eVP2uXw+MGAAMHEiMHIkoMZw7bKyMmRmZiI9PV08LPTx48d4+PAhkpOT8eDBA9y7dw/l5eUavjHA3t4ea9euxdSpUyst6koIkfbs2TMsWrQIv/32m1bys7W1RZs2bdC8eXPxFA/Ozs5wdHSEg4MDGjZsCCsrK/WCh3v3gN27gd9+A5KTZZ9jaQn06AH06gV07Qp06AA4OWn0noh8FNwoQMFNLZGRAZw/Dxw7Bhw9Cjx9WvkcS0tg8mRg7lzAzU2rty8uLkZCQgKuX7+O6OhonDt3Djdu3FA7vx49emDXrl1o2bKlFktJiP7YsWMH5s2bp/bwbUtLS/Tq1Qu9evWCj48PvL290bhxY+3WepSXA3//DWzcyP0R9joeD+jeHRgyBAgM5IIZY+rdUV0ouFGAgptaiDHg2jXgr7+4v5IePpRO5/G4XyYLFgB+ftxrHXjx4gXCw8Nx8OBBHDlyROXmrXr16uHPP/9EYGCgTspHSF1UXFyMuXPn4qefflL52tatW4tHK3bq1AkmJiY6KCGAvDzg11+B77+vXEvD5wP9+wPjx3O/h6gZusZQcKMABTe1nFAIREQAu3YBf/wBFLw2kNzfH/jqK64KWIcKCgpw9OhRbN26FSdPnlT6Oj6fj9WrV+Pjjz/W+3Z0QqqSmpqKUaNGITIyUulrbG1t8c4772D8+PHo0KGDbn+OSkqAn34CVq0Cnj+XTmvbFpg+HRg3DnBx0V0ZiNJU+v5mBiY7O5sBYNnZ2TVdFFKVjAzG1q5lrHFjxrj6nYpt1CjG7typlmLEx8ezCRMmMGNjY1mjJGVub775JsvPz6+W8hFSG12+fJk5Ozsr/TPTuHFjtm7duur53VxezthvvzHWvHnl3y0BAYwdP86dQ2oVVb6/KbghtV9JCfeLqGVL6V9CJiaMLV3KWGFhtRQjKSmJDR06VOlf1v7+/hTgEIN0/vx5ZmlpqdTPiaWlJVu3bh0rLi6unsLdvs1Yr16Vg5q33mLs5s3qKQNRiyrf3zS8g9R+JiZce3dCAvDjj4Bo/afSUq46uUMHrnOyjrVo0QJHjhzBoUOHlJrILywsDMHBwSh4vWmNED128eJFBAUFKdVnbdSoUbhz5w4WLlwIU1NT3RasuBj4/HPu98XFixXHBw4EYmKAPXuAdu10WwZSbSi4IXWHiQkwezaQlAQsWVIxSiExEejbF5gzByjS7dRXPB4PI0aMQEJCAiZNmlTl+WfPnsWwYcNQWFjbpykkRHOXLl1SKrCxtrbGX3/9hQMHDqBx48a6L9i1a0DHjsCKFVw/GwBo1Qo4eRI4dQro1En3ZSDVioIbUvdYWgJffAFcvcoNyxT58UfA1xe4f78aimCJHTt24LvvvoORkZHCc0NDQzFs2DAU6TjwIqQmXb58GYMGDUJenuLFVdzc3BAVFYU33nhD94VijBsF1b07cPs2d8zYGAgJAa5fBwICdF8GUiMouCF1l6cnV738ww+AaFHL+Hjur7C//tL57Xk8Hj788EOcOXOmylmKz5w5g5kzZyqc4ZmQuuq///7D0KFDkZubq/C8oUOH4sqVK3B3d9d9ofLzuXmyZsyoqNH18QFiY4HVqyt+ZxC9RMENqduMjID33weiooA2bbhjOTnA6NHAxx9zQ8t1zM/PDxEREXB2dlZ43u7du/Hjjz/qvDyEVKfCwkK88cYbePnypcLzJk2ahMOHD8PW1lb3hXr4EOjWjZthWOS997gZ0r29dX9/UuMouCH6wcsLiI4G3n674tg333AdkYuLdX57Nzc3hIWFwamKqdfnzZuHiIgInZeHkOrAGMOcOXMQFxen8LyJEydi27ZtVTbhasXVq1zz9K1Xa1JbWQF//gls2gQIBLq/P6kVKLgh+sPampv474cfuFlFAW4ERGAgkJWl89u3adMGYWFhcBSN5pKhrKwMb775JlJTU3VeHkJ07eeff8b27dsVnjN+/Hhs3769egKbU6eAPn2AtDTutZsbNxJK8o8eYhAouCH6hcfjmqkOH65oUz93jlvY7vFjnd++bdu2CAsLQ7169eSek5qaijFjxqBUwUrphNR2ly9fxgcffKDwnFGjRmHnzp3VE9js2sUtjyDq0Ozry812LmquJgaFghuin4KDgfDwinVgbt0C+vUDqqHGxN3dHX/88YfCaeMvXryI1atX67wshOhCQUEBxo0bpzBA9/T0rN7AZsoUoKyMez1iBBAaSutAGTAKboj+6tqV60DYogX3+t49bgG89HSd33rQoEFYuXKlwnNWr16NO3fu6LwshGjb559/juTXF5iUYGtri0OHDsHS0lL3hdm7F5g6lRv2DXAdhw8coNFQBo6CG6LfWrXianBcXbnXCQncjKQZGTq/9aefforg4GC56SUlJZg5cyaE1TCiixBtiY+Px/r16xWe89tvv6FVq1a6L8yhQ9ygAdHP0PvvA//7HzeKkhg0Cm6I/mvSBDh7FhDNhCqavCs7W6e35fP52L17N1q3bi33nAsXLmDbtm06LQch2lJeXo4ZM2agvLxc7jnLly/H0KFDdV+Y48eBt94CRGV55x3gu++4fnfE4FFwQwxD8+ZcG7xoqHZsLDeCQtRGryO2trb4/fffwefL/1H76KOPkCYa3UFILfa///0PMTExctO7d++OpUuX6r4g8fHAm29y68sBwMSJwJYtFaMkicGjTwIxHG5uXIBTvz73+sQJYMECnd+2S5cuCkeVZGVlYf78+TovByGaSElJwZIlS+SmGxsb4+eff9Z9B+LUVG7AgGj9qlGjgG3bqCmKSKHghhgWDw/g4EFuEU6AmxNn0yad33bVqlUKVxLfs2cPQkNDdV4OQtS1YMEChQtifvzxx/Dy8tJtIQoKgOHDK6Z1EM1CLFpEl5BXKLghhqdvX+Cnnypef/ghV4ujQ9bW1thURRAVEhJCa0+RWik6Ohp/KVivrVWrVvjss890WwihkFsrKjqae920qfR8VoRIoOCGGKapU4HFi7l9oZDrmKjj1cSDg4Px5ptvyk2Pjo7G33//rdMyEKKOqgKXn376Cea6DjJWr+aGeAPckgr//FPRh46Q11BwQwzX6tXcZF8At9jm22/rfB2q7777DjY2NnLTlyxZonAkCiHVLTw8HKdOnZKbPmnSJPTr10+3hTh/Hli+nNvn87llVWgBTKIABTfEcPH5XHu9aKh2bCzwySc6vaWzszM+/vhjuem3b9/GH3/8odMyEKIsxhg+/fRTuekCgUD3M22/eAGMG1cxl82KFdwyC4QoQMENMWxWVsC+fYCpKfd640auuluH5s6dCwcHB7npy5cvR0lJiU7LQIgyjh49isjISLnp77//Pho1aqS7AjDGNSE/ecK97tcPUBBsESJCwQ0hHToAkjOuTpkCPHqks9tZWVkpHFKbnJyMX3/9VWf3J0QZQqFQ4efU2toan+i4phMbNwL//svtN2zI1bTSkG+iBApuCAGAOXMq+t9kZAATJlRUg+vAu+++q3Bo+KpVq1BQUKCz+xNSlX379uH69ety0xcuXIgGulyY8urVik7/ALc4pouL7u5H9AoFN4QA3JTtW7dyw0sBrgPjjz/q7HYCgQArVqyQm56WlobffvtNZ/cnRBHGGNauXSs33d7eXrcTT5aWcs1RohmIP/oIGDRId/cjeoeCG0JE6tcHdu6seP3JJ8DDhzq73aRJk9CmTRu56Rs3bqR5b0iNOH/+POLj4+Wmf/rppwpH/Wls7Vrg2jVu39sb+OIL3d2L6CUKbgiR5OcHvPsut5+fD8yYwXVq1AFjY2OsXLlSbnpCQgJOnz6tk3sTosjGjRvlprm4uGD27Nm6u/mtW4Do58LIiFtaQdThnxAl1Whwc/78eQQHB8PFxQU8Hg+HDx+u8pri4mIsWbIEzZo1g0AggKurK62qTLTr668rVhA/c4b75aojo0aNQosWLeSmf/vttzq7NyGyJCUlKZxMcu7cubqbsK+8HJg2Tbo5qlMn3dyL6LUaDW7y8/PRvn37KqellzRmzBiEhoZi69atSExMxJ9//qmwap8QldnYAD//XPF64ULg6VOd3MrIyAgffvih3PQTJ04gISFBJ/cmRJYffvhBbnOohYUFZsyYobubb9wIXLnC7bdpUzFxHyEq4rFa0qjP4/Fw6NAhjBCNWJHhxIkTePvtt/HgwQPUF63srKKcnBzY2toiOztbt23GpO6bPJkboQEAI0dyC27qQG5uLho3boycnByZ6bNmzcLmzZt1cm9CJOXk5KBx48bIzc2Vmf7ee++p9MeoSh4+5Ba2LSzkOvhfvAj06KGbe5E6SZXv7zrV5+bIkSPo3Lkzvv76azRq1Ahubm5YtGgRCgsL5V5TXFyMnJwcqY0QpXz7LeDoyO0fOsQ1UemAtbU1pk+fLjd9586dePnypU7uTYikrVu3yg1sACisZdTYwoVcYAMAH3xAgQ3RSJ0Kbh48eICLFy/i5s2bOHToEDZu3IgDBw7gvffek3vNmjVrYGtrK94UzS1CiJT69blRGyJz51b0BdCyDz74AHy+7B/HwsJC/PLLLzq5LyEi5eXl+P777+WmDxkyRHddAM6eragZdXQEVq3SzX2IwahTwY1QKASPx8Pvv/+Orl27YvDgwdiwYQN27twpt/YmJCQE2dnZ4u2RDmeeJXpo4kSga1du//ZtYMsWndymefPmCptk//e//6GsrEwn9yYEAP755x88VDD1wbx583Rz47Iy7g8HkTVruH5vhGigTgU3zs7OaNSoEWxtbcXH3N3dwRjD48ePZV4jEAhgY2MjtRGiND4fkPxrdtkybiE/HVD05fHkyROFKzMToqmtW7fKTfP09ET//v11c+OffgJu3uT2O3fm+roRoqE6Fdz07NkTT58+RV5envjY3bt3wefz0Vg0dJcQbevWreIXblYWsHSpTm7Tq1cvdFIw7HXHjh06uS8haWlpOH78uNz0efPmgcfjaf/GL19K/zx9/z33BwUhGqrRT1FeXh7i4+PFM2EmJycjPj4eKSkpALgmpUmTJonPHzduHOzt7TF16lTcvn0b58+fx0cffYRp06bpbt4FQgCuqtzKitv/+WdAweyt6uLxeJgzZ47c9L///hsZGRlavy8hv//+O8rLy2Wm2draYty4cbq58bJlQGYmtz9hAuDrq5v7EINTo8FNTEwMfHx84OPjAwBYsGABfHx8sGzZMgBAamqqONABuNWUT58+jaysLHTu3Bnjx49HcHCwwk5whGiFs3PFX5hCofSCflo0evRoWFhYyEwrKSnBn3/+qZP7EsPFGMP27dvlpr/99tu6+eMxMZFrkgIAS0vpzvuEaKjWzHNTXWieG6K24mLA3R1ITuZeh4YC/fpp/TZTpkzBTsk1riR07twZ0dHRWr8nMVwxMTHo0qWL3PTLly+jW7du2r/xmDHA/v3c/sqVOmvuJfpDb+e5IaRGCQQVa94AQEiITtadmjJlity0mJgY3BR1viRECxT15Wrbti26ikYLalNMTEVg4+AA6HKFcWKQKLghRBVjxwJeXtz+lSuAEuuhqapPnz5wdXWVm04di4m2FBcX448//pCbPmXKFN10JP7004r9pUsr+rMRoiUU3BCiCiMjYPXqitdLlnDzdGgRn89XWHuze/dulOpoMkFiWI4cOYJMUYfe1/D5fEycOFH7Nw0NBUSr3bu6AjNnav8exOBRcEOIqoYMAXr25PYTEoDdu7V+C8lRgq9LT0/HiRMntH5PYngU1QIGBgbCxcVFuzdkjGvOFVm1CjA11e49CAEFN4SojsfjhoaLLF8OFBVp9RbNmzeHn5+f3HRFo1sIUUZqaqrCIFlR7aHaDh0CRB3ivby4Zl5CdICCG0LU0bs3MHgwt//oEfDrr1q/xdSpU+WmHTt2TOECh4RU5cCBAxAKhTLT6tWrh2HDhmn3hkIhN6+NyOrVXDMvITpAwQ0h6vrii4r9r78GSkq0mv2oUaNgJaejZXFxMY4eParV+xHD8tdff8lNGzt2LMzMzLR7wyNHgFu3uP3u3bnmXUJ0hIIbQtTl41PxC/rRI+C337SavaWlpcLFNA8cOKDV+xHD8ezZM5w/f15u+vjx47V7Q8aAL7+seP3ZZ1zzLiE6QsENIZpYsqRi/6uvADlT2Ktr9OjRctOOHz+O/Px8rd6PGIZDhw5B3vytLi4u6N69u3ZvePo0N7cNAHToUNGkS4iOUHBDiCZ8fQF/f27/3r2Kicm0JCAgAJaWljLTCgoKaNQUUYuiJqk33ngDfG0vXilZa/Ppp1RrQ3SOghtCNCVZe7N6NddxUkvMzc0xdOhQuemKvqQIkeXly5cICwuTm66otlAtFy8CoiawNm2AN97Qbv6EyEDBDSGa6tcPEK29c+MG8O+/Ws1+1KhRctP++ecfFGl5GDrRb3///bfcFcAdHBzQq1cv7d5QstYmJIRGSJFqQcENIZri8aRrb778UqtrTgUFBcldlTkvLw+nRbO9EqIERR3RR44cCSNtBh+xsYCo6dTVFRg3Tnt5E6IABTeEaMPQoYC3N7d/5Qpw7pzWsrayssKgQYPkptOoKaKsrKwsnDlzRm66olpCtXzzTcX+xx8DJibazZ8QOSi4IUQbeDzgk08qXn/7rVazV9QP4siRIyjR8hw7RD/9888/ctclq1+/vsJZsVWWkgKIAu+GDQEFk1ISom0U3BCiLaNHA40bc/v//MONntKSoUOHwlTOGjxZWVk4e/as1u5F9JeiWr7hw4fDRJs1Kz/8UDE1wnvvAdqeFJAQBSi4IURbTEyADz7g9hkDvvtOa1nb2NggICBAbjqNmiJVycvLw8mTJ+Wma3WUVG4u8PPP3L5AAMyerb28CVECBTeEaNOMGYCFBbe/fTuQmam1rBV9+Rw7dkzupGyEAEBoaCiKi4tlptna2qJ///7au9n27UBODrc/fjzg6Ki9vAlRAgU3hGhTvXoVfQsKCir+etWCYcOGyR3J8vTpU1y7dk1r9yL659ixY3LThg4dCoFAoJ0blZcDGzdWvJ4/Xzv5EqICCm4I0ba5cytmYP3hB0BOB05V1atXDz179pSbrujLixg2xliVwY3WHDkCJCdz+wEBgKen9vImREkU3BCiba1bA8HB3P6TJ1pdkmGwgjV5KLgh8ty8eROPHz+Wmcbn8xX251LZhg0V+1RrQ2oIBTeE6MKCBRX7WhwWPkS0CrkMkZGRePnypdbuRfSHosDX19cX9evX186NYmK45RYAwMMDCAzUTr6EqIiCG0J0oU8fwMeH24+JqVgRWUPt2rVDkyZNZKYJhUKcOnVKK/ch+kVRcKMoYFbZ5s0V+5LNs4RUMwpuCNEFHo+b20NkyxYtZcujpimikszMTERERMhNV/R5UklWFvDnn9y+jQ03SoqQGkLBDSG6MnYs90se4H7pZ2VpJVtFX0YnTpyQuygiMUynT5+W+5lwcXGBt2jZEE3t3g0UFnL7kyYBlpbayZcQNVBwQ4iuWFpyv+QBblj4b79pJdt+/frJna34xYsXiNFSExjRD4pq8wYPHgyeNpqOGJOunXz3Xc3zJEQDFNwQokuSv+S3bNHKauFWVlYK1wA6evSoxvcg+kEoFOL48eNy07XWJHXxInD7NrffqxcN/yY1joIbQnTJ05P7ZQ8At24BCvo+qIL63RBlxMXFIT09XWaaiYmJ9mYllqy1mTVLO3kSogEKbgjRNclf9lrqWKwouImNjUVaWppW7kPqNkWBbu/evWEj6hOmiefPK1b/trcHRo3SPE9CNETBDSG6NmoU90sf4Cb0e/5c4yxbt26NVq1ayU1X1BRBDEe1DAHfsQMoKeH2p06l1b9JrUDBDSG6ZmZWsd5USQm3qKAWKPpyOnPmjFbuQequrKwsREdHy03XSn8boRD46aeK1zNnap4nIVpAwQ0h1UHyl/7WrVrpWBwUFCQ37ezZs7RKuIELDw+HUCiUmebq6oo2bdpofpNz54CkJG6/f39u6RFCagEKbgipDq1bA6IRTnfvApGRGmfZu3dvuUPC09LScFs0eoUYJEW1dwMGDNDOEHDJWsgZMzTPjxAtoeCGkOoiapoCtNI0ZWFhAV9fX7npoaGhGt+D1F2K/v+1MkoqJ6eiI7GdHTB8uOZ5EqIlFNwQUl1GjQKsrbn9vXuB/HyNs1T0JUX9bgzXkydPcOfOHbnp/fr10/wm+/ZVzEg8bhx1JCa1CgU3hFQXS0tgzBhuPzcXOHhQ4ywVBTfnzp1DWVmZxvcgdc/Zs2flpnl5ecHBwUHzm0jWPkrWShJSC1BwQ0h10nLTVJcuXWBlZSUzLScnh5ZiMFA6b5JKTAQuXeL2PT2BTp00z5MQLaLghpDq1KNHxYiSsDAgOVmj7ExMTNC3b1+56dTvxvAwxnQf3OzYUbE/dSqgjc7JhGgRBTeEVCceD5gypeL1zp0aZ6noy4qCG8Nz7949PH78WGaakZER+vTpo9kNysuBXbtEGQLjx2uWHyE6QMENIdVt0iSA/+pHb8cObiI0DSgKbi5duoRCUadPYhAUBbRdu3bVfMmFU6eAp0+5/SFDAEdHzfIjRAdqNLg5f/48goOD4eLiAh6Ph8OHDyt9bUREBIyNjdGhQwedlY8QnWjcGBg4kNv/7z8gPFyj7Dw9PdGwYUOZacXFxYjQ0mKdpG7QeZMUdSQmdUCNBjf5+flo3749Nm3apNJ1WVlZmDRpkvZWtCWkukl+KYiq+NXE5/MVDu2lpinDUV5ernCklMa/M7OzgSNHuP2GDbmaG0JqoRoNboKCgvDFF19g5MiRKl03a9YsjBs3TuEEZoTUasOGAaLmgUOHgKIijbKjfjcEAOLj45GZmSkzzdzcXPPfmQcPAsXF3P7YsYCJiWb5EaIjda7Pzfbt2/HgwQMsX75cqfOLi4uRk5MjtRFS48zNgTfe4PZzcgAFqzcrY8CAAXLTYmNjkZWVpVH+pG5QFMj27t0bAoFAsxv88UfF/rhxmuVFiA7VqeDm3r17+OSTT/Dbb7/B2NhYqWvWrFkDW1tb8dakSRMdl5IQJY0dW7Ev+aWhhubNm6N58+Yy04RCIc6dO6dR/qRuCAsLk5umcZNUWhogavJq0QLo2lWz/AjRoToT3JSXl2PcuHH4/PPP4ebmpvR1ISEhyM7OFm+PHj3SYSkJUUG/foBopth//+X6M2hA0ZfXhQsXNMqb1H5lZWUKO49rHNzs21cxsm/cOJrbhtRqdSa4yc3NRUxMDN5//30YGxvD2NgYK1euxLVr12BsbCy3E51AIICNjY3URkitYGwMvPUWt19czPW90YCfaNVxGc6fP69R3qT2u3btGnJzc2Wm2djYaD6ylJqkSB1SZ4IbGxsb3LhxA/Hx8eJt1qxZaNOmDeLj49GtW7eaLiIhqpP8ktCwaUrR5GxxcXHIy8vTKH9SuymqnevVqxeMjIzUzzwpCYiK4vbbtwfc3dXPi5BqoFzHFR3Jy8vD/fv3xa+Tk5MRHx+P+vXro2nTpggJCcGTJ0+wa9cu8Pl8eHp6Sl3v4OAAMzOzSscJqTO6dQOaN+eWYQgNBZ49U3tStCZNmqBZs2b477//KqWVl5cjMjISA0Xz6xC9o6h2rnfv3ppl/uefFftUa0PqgBqtuYmJiYGPjw98fHwAAAsWLICPjw+WLVsGAEhNTUVKSkpNFpEQ3eLxKr4shEKuX4MGFNXeUNOU/mKMKay50WjJBcaA33+veP322+rnRUg14THGWE0Xojrl5OTA1tYW2dnZ1P+G1A63bnErKwNA9+5AZKTaWf3yyy+YOXOmzLS+ffsiXMPZkEntlJCQAA8PD5lpZmZmyM7OhqmpqXqZx8cDr/4ARe/eAAXJpIao8v1dZ/rcEKK32rUDvL25/cuXgQcP1M5K0V/oly9fRrFoAjaiVxTV2nTv3l39wAagjsSkTqLghpDaQPJLY/9+tbNxc3ODg2h4+WuKi4sRHR2tdt6k9lLU5Khxk5SoqdTYGBg9Wv28CKlGFNwQUhu8+WbFvgbBDY/HU9h5lOa70U86C25iYrjFXQGgf3+gQQP18yKkGlFwQ0ht0KIF0LEjtx8bq7OmKepUrH/+++8/uZOTGhsbo3v37upnLhloU60NqUMouCGktpCsvfnrL7WzUVRzExERgfLycrXzJrWPooC1U6dOsLS0VC9jxoADB7h9IyNgxAj18iGkBqgd3JSWluLRo0dITExERkaGNstEiGGS/MtYg6Ypb29vuSMJcnNzce3aNbXzJrWPzoaAx8Vx8y8BgL8/NUmROkWl4CY3NxebN29G3759YWNjA1dXV7i7u6Nhw4Zo1qwZZsyYQR0WCVFXq1aAaIr86Gjg4UO1sjEyMkKvXr3kplPTlH7R2eR9kgG2ZK0iIXWA0sHNhg0b4Orqiu3bt2PAgAE4fPgw4uPjcffuXURGRmL58uUoKytDQEAABg0ahHv37umy3ITop2pomqJOxfojPT0diYmJMtN4PJ7CIFchySYpPh8YOVLNEhJSM5RefiE6Ohrnz59Hu3btZKZ37doV06ZNw5YtW7B9+3ZcuHABrVu31lpBCTEIo0cDS5Zw+/v3AwsXqpVNVZ2KGWPg0arOdZ6iQNXLywv16tVTL+P4eG49KQDw8wMaNlQvH0JqiNLBzZ+Sa4soIBAIMGvWLLULRIhBc3PjJvS7fp1bqDAlBWjaVOVsOnfuDDMzMxQVFVVKe/HiBe7evYs2bdpoo8SkBl28eFFumkZNUqJaG4CapEidpFKfm+3bt8tclI8QokWSHYvVbJoyNTVFt27d5KZHarDEA6k9FP0/qh3cMFbR34aapEgdpVJw895776FFixZo0aIFpk+fjt9++w1PnjzRVdkIMUxamtCvZ8+ectMouKn7ioqKEBcXJzdd0f+/QtevA6I+k336qL1KPSE1SaXgJisrC2fOnMGkSZNw//59zJgxA02bNkWbNm0wa9Ys7N27F8+ePdNVWQkxDG3bViykGRkJPH6sVja+vr5y0y5duqRWnqT2iI2NRWlpqcy0xo0bo3HjxuplTE1SRA+oFNwIBAL4+/tjxYoVOHfuHDIzM3HmzBm89dZbuH37NqZMmYJGjRrpqqyEGI5Royr2jxxRKwtFM9PeunUL2dnZauVLagdFtW+KAtsqHT7M/cvjUZMUqbM0mqGYz+eDz+eDx+OBx+OBMYamanR+JIS8RvJL5dAhtbJo0KAB3NzcZKYxxnDlyhW18iW1g6Latx49eqiX6f37wM2b3H737oCzs3r5EFLDVApuSkpKcP78eaxcuRJ+fn6wtbXFu+++i9TUVMyYMQP37t3DAw3WxCGEvOLtDbi6cvvh4UBmplrZUNOUfmKM6abmRlRrA9ByC6ROUym4sbW1xcSJE5Geno45c+YgOTkZd+7cwc8//4wJEyagSZMmuionIYZFskmgrAw4elStbBR9yVGn4rrrv//+Q1pamsw0gUAAHx8f9TKWrCWkJilSh6kU3LRv3x5paWk4f/48Lly4gIiICLx8+VJXZSPEsGmhaUpR88Tly5chFArVypfULEW1bp07d4apqanqmaalcR3YAaBdO4AmYSV1mErBzeXLl/Hy5Ut8/fXXMDc3x9dffw1nZ2d4enri/fffx/79+5Genq6rshJiWHr0qJgZ9sQJoLBQ5Sw8PDxgbW0tMy07Oxt37tzRpISkhuikSerIEW6OG4CapEidp3KHYisrKwwaNAhr165FVFSUONgxMTHBjBkz4OLiootyEmJ4jIyAYcO4/YIC4PRpNbIwUjiZH/W7qZt0EtxQkxTRI2qPlhIKhYiKisKPP/6I77//Hr/++itycnKo3w0h2iT5JSPZ2VMF1O9Gv+Tn5yM+Pl5uulrBTU4OEBrK7TdpAnTsqF7hCKkllF5bCgCuXLmC8PBwhIeH4+LFi8jLy0Pjxo3h5+eH77//Hv7+/nAVjfAghGiuf3/AygrIy+OaDcrKAGOVfmwV9ruh4KbuiYmJQXl5ucw0V1dXOKszfPvYMUA0IeCIEVyHdkLqMJV+S3bv3h1OTk7w9/fHhg0b4O/vj5YtW+qqbIQQMzMgKIhbhuHlS+DiRW6VZhUoapZKSEhARkYG6tevr2FBSXVR1JRITVKEcFRqlkpISMDTp0/x+++/45133pEZ2DBRhzRCiHZIdu5Uo2mqXr16cHd3l5seFRWleplIjdF6f5viYq7mBgDq1wc0WU2ckFpCpeCmTZs2AIBvvvlGZnp5eTnGjRuneakIIRWGDAFMTLj9w4crRrSogJqm9ENVk/epNTPx2bNcsycABAer3OxJSG2kVofib775Blu3bpU6Vl5ejrffflthRzdCiBpsbQF/f27/v/+AGzdUzoI6FeuH+/fv48WLFzLTzM3N4e3trXqmkmuXDR+uZskIqV3UCm6OHj2KRYsW4cCr1WPLysrw5ptv4tatWwgLC9NqAQkh4P6iFvnnH5UvVxTcREVF0WR+dYSiJsQuXbrARFTDpyzGKj5PAgEQEKBB6QipPdQKbrp06YK//voL06ZNw5EjRzBq1CgkJiYiLCwMTk5O2i4jIUQyuFFjlfC2bdvCzs5OZlpubi4SExPVLBipToqCG7X621y9Cjx5wu337w9YWqpZMkJqF7XnuenXrx927dqFUaNGITk5GefOnYOjo6M2y0YIEWnWjFtMEwCuXOGmylcBn89Hly5d5KZTp+K6QdFK7opGxcklWQsoGUATUscp3XPsjTfekHm8YcOGsLOzw8yZM8XHDh48qHnJCCHSgoOB69e5/X//Bd55R6XLu3btitNyZjm+cuUKpkyZomEBiS4VFxcr7NPYtWtX1TOVDG6GDlX9ekJqKaWDG1tbW5nHAwMDtVYYQogCw4YBX37J7f/zj8rBjaK/7BXVCJDa4fr16ygpKZGZ1qhRIzRq1Ei1DJ88AWJjuf2OHYHGjTUsISG1h9LBzfbt23VZDkJIVTp3BpycuCap06e5hTTNzZW+XFGz1LVr11BUVAQzMzNtlJTogKKmQ7Vqbf79t2KfmqSInlG7zw0hpJrx+RVNB4WFFWsBKcnJyQlNmzaVmVZWVoarV69qWkKiQ4pq19QKbiQ7posWaCVETygd3AwaNAiXL1+u8rzc3FysXbsWmzZt0qhghBAZNBw1pehLkJqmajetBjf5+RXBcaNGgI+PBiUjpPZRulnqzTffxKhRo2Bra4vg4GB07twZLi4uMDMzQ2ZmJm7fvo2LFy/i2LFjGDJkiNxZjAkhGhgwgFtvqqiIa1YQCrkaHSV169ZNPD/V6yi4qb2ysrLkDtfn8Xjo3LmzahmeOcMtuwBwATMtlEn0jNLBzfTp0zFhwgTs378fe/fuxc8//4zs7GwA3A+Xh4cHAgMDER0drXAdG0KIBiwsuADn33+B1FSuQ6iCvjSvo5qbuik6Olpumru7O2xsbFTLULLWj/rbED2k0iIiAoEAEyZMwIQJEwAA2dnZKCwshL29veozYxJC1BMcXNEZ9MgRlYKbjh07gs/ny5yR+P79+3j58iXs7e21VVKiJVptkhIKgaNHuX0LC6BfPw1KRkjtpFGHYltbWzg5OVFgQ0h1kpyPRPQlpSQrKyu0a9dObrqiGgJSc7Qa3MTEAM+ecfsDB3LNnIToGRotRUhd4+LCzUsCcNPnP32q0uU0303dwhhTOAxc5ZmJJQNimriP6CkKbgipi4YMqdg/flylSxX9pU/LMNQ+jx49wjNRTctrBAIBvLy8VMvw2LGK/cGDNSgZIbVXjQY358+fR3BwMFxcXMDj8XD48GGF5x88eBADBw5Ew4YNYWNjA19fX5w8ebJ6CktIbSL5paRi01RVnYoZY+qWiuiAotq0jh07qtYtIC2Na5YCgA4duFpAQvSQysFNeXk5zp8/j6ysLI1vnp+fj/bt2ys9J8758+cxcOBAHDt2DLGxsfD390dwcDBNPkYMT5cuQIMG3P7p04CcaflladeuHSwsLGSmvXjxAg8fPtRCAYm2aHWxTMlaPsnaP0L0jEqjpQDAyMgIAQEBSEhIgJ2dnUY3DwoKQlBQkNLnb9y4Uer16tWr8ffff+Off/6BD01CRQyJkREQFATs3g3k5QEXLgD9+yt1qbGxMTp16oQLFy7ITL9y5QqaN2+uzdISDWi1M7FkkxQFN0SPqdUs5enpiQcPHmi7LCoTCoXIzc1F/fr15Z5TXFyMnJwcqY0QvaCjpinqd1N7lJeXI0bUjCSDSsFNaSlw6hS3b28PqLNkAyF1hFrBzRdffIFFixbh33//RWpqao0FD+vWrUNeXh7GjBkj95w1a9bA1tZWvDVp0qTaykeITgUGcjU4gPRf5EpQ9KWozDIrpHrcvHkT+fn5MtPs7e3RokUL5TO7eBEQ/X4eNKjis0OIHlIruBk8eDCuXbuGYcOGoXHjxqhXrx7q1asHOzs71KtXT9tllOmPP/7A559/jn379sHBwUHueSEhIcjOzhZvjx49qpbyEaJz9eoBPXpw+4mJQFKS0pcq6qsRGxuLYtHU/KRGRUZGyk3r2rUreKosmyBZu0dNUkTPqdznBgDCwsK0XQ6V7NmzB++88w7279+PAQMGKDxXIBBAIBBUU8kIqWaDB3P9bQCu9uaDD5S6rGnTpnB2dkZqamqltJKSEsTFxcHX11ebJSVquHTpktw0lf9/RLV7fD5X60eIHlMruOnbt6+2y6G0P//8E9OmTcOePXswhP76IIZuyBAgJITbP3pU6eCGx+OhR48e+Ouvv2SmR0ZGUnBTCyiquekhqrVTRnIykJDA7fv6Agr6KRKiD9Se5+bChQuYMGECevTogSdPngAAdu/ejYsXLyqdR15eHuLj4xEfHw8ASE5ORnx8PFJSUgBwTUqTJk0Sn//HH39g0qRJWL9+Pbp164a0tDSkpaWJF/AkxOB4egKifmTh4YCc/hmyKApeFNUYkOqRnp6O+/fvy0zj8/mqdSamJiliYNQKbv766y8EBgbC3NwccXFx4vb57OxsrF69Wul8YmJi4OPjIx7GvWDBAvj4+GDZsmUAgNTUVHGgAwA///wzysrKMGfOHDg7O4u3uXPnqvM2CKn7eLyKUVPFxUBoqNKXKvrLPzIykibzq2GKOnZ7eXnB2tpa+cxoVmJiYNQeLbVlyxb88ssvUrNj9uzZE3FxcUrn4+fnB8ZYpW3Hjh0AgB07diA8PFx8fnh4uMLzCTFIai7F0LFjR5iamspMe/r0qdQfFqT6aa2/TWEhIOon2agR4O2tYckIqf3UCm4SExPRp0+fSsdtbW21MnMxIUQF/v6AKEg5cQJQssZFIBCgU6dOctOpaapmKXr+KvW3OXcOKCri9oOCuNo+QvScWsGNk5OTzLbgixcvqjbvAiFEc1ZWQO/e3P7Dh9ywcCUpqgFQ1JmV6FZpaSmio6PlpqtUcyNZmzdokAalIqTuUCu4mTFjBubOnYuoqCjweDw8ffoUv//+OxYtWoTZs2dru4yEkKpILmOiQtOUohoAqrmpOfHx8SgS1ba8pmHDhmjZsqXymYk+D8bGQBVTZxCiL9QaCv7JJ59AKBSif//+KCgoQJ8+fSAQCLBo0SJ8oORQVEKIFgUFAYsWcfsnTgDz5yt1maIagPj4eOTn58PS0lIbJSQqUFRr5uvrq/zkfUlJwL173H6PHoCtrRZKR0jtp1bNDY/Hw5IlS5CRkYGbN2/i8uXLeP78OVatWqXt8hFClOHuXjEk/Nw5oKBAqctcXFzQrFkzmWlVrWtEdEdr/W1OnKjYpyYpYkDUCm7Onj2LoqIimJqawsPDA127doWVlZW2y0YIURaPV9E0VVzMzXmjpKqGhJPqV1XNjdIkgxvJpktC9Jxawc2wYcNgZ2eH3r17Y+nSpThz5gwKCwu1XTZCiCok/zJXod8NTeZXuzx58kTuMHxjY2N07txZuYyKioCzZ7l9JyegfXstlZCQ2k+t4CYzMxOhoaEICgrClStXMHLkSNjZ2aFnz5747LPPtF1GQogy+vfnOo0CWutUTJP5VT9FtTYdOnSAhYWFchlduFDRPDloEA0BJwZFreDGxMQEPXv2xKeffoqTJ0/i8uXLGDt2LK5cuYI1a9Zou4yEEGXY2AA9e3L7SUmAnKn7X+ft7Q1zc3OZaS9evJC7BADRDa1N3kf9bYgBUyu4uXv3Ln7++WeMGzcOjRo1Qt++fZGdnY1169apNEMxIUTL1BgSbmJionCdImqaql5aWyxT9P/P5wMDB2pYKkLqFrWCm7Zt22Lp0qXw9PTE8ePH8fz5cxw6dAhz585Fe2rXJaTmSP6FLvmXexUU1QhERUVpUiKiguLiYoV/ICpdc/PffxWrgHfrRquAE4OjVnDz4YcfolGjRli5ciVmzZqFJUuW4NSpUyhQcvgpIURHvL0BFxduPyysYtr9KlBwUztcu3YNJSUlMtOcnZ3RtGlT5TKiUVLEwKkV3GzcuBFxcXFIS0tDSEgISkpKsGTJEjRo0AA9RW3+hJDqx+NV1N4UFgLnzyt1Wbdu3eSmXbt2jf5wqSaKVgLv3r278pP3UXBDDJxawY1IeXk5SktLUVxcjKKiIhQXFyNRhXVtCCE6EBhYsX/ypFKXODo6wtXVVWZaeXk59aWrJopqyRQFoFJKS4HQUG6/QQOgY0ctlIyQukXtZilvb284Ojri3XffxdOnTzFjxgxcvXoVz58/13YZCSGqGDCA60QKKB3cAIq/PKlpqnpoJbi5fBnIzeX2Bw6s+CwQYkDUWlsqNTUVM2fOhJ+fHzw9PbVdJkKIJurXB7p0AaKigFu3gMePgcaNq7ysW7du2Lt3r8w0Cm5078WLF0hKSpKZxufzlZ+8TzKglazFI8SAqBXc7N+/X9vlIIRoU2AgF9wA3Jfd9OlVXqKoZkBRXxCiHYoCSE9PT+WXuJEMbgICNCwVIXWT2vWVSUlJ+OCDDzBgwAAMGDAAH374ody/Oggh1UyNfjc+Pj4wNpb9986jR4+QmpqqjZIRObTSJPXiBRAby+17ewPOzlooGSF1j1rBzcmTJ+Hh4YErV67A29sb3t7eiIqKQrt27XD69Gltl5EQoqquXQFbW27/zBmgvLzKS8zNzdGhQwe56dQ0pVtaCW5OnwZEy2VQkxQxYGoFN5988gnmz5+PqKgobNiwARs2bEBUVBTmzZuHxYsXa7uMhBBVGRtzHYsBIDMTiI5W6jLqVFwzhEIhrly5Ijdd6eCG+tsQAkDN4CYhIQHTZbThT5s2Dbdv39a4UIQQLVCjaYqCm5px9+5dZGVlyUyztraGu7t71ZkwBpw6xe1bWAC9emmvgITUMWoFNw0bNkR8fHyl4/Hx8XBwcNC0TIQQbdBycBMdHY1yJZq3iOoUBY5dunSBkZFR1ZncuAGI+kX5+QECgXYKR0gdpNZoqRkzZmDmzJl48OCBeCG3iIgIrF27FgsWLNBqAQkhamraFGjbFrhzhxs5lZkJ1Kun8JLWrVujXr16yMzMrJSWl5eH27dvw8vLS1clNlha6W9DTVKEiKkV3CxduhTW1tZYv349QkJCAAAuLi5YsWIFPvzwQ60WkBCigcBALrgRCrlZa0ePVng6j8dDt27dcELOoptRUVEU3OgABTeEaJdazVIlJSWYOXMmHj9+jOzsbGRnZ+Px48eYO3eu8mufEEJ0j/rd1HoFBQW4du2a3HSlgpv8fODCBW6/WTPAzU1LpSOkblIpuHn+/DmCgoJgZWUFGxsbdO/eHenp6bC2ttZV+Qghmujbt6LvxcmTFcOEFaDJ/KpXXFyc3L5MzZo1g5OTU9WZnDsHiFYTDwzkFlAlxICpFNwsXrwY8fHxWLlyJdatW4esrCy88847uiobIURTFhZA797c/qNHgBIL23bt2lVu2q1bt5ArWreIaIVWmqREo6QAapIiBCr2uTl9+jR27NiBwFc/PEOHDoW7uzuKi4shoJ75hNROgYHcRH4A9yXYtq3C0+3t7dG6dWvcu3evUhpjDDExMfD399dFSQ2SVoMbIyOgXz8tlIqQuk2lmpunT5+iffv24tetW7eGQCCgadkJqc0k1xeS/AtfAUVfqjExMZqWiEhQ9DyVCm4ePQISEkQXAHZ22ikYIXWYyh2KX59vwcjICEyJdnxCSA3x8gIcHbn98PCKvhkKdOnSRW4aBTfa8/LlSyQnJ8tMMzIygo+PT9WZSC55QwtlEgJAxeCGMQY3NzfUr19fvOXl5cHHx0fqGCGkFuHxKr708vOByMgqL+ncubPcNAputEfRs2zXrh0sLCyqzkSyNm7gQC2UipC6T6U+N9u3b9dVOQghuhQQAOzeze2fOsWNolKgQ4cOMDIykjmK58GDB3j58iXs7e11UVKDoii4UVR7JlZeXlFzY2PDLZhKCFEtuJk8ebKuykEI0SXRIpoAF9x8+aXC0y0sLNCuXTtcv35dZnpsbCwCqAlEY4qCG0W1Z2JXrwIZGdx+//7cgqmEEPUm8SOE1DFOToBoMEBsLPDiRZWXUL8b3YtWsFq7UjU3kk1SFGwSIkbBDSGGQvTlxxi3FEMVFNUcKPpSJspJTU3FkydPZKaZmprC09Oz6kwouCFEJgpuCDEUKg4Jp07FuhUbGys3zdvbu+q5w3JzgUuXuP2WLYEWLbRYOkLqNgpuCDEUvXoBZmbc/qlTVS7F4OXlBVNTU5lpjx8/RlpamrZLaFA0bpI6dw4oLeX2qdaGECkaBTclJSVITExEWVmZtspDCNEVMzOgTx9u//FjbrVwBQQCAby9veWmU+2NZjTuTEzz2xAil1rBTUFBAaZPny4eUZGSkgIA+OCDD/DVV19ptYCEEC2ipqlaQbSMhTxKBTeSSy7QchiESFEruAkJCcG1a9cQHh4OM1E1N4ABAwZg7969WiscIUTLVAxuFDWPUKdi9T169Ajp6eky08zNzeHh4aE4g5SUipq3bt0AW1stl5CQuk2t4Obw4cP43//+h169eoHH44mPt2vXDklJSUrnc/78eQQHB8PFxQU8Hg+HDx+u8prw8HB07NgRAoEArVq1wo4dO9R4B4QYKE9PwNmZ2w8PB4qLFZ5eVc0NLb2iHkW1Nj4+PjCuar4aySYpmpWYkErUCm6eP38OBweHSsfz8/Olgp2q5Ofno3379ti0aZNS5ycnJ2PIkCHw9/dHfHw85s2bh3feeQcnT55U+p6EGDQer+LLsKCgyqUYPDw8YG5uLjMtPT0djx8/1nYJDYLWmqQAbtV3QogUtYKbzp074+jRo+LXooDm119/ha+vr9L5BAUF4YsvvsDIkSOVOn/Lli1o3rw51q9fD3d3d7z//vsYPXo0vv32W9XeACGGTPIvfckaABmMjY0VLt5ITVPq0WikVHk5cOYMt29rCygzsooQA6NWcLN69Wp8+umnmD17NsrKyvDdd98hICAA27dvx5dVTOuuicjISAyQnEYeQGBgICIV/PVZXFyMnJwcqY0Qg/b6UgxVoE7F2qVxZ2LJJRf69aMlFwiRQa3gplevXoiPj0dZWRm8vLxw6tQpODg4IDIyEp06ddJ2GcXS0tLg6OgodczR0RE5OTkoLCyUec2aNWtga2sr3po0aaKz8hFSJzg5AaIh3rGxwMuXCk+n4Ea7Hjx4gKysLJlp1tbWcHNzU5wBzUpMSJXUDvlbtmyJX375RZtl0YmQkBAsWLBA/DonJ4cCHEICAoDr1yuWYhgzRu6pVa0xxRhTqa+doVPUJNWpUyfw+VX8zUmdiQmpktrBjVAoxP3795Geng6hUCiV1kc0UZiWOTk54dmzZ1LHnj17BhsbG7mdHgUCQdXTmBNiaAYOBNat4/ZPnVIY3Li5ucHKygp5eXmV0jIzM5GcnIwWNPW/0hQtu1Blk1ReHhARwe23aMEtu0AIqUSt4Oby5csYN24c/vvvv0pDQXk8HsrLy7VSuNf5+vri2LFjUsdOnz6tUidmQgiA3r0BgYAbCn76NFeDI6f2hc/no1OnTjh37pzM9Li4OApuVBAXFyc3rcpm/fPnackFQpSgVp+bWbNmoXPnzrh58yYyMjKQmZkp3jJEHd2UkJeXh/j4eMTHxwPghnrHx8eLZzwOCQnBpEmTpO774MEDfPzxx7hz5w5+/PFH7Nu3D/Pnz1fnbRBiuMzNK5ZiSEkB7t5VeHrHjh3lpin6sibSGGOaBTeS/W2oSYoQudSqubl37x4OHDiAVq1aaXTzmJgY+EtMGy7qGzN58mTs2LEDqamp4kAHAJo3b46jR49i/vz5+O6779C4cWP8+uuvCKR5HghR3cCBFf03Tp8G2rSRe6qi4EZRMwuR9vDhQ7mdiW1sbNCyqmYm0f8Xn8+NlCKEyKRWcNOtWzfcv39f4+DGz89P4QynsmYf9vPzw9WrVzW6LyEEXLPGxx9z+6dOAe+/L/dURTUKcXFx1KlYSYoCQR8fH8WdiR8/Bm7f5va7dgXs7LRbOEL0iFrBzQcffICFCxciLS0NXl5eMDExkUpXtJIwIaSW8PICHByA9HQgLIzry/Haz7KIm5sbLCwsUFBQUCntxYsXePz4MY1CVIKiJilFtWMAKibuA6i/DSFVUCu4GTVqFABg2rRp4mM8Hk/815uuOhQTQrSIz+eapn7/nRuFc/ky19FYBiMjI3To0AGXLl2SmR4XF0fBjRI0Cm5ofhtClKZWh+Lk5ORK24MHD8T/EkLqCMlOqVXMVqyoaYr63VRNo87EQmFFzY21NdcsRQiRS62am2bNmmm7HISQmvB6cLNqldxTacSUZh4/foznz5/LTLOwsFA8M3F8PCC61t9fbvMhIYSjdHBz5MgRBAUFwcTEBEeOHFF47rBhwzQuGCGkGri4AJ6ewM2bQHQ0t2ZR/foyT6XgRjOKnlGHDh1gZGQk/2JaBZwQlSgd3IwYMQJpaWlwcHDAiBEj5J5HfW4IqWMCA7ngRrQUw5tvyjzN3d0dAoEAxcXFldJSU1ORmpoKZ2dnXZe2ztJafxsKbgipktJ9boRCIRwcHMT78jYKbAipYyQ7p548Kfc0ExMTtG/fXm461d4opnZ/m7w84OJFbp+WXCBEKWp1KCaE6JHevQEzM27/1CmuBkcOappSn6JO1wprbs6doyUXCFGR2sFNaGgohg4dipYtW6Jly5YYOnQozkjOw0AIqRskl2J49AhITJR7KgU36hE128kiEAjg7u4u/2JqkiJEZWoFNz/++CMGDRoEa2trzJ07F3PnzoWNjQ0GDx6MTZs2abuMhBBdU7JpipZhUI+iWdW9vb0rTYQqRfT/YWTEjZQihFRJreBm9erV+Pbbb/Hnn3/iww8/xIcffog//vgD3377LVavXq3tMhJCdE2yRkDBfDeenp5yv4gfPXokd6izoVO7v81//1XUpPn6Ara2Wi4ZIfpJreAmKysLgwYNqnQ8ICAA2dnZGheKEFLN2rUDRCOdwsMBGSOiAK4JxdPTU242tO6bbGqPlKJZiQlRi1rBzbBhw3Do0KFKx//++28MHTpU40IRQqoZj1fx5VlQAEREyD2VmqZUp3ZnYgpuCFGL0vPcfP/99+J9Dw8PfPnllwgPD4evry8A4PLly4iIiMDChQu1X0pCiO4FBgI7d3L7p04B/frJPK1jx47YunWrzDTqVFzZixcvkJKSIjPNxMREfk1YeXnFkgv16gGdO+uohIToHx5jCsZ9SmjevLlyGfJ4tXp9qZycHNja2iI7Oxs2NjY1XRxCao/nz7lVwgGgQwdAThNTVFQUunfvLjOtRYsWSEpK0lEB66bTp08jQE6ti4+Pj/yA8PJlrp8NwE2suG+fjkpISN2gyve30jU3ycnJGheMEFKLNWwIdOwIxMVxaxk9ewY4OlY6zdvbG3w+H0KhsFLagwcPkJ2dDVvq+CqmqB+Sj4+P/AupSYoQtanc56a0tBQtW7ZEQkKCLspDCKlJkqOmTp+WeYq5uTnatm0rN4v4+HgtF6puUzu4kRyST8ENISpRObgxMTFBUVGRLspCCKlpSs53o+hLmYIbaWoFN1lZQFQUt9+2LdC0qfYLRogeU2u01Jw5c7B27VqUlZVpuzyEkJrUowdgZcXtnzoFyGh6AhQHNzQcvEJ+fj7u3r0rM43H48lfqys0lOtQDAAypt0ghCimdJ8bSdHR0QgNDcWpU6fg5eUFS0tLqfSDBw9qpXCEkGpmasqNkjpyBEhP5/reyBiqTMGNcq5fvw55YzZat24NK1Eg+boTJyr2ackFQlSmVnBjZ2eHUaNGabsshJDaYNAgLrgBuKYpGcFNhw4d5F5++/ZtFBcXQyAQ6KiAdYdaTVKMVTQJmpkBffvqoGSE6De1gpvt27druxyEkNpCsqbgxAkgJKTSKfXr10ezZs3w33//VUorKyvDzZs3FS8rYCAUBTdyA8SEBG4BU4Bb0NTcXPsFI0TPqb0qOCFET7VoAbRuze1fugTk5Mg8jToVV02tmhvJJinqb0OIWtSquWnevDl4PJ7c9No8iR8hRAmDBgH37gFlZcDZs8CIEZVO6dChAw4fPizzcup3w02bcePGDbnpcoMbyVFqFNwQoha1gpt58+ZJvS4tLcXVq1dx4sQJfPTRR9ooFyGkJgUGAj/8wO2fOCEzuKFOxYrduXMHJSUlMtNcXFzgIJoNWlJBAXDuHLffpAk3DJwQojK1gpu5c+fKPL5p0ybExMRoVCBCSC3g58eNnCop4WoSGOMW15SgKLi5du0aysvLYWRkpOOC1l5qNUmdP1+xIvugQZWeOSFEOVrtcxMUFIS//vpLm1kSQmqCpSXQuze3//AhIGOulsaNG8Pe3l7m5fn5+Qa/xpRanYlpCDghWqHV4ObAgQOoX7++NrMkhNQUyf4eMmYr5vF41DSlgFo1N6LnbGQE9O+vg1IRYhhUCm5WrlyJ/Px8+Pj4oGPHjuLNx8cHzs7O+PTTT/Hpp5/qqqyEkOr0+pBwGSi4kY0xpnDEmMzn9vAhcOcOt9+9O2Bnp4uiEWIQVOpz8/nnn2PWrFkYPny41GgpPp+Phg0bws/PT+GCeoSQOsTTE3BxAZ4+BcLDgaIiblI5CYom8zPk4CY5ORnZ2dky02xtbdG8efPKCTRKihCtUSm4EU0jvmLFCl2UhRBSm/B43Jfstm1AYSE3iue1fiBV1dwwxhROG6GvFNXadOjQQfYzof42hGiNyn1uDPEXFSEGKyioYv/48UrJbm5usLCwkHnp8+fPkZqaqquS1WoqdyYuLgbOnOH2GzYEaHZnQjSicnDj5uaG+vXrK9wIIXpi4ECucysAHDtWKdnIyAje3t5yLzfUpimVOxNfvAjk5XH7QUEAnyaPJ0QTKs9z8/nnn8PW1lYXZSGE1Da2tkDPntz8K/fuAffvA61aSZ3i4+ODy5cvy7z86tWrGDJkSHWUtFZRObiRDBwla8sIIWpRObh5++23Zc+sSQjRT4MHc8ENwDVNffCBVDKNmJL2/PlzPH36VGaaQCCAu7t75QRRkx+fDwQE6LB0hBgGleo+qb8NIQZo8OCKfRlNU1XNVGxoFHUmbteuHUxMTKQPJidzK4EDgK8vQE37hGhMpeBGNFqKEGJAPD2Bxo25/bAwbv0jCe3atZO7zEJSUhJy5Kwqrq9Unt9GsqO2ZCBJCFGbSsGNUCikJilCDA2PV/GlW1zMBTgSzM3NFc5vdf36dV2Wrtapahh4JZK1YRTcEKIV1CWfEFK1KpqmaDK/CioNAy8sBM6e5fadnYH27XVXMEIMCAU3hJCq9e8PiPqKHDvGrRIuQVFwo6gmQ98UFBQgMTFRbnqlYfPnznEBDsAFkNSvkRCtqBXBzaZNm+Dq6gozMzN069YNV65cUXj+xo0b0aZNG5ibm6NJkyaYP38+ioqKqqm0hBggKyugb19uX3INpFcouOHcvHkTQqFQZlqrVq1gY2MjfZCapAjRiRoPbvbu3YsFCxZg+fLliIuLQ/v27REYGIj09HSZ5//xxx/45JNPsHz5ciQkJGDr1q3Yu3cvLdhJiK4paJpSFNzcvHkTpaWlOipU7aJSfxvGgKNHuX1jY2DAAJ2VixBDU+PBzYYNGzBjxgxMnToVHh4e2LJlCywsLLBt2zaZ51+6dAk9e/bEuHHj4OrqioCAAIwdO7bK2h5CiIYkJ5d7Lbhp0KABGotGVL2mpKQEd16r6dFXKgU39+4BDx5w+717A6/X6hBC1FajwU1JSQliY2MxQOIvFj6fjwEDBiAyMlLmNT169EBsbKw4mHnw4AGOHTuGwXKqdIuLi5GTkyO1EULU0KYNIFrN+sIF4LWfJWqaUjG4EdXaANQkRYiW1Whw8+LFC5SXl8PR0VHquKOjI9LS0mReM27cOKxcuRK9evWCiYkJWrZsCT8/P7nNUmvWrIGtra14a9KkidbfByEGgccDREsplJYCp05JJRt6cFNeXq5w2Hul5/PvvxX7FNwQolU13iylqvDwcKxevRo//vgj4uLicPDgQRw9ehSrVq2SeX5ISAiys7PF26NHj6q5xITokeDgiv1//pFKMvTh4Pfv30d+fr7MtAYNGsDFxaXiQHZ2xZIWLVoAspZkIISoTeW1pbSpQYMGMDIywrNnz6SOP3v2DE5OTjKvWbp0KSZOnIh33nkHAODl5YX8/HzMnDkTS5YsAf+11XQFAgEEAoFu3gAhhqZvX27kVF4e1++mvFy8anhVNTeMMb1ewqWqmYml3vuJE0BZGbcfHExDwAnRshqtuTE1NUWnTp0QGhoqPiYUChEaGgpfX1+Z1xQUFFQKYERTv9PyEITomEBQsbDjixeAxGrgzZs3h7W1tczLMjMz9b7WVKX+NpJNUpK1YYQQrajxZqkFCxbgl19+wc6dO5GQkIDZs2cjPz8fU6dOBQBMmjQJISEh4vODg4OxefNm7NmzB8nJyTh9+jSWLl2K4OBguevbEEK0SPLLWOJLms/no72CGXb1vd+N0sFNWVnFaDMbG26kFCFEq2q0WQoA3nrrLTx//hzLli1DWloaOnTogBMnTog7GaekpEjV1Hz22Wfg8Xj47LPP8OTJEzRs2BDBwcH48ssva+otEGJYRDPpMsb1u1mzRpzUoUMHXLx4UeZl8fHxGDZsWHWVstopHdxERgIZGdx+YCBgaqrTchFiiHjMwNpycnJyYGtri+zs7MqzhRJClNOjB/clDXBztbwaIr5161Zxf7jXjRw5EgcPHqyuElartLQ0ODs7y0wzMzNDbm4ujI1f/S25eDHw9dfc/q5dwMSJ1VRKQuo2Vb6/a7xZihBSBw0dWrEvMWrKx8dH7iX63Cx17do1uWleXl4VgQ1Q8bz4fOmJEQkhWkPBDSFEdXKGhHt4eEh/kUtITk5GVlaWjgtWM5RukkpKAhISuH1fX6BBA52WixBDRcENIUR1np5As2bc/rlz4tmKzczM4K5gzhZFNRx1maJ5fKRqs2iUFCHVgoIbQojqeLyKL+fXZitWNN9NTEyMjgtWMxS9L6nnITnxIQU3hOgMBTeEEPXI6XejKLiJiIjQYYFqxrNnz5CUlCQzjcfjwcvLi3uRnc3VcgFcB2yalZgQnaHghhCiHj8/brZigGtueTXjbo8ePeReEhERoXeTbSoK2Nq3bw8r0TM6doxmJSakmlBwQwhRj0BQseBjRoZ4raSOHTvCzMxM5iXp6em4f/9+dZWwWsib1wcAevXqVfHi0KGK/ZEjdVgiQggFN4QQ9Ul+Sb/68jY1NUXXrl3lXqIoGKiLFL2fnj17cjtFRRWzEtvbA5JBDyFE6yi4IYSob/Dgihl2Dx0ChEIAr9VYvEafgpv8/HzExcXJTRc/h9OnAdGK4cOGAXKGyxNCtIOCG0KI+mxsgAEDuP0nT4BXo4YUBTf61Kn4ypUrKC8vl5nWrFkzNG7cmHsh2ST1xhvVUDJCDBsFN4QQzUg2Tb1aXsHX1xc8OR1mExMT8fz58+oomc4p1SRVVgYcOcLtW1lVBIOEEJ2h4IYQoplhw7ilBACuhoIx2NnZwdPTU+4l+lJ7o1Rn4gsXgJcvuf3BgwE5na0JIdpDwQ0hRDMODhUdZO/eFS8voO/9bsrLyxEpWjxUBvH7p1FShFQ7Cm4IIZqT7EfyqmlK3/vd3LhxA7m5uTLTbG1t0a5dO4CxiuDG1LRi6DwhRKcouCGEaG7EiIr9V1/m4j4nMsTGxqKgoEDHhdItRbVPPXr0AJ/P5zpYP37MHRwwgOuATQjROQpuCCGaa9YM6NiR24+LAx4+RNOmTStGC72mtLQU0dHR1VhA7VOqv82rWiwA1CRFSDWi4IYQoh2STVOHDoHH4+ltvxvGWNXBjWSTFJ/PdbwmhFQLCm4IIdohGdzs3w9AcdNUXe53k5KSgidPnshMMzExQZcuXYAbN4DERO5gr15cx2tCSLWg4IYQoh3u7kC7dtx+ZCSQkqKw5ubSpUtyJ8Cr7RTV2nTq1Anm5ubA3r0VB8eMqYZSEUJEKLghhGjPW29V7O/fDy8vL1hbW8s8NTs7Gzdu3KimgmnXhQsX5KaJm6REwQ2fD4weXU0lI4QAFNwQQrRJMrjZuxdGRkbo0aOH3NPPnj1bDYXSvtDQULlpvXr14jpVJyVxB/z8AEfH6ikYIQQABTeEEG1ycwM6dOD2o6OBBw/Qp08fuacrChJqq5SUFNy/f19mmrgTtWSTlGTARwipFhTcEEK0S/LLfN8+9O/fX+6p58+fR2lpaTUUSnsUBWQ+Pj6wr18f2LePO2BkRAtlElIDKLghhGiXZOfZvXvRqVMn2MiZvC4vLw9XrlyppoJph6Lgpl+/fkBUFPDff9yBAQOABg2qqWSEEBEKbggh2tWiBdClC7cfHw/jBw/g5+cn9/S61O+GMaawvP3796cmKUJqAQpuCCHa91rHYkVNU3Wp382dO3eQmpoqM83ExAS9e/YUz/EDExPpZSkIIdWGghtCiPa9+WbFfhX9biIjI+vMOlOKArHu3bvD8to1QDS5X0AAUK9eNZWMECKJghtCiPY1bQr4+nL7N2/CgzE4OTnJPLWkpKTOLMWgKLihJilCag8KbgghuvH22+Jd3h9/cJ1t5agLTVPl5eUIDw+Xmz6gTx9gzx7uhUAADB9ePQUjhFRCwQ0hRDfeeosbCg0Au3ZhgL+/3FPrQnATFxeHrKwsmWkWFhbo+vIl8OIFd2D4cEDOCDFCiO5RcEMI0Q1HRyAoiNt/8gSDzczknhoXF4eMjIxqKph6FAVgffr0gckff1QcmDy5GkpECJGHghtCiO5IfMk7njiBli1byjyNMYZz585VV6nUomgI+JDu3YF//+VeODlxnYkJITWGghtCiO4EB1eMGDp4EEN695Z7am1umiouLlbY6Xl4QQEgmml5wgTA2LiaSkYIkYWCG0KI7ggEwNix3H5hIcabmso9tTYHN5GRkSgsLJSZZm9vj8aSZacmKUJqHAU3hBDdkviy73D9utzT7ty5g0ePHlVHiVR26tQpuWkTO3YELzaWe9GxI+DpWU2lIoTIQ8ENIUS3unQB2rYFAJhevozBr/ZlOXnyZHWVSiWKyjWJsYoXU6bovjCEkCpRcEMI0S0eT+pLf179+nJPrY3BTXp6OuLi4mSmGQHwEtVGmZhUNMERQmoUBTeEEN2bMAHgc79uej14AJ6c086cOYOysrLqK5cSTp8+LTdtkrMzjNPTuRdDhtAK4ITUEhTcEEJ0r1EjYMAAAIB5WhoGCwQyT8vKykJ0dHR1lqxKimqTPrCwqHhBTVKE1BoU3BBCqseMGeLdEDs7uafVpqYpoVAotzOxC4D2ycncCycnYPDg6isYIUShWhHcbNq0Ca6urjAzM0O3bt1w5coVhednZWVhzpw5cHZ2hkAggJubG44dO1ZNpSWEqGX4cMDZGQDg+/w5Gsk5rTYFN9evX8ezZ89kps3i88EXCrkXM2dyfW4IIbVCjQc3e/fuxYIFC7B8+XLExcWhffv2CAwMRLqoHfs1JSUlGDhwIB4+fIgDBw4gMTERv/zyCxo1kverkhBSK5iYiGtv+EIhZsg57cqVK8jMzKy+cikgr9bGGMBs0UR9RkZStVKEkJpX48HNhg0bMGPGDEydOhUeHh7YsmULLCwssG3bNpnnb9u2DRkZGTh8+DB69uwJV1dX9O3bF+3bt6/mkhNCVDZjhngxzdl8PmTN4ysUCmvNhH7yapGGA2hQUsK9GDYMaNy4+gpFCKlSjQY3JSUliI2NxYBXHQ0BgM/nY8CAAYiMjJR5zZEjR+Dr64s5c+bA0dERnp6eWL16NcrLy2WeX1xcjJycHKmNEFJDGjfmmqcAOAiFGCHntNrQNJWfny93yYX3pF68J/McQkjNqdHg5sWLFygvL4ejo6PUcUdHR6Slpcm85sGDBzhw4ADKy8tx7NgxLF26FOvXr8cXX3wh8/w1a9bA1tZWvDVp0kTr74MQooLZsyt25Zxy8uRJMMnJ8WpAeHg4SkS1MxLaAugneuHmBvTrV+kcQkjNqvFmKVUJhUI4ODjg559/RqdOnfDWW29hyZIl2LJli8zzQ0JCkJ2dLd5q6/TuhBiMfv24oABckCBrvuJHjx7hzp071Vqs18mrPZol9WKWeP4eQkjtUaM/lQ0aNICRkVGl0QjPnj2Dk5OTzGucnZ3h5uYGo1ft9gDg7u6OtLQ0mX9lCQQC2NjYSG2EkBrE5ytde1OTZN3fAsAU0Qtzc5rbhpBaqkaDG1NTU3Tq1Emq86CoM6Gvr6/Ma3r27In79+9DKBqCCeDu3btwdnaGqYIVhwkhtcjkyVxwAGAqADsZpxw/frw6SyQlOTkZd+/erXR8KgBb0YuxY4F69aqzWIQQJdV4feqCBQvwyy+/YOfOnUhISMDs2bORn5+PqVOnAgAmTZqEkJAQ8fmzZ89GRkYG5s6di7t37+Lo0aNYvXo15syZU1NvgRCiqnr1gEmTAADWAD6QcUpYWFiNDQA4cuRIpWMmAD6WPPCBrFITQmoDWSMxq9Vbb72F58+fY9myZUhLS0OHDh1w4sQJcSfjlJQU8CXatJs0aYKTJ09i/vz58Pb2RqNGjTB37lwsXrxYq+UqLy9HaWmpVvMkpC4xMTGRav7Vuo8/Bvv1V/DKyzEXwAYA+RLJpaWlOHnyJN58803dlUGOv//+u9Kx8QCail4MHgx06FCNJSKEqILHanpIQjXLycmBra0tsrOzZfa/YYwhLS0NWVlZ1V84QmoZOzs7ODk5gceTt9SlhiZOBH77DQCwEFyAI2nChAnYvXu3bu4tR2ZmJho2bCg1vQQfQAIAN9GBiAigR49qLRchhq6q729JNV5zU9uIAhsHBwdYWFjo7pc6IbUYYwwFBQXimcKdXy2boHUhIeLgZhGATQCKJZKPHj2K0tJSmFTj0gbHjh2rNG/WaFQENszPDzwKbAip1Si4kVBeXi4ObOzt7Wu6OITUKPNXHX7T09Ph4OCgmyYqDw+UDR8O47//hjO4DruSkzpkZmbi4sWL8Pf31/695ZDVJPWpxD5vyZJqKwshRD013qG4NhH1sbGwsKjhkhBSO4h+FnTZ/8x4+XLx/mJU/otLVudeXSkuLsaJEyekjg0FIFrcJdPNDejfv9rKQwhRDwU3MlBTFCGcavlZ8PFBiqcnAMAVwLjXkv/+++9qm604PDwcubm5Usck62ksvvgCoN8PhNR6FNwYAD8/P8ybN0/jfKZMmYIRI0ZonI+2PHz4EDweD/Hx8Upfo61nQbTLQmL5lBUABBJpycnJuHXrVrWU4/VaomEAur/af2hjA8GoUdVSDkKIZii40RNTpkwBj8ertN2/f19r9/juu++wY8cOpc5dsWIFeDweBg0aVCntm2++AY/Hg5+fn9bKRuq2BsOH4/Kr0Q/NAcx9LV1WPxhtY4xJBTcmANZJpD+YOJGWWiCkjqCfVD0yaNAgpKamSm3NmzfXON/y8nIIhULY2trCzs5O6eucnZ0RFhaGx48fSx3ftm0bmjZtKucqYqhuTJ4M0RilJQAcJNKqo9/N1atXpT6rcwC0frV/DoDXsmU6LwMhRDsouFHA2toaAoGgxjdra2ulyisQCODk5CS1yRrhkpmZiUmTJqFevXqwsLBAUFAQ7t27J07fsWMH7OzscOTIEXh4eEAgECAlJaVSs9SBAwfg5eUFc3Nz2NvbY8CAAcjPr5iGzcHBAQEBAdi5c6f42KVLl/DixQsMGTJEqkxCoRArV65E48aNIRAIxJM5Srpy5Qp8fHxgZmaGzp074+rVq5Xe282bNxEUFAQrKys4Ojpi4sSJePHihVLPj9Qs35kz8eurfRsAKyXSrly5gqdPn+r0/pK1Q/UBiEIZIYBdHTqgoYODrMsIIbUQBTcKlJSU1JpNm6ZMmYKYmBgcOXIEkZGRYIxh8ODBUiNiCgoKsHbtWvz666+4desWHF77xZ6amoqxY8di2rRpSEhIQHh4ON54441KHT+nTZsm1ZS1bds2jB8/vtI6YN999x3Wr1+PdevW4fr16wgMDMSwYcPEQVdeXh6GDh0KDw8PxMbGYsWKFVi0aJFUHllZWejXrx98fHwQExODEydO4NmzZxgzZow2HhvRsXbt2mFr06YQLbjwDgBPiXRd194cPnxYvL8cgGjVqF0A3MeP1+m9CSFaxgxMdnY2A8Cys7MrpRUWFrLbt2+zwsJCxhhjpqamDECNb6amplW+r8mTJzMjIyNmaWkp3kaPHs0YY6xv375s7ty5jDHG7t69ywCwiIgI8bUvXrxg5ubmbN++fYwxxrZv384AsPj4+Er3GD58OGOMsdjYWAaAPXz4UGZ5li9fztq3b89KSkqYg4MDO3fuHMvLy2PW1tbs2rVrbO7cuaxv377i811cXNiXX34plUeXLl3Ye++9xxhj7KeffmL29vbi/xvGGNu8eTMDwK5evcoYY2zVqlUsICBAKo9Hjx4xACwxMbHSsyBVe/1nQtfmzZvHPgYYe7WdlPg56N27t87ue/PmTfF92gCs9NX98wDmLPH5IYTUHEXf36+jSfz0iL+/PzZv3ix+bWlpWemchIQEGBsbo1u3buJj9vb2aNOmDRISEsTHTE1N4e3tLfde7du3R//+/eHl5YXAwEAEBARg9OjRqPfaKskmJiaYMGECtm/fjgcPHsDNza1Svjk5OXj69Cl69uwpdbxnz564du2auNze3t4wMzMTp7++cvy1a9cQFhYGKyurSuVNSkqCm5tbpeOkdhk+fDgGbdyIWeA6FgcAGA7gbwAXLlzAw4cP4erqqvX7Si7xsBEVc+2sBWDbti19dgipY6hZSo9YWlqiVatW4k2TKfPNzc0VznFiZGSE06dP4/jx4/Dw8MAPP/yANm3aIDk5udK506ZNw/79+7Fp0yZMmzZN7TJVJS8vD8HBwYiPj5fa7t27hz59+ujsvkR7evfuDXsXF6nVt38BIPok//7771q/p1AoFOf7PgDR+L7H4EZLvf3221q/JyFEtyi4MTDu7u4oKytDVFSU+NjLly+RmJgIDw8PlfLi8Xjo2bMnPv/8c1y9ehWmpqY4dOhQpfPatWuHdu3a4ebNmxg37vUp2gAbGxu4uLggIiJC6nhERIS4TO7u7rh+/TqKiorE6ZcvX5Y6v2PHjrh16xZcXV2lgrxWrVrJrMUitY+RkRHGjRuHAwAOvzrWEMBucL+sdu/erfUJ/c6dO4fHjx+jPaSHfs8EUAhu8U5CSN1CwY0CpqamtWbTltatW2P48OGYMWMGLl68iGvXrmHChAlo1KgRhg8frnQ+UVFRWL16NWJiYpCSkoKDBw/i+fPncHd3l3n+2bNnkZqaKnco+UcffYS1a9di7969SExMxCeffIL4+HjMncvNeDJu3DjweDzMmDEDt2/fxrFjx7Bu3TqpPObMmYOMjAyMHTsW0dHRSEpKwsmTJzF16tRKCyGS2mvixIkAgOngak8AoD+4pRkSExMRExOj1fvt3r0bFgD2oGLywA0AjgPo0aMHWrZsqdX7EUJ0j/rcKPD6NOz6Yvv27Zg7dy6GDh2KkpIS9OnTB8eOHVNp5WUbGxucP38eGzduRE5ODpo1a4b169cjKChI5vlV1Zx8+OGHyM7OxsKFC5Geng4PDw8cOXIErVtzM41YWVnhn3/+waxZs+Dj4wMPDw+sXbsWoyRmjBXV/ixevBgBAQEoLi5Gs2bNMGjQIPBp8rU6w9vbG15eXrhx4wbGAzgLwAjc0PBwAL/99hu6dOmilXsVFhbiwIED+AFA21fH4gCEvNqnWhtC6iYe03Ydby2Xk5MDW1tbZGdnw+bVjKgiRUVFSE5ORvPmzaU6rhJiqGrqZ+Kbb77Bxx9zPW9WgBuaDQAPAQy2t8e11FSVgnF59u7di6Nvv41dr17nAegI4B64zvCpqamwt7fX+D6EEM0p+v5+Hf05SwipdUTNkACwCsCFV8ddAex5+RJhBw5o5T73v/4a2yRevwcusAGAIUOGUGBDSB1FwQ0hpNZp1KgR+vXrBwAoB7dS+KNXad4AWr/3HpCZqdE9snbtwsdxceK2+c3gOi6LUJMUIXUXBTeEkFpJ1LEY4DoW9wMgWoCheVYWyvr3B7Kz1cv82DFYT5sGUcPWdnBrSYnY2dlh6NCh6uVNCKlxFNwQQmqlN954A+bm5uLX98EFOGmvXhtfvQr07QtcuaJ8pqWlwIYNYG+8AaNXI+h+A7fUg2TnwzFjxkAgEMjKgRBSB1BwQwiplaytrTFy5EipY4nghoU/Fx24dg3o3h2YMQN4/hwKhYUBHToACxeCV1wMANgLYAq4xTElSdYaEULqHgpuCCG11tSpUysduw3AH8BN0QHGgF9/BdzcgPfeA/74A0hJAUpKgKgoYMMGICgI6NcPuH0bABfMbAIwAVyfHkmtWrVCjx49dPWWCCHVgOa5IYTUWv3794ePjw+uXr0qdfwWAB8Ay+zt8VlpKXg5OUBWFrB5M7cBgLExUFZWKc+sNm0wIDERsXLuuWjRIpoXiZA6jn6CCSG1Fo/HwyeffCIzrQzAspcvcWjNGmDyZMDI6LUTXgtsnJyArVsxvGFDuYGNk5MTJk+erHG5CSE1i2puCCG12qhRo9C6dWvcu3dPZvryzZsx4to18H/4Abh8GYiIAC5cANLSAB8foFcvbvPwwMVLl3D+4kW591q4cCFN4EmIHqCaG1Krubq6YuPGjVrLLzw8HDweD1lZWRrl8/DhQ/B4PMTHx2ulXNowZcoUjBgxQunztfUsdM3IyAiLFy+Wm37z5k0cPXoUsLYGBg4EVqwAQkOBW7eA334DZs0CPD0BPh9r1qyRm0+9evXw7rvv6uAdEEKqGwU3esLPzw/z5s2rdHzHjh1yF6usTjweD4cPH1b5uujoaMycOVPp80VBx+ubtidka9KkCVJTU+Hp6anU+aJyvL6SeXFxMezt7cHj8RAeHq7VMuqTiRMnolGjRnLTly1bhpKSEoV5XLhwAceOHZOb/sEHH8Da2lrtMhJCag8KbohOVfWFU5WGDRvCwsJC5evOnDmD1NRU8bZp0yaNyiGppKQERkZGcHJygrGx8i27TZo0wfbt26WOHTp0CFZWVlorm74yNTXFwoUL5abHx8eL16KS5fnz53j77bflpltYWODDDz/UqIyEkNqDghsDImq2WLduHZydnWFvb485c+agtLRUfE5xcTEWL16MJk2aQCAQoFWrVti6das4/ebNmwgKCoKVlRUcHR0xceJEvHjxQpzu5+eH999/H/PmzUODBg0QGBgIV1dXAMDIkSPB4/HEr5OSkjB8+HA4OjrCysoKXbp0wZkzZ6TK/HqzFI/Hw6+//oqRI0fCwsICrVu3xpEjRyq9V3t7ezg5OYk3W1tbuc/lr7/+Qrt27SAQCODq6or169dXKsOqVaswadIk2NjYYObMmZWapTIzMzF+/Hg0bNgQ5ubmaN26daVAZvLkydizZw8KCwvFx7Zt2yazA+uNGzfQr18/mJubw97eHjNnzkReXp44vby8HAsWLICdnR3s7e3x8ccf4/U1cIVCIdasWYPmzZvD3Nwc7du3xwEtrclUE2bMmIH69evLTf/uu+9w8ODBSseFQiEmTpyIp0+fyriKM3PmTFpHihA9QsGNgQkLC0NSUhLCwsKwc+dO7NixAzt27BCnT5o0CX/++Se+//57JCQk4KeffhLXLGRlZaFfv37w8fFBTEwMTpw4gWfPnmHMmDFS99i5cydMTU0RERGBLVu2IDo6GgCwfft2pKamil/n5eVh8ODBCA0NxdWrVzFo0CAEBwcjJSVF4Xv4/PPPMWbMGFy/fh2DBw/G+PHjkZGRodbziI2NxZgxY/D222/jxo0bWLFiBZYuXSr1TABg3bp1aN++Pa5evYqlS5dWymfp0qW4ffs2jh8/joSEBGzevBkNGjSQOqdTp05wdXXFX3/9BQBISUnB+fPnK00Yl5+fj8DAQNSrVw/R0dHYv38/zpw5g/fff198zvr167Fjxw5s27YNFy9eREZGBg4dOiSVz5o1a7Br1y5s2bIFt27dwvz58zFhwgScO3dOrWdV06ysrDB//nyF50ybNg0PHjyQOvbVV1/h5MmTcq8RCAQKa4UIIXUQMzDZ2dkMAMvOzq6UVlhYyG7fvs0KCwulEzp1YqxRo+rfOnVS+n317duXzZ07t9Lx7du3M1tbW8YYY5MnT2bNmjVjZWVl4vQ333yTvfXWW4wxxhITExkAdvr0aZn3WLVqFQsICJA69ujRIwaAJSYmisvh4+NT6VoA7NChQ1W+j3bt2rEffvhB/LpZs2bs22+/lcrns88+E7/Oy8tjANjx48cZY4wlJyczAMzc3JxZWlqKt7i4OMYYY2FhYQwAy8zMZIwxNm7cODZw4ECpMnz00UfMw8NDqgwjRoyQOkd0n6tXrzLGGAsODmZTp06V+75E73/jxo3M39+fMcbY559/zkaOHMkyMzMZABYWFsYYY+znn39m9erVY3l5eeLrjx49yvh8PktLS2OMMebs7My+/vprcXppaSlr3LgxGz58OGOMsaKiImZhYcEuXbokVY7p06ezsWPHynwWssj9magh+fn5zMPDg4FbLUHm5unpyc6ePctycnLYunXrGJ/PV3i+5HMkhNReir6/X0dDwZWRlgY8eVLTpdCKdu3awUhiPhBnZ2fcuHEDANdvwcjICH379pV57bVr1xAWFiazj0hSUhLc3NwAcDUUysjLy8OKFStw9OhRpKamoqysDIWFhVXW3Hh7e4v3LS0tYWNjg/T0dKlz9u7dC3d3d/HrJk2ayMwrISEBw4cPlzrWs2dPbNy4EeXl5eJn1blzZ4Vlmj17NkaNGoW4uDgEBARgxIgRMme5nTBhAj755BM8ePAAO3bswPfffy+zTO3bt4elpaVUmYRCIRITE2FmZobU1FR069ZNnG5sbIzOnTuLm6bu37+PgoICDBw4UCrvkpIS+Pj4KHwvtZmFhQX279+PLl26oKCgQOY5N2/eRL9+/WBiYiLV5CrLkCFDqNaGED1EwY0ynJxq/X1tbGyQLWOF5KysLKn+JiYmJlLpPB4PQiG3so7kIoWy5OXlITg4GGvXrq2U5uzsLN6X/FJWZNGiRTh9+jTWrVuHVq1awdzcHKNHj66yE7Ki9yDSpEkTtGrVSqlyKKOq9xQUFIT//vsPx44dw+nTp9G/f3/MmTMH69atkzrP3t4eQ4cOxfTp01FUVISgoCDk5uZqrZwiov45R48erTTKqK4vCOnh4YHNmzdXOdleVYFNkyZNsHPnTpqNmBA9RMGNMmJiaroEVWrTpg1OnTpV6XhcXJy4RqUqXl5eEAqFOHfuHAYMGFApvWPHjvjrr7/g6uqq0ighgAtIysulV/GJiIjAlClTxIsj5uXl4eHDhyrlqyl3d3dERERUKpebm5tUDZcyGjZsiMmTJ2Py5Mno3bs3Pvroo0rBDcD1Cxk8eDAWL14s8x7u7u7YsWMH8vPzxUFVREQE+Hw+2rRpA1tbWzg7OyMqKgp9+vQBAJSVlSE2NhYdO3YEwAUAAoEAKSkpcmvi6rJJkybh3Llz2LZtm1rXGxsbY+/evdSJmBA9RX+y6InZs2fj7t27+PDDD3H9+nUkJiZiw4YN+PPPP5Wudnd1dcXkyZMxbdo0HD58GMnJyQgPD8e+ffsAAHPmzEFGRgbGjh2L6OhoJCUl4eTJk5g6dWqlwEVW3qGhoUhLS0NmZiYAoHXr1jh48CDi4+Nx7do1jBs3rlINjK4tXLgQoaGhWLVqFe7evYudO3fif//7HxYtWqRSPsuWLcPff/+N+/fv49atW/j333+lmsUkDRo0CM+fP8fKlStlpo8fPx5mZmaYPHkybt68ibCwMHzwwQeYOHEiHB0dAQBz587FV199hcOHD+POnTt47733pCbjs7a2xqJFizB//nzs3LkTSUlJiIuLww8//ICdO3eq9N5qqx9++EHpeYZet2bNGvj6+mq5RISQ2oKCGz3RokULnD9/Hnfu3MGAAQPQrVs37Nu3D/v378egQYOUzmfz5s0YPXo03nvvPbRt2xYzZsxAfn4+AMDFxQUREREoLy9HQEAAvLy8MG/ePNjZ2VVZtb9+/XqcPn0aTZo0Eff52LBhA+rVq4cePXogODgYgYGB4pqH6tKxY0fs27cPe/bsgaenJ5YtW4aVK1diypQpKuVjamqKkJAQeHt7o0+fPjAyMsKePXtknsvj8dCgQQOYmprKTLewsMDJkyeRkZGBLl26YPTo0ejfvz/+97//ic9ZuHAhJk6ciMmTJ8PX1xfW1tbiGjCRVatWYenSpVizZg3c3d0xaNAgHD16FM2bN1fpvdVWFhYWOHz4sNI1kyLvv/8+9bMhRM/xGHttcgw9l5OTA1tbW2RnZ8PGxkYqraioCMnJyWjevDmtL0MI6sbPRHZ2NlasWIFffvlFHIjL4unpiaVLl1aauoAQUjco+v5+HdXcEELqNFtbW3z77bd49OgRvvrqK6nO7QDQv39/nDhxAtevX6fAhhADQR2KCSF6oV69eli8eDHmz5+PuLg4PHr0CF26dBHPiE0IMRwU3BBC9IqpqSm6d++O7t2713RRCCE1pFY0S23atAmurq4wMzNDt27dcOXKFaWu27NnD3g8HkaMGKHbAhJCCCGkzqjx4Gbv3r1YsGABli9fjri4OLRv3x6BgYGVZpx93cOHD7Fo0SL07t27mkpKCCGEkLqgxoObDRs2YMaMGZg6dSo8PDywZcsWWFhYKJycq7y8HOPHj8fnn3+OFi1aaL1MBjaAjBC56GeBEFIX1WhwU1JSgtjYWKnZcPl8PgYMGIDIyEi5161cuRIODg6YPn16lfcoLi5GTk6O1CaPaFp/eWvWEGJoRD8Lry95QQghtVmNdih+8eIFysvLxbOuijg6OuLOnTsyr7l48SK2bt2K+Ph4pe6xZs0afP7550qda2RkBDs7O3GTmIWFBXg8nlLXEqJPGGMoKChAeno67OzsVF6KghBCalKdGi2Vm5uLiRMn4pdffkGDBg2UuiYkJAQLFiwQv87JyZG7QjQAOL1arLKqPj+EGAI7OzvxzwQhhNQVNRrcNGjQAEZGRnj27JnU8WfPnsn8hZqUlISHDx8iODhYfEy0FpGxsTESExPRsmVLqWsEAoFKqyDzeDw4OzvDwcGhylWFCdFnJiYmVGNDCKmTajS4MTU1RadOnRAaGioezi0UChEaGor333+/0vlt27bFjRs3pI599tlnyM3NxXfffaewRkZVRkZG9IudEEIIqYNqvFlqwYIFmDx5Mjp37oyuXbti48aNyM/Px9SpUwEAkyZNQqNGjbBmzRqYmZlVWgXYzs4OANReHZgQQggh+qXGg5u33noLz58/x7Jly5CWloYOHTrgxIkT4k7GKSkpVa44TQghhBAiQquCE0IIIaTWU+X7u8ZrbqqbKJZTNN8NIYQQQmoX0fe2MnUyBhfc5ObmAoBWOx8TQgghpHrk5ubC1tZW4TkG1ywlFArx9OlTWFtba32CPtEcOo8ePaImLyXQ81INPS/l0bNSDT0v1dDzUo22nhdjDLm5uXBxcamyL67B1dzw+Xw0btxYp/ewsbGhD7wK6Hmphp6X8uhZqYael2roealGG8+rqhobERqGRAghhBC9QsENIYQQQvQKBTdaJBAIsHz5cpWWezBk9LxUQ89LefSsVEPPSzX0vFRTE8/L4DoUE0IIIUS/Uc0NIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwU4U1a9agS5cusLa2hoODA0aMGIHExESZ5zLGEBQUBB6Ph8OHD0ulpaSkYMiQIbCwsICDgwM++ugjlJWVVcM7qF7KPC8/Pz/weDypbdasWVLnGMLzUvazFRkZiX79+sHS0hI2Njbo06cPCgsLxekZGRkYP348bGxsYGdnh+nTpyMvL68630q1qOp5PXz4sNLnSrTt379ffJ4hfLYA5T5faWlpmDhxIpycnGBpaYmOHTvir7/+kjqHPl8VkpKSMHLkSDRs2BA2NjYYM2YMnj17JnWOoTyvzZs3w9vbWzx3ja+vL44fPy5OLyoqwpw5c2Bvbw8rKyuMGjWq0rPS6c8iIwoFBgay7du3s5s3b7L4+Hg2ePBg1rRpU5aXl1fp3A0bNrCgoCAGgB06dEh8vKysjHl6erIBAwawq1evsmPHjrEGDRqwkJCQanwn1UOZ59W3b182Y8YMlpqaKt6ys7PF6YbyvJR5VpcuXWI2NjZszZo17ObNm+zOnTts7969rKioSHzOoEGDWPv27dnly5fZhQsXWKtWrdjYsWNr4i3pVFXPq6ysTOozlZqayj7//HNmZWXFcnNzxecYwmeLMeU+XwMHDmRdunRhUVFRLCkpia1atYrx+XwWFxcnPoc+X9zzysvLYy1atGAjR45k169fZ9evX2fDhw9nXbp0YeXl5eJ8DOV5HTlyhB09epTdvXuXJSYmsk8//ZSZmJiwmzdvMsYYmzVrFmvSpAkLDQ1lMTExrHv37qxHjx7i63X9s0jBjYrS09MZAHbu3Dmp41evXmWNGjViqamplYKbY8eOMT6fz9LS0sTHNm/ezGxsbFhxcXF1Fb1GyHpeffv2ZXPnzpV7jaE+L1nPqlu3buyzzz6Te83t27cZABYdHS0+dvz4ccbj8diTJ090Wt6aJu9nUVKHDh3YtGnTxK8N9bPFmOznZWlpyXbt2iV1Xv369dkvv/zCGKPPl+TzOnnyJOPz+VJ/iGVlZTEej8dOnz7NGDPs58UYY/Xq1WO//vory8rKYiYmJmz//v3itISEBAaARUZGMsZ0/7NIzVIqys7OBgDUr19ffKygoADjxo3Dpk2b4OTkVOmayMhIeHl5wdHRUXwsMDAQOTk5uHXrlu4LXYNkPS8A+P3339GgQQN4enoiJCQEBQUF4jRDfV6vP6v09HRERUXBwcEBPXr0gKOjI/r27YuLFy+Kr4mMjISdnR06d+4sPjZgwADw+XxERUVV7xuoZvI+WyKxsbGIj4/H9OnTxccM9bMFyH5ePXr0wN69e5GRkQGhUIg9e/agqKgIfn5+AOjzBVQ8r+LiYvB4PKm5WszMzMDn88U/k4b6vMrLy7Fnzx7k5+fD19cXsbGxKC0txYABA8TntG3bFk2bNkVkZCQA3f8sUnCjAqFQiHnz5qFnz57w9PQUH58/fz569OiB4cOHy7wuLS1N6j8QgPh1Wlqa7gpcw+Q9r3HjxuG3335DWFgYQkJCsHv3bkyYMEGcbojPS9azevDgAQBgxYoVmDFjBk6cOIGOHTuif//+uHfvHgDueTg4OEjlZWxsjPr16+vtswLkf7Ykbd26Fe7u7ujRo4f4mCF+tgD5z2vfvn0oLS2Fvb09BAIB3n33XRw6dAitWrUCQJ8vyefVvXt3WFpaYvHixSgoKEB+fj4WLVqE8vJypKamAjC853Xjxg1YWVlBIBBg1qxZOHToEDw8PJCWlgZTU1PY2dlJne/o6Ch+Drr+WTS4hTM1MWfOHNy8eVPqL+cjR47g7NmzuHr1ag2WrHaS9bwAYObMmeJ9Ly8vODs7o3///khKSkLLli2ru5i1gqxnJRQKAQDvvvsupk6dCgDw8fFBaGgotm3bhjVr1tRIWWsDeZ8tkcLCQvzxxx9YunRpNZesdpL3vJYuXYqsrCycOXMGDRo0wOHDhzFmzBhcuHABXl5eNVTamifreTVs2BD79+/H7Nmz8f3334PP52Ps2LHo2LFjlStU66s2bdogPj4e2dnZOHDgACZPnoxz587VdLEAUHCjtPfffx///vsvzp8/L7Wq+NmzZ5GUlFQpQh01ahR69+6N8PBwODk54cqVK1Lpol7jspqx9IG85yVLt27dAAD3799Hy5YtDe55yXtWzs7OAAAPDw+p893d3ZGSkgKAex7p6elS6WVlZcjIyNDLZwUo99k6cOAACgoKMGnSJKnjhvbZAuQ/r6SkJPzvf//DzZs30a5dOwBA+/btceHCBWzatAlbtmyhz9drn6+AgAAkJSXhxYsXMDY2hp2dHZycnNCiRQsAhvfzaGpqKq7l69SpE6Kjo/Hdd9/hrbfeQklJCbKysqS+G589eyZ+Djr/WdS4146eEwqFbM6cOczFxYXdvXu3Unpqaiq7ceOG1AaAfffdd+zBgweMsYqOU8+ePRNf99NPPzEbGxupUS/6oKrnJcvFixcZAHbt2jXGmOE8r6qelVAoZC4uLpU6FHfo0EE8okDUgTEmJkacfvLkSb3swKjKZ6tv375s1KhRlY4bymeLsaqf1/Xr1xkAdvv2banjAQEBbMaMGYwx+nxVJTQ0lPF4PHbnzh3GmGE9L1n8/f3Z5MmTxR2KDxw4IE67c+eOzA7FuvpZpOCmCrNnz2a2trYsPDxcaohpQUGB3GsgZyh4QEAAi4+PZydOnGANGzbUy+GnVT2v+/fvs5UrV7KYmBiWnJzM/v77b9aiRQvWp08fcR6G8ryU+Wx9++23zMbGhu3fv5/du3ePffbZZ8zMzIzdv39ffM6gQYOYj48Pi4qKYhcvXmStW7fWy6Gnyv4s3rt3j/F4PHb8+PFKeRjKZ4uxqp9XSUkJa9WqFevduzeLiopi9+/fZ+vWrWM8Ho8dPXpUnA99vio+X9u2bWORkZHs/v37bPfu3ax+/fpswYIFUvkYyvP65JNP2Llz51hycjK7fv06++STTxiPx2OnTp1ijHFDwZs2bcrOnj3LYmJimK+vL/P19RVfr+ufRQpuqgBA5rZ9+3aF10gGN4wx9vDhQxYUFMTMzc1ZgwYN2MKFC1lpaaluC18DqnpeKSkprE+fPqx+/fpMIBCwVq1asY8++khqeCVjhvG8lP1srVmzhjVu3JhZWFgwX19fduHCBan0ly9fsrFjxzIrKytmY2PDpk6dKp7XRZ8o+7xCQkJYkyZNpOYekWQIny3GlHted+/eZW+88QZzcHBgFhYWzNvbu9LQcPp8bRefs3jxYubo6MhMTExY69at2fr165lQKJTKx1Ce17Rp01izZs2Yqakpa9iwIevfv784sGGMscLCQvbee++xevXqMQsLCzZy5EiWmpoqlYcufxZpVXBCCCGE6BXD7OJNCCGEEL1FwQ0hhBBC9AoFN4QQQgjRKxTcEEIIIUSvUHBDCCGEEL1CwQ0hhBBC9AoFN4QQQgjRKxTcEEIIIUSvUHBDiAEJDw8Hj8dDVlaWRvlMmTIFI0aM0EqZtJlXbb731q1bERAQUO3lOXHiBDp06CBeZZ4QQ0DBDSF10JYtW2BtbY2ysjLxsby8PJiYmMDPz0/qXFFAk5SUhB49eiA1NRW2trY6LZ/onjweD3w+H7a2tvDx8cHHH3+M1NRUqXO/++477NixQ6flefjwIXg8HuLj46v93gBQVFSEpUuXYvny5Tq/1+sGDRoEExMT/P7779V+b0JqCgU3hNRB/v7+yMvLQ0xMjPjYhQsX4OTkhKioKBQVFYmPh4WFoWnTpmjZsiVMTU3h5OQEHo9XLeVMTEzE06dPER0djcWLF+PMmTPw9PTEjRs3xOfY2trCzs5Obh4lJSU6K19V99aWAwcOwMbGBj179tT5vWSZMmUKvv/++xq5NyE1gYIbQuqgNm3awNnZGeHh4eJj4eHhGD58OJo3b47Lly9LHff39xfvSzZL7dixA3Z2djh58iTc3d1hZWWFQYMGSdWulJeXY8GCBbCzs4O9vT0+/vhjKLsknYODA5ycnODm5oa3334bERERaNiwIWbPni0+5/WmGD8/P7z//vuYN28eGjRogMDAQADAzZs3ERQUBCsrKzg6OmLixIl48eKF+DqhUIivv/4arVq1gkAgQNOmTfHll18CAJo3bw4A8PHxAY/HE9duvX7v4uJifPjhh3BwcICZmRl69eqF6OhoqWfJ4/EQGhqKzp07w8LCAj169EBiYqLC57Bnzx4EBwdLHVPmuQqFQqxZswbNmzeHubk52rdvjwMHDkidc+TIEbRu3RpmZmbw9/fHzp07KzU9BgcHIyYmBklJSQrLSYi+oOCGkDrK398fYWFh4tdhYWHw8/ND3759xccLCwsRFRUlDm5kKSgowLp167B7926cP38eKSkpWLRokTh9/fr12LFjB7Zt24aLFy8iIyMDhw4dUqvM5ubmmDVrFiIiIpCeni73vJ07d8LU1BQRERHYsmULsrKy0K9fP/j4+CAmJgYnTpzAs2fPMGbMGPE1ISEh+Oqrr7B06VLcvn0bf/zxBxwdHQEAV65cAQCcOXMGqampOHjwoMz7fvzxx/jrr7+wc+dOxMXFoVWrVggMDERGRobUeUuWLMH69esRExMDY2NjTJs2TeH7vnjxIjp37ix1TJnnumbNGuzatQtbtmzBrVu3MH/+fEyYMAHnzp0DACQnJ2P06NEYMWIErl27hnfffRdLliypdP+mTZvC0dERFy5cUFhOQvSGVtYWJ4RUu19++YVZWlqy0tJSlpOTw4yNjVl6ejr7448/WJ8+fRhjjIWGhjIA7L///mOMMRYWFsYAsMzMTMYYY9u3b2cA2P3798X5btq0iTk6OopfOzs7s6+//lr8urS0lDVu3JgNHz5cbtlev4+k48ePMwAsKiqKMcbY5MmTpfLq27cv8/Hxkbpm1apVLCAgQOrYo0ePGACWmJjIcnJymEAgYL/88ovM8iQnJzMA7OrVq1LHJe+dl5fHTExM2O+//y5OLykpYS4uLuL3L3pfZ86cEZ9z9OhRBoAVFhbKvHdmZiYDwM6fPy91vKrnWlRUxCwsLNilS5ekrps+fTobO3YsY4yxxYsXM09PT6n0JUuWyHz2Pj4+bMWKFTLLSIi+Ma6hmIoQoiE/Pz/k5+cjOjoamZmZcHNzQ8OGDdG3b19MnToVRUVFCA8PR4sWLdC0aVO5+VhYWKBly5bi187OzuJalezsbKSmpqJbt27idGNjY3Tu3FnppqnXia5T1O+nU6dOUq+vXbuGsLAwWFlZVTo3KSkJWVlZKC4uRv/+/dUqkyif0tJSqX4xJiYm6Nq1KxISEqTO9fb2Fu87OzsDANLT02U+58LCQgCAmZmZ+Jgyz/X+/fsoKCjAwIEDpfIrKSmBj48PAK5PU5cuXaTSu3btKvP9mZubo6CgQM67J0S/UHBDSB3VqlUrNG7cGGFhYcjMzETfvn0BAC4uLmjSpAkuXbqEsLAw9OvXT2E+JiYmUq95PJ7agYsyRIGCq6ur3HMsLS2lXufl5SE4OBhr166tdK6zszMePHig1TJWRfKZiYI0eUOt7e3twePxkJmZqdI98vLyAABHjx5Fo0aNpNIEAoFKeQFARkYGGjZsqPJ1hNRF1OeGkDrM398f4eHhCA8PlxoC3qdPHxw/fhxXrlxR2N+mKra2tnB2dkZUVJT4WFlZGWJjY9XKr7CwED///DP69Omj0hdtx44dcevWLbi6uqJVq1ZSm6WlJVq3bg1zc3OEhobKvN7U1BQA14lXHtFosoiICPGx0tJSREdHw8PDQ+myyrq3h4cHbt++LT6mzHP18PCAQCBASkpKpffcpEkTAFzHcskRcwCkOkCLFBUVISkpSVzjQ4i+o+CGkDrM398fFy9eRHx8vLjmBgD69u2Ln376CSUlJRoFNwAwd+5cfPXVVzh8+DDu3LmD9957T+lJANPT05GWloZ79+5hz5496NmzJ168eIHNmzerVIY5c+YgIyMDY8eORXR0NJKSknDy5ElMnToV5eXlMDMzw+LFi/Hxxx9j165dSEpKwuXLl7F161YA3Kgtc3NzcUfk7OzsSvewtLTE7Nmz8dFHH+HEiRO4ffs2ZsyYgYKCAkyfPl2l8r4uMDAQFy9elDpW1XO1trbGokWLMH/+fOzcuRNJSUmIi4vDDz/8gJ07dwIA3n33Xdy5cweLFy/G3bt3sW/fPvG8PZLNfpcvX4ZAIICvr69G74OQuoKapQipw/z9/VFYWIi2bduKRwYBXHCTm5srHjKuiYULFyI1NRWTJ08Gn8/HtGnTMHLkSJkBwuvatGkDHo8HKysrtGjRAgEBAViwYAGcnJxUKoOLiwsiIiKwePFiBAQEoLi4GM2aNcOgQYPA53N/oy1duhTGxsZYtmwZnj59CmdnZ8yaNQsA15/l+++/x8qVK7Fs2TL07t1bahi9yFdffQWhUIiJEyciNzcXnTt3xsmTJ1GvXj2Vyvu66dOno3PnzsjOzhZPoKjMc121ahUaNmyINWvW4MGDB7Czs0PHjh3x6aefAuCGuB84cAALFy7Ed999B19fXyxZsgSzZ8+Warr6888/MX78eFhYWGj0PgipK3hMl43rhBBCAABvvvkmOnbsiJCQEJ3e58svv8SWLVvw6NEjAMCLFy/EzVei+X4I0XfULEUIIdXgm2++kTnaS1M//vgjoqOj8eDBA+zevRvffPMNJk+eLE5/+PAhfvzxRwpsiEGhmhtCCKnD5s+fj7179yIjIwNNmzbFxIkTERISAmNj6nVADBcFN4QQQgjRK9QsRQghhBC9QsENIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwQwghhBC9QsENIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwQwghhBC98n/D28aidkixHAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ufmodel.set(wind_data=time_series, layout_x=layout_x, layout_y=layout_y)\n", + "ufmodel.run()\n", + "\n", + "# Get the power of the downstream turbine\n", + "f_power = fmodel.get_turbine_powers()[:,1]\n", + "uf_power = ufmodel.get_turbine_powers()[:,1]\n", + "\n", + "# Plot the two powers\n", + "fig, ax = plt.subplots()\n", + "ax.plot(wind_directions, f_power, label=\"FlorisModel\", color='k', lw=5)\n", + "ax.plot(wind_directions, uf_power, label=\"UncertainFlorisModel\", color='r', lw=2)\n", + "ax.set_xlabel(\"Wind Direction (deg)\")\n", + "ax.set_ylabel(\"Turbine Power (kW)\")\n", + "ax.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "floris", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 20677e0df1e99caaec5129c26b3e81ebb1628c61 Mon Sep 17 00:00:00 2001 From: misi9170 Date: Mon, 7 Oct 2024 14:21:23 -0600 Subject: [PATCH 5/5] Some typo fixes --- docs/advanced_concepts.ipynb | 2 +- docs/floris_models.ipynb | 62 ++++++++++++--------------------- docs/intro_concepts.ipynb | 2 +- examples/009_parallel_models.py | 18 +++++----- 4 files changed, 33 insertions(+), 51 deletions(-) diff --git a/docs/advanced_concepts.ipynb b/docs/advanced_concepts.ipynb index c13513c79..45fb9c017 100644 --- a/docs/advanced_concepts.ipynb +++ b/docs/advanced_concepts.ipynb @@ -9,7 +9,7 @@ "# Advanced Concepts\n", "\n", "More information regarding the numerical and computational formulation in FLORIS\n", - "are detailed here. See [](concepts_intro) for a guide on the basics." + "are detailed here. See [Introductory Concepts](intro_concepts) for a guide on the basics." ] }, { diff --git a/docs/floris_models.ipynb b/docs/floris_models.ipynb index b52cfccab..9047b8f10 100644 --- a/docs/floris_models.ipynb +++ b/docs/floris_models.ipynb @@ -8,7 +8,7 @@ "\n", "# FLORIS Models\n", "\n", - "This notebook provides information on the three provided FlorisModels. [](concepts_intro) introduced `FlorisModel` as the base class for all models in the FLORIS package. This notebook introduces the `UncertainFlorisModel` and `ParFlorisModel` classes, which are subclasses or compositions of `FlorisModel`.\n" + "This notebook provides information on the three provided FlorisModels. [Introductory Concepts](intro_concepts) introduced `FlorisModel` as the base class for all models in the FLORIS package. This notebook introduces the `UncertainFlorisModel` and `ParFlorisModel` classes, which are subclasses or compositions of `FlorisModel`.\n" ] }, { @@ -32,7 +32,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -57,8 +57,8 @@ "\n", "The `ParFlorisModel` class has additional parameters the define the parallelization. These parameters are:\n", "\n", - "**interface**: The parallelization interface to use. Options are \"multiprocessing\",\n", - " \"pathos\", and \"concurrent\", with possible future support for \"mpi4py\"\n", + "**interface**: The parallelization interface to use. Options are `\"multiprocessing\"`,\n", + " `\"pathos\"`, and `\"concurrent\"`, with possible future support for `\"mpi4py\"`\n", "\n", "**max_workers**: The maximum number of workers to use. Defaults to -1, which then\n", " takes the number of CPUs available.\n", @@ -73,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -94,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -121,22 +121,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8xklEQVR4nO3dd3gU1f7H8femQ0ISegi99xKKEHqTZgG7iIKC2K9YsGC5ovcqNlT8XUVsgAoioIiFogKht9B7CVUNRFpCSE/m98fubDZkE5KwyaZ8Xs8zz2bPmZn97rBhvznnzDkWwzAMREREREoJD3cHICIiIuJKSm5ERESkVFFyIyIiIqWKkhsREREpVZTciIiISKmi5EZERERKFSU3IiIiUqoouREREZFSRcmNiIiIlCpKbkRERKRUKdPJzapVq7jhhhsIDQ3FYrHw448/5vschmHw7rvv0qRJE3x9falZsyavv/6664MVERGRPPFydwDudOnSJdq2bcvo0aO5+eabC3SOcePG8dtvv/Huu+/SunVrzp07x7lz51wcqYiIiOSVRQtnWlksFhYsWMCwYcPsZcnJybz44ot8++23XLhwgVatWvHWW2/Ru3dvAPbt20ebNm3YvXs3TZs2dU/gIiIikkWZ7pa6kscee4z169czZ84cdu7cyW233cagQYM4dOgQAD///DMNGjTgl19+oX79+tSrV4/7779fLTciIiJupOQmBydOnGD69OnMmzePHj160LBhQ8aPH0/37t2ZPn06AEeOHOH48ePMmzePr776ihkzZrBlyxZuvfVWN0cvIiJSdpXpMTe52bVrF+np6TRp0iRLeXJyMpUrVwYgIyOD5ORkvvrqK/t+X3zxBR06dODAgQPqqhIREXEDJTc5iI+Px9PTky1btuDp6ZmlLiAgAIAaNWrg5eWVJQFq3rw5YG35UXIjIiJS9JTc5CAsLIz09HRiYmLo0aOH0326detGWloaUVFRNGzYEICDBw8CULdu3SKLVURERDKV6bul4uPjOXz4MGBNZt577z369OlDpUqVqFOnDnfffTdr165l8uTJhIWF8c8//7Bs2TLatGnDddddR0ZGBp06dSIgIIAPPviAjIwMHn30UQIDA/ntt9/c/O5ERETKpjKd3ERERNCnT59s5aNGjWLGjBmkpqby3//+l6+++oq//vqLKlWq0KVLF1599VVat24NwN9//82//vUvfvvtN/z9/Rk8eDCTJ0+mUqVKRf12REREhDKe3IiIiEjpo1vBRUREpFRRciMiIiKlSpm7WyojI4O///6bChUqYLFY3B2OiIiI5IFhGFy8eJHQ0FA8PHJvmylzyc3ff/9N7dq13R2GiIiIFMDJkyepVatWrvuUueSmQoUKgPXiBAYGujkaERERyYu4uDhq165t/x7PTZlLbsyuqMDAQCU3IiIiJUxehpRoQLGIiIiUKkpuREREpFRRciMiIiKlipIbERERKVWU3IiIiEipouRGREREShUlNyIiIlKqKLkRERGRUkXJjYiIiJQqSm5ERESkVClzyy+42ocffsjx48fdHUahutJU15fXm88tFkuWn81HDw8Pe52npyceHh72zdPT0755eXnh7e1tf/Tx8cHPzw9fX198fX0pX748/v7+BAQEEBAQQFBQED4+PoVwBUSkpDIMg0uXLhEbG8ulS5e4dOkSCQkJJCQkkJycbN9SUlJITU0lLS2N1NRU0tPTs2wZGRn2zTCMbI/mZr6m4+tfHs+V4i1tXn31VQICAor0NS1GabySuYiLiyMoKIjY2FiXrC3VtWtX1q9f74LIxBXKlStHcHAwlSpVonr16oSEhBASEkJoaCj169enQYMGNGjQQOuKiZRwaWlp/Pnnnxw7dsy+RUdHc/r0aWJiYoiJieH8+fPExsaSnp7u7nDLtH/++YcqVapc9Xny8/2tlhsXagjckof9MoB3LyvrD7TPw7FRwPeXlY0FKubh2D+ArQ7Pg4EH8nAcwKfABYfn7YBrc9jXcHi8AHxxWf11QH1bfcZlW7rDdhCIvOzYa4A0IBlIAOKBS0Ci7XyJiYkkJiYSHR3Nnj17cnw/1atXp23btrRr146wsDA6duxIw4YN87Qgm4gUraSkJDZu3EhkZCS7du1i586d7N27l+Tk5HydxwMIAcrbNj/A17b5YP1C9LY9LgFiHY5tCvSxncPi5BHb4yVg2mWvez3Q3GGfnOwGFl1W9rgtziv5Gdjn8DwEGJmH4wA+BJIcnocDPfJw3Cngq8vK7gLOYb1+bmWUMbGxsQZgxMbGuuR84eHhBtbvVeN6MIw8bMm2/R23/8vjsT85OfZgHo999LLjGuTxOAOMhpcd+3AejzvsJN4f83jsJ06OvZjDvulgnAPjCBhbbf8Wjsf5gdEZjKpOzmludevWNe6//37ju+++M86dO+eSz4eIFMzWrVuN//73v0bfvn0NPz8/p7+zvmA0BmMAGA+A8art/40fwFgDxh2X/47n4/+81pcdOyqPx0U7iXNWHo+d4eTYM3k8dvhlx3XIx3utdNmxL+TxuM1O4l0JxqeXlf3zzz8u+Uzk5/tbLTdSqAwnZXkdxZ7qpCynv2A8sLZeVXR47qgVsMH280Wsf+Fsd9i2AMePH+fzzz/n888/x9vbmzvuuIPHH3+cTp065TFiEbka8fHxfPvtt3zyySds3bo1x/2+AroBDa5wvp8ve34pH7F4XvY8Ix/HivspuXGhSGBYHvZz9oX/GdZuoys55aTsEcA/D8fudHKuYXk4ztnrLgFucrKfY/Os2UR7uXeBb8narOuB9T8Tx22Xk2M/xNqE7Ie1WdnftlUAgshMcC6Pt6HDzxWwdm9d41CWAKwCfgc+BpJSU/nmm2/45ptvCA8PZ9y4cdx66614el7+X56IXK3jx48zefJkZsyYwcWLFwHr7/n1WH/Pv75s/4ZcObHBdqyjeKzd+glYu7KTsHZxJwEpWP+gSrM9/nXZsWuBUViTHIPMrnTHJgrI2r1jeh+Y5/Dc2XcAwEknZSOxdpVdyZbLnkeR9//fL172fD6Qc6d+pgtOyl7Eep3dTQOKr5IGFJcMnbH+J9EAaGR7dNaCdA6oivO/0po1a8a///1vbr/9diU5Ii6wf/9+3nzzTWbNmkVaWhoAjYEHgXuBysBxoN5lx30CjMD6BXwEOAocA04Ap4EY4B+ct/5K0XPHgGIlN1dp4cKFxMTEuCCykiGnj4tZ7ljvWHb55nhLpfn88lsvzVsyzS0lJYWkpCSSk5NJTEwkISHBfmvnxYsXiY2NJTY2NscYHfkDbbAOjO6MdUB3Tax/sdx22b6DgY1YEx+A5s2b89prr3HLLbdoALJIAfz999+MHz+eOXPm2H9f+wHP4fxGhYZYkxiTP9bWl7x8efn4+BAcHExQUBABAQH4+/tTvnx5ypUrl2VqCV9fX7y9ve3TT3h5eWWZmsLT0zPLVBaOU1pcvoHzKTFyUtr/H7nnnnvw88vLsOjcKbnJhauTGyle0tPTiYuL48yZM5w6dYpTp04RHR3NsWPHOHLkCEeOHOHw4cMkJiZmO7Y51u6w3Q5lFchsnv4QmAyctz2/7rrrmDZtGjVr1izEdyRSemRkZDBt2jSef/554uLisAA3Ai+QtZsYrN07c7F2YUfgvLsnNDSUxo0bU69ePerVq0fdunUJCQmhWrVqVK9encqVK1OuXLnCfEtShJTc5ELJjaSnp3Po0CG2bdvGtm3bWLVqFZs3byYjI3tn1L+wJjWmOOA94E2sffVBQUF88MEHjBo1qtT/9SVyNfbs2cMDDzzAunXrAOsfDquwtp46OgxMBWaQ2VoKUKVKFXr37k337t1p27YtrVu3pnLlyoUfuBQbSm5yoeRGnDl//jwrVqzghx9+YO7cuaSmWnvrawETgPuxzoNh2gfch7W7CmDIkCF8/fXXVKpUqSjDFikRvvnmG+6///5s89J8C9xp+3kb8AbwA5lj3urWrcvYsWO58cYbadmyJR4eWjGoLFNykwslN3Ilp06d4tNPP2Xq1KmcOmW976oO1iRnNJlJTjrWVpx/Y20yb9KkCb/++iuNGjVyQ9QixU96ejoTJkzgnXfecVpfHZiN9Q7KxQ7l1113HY888ggDBw7U4H2xU3KTCyU3klfJycl88cUXvPHGG/z1l3XkTUtgOuA4881urLesHgcqV67MwoUL6datW5HHK1KcxMbGctddd7FokXXO3ReA1bbNGQ8PD4YPH87zzz9Pq1atiipMKUHy8/2tNj6RHPj6+vLII49w+PBh/u///o9q1aqxB+vU5M9jHXMD1ttUg20/nz17ln79+jFnzpyiD1ikmIiOjqZr164sWrSIcsAc4HWsc8zUcbL/nXfeycGDB/nmm2+U2IhLKLkRuQI/Pz8ee+wx9u7dy91330068BbWtcD2ALcDOxz2T05OZvjw4cycOdMd4Yq4VUxMDP369WPv3r3UAtYAd9jqKmNdn8lUr149Fi9ezLfffkvDhg2znUukoJTciORR5cqV+frrr1m4cCEhISHsBdqSdayAozFjxrBw4cIijFDEvc6dO8e1117Lvn37qIX1bihzQeCLwFDATPmfeOIJdu/ezaBBg9wRqpRySm5E8unGG29k586ddO3alXQn9S9gvZMqPT2dO+64g4iIiKINUMQNYmNjGTBgADt37iQEWA7Ut9VFAV2AX7C2hM6ePZv3338ff/+8LBwjkn9KbkQKoGrVqixbtow77rgjS/lkrGMLPsO69lZycjI33ngjkZGRbohSpGgkJydz3XXXsWXLFqoCy7AuowBwCOgB7AVq1qzJ6tWrGT58uLtClTJCyY1IAZl/gb7wwgvZ6jyxzuHRF7h48SKDBw/m5Elny+KJlHz/+c9/WLt2LRWxLgDcwlZ+FOvvQDTQpk0bNm/eTMeOHd0VppQhSm5EroKHhwevv/46kyZNAmA81plVwbqq8UKgA3DmzBkeeeSRPK17JVKS7Ny5k7feeguAR7Gu2QbWRSz7An8CLVq04I8//qBGjRruCVLKHCU3Ii7w3HPPMX78eAyssxn/aCsPAL7BOvHfL7/8ogHGUqqkp6dz//3321f0/i/W1bwPYF0I8xjQuHFj/vjjD6pWrequMKUMUnIj4gIWi4W3336b0aNHk451SnlzaYZmWFt0AP71r38RHx/vlhhFXO3//u//2Lx5c5aymVi7pQ4D9evXZ/ny5WqxkSKn5EbERSwWC9OmTWPo0KEkAw8Aaba6l4AGwJ9//snEiRPdFaKIyxw7dowXX3zRaV0G4Onpyffff0+tWrWKNjARlNyIuJSXlxeff/45lSpVYifwga28HPA/288ffPABO3fudEt8Iq5gGAYPPfQQCQkJdAWudbLP+PHjCQsLK+rQRAAlNyIuV6VKFftCgRMB8x6ptkAo1nEKDz30EBkZGc5PIFLMLVy4kKVLl+KHdQD9b1jXXCtvq2/YsCGvvPKKu8ITUXIjUhjuvfdeunfvziXgX8AUrGNv/rbVr1+/nlmzZrktPpGCSk1N5dlnnwXgaTLns2kMJNp+/uyzzyhXrpwbohOxUnIjUgg8PDyYOnUqXl5eLASewDr9vKOXX36Z5OTk7AeLFGPTpk3j0KFDVMe6gCxYx5Y9ANa7Be+/nz59+uR4vEhRUHIjUkhatWrF008/nWP98ePH+eSTT4owIpGrExsbax8QPxHrVAcAn2Kdgbhq1aq8/fbbbolNxJGSG5FC9PLLL2e7WyQEGGH7+T//+Q+xsbFFHpdIQUyaNImzZ8/SHBhrK4vDmugAvPrqq1SsWNEtsYk4UnIjUoj8/f157bXX7M+fxTr/x0ysY3DOnj3Lu+++66boRPLuxIkTfPDBBwC8jXWJEYBJwD9As2bNuP/++90TnMhllNyIFLKRI0fSsmVLwPoL54/1i+ENW/17773HqVOn3BSdSN68+OKLJCcn0xe43lZ2kszpDt5++228vb3dEpvI5ZTciBQyT09P+9pTU8i8Y+omoAuQkJCQpXVHpLjZuXMn33zzDRbAsZ3xBSAJ6N27N9dff73zg0XcQMmNSBG4/vrr6d69O4mA4+wfb9keP/30U44cOeKGyESuzJyzpgqQYCvbCpiTGbz77rtYLBY3RCbinJIbkSJgsVjsKydPB/bbynsCg7BO7PfGG2/kcLSI+0RGRvLjjz8C1rE13YHBwGNYb/0eMWIEHTp0cFt8Is64NbmZOHEiFosly9asWbNcj5k3bx7NmjXDz8+P1q1bs2jRoiKKVuTqdO3alaFDh5KOda0pk9mSM3PmTI4ePeqGyERy9vLLL2crWwKsB7y9vfnvf/9b5DGJXInbW25atmxJdHS0fVuzZk2O+65bt47hw4czZswYtm3bxrBhwxg2bBi7d+8uwohFCu6NN97AYrHwA7DLVtYFGACkpaWp9UaKlTVr1rBkyZIc68eOHUu9evWKLiCRPLIYhmG468UnTpzIjz/+yPbt2/O0/x133MGlS5f45Zdf7GVdunShXbt2eZ4MLS4ujqCgIGJjYwkMDCxI2CJX5c477+S7777jVmCerWwd0A3rwpuHDh3SF4a4nWEY9OnTh5UrV3IDcAlY7lDv5+dHVFQUoaGhbopQypr8fH+7veXm0KFDhIaG0qBBA0aMGMGJEydy3Hf9+vX0798/S9nAgQNZv359jsckJycTFxeXZRNxp5dffhmLxcL3gNnm2BCoibX1xryzSsSdli9fzsqVK/EFPgaWYU1u/Gz1jzzyiBIbKbbcmtx07tyZGTNmsGTJEqZOncrRo0fp0aMHFy9evgqP1alTp6hevXqWsurVq+c6R8ikSZMICgqyb7Vr13bpexDJr5YtW3LrrbdiABOAJ4H6wF+2+unTp+ea5IsUBfMOqQcBc47tOKy3fvv7+/Pcc8+5KTKRK3NrcjN48GBuu+022rRpw8CBA1m0aBEXLlxg7ty5LnuNCRMmEBsba99OnjzpsnOLFNS///1vAH7BOglaokNdamqqWm/ErTZv3szatWvxwZqAm/5texw3bhzVqlVzQ2QieeP2bilHwcHBNGnShMOHDzutDwkJ4fTp01nKTp8+TUhISI7n9PX1JTAwMMsm4m6tWrXi1ltvzbH+yy+/5J9//inCiEQyTZkyBYA7sa6FBvA9sBMICgpi/PjxbopMJG+KVXITHx9PVFQUNWrUcFofHh7OsmXLspT9/vvvhIeHF0V4Ii5ltt44qoK1CyAlJYUvvviiyGMSiY6Otreej3Mof8/2+Pjjj2txTCn23JrcjB8/npUrV3Ls2DHWrVvHTTfdhKenJ8OHDwesa/JMmJDZKDpu3DiWLFnC5MmT2b9/PxMnTiQyMpLHHnvMXW9BpMBat27NzTffDEA1YAbWtXrMWUOmTp1KWlqae4KTMmvq1KmkpqbSDWhvK4vEekeft7c3jzzyiPuCE8kjtyY3f/75J8OHD6dp06bcfvvtVK5cmQ0bNlC1alXAugptdHS0ff+uXbsye/ZsPv30U9q2bcv8+fP58ccfadWqlbvegshVMZv347AuRuiHtSugCtbPv+O0ByKFLSkpyT6thmOrzRTb45133pnrMACR4sKt89y4g+a5keLEMAw6dOjAtm3beBt4xlY+AXgT6NevH3/88Yf7ApQyZcaMGdx3333UBo4AXsApoC6QgnUpBi21IO5Soua5ESnLLBaLvVt1KpBhK38I8ASWLVvGvn373BSdlCWGYdgHEt+CNbEB6+cyBejWrZsSGykxlNyIuNnw4cOpVKkSRwFzpbS6WLupAD7++GP3BCZlyurVq+2zxX+AdYHM7wBz7vdx48Y5PU6kOFJyI+Jm5cqVY8yYMQD8z6HcHCY/Y8YMzawthe6jjz7K8nwt1vFfMUDt2rW56aab3BGWSIEouREpBh5++GEsFgu/AYdsZf2BZlinSPj666/dF5yUeufOnePHH3/Msf7RRx/Fy8srx3qR4kbJjUgxUL9+fa677joMrOv4mB61PU6bNs0NUUlZMWfOHFJSUpx+IZQrV46xY8cWeUwiV0PJjUgxYQ4snoF1BWaAuwFfYNeuXezYscM9gUmpN2PGDAAmA6uBMUA5W91tt91GpUqV3BOYSAEpuREpJq699loaNWrEBWA+sAPrhH5mZ4C6pqQw7Nmzh82bN+MNjMA6kPh/gI+t/t5773VXaCIFpuRGpJjw8PCwf5E8CLTD+pe02Yoze/Zs0tPT3RKblF4zZ84E4Dqgqq1sARAL1K1bl169erkpMpGCU3IjUoyMGDECgGQnddHR0dnWVhO5GmlpafYWwXsdymfYHkeNGoWHh74mpOTRp1akGKlXrx49e/bMsV5dU+JKv/32G6dOnaIa1pYbgL8Ac07skSNHuicwkauk5EakmLnnnnuyPG9D5jo/P/zwA/Hx8UUek5RO5kDiu8gc2/UV1pmye/bsScOGDd0TmMhVUnIjUszceuut+Pr6AjAb68DiD4AmQEJCAgsWLHBfcFJqnDt3joULFwJwn0P5TNvjfffdl+0YkZJCyY1IMRMcHMwNN9wAQKRD+d22R3VNiSt89913pKSk0A5r6yDAeuAA4O/vz6233uq22ESulpIbkWLI7JqaDZj3R90NWLAupvn333+7KTIpLebOnQuAYyfoDNvjrbfeSkBAQFGHJOIySm5EiqFBgwZRuXJlTpE5uLM+0A3IyMhg9uzZ7gtOSrzTp0+zatUqAKpjHWOTAsy11Y8aNcpNkYm4hpIbkWLIx8eHO++8EwDHTqgRtsd58+YVeUxSevz4449kZGQA1hbBUOAW4AJQo0YNzW0jJZ6SG5FiyuyaWgAk2MpuwvpLu2nTJk6ePOmmyKSkmz9/fpbnp4FfbD/fcsstmttGSjx9gkWKqWuuuYb69euTACyxlVUHutp+zm0VZ5GcnDlzhhUrVuRYr4HEUhoouREppiwWCzfddBMAPziU32x7/OGHH7IdI3IlCxcuJD09nXJYB6g7qlatGt27d3dHWCIupeRGpBi7+WZrKvMLkGqW2R5XrVrFmTNn3BGWlGBml9RLwElgCtYxN2D9vHl6eropMhHXUXIjUoyFh4cTEhJCLNaxN7OAp7H+4mZkZPDTTz+5NT4pWc6fP88ff1jvv7sNqAk8CqTZ6tUlJaWFkhuRYszDw4Nhw4YBcAfWO1u+x3rrLqhrSvLnp59+Ii0tjdZAY1vZKiAGqFy5su6SklJDyY1IMWd2TTnz+++/ExcXV4TRSElmdkk5ts+Y903ddNNNeHl5ZTtGpCRSciNSzPXu3Zvg4GCndSkpKSxatKhoA5ISKTY2lt9++w3ITG4yyBysri4pKU2U3IgUc97e3tx444325/5YJ1wzS9Q1JXmxePFiUlJSaA60sJWtAU4BFStWpG/fvu4LTsTFlNyIlABm11RlrOMj5gMv2+oWLVpEYmKimyKTksJstbnOocxMi4cOHYq3t3eRxyRSWJTciJQAAwYMoHz58pwF9tnKOgJ1gEuXLvH777+7Lzgp9gzDsH9GBjiUmx2aQ4cOLfKYRAqTkhuREqBcuXIMGTIEyDqhn/mVtHjx4iKPSUqOAwcO8Oeff+IH9LCVHQcOAZ6envTp08d9wYkUAiU3IiWEOVux48w25l/hZpeDiDPm56Mp1tW/Acy2vi5duhAUFOSOsEQKjZIbkRJi4MCBWCwWdgPRtrI+gA9w5MgRoqKi3BecFGtml9QOrOO2umGdmRjg2muvdVNUIoVHyY1ICVG5cmU6dOgAZP7V7Q+E237WuBtxJiUlJctCmWnAOmC37bmSGymNlNyIlCADBlg7ohw7odQ1JbnZsGEDly5dcloXGBjINddcU8QRiRQ+JTciJYiZ3PzhUGb+3b1s2TLS0tKyHSNlW25Jb9++fTUrsZRKSm5ESpDw8HD8/f05DWy3lXXAOo4iLi6OTZs2uS02KZ7M7sr/Ab8C44Dytjp1SUlppeRGpATx8fGhd+/eACwFIoE3AU9bvcbdiKNz584RGRkJwE3AEOB1MlcBN1sCRUobJTciJYz5hfQ80Al4EeusxaBxN5LV8uXLycjIoAUQaitbifV28Hr16tGwYUP3BSdSiJTciJQwuf21vXHjRi5cuFB0wUix5mxWYrNt79prr8VisRR5TCJFQcmNSAnTtGlTateu7bQuPT09y22/UnYZhmFvyXMcWWO27alLSkozJTciJYzFYsn2xdQIaG37WV1TAnD48GGOHTuGD9DLVvYXsBfrZ0irgEtppuRGpAQy73IJAY5gXSPoDVudBhULwNKlSwHoinWyR8icQqBjx45UqlTJHWGJFAklNyIlUL9+/bBYLJwCytnKegPeQFRUlJZiEHtyM9CxzPaoLikp7ZTciJRAVapUsS/FYHZCBWD9Kx3UelPWOS65YCY3GWQOJh44cKCzw0RKDSU3IiWUlmKQnKxdu5ZLly5RBQizlW0FzgAVKlSgS5cu7gtOpAgouREpoZwtxWAmN1qKoWwzu6TOAPWAB4H3bHX9+/fH29vbPYGJFBElNyIllLOlGNoDVdBSDGWdmdwAHAc+Bb61PVeXlJQFSm5ESigfHx/69OkDZHZNeQD9bD+ra6psOn36NNu3b8+xXsmNlAVKbkRKMI27kcvl9u/epEkT6tWrV3TBiLiJkhuREsxMbtYAiWaZ7VFLMZRNZpfUvcDbWFvyfGx1arWRskLJjUgJ1qRJE+rUqUMy1gURLwJbgApARkYGy5cvd2t8UrQyMjLsLTf3Ac9gHXBuLpqp5EbKCiU3IiWY41IM9wGVgGFYkxxQ11RZs337dv755x8qAOG2soPAMaxjtHr37u2u0ESKlJIbkRLOTG5OAZff/L106VIMwyjymMQ9zC6pvlhnq4bMWYm7d++Ov7+/s8NESh0lNyIlnLkUgzPHjh3TUgxlSG5LLqhLSsoSJTciJVylSpXo1KlTljJvIMj2s7qmyoaEhATWrVsHZA4qTwEibD8ruZGyRMmNSClgdk01Bn4GzgHP2+qU3JQNa9euJTU1lbpAQ1vZOuASEBISQps2bdwXnEgRKzbJzZtvvonFYuGJJ57IcZ8ZM2ZgsViybH5+fkUXpEgxZSY3F4DrsS6iaf71vnz5clJTU90TmBQZ8864Po5ltsfcui5FSqNikdxs3ryZadOm5ekvi8DAQKKjo+3b8ePHiyBCkeKtS5cuBAQE8A/WBRLBuhRDZeDixYts2bLFfcFJkcgtuenbt2+RxyPiTm5PbuLj4xkxYgSfffYZFStWvOL+FouFkJAQ+1a9evUiiFKkePP29rYvxeA4s00v22NERERRhyRFKDY2lsjISMB6pxRYu6PM1cWU3EhZ4/bk5tFHH+W6666jf//+edo/Pj6eunXrUrt2bYYOHcqePXsKOUKRksFMblY4ltkeV6xYkW1/KT1Wr15NRkYGFuAR4ANgJpAK1KtXT0suSJnj5c4XnzNnDlu3bmXz5s152r9p06Z8+eWXtGnThtjYWN599126du3Knj17qFWrltNjkpOTSU5Otj+Pi4tzSewixY2Z3KzGOt+NF5nJzZo1a0hJScHHxyeHo6UkM7ukDKwDyn92qFOrjZRFbmu5OXnyJOPGjWPWrFl5HhQcHh7OyJEjadeuHb169eKHH36gatWqTJs2LcdjJk2aRFBQkH2rXbu2q96CSLHSpk0bKlasaF+CAaAlUA3rbcJ5/SNCSp7cltlQciNlkduSmy1bthATE0P79u3x8vLCy8uLlStX8uGHH+Ll5UV6evoVz+Ht7U1YWBiHDx/OcZ8JEyYQGxtr306ePOnKtyFSbHh4eNCrl3WUjWMnlDnuRl1TpdPZs2fZsWNHjvVmi55IWeK25KZfv37s2rWL7du327eOHTsyYsQItm/fjqen5xXPkZ6ezq5du6hRo0aO+/j6+hIYGJhlEymtzC+yCMcy26OSm9LJHCxeB7gbqOlQ17RpU0JDQ50cJVK6uW3MTYUKFWjVqlWWMn9/fypXrmwvHzlyJDVr1mTSpEkAvPbaa3Tp0oVGjRpx4cIF3nnnHY4fP879999f5PGLFEdmcrMG62BSb6CJrW7dunUkJyfj6+vrpuikMJhdUkOBD21l9wNfoC4pKbvcfrdUbk6cOEF0dLT9+fnz5xk7dizNmzdnyJAhxMXFsW7dOlq0aOHGKEWKj5YtW1KlShUuAbcCDQDzPsSkpCQ2btzovuCkUJgtco5pjDm6Sl1SUlZZjDK2ZHBcXBxBQUHExsaqi0pKpVtvvZXvv//ead3EiRN55ZVXijgiKSzR0dGEhobiAZwFgoEzWAeRG0BMTAxVq1Z1Y4QirpOf7+9i3XIjIvmX21/rGndTupj/nmFYExuwDiY3sN49p8RGyiolNyKlTG7Jzfr160lMTCzCaKQwmcmN47+4mb6qS0rKMiU3IqVM8+bNqVatGgCdgbeAjVjvoklJSWHDhg1ujE5caeXKlYDWkxK5nJIbkVLGYrHQu3dvAIYAzwLXAL1t9eqaKh1OnTrFoUOH8AC62cpOAwewfgZ69uzpvuBE3EzJjUgppPluSr/Vq1cD0AYIspWtsj22bduW4OBgN0QlUjzke56bjIwMVq5cyerVqzl+/DgJCQlUrVqVsLAw+vfvr+UNRIoBM7lZDyQDvmTOVLxp0yaSkpLyvOyJFE9mctPDscz22KNHj2z7i5QleW65SUxM5L///S+1a9dmyJAhLF68mAsXLuDp6cnhw4d55ZVXqF+/PkOGDFGfvoibNWnShJCQEJKATbayRkAI1nE3Wmeq5DOTm2is42wSyGy5UXIjZV2ek5smTZqwc+dOPvvsM+Li4li/fj3ff/8933zzDYsWLeLEiRNERUXRo0cP7rzzTj777LPCjFtEcmGxWOxfcKsdys2vPPOLUUqmCxcu2NeTmg/0w3or+E5bvZIbKevynNz89ttvzJ07lyFDhuDt7e10n7p16zJhwgQOHTqkkfoibta9e3cga3LT3fa4Zs2aIo9HXGfdunVcPv9qKtb5bRo3bkxISIhb4hIpLvKc3DRv3jzPJ/X29qZhw4YFCkhEXMP86309kGGW2R7Xrl1Lenq6O8ISF8it5U2tNiL5vFuqbt263HfffXz11VecPHmysGISERdo06YNgYGBxJLZXdEWCMQ6jfmuXbvcF5xclVWrrKNragCWy+qU3IjkM7m57777OHr0KA8++CD16tWjUaNGjB07lm+//ZZTp04VVowiUgCenp507doVyOya8gC62n5W11TJlJiYaB8Qvgb4B/jWoV7z24jkM7mZOHEiERERXLhwgd9//50RI0Zw8OBB7rvvPmrWrEnz5s159NFHCytWEcknc9zNj8BkYBjWbirQoOKSatOmTaSmphKKddX3ylhbcABCQ0OpX7+++4ITKSYKNImfr68vffv25dVXX2XlypVER0czYcIE/v77bz755BNXxygiBWR2USwHxgMLgVhb3erVq7MNSpXiz9n8No63gFssl3dUiZQ9+Z7ED6zzZKxfv56IiAgiIiLYuHEjNWvW5NZbb6VXr15XPoGIFIlrrrkGHx8fUlJSstVFR0dz5MgRDf4vYczxNo6dT5q8TySrfCU3r732mj2ZqVu3Lj179uSBBx5g1qxZhIaGFlaMIlJAfn5+dOrUibVr1zqtX7NmjZKbEiQtLY31660di2Yak05mV6PG24hY5Su5mThxInXq1GHy5MncdtttVK5cubDiEhEX6d69uz25qYt1rpszwFKsXRyjRo1yY3SSH9u3byc+Pp6KQGtb2TYgHqhYsSItW7Z0X3AixUi+xtwsXryYO++8kxkzZhAaGkrr1q3517/+xfz58/nnn38KK0YRuQpmV0Uj4BjwDfCYrU6DiksW89+ru2OZ7bFbt254eGgtZBHIZ3IzcOBA3nzzTTZs2MCZM2d46623KF++PG+//Ta1atWiZcuWPPbYY1c+kYgUma5du2KxWDgMxNjKumGdH+XgwYPExMTkfLAUK2YLnLPkRl1SIpkKnOZXqFCBIUOG8MYbbzBlyhSeeuop/vzzT6ZOnerK+ETkKlWsWJFWrVoB1nlRACoCrWw/a76bksEwDHty09Wh3BxNZd72LyIFSG4yMjLYtGkTb731FoMHD6ZixYp0796d2bNnc9NNN/Hll18WRpwichWcLaJpfhWqa6pkOH78OKdOncIDMGeyMVvjfH19ad++vfuCEylm8jWgePDgwaxbt46LFy8SGhpKnz59eP/99+nTpw8NGjQorBhF5Cr16NGDjz/+GMc2mu7AVKyLMErxZ/47ZQC1gSZAdVtdx44d8fX1dVNkIsVPvpKb4OBg3nnnHfr06UPjxo0LKyYRcTGzy2I7kACUB8Jtddu2bSMxMZFy5cq5JzjJE8ck1AAO2DbAvsyGiFjlq1vq22+/5YEHHsj1P8ENGzZcdVAi4lq1atWidu3apAGbbGX1gRAgNTWVLVu2uC84yZOc5ioCJTcilyvQgOIBAwZw7ty5bOVr165l0KBBVx2UiLheeLi1rcaxE8psvVHXVPF28eJFdu7cmWO9+W8rIlYFSm66dOnCgAEDuHjxor1s1apVDBkyhFdeecVlwYmI65h/3a93LLM9mrPeSvG0adMmMjIyqAP8AbwGdLLVNWzYkOrVq+d8sEgZVKDk5vPPP6dOnTrccMMNJCcns2LFCq677jpee+01nnzySVfHKCIuYP51vx6IA34H9tnq1q1bp0U0izGzZa0b0A94GRhsq1OXlEh2BUpuPDw8mDNnDt7e3vTt25cbb7yRSZMmMW7cOFfHJyIu0q5dO/z8/DiLdZ6bAYA5cUNMTAxHjx51X3CSKzO5cUxjzI5EJTci2eX5biln/b0TJ05k+PDh3H333fTs2dO+T5s2bVwXoYi4hI+PD506dWL16tVkOKlft26dpnQohjIyMuzdhmYakwFstP2s5EYkuzwnN+3atcNisWRpujafT5s2jU8//RTDMLBYLKSnpxdKsCJydcLDw3OctG/dunXcfffdRRyRXMm+ffuIjY0lAGhrK9sFXMQ6U7wWyxTJLs/JjZqsRUq+y//KtwA1gL/RoOLiyuySugbwNMtsj126dMHT09PZYSJlWp6Tm7p16xZmHCJSBBxvGZ6DddxNIlATa9fzxYsXqVChgpuiE2c03kYk//I8oDg/k/MlJCSwZ8+eAgUkIoWnWrVqNGzYELAOKq4IhAJ1yFw3TooXZ4tlKrkRyV2ek5t77rmHgQMHMm/ePC5duuR0n7179/LCCy/QsGFDzXgqUkyZX4iO0/Zpvpvi6Z9//uHQoUNYyJxw8TRwBOuYxy5durgvOJFiLM/Jzd69e7nuuut46aWXCA4OpmXLllx77bXccMMNdO/enSpVqtC+fXuOHj3Kb7/9xsiRIwszbhEpoNwm89NMxcWLmWw2B4JtZeYiDK1btyYwMNANUYkUf3kec+Pt7c3jjz/O448/TmRkJGvWrOH48eMkJibStm1bnnzySfr06UOlSpUKM14RuUrmuJuNWG8p9iCzVWDDhg1kZGTg4VGgKbDExcwuqT+BO7FO4mfeAq4lF0Rylq9VwU0dO3akY8eOro5FRIpAq1atCAgIIDY+nj1Aa6Ad1pXCz58/z4EDB2jevLlbYxSrNWvWANYZpb+zbaZu3bq5IySREkF/nomUMZ6ennTu3BnI7JryInOtotxWn5aik5SURGRkZI71Sm5EcqbkRqQMcjao2PyqVHJTPGzZsoWUlBSndSEhIdSvX7+IIxIpOZTciJRB5l/9axzKutseza4QcS/z36ENcAsQ4lDXvXt3LBaLO8ISKRGU3IiUQeHh4Xh4eBAFnLKVNbI9Hj58mFOnTuVwpBQVswVtFDAfiAb62+rUJSWSu3wnN6mpqfTr149Dhw4VRjwiUgQCAwPtC9yOAJrYNpNab9zLMAz7bfmOaYw5e5iSG5Hc5Tu58fb2drpCuIiULD169ABgOXD5nypKbtzrwIEDnD17lnJAe1vZXuA8UL58edq1a+e22ERKggJ1S91999188cUXro5FRIpQ9+7dc6xTcuNe5vW/BvA2y2yPnTt3xtvb29lhImJToHlu0tLS+PLLL/njjz/o0KED/v7+Werfe+89lwQnIoUnt66Nbdu2aRFNNzLH2zj+C5n3sKlLSuTKCpTc7N69m/btrY2lBw8ezFKnEfwiJUPNmjWpX78+R48epRMwDOsdU6OAYxkZbNiwgWuvvdatMZZVZnLj2Lam5EYk7wqU3KxYscLVcYiIG/To0YOjR48yCHjBVtYdOIa1a0TJTdE7ffq008Uyo7D+8ahlF0Su7KpuBT98+DBLly4lMTERsI7wF5GSwxx3s9qxzPa4evXqbPtL4TPvkmpJ5mKZ5nib1q1bExQU5IaoREqWAiU3Z8+epV+/fjRp0oQhQ4YQHR0NwJgxY3j66addGqCIFB4zudkEpNrKetgeN2zYQGpqqrPDpBCpS0rk6hUouXnyySfx9vbmxIkTlC9f3l5+xx13sGTJEpcFJyKFq1mzZlSuXJkEYKutrAVQGUhMTGTbtm3uC66MMpObc1hb1JJQciOSXwVKbn777TfeeustatWqlaW8cePGHD9+3CWBiUjhs1gs9tYbx5u/u9oe1TVVtBITE9myxTpV31ygJxAEmMtnKrkRyZsCJTeXLl3K0mJjOnfuHL6+vlcdlIgUndzG3Wi+m6K1efPmbF2BKUAG1rvb6tat65a4REqaAiU3PXr04KuvvrI/t1gsZGRk8Pbbb9OnTx+XBScihc9MbhzXAjfH3axZs0Y3ChSh3FZk79atm6baEMmjAt0K/vbbb9OvXz8iIyNJSUnh2WefZc+ePZw7dy7XX04RKX7at29PuXLlOJOYyH6gGdABKAecOXOGAwcO0KxZM/cGWUaY/38GAxcuq1OXlEjeFajlplWrVhw8eJDu3bszdOhQLl26xM0338y2bdto2LChq2MUkULk4+ND586dgcxxNz5AJ9vP5q3JUrgyMjLs1/o3rKuAzyfzP2klNyJ5V+B5boKCgnjxxReZO3cuixYt4r///S81atQocCBvvvkmFouFJ554Itf95s2bR7NmzfDz86N169YsWrSowK8pIlbmF+ePwBTgdmCXrU6tsUVj//79nD9/nvJAGBACNMU63sbf35+2bdu6NT6RkqRAyU3Pnj3597//zfLly0lKSrrqIDZv3sy0adNo06ZNrvutW7eO4cOHM2bMGLZt28awYcMYNmwYu3fvvuoYRMoyM7n5FXgCmId1BWpQy01RMZPIa8gcL2CmlZ07d8bLq0CjCETKpAIlNwMGDGDDhg3ceOONBAcH0717d1566SV+//13EhIS8nWu+Ph4RowYwWeffUbFihVz3XfKlCkMGjSIZ555hubNm/Of//yH9u3b87///a8gb0NEbLp06ZJj3f79+zl79mwRRlM2abFMEdcpUHLz0ksv8dtvv3HhwgVWrFjB9ddfT2RkJNdddx2VKlXK17keffRRrrvuOvr373/FfdevX59tv4EDB7J+/focj0lOTiYuLi7LJiJZVaxYkZYtW+ZYr9abwqfkRsR1rmptqSNHjrBr1y527NjBzp07qVChAoMHD87z8XPmzGHr1q1MmjQpT/ufOnWK6tWrZymrXr06p06dyvGYSZMmERQUZN9q166d5/hEyhLHL9BQ4DbAbM9RclO4Tp8+zeHDh7MslnkKOIJ1qo3cWtZEJLsCJTd33XUXNWvWpGvXrixZsoQuXbqwePFizpw5w4IFC/J0jpMnTzJu3DhmzZqFn59fQcLIkwkTJhAbG2vfTp48WWivJVKSde1qnZf4GuAvrDPkjrXVaVBx4XK2WKZ5xbVYpkj+FWiE2pw5c6hSpQr3338/ffv2pXv37k5nLM7Nli1biImJoX379vay9PR0Vq1axf/+9z+Sk5Px9PTMckxISAinT5/OUnb69GlCQkJyfB1fX1/NmiySB2bLzQ4gGfAls4tk8+bNpKSk4OPj46boSjd1SYm4VoFXBf/8889JSUlhwoQJVKlSha5du/LCCy/w22+/5ekc/fr1Y9euXWzfvt2+dezYkREjRrB9+/ZsiQ1AeHg4y5Yty1L2+++/Ex4enm1fEcmfhg0bUq1aNZKBLbaypkAVICkpSYtoFiIlNyKuVaDkpmLFitx444289957bNmyhZ07d9KkSRPeeeedPI+5qVChAq1atcqy+fv7U7lyZVq1agXAyJEjmTBhgv2YcePGsWTJEiZPnsz+/fuZOHEikZGRPPbYYwV5GyLiwGKx2LumHEfYmH86qGuqcCQlJdkXy2xtK0sEzFRSyY1I/hW45eaHH37g8ccfp02bNjRr1oxffvmFG264gffee89lwZ04cYLo6Gj7865duzJ79mw+/fRT2rZty/z58/nxxx/tyZCIXB3zi9QxjTG/WjWouHBERkbaF8vsALQB7gJSgdDQUC2WKVIABRpzU61aNapUqUKPHj0YO3YsvXv3pnXr1lc+8AoiIiJyfQ5w2223cdttt131a4lIds5abrraHteuXYthGFq80cUcW8QysM4Mbc4OrcUyRQqmQMnNzp07c50TQ0RKpg4dOuDr60tMcjKHgUZY15jywToVw7Fjx6hfv757gyxlrrQSuIjkX4G6pczE5p9//mHNmjWsWbOGf/75x6WBiUjR8/X1pWPHjkBm15QfYN7TqHE3rmUYRq7dfUpuRAqmQMnNpUuXGD16NDVq1KBnz5707NmT0NBQxowZk+/lF0SkeMmta0rjblwrKiqKs2fP4gf8DPybzGtdvnx5LZYpUkAFSm6eeuopVq5cyc8//8yFCxe4cOECCxcuZOXKlTz99NOujlFEipDjoOIEIAIwh/Wr5ca1NmzYAFhXAb8eeBUYY6vr1KkT3t7ebopMpGQr0Jib77//nvnz59O7d2972ZAhQyhXrhy33347U6dOdVV8IlLEzHmj9gJBQJpD3a5du4iLiyMwMNAdoZU6GzduBDKXuQDYYHvUkgsiBVeglpuEhIRsazyB9S4qdUuJlGzVqlWjcePGGGRNbMA6RiQyMtIdYZVKZsuNYxqz0fbYuXPnIo9HpLQoUHITHh7OK6+8QlJSkr0sMTGRV199VbMFi5QCubUamK0NcnUSExPZvn07AGYaEw/ssf2s5Eak4ArULfXBBx8wcOBAatWqZR/wtmPHDvz8/Fi6dKlLAxSRotelSxe+/vrrLGVBQCyZrQ1ydbZt20ZaWho1AHOavs1AOlCnTh1CQ0PdF5xICVeg5KZ169YcPnyY2bNns2/fPgCGDx/OiBEjKFeunEsDFJGiZ7YaeAI/YO02icJ6J8/GjRs1mZ8LmEmiY/uMuqREXCPfyc2GDRv4+eefSUlJoW/fvtx///2FEZeIuFGbNm3w8/MjKSmJpkA1rC03PsDp06c5fvw49erVc2uMJZ2z5EaDiUVcI19jbubPn0+3bt2YMmUKn3/+Oddffz3vvvtuYcUmIm7i7e1Nhw4dgMzWBF/AnHVF426unrM7pcyrquRG5OrkK7mZNGkSY8eOJTY2lvPnz/Pf//6XN954o7BiExE3Mr9gHUfYmF+5GndzdaKjozlx4gSeWJe3ADgOnAK8vLwICwtzX3AipUC+kpsDBw4wfvx4PD09AXj66ae5ePEiMTExhRKciLiPOe7DsY3G7EJRy83VMa+fJ/AIMBWYbatr166dxi6KXKV8jblJSEjIMnmXj48Pfn5+xMfHU61aNZcHJyLuY7bc7AQSgXJkttxs3bqVlJQUfHx83BRdyWa2fKUAX9k2k7qkRK5evgcUf/755wQEBNifp6WlMWPGDKpUqWIve/zxx10TnYi4Ta1atahRowbR0dFsAboDDYEqwJnkZHbs2EGnTp1yP4k4lVu3nu6UErl6FsMwjLzuXK9evSve/mmxWDhy5MhVB1ZY4uLiCAoKIjY2VlPIi1zBzTffzIIFC3gXMFeNux74Ffjwww/517/+5b7gSqi0tDSCg4O5dOmS0/pDhw7RqFGjIo5KpPjLz/d3vlpujh07djVxiUgJ07lzZxYsWJBlUHFnrMnNxo0bldwUwJ49e7h06RIBQC+sY5rO2OoqV65Mw4YN3RecSClRoOUXRKRsMMd/OA4fbmd71B1TBeO4ntQvwD9YVwMHazKpyRFFrp6SGxHJUYcOHfDw8OAkcA/QEhhmq4uKiuLMmTM5HivOmXdKOY6sOWB71GBiEddQciMiOQoICKB169YAfAPsBTIc6nVLeP5t2rQJ0LILIoVJyY2I5Cq3L1wlN/kTHx9vX4/PvM/sLNZ1uwDdfSbiIkpuRCRXuXWVaNxN/mzdupWMjAxqAyG2skjbY+PGjalYsaKbIhMpXQq0KrgpJiaGmJgYMjIyspS3adPmqoISkeLDseVmENbulCrAv4DNmzdrhfB82Lx5M5DZagOw2faoVhsR1ylQcrNlyxZGjRrFvn37MKfJsVgs9v/k0tPTXRqkiLhPs2bNqFChAhcvXuRtoDWQBjwLXLhwgcOHD9O4cWP3BllCOEtuzJYbJTcirlOgbqnRo0fTpEkT1q1bx5EjRzh69GiWRxEpPTw8POwrhJutDF5k3hJufmHLlanlRqRoFKjl5siRI3z//feaRVOkjOjUqRMRERFsBkabZcB6rF/Yd911l/uCKyHOnj3LkSNHsAAdbWV/2zZPT0+tBC7iQgVquenXrx87duxwdSwiUkyZrQqObTRmO4NabvImMtLaAVUJOIh10UzzyrVs2ZLy5cu7KTKR0qdALTeff/45o0aNYvfu3bRq1Qpvb+8s9TfeeKNLghOR4sFMbnYCyYAvma0PW7duJS0tDS+vq7o/odQzk8CzwDWAD2DeG6UuKRHXKtD/RuvXr2ft2rUsXrw4W50GFIuUPnXr1qVKlSqcOXOGHVi/nJsBgUBcYiJ79+7VXZJXcHkLVwpw2vazkhsR1ypQt9S//vUv7r77bqKjo8nIyMiyKbERKX0sFovTrqkOtkd1TV1ZbteoY8eOOdaJSP4VKLk5e/YsTz75JNWrV3d1PCJSTGncTcH99ddfREdHO63z8fGxL3EhIq5RoOTm5ptvZsWKFa6ORUSKMSU3BWden9bAUWAucL2trl27dvj4+LgpMpHSqUBjbpo0acKECRNYs2YNrVu3zjag+PHHH3dJcCJSfJjJzX5gJbAbWGar27lzJ0lJSfj5+bkpuuLNTG6uAerZNnPhCo23EXG9At8tFRAQwMqVK1m5cmWWOovFouRGpBSqXr06tWvX5uTJk/S+rC4tLY0dO3ZoVescaPI+kaKV7+TGMAwiIiKoVq0a5cqVK4yYRKSY6tSpEydPnnRat3nzZiU3ThiGYZ/jxkxj0oGttp+V3Ii4Xr7H3BiGQePGjfnzzz8LIx4RKcZy+yLWuBvnoqKiOH/+PL5Yx9wA7AMuAQEBATRt2tR9wYmUUvlObjw8PGjcuDFnz54tjHhEpBi7PLmphgYVX4l5XdoB5uhE80p16NABT09PN0QlUroV6G6pN998k2eeeYbdu3e7Oh4RKcbMBTTB2q1yGvjF9nz//v1cvHjRHWEVa2aXlONMNhpvI1K4CpTcjBw5kk2bNtG2bVvKlStHpUqVsmwiUjoFBwfTpEkTIHN23WpAHaxd1lu2bHFXaMWWeU0ck5tI26Mm7xMpHAW6W+qDDz5wcRgiUlJ06tSJgwcPshkYZJYBJ7B2wfTu3dttsRU3GRkZbN1qHTpstnmlYl2jC5TciBSWAiU3o0aNcnUcIlJCdOrUiVmzZmWbzO97MrtgxOrw4cNcvHiRckALW9kerIuPBgcH06BBA/cFJ1KKXfUyvklJSaSkpGQpCwwMvNrTikgxZY4TcUxjzFYJdUtlZV6PFCAc63VKtNW1b98ei8XipshESrcCJTeXLl3iueeeY+7cuU7vmtLimSKlV7t27fDw8CA6I4NooAbQ3lYXFRXFhQsXCA4Odl+AxYiZ3KRjHUTs2NrVvn17Z4eIiAsUaEDxs88+y/Lly5k6dSq+vr58/vnnvPrqq4SGhvLVV1+5OkYRKUbKly9P8+bNATDbaSoB9W0/m2NMJPdr4XjnmYi4VoGSm59//pmPP/6YW265BS8vL3r06MFLL73EG2+8waxZs1wdo4gUM+YXs2MnlLqmsjIMQ8mNiJsUKLk5d+6cfSBcYGAg586dA6B79+6sWrXKddGJSLFk3uWj5CZnUVFRxMbG4geMB/oAQba6wMBAGjZs6L7gREq5AiU3DRo04OjRowA0a9aMuXPnAtYWHfW1i5R+l7fcpADmbQRKbqzM69AWeAdYDrxvq2vfvj0eHgX671dE8qBAv1333XcfO3bsAOD555/no48+ws/PjyeffJJnnnnGpQGKSPFjDir+G+uyAgHAo7a6w4cPExsb67bYigszuXEcNmymfeqSEilc+bpb6siRI9SvX58nn3zSXta/f3/279/Pli1baNSoEW3atHF5kCJSvJiDivfs2cMOJ/Vbt26lT58+RR5XcWImN45pjJIbkaKRr5abxo0b888//9if33HHHZw+fZq6dety8803K7ERKUNy+4Iu611TjoOJzauUDvZEUMmNSOHKV3JjGEaW54sWLeLSpUsuDUhESgYlNzk7cuQIFy5cwBdoaSvbi3UCvwoVKtCoUSP3BSdSBlz1DMUiUjaZyY0n8CzWFoqLwH1oGQYzuWsDeJtltkcNJhYpfPlKbiwWS7bpwjV9uEjZZA4qTs/I4HEgBDhnqzMHFQcFBeVyhtLr8i4p0HgbkaKUr+TGMAzuvfdefH19Aeu6Ug899BD+/v5Z9vvhhx9cF6GIFEv+/v40a9aMvXv3sgW4DutMxfWAY5TtQcXOBhOb0/lp2QWRwpevttFRo0ZRrVo1goKCCAoK4u677yY0NNT+3NzyaurUqbRp04bAwEACAwMJDw9n8eLFOe4/Y8YMe+uRufn5+eXnLYiIC2mm4uwMw8iW3KQD220/q+VGpPDlq+Vm+vTpLn3xWrVq8eabb9K4cWMMw2DmzJkMHTqUbdu20bJlS6fHBAYGcuDAAftzdYuJuE+HDh34+uuvsyU331N2k5tjx45x/vx5wLpyuheQASQAAQEBNGnSxI3RiZQNbh1QfMMNN2R5/vrrrzN16lQ2bNiQY3JjsVgICQkpivBE5ArUcpOd43pSD9gezSbysLAwDSYWKQLF5rcsPT2dOXPmcOnSJcLDw3PcLz4+nrp161K7dm2GDh3Knj17ijBKEXFkDir+CzhtKzOTm0OHDpXJmYqdLZaZYXtUl5RI0XB7crNr1y4CAgLw9fXloYceYsGCBbRo0cLpvk2bNuXLL79k4cKFfPPNN2RkZNC1a1f+/PPPHM+fnJxMXFxclk1EXCMgIIBmzZoBma03lYG6tp+3bdvmjrDcKrf3rMHEIkXD7clN06ZN2b59Oxs3buThhx9m1KhR7N271+m+4eHhjBw5knbt2tGrVy9++OEHqlatyrRp03I8/6RJk7IMdq5du3ZhvRWRMslZ11RH22NZ65pyHEzs66Q+LCysaAMSKaPcntz4+PjQqFEjOnTowKRJk2jbti1TpkzJ07He3t6EhYVx+PDhHPeZMGECsbGx9u3kyZOuCl1EcJ7cmF/hZa3lJjo6mpiYGDyBs8B+rCuCA/j5+dlbuUSkcBW7GYozMjJITk7O077p6ens2rWLIUOG5LiPr6+vfV4eEXE9s6tlM/AZ1vlcImx1zsaflGZmMtcM8AeaknkLeJs2bfDyKnb/5YqUSm79TZswYQKDBw+mTp06XLx4kdmzZxMREcHSpUsBGDlyJDVr1mTSpEkAvPbaa3Tp0oVGjRpx4cIF3nnnHY4fP87999/vzrchUqa1a9cOgL/JvDvItH//fi5dupRtos/SykzmHEfWmG1XGm8jUnTcmtzExMQwcuRIoqOjCQoKok2bNixdupRrr70WgBMnTmS5bfL8+fOMHTuWU6dOUbFiRTp06MC6detyHIAsIoWvQoUKNGnShIMHD2arMwyDHTt20LVrVzdEVvTMlhvHkTVm25XG24gUHbcmN1988UWu9REREVmev//++7z//vuFGJGIFERYWJjT5AasX/hlJbkxW24c0xi13IgUPbcPKBaRks/xi7si0BcwZ6sqK+Nuzp07x/Hjx7GQmdycBM4AXl5etGrVyn3BiZQxGt0mIlfNTG7qA0dsZT8CN1F2khuzS6o+YK6wZ7batGjRQuvgiRQhtdyIyFUzx5McA8xpMs22nN27d+f5DsiSzExuHDuftBK4iHsouRGRq1a5cmXq1q2LQWZrRR2gCpCWlsbu3bvdF1wRyW28jQYTixQtJTci4hJm64RjJ5T5lV4WuqbUciNSfCi5ERGXMFsnnCU3pX2m4vj4eA4cOADA7UBP4FHgT8BisdC2bVs3RidS9mhAsYi4hLOWG7O9orS33OzYsQPDMAC4CKy2bQCNGzemQoUK7gpNpExSy42IuISZ3BwAEswy2+OOHTtIS0tzR1hFIreWKY23ESl6Sm5ExCVq1KhBSEgI6cBOW1ljIBBISkpi//797guukOXWMqXxNiJFT8mNiLiMs66pdrbH0tw1ZbbcPAb8C+hG5n+uarkRKXpKbkTEZRyTm3RgF1DOVldak5vk5GT7re7jgQ+BRYBhq1dyI1L0NKBYRFzG/CL/FpgNJDrUldbkxhxPVAWoa5ZhTW5q165NlSpV3BecSBml5EZEXMZsuUlwUrd9+3YyMjLw8ChdDcabNm0CoJNjme2xQ4cORR6PiKhbSkRcqG7dulSsWNFp3cWLFzl06FARR1T4zOSms0PZRttj586ds+0vIoVPyY2IuIzFYsn17iAzEShNzPd0jWOZ7fGaa67Jtr+IFD4lNyLiUp06WTtoWgBfAweBJ2x1pS25uXDhgn1mYjONiQGOY030Onbs6K7QRMo0jbkREZcyWyu8gLttZV1sjxs3bnR2SIkVGRkJQAOgsq3MTN+aN29OYGCgO8ISKfPUciMiLmWOM9kDXLKVma0a27dvJykpyR1hFQozWVOXlEjxouRGRFwqNDSUWrVqkQ5ssZXVB6oCqamp7Nixw33BuZizwcRKbkTcT8mNiLic+cXu2AllJgClpWvKMAz7e1mLdV6fw8BmW72SGxH3UXIjIi5ndk2V5uTmzz//5PTp0wDMB0ZgXUvrHODr60vr1q3dGJ1I2abkRkRczkxuHO+NMtsxSssdU7m9j/bt2+Pj41OE0YiIIyU3IuJyHTp0wMPDg5NAtK3sGsACHD58mLNnz7ovOBfJLblRl5SIeym5ERGXCwgIoGXLlkBm600w0MT2c2lovTHfQ0MyFwc1KbkRcS8lNyJSKJyNuyktXVPp6en2OW4WAnHABqwtU6DkRsTdlNyISKEwk5ufgSeBbsA8W11JH1S8b98+4uPjqQA0xzphoSfWlcArVapEw4YN3RqfSFmnGYpFpFCYrRe7bZujTZs2YRgGFosl23Elgdny1IHMvxAd57cpqe9LpLRQy42IFIqWLVvi7+/vtO7s2bMcOXKkiCNyHS2WKVK8KbkRkULh6emZ68KRJblryoxdMxOLFE9KbkSk0JjjbnyAcKyrgw+y1ZXU5CYuLo6dO3cC1vcE1gHF+20/m6uii4j7aMyNiBQasxWjJbDOVjYbWELJvWNq/fr1ZGRk0ACoYStbh3UwcYMGDahWrZr7ghMRQC03IlKIzJabXUCirayL7XHr1q0kJiY6O6xYW7NmDQA9HMpW2x579OiRbX8RKXpKbkSk0NSqVYvQ0FDSyByT0gCoCaSkpLBhwwb3BVdAq1dbU5nuDmVrbI9KbkSKByU3IlKoevbsCUCEQ1kv22NERAQlSUpKin2skNn5lEJm4ta9e3dnh4lIEVNyIyKFqnfv3kDW5Ka37bGkJTdbtmwhKSkJgKFAJaAfkARUrVqVJk2a5HK0iBQVJTciUqjM5GYDkGyW2R43bNhQosbdmONtTOfJ7JLq3r27Ju8TKSaU3IhIoWrSpAnVq1cnicx1phpTMsfdmONtnNF4G5HiQ8mNiBQqi8XitGvKHHezcuXKIo6oYDIyMli7dm2O9RpvI1J8KLkRkUJXGsbd7Nu3j3PnzuGPda2sz4DrbXX+/v6EhYW5LzgRyUKT+IlIoXMcdxOFddK7Jba6DRs2kJSUhJ+fn3uCyyNzvE0XrJMStgRSgV+A8PBwvLz036lIcaGWGxEpdE2bNqV69eokAo2AkcAPtrrk5OQSMe4mt/lt1CUlUrwouRGRQmexWOjVq1eO9SWha0ozE4uUHEpuRKRImF1TzhT35ObkyZMcP34cLzKXjzgBnAS8vLzsy0yISPGg5EZEisTlyU0AWee7MSfHK47MVpswwN9WZrbatG/fHn9/f2eHiYibKLkRkSLRrFkz+4rZU7FOgLcC68raycnJ9mUNiqNVq1YBGm8jUlIouRGRIuE47uYMmbdqloR1pn7//XcA+jiUabyNSPGl5EZEioyz+W7MhGHZsmVFHE3eHDlyhKioKLzJjPUUsAdrwqaWG5HiR8mNiBQZM7lZR+Y6U9faHtevX09cXJwbosqd2WrTBes4IYDfbY8dOnSgSpUq7ghLRHKh5EZEikzz5s2pUaMGiWSOWamPde6btLS0Ytk1ZSY364FuwETgG1vdtdde6/wgEXErJTciUmQsFgsDBgwA4DeH8oG2x6VLlxZ5TLlJS0uzd5elYW1xepXM2M33IiLFi5IbESlSZkLgmMaYKUJxS24iIyO5cOGC07ry5csTHh5etAGJSJ4ouRGRInXttddisVjYCZy2lfUBvIGoqCiioqLcF9xlzC4pZ3r37o2vr28RRiMieaXkRkSKVNWqVWnfvj0Gmd07FYCutp9/++035we6gRnLo8ATQAuHOnVJiRRfSm5EpMhd3jW1BTDbQIpL11RcXJx9Qc/xwPtY4yxnq9dgYpHiS8mNiBS5gQOtQ4h/BKoBHclsxVm+fDmpqanuCcxBREQEaWlpNALq2crWAIlAzZo1ad68udtiE5HcuTW5mTp1Km3atCEwMJDAwEDCw8NZvHhxrsfMmzePZs2a4efnR+vWrVm0aFERRSsirhIeHk5AQACXgH8uq7t48aK9xcSdzC4px84nMwEzxw2JSPHk1uSmVq1avPnmm2zZsoXIyEj69u3L0KFD2bNnj9P9161bx/DhwxkzZgzbtm1j2LBhDBs2jN27dxdx5CJyNXx8fOjTp0+O9cWha8ocTOyY3JjDizXeRqR4sxiGYbg7CEeVKlXinXfeYcyYMdnq7rjjDi5dusQvv/xiL+vSpQvt2rXjk08+ydP54+LiCAoKIjY2lsDAQJfFLSL589FHH/HYY49lKasMnAU6derEpk2b3BIXwLFjx6hfvz5etngCgRggBDCA06dP2xcBFZGikZ/v72Iz5iY9PZ05c+Zw6dKlHOeOWL9+Pf37989SNnDgQNavX5/jeZOTk4mLi8uyiYj7meNuAN4GDgO7bM8jIyM5c+aMO8ICMrukOmNNbMDaamMAYWFhSmxEijm3Jze7du0iICAAX19fHnroIRYsWECLFi2c7nvq1CmqV6+epax69eqcOnUqx/NPmjSJoKAg+1a7dm2Xxi8iBdOwYUPq168PQHOgIVADaAMYhsEff/zhtth+/fVXAAY7lKlLSqTkcHty07RpU7Zv387GjRt5+OGHGTVqFHv37nXZ+SdMmEBsbKx9O3nypMvOLSIFZ7FY7K03jjPbDLI9mglGUUtMTLSPt7neody81cGxxUlEiie3Jzc+Pj40atSIDh06MGnSJNq2bcuUKVOc7hsSEsLp06ezlJ0+fZqQkJAcz+/r62u/G8vcRKR4MBMFx3skzYTi119/JS0trchjWrFiBYmJidQG2trKNmIdcxMYGEj37t2LPCYRyR8vdwdwuYyMDJKTk53WhYeHs2zZMp544gl72e+//14o67ukp6cXi7k2pOTz9vbG09PT3WEUS/3798fHx4fDKSnsw9o91RWoApw5f55169bRs2fPIo3JvGHhAjAaa7K11lY3aNAgvL29izQeEck/tyY3EyZMYPDgwdSpU4eLFy8ye/ZsIiIi7LeBjhw5kpo1azJp0iQAxo0bR69evZg8eTLXXXcdc+bMITIykk8//dRlMRmGwalTp3JcLE+kIIKDgwkJCdHcKJcJCAigb9++LFmyhJ+wJjeewBDgK+Cnn34q0uTGMAx7cnMRmG7bTNdff72zw0SkmHFrchMTE8PIkSOJjo4mKCiINm3asHTpUvu05idOnMDDI7PnrGvXrsyePZuXXnqJF154gcaNG/Pjjz/SqlUrl8VkJjbVqlWjfPny+jKSq2IYBgkJCcTExABQo0YNN0dU/Nx4440sWbKEn4HnbGU3kJncvPvuu0UWy65du3Icl2exWBg8eLDTOhEpXordPDeFLbf75NPT0zl48CDVqlWjcuXKbopQSqOzZ88SExNDkyZN1EV1mT///JPatWvjgXWV8CpYW02qACnA/v37adq0aZHE8sYbb/Diiy86revatStr1651Wiciha9EznNTHJhjbMqXL+/mSKS0MT9TGseVXa1atQgLCyMDMO+PqgD0tv38008/FVksZpfUnVhnJvZ1qFOXlEjJoeTGCXVFiavpM5W7G2+8EQAzjYkDatl+Lqrk5p9//rGvaTUZ64rlJ8nsu1dyI1JyKLkpA3r37p3lDrOCuvfeexk2bNhVn8dVjh07hsViYfv27Xk+xlXXQlzrhhtuAKwJRX+sXVJf2urWrVtXJLMVL168GMMwCANCbWUbgTSgTp06Lh3bJyKFS8lNKXHvvfdisViybYcPH3bZa0yZMoUZM2bkad+JEydisVgYNGhQtrp33nkHi8VC7969XRablGzt27cnNDSUS8AywLHzLiMjg0WLFhV6DGaX1HWOZbbH66+/Xq1vIiWIkptSZNCgQURHR2fZzOntr0Z6ejoZGRkEBQURHByc5+Nq1KjBihUr+PPPP7OUf/nll9SpU+eq45LSw2Kx2LumnCnsrqmUlBT7FBSOnU/mGCB1SYmULEpuclGhQgV8fX3dulWoUCHP8fr6+hISEpJlc3Znzvnz5xk5ciQVK1akfPnyDB48mEOHDtnrZ8yYQXBwMD/99BMtWrTA19eXEydOZOuWmj9/Pq1bt6ZcuXJUrlyZ/v37c+nSJXt9tWrVGDBgADNnzrSXmV0M113n+Pex9a/z1157jVq1auHr60u7du1YsmRJln02bdpEWFgYfn5+dOzYkW3btmV7b7t372bw4MEEBARQvXp17rnnHrcuwCh5Z3ZNOTIH9C5dujTHyT1dYdmyZcTFxVEd62KZANuBP7EOBu/Tp0+hvbaIuJ6Sm1ykpKQUi83V7r33XiIjI/npp59Yv349hmEwZMiQLHfyJCQk8NZbb/H555+zZ8+ebKsgR0dHM3z4cEaPHs2+ffuIiIjg5ptv5vKZBUaPHp2lK+vLL79kxIgR+Pj4ZNlvypQpTJ48mXfffZedO3cycOBAbrzxRnvSFR8fz/XXX0+LFi3YsmULEydOZPz48VnOceHCBfr27UtYWBiRkZEsWbKE06dPc/vtt7viskkh69u3r/2ushuxDi4+h3X8S3x8vH29p8Lw7bffAnCbQ9nPtsf+/fvj5+dXaK8tIq6n5KYU+eWXXwgICLBvt912W7Z9Dh06xE8//cTnn39Ojx49aNu2LbNmzeKvv/7ixx9/tO+XmprKxx9/TNeuXWnatGm22+Ojo6NJS0vj5ptvpl69erRu3ZpHHnmEgICALPtdf/31xMXFsWrVKi5dusTcuXMZPXp0trjeffddnnvuOe68806aNm3KW2+9Rbt27fjggw8AmD17NhkZGXzxxRe0bNmS66+/nmeeeSbLOf73v/8RFhbGG2+8QbNmzQgLC+PLL79kxYoVHDx4sIBXVYqKn5+ffcXtMKwT+ZUnM+GYPXt2obxuYmKi/bN/p0P5d7bH4jSIXkTyRslNKdKnTx+2b99u3z788MNs++zbtw8vLy86d+5sL6tcuTJNmzZl37599jIfHx/atGmT42u1bduWfv360bp1a2677TY+++wzzp8/n20/b29v7r77bqZPn868efNo0qRJtvPGxcXx999/061btyzl3bp1s8e0b98+2rRpk+Uv6MvXFNuxYwcrVqzIkuA1a9YMgKioqBzfixQfZiLxnUPZCNvjwoULiY+Pd/lrLlq0iIsXL1IHMD+Bu4A9WH8PbrrpJpe/pogULiU3pYi/vz+NGjWyb1cz1X+5cuVyvTvE09OT33//ncWLF9OiRQv+7//+j6ZNm3L06NFs+44ePZp58+bx0UcfOW21cZX4+HhuuOGGLAne9u3bOXToUJEvvigFc9NNN+Hn58d+YKutrBPQGGtXqWProquYXVKOrTZzbI9DhgzJ1yB6ESkelNyUMc2bNyctLY2NGzfay86ePcuBAwdo0aJFvs5lsVjo1q0br776Ktu2bcPHx4cFCxZk269ly5a0bNmS3bt3c9ddd2WrDwwMJDQ0NNvU9mvXrrXH1Lx5c3bu3ElSUpK93pxwzdS+fXv27NlDvXr1siR5jRo1wt/fP1/vTdwjMDDQftfULIdys/Vm1qxZ2Y65GnFxcfz6q/WeqF+Ad4ATZCY3w4cPd+nriUjRUHKTCx8fn2KxuVLjxo0ZOnQoY8eOZc2aNezYsYO7776bmjVrMnTo0DyfZ+PGjbzxxhtERkZy4sQJfvjhB/755x+aN2/udP/ly5cTHR2d41/BzzzzDG+99RbfffcdBw4c4Pnnn2f79u2MGzcOgLvuuguLxcLYsWPZu3cvixYtyrag4qOPPsq5c+cYPnw4mzdvJioqiqVLl3LfffeRnp6e5/cm7jVihDWVmQNkmGW2x99//92+CKkrLFy40J4w7wWeBeoCR7C2hOoWcJGSya2rghd3Fy9edHcIhWL69OmMGzeO66+/npSUFHr27MmiRYvw9vbO8zkCAwNZtWoVH3zwAXFxcdStW5fJkyfnuGrylVpOHn/8cWJjY3n66aeJiYmhRYsW/PTTTzRu3BiAgIAAfv75Zx566CHCwsJo0aIFb731Frfccov9HGbrz3PPPceAAQNITk6mbt26DBo0KMvq8lK8DRo0iEqVKvH3uXOsAPoBjYBrgE3p6Xz33Xf861//cslrzZkzJ8e6oUOHap05kRJKq4I7SEpK4ujRo9SvX1+3fopL6bOVPw899BDTpk3jPjKXYfgQGAd07tw5W5dkQZw9e5aQkBDS0tKc1v/8889quREpRrQquIiUaGbX1PeAOcrqDsATa5eoK5YVmT9/PmlpabQAniJzoU6AihUr2m9LF5GSR8mNiBQ73bp1o06dOsSRub7TCTIXtHTFnDfmOe7Fugr4ScAcdXbLLbe4fLybiBQdJTciUux4eHjYW2/+DTTFOubmpK3+m2++ISMjI4ejr2zXrl2sWrUKT8C8HyoVWG37WXdJiZRsSm5EpFgyk5t9wOXzSx86dOiqVgp/7733ALiFzO6oxViXewgJCaFXr14FPreIuJ+SGxEpllq2bEnbtm1zrH/77bcLdN7o6Gj7fDlPO5R/YHu8++67nS44KyIlh5IbESm2xowZk+W5Bbge8AFWr17N+vXr833Ojz/+mNTUVLpi7eoC6wrgK7DOvO2q28xFxH2U3IhIsTV69GgqVaoEQB9gN9bVuu+21b/11lv5Ol9CQgJTp04FrHdImd6zPd5+++3UqVPnKiIWkeJAyY2IFFv+/v489thjAFwCzAVCnsHairNw4UL279+f5/N99dVXnD17lgaAuRzm32Qut/DUU085P1BEShQlNyJSrD322GOUK1eOTUCErawZcKPt53feeSdP58nIyOD9998HrJMBmv/5/R/WO6V69OhBx44dXRS1iLiTkhspsHvvvZdhw4Zd9XkmTpxIu3btrvo8rmSxWPK1ArWrroVkV7VqVftq8o6dUM/ZHr/++mv+/vvvK57nl19+4eDBg3hiHbcD1tagabafn376aecHikiJo+SmlLj33nuxWCxYLBZ8fHxo1KgRr732Wo5Ty+fFxIkT7ed03P744w8XRg7jx49n2bJledp3xowZWCwWpwt0zps3D4vFQr169Vwan7jfU089hYeHB0uAnbaycKA7kJqayquvvprr8bGxsfaBwulAS+B+4FXgPNCoUSMttSBSiii5KUUGDRpEdHQ0hw4d4umnn2bixIl5brJ3lJ6ebp8grWXLlkRHR2fZevbs6ZJ4DcMgLS2NgIAAKleunOfj/P39iYmJyXanzBdffKHBoKVUgwYNuP322wFwvAH8Naxjbz799FN++OGHHI8fN24cJ06csD9PAr4AzN+OJ554Qrd/i5QiSm5KEV9fX0JCQqhbty4PP/ww/fv356effuK9996jdevW+Pv7U7t2bR555BHi4+Ptx82YMYPg4GB++uknWrRoga+vr/2LwMvLi5CQkCxbTtPSJycn8/jjj1OtWjX8/Pzo3r07mzdvttdHRERgsVhYvHgxHTp0wNfXlzVr1mTrloqIiOCaa67B39+f4OBgunXrxvHjx+31Xl5e3HXXXXz55Zf2sj///JOIiAjuuuuubHFNnTqVhg0b4uPjQ9OmTfn666+z1B86dIiePXvi5+dHixYt+P3337Od4+TJk9x+++0EBwdTqVIlhg4dyrFjx3L/BxGXevbZZwH4DjhmK+uDdXAxWO+scvZv8v333zNz5swcz1uxYkXuvfde1wUqIm6n5KYUK1euHCkpKXh4ePDhhx+yZ88eZs6cyfLly+1fFKaEhATeeustPv/8c/bs2UO1atXy/XrPPvus/Ytk69atNGrUiIEDB3Lu3Lks+z3//PO8+eab7Nu3jzZt2mSpS0tLY9iwYfTq1YudO3eyfv16HnjgASwWS5b9Ro8ezdy5c0lISACsCdqgQYOoXr16lv0WLFjAuHHjePrpp9m9ezcPPvgg9913HytWrACsg0xvvvlmfHx82LhxI5988gnPPfdclnOkpqYycOBAKlSowOrVq1m7di0BAQEMGjSIlJSUfF8nKZiwsDAGDRpEGjAGMBdfeB1rF1VsbCzDhw8nNTXVfkx0dDQPPvggAA9g7ca63CuvvIK/v3+hxi4iRcwoY2JjYw3AiI2NzVaXmJho7N2710hMTMx+4OTJhlGz5pW3G27IfuwNN+Tt2MmTC/y+Ro0aZQwdOtQwDMPIyMgwfv/9d8PX19cYP358tn3nzZtnVK5c2f58+vTpBmBs3749y36vvPKK4eHhYfj7+9u3Tp06OX3N+Ph4w9vb25g1a5a9PiUlxQgNDTXefvttwzAMY8WKFQZg/Pjjj9lep23btoZhGMbZs2cNwIiIiHD6PqdPn24EBQUZhmEY7dq1M2bOnGlkZGQYDRs2NBYuXGi8//77Rt26de37d+3a1Rg7dmyWc9x2223GkCFDDMMwjKVLlxpeXl7GX3/9Za9fvHixARgLFiwwDMMwvv76a6Np06ZGRkaGfZ/k5GSjXLlyxtKlS7NdC2dy/WxJnh04cMDw9/c3AOM1MAwwLoFxGxjYtrvuuss4evSoERERYbRr184AjDAwUsBIB+O/Dvv26dPHSE9Pd/fbEpE8yO37+3Je7kmpSqC4OPjrryvvV7t29rJ//snbsXFx+Y/LwS+//EJAQACpqalkZGRw1113MXHiRP744w8mTZrE/v37iYuLIy0tjaSkJBISEihfvjwAPj4+2VpRAJo2bcpPP/1kf+7r6+v0taOiokhNTaVbt272Mm9vb6655hr27duXZd/cbretVKkS9957LwMHDuTaa6+lf//+3H777dSoUSPbvqNHj2b69OnUqVOHS5cuMWTIEP73v/9l2Wffvn088MADWcq6devGlClT7PW1a9cmNDTUXh8eHp5l/x07dnD48GEqVKiQpTwpKYmoqKgc34u4XpMmTfj4448ZNWoUrwLVsS6b4PgJmz17Nt9++y2GYQDgD3wDeNvqDdtjYGAgM2bMwMNDDdgipY2Sm7wKDISaNa+8X9WqzsvycmxgYP7jctCnTx+mTp2Kj48PoaGheHl5cezYMa6//noefvhhXn/9dSpVqsSaNWsYM2YMKSkp9uSmXLly2bp+APudV650pS6A6dOn8/jjj7NkyRK+++47XnrpJX7//Xe6dOmSZb8RI0bw7LPPMnHiRO655x68vArn4xwfH0+HDh3s6xE5qurs31sK1ciRI1m+fDkzZ87kQSf1TYCDhoE3MBZ4GQix1W3BOggZ4KOPPtIAdJFSSslNXj31lHUrCIeWj8Lk7++fLRHZsmULGRkZTJ482f4X6ty5c13+2uaA3bVr11K3bl3AOlZl8+bNPPHEE/k+X1hYGGFhYUyYMIHw8HBmz56dLbmpVKkSN954I3PnzuWTTz5xep7mzZuzdu1aRo0aZS9bu3YtLVq0sNefPHmS6Ohoe+vQhg0bspyjffv2fPfdd1SrVo3Aq0xAxTX+97//sWHDBg4cOJClPAhrAnMcKAc0cKi7CNyDdcK+2267zb7quIiUPmqPLeUaNWpEamoq//d//8eRI0f4+uuvc0wEroa/vz8PP/wwzzzzDEuWLGHv3r2MHTuWhISEbIsf5ubo0aNMmDCB9evXc/z4cX777TcOHTrkdF4bsA4kPnPmDM2aNXNa/8wzzzBjxgymTp3KoUOHeO+99/jhhx8YP348AP3796dJkyaMGjWKHTt2sHr1al588cUs5xgxYgRVqlRh6NChrF69mqNHjxIREcHjjz/On3/+mef3Jq4TEBDA3Llzs3WT3g8EYJ3HxjGxmQ90wNp9VaNGDaZOneq0pVJESgclN6Vc27Ztee+993jrrbdo1aoVs2bNYtKkSYXyWm+++Sa33HIL99xzD+3bt+fw4cMsXbqUihUr5vkc5cuXZ//+/dxyyy00adKEBx54gEcffdR+x8vlypUrl+scOcOGDWPKlCm8++67tGzZkmnTpjF9+nR69+4NgIeHBwsWLCAxMZFrrrmG+++/n9dffz1bTKtWraJOnTrcfPPNNG/enDFjxpCUlKSWHDdq06YN33zzDX5+fvayXcBqh31+AzoCtwGHgPr16xMREZGveZVEpOSxGOaouzIiLi6OoKAgYmNjs30xJSUlcfToUerXr5/lP0yRq6XPVuHZvn07zz//PEuXLrWXtQB8gO225xUqVODpp5/mySefVEIqUkLl9v19ObXciEiJ1q5dO5YsWcKePXt44IEH8PPzYy/WxMbX15ennnqKI0eO8MorryixESkjNKBYREqFFi1aMG3aNN5++20iIyNJTEykZ8+eSmhEyiAlNyJSqgQFBdGvXz93hyEibqRuKRERESlVlNyIiIhIqaLkxokydgOZFAF9pkREio6SGwfe3tbVZ8yVpkVcxfxMmZ8xEREpPBpQ7MDT05Pg4GBiYmIA6+RtmsVUroZhGCQkJBATE0NwcDCenp7uDklEpNRTcnOZkBDrEntmgiPiCsHBwfbPloiIFC4lN5exWCzUqFGDatWqkZqa6u5wpBTw9vZWi42ISBFScpMDT09PfSGJiIiUQBpQLCIiIqWKkhsREREpVZTciIiISKlS5sbcmJOpxcXFuTkSERERySvzezsvk6KWueTm4sWLANSuXdvNkYiIiEh+Xbx4kaCgoFz3sRhlbF74jIwM/v77bypUqODyCfri4uKoXbs2J0+eJDAw0KXnLm10rfJH1yt/dL3yR9crf3S98s6V18owDC5evEhoaCgeHrmPqilzLTceHh7UqlWrUF8jMDBQH/g80rXKH12v/NH1yh9dr/zR9co7V12rK7XYmDSgWEREREoVJTciIiJSqii5cSFfX19eeeUVfH193R1KsadrlT+6Xvmj65U/ul75o+uVd+66VmVuQLGIiIiUbmq5ERERkVJFyY2IiIiUKkpuREREpFRRcnMFkyZNolOnTlSoUIFq1aoxbNgwDhw44HRfwzAYPHgwFouFH3/8MUvdiRMnuO666yhfvjzVqlXjmWeeIS0trQjeQdHJy7Xq3bs3Fosly/bQQw9l2acsXCvI+2dr/fr19O3bF39/fwIDA+nZsyeJiYn2+nPnzjFixAgCAwMJDg5mzJgxxMfHF+VbKRJXul7Hjh3L9tkyt3nz5tn30+cr06lTp7jnnnsICQnB39+f9u3b8/3332fZpyx8vvJyraKiorjpppuoWrUqgYGB3H777Zw+fTrLPmXhWgFMnTqVNm3a2OeuCQ8PZ/Hixfb6pKQkHn30USpXrkxAQAC33HJLtmtV6L+HhuRq4MCBxvTp043du3cb27dvN4YMGWLUqVPHiI+Pz7bve++9ZwwePNgAjAULFtjL09LSjFatWhn9+/c3tm3bZixatMioUqWKMWHChCJ8J4UvL9eqV69extixY43o6Gj7Fhsba68vK9fKMPJ2vdatW2cEBgYakyZNMnbv3m3s37/f+O6774ykpCT7PoMGDTLatm1rbNiwwVi9erXRqFEjY/jw4e54S4XqStcrLS0ty+cqOjraePXVV42AgADj4sWL9n30+cr8fF177bVGp06djI0bNxpRUVHGf/7zH8PDw8PYunWrfZ+y8Pm60rWKj483GjRoYNx0003Gzp07jZ07dxpDhw41OnXqZKSnp9vPUxaulWEYxk8//WT8+uuvxsGDB40DBw4YL7zwguHt7W3s3r3bMAzDeOihh4zatWsby5YtMyIjI40uXboYXbt2tR9fFL+HSm7yKSYmxgCMlStXZinftm2bUbNmTSM6OjpbcrNo0SLDw8PDOHXqlL1s6tSpRmBgoJGcnFxUoRc5Z9eqV69exrhx43I8pqxeK8Nwfr06d+5svPTSSzkes3fvXgMwNm/ebC9bvHixYbFYjL/++qtQ43W3nH4XHbVr184YPXq0/bk+X1mvl7+/v/HVV19l2a9SpUrGZ599ZhhG2f18XX6tli5danh4eGT5Q+zChQuGxWIxfv/9d8Mwyu61MlWsWNH4/PPPjQsXLhje3t7GvHnz7HX79u0zAGP9+vWGYRTN76G6pfIpNjYWgEqVKtnLEhISuOuuu/joo48ICQnJdsz69etp3bo11atXt5cNHDiQuLg49uzZU/hBu4mzawUwa9YsqlSpQqtWrZgwYQIJCQn2urJ6rSD79YqJiWHjxo1Uq1aNrl27Ur16dXr16sWaNWvsx6xfv57g4GA6duxoL+vfvz8eHh5s3LixaN9AEcvp82XasmUL27dvZ8yYMfYyfb6yXq+uXbvy3Xffce7cOTIyMpgzZw5JSUn07t0bKLufr8uvVXJyMhaLJctcLX5+fnh4eNh/H8vqtUpPT2fOnDlcunSJ8PBwtmzZQmpqKv3797fv06xZM+rUqcP69euBovk9VHKTDxkZGTzxxBN069aNVq1a2cuffPJJunbtytChQ50ed+rUqSz/iID9+alTpwovYDfK6VrdddddfPPNN6xYsYIJEybw9ddfc/fdd9vry+K1AufX68iRIwBMnDiRsWPHsmTJEtq3b0+/fv04dOgQYL0m1apVy3IuLy8vKlWqVOau1+W++OILmjdvTteuXe1l+nxlvV5z584lNTWVypUr4+vry4MPPsiCBQto1KgRUDY/X86uVZcuXfD39+e5554jISGBS5cuMX78eNLT04mOjgbK3rXatWsXAQEB+Pr68tBDD7FgwQJatGjBqVOn8PHxITg4OMv+1atXt1+Hovg9LHMLZ16NRx99lN27d2f5y/mnn35i+fLlbNu2zY2RFT/OrhXAAw88YP+5devW1KhRg379+hEVFUXDhg2LOsxiw9n1ysjIAODBBx/kvvvuAyAsLIxly5bx5ZdfMmnSJLfEWhzk9PkyJSYmMnv2bF5++eUijqx4yul6vfzyy1y4cIE//viDKlWq8OOPP3L77bezevVqWrdu7aZo3cvZtapatSrz5s3j4Ycf5sMPP8TDw4Phw4fTvn37K65OXVo1bdqU7du3Exsby/z58xk1ahQrV650d1h2Sm7y6LHHHuOXX35h1apVWVYVX758OVFRUdmy1FtuuYUePXoQERFBSEgImzZtylJvjhx31o1V0uV0rZzp3LkzAIcPH6Zhw4Zl7lpBzterRo0aALRo0SLL/s2bN+fEiROA9ZrExMRkqU9LS+PcuXNl7no5mj9/PgkJCYwcOTJLuT5fmdcrKiqK//3vf+zevZuWLVsC0LZtW1avXs1HH33EJ598UuY+X7l9tgYMGEBUVBRnzpzBy8uL4OBgQkJCaNCgAVD2fhd9fHzsLXwdOnRg8+bNTJkyhTvuuIOUlBQuXLiQ5Xvx9OnT9utQJL+HLhm5U4plZGQYjz76qBEaGmocPHgwW310dLSxa9euLBtgTJkyxThy5IhhGJmDp06fPm0/btq0aUZgYGCWu15KuitdK2fWrFljAMaOHTsMwyg718owrny9MjIyjNDQ0GwDitu1a2e/q8AcxBgZGWmvX7p0aakcxJifz1evXr2MW265JVu5Pl+Zdu7caQDG3r17s5QPGDDAGDt2rGEYZefzVZD/u5YtW2ZYLBZj//79hmGUnWuVkz59+hijRo2yDyieP3++vW7//v1OBxQX5u+hkpsrePjhh42goCAjIiIiyy2mCQkJOR5DDreCDxgwwNi+fbuxZMkSo2rVqqXu9tMrXavDhw8br732mhEZGWkcPXrUWLhwodGgQQOjZ8+e9nOUlWtlGHn7bL3//vtGYGCgMW/ePOPQoUPGSy+9ZPj5+RmHDx+27zNo0CAjLCzM2Lhxo7FmzRqjcePGpfL207z+Lh46dMiwWCzG4sWLs51Dn6/M65WSkmI0atTI6NGjh7Fx40bj8OHDxrvvvmtYLBbj119/tZ+nLHy+8vLZ+vLLL43169cbhw8fNr7++mujUqVKxlNPPZXlPGXhWhmGYTz//PPGypUrjaNHjxo7d+40nn/+ecNisRi//fabYRjWW8Hr1KljLF++3IiMjDTCw8ON8PBw+/FF8Xuo5OYKAKfb9OnTcz3GMbkxDMM4duyYMXjwYKNcuXJGlSpVjKefftpITU0t3OCL2JWu1YkTJ4yePXsalSpVMnx9fY1GjRoZzzzzTJbbKw2jbFwrw8j7Z2vSpElGrVq1jPLlyxvh4eHG6tWrs9SfPXvWGD58uBEQEGAEBgYa9913n31el9Ikr9drwoQJRu3atbPMP+JIn6/p9n0OHjxo3HzzzUa1atWM8uXLG23atMl2a3hZ+Hzl5Vo999xzRvXq1Q1vb2+jcePGxuTJk42MjIws5ykL18owDGP06NFG3bp1DR8fH6Nq1apGv3797ImNYRhGYmKi8cgjjxgVK1Y0ypcvb9x0001GdHR0lnMU9u+hVgUXERGRUqVsDvMWERGRUkvJjYiIiJQqSm5ERESkVFFyIyIiIqWKkhsREREpVZTciIiISKmi5EZERERKFSU3IiIiUqoouREpIyIiIrBYLFy4cOGqznPvvfcybNgwl8TkynMV59f+4osvGDBgQJHHs2TJEtq1a2dfYV6krFByI1LCfPLJJ1SoUIG0tDR7WXx8PN7e3vTu3TvLvmZCExUVRdeuXYmOjiYoKKhQ4zNf02Kx4OHhQVBQEGFhYTz77LNER0dn2XfKlCnMmDGjUOM5duwYFouF7du3F/lrAyQlJfHyyy/zyiuvFPprXW7QoEF4e3sza9asIn9tEXdSciNSwvTp04f4+HgiIyPtZatXryYkJISNGzeSlJRkL1+xYgV16tShYcOG+Pj4EBISgsViKZI4Dxw4wN9//83mzZt57rnn+OOPP2jVqhW7du2y7xMUFERwcHCO50hJSSm0+K702q4yf/58AgMD6datW6G/ljP33nsvH374oVteW8RdlNyIlDBNmzalRo0aRERE2MsiIiIYOnQo9evXZ8OGDVnK+/TpY//ZsVtqxowZBAcHs3TpUpo3b05AQACDBg3K0rqSnp7OU089RXBwMJUrV+bZZ58lr8vRVatWjZCQEJo0acKdd97J2rVrqVq1Kg8//LB9n8u7Ynr37s1jjz3GE088QZUqVRg4cCAAu3fvZvDgwQQEBFC9enXuuecezpw5Yz8uIyODt99+m0aNGuHr60udOnV4/fXXAahfvz4AYWFhWCwWe+vW5a+dnJzM448/TrVq1fDz86N79+5s3rw5y7W0WCwsW7aMjh07Ur58ebp27cqBAwdyvQ5z5szhhhtuyFKWl+uakZHBpEmTqF+/PuXKlaNt27bMnz8/yz4//fQTjRs3xs/Pjz59+jBz5sxsXY833HADkZGRREVF5RqnSGmi5EakBOrTpw8rVqywP1+xYgW9e/emV69e9vLExEQ2btxoT26cSUhI4N133+Xrr79m1apVnDhxgvHjx9vrJ0+ezIwZM/jyyy9Zs2YN586dY8GCBQWKuVy5cjz00EOsXbuWmJiYHPebOXMmPj4+rF27lk8++YQLFy7Qt29fwsLCiIyMZMmSJZw+fZrbb7/dfsyECRN48803efnll9m7dy+zZ8+mevXqAGzatAmAP/74g+joaH744Qenr/vss8/y/fffM3PmTLZu3UqjRo0YOHAg586dy7Lfiy++yOTJk4mMjMTLy4vRo0fn+r7XrFlDx44ds5Tl5bpOmjSJr776ik8++YQ9e/bw5JNPcvfdd7Ny5UoAjh49yq233sqwYcPYsWMHDz74IC+++GK2169Tpw7Vq1dn9erVucYpUqq4bH1xESkyn332meHv72+kpqYacXFxhpeXlxETE2PMnj3b6Nmzp2EYhrFs2TIDMI4fP24YhmGsWLHCAIzz588bhmEY06dPNwDj8OHD9vN+9NFHRvXq1e3Pa9SoYbz99tv256mpqUatWrWMoUOH5hjb5a/jaPHixQZgbNy40TAMwxg1alSWc/Xq1csICwvLcsx//vMfY8CAAVnKTp48aQDGgQMHjLi4OMPX19f47LPPnMZz9OhRAzC2bduWpdzxtePj4w1vb29j1qxZ9vqUlBQjNDTU/v7N9/XHH3/Y9/n1118NwEhMTHT62ufPnzcAY9WqVVnKr3Rdk5KSjPLlyxvr1q3LctyYMWOM4cOHG4ZhGM8995zRqlWrLPUvvvii02sfFhZmTJw40WmMIqWRl5tyKhG5Cr179+bSpUts3ryZ8+fP06RJE6pWrUqvXr247777SEpKIiIiggYNGlCnTp0cz1O+fHkaNmxof16jRg17q0psbCzR0dF07tzZXu/l5UXHjh3z3DV1OfO43Mb9dOjQIcvzHTt2sGLFCgICArLtGxUVxYULF0hOTqZfv34Fisk8T2pqapZxMd7e3lxzzTXs27cvy75t2rSx/1yjRg0AYmJinF7nxMREAPz8/Oxlebmuhw8fJiEhgWuvvTbL+VJSUggLCwOsY5o6deqUpf6aa65x+v7KlStHQkJCDu9epPRRciNSAjVq1IhatWqxYsUKzp8/T69evQAIDQ2ldu3arFu3jhUrVtC3b99cz+Pt7Z3lucViKXDikhdmolCvXr0c9/H398/yPD4+nhtuuIG33nor2741atTgyJEjLo3xShyvmZmk5XSrdeXKlbFYLJw/fz5frxEfHw/Ar7/+Ss2aNbPU+fr65utcAOfOnaNq1ar5Pk6kpNKYG5ESqk+fPkRERBAREZHlFvCePXuyePFiNm3alOt4mysJCgqiRo0abNy40V6WlpbGli1bCnS+xMREPv30U3r27JmvL9r27duzZ88e6tWrR6NGjbJs/v7+NG7cmHLlyrFs2TKnx/v4+ADWQbw5Me8mW7t2rb0sNTWVzZs306JFizzH6uy1W7Rowd69e+1lebmuLVq0wNfXlxMnTmR7z7Vr1wasA8sd75gDsgyANiUlJREVFWVv8REpC5TciJRQffr0Yc2aNWzfvt3ecgPQq1cvpk2bRkpKylUlNwDjxo3jzTff5Mcff2T//v088sgjeZ4EMCYmhlOnTnHo0CHmzJlDt27dOHPmDFOnTs1XDI8++ijnzp1j+PDhbN68maioKJYuXcp9991Heno6fn5+PPfcczz77LN89dVXREVFsWHDBr744gvAetdWuXLl7AORY2Njs72Gv78/Dz/8MM888wxLlixh7969jB07loSEBMaMGZOveC83cOBA1qxZk6XsSte1QoUKjB8/nieffJKZM2cSFRXF1q1b+b//+z9mzpwJwIMPPsj+/ft57rnnOHjwIHPnzrXP2+PY7bdhwwZ8fX0JDw+/qvchUpKoW0qkhOrTpw+JiYk0a9bMfmcQWJObixcv2m8ZvxpPP/000dHRjBo1Cg8PD0aPHs1NN93kNEG4XNOmTbFYLAQEBNCgQQMGDBjAU089RUhISL5iCA0NZe3atTz33HMMGDCA5ORk6taty6BBg/DwsP599vLLL+Pl5cW///1v/v77b2rUqMFDDz0EWMezfPjhh7z22mv8+9//pkePHlluoze9+eabZGRkcM8993Dx4kU6duzI0qVLqVixYr7ivdyYMWPo2LEjsbGx9gkU83Jd//Of/1C1alUmTZrEkSNHCA4Opn379rzwwguA9Rb3+fPn8/TTTzNlyhTCw8N58cUXefjhh7N0XX377beMGDGC8uXLX9X7EClJLEZhdrCLiAi33XYb7du3Z8KECYX6Oq+//jqffPIJJ0+eBODMmTP27itzvh+RskDdUiIiheydd95xerfX1fr444/ZvHkzR44c4euvv+add95h1KhR9vpjx47x8ccfK7GRMkctNyIiJdSTTz7Jd999x7lz56hTpw733HMPEyZMwMtLIw6kbFNyIyIiIqWKuqVERESkVFFyIyIiIqWKkhsREREpVZTciIiISKmi5EZERERKFSU3IiIiUqoouREREZFSRcmNiIiIlCpKbkRERKRU+X9EB6DSJxDMGQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACN50lEQVR4nOzdd3iTVfvA8W/ohraUVaBQ9t5lWmaBskUQx6siQ3Dji7hFUUFfBRFUXOiPKQqiKCAoUMpoyyij7L2XUEAo3Sttnt8fT5406aIpadOm9+e6ciU5z8idQ0runHOec3SKoigIIYQQQjiIcvYOQAghhBDCliS5EUIIIYRDkeRGCCGEEA5FkhshhBBCOBRJboQQQgjhUCS5EUIIIYRDkeRGCCGEEA5FkhshhBBCOBRJboQQQgjhUCS5EUIIIYRDKdPJTUREBEOHDsXPzw+dTsfq1autPoeiKMyaNYsmTZrg5uZGrVq1+Pjjj20frBBCCCEKxNneAdhTUlISbdu2Zdy4cYwYMaJQ53j55ZfZuHEjs2bNonXr1sTExBATE2PjSIUQQghRUDpZOFOl0+lYtWoVw4cPN5WlpaXx7rvv8ssvvxAbG0urVq349NNPCQoKAuDEiRO0adOGo0eP0rRpU/sELoQQQggLZbpb6m5eeuklIiMjWb58OYcPH+aRRx5h4MCBnDlzBoC1a9fSoEED/vrrL+rXr0+9evV4+umnpeVGCCGEsCNJbvJw+fJlFi1axIoVK+jRowcNGzbk9ddfp3v37ixatAiA8+fPc+nSJVasWMGSJUtYvHgx+/bt4+GHH7Zz9EIIIUTZVabH3OTnyJEjZGZm0qRJE4vytLQ0qlSpAoDBYCAtLY0lS5aY9luwYAEdOnTg1KlT0lUlhBBC2IEkN3lITEzEycmJffv24eTkZLHN09MTgJo1a+Ls7GyRADVv3hxQW34kuRFCCCGKnyQ3eQgICCAzM5ObN2/So0ePXPfp1q0bGRkZnDt3joYNGwJw+vRpAOrWrVtssQohhBAiS5m+WioxMZGzZ88CajLz+eef07t3bypXrkydOnV48skn2bFjB7NnzyYgIIB///2XzZs306ZNG4YMGYLBYKBTp054enry5ZdfYjAYmDBhAt7e3mzcuNHO704IIYQom8p0chMWFkbv3r1zlI8ZM4bFixej1+v53//+x5IlS7h69SpVq1blvvvuY9q0abRu3RqAa9eu8d///peNGzdSoUIFBg0axOzZs6lcuXJxvx0hhBBCUMaTGyGEEEI4HrkUXAghhBAORZIbIYQQQjiUMne1lMFg4Nq1a3h5eaHT6ewdjhBCCCEKQFEUEhIS8PPzo1y5/Ntmylxyc+3aNfz9/e0dhhBCCCEK4cqVK9SuXTvffcpccuPl5QWolePt7W3Tc+v1ejZu3Ej//v1xcXGx6bkdkdRXwUldWUfqyzpSX9aR+rKOreorPj4ef39/0/d4fspccqN1RXl7exdJclO+fHm8vb3lA18AUl8FJ3VlHakv60h9WUfqyzq2rq+CDCmRAcVCCCGEcCiS3AghhBDCoUhyI4QQQgiHIsmNEEIIIRyKJDdCCCGEcCiS3AghhBDCoUhyI4QQQgiHIsmNEEIIIRyKJDdCCCGEcCiS3AghhBDCoZS55Rds7eeff+bAgQOAuuL4+fPnCQsLu+uKpRprVibPvq/2PLf77I+1W7ly5Uz32W9OTk44OTlRrlw5nJ2dcXJywtnZGWdnZ1xcXHB1dTXdu7m5mW4eHh6UL1/e4lbQ9y+EEI5KURTS0tJISkoiOTmZlJQUkpOTSU1NJS0tjfT0dNO9Xq833TIzM8nIyDDdGwwGMjMzMRgMud4URUFRFNNj7bXNH2e/1x6bx2rteyuoCRMmWHVuW5Dk5h6tW7eOX375xd5hlCg6nY4KFSrg5eVFxYoVqVy5MpUqVaJy5cpUrVqV6tWrU6NGDapUqcKlS5dISEigcuXK9g5bCCHypdfruXLlChcuXGD79u2cO3eOW7ducfPmTWJiYrhz5w4xMTHExsaSkJBAQkICGRkZ9g7b7h555JFif01JbmyoKjCugPt+BySaPe8E9M62T2558b/A4mxlDwN1sh2X220/sDPbseMBg/GWaXbLMLvPAKKA22bHlQf8gFQgBUg2PlZQM/rExEQSExOJjo7O5V1Yevnll6lUqRJ169alSZMmNG/e3OImC9MJIYqLoihcuXKFY8eOceLECU6cOMHJkye5ePEiV69etbqFQ+OK+v+mh/HmZrxdA26a7ecO9AecUL+gncxu5bLdfgdizI5tDvQDdGY3crlPBuZmi+9+4/Fk2ze7o8C6bGUTjXFrLgK/5XF8cZHkxoZqAJ8WcN+fsExuehbw2MPkTG6eA4ILcOwsLJMbHTC/AMcBDAA2mj3vlu25Jhn1fSUYb3HAQNTER9MC8AeuA1dQ/zjv3LnDnTt3OHjwoMX53N3dadeuHZ07d6Zz584EBQVRq1atAkYthBD5S0pKYvv27ezatYu9e/eyZ88e/v333zz3d0f9/6sm6v/5NVCTk+XZ9tsAtAK8gAqoyUluXgW+MHteCfizgLFHYpncdAbmFOC46+RMbh4HnijAsT+SM7l5H6hi9jwUSW5EMcr+e8OaUTH6bM/d8tivvPHma3yegWViA/AU8LrZ80TgEmq2fwo4ARw33mJTU9m1axe7du0y7d+8eXP69etHv379CA4Oxt3d/DeDEELkTVEUDh48yPr16wkNDWXnzp2kp6fnum83oC9qi0YDoC5QPZf9NpEzuakOFORnWPb/S63pxMr+f3jh2pQckyQ3NnQZGF7Afe9ke/4ncNbsefYmQe15fC7n+hD43my/vG4nsh1nAJ4mq4lTa/bUmkKdzW7nsx17DfgZ9Q/Tg6zm1gqov1S0W0Iu8dbI9twTaGm8DTEr34n6n0t2WlPxV199hZeXFw8++CCPPfYYwcHB0oUlhMjVsWPHWL58OcuXL+fs2bMW2+oC9wG/ZjvmAeDNApw7txGD11CHKiSg/oBLNt5SUH/wpRlvB7MdlwhMJmtIQPYhA4rZ/ZVsx0agtsBkH5JAtvu0XOL9AliRrSy3ZCn7awKMBsz/58273av4SHJjQ/EUvDkxu7NYJjfW2FbI4xRgQSGP3Q+MKsB+ubXw/AZcQG3WrQPUM95nb3/Zm8uxu4CrqM2e64DLCQksWbKEJUuWUKVKFcaPH8+ECROoU6dOLkcLIcqSlJQUli1bxtdff82hQ4dM5eVRx7X0M94aG8u3o/7/ojH/QWhATVguGW9XUbt3bqC2Omc3JJeyAsUMzCjksRfziKUgooy3wsjeTVUSSHJzj55++ml691aHAmdmZnLkyBFat26Nk1NePay5u9sgtbwu28vvEj/tsfkt+2WDuV1iaH4JonbT6/WmyxW1yxfT0tJITU0lJSXFdIljYmIiCQkJpKSkALn/QlhrvJnToQ5QbobaBNwc+DvbPnWALsbHI4z3O1Cbg1cAN27fZubMmcyePZsRI0YwadIkunbtmm+9CiEcT3R0NN999x3ff/89t27dAtQBvQOBx1BbZCrkclwnLJObUNT/a06gtl7n3nmVNxcXF7y8vPD09DRNk+Hh4YG7u7vFdBraNBsuLi6mqTe06TjMb9pUHuaPs9/nNhWI9ji/++yPc2PN1CXm6tSpw40bNwp1bGFJcnOP+vTpQ58+fQD1MsF169YxePDgMt89kpGRQWJiIrGxsabLI2NiYrh58ybXr1/nxo0b/PPPPxw7doyYmBgSExO5ivofy+Y8ztkI9Yot84Fr3Yy3L1F/PXwJbMnMZMWKFaxYsYL+/fszc+ZM2rZtW2TvVQhRMsTGxjJ9+nTmzJlDWpr608oV+Bj1ytBKuRyTjjowdxNwLNu2q8Aqs+fOzs74+/ubWoY7dOiAn58f1atXp0qVKqZpLypVqoS3tzdubnmNTixb9PrsozaLniQ3okg4Ozvj4+ODj48P9erVy3UfLRkcNGgQiYmJnDlzxjSe5vjx40RFRXH9+nXT/luAakAAMAh4FGhj3OYEDDXeDqP2n6cAGzduJDQ0lFGjRvHRRx9Jd5UQDigtLY1vv/2Wjz/+mJiYGItt6aiDgs0Tm1vAH8AaIBxIynY+Dw8P2rdvT+vWrU1TUjRt2pRatWrh5OQkP2RLAUluhN3pdDoqV65Mly5d6NKli6lcURSuXr3Knj172LFjB6GhoRw5coT9qGN+Pka9rPw/wFiy5vr5BzWxMT/PkiVL+PXXX5k2bRqvv/661d2GQoiSKTw8nPHjx3Pu3DlA7d6+lm2fOagXXawAlqG20phfleTr60twcDBBQUF07tyZli1b4uwsX4+lmfzriRJLp9NRu3ZtateuzYgR6iib69evs2nTJlauXMm6des4npbGB6hXjD0ITCL3eR46AlFpabz99tusXr2axYsX07Rp0+J6K0IIG0tOTuadd95hzhz1L94P9f+B0ahjZw6Z7fsL6hi+W2Zl7du359FHH2XQoEG0bt260ONJRMkkCwCJUqVGjRo8+eSTrFy5khs3brB48WJ69+5NJupsnd3JObngYNQrrxYDFYFdu3bRrl07vvjiCwwGQ7HGL4S4d5GRkbRr186U2DwDnEQdV+NCzglR01ETm7p16zJt2jROnTrFvn37eOutt2jTpo0kNg5IkhtRalWsWJExY8awZcsWDh8+zNNPP51jAJ8TMNP4eAzq1OEDgNTUVF599VUefPBB4uNzmz1ICFHSKIrCN998Q48ePThz5gy1gPXA/6HOqwUQi9rtZJ6u9OjRgz/++IOzZ8/y/vvv06RJk+INXBQ7SW6EQ2jdujXz5s3jypUrvPLKK7i6ugLq3BSfoy4DAVAbdVr071Hn1VmzZg333XcfZ86csUfYQogCSktL45lnnuG///0vmZmZPIb6Y2Wg2T7zgYaoS80oQO/evdm9ezcRERGMGDFCxtGUIZLcCIdSrVo1Pv/8c06ePMkTTzyBAixEXePFvLvqOdTZPGuhznjcuXNnNmzYYIeIhRB3Ex0dTe/evVmwYAFOwGeo42h8jNuvol5B+QzqWkutWrVi3bp1bN68mc6dO9slZmFfktwIh1S/fn2WLl3Kjh07aNSoEf+gdkc9R9Zln51QZ+Tsijo/xpAhQ1i4cKGdIhZC5ObMmTN06dKFyMhIQF240XxtuqWoP142AG5ubsyePZuDBw8yaNAgGUtThklyIxxa165dOXToEBMnTgTUvvmuqMs/gLrO1VbUKywMBgPjx4/n//7v/+wSqxDC0qlTp+jVqxdXrmStaDQP9TJuPfAi8CTqOJvOnTtz8OBBXn31VZnqQUhyIxxf+fLlmTNnDlu2bKFGjRocRm210WZCTsdyXa/nnnuO7777rtjjFEJkOX78OL169SI6OtqiPBx4FnVivrmoU0ZMmzaNHTt20KxZMztEKkoiSW5EmdG7d2+ioqLo3Lkzt1G7qT5DvVR8Z7Z9J0yYwFdffVXsMQoh4OjRo/Tu3ZsbN25QLZfti1AXDPb29mbt2rW8//77MlhYWJDkRpQptWrVIjw8nLFjx5IJvEneq6q//PLLLF68uPiCE0Jw8eJFgoODuXnzJu1R5695M5f9mjVrxp49exgypLDrbwtHJsmNKHPc3d1ZuHAhM2bMyHX7TOBt4+Nnn32W8PDwYotNiLIsPj6eoUOHcuPGDdqhdh1XRp2U73Gz/Xr16sWuXbtklnGRJ0luRJmk0+l46623+OKLLyzKPwbeAKajrlml1+sZMWIEZ8+ezeUsQghbycjI4LHHHuPo0aP4AX+Rdal3BLDW+Lhv376sW7eOihUr2iNMUUpIciPKtEmTJvHNN9+YnieYbVsMdAFiYmIYMmQId+7cKebohCg7Xn31VdavX0951ESmlrF8J+ocNolA//79Wbt2LeXLl7dXmKKUkORGlHkTJkxg7ty5AMxAneUU1BmM/0Rdbfz06dM8/PDD6PV6+wQphAP77rvv+Prrr9EBPwPtjeUXgOFAMjBw4ED+/PNPPDw87BSlKE3smtzMnTuXNm3a4O3tjbe3N4GBgaxfv75Axy5fvhydTsfw4cOLNkhRJjz//PNMnToVUOfO2GIsr47aPO4FbNmyhQ8//NAu8QnhqPbt28ekSZMAtTv4QWN5HHA/8C/QoUMH/vjjD9zd3e0Soyh97Jrc1K5dmxkzZrBv3z6ioqLo06cPw4YN49ixY/ked/HiRV5//XV69OhRTJGKsuD999/niSeeQA88DJw2lrcGFhgff/zxx0RERNglPiEcTVJSkvo3p9fzEPCWsTwDeBQ4jnqF45o1a6QrSljFrsnN0KFDGTx4MI0bN6ZJkyZ8/PHHeHp6smvXrjyPyczMZOTIkUybNo0GDRoUY7TC0el0OhYsWEBgYCB3gCGo69QAPAI8hboq8ZNPPinjb4SwgUmTJnH69GlcAfNZpV5GXQuufPnyrF27Fj8/P/sEKEqtEjPmJjMzk+XLl5OUlERgYGCe+3344Yf4+voyfvz4YoxOlBXu7u6sXr2aevXqcRYw/5R9DTQGrly5wnPPPYeiKPYJUggH8McffzB/vjrCLR11Us2jwK/Ad6g/NpYtW0ZAQID9ghSllt2ndDxy5AiBgYGkpqbi6enJqlWraNGiRa77bt++nQULFnDw4MECnz8tLY20tDTT8/j4eEC9xNfWg0O188mg04IpqfVVqVIlfv31V7p3785qvZ7/Q53u/Qbq2BuAFStW0L9/f8aMGVMsMZXUuiqppL6sU9z1deXKFZ555hmLsqOoy6K4GJ9PnjyZwYMHl8h/Q/l8WcdW9WXN8TrFzj8/09PTuXz5MnFxcfz+++/Mnz+f8PDwHAlOQkICbdq04bvvvmPQoEEAjB07ltjYWFavXp3n+adOncq0adNylC9btkz6cEW+/vzzTxYtWkR54H3UOXDMLxV3d3dnzpw5VK9e3T4BClEKKYrC1KlTOXToUJ77NG3alE8++UQWwBQWkpOTeeKJJ4iLi8Pb2zvffe2e3GQXHBxMw4YN+eGHHyzKDx48SEBAgMWH3WAwAFCuXDlOnTpFw4YNc5wvt5Ybf39/bt26ddfKsZZeryc0NJR+/frh4uJy9wPKuJJeXwaDgaFDhxIaGprnPoMHD2bVqlXodLoijaWk11VJI/VlneKsr6VLl/LUU0/hgTq2ZjbqCt8aLy8voqKiqF+/fpHGcS/k82UdW9VXfHw8VatWLVByY/duqewMBoNFMqJp1qwZR44csSibMmUKCQkJzJkzB39//1zP5+bmhpubW45yFxeXIvtQFuW5HVFJrq8ff/yRNm3acOvWrRzbygHr1q3jr7/+YsSIEcUST0muq5JI6ss6RV1fMTExvPmmulLUe8Bk1CsT/wOcM+4zd+5cmjRpUmQx2JJ8vqxzr/VlzbF2TW4mT57MoEGDqFOnDgkJCSxbtoywsDBCQkIAGD16NLVq1WL69Om4u7vTqlUri+N9fHwAcpQLYSs1a9Zk0aJFDB061FRWD/gWiAT+B0ycOJF+/frh5eWV+0mEEAC8/fbb/Pvvv7QEXjeWtQK09vgnn3ySkSNH2ic44VDserXUzZs3GT16NE2bNqVv377s3buXkJAQ+vXrB8Dly5eJjo62Z4hCcP/99zNu3DhAXevmEDAYeBdoBFy9epX33nvPbvEJURrs2LGDefPmoQN+IGvg8AzUOaVq1qxpsRSKEPfCri03CxYsyHd7WFhYvtsXL15su2CEyMfMmTNZs2YNt27d4gfUxTXdgblAP+Drr79m9OjRtG/fPt/zCFEW6fV6nn/+eUCdXqGbsfw06qzEAHPmzJHFMIXNlJh5boQoyapUqcKsWbMAmApcMpYHA0+gjhV77rnnTIPchRBZvvzyS44ePUo14FOz8heBNGDQoEE8/PDD9glOOCRJboQooNGjRxMUFEQy8JJZ+edARSAqKopff/3VPsEJUULFxMTw8ccfA/AZUNlY/jOwGfDw8ODbb78t8isORdkiyY0QBaTT6Zg7dy4uLi78Baw0lldH7aYC9Qq+9PR0+wQoRAk0Y8YM4uLiaAtoU17eAV4zPn7//fdL9GXfonSS5EYIKzRr1oy3334bgFdRp40HmATUAM6fP2+aUl6Isu6ff/7h66+/BuATs/IPgZtAy5Ytee2113I7VIh7IsmNEFaaPHkytWrV4hLqgGKACqjzdoC6/llSUpJ9ghOiBJk2bRqpqak4ARdQJ+sz/7v58ssvZZ4YUSQkuRHCSh4eHkydOhWwXJLhGaAOcOPGDb788ku7xCZESXHy5EkWLlwIQCbqOLVmwGjUQcTBwcEEBwfbL0Dh0CS5EaIQxo4dS9OmTfkXdfr4Y8BDwGXj9pkzZ3L79m27xSeEvU2ZMiXH1YPngQjj4+nTp+c4RghbkeRGiEJwdnY2XQEyA2gDrDXbHh8fL/95izJrz549/PHHH3luf+SRR+jYsWMxRiTKGkluhCikESNG0LFjR9KA3Ga3+e677/j333+LOywh7O7DDz8E4BHUgffmq/s5OTnx0Ucf2SMsUYZIciNEIel0OmbMmJHrNmcgJSWFOXPmFG9QQtjZ4cOH+fvvv3FCvUJqNupMxNr8NuPGjaNp06Z2i0+UDZLcCHEP+vbta1oLDdRp5dcC2lR+33zzDfHx8fYITQi70BL+h1HXXgM4BcQA7u7ufPDBB3aKTJQlktwIcY+mTZsGqK01vwL3AyOA5kBcXBxz587N+2AhHMi5c+dMs3RPNivXRp8999xz1KpVq9jjEmWPJDdC3KPAwEB69epFBmoTvOYt4/0XX3xBSkqKHSITonjNnDkTg8HAYKCtsWw3sBVwcXGRCftEsZHkRggbmDxZ/Z36f4B2AfhIoC7qvDeygr1wdNeuXTN9znNrtXnyySfx9/cv7rBEGSXJjRA20L9/fwICAkgCvjaWOQOvGx/PnDmTjIwM+wQnRDH44osvSE9PpzvQ3Vh2DFiDOvj+rbfeyvtgIWxMkhshbECn05lab74GEo3l4wFf4OLFiyxfvtxO0QlRtO7cucP3338PWLbafAooqNMmyBVSojhJciOEjYwYMYImTZoQA/xgLPMAXjY+nj17Noqi2Cc4IYrQvHnzSExMpC0w2Fh2EfjF+FhL/IUoLpLcCGEjTk5Opqb3z8laMfx51CTn4MGDREZG2ik6IYpGZmYm3333HQBdyPrczwIyULtsO3ToYKfoRFklyY0QNvTkk09Su3ZtrpH1q7Uy8Jjx8bfffmufwIQoIuvWrePSpUuAOqC+DmrX1CLj9rfffttOkYmyTJIbIWzI1dWVF198EQAtjYkErhkfr1ixghs3btgjNCGKRPaE/QbqemvJQNu2bQkKCrJDVKKsk+RGCBt7+umncXV1ZS/QEugKhBi36fV65s+fb7/ghLChM2fOEBISkuf2CRMmoNPpijEiIVSS3AhhY9WqVePRRx8F4Hgu27///nu5LFw4BG327dqAe7ZtFStW5Iknnij2mIQASW6EKBIvvfRSntv++ecf1q5dW4zRCGF7ycnJLFqkjqz5P+AK6qXf5Y3bn3rqKSpUqGCn6ERZJ8mNEEWgc+fOOa4Q6QkMMz6WgcWitFu2bBmxsbE0AgYBVYFHgFTjdm3smRD2IMmNEEVAp9MxYcIEANyAg0A48BXgBGzevJmTJ0/aLT4h7oWiKKYE/QWz8rmAARgwYACNGze2R2hCAJLcCFFkHnvsMSpXrkwaapM9qJfJ3m98rM3oKkRps2fPHg4ePIgH8JSxLBVYaHysJfZC2IskN0IUEQ8PD8aNGwdkXRYO8KzxfunSpaSnp+c4ToiSbuFCNY15BKhkLFuOumhs3bp1GTx4cB5HClE8JLkRogi98MIL6HQ6QoBLxrIBgB9w69Yt/v77b/sFJ0QhpKSkmNZJe8qs/P+M988//zxOTk7FHpcQ5iS5EaIINWjQgD59+qAAPxrLnIBRxsfa1SZClBarVq0iPj6e+kCQsewk6mSVTk5OjB071l6hCWEiyY0QReypp9Tft4vNy4z369at4/r168UdkhCFpiXkY8zKFhvvBw8eTI0aNYo7JCFykORGiCL24IMP4u3tzQUgzFjWFAhEXXRw6dKldotNCGtcvnyZzZs3oyMruckElhgfS6uNKCkkuRGiiJUvX57HHlOXzjTvhBprvF+0aBGKohR3WEJY7ccff0RRFDyA34Bo1KVFooGqVaty//3353u8EMVFkhshioHWNfU7kGAsewzwAI4dO0ZUVJSdIhOiYAwGA4sXLwbURTHfAvyBccbtI0eOxNXV1T7BCZGNJDdCFIMuXbrQrFkzklHnAlkMDCVrNlcZWCxKum3btnH+/HmLskzUVcAhK4EXoiSQ5EaIYqDT6UzjESahDiiOALTOqF9++YXU1NRcjxWiJNBabXITEBBA27Ztiy8YIe5CkhshismoUaMoVy73P7nY2FjWrFlTzBEJUTBJSUmsWLECUMeK+WXbLq02oqSR5EaIYuLn58fAgQPz3P7LL78UYzRCFNzatWtJSkqiIeqg+MvAl8ZtLi4uPP7443aLTYjc2DW5mTt3Lm3atMHb2xtvb28CAwNZv359nvvPmzePHj16UKlSJSpVqkRwcDB79uwpxoiFuDfmv3Arov4K/sH4fN26dcTFxdkhKiHyp81I/JjxuRNw1fj4gQceoGrVqvYIS4g82TW5qV27NjNmzGDfvn1ERUXRp08fhg0bxrFjx3LdPywsjMcff5ytW7cSGRmJv78//fv35+rVq7nuL0RJM2TIELy8vABYjfor+FmgJZCens6qVavsF5wQuYiNjTX96DRvn1luvB85cmSxxyTE3dg1uRk6dCiDBw+mcePGNGnShI8//hhPT0927dqV6/5Lly7lxRdfpF27djRr1oz58+djMBjYvHlzMUcuROF4eHjw4IMPAvCHWbn2paH9QhaipFi1ahXp6em0Qk3CAbajrnTv7e3NoEGD7BecEHkoMWNuMjMzWb58OUlJSQQGBhbomOTkZPR6PZUrVy7i6ISwHW18wgrUS2khq7l/06ZN/Pvvv/YIS4hcaWPBzFtttNFhDz74IO7u7sUekxB342zvAI4cOUJgYCCpqal4enqyatUqWrRoUaBj33rrLfz8/AgODs5zn7S0NNLS0kzP4+PjAdDr9ej1+nsLPhvtfLY+r6Mqq/XVs2dPqlSpwo3bt9kKBAMNgU7AXmOS//zzz1scU1brqrCkvqyTV33duHHD1DKuJeCZqJNRAjzyyCNlso7l82UdW9WXNcfrFDvP+56ens7ly5eJi4vj999/Z/78+YSHh981wZkxYwYzZ84kLCyMNm3a5Lnf1KlTmTZtWo7yZcuWUb58+XuOX4jC+P7779mwYQPjgAXGss+B14AWLVrwySef2C84IYzWrVvH//3f/9EZ2G0s2wgMQO2SWrhwIc7Odv+NLMqI5ORknnjiCeLi4vD29s53X7snN9kFBwfTsGFDfvjhhzz3mTVrFv/73//YtGkTHTt2zPd8ubXc+Pv7c+vWrbtWjrX0ej2hoaH069cPFxcXm57bEZXl+oqIiCA4OBgf1BleXVGvPqkDGIBz587h7+9v2r8s11VhSH1ZJ6/6CgoKYufOnXyBOvkkqBNQLgaee+45vv7662KPtSSQz5d1bFVf8fHxVK1atUDJTYlLuQ0Gg0Uykt3MmTP5+OOPCQkJuWtiA+Dm5oabm1uOchcXlyL7UBbluR1RWayv3r17U6tWLa5evcoG4AGgFtAddebilStX8vrrr+c4rizW1b2Q+rKOeX1dvnyZnTt3Ug74j3F7GqBdzzdy5MgyX7fy+bLOvdaXNcfadUDx5MmTiYiI4OLFixw5coTJkycTFhZmurRw9OjRTJ482bT/p59+ynvvvcfChQupV68e169f5/r16yQmJtrrLQhRKOXKleM//1G/Msyn7pOrpkRJ8euvvwLqnDZTgTDgbyAOdRqPbt262Ss0Ie7KrsnNzZs3GT16NE2bNqVv377s3buXkJAQ+vXrB6i/HKKjo037z507l/T0dB5++GFq1qxpus2aNcteb0GIQnvsMXWI5lrUVZYBHkL9o9y3bx9nz561U2RCZCXYeuD/gN7Ao8Zt//nPf/JcSkSIksCu3VILFizId3tYWJjF84sXLxZdMEIUs44dO9KwYUPOnTvHbCAe+BV1zA2oXVNvvvmm/QIUZdbFixfZv39/jnJt6gJZbkGUdJJ6C2EnOp3O1HrzPjALdWI0jcxWLOxl9erVeW5r2LAh7du3L75ghCgESW6EsKOHHnooz227du2SpUWEXaxcuRKA4UA3LL8oHn74YXQ6nR2iEqLgJLkRwo7atWtHvXr18tye3y9oIYrCjRs32L59Ozrga9SlFs6TNYZhxIgRdotNiIKS5EYIO9LpdKa1pgA6AB8Drxqfa7+ghSguf/75J4qi0BGobSw7CmQAtWrVKtAUHELYmyQ3QtiZ9kvYB4gE3gFeMm4LDw/n1q1b9glMlElaQv2geZnx/sEHH5SrpESpIJ9SIewsMDCQ6tWrEwtsNZbVB9qhLii7du1ae4UmypjY2FjTWlLaaLBMYI3xsXRJidJCkhsh7MzJyYnhw4cDWb+QIeuXs1w1JYrLunXryMjIoAXQxFgWAdwCqlSpQo8ePewXnBBWkORGiBJAG3fzJ1nz3Gi/kTdu3EhCQoI9whJljDaA3bx9Rku4hw0bJotkilJDkhshSoDevXtTsWJFrgM7jWWtgMaoi79u2LDBfsGJMiEtLY2QkBDAMrlZbbw3H/guREknyY0QJYCrqytDhw4FshYmhKyuKbkkXBS1AwcOkJKSQj0gwFi2B/gH8PT0JDg42G6xCWEtSW6EKCG0wZrmyY02qHP9+vXo9fpij0mUHbt27QJyv0pqyJAhuLu7F3tMQhSWJDdClBADBgzAw8ODC8ABY1lnoCaQmJjIsWPH7BeccGiZmZns27cPgN3AD8BVshJtuUpKlDaS3AhRQpQvX54BAwYAWZfeAgw23kdFRRV7TKJs2LNnj2nQ+k7gedQJ/E6jdpkOGjTIjtEJYT1JboQoQczH3SxAXdtnuXHb3r17URTFPoEJh/b333/nuS0oKAgvL69ijEaIeyfJjRAlyODBajvNIeBp1EvDk4zbbty4wYkTJ+wUmXBk69aty3Pb/fffX4yRCGEbktwIUYLUqFGDTp065bk9vy8hIQrj0qVLHD16FCfgcaBytu2S3IjSSJIbIUoYrWsqN5LcCFv766+/AOgKLANuAlON21q2bEn9+vXtE5gQ90CSGyFKGPNfyj7AY8DXxuc7d+4kJibGDlEJR6UlN9qnzgl1IDFIq40ovSS5EaKEadeuHX5+foD6S/oX1FXCWwMGg4H169fbMTrhSBITE9myZQsAWnthJqDNhy3JjSitJLkRooTR6XSmLxXza1i0rxntl7YQ92rz5s2kp6fTEGhuLNsJxACVK1cmMDDQfsEJcQ8kuRGiBNLG3ZinMVpys2HDBpmtWNiEligPMS8z3g8ePBgnJ6dij0kIW5DkRogSqE+fPri7u3MJOGIsuw+oCsTGxrJz5868DxaiAAwGQ47xNgBrjffSJSVKM0luhCiBypcvT9++fYGsX9LlyJqteO3atbkdJkSB7d+/n+vXr+MF9DKWnQdOAM7OzqbZsoUojSS5EaKEyq1rShv0md+MskIUhDatQH/A1VimfdZ69OiBj4+PHaISwjYkuRGihBoyRB0JsQu4bSzrBzgDJ0+e5NKlS3aKTDiCDRvUa6LMV43SUmbpkhKlnSQ3QpRQtWvXpk2bNhiAjcayikAX4+OQkBD7BCZKvZiYGHbv3g3AfmAHkABEGLfLQpmitJPkRogSbODAgUDWvCMAA4332i9vIay1adMmDAYDAN8B3YHqQCpQt25dmjVrZsfohLh3ktwIUYJpyc1G1F/X75G1SvimTZvkknBRKLklxinG+4EDB6LT6Yo3ICFsTJIbIUqwbt26UaFCBa6j/rr+H3DMuC0hIYHIyEj7BSdKJUVR8m310xJqIUozSW6EKMFcXV1Nl4TnRrqmhLWOHDlCdHQ0HkCrbNucnZ3p06ePPcISwqYkuRGihMvvl7QkN8Ja2memD+oEkf8ATxq3de3aFW9vbztFJoTtOFt7gMFgIDw8nG3btnHp0iWSk5OpVq0aAQEBBAcH4+/vXxRxClFmZZ9MrTXQF5gDHDhwgBs3blC9enV7hCZKIS250VLmWkC88XG/fv3sEZIQNlfglpuUlBT+97//4e/vz+DBg1m/fj2xsbE4OTlx9uxZPvjgA+rXr8/gwYPZtWtXUcYsRJnSoEEDGjVqBMAi4DDwBdDeuH3jxo15HCmEpYSEBLZv3w5kJTd6YIvxcf/+/e0RlhA2V+DkpkmTJhw+fJh58+YRHx9PZGQkf/zxBz///DPr1q3j8uXLnDt3jh49evDYY48xb968ooxbiDJFa70xHz6stedI15QoqK1bt6LX62kINDKWbQcSAR8fH9q2bWu/4ISwoQInNxs3buS3335j8ODBuLi45LpP3bp1mTx5MmfOnJFBaULYkPaL2nzaPu2Xd0hICJmZmcUekyh9sndJQdYcSgEBAZQrJ8MwhWMo8Ce5efPmBT6pi4sLDRs2LFRAQoicevbsiYuLC5eAk8ayQNQZi2/fvs3+/fvtF5woFRRFYf369UDeyY0QjsKqNL1u3bo89dRTLFmyhCtXrhRVTEKIbCpUqECLFi2ArC8jZ9SBxYDpS0uIvJw5c4aLFy/iCvQ2lkWjjuHS6XS0a9fObrEJYWtWJTdPPfUUFy5c4LnnnqNevXo0atSIZ555hl9++YXr169b/eJz586lTZs2eHt74+3tTWBg4F3/k16xYgXNmjXD3d2d1q1bm1a2FcLRtW+vDiHObSmGTZs2FXs8onTRBp53ByoYy7Ruzo4dO8ol4MKhWJXcTJ06lbCwMGJjYwkNDWXkyJGcPn2ap556ilq1atG8eXMmTJhQ4PPVrl2bGTNmsG/fPqKioujTpw/Dhg3j2LFjue6/c+dOHn/8ccaPH8+BAwcYPnw4w4cP5+jRo9a8DSFKJa3bIAJIM5YFG+8jIyNJSEiwR1iilNAS4GCzMi25kUvAhaMp1OgxNzc3+vTpw7Rp0wgPDyc6OprJkydz7do1vv/++wKfZ+jQoQwePJjGjRvTpEkTPv74Yzw9PfO8lHzOnDkMHDiQN954g+bNm/PRRx/Rvn17vvnmm8K8DSFKFX9/f/z8/EhBvcIFoD7QEMjIyCA8PNx+wYkSLSMjg61btwKgADHG8s3G++Dg4NwOE6LUKlRyk56eTnh4ONOmTaN3797UqlWLX3/9lYcffphFixYVKpDMzEyWL19OUlISgYGBue4TGRmZ449wwIABsr6OKBN0Op3pKkTzTijtL0K6pkRe9u7dS3y8OlXfu0A11Mkg/wU8PT3p0qWLHaMTwvasmqH4ww8/JCwsjN27d1O3bl169uzJs88+y9KlS/Hz8ytUAEeOHCEwMJDU1FQ8PT1ZtWqVaeBkdtevX88xE2v16tXzHe+TlpZGWlqa6bn2B67X622+orJ2PlmpuWCkvgpOq6NevXrx888/Ewq8hvrL+6xxn40bN0pdGslny1L2uZAMgNaZ37NnT1O51FfByOfLOraqL2uOtyq5mTp1KnXq1GH27Nk88sgjVKlSxergsmvatCkHDx4kLi6O33//nTFjxhAeHp5ngmOt6dOnM23atBzlGzdupHz58jZ5jexCQ0OL5LyOSuqr4JycnADYD/iidjFoTpw4wc8//0zlypXtEVqJJJ8t1YoVK/LcVrNmTVM9SX1ZR+rLOvdaX8nJyQXeV6coinL33VQhISFs3bqVsLAwDhw4QJMmTQgKCqJXr1706tWLatWqFSpgc8HBwTRs2JAffvghx7Y6derw6quvMmnSJFPZBx98wOrVqzl06FCu58ut5cbf359bt27Z/OoAvV5PaGgo/fr1y3OiQ5FF6qvgzOuqU6dOHD9+PNf9FixYwKhRo4o5upJHPltZEhISqF69OhkZGbiRNRhdc/DgQRo3biz1ZQX5fFnHVvUVHx9P1apViYuLu+v3t1UtNwMGDDBNA5+QkMC2bdsIDw9n5syZjBw5kkaNGtG7d+97GuBrMBgskhFzgYGBbN682SK5CQ0NzXOMDqiDn93c3HKUu7i4FNmHsijP7YikvgrOxcWF/v3755ncbN26lXHjxhVzVCWXfLbUq0wzMjJogNoVtR2YB6wA/Pz8aNOmDRkZGYDUl7Wkvqxzr/VlzbGFnmvby8uLwYMH88knnzBnzhxeffVV/vnnH+bOnVvgc0yePJmIiAguXrzIkSNHmDx5MmFhYYwcORKA0aNHM3nyZNP+L7/8Mhs2bGD27NmcPHmSqVOnEhUVxUsvvVTYtyFEqZP9sl0PoLPx8aZNm7CiMVaUAVpXQD/Uz0o/1CvsQG0p1+l0dopMiKJjVcsNqC0rUVFRpu6pHTt2kJSURO3atXnwwQfp3bv33U9idPPmTUaPHk10dDQVK1akTZs2hISEmP7zvnz5ssVaJ127dmXZsmVMmTKFd955h8aNG7N69WpatWpl7dsQotTSlmLQ6/UsAh43lldGHXR/7Ngx+ZsQJtpVdOYpsTbyQS4BF47KquRm0KBB7Ny5k4SEBPz8/OjduzdffPEFvXv3pkGDBla/+IIFC/LdHhYWlqPskUce4ZFHHrH6tYRwFJ6engQGBhIREUEqoHW69kCdlG3Tpk2S3AgArl69yvHjxykHaEsZ3wYOGB9LciMclVXdUj4+Pnz22WecOnWKf/75h59++onx48cXKrERQhSe9qVkPrON9stcruAQms2b1Wn6OgCVjGVbUC8Fb9WqFTVr1rRTZEIULauSm19++YVnn30WDw+PPPfJa3ZhIYTtaF232hcVZCU34eHhpKen2yMsUcJoia55+4x0SYmyoFADivv3709MTEyO8h07djBw4MBcjhBC2FLHjh2pWLEid4AoY1kboDqQlJQks3YLFEXJd7yNrCclHFmhkpv77ruP/v37WyzUFxERweDBg/nggw9sFpwQInfOzs6mwfu5LcWgrQAtyq4jR45w/fp1ygNdjWXngIuol9Saz0wshKMpVHIzf/586tSpw9ChQ0lLS2Pr1q0MGTKEDz/8kFdeecXWMQohcqH98jZPYwYY77NPty/KHu0z0JusQefaZyUwMBBPT097hCVEsShUclOuXDmWL1+Oi4sLffr04YEHHmD69Om8/PLLto5PCJEHrQt4J6C1oQ4AdMD+/fu5ceOGnSITJYGW3LQzLzPey/AB4egKnNwcPnzY4qZNonflyhWefPJJevbsadomhCh6DRo0oFGjRuhRF9AEdb2pAONjuWqq7EpMTGT79u0AfAzUBsahDkAHSW6E4yvwPDft2rVDp9NZzH6qPf/hhx/4v//7PxRFQafTkZmZWSTBCiEsDRw4kG+++YYQYDhwBPAxbtuwYQNPPvmkvUITdrR161aLFZSvAouMj319fWnbtq1d4hKiuBQ4ublw4UJRxiGEKAQtufkFWIv6JaYJCQnBYDBYzPItyob8xlwNGDBAPhPC4RU4ualbt25RxiGEKISgoCBcXV2JS08nLtu2W7dusX//fjp27GiX2IT95JfcSJeUKAsKnL5bMzlfcnIyx44dK1RAQoiCq1ChAj169Mhze0hISDFGI0qCs2fPcv78eVxR50D6HNAu+tbpdDK/jSgTCpzcjBo1igEDBrBixQqSkpJy3ef48eO88847NGzYkH379tksSCFE3nL7JV7ReC+XhJc92r95N9RlF14BnjJu69ChA9WqVbNTZEIUnwInN8ePH2fIkCFMmTIFHx8fWrZsSb9+/Rg6dCjdu3enatWqtG/fngsXLrBx40ZGjx5dlHELIYzMk5vpwAngkPF5ZGQksbGxdohK2IuW3JinvFr7nXRJibKiwMmNi4sLEydO5NSpU0RGRvLMM8/QqlUratWqRVBQED/88APXrl3jl19+oXXr1kUZsxDCTMuWLalVqxYA7YFmQF3jfWZmpmnxROH4tElVIWtCRwNZSy5IciPKigIPKDbXsWNHGaQoRAmh0+kYMGAACxcuZAPQ31g+ADiJOu7moYcesl+Aoths376d5ORkagLaxd57gdtAxYoV6dKli/2CE6IYyfWAQjgA7Re5+fBh7Tf6hg0bLOanEo5L65IaYF5mvA8ODsbZuVC/Z4UodSS5EcIBBAcHU65cOY4DV4xlQYA7cOXKFU6cOGG32ETxkfE2QqgkuRHCAVSqVIn77rsPyPoycyfrEmC5JNzxXb16laNHj1IO0C72vgPsMT4eMGBA7gcK4YAkuRHCQWhfXuZpjPZ1tnHjxhz7C8eirSXWEahsLNsEZAItWrTA39/fTpEJUfysTm70ej19+/blzJkzRRGPEKKQtORG+0KDrOQmPDyc1NRUe4QlionWOtffrExLaaXVRpQ1Vic3Li4usvK3ECVQx44dqVSpErFkdUW0RF0ROiUlhW3bttktNlG0MjMzTS03s1CT2tlkDSaW5EaUNYXqlnryySdZsGCBrWMRQtwDJycngoODgaxf7MmoCQ5I15QjO3DgALdv3wYgFfXf/3XgH8DNzS3fJTqEcESFui4wIyODhQsXsmnTJjp06ECFChUstn/++ec2CU4IYR1tiZQfge3ANiDNuC0kJITPPvvMfsGJIpPfgPGePXtSvnz5YoxGCPsrVHJz9OhR2rdvD8Dp06cttul0unuPSghRKP37qyMuLhhv5o4cOcK1a9fw8/Mr9rhE0covuZEuKVEWFSq50ab3FkKULP7+/jRv3jzPeW02btzI2LFjizcoUaTi4+OJjIwEYC6wD/WKOW2+Iy3hFaIsuadLwc+ePUtISAgpKSkAMguqECVAfr/UZdyN49m6dSsZGRk0Bp4H5gGLjNv8/Pxo1aqV/YITwk4Kldzcvn2bvn370qRJEwYPHkx0dDQA48eP57XXXrNpgEII62jJjQ54BvgdWGvcFhoaisFgsFNkoihoXVLmKa3WSdW/f38ZKiDKpEIlN6+88gouLi5cvnzZYqDaf/7zH9P030II++jZsydubm4owKvAQ6jT8XsDt27dYv/+/XaNT9jW3ZIbIcqiQiU3Gzdu5NNPP6V27doW5Y0bN+bSpUs2CUwIUTjly5c3XfqrdUI5A32Mj6VrynGcO3eO8+fP4wr0NpZdB46gXtzRr1+/vA8WwoEVKrlJSkrK9dLCmJgY3Nzc7jkoIcS9yW8pBllnynFo/5ZdAW1Cjo2AAnTo0IGqVavaKTIh7KtQyU2PHj1YsmSJ6blOp8NgMDBz5kx69+6dz5FCiOKgdUeEkTXPjZbc7Ny5k8TERDtEJWxNm5XYvPNJS13lEnBRlhXqUvCZM2fSt29foqKiSE9P58033+TYsWPExMSwY8cOW8cohLBS69atqVmzJtHR0exA7ZKqb7xdyMhg27ZtDBo0yL5BinuSmZlJWFgYAMFm5ZuM9zLeRpRlhWq5adWqFadPn6Z79+4MGzaMpKQkRowYwYEDB2jYsKGtYxRCWEmn09G3b18ANpuV9zXeb968OccxonTZv38/sbGx+AAdjGWHgZuo467uu+8+u8UmhL0VquUGoGLFirz77ru2jEUIYUN9+/bl559/ZjPwsVYGzEeSG0eg/RsGkfUrVftX7dmzJ66urnaISoiSoVAtNz179uT9999ny5YtpKam2jomIYQNaC03UUCcsawP6vw3Bw8e5NatW3aKTNiCltzsB14D1gHrjdu0f3shyqpCJTf9+/dn165dPPDAA/j4+NC9e3emTJlCaGgoycnJto5RCFEI/v7+NGnShEwg3FjmC2jz1W7ZssU+gYl7lpqayvbt2wG4DHwODAFCjdsluRFlXaGSmylTprBx40ZiY2PZunUr999/P1FRUQwZMoTKlSvbOkYhRCFpX3L/B7wMtESdAwWka6o027lzZ56t5lWqVKFt27bFHJEQJcs9rS11/vx5jhw5wqFDhzh8+DBeXl5WXYExffp0OnXqhJeXF76+vgwfPpxTp07d9bgvv/ySpk2b4uHhgb+/P6+88op0jwmRCy25+Rv4Cjhutk2Sm9Irv3+73r17U67cPf3XLkSpV6i/gCeeeIJatWrRtWtXNmzYwH333cf69eu5desWq1atKvB5wsPDmTBhArt27SI0NBS9Xk///v1JSkrK85hly5bx9ttv88EHH3DixAkWLFjAr7/+yjvvvFOYtyKEQ+vdu3eeawudO3dOZhQvpbTkZihwH+Bkti04ODi3Q4QoUwp1tdTy5cupWrUqTz/9NH369KF79+65zlh8N9nXoVq8eDG+vr7s27ePnj175nrMzp076datG0888QQA9erV4/HHH2f37t3WvxEhHFzlypUJCAjIcz2pzZs3M27cuGKOStyLuLg49u7dC8C3gD8QDdQGDMh4GyHgHlYFnz9/Punp6UyePJmqVavStWtX3nnnnXtatyYuTr2mI79xO127dmXfvn3s2bMHULvG1q1bx+DBgwv9ukI4Mu3LzhnoDnwAjDJuk66p0ic8PByDwUBj1MQG1PltDECdOnVkrjEhKGTLTaVKlXjggQd44IEHADh79iz/+9//+Oyzz/j000/JzMy0+pwGg4FJkybRrVs3WrVqled+TzzxBLdu3aJ79+4oikJGRgbPP/98nt1SaWlppKWlmZ7Hx8cDoNfr0ev1VseZH+18tj6vo5L6Krh7qatevXrx2Wef4QdsM5aFAT+hXjGVnp6eZ9dVaeXIny1tyQXz9hktRe3duzcZGRlWn9OR66soSH1Zx1b1Zc3xhUpubt++TXh4OGFhYYSFhXH8+HF8fHwYOnQovXr1KswpmTBhAkePHjVd3piXsLAwPvnkE7777ju6dOnC2bNnefnll/noo4947733cuw/ffp0pk2blqN848aNhepKKwjtPx9RMFJfBVeYukpNTcXZ2ZnLGRmcBRoBgYAHcP36dX744Qfq1Klj40hLBkf8bK1ZswbIPbmpXLky69atK/S5HbG+ipLUl3Xutb6smWpGpyiKYu0LODk5UbVqVXr06EGvXr0ICgqidevW1p7G5KWXXuLPP/8kIiKC+vXr57tvjx49uO+++/jss89MZT///DPPPvssiYmJOa4SyK3lxt/fn1u3buHt7V3omHOj1+sJDQ2lX79+uLi42PTcjkjqq+Duta6Cg4OJiIjge+A5Y1l/1HlRPv/8c1566SUbRmt/jvrZun79OnXq1EEH/AtUAWKAaqjdUpcuXaJmzZpWn9dR66uoSH1Zx1b1FR8fT9WqVYmLi7vr93ehWm4OHz5My5YtCxWcOUVR+O9//8uqVasICwu7a2IDauaWPYFxcnIynS87Nzc33NzccpS7uLgU2YeyKM/tiKS+Cq6wdaUlN5vJSm6CUZObsLAwXnnlFRtGWXI42mdr2za1Y7EdamIDsBU1sWnRosU9t8A5Wn0VNakv69xrfVlzbKEGFGuJzb///sv27dvZvn07//77r9XnmTBhAj///DPLli3Dy8uL69evc/36dVJSUkz7jB49msmTJ5ueDx06lLlz57J8+XIuXLhAaGgo7733HkOHDjUlOUIIS9qg4q1mZX2M9xEREYUaJyeKn7YKeB+zMm2eablKSogshWq5SUpK4r///S9LlizBYDAAauvJ6NGj+frrrws8lmXu3LkABAUFWZQvWrSIsWPHAnD58mWLlpopU6ag0+mYMmUKV69epVq1agwdOpSPP/4YIUTuOnXqRIUKFbiVlMRhoA0QAHgDsbGxHD58mICAAPsGKe5KS26CzMq05KZPnz4IIVSFarl59dVXCQ8PZ+3atcTGxhIbG8uff/5JeHg4r732WoHPoyhKrjctsQH1j3nx4sWm587OznzwwQecPXuWlJQULl++zLfffouPj09h3ooQZYKLiwvdu3cH1CulQJ34rbvxsfalKUquq1evcubMGcoBPYxlN4CTgE6ny3NuMCHKokIlN3/88QcLFixg0KBBeHt74+3tzeDBg5k3bx6///67rWMUQtiA1kIaZl5mvJfkpuQLD1eXP/UGVgGXyFoQtU2bNrKunxBmCtUtlZycTPXq1XOU+/r6yqrgQpRQWnITYV5mvNfG3ci4tZJLS0BjgaeMZe7G++xd+0KUdYVquQkMDOSDDz6wWKwyJSWFadOmERgYaLPghBC206FDBypUqMBt4E/gB2CWcZs27kaUXLm1rmn/A0tyI4SlQrXcfPnllwwYMIDatWvTtm1bAA4dOoS7uzshISE2DVAIYRvauJuQkBCG57I9LCxMBhWXUNp4m9zIeBshcipUy03r1q05e/YsM2bMoF27drRr144ZM2Zw5swZm8x/I4QoGvn9wpdxNyWXNt6mIuqYG3My3kaInKxuudm1axdr164lPT2dPn368PTTTxdFXEKIIpBfcrNt2zYMBkOOSTKF/WnJzdPAp8B+4GUgEumSEiI3Vv0v9vvvv9OtWzfmzJnD/Pnzuf/++5k1a9bdDxRClAjauBtNFeBBwBO4c+eOjLspocznt3ECOqEOLAZJboTIjVXJzfTp03nmmWeIi4vjzp07/O9//+OTTz4pqtiEEDZmPt/NO8AtYCWgjdiQrqmS59q1a5w+fRonsua3uQmcQMbbCJEXq5KbU6dO8frrr5suF33ttddISEjg5s2bRRKcEML2tF/6J83LjPeS3JQ8WpdUO9QxN5A1V5GMtxEid1YlN8nJyRYrcbq6uuLu7k5iYqLNAxNCFI27zXejLakiSobcllwIM95Ll5QQubN6QPH8+fPx9PQ0Pc/IyGDx4sVUrVrVVDZx4kTbRCeEsDlt3M2tpCSOAK2B9qhX4Wjjbtq1a2fXGEUWSW6EsJ5VyU2dOnWYN2+eRVmNGjX46aefTM91Op0kN0KUYObz3YShJjfaOlPrgK1bt0pyU0LIeBshCseq5ObixYtFFIYQojgFBQWZkpv/amWoyU1ERASvvPKKvUITZiIi1M7DtmSNt5H1pIS4O5nQQogyqFevXgBsMyvTWga2b9+OoijFHpPIads29V/IvH0mzHiv/RsKIXKS5EaIMqhDhw54eHjwL2oXB0AHoDxw69YtTp48mffBothoyU0dQBvmrSWk0iUlRN4kuRGiDHJ1deW+++4Dsr4sXYD7jI+17hBhPzExMRw5cgSAV1EnXBwCHDVu79GjRx5HCiEkuRGijNK+HCMAPbALdWAxZLUYCPvZsWOHxfNY1DFRCtC0aVN8fX3tEJUQpUOhVgUXQpR+WrfGSmAVkGy2TVpu7C+/fwPpkhIif/eU3Ny8eZObN2/mmPSrTZs29xSUEKLo3XfffTg7O5OSkZFj25UrV7h06RJ169a1Q2QC8m89ky4pIfJXqORm3759jBkzhhMnTpiuqtDpdCiKgk6nIzMz06ZBCiFsr0KFCnTo0IHdu3fnuj0iIoJRo0YVc1QCICkpiX379gGwFTgPhALLjdsluREif4UaczNu3DiaNGnCzp07OX/+PBcuXLC4F0KUDrl9SWprhsu4G/vZtWsXGRkZ1EGdf2gc8LRxm7+/v7SoCXEXhWq5OX/+PH/88QeNGjWydTxCiGLUs2dPZs2ahSfwf6hz3RwAHkDG3diTVvfmI2u0VLNHjx7odLpij0mI0qRQLTd9+/bl0KFDto5FCFHMunXrBkAi0BeojboMgw44deoUN2/etF9wZZjWamberqalmjKYWIi7K1TLzfz58xkzZgxHjx6lVatWuLi4WGx/4IEHbBKcEKJoVa5cmdatW3PkyBG2AQ8BlYBWwBHUL9mHHnrIrjGWNenp6URGRgJZyY12qT7IeBshCqJQyU1kZCQ7duxg/fr1ObbJgGIhSpcePXpYJDegdodIcmMf+/btIzU1lWpAc2NZFJACVK1alebNm+d9sBACKGS31H//+1+efPJJoqOjMRgMFjdJbIQoXbRuDvMRNlrbgIy7KX5anXc3K9PG23Tv3l3G2whRAIVKbm7fvs0rr7xC9erVbR2PEKKYad0ch4B4Y5k2quPQoUPExcXZI6wyK7fFMrUUU7qkhCiYQiU3I0aMYOvWrbaORQhhB35+fjRs2BADsNNYVhNoCBgMBnbu3Jn3wcKmDAYD27dvB7JazwyAthCDDCYWomAKNeamSZMmTJ48me3bt9O6descA4onTpxok+CEEMWjR48enDt3jghgoFYGnENd42jQoEH2C64MOXbsGHFxcXgC7YxlR1HXlfL09KRdu3Z5HCmEMFfoq6U8PT0JDw8nPDzcYptOp5PkRohSpkePHixevJjtZmXdgMXkXMBRFB2trlNRJ+/rDtwxbgsMDMTZWZYDFKIgrP5LURSFsLAwfH198fDwKIqYhBDFTJvvZi+QDrgCAcZtu3fvRq/X52ihFbandUllANuNN432bySEuDurx9woikLjxo35559/iiIeIYQdNGnShKpVq5IKjAbaA12M21JSUjhw4ID9gitD8msl6969e57bhBCWrE5uypUrR+PGjbl9+3ZRxCOEsAOdTmdqGfgVdQkG80kdtBYFUXSuXr3KxYsXc93m5OREly5dct0mhMipUFdLzZgxgzfeeIOjR4/aOh4hhJ3k1+0h426KnlbHDYGJqK1nTsZt7dq1w9PT006RCVH6FGp02ujRo0lOTqZt27a4urrmGHsTExNjk+CEEMUnv26PHTt2oCiKTCBXhLTkZhAwx1j2EvAtMt5GCGsVKrn58ssvbRyGEMLe2rdvj5ubG2lpaXQA+gH3Af8Bbty4wblz52jUqJF9g3RgWtefeYqptZfJeBshrFOo5GbMmDG2jkMIYWdubm507tyZbdu2MQF4yljeEfVLdseOHZLcFJGEhAQOHjwIZCU3Cajre4G03AhhrUKNuTGXmppKfHy8xU0IUTppX6LZ57sBGVRclHbv3o3BYKAuUMtYtgt1UHe9evXw8/OzX3BClEKFSm6SkpJ46aWX8PX1pUKFClSqVMniVlDTp0+nU6dOeHl54evry/Dhwzl16tRdj4uNjWXChAnUrFkTNzc3mjRpwrp16wrzVoQQZrTkxnz4sNaSIIOKi45Wt+btM1oqKV1SQlivUMnNm2++yZYtW5g7dy5ubm7Mnz+fadOm4efnx5IlSwp8nvDwcCZMmMCuXbsIDQ1Fr9fTv39/kpKS8jwmPT2dfv36cfHiRX7//XdOnTrFvHnzqFWrVp7HCCEKpmvXrgCcAm5pZYAOOHHihEwBUURyS260VFK6pISwXqHG3Kxdu5YlS5YQFBTEU089RY8ePWjUqBF169Zl6dKljBw5skDn2bBhg8XzxYsX4+vry759+/JcIG7hwoXExMSwc+dO04yp9erVK8zbEEJkU7lyZVq0aMHx48fZAQwDqgBNgZPAzp07GTp0qF1jdDQZGRlERkYCWa1kmcBu42NpuRHCeoVKbmJiYmjQoAEA3t7epku/u3fvzgsvvFDoYOLi4gD1P9i8rFmzhsDAQCZMmMCff/5JtWrVeOKJJ3jrrbdwcnLKsX9aWhppaWmm59qYIL1ej16vL3SsudHOZ+vzOiqpr4IrzroKDAy0SG5A/dI9CURERDBw4MC8Dy4hStNn68CBAyQmJlIRaGUsOwgkAj4+PjRu3LjI30dpqq+SQOrLOraqL2uOL1Ry06BBAy5cuECdOnVo1qwZv/32G507d2bt2rX4+PgU5pQYDAYmTZpEt27daNWqVZ77nT9/ni1btjBy5EjWrVvH2bNnefHFF9Hr9XzwwQc59p8+fTrTpk3LUb5x40bKly9fqFjvJjQ0tEjO66ikvgquOOpKmyzOfIRNN2A+8Pfff5eqloTS8Nn6+++/AQgka5yAVvcNGzbM0cJdlEpDfZUkUl/Wudf6Sk5OLvC+OkVRFGtf4IsvvsDJyYmJEyeyadMmhg4diqIo6PV6Pv/8c15++WVrT8kLL7zA+vXr2b59O7Vr185zvyZNmpCamsqFCxdMLTWff/45n332GdHR0Tn2z63lxt/fn1u3buHt7W11nPnR6/WEhobSr18/WWSwAKS+Cq446+rcuXM0b94cVyAOcAfOAE0AV1dXbt++jZubW5HGcK9K02dr5MiRrFixgi7AJNRWsteA34APP/yQt99+u8hjKE31VRJIfVnHVvUVHx9P1apViYuLu+v3t1UtN+fPn6d+/fq88sorprLg4GBOnjzJvn37aNSoEW3atLE64Jdeeom//vqLiIiIfBMbgJo1a+Li4mLRBdW8eXOuX79Oeno6rq6uFvu7ubnl+h+xi4tLkX0oi/Lcjkjqq+CKo66aNm1KjRo1uH79OlGoX7aNgerAjfR0jhw5QmBgYJHGYCul4bO1a9cuQB1j87ixTJsHumfPnsUaf2mor5JE6ss691pf1hxr1dVSjRs35t9//zU9/89//sONGzeoW7cuI0aMsDqxURSFl156iVWrVrFlyxbq169/12O6devG2bNnMRgMprLTp09Ts2bNHImNEMJ65oto/g4sAMYDKcbtO3futFNkjufKlStcuXIlR7kCODs706lTp+IPSggHYFVyk70Ha926dfletn03EyZM4Oeff2bZsmV4eXlx/fp1rl+/TkpKimmf0aNHM3nyZNPzF154gZiYGF5++WVOnz7N33//zSeffMKECRMKHYcQwpJ2Sfgc4GlgIaBNzynJje1oV0nlpn379kU2LlAIR1eoAcW2MnfuXACCgoIsyhctWsTYsWMBuHz5MuXKZeVg/v7+hISE8Morr9CmTRtq1arFyy+/zFtvvVVcYQvh8LTkJjc7d+6URTRtREsUq6OOb0o125bfv4EQIn9WJTc6nS7Hf2j38h9cQcYyh4WF5SgLDAw09VMLIWwvICDAtIhmdtevX+fSpUsyv5QNaC03XwAPAweAB4FrSHIjxL2wKrlRFIWxY8eaBuimpqby/PPPU6FCBYv9Vq5cabsIhRDFzs3NjQ4dOphaFnxQVwg/DlxGbXGQ5ObepKSksH//fkCdBdoFaAncNG4vLYO2hSiJrBpzM2bMGHx9falYsSIVK1bkySefxM/Pz/RcuwkhSj+t5eAx4A6wHhhh3Cbjbu5dVFQUGRkZ1ALqGsv2ABmo3e93u3JUCJE3q1puFi1aVFRxCCFKGC25OWpeBnyJJDe2oNWhefuMVqvSJSXEvSnUwplCCMendYscRx3sCmpyA3Do0CESExPtEZbDkORGiKIjyY0QIlc1atSgQYMGGMhaxLEWUAd1uZQ9e/bYL7hSTlEUU3JjnsZol0lIciPEvZHkRgiRJ+1L1rwTSvvala6pwjt79iy3bt3CHWhvLDsJxAAeHh60bdvWfsEJ4QAkuRFC5Cm/5Ca/CehE/rS66wBo86prddy5c2eZ0l+IeyTJjRAiT1pysxvQFjzRxohERkZaLIMiCi63LikZbyOE7UhyI4TIU6tWrfD09CSerKum2gHlgTt37nDq1Cm7xVaaacmN+Wp6WnIj89sIce8kuRFC5MnJyYkuXboAWV++zoC2nKOMu7FeXFwcR4+qqeKLQDVgKOqYG5DkRghbkORGCJEvrZskEnWCuX2Am3GbJDfW2717t8XSM7eAv1BXAm/SpAlVq1a1V2hCOAy7LpwphCj5tOTmd+APIMls244dO+wRUqmWX53JeBshbENaboQQ+brvvvsASMYysQE4deoU165dK/aYSrOtW7fmuU2SGyFsQ5IbIUS+fHx8aN26dZ7bN2/eXIzRlG6JiYmmy8A3Az8Aw822d+/e3Q5RCeF4JLkRQtxV3759c5R5Ge83bdpUvMGUYhEREWRkZFAf6AM8C/zXuK1mzZo0a9bMfsEJ4UAkuRFC3FVwcDCgDiReAFwEVhm3bd682WKArMib1soVbFampYbBwcHodLpij0kIRyTJjRDirnr27ImzszNpqC0OdYFugDtw9epVme+mgLRWLvN2MK1TT0sghRD3TpIbIcRdeXl5mea70Voa3FETHJBxNwVx8+ZNDh8+jI6s5CYW9dJ6yL3rTwhROJLcCCEKRGtZME9jtLYGGXdzd1u2bAGgDaDNZBMGZALNmjWjVq1a9glMCAckyY0QokC0loUt5mXG+61bt5KZmVnsMZUm+Y23kVYbIWxLkhshRIF06dKFChUqcBM4bCzrAFRCXVJg3759eR8sZLyNEMVIkhshRIG4urrSs2dPIKvFoRwQZHws427ydv78eS5evIgL0NNYdg11Paly5coRFBRkt9iEcESS3AghCkzG3RSOVjf3ARW0MuN9x44d8fHxsUNUQjguWVtKCFFg2tiQCEAPuJDVzbJjxw5SUlLw8PCwU3Qll5bc7AJ6oCaEkcZtMt5GCNuTlhshRIG1bt2aatWqkYj6RQ1QE6gMpKWlyUKauTAYDKYrpfTAdmAqEGLcLuNthLA9SW6EEAVWrlw5U0vDFCAQNbGJMW6XrqmcDh06xO3bt3Pd5u7uLotlClEEJLkRQljFvGtqF+o8LZr169fbI6QSLb866d69O+7u7sUYjRBlgyQ3Qgir5NeNcvjwYS5fvlyM0ZR8f/31FwATgUlAI7NtMt5GiKIhyY0Qwir16tWjefPmeW7/+++/izGaku3ff/9l1y51dNKbwBfAEUAbcj1kyBA7RSaEY5PkRghhtfvvvx+AisB/UQfHfmjcprVUCLVLSlEU2gHa4gqbgRSgTp06tGrVym6xCeHIJLkRQlhNS25cgC+B/sAI47bNmzeTlJRkn8BKGC3Ru9+8zHh///33o9Ppij0mIcoCSW6EEFbr2rUrPj4+3CLrkvCWQH3US8K1S5/LsvT0dEJC1Au+zZMbrdNOSxCFELYnyY0QwmrOzs4MGjQIyGqJANBGkEjXFGzfvp34+Hh8gS7GskPAFaB8+fL07t3bfsEJ4eAkuRFCFIrW8mCexmhtEX/99ReKohR7TCWJluANNi8z3gcHB8sl4EIUIUluhBCFMnDgQMqVK8cRQLv4OwjwBK5du8bBgwftFVqJkNt4m7XGe+mSEqJoSXIjhCiUypUr061bNyCrRcKNrIU0y3LX1OnTpzlz5gyuqIOtAW4Ce42PBw8enPuBQgibkORGCFFoWgvEWvMy431ZTm60994T8DKWrQMMQPv27alVq1YeRwohbMGuyc306dPp1KkTXl5e+Pr6Mnz4cE6dOlXg45cvX45Op2P48OFFF6QQIk9acrMV0C7+HgLogD179nDjxg07RWZfWnJzAHgaWA2sNG6TLikhip5dk5vw8HAmTJjArl27CA0NRa/X079//wLNkXHx4kVef/11evToUQyRCiFy07x5c+rXr08aoC2ZWQPQpqYri7MVx8bGsm3bNgBuAwuAB5HxNkIUJ7smNxs2bGDs2LG0bNmStm3bsnjxYi5fvsy+ffvyPS4zM5ORI0cybdo0GjRoUEzRCiGy0+l0pi/r74DngNqoSwxA2eyaCgkJISMjI9dtNWrUoEOHDsUckRBlj7O9AzAXFxcHqAMV8/Phhx/i6+vL+PHjTb+Q8pKWlkZaWprpeXx8PAB6vR69Xn+PEVvSzmfr8zoqqa+CK8l1NWjQIL7++ms25rJt48aNJCQkFPtlz/asrz///DPPbQMHDiQzM5PMzMw897GHkvz5Komkvqxjq/qy5vgSk9wYDAYmTZpEt27d8l1vZfv27SxYsKDAl5lOnz6dadOm5SjfuHEj5cuXL2y4+QoNDS2S8zoqqa+CK4l1pdfrcXd3JzU1Nce2pKQkZs+eTUBAgB0iK/76yszMNLVWTQKOAeFAunF7jRo1WLduXbHGZI2S+PkqyaS+rHOv9ZWcnFzgfUtMcjNhwgSOHj3K9u3b89wnISGBUaNGMW/ePKpWrVqg806ePJlXX33V9Dw+Ph5/f3/69++Pt7f3PcdtTq/XExoaSr9+/XBxcbHpuR2R1FfBlfS6GjhwIKtXr851282bN4v90md71df27dtJSEigMjALcEK9/Lsz4Orqyptvvomnp2exxVNQJf3zVdJIfVnHVvWl9bwURIlIbl566SX++usvIiIiqF27dp77nTt3josXLzJ06FBTmcFgANTp4E+dOkXDhg0tjnFzc8PNzS3HuVxcXIrsQ1mU53ZEUl8FV1LratiwYaxevRod6kR+96POefMSsG7dOr799lu7LBJZ3PW1YcMGAAahJjagXkkG0KdPHypVqlRssRRGSf18lVRSX9a51/qy5li7JjeKovDf//6XVatWERYWRv369fPdv1mzZhw5csSibMqUKSQkJDBnzhz8/f2LMlwhRB4GDx6sJi+Kws+AH5ACvAFcunSJo0eP0rp1a/sGWQzWrlWviRpqVma+CrgQonjY9WqpCRMm8PPPP7Ns2TK8vLy4fv06169fJyUlxbTP6NGjmTx5MgDu7u60atXK4ubj44OXlxetWrXC1dXVXm9FiDLN19eXLl26oJC16rUH0Nf4uCxcNXXu3DlOnDiBMzDQWBYD7DQ+luRGiOJj1+Rm7ty5xMXFERQURM2aNU23X3/91bTP5cuXiY6OtmOUQoiCyG+2Yq1Fw5FpCVwPoKKxbD2QCbRu3Zq6devaKTIhyh67d0vdTVhYWL7bFy9ebJtghBD3ZOjQoUyZMoVNqF1SHmQlN7t27eLff/+lWrVq9guwiOW3UKb5OEEhRNGTtaWEEDbRunVr6tSpQwqwxVhWCwhA/SFTki+Bvlfx8fGEh4cDWeNtMoAQ42NJboQoXpLcCCFswny24rLWNRUSEoJer6cJ0NhYtg2IBapVq0anTp3sFpsQZZEkN0IIm9FaKMxXlNLaLEJCQkhPT89xjCPQuqRyu0pqyJAhODk55ThGCFF0JLkRQthMUFAQFSpU4B/UFbEBOqEuppmYmHjXMXSlUWZmpqnLLQz4AjiLXAIuhD1JciOEsBl3d3f69esHlJ2uqcjISG7dugXAPuBV1K6p06iTjvXv39+O0QlRNklyI4SwKa1r6g/gG6A/8KNx259//lmgqyRLk/wWygwKCsLLy6sYoxFCgCQ3QggbGzJkCDqdjsPAf4FQQFvL98qVKxw6dMh+wRWBNWvW5Llt2LBhxRiJEEIjyY0QwqaqV69OYGBgntvzSwZKm1OnTnH69GlcgWdRl50wJ5eAC2EfktwIIWzugQceyHObIyU32nsJAn4ArgJTjdsCAgKoU6eOXeISoqyT5EYIYXPmyY0vMA74GfU/nH379vHPP//YKTLb0sbbmHc+aZ1u+SV4QoiiJcmNEMLmmjVrRuPG6nR23wELgJHAfcbtjnDV1L///svOneqymFoakwZsND6W5EYI+5HkRghhczqdzvTlbt4JpX3dO0LX1N9//42iKAQAtY1lm4EkoHbt2gQEBNgvOCHKOEluhBBFQktu/kZdGRuyum+2bNlCQkKCPcKymdy6pLSLwh944AF0Ol2xxySEUElyI4QoEl27dqVKlSrcBnYYy5oBTYD09HRCQkLyPriES0lJYeNGtQPKvPNJm5VYuqSEsC9JboQQRcLZ2ZkhQ4YAWS0akLX+UmnumtqyZQvJycn4o656DrAXuAZ4eXkRFBRkt9iEEJLcCCGKkDaJnXkao3Xj/P3332RkZBR7TLagdUmZt89oCdzAgQNxc3Mr9piEEFkkuRFCFJn+/fvj6urKWeC4sawrUA2IiYkhIiLCfsEVUmZmZq7jbbQETrqkhLA/SW6EEEXG09OTvn37ArDaWOZEVovHypUr7RDVvdm5cyc3b94E4DdgE+oimUcAJycnBg8ebMfohBAgyY0QooiNGDECAPM0ZoTxftWqVRgMhmKP6V6YJ2TzgX5AK+PzoKAgKleubI+whBBmJLkRQhSpBx54gHLlyrEPdaXwV4AXjduuXbvGnj177BeclRRFybW1SVsYVEvkhBD2JcmNEKJI+fr60qNHDwAeBr4ELpltL01dU/v37+fy5ct5bh8+fHjxBSOEyJMkN0KIIpdfi8bKlStRFKUYoyk8LRFrB/TA8j/QwMBA/PyyrwsuhLAHSW6EEEXuwQcfzHPbuXPnOHLkSDFGU3hacvMmEIE6r01T4zbpkhKi5JDkRghR5Pz9/enUqZPpeSfgE6Cv8Xlp6Jo6ceIEJ0+exA2431jmApwzPs4vgRNCFC9JboQQxUJr2QgG9gCTgTHGbaUhudFi7At4GcvWABlA27ZtadiwoZ0iE0JkJ8mNEKJYaMlNOBBnLBuK2vpx5MgRzpw5Y6fICkZLbsw7n7SUTLqkhChZnO0dQEmVmZmJXq+/+45m9Ho9zs7OpKamkpmZefcDyriyUl8uLi44OTnZOwy7a9KkCS1btuTYsWOsBZ4EfIDewEbUOW/efPNNe4aYp4sXL7J//36cyJqVOBEINT6W5EaIkkWSm2wUReH69evExsYW6tgaNWpw5coVdDqd7YNzMGWpvnx8fKhRo4bDv8+7GTFiBMeOHWMlanIDakvIRmDFihUlNrn5448/APUKqarGsnVAKtC4cWNatmxpp8iEELmR5CYbLbHx9fWlfPnyVn0ZGQwGEhMT8fT0pFw56fG7m7JQX4qikJycbJquv2bNmnaOyL5GjBjBRx99RAiQDJRHTW4mAFFRUZw7d65Ejl1Zvnw5AI+alZl3SZX1pFWIkkaSGzOZmZmmxKZKlSpWH28wGEhPT8fd3d1hv6xtqazUl4eHBwA3b97E19e3THdRtW3blgYNGnD+/Hn+Qk0WqqEO0t2ImkS8++67do0xuzNnzhAVFYUz8IixLBn4y/hYuqSEKHkc9xulELQxNuXLl7dzJMLRaJ8pa8dxORqdTsd//vMfAH4xK3/MeK+1kJQkv/76K6AmYFqX1FogCWjQoIHFJe5CiJJBkptcSBOzsDX5TGV5/PHHAVgPxBvLRgBuwNGjRzl69KidIstJURR++UVNwy4D3wI3yUrMHnvsMfm3FaIEkuSmDAgKCmLSpEn3fJ6xY8eWqLVzLl68iE6n4+DBgwU+xlZ1IQqvVatWtGjRgjRglbGsIjDQ+Lgktd4cPXqU48ePA3ACeAnwI6tL6rHHHsvjSCGEPUly4yDGjh2LTqfLcTt79qzNXmPOnDksXry4QPtOnToVnU7HwIEDc2z77LPP0Ol09OnTx2axidJDp9OZWm+WAD8DQ1CvPgL45ZdfSsxaU1qrjblM461ly5a0bt262GMSQtydJDcOZODAgURHR1vc6tevf8/nzczMxGAwULFiRXx8fAp8XM2aNdm6dSv//POPRfnChQupU6fOPcclSi+txWMLMAo1sdFGI50/f56oqCg7RZZFUZR8W5G0BE0IUfJIcpMPLy8v3NzcCnzz8PCgevXqeHh4WHXc3W5eXl53DxZwc3OjRo0aFrfcrsy5c+cOo0ePplKlSpQvX55BgwZZzA67ePFifHx8WLNmDS1atMDNzY3Lly/n6Jb6/fffad26NR4eHlSpUoXg4GCSkpJM2319fenfvz8//vijqWznzp3cunWLIUOGWMRkMBj48MMPqV27Nm5ubrRr144NGzZY7LNnzx4CAgJwd3enY8eOHDhwIMd7O3r0KIMGDcLT05Pq1aszatQobt26VaD6E8WnUaNGdOzYMc/tubWYFLc9e/Zw4cIFPIHnyRpMrNEGRgshSh5JbvKRnp5eYm62NHbsWKKiolizZg2RkZEoisLgwYMtruRJTk7m008/Zf78+Rw7dgxfX1+Lc0RHR/P4448zbtw4Tpw4QVhYGCNGjMjRnTBu3DiLrqyFCxcycuRIXF1dLfabM2cOs2fPZtasWRw+fJgBAwbwwAMPmJKuxMRE7r//flq0aMG+ffuYOnUqr7/+usU5YmNj6dOnDwEBAURFRbFhwwZu3LjBo48+iih58mv5+PXXXzEYDMUYTU5aq80wYC4QjTofD0CnTp1o1KiRnSITQtyNXZOb6dOn06lTJ7y8vPD19WX48OGcOnUq32PmzZtHjx49qFSpEpUqVSI4OJg9e/YUU8Ql219//YWnp6fp9sgjj+TY58yZM6xZs4b58+fTo0cP2rZty9KlS7l69SqrV6827afX6/nuu+/o2rUrTZs2zXF5fHR0NBkZGYwYMYJ69erRunVrXnzxRTw9PS32u//++4mPjyciIoKkpCR+++03xo0blyOuWbNm8dZbb/HYY4/RtGlTPv30U9q1a8eXX34JwLJlyzAYDCxYsICWLVty//3388Ybb1ic45tvviEgIIBPPvmEZs2aERAQwMKFC9m6dSunT58uZK2KovLoo4+arjSqADwOrAYqAdeuXWPbtm12iy0zM9N0Cbg2ZNgZOGR8LAOJhSjZ7JrchIeHM2HCBHbt2kVoaCh6vZ7+/ftbdG1kFxYWxuOPP87WrVuJjIzE39+f/v37c/Xq1WKMvGTq3bs3Bw8eNN2++uqrHPucOHECZ2dnunTpYiqrUqUKTZs25cSJE6YyV1dX2rRpk+drtW3blr59+9K6dWseeeQR5s2bx507d3Ls5+LiwpNPPsmiRYtYsWIFTZo0yXHe+Ph4rl27Rrdu3SzKu3XrZorpxIkTtGnTBnd3d9P2wMBAi/0PHTrE1q1bLRK8Zs2aAXDu3Lk834uwj9q1a9OjRw8ApgLLUFtJtCnxfvrpJ/sEBmzdupXo6GgqAwOMZVeAHVjO1SOEKJnsOkNx9jEVixcvxtfXl3379tGzZ89cj1m6dKnF8/nz5/PHH3+wefNmRo8eXWSxlgYVKlSwWVO5h4dHvvN3ODk5ERoays6dO9m4cSNff/017777Lrt3784xiHncuHF06dKFo0eP5tpqYyuJiYkMHTqUTz/9NMe2sr7sQUn12GOPERERwa+A1sk4BliA2jX15Zdf5mgNLA7z588H1NYkF2PZr4AC9OzRg1q1ahV7TEKIgitRyy/ExcUBULly5QIfk5ycjF6vz/OYtLQ00tLSTM/j49Vpw/R6fY7ZYvV6PYqiYDAY7N7fn93d4lEUxRR7XtsNBgNNmzYlIyODyMhIunbtCsDt27c5deoUzZo1s3jv2c+V22sEBgYSGBjIlClTqF+/PitXruSVV14xjb0xGAw0b96cli1bcvjwYR577DEMBoPpXKAO3Pbz82P79u2mX/IAO3bsoFOnTqa4f/rpJ5KTk02tNzt37jS9hsFgICAggJUrV1KnTh2cnXN+tLW486unoqK9Z71eX6jlF7TPqqPNcDxs2DAmTpxIVEYGx4CWqItTNgVOJSbyyy+/MHbsWKvPey/1dfv2bVatUmfgedqsXBsW/+ijjzrcv4Ojfr6KitSXdWxVX9YcX2KSG4PBwKRJk+jWrRutWrUq8HFvvfUWfn5+BAcH57p9+vTpTJs2LUf5xo0bc4wjcXZ2pkaNGiQmJpKenp5j0Ku9uLq6mpKyvOj1ejIyMnLdLyMjg/T0dOLj46levTqDBw/mmWee4fPPP8fT05Np06ZRs2ZNevfuTXx8PKmpqSiKkuNc5q8RFRVFeHg4ffr0oWrVquzbt49///2XOnXqEB8fT1paGpmZmaZzrFy5koyMDMqVK0d8fDzp6elkZmYCkJCQwEsvvcT06dOpWbMmrVu3ZunSpRw8eJC5c+cSHx/P/fffz5QpU3jqqad45ZVXuHz5MrNmzQIgKSmJ+Ph4Ro0axbx583j00UeZOHEilSpV4vz586xcuZKvvvoKJycni7ooTunp6aSkpBAREUFGRkahzxMaGmrDqEqGjh07smvXLhYAnxvLxgFvAbNnz84xmN0ahamvtWvXkp6eTnugnbFsF3AU9W/Rx8eHdevW5Xl8aeaIn6+iJPVlnXutr+Tk5ALvW2KSmwkTJnD06FG2b99e4GNmzJjB8uXLCQsLsxiLYW7y5Mm8+uqrpufx8fGmcTre3t4W+6ampnLlyhU8PT1xd3c3tSQVlKIoJCQk4OXlVexTsru4uODs7JzjPYGatLm6upq2LVmyhEmTJvH444+Tnp5Ojx49WLdunWmxUHd3d3Q6XY5zmb9GzZo12bNnDz/88APx8fHUrVuXWbNm8dBDDwHqZelOTk6mc2Q/l6urq6kFw8vLizfeeIO0tDTef/99bt68SYsWLVi9ejUBAQGm49esWcOLL75Ir169aNGiBZ9++imPPPIIFSpUwNvbG29vb7Zv387bb7/NQw89RFpaGnXr1mXAgAH4+Pig0+ly1EVxSU1NxcPDg549e+b5Wc2PXq8nNDSUfv364eLicvcDShGdTsewYcP4CZgBuKJ2TU0BTp06Rb169WjRooVV5yxsfSmKYlq407zVZoHx/pFHHnHIq+8c+fNVFKS+rGOr+rLqR6lSAkyYMEGpXbu2cv78+QIf89lnnykVK1ZU9u7da9VrxcXFKYASFxeXY1tKSopy/PhxJSUlxapzajIzM5U7d+4omZmZhTq+rClL9XWvn6309HRl9erVSnp6uo0js7+MjAylVq1aCqD8CopivD2oDnFRXn31VavPWdj62r17twIoHqDEGuNIAMXTGEt4eLjVsZQGjvz5KgpSX9axVX3l9/2dnV2vllIUhZdeeolVq1axZcuWAs+mO3PmTD766CM2bNiQ70RgQoiSz8nJyTTQfL5Z+Xjj/ZIlSyzGzRUlbSDxw6jrXYE6kDgRaNy4scWYMCFEyWXX5GbChAn8/PPPLFu2DC8vL65fv87169dJSUkx7TN69GgmT55sev7pp5/y3nvvsXDhQurVq2c6JjEx0R5vQQhhA0899RQAm4BLxrKBQG3g1q1brFmzpshjSDQOYAZYizph3wGyuqTGjx8vK4ALUUrYNbmZO3cucXFxBAUFUbNmTdNNmzwL4PLly0RHR1sck56ezsMPP2xxjDa4VAhR+tSvX5/g4GAUYKGxzAnQllbVWlSK0m+//Wb6kRQLfAe0ByJRW5fGjBlT5DEIIWzDrgOKlQKs/BsWFmbx/OLFi0UTjBDCrp5++mk2bdrEItS5ZRYCF4zbQkNDOXPmDI0bNy6S11YUhe+//z7P7UOHDqVGjRpF8tpCCNuTtaWEECXC8OHDqVy5MleA98hKbEBNPiZOnFigH0SFsWTJEvbu3Zvnr73x48fnsUUIURJJciOEKBHc3NwYNWpUnts3bNjAH3/8YfPXjYmJMS3C+gmwAWhott3Pz4+BAwfa/HWFEEVHkhshRInx3HPP5Ri06wMMNj6eNGkSCQkJNn3Nt99+m1u3btEKeAV1LakoQFv04dlnn811xmshRMklyY0QosRo3rw5zzzzjOn5E8Ap4A/U1pSrV6/ywQcf2Oz1IiMjmTdvHjpgLlmDED9Hvfy7Vq1aFpOACiFKB0luhBAlyvTp06lWrRoAbQFfwB341rh9zpw5HDx48J5fJyMjgxdeeAGAsUB3Y/lpQFt6dc6cOXh5ed3zawkhipckN6LQxo4dy/Dhw+/5PNOmTaNdu3b3fB5b0ul0rF69usD726ouhLpwrja1w4fAZWP5AOAR1HXoRo0aRWxs7D29zjvvvMOhQ4eoAsw0K38RSAcGDRrEiBEj7uk1hBD2IcmNgxg7diw6nQ6dToerqyuNGjXiww8/vKdFGqdOnWo6p/lt06ZNNowcXnvtNTZv3lygfRcvXoxOp6N58+Y5tq1YsQKdTke9evVsGp8ofqNGjaJXr14kARPNyucANYGjR4/ywAMPWEz4aY3PP/+czz77DICvgarG8l+Azajrq33zzTcyaZ8QpZQkNw5k4MCBREdHc+bMGV577TWmTp1q+g/cGpmZmRgMBgBatmxJdHS0xa1nz542iVdRFDIyMvD09DQt2lkQFSpU4ObNm0RGRlqUL1iwgDp16tgkNmFfOp2O7777DmdnZ/4EtPmJa6JezVQR2LZtG48//rjVCfxPP/3Ea6+9BqjdT48by+MAbXTNu+++S4MGDe7xXQgh7EWSGwfi5uZGjRo1qFu3Li+88ALBwcGsWbOGzz//nNatW1OhQgX8/f158cUXLZarWLx4MT4+PqxZs4YWLVrg5ubG5ctqZ4CzszM1atSwuLm6uub6+mlpaUycOBFfX1/c3d3p3r07e/fuNW0PCwtDp9Oxfv16OnTogIeHB7t27crRLRUWFkbnzp2pUKECPj4+dOvWjUuXLpm2Ozs788QTT7Bw4UJT2T///ENYWBhPPPFEjrjmzp1Lw4YNcXV1pWnTpvz0008W28+cOWNarbtFixaEhobmOMeVK1d49NFH8fHxoXLlygwbNkwmlCxiLVq04I033gDgWbLmvWmDmuy4A3/++SfPP/88mZmZBTrnX3/9ZVrH6lXgTWN5JvAUcB1o2rSp6XWFEKWTJDcOzMPDg/T0dMqVK8dXX33FsWPH+PHHH9myZQtvvvmmxb7Jycl8+umnzJ8/n2PHjuHr62v167355pv88ccf/Pjjj+zfv59GjRoxYMAAYmJiLPZ7++23mTFjBseOHaNly5YW2zIyMhg+fDi9evXi8OHDREZG8uyzz+boHhg3bhy//fYbycnJgJqgDRw4kOrVq1vst2rVKl5++WVee+01jh49ynPPPcdTTz3F1q1bAXX8xogRI3B1dWX37t18//33vPXWWxbn0Ov1DBgwAC8vL7Zt28aOHTvw9PRk4MCBpKenW11PouDee+892rVrxw2gP3DTWN4TWI66RMOCBQvo1asX586dy/M8qampvPnmmzzwwAOmlp5EwGDc/gKwCvUHwuLFi3FzcyuaNySEKB73tP54KZTfkukpKSnK8ePHlZSUlJwHzp6tKLVq5Xsz1KqlpA8cqGRmZloeO3ToXY9VatVSX6OQxowZowwbNkxRFEUxGAxKaGio4ubmprz++us59l2xYoVSpUoV0/NFixYpgHLw4EGL/T744AOlXLlySoUKFUy3Tp065fqaiYmJiouLi7J06VLT9vT0dMXPz0+ZOXOmoiiKsnXrVgVQVq9erSiKomRmZip37txR3n//faVt27aKoijK7du3FUAJCwvL9X0uWrRIqVixoqIoitKuXTvlxx9/VAwGg9KwYUPlzz//VL744gulbt26pv27du2qPPPMMxbneOSRR5TBgwcriqIoISEhirOzs3L16lXT9vXr1yuAsmrVKkVRFOWnn35SmjZtqhgMBtM+aWlpioeHhxISEpKjLnKT72erANLT05XVq1cr6enphTq+NLt27ZpSv359BVDagxIPigKKHpRuoGC8lS9fXvnmm2+U+Ph4U32lpKQoERERSsuWLU37md9GgPK28XG5cuWUlStX2vvt2kVZ/nwVhtSXdWxVX/l9f2cnM1MVVHw8XL2a7y46QOfnl3PDv//e9VjTa9yDv/76C09PT/R6PQaDgSeeeIKpU6eyadMmpk+fzsmTJ4mPjycjI4PU1FSSk5MpX748AK6urrRp0ybHOZs2bWqxInNev2jPnTuHXq+nW7dupjIXFxc6d+7MiRMnLPbt2LFjnu+hcuXKjB07lgEDBtCvXz+Cg4N59NFHqVmzZo59x40bx6JFi6hTpw5JSUkMHjyYb775xmKfEydO8Oyzz1qUdevWjTlz5pi2+/v742f27xYYGGix/6FDhzh79myOS4JTU1PzbS0QtlGzZk1CQkLo1q0b+//9lweB34EngR1m+yUnJ/PSSy8xceJE2rRpg6IojBo1yjTpX3XgDuqVUJqVZo+///57HnzwwSJ+N0KI4iDJTUF5e0OtWvnuogBKbgNjq1W767Gm17gHvXv3Zu7cubi6uuLn54ezszMXL17k/vvv54UXXuDjjz+mcuXKbN++nfHjx5Oenm5Kbjw8PHK9MkS78sqWKlSokO/2RYsWMXHiRDZs2MCvv/7KlClTCA0N5b777rPYb+TIkbz55ptMnTqVUaNGFdkssomJiXTo0IGlS5fm2KbNxyKKVuPGjVm/fj1BQUFsTkykHuoAYHOVUGczvmAwWMyD4w0MQ52Ybx7wTi7n/+ijjywmDxRClG6S3BTUq6+qt3woBgNJ8fHkSFHMWj6KUoUKFXIkIvv27cNgMDB79mzKlVOHWP322282f21twO6OHTuoW7cuoI5V2bt3L5MmTbL6fAEBAQQEBDB58mQCAwNZtmxZjuSmcuXKPPDAA/z22295rujcvHlzduzYwZgxY0xlO3bsoEWLFqbtV65cITo62tQ6tGvXLotztG/fnl9//RVfX1+87zEBFYXXoUMH/vzzTwYPHkxcWlqO7d+iXvl0FbVF5zbQFWhN1uDCN4G1gPl1dhMnTuTdd98tytCFEMVMBhQ7uEaNGqHX6/n66685f/48P/30U56JwL2oUKECL7zwAm+88QYbNmzg+PHjPPPMMyQnJ1u1ovKFCxeYPHkykZGRXLp0iY0bN3LmzJlc57UBdSDxrVu3aNasWa7b33jjDRYvXszcuXM5c+YMn3/+OStXrjQtlBgcHEyTJk0YM2YMhw4dYtu2bTm+6EaOHEnVqlUZNmwY27Zt48KFC4SFhTFx4kT++eefAr83ce/69OlDeHg4DRs2tCh/lKxLumsZn7+AOsOx+X9yK1FnIAa1VXLWrFl8+eWXMp+NEA5GkhsH17ZtWz7//HM+/fRTWrVqxdKlS5k+fXqRvNaMGTN46KGHGDVqFO3bt+fs2bOEhIRQqVKlAp+jfPnynDx5koceeogmTZrw7LPPMmHCBJ577rlc9/fw8Mh3jpzhw4czZ84cZs2aRcuWLfnhhx9YtGgRQUFBAJQrV45Vq1aRkpJC586defrpp/n4449zxBQREUGdOnUYMWIEzZs3Z/z48aSmpkpLjh106dKFgwcPmpZOAHWhy/eBEMB8Wc1MYD/wFeoMx4+itugEBASwb98+XnvtNUlshHBAOkVRFHsHUZzi4+OpWLEicXFxOb6YUlNTuXDhAvXr18fd3d3qcxsMBuLj4/H29jZ1AYm8laX6utfPll6vZ926dQwePBgXF5ciiLB0CgkJYfz48Vw1G7DvhNoV5Y2a2CSa7e/s7MzkyZOZMmVKnvM1lUXy+bKO1Jd1bFVf+X1/ZydjboQQpdaAAQM4e/YsK1asIDQ0lB07dnD+/HkOmu1TsWJFunbtSo8ePRg1ahS1a9e2V7hCiGIiyY0QolRzd3dn1KhRjBo1CoBr164RFRXF7t27eeihh2jXrp3DtwwKISxJciOEcCh+fn4MGjQIRVFo3bq1JDZClEHyVy+EEEIIhyLJjRBCCCEciiQ3uShjF5CJYiCfKSGEKD6S3JjRLlHTVpoWwla0z5RcNiqEEEVPBhSbcXJywsfHh5s3bwLq5G3WTPBlMBhIT08nNTVVBjEWQFmoL0VRSE5O5ubNm/j4+ODk5GTvkIQQwuFJcpNNjRo1AEwJjjUURSElJSXPRSiFpbJUXz4+PqbPlhBCiKIlyU02Op2OmjVr4uvri16vt+pYvV5PREQEPXv2lO6HAigr9eXi4iItNkIIUYwkucmDk5OT1V9ITk5OZGRk4O7u7tBf1rYi9SWEEKIoOOZAByGEEEKUWZLcCCGEEMKhSHIjhBBCCIdS5sbcaJOpxcfH2/zcer2e5ORk4uPjZQxJAUh9FZzUlXWkvqwj9WUdqS/r2Kq+tO/tgkyKWuaSm4SEBAD8/f3tHIkQQgghrJWQkEDFihXz3UenlLF54Q0GA9euXcPLy8vmc6vEx8fj7+/PlStX8Pb2tum5HZHUV8FJXVlH6ss6Ul/Wkfqyjq3qS1EUEhIS8PPzu+vEr2Wu5aZcuXLUrl27SF/D29tbPvBWkPoqOKkr60h9WUfqyzpSX9axRX3drcVGIwOKhRBCCOFQJLkRQgghhEOR5MaG3Nzc+OCDD3Bzc7N3KKWC1FfBSV1ZR+rLOlJf1pH6so496qvMDSgWQgghhGOTlhshhBBCOBRJboQQQgjhUCS5EUIIIYRDkeTmLqZPn06nTp3w8vLC19eX4cOHc+rUqVz3VRSFQYMGodPpWL16tcW2y5cvM2TIEMqXL4+vry9vvPEGGRkZxfAOik9B6iooKAidTmdxe/755y32KQt1BQX/bEVGRtKnTx8qVKiAt7c3PXv2JCUlxbQ9JiaGkSNH4u3tjY+PD+PHjycxMbE430qxuFt9Xbx4McdnS7utWLHCtJ98vrJcv36dUaNGUaNGDSpUqED79u35448/LPaRz1eWc+fO8eCDD1KtWjW8vb159NFHuXHjhsU+ZaG+5s6dS5s2bUzz1gQGBrJ+/XrT9tTUVCZMmECVKlXw9PTkoYceylFPRf53qIh8DRgwQFm0aJFy9OhR5eDBg8rgwYOVOnXqKImJiTn2/fzzz5VBgwYpgLJq1SpTeUZGhtKqVSslODhYOXDggLJu3TqlatWqyuTJk4vxnRS9gtRVr169lGeeeUaJjo423eLi4kzby0pdKUrB6mvnzp2Kt7e3Mn36dOXo0aPKyZMnlV9//VVJTU017TNw4EClbdu2yq5du5Rt27YpjRo1Uh5//HF7vKUidbf6ysjIsPhcRUdHK9OmTVM8PT2VhIQE0z7y+cr6fPXr10/p1KmTsnv3buXcuXPKRx99pJQrV07Zv3+/aR/5fKn1lZiYqDRo0EB58MEHlcOHDyuHDx9Whg0bpnTq1EnJzMw0nacs1NeaNWuUv//+Wzl9+rRy6tQp5Z133lFcXFyUo0ePKoqiKM8//7zi7++vbN68WYmKilLuu+8+pWvXrqbji+PvUJIbK928eVMBlPDwcIvyAwcOKLVq1VKio6NzJDfr1q1TypUrp1y/ft1UNnfuXMXb21tJS0srrtCLXW511atXL+Xll1/O85iyWleKknt9denSRZkyZUqexxw/flwBlL1795rK1q9fr+h0OuXq1atFGq+95fW3aK5du3bKuHHjTM/l82VZXxUqVFCWLFlisV/lypWVefPmKYoiny/z+goJCVHKlStn8WMsNjZW0el0SmhoqKIoZbu+KlWqpMyfP1+JjY1VXFxclBUrVpi2nThxQgGUyMhIRVGK5+9QuqWsFBcXB0DlypVNZcnJyTzxxBN8++231KhRI8cxkZGRtG7dmurVq5vKBgwYQHx8PMeOHSv6oO0kt7oCWLp0KVWrVqVVq1ZMnjyZ5ORk07ayWleQs75u3rzJ7t278fX1pWvXrlSvXp1evXqxfft20zGRkZH4+PjQsWNHU1lwcDDlypVj9+7dxfsGilleny/Nvn37OHjwIOPHjzeVyefLsr66du3Kr7/+SkxMDAaDgeXLl5OamkpQUBAgny/Iqq+0tDR0Op3FXC3u7u6UK1fO9DdZFusrMzOT5cuXk5SURGBgIPv27UOv1xMcHGzap1mzZtSpU4fIyEigeP4OJbmxgsFgYNKkSXTr1o1WrVqZyl955RW6du3KsGHDcj3u+vXrFv+IgOn59evXiy5gO8qrrp544gl+/vlntm7dyuTJk/npp5948sknTdvLYl1B7vV1/vx5AKZOncozzzzDhg0baN++PX379uXMmTOAWie+vr4W53J2dqZy5cplrr6yW7BgAc2bN6dr166mMvl8WdbXb7/9hl6vp0qVKri5ufHcc8+xatUqGjVqBMjny7y+7rvvPipUqMBbb71FcnIySUlJvP7662RmZhIdHQ2Urfo6cuQInp6euLm58fzzz7Nq1SpatGjB9evXcXV1xcfHx2L/6tWrm+qgOP4Oy9zCmfdiwoQJHD161OKX85o1a9iyZQsHDhywY2QlT251BfDss8+aHrdu3ZqaNWvSt29fzp07R8OGDYs7zBIjt/oyGAwAPPfcczz11FMABAQEsHnzZhYuXMj06dPtEmtJkNfnS5OSksKyZct47733ijmykimv+nrvvfeIjY1l06ZNVK1aldWrV/Poo4+ybds2Wrdubado7S+3+qpWrRorVqzghRde4KuvvqJcuXI8/vjjtG/f/q4rVDuipk2bcvDgQeLi4vj9998ZM2YM4eHh9g7LRJKbAnrppZf466+/iIiIsFhVfMuWLZw7dy5HlvrQQw/Ro0cPwsLCqFGjBnv27LHYro0cz60bq7TLq65y06VLFwDOnj1Lw4YNy1xdQd71VbNmTQBatGhhsX/z5s25fPkyoNbJzZs3LbZnZGQQExNT5urL3O+//05ycjKjR4+2KJfPV1Z9nTt3jm+++YajR4/SsmVLANq2bcu2bdv49ttv+f777+Xzle3z1b9/f86dO8etW7dwdnbGx8eHGjVq0KBBA6Bs/T26urqaWvg6dOjA3r17mTNnDv/5z39IT08nNjbW4nvxxo0bpjoolr9Dm4zccWAGg0GZMGGC4ufnp5w+fTrH9ujoaOXIkSMWN0CZM2eOcv78eUVRsgZP3bhxw3TcDz/8oHh7e1tc9VLa3a2ucrN9+3YFUA4dOqQoStmpK0W5e30ZDAbFz88vx4Didu3ama4q0AYwRkVFmbaHhIQ45ABGaz5fvXr1Uh566KEc5fL5ynL48GEFUI4fP25R3r9/f+WZZ55RFEU+X3ezefNmRafTKSdPnlQUpWzVV3a9e/dWxowZYxpQ/Pvvv5u2nTx5MtcBxUX5dyjJzV288MILSsWKFZWwsDCLS0yTk5PzPIY8LgXv37+/cvDgQWXDhg1KtWrVHO7y07vV1dmzZ5UPP/xQiYqKUi5cuKD8+eefSoMGDZSePXuazlFW6kpRCvbZ+uKLLxRvb29lxYoVypkzZ5QpU6Yo7u7uytmzZ037DBw4UAkICFB2796tbN++XWncuLHDXXqqKAX/Wzxz5oyi0+mU9evX5ziHfL6y6is9PV1p1KiR0qNHD2X37t3K2bNnlVmzZik6nU75+++/TeeRz1fW52vhwoVKZGSkcvbsWeWnn35SKleurLz66qsW5ykL9fX2228r4eHhyoULF5TDhw8rb7/9tqLT6ZSNGzcqiqJeCl6nTh1ly5YtSlRUlBIYGKgEBgaaji+Ov0NJbu4CyPW2aNGifI8xT24URVEuXryoDBo0SPHw8FCqVq2qvPbaa4pery/a4IvZ3erq8uXLSs+ePZXKlSsrbm5uSqNGjZQ33njD4tJKRSkbdaUoBf9sTZ8+Xaldu7ZSvnx5JTAwUNm2bZvF9tu3byuPP/644unpqXh7eytPPfWUaV4XR1LQ+po8ebLi7+9vMfeIOfl8LTLtc/r0aWXEiBGKr6+vUr58eaVNmzY5Lg2Xz9ci0z5vvfWWUr16dcXFxUVp3LixMnv2bMVgMFicpyzU17hx45S6desqrq6uSrVq1ZS+ffuaEhtFUZSUlBTlxRdfVCpVqqSUL19eefDBB5Xo6GiLcxT136GsCi6EEEIIh1L2hngLIYQQwqFJciOEEEIIhyLJjRBCCCEciiQ3QgghhHAoktwIIYQQwqFIciOEEEIIhyLJjRBCCCEciiQ3QgghhHAoktwIUUaEhYWh0+mIjY29p/OMHTuW4cOH2yQmW56rJL/2ggUL6N+/f7HHs2HDBtq1a2daYV6IskKSGyFKme+//x4vLy8yMjJMZYmJibi4uBAUFGSxr5bQnDt3jq5duxIdHU3FihWLND7tNXU6HeXKlaNixYoEBATw5ptvEh0dbbHvnDlzWLx4cZHGc/HiRXQ6HQcPHiz21wZITU3lvffe44MPPijy18pu4MCBuLi4sHTp0mJ/bSHsSZIbIUqZ3r17k5iYSFRUlKls27Zt1KhRg927d5Oammoq37p1K3Xq1KFhw4a4urpSo0YNdDpdscR56tQprl27xt69e3nrrbfYtGkTrVq14siRI6Z9KlasiI+PT57nSE9PL7L47vbatvL777/j7e1Nt27divy1cjN27Fi++uoru7y2EPYiyY0QpUzTpk2pWbMmYWFhprKwsDCGDRtG/fr12bVrl0V57969TY/Nu6UWL16Mj48PISEhNG/eHE9PTwYOHGjRupKZmcmrr76Kj48PVapU4c0336Sgy9H5+vpSo0YNmjRpwmOPPcaOHTuoVq0aL7zwgmmf7F0xQUFBvPTSS0yaNImqVasyYMAAAI4ePcqgQYPw9PSkevXqjBo1ilu3bpmOMxgMzJw5k0aNGuHm5kadOnX4+OOPAahfvz4AAQEB6HQ6U+tW9tdOS0tj4sSJ+Pr64u7uTvfu3dm7d69FXep0OjZv3kzHjh0pX748Xbt25dSpU/nWw/Llyxk6dKhFWUHq1WAwMH36dOrXr4+Hhwdt27bl999/t9hnzZo1NG7cGHd3d3r37s2PP/6Yo+tx6NChREVFce7cuXzjFMKRSHIjRCnUu3dvtm7danq+detWgoKC6NWrl6k8JSWF3bt3m5Kb3CQnJzNr1ix++uknIiIiuHz5Mq+//rpp++zZs1m8eDELFy5k+/btxMTEsGrVqkLF7OHhwfPPP8+OHTu4efNmnvv9+OOPuLq6smPHDr7//ntiY2Pp06cPAQEBREVFsWHDBm7cuMGjjz5qOmby5MnMmDGD9957j+PHj7Ns2TKqV68OwJ49ewDYtGkT0dHRrFy5MtfXffPNN/njjz/48ccf2b9/P40aNWLAgAHExMRY7Pfuu+8ye/ZsoqKicHZ2Zty4cfm+7+3bt9OxY0eLsoLU6/Tp01myZAnff/89x44d45VXXuHJJ58kPDwcgAsXLvDwww8zfPhwDh06xHPPPce7776b4/Xr1KlD9erV2bZtW75xCuFQbLa+uBCi2MybN0+pUKGCotfrlfj4eMXZ2Vm5efOmsmzZMqVnz56KoijK5s2bFUC5dOmSoiiKsnXrVgVQ7ty5oyiKoixatEgBlLNnz5rO++233yrVq1c3Pa9Zs6Yyc+ZM03O9Xq/Url1bGTZsWJ6xZX8dc+vXr1cAZffu3YqiKMqYMWMsztWrVy8lICDA4piPPvpI6d+/v0XZlStXFEA5deqUEh8fr7i5uSnz5s3LNZ4LFy4ogHLgwAGLcvPXTkxMVFxcXJSlS5eatqenpyt+fn6m96+9r02bNpn2+fvvvxVASUlJyfW179y5owBKRESERfnd6jU1NVUpX768snPnTovjxo8frzz++OOKoijKW2+9pbRq1cpi+7vvvptr3QcEBChTp07NNUYhHJGznXIqIcQ9CAoKIikpib1793Lnzh2aNGlCtWrV6NWrF0899RSpqamEhYXRoEED6tSpk+d5ypcvT8OGDU3Pa9asaWpViYuLIzo6mi5dupi2Ozs707FjxwJ3TWWnHZffuJ8OHTpYPD906BBbt27F09Mzx77nzp0jNjaWtLQ0+vbtW6iYtPPo9XqLcTEuLi507tyZEydOWOzbpk0b0+OaNWsCcPPmzVzrOSUlBQB3d3dTWUHq9ezZsyQnJ9OvXz+L86WnpxMQEACoY5o6depksb1z5865vj8PDw+Sk5PzePdCOB5JboQohRo1akTt2rXZunUrd+7coVevXgD4+fnh7+/Pzp072bp1K3369Mn3PC4uLhbPdTpdoROXgtAShXr16uW5T4UKFSyeJyYmMnToUD799NMc+9asWZPz58/bNMa7Ma8zLUnL61LrKlWqoNPpuHPnjlWvkZiYCMDff/9NrVq1LLa5ublZdS6AmJgYqlWr9v/t3D1Icm0cBvCriMwsqiHIoA+iKBylRSLDxVobGiJESqKsIcxKLHIoIsGpAvuABmvog4a2cggcFCwpWhIplCioCBFEyL6fd5Dksaf3ffKNBu36gct9OJ77nMXLc///d9LnEaUq1twQpSiFQgGHwwGHw5HQAi6Xy7Gzs4ODg4P/rLf5m4KCAojFYuzv78fHnp+fcXh4+L++LxqNYmlpCXK5PKkfWqlUipOTE1RWVqK6ujrhIxKJUFNTA6FQiL29vQ/Pz87OBhAr4v03b91kLpcrPvb09ASPxwOJRPLpuX50bYlEAq/XGx/7zHOVSCQQCAS4uLj4457LysoAxArLf++YA5BQAP3m/v4efr8//saH6CdguCFKUQqFAk6nE8fHx/E3NwDQ1NSExcVFPD4+fincAMDAwADMZjO2t7fh8/nQ19f36U0Ab29vcXNzg7OzM6yvr6OhoQHBYBDz8/NJzaG/vx+hUAjt7e3weDzw+/2w2+3o7OzEy8sLcnJyYDAYMDIygpWVFfj9frjdbiwvLwOIdW0JhcJ4IXI4HP7jGiKRCFqtFsPDw9jd3YXX60V3dzfu7u6g0WiSmu97zc3NcDqdCWN/e675+fkYGhqCTqeDzWaD3+/H0dER5ubmYLPZAAA9PT3w+XwwGAw4PT3F5uZmfN+e35f93G43BAIBZDLZl+6DKJVwWYooRSkUCkSjUdTV1cU7g4BYuIlEIvGW8a/Q6/W4vr6GWq1GZmYmurq60Nra+mFAeK+2thYZGRnIy8tDVVUVlEolBgcHUVJSktQcSktL4XK5YDAYoFQq8fDwgIqKCrS0tCAzM/b/bHx8HFlZWTCZTLi6uoJYLEZvby+AWD3L7OwsJiYmYDKZ0NjYmNBG/8ZsNuP19RUqlQqRSAT19fWw2+0oKipKar7vaTQa1NfXIxwOxzdQ/MxznZycRHFxMaanpxEIBFBYWAipVIrR0VEAsRb3ra0t6PV6zMzMQCaTYWxsDFqtNmHpam1tDR0dHcjNzf3SfRClkoxf37nATkREaGtrg1QqhdFo/NbrTE1NYWFhAZeXlwCAYDAYX7562++H6CfgshQR0TezWCwfdnt9ldVqhcfjQSAQwOrqKiwWC9Rqdfz4+fk5rFYrgw39OHxzQ0SUonQ6HTY2NhAKhVBeXg6VSgWj0YisLFYc0M/GcENERERphctSRERElFYYboiIiCitMNwQERFRWmG4ISIiorTCcENERERpheGGiIiI0grDDREREaUVhhsiIiJKKww3RERElFb+AdkD46D1PFYFAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -158,7 +148,8 @@ "ax.plot(wind_directions, pfarm_power, label=\"ParFlorisModel\", color='r', ls='--', lw=2)\n", "ax.set_xlabel(\"Wind Direction (deg)\")\n", "ax.set_ylabel(\"Farm Power (kW)\")\n", - "ax.legend()" + "ax.legend()\n", + "ax.grid()" ] }, { @@ -167,7 +158,7 @@ "source": [ "## UncertainFlorisModel\n", "\n", - "The `UncertainFlorisModel` class is a composition of `FlorisModel` that adds uncertainty to the input conditions. It's interface is meant to made similar to `FlorisModel`, but with the addition of uncertainty in wind direction." + "The `UncertainFlorisModel` class is a composition of `FlorisModel` that adds uncertainty to the input conditions. Its interface is meant to made similar to `FlorisModel`, but with the addition of uncertainty in wind direction." ] }, { @@ -181,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -199,9 +190,9 @@ "source": [ "### Parameters\n", "\n", - "To include uncertainty into the wind direction, the `UncertainFlorisModel` class, for each findex run, the result for a wind direction is provided by performing a gaussian blend over results from multiple wind directions nearby wind directions. To reduce the total number of calculations required, a resolution of wind direction, wind speed, turbulence intensity and control inputs are specified and repeated calculations are only calculated once. See the class API for complete details but some key parameters are:\n", + "To include uncertainty into the wind direction, the `UncertainFlorisModel` class, for each findex run, the result for a wind direction is provided by performing a Gaussian blend over results from multiple wind directions nearby wind directions. To reduce the total number of calculations required, a resolution of wind direction, wind speed, turbulence intensity and control inputs are specified and repeated calculations are only calculated once. See the class API for complete details but some key parameters are:\n", "\n", - "**wd_resolution, ws_resolution, ti_resolution, yaw_resolution, and power_setpoint_resolution**: Define the granularity of calculations for wind direction, wind speed, turbulence intensity, yaw angle, and power setpoints respectively.\n", + "**wd_resolution, ws_resolution, ti_resolution, yaw_resolution, and power_setpoint_resolution**: Define the granularity of calculations for wind direction, wind speed, turbulence intensity, yaw angle, and power setpoints, respectively.\n", "\n", "**wd_std**: The standard deviation of wind direction, used in the Gaussian blending.\n", "\n", @@ -210,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -224,27 +215,17 @@ "source": [ "### Usage\n", "\n", - "Usage of `UncertainFlorisModel` is similar to `FlorisModel` however the results will now include the effects of gaussian blending\n" + "Usage of `UncertainFlorisModel` is similar to `FlorisModel` however the results will now include the effects of Gaussian blending\n" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOG0lEQVR4nO3dd1hT1xsH8G/CCBsUZblwoSCguHGCA0TFUa2te1Wrta2ztdQ6qq3WVq1tf1Y73B2uqrV1i+BARIY4ERWxOEBU9h45vz+uCYkkIZORvJ/nuY8399x77sk1kJczeYwxBkIIIYQQPcGv6QIQQgghhGgTBTeEEEII0SsU3BBCCCFEr1BwQwghhBC9QsENIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwQwghhBC9QsENIYQQQvQKBTeEEEII0SsGHdycP38ewcHBcHFxAY/Hw+HDh1XOgzGGdevWwc3NDQKBAI0aNcKXX36p/cISQgghRCnGNV2AmpSfn4/27dtj2rRpeOONN9TKY+7cuTh16hTWrVsHLy8vZGRkICMjQ8slJYQQQoiyeLRwJofH4+HQoUMYMWKE+FhxcTGWLFmCP//8E1lZWfD09MTatWvh5+cHAEhISIC3tzdu3ryJNm3a1EzBCSGEECLFoJulqvL+++8jMjISe/bswfXr1/Hmm29i0KBBuHfvHgDgn3/+QYsWLfDvv/+iefPmcHV1xTvvvEM1N4QQQkgNouBGjpSUFGzfvh379+9H79690bJlSyxatAi9evXC9u3bAQAPHjzAf//9h/3792PXrl3YsWMHYmNjMXr06BouPSGEEGK4DLrPjSI3btxAeXk53NzcpI4XFxfD3t4eACAUClFcXIxdu3aJz9u6dSs6deqExMREaqoihBBCagAFN3Lk5eXByMgIsbGxMDIykkqzsrICADg7O8PY2FgqAHJ3dwfA1fxQcEMIIYRUPwpu5PDx8UF5eTnS09PRu3dvmef07NkTZWVlSEpKQsuWLQEAd+/eBQA0a9as2spKCCGEkAoGPVoqLy8P9+/fB8AFMxs2bIC/vz/q16+Ppk2bYsKECYiIiMD69evh4+OD58+fIzQ0FN7e3hgyZAiEQiG6dOkCKysrbNy4EUKhEHPmzIGNjQ1OnTpVw++OEEIIMUwGHdyEh4fD39+/0vHJkydjx44dKC0txRdffIFdu3bhyZMnaNCgAbp3747PP/8cXl5eAICnT5/igw8+wKlTp2BpaYmgoCCsX78e9evXr+63QwghhBAYeHBDCCGEEP1DQ8EJIYQQolcouCGEEEKIXjG40VJCoRBPnz6FtbU1eDxeTReHEEIIIUpgjCE3NxcuLi7g8xXXzRhccPP06VM0adKkpotBCCGEEDU8evQIjRs3VnhOjQY358+fxzfffIPY2FikpqZWWrhSlt9//x1ff/017t27B1tbWwQFBeGbb74RzxpcFWtrawDcw7GxsdH0LRBCCCGkGuTk5KBJkybi73FFajS4yc/PR/v27TFt2jS88cYbVZ4fERGBSZMm4dtvv0VwcDCePHmCWbNmYcaMGTh48KBS9xQ1RdnY2FBwQwghhNQxynQpqdHgJigoCEFBQUqfHxkZCVdXV3z44YcAgObNm+Pdd9/F2rVrdVVEQgghhNQxdWq0lK+vLx49eoRjx46BMYZnz57hwIEDGDx4sNxriouLkZOTI7URQgghRH/VqeCmZ8+e+P333/HWW2/B1NQUTk5OsLW1xaZNm+Res2bNGtja2oo36kxMCCGE6Lc6Fdzcvn0bc+fOxbJlyxAbG4sTJ07g4cOHmDVrltxrQkJCkJ2dLd4ePXpUjSUmhBBCSHWrU0PB16xZg549e+Kjjz4CAHh7e8PS0hK9e/fGF198AWdn50rXCAQCCASC6i4qIYQQQmpInaq5KSgoqDRxj5GREQBuch9CCCGEkBoNbvLy8hAfH4/4+HgAQHJyMuLj45GSkgKAa1KaNGmS+Pzg4GAcPHgQmzdvxoMHDxAREYEPP/wQXbt2hYuLS028BUIIIYTUMjXaLBUTEwN/f3/x6wULFgAAJk+ejB07diA1NVUc6ADAlClTkJubi//9739YuHAh7Ozs0K9fPxoKTgghhBAxHjOw9pycnBzY2toiOzubJvEjhBBC6ghVvr/rVJ8bQgghhJCq1KnRUrXRsWPHEBoaWtPF0Kmqprp+PV3W69c3Pp8v/ldy38jISGozNjaGiYmJ+F/R6DeBQABzc3NYWlrCwsIClpaWsLa2hq2trbiTOSGEAEBRURGysrKQl5eHgoIC8VZUVITi4mLxVlpairKyMpSVlaG0tBTl5eUQCoXif1/fGGNgjIn3AYiPSarqtbJpddWkSZPQvn37ar0nBTcaunjxIjZs2FDTxSASrKysYGdnh4YNG8LBwQGOjo5wdHREs2bN4OrqKt4sLS1ruqiEEDWJZql/+PCheHv8+DHS09Px7NkzpKenIyMjA1lZWSgpKanp4ho0X19fCm7qqs4A/GUcfz0Gl/da8l/hq39f34QS/8rayiW2sldbqcS/JRJb8aut6NVW+CoPfZCXl4e8vDw8fvxY4XnNmzeHt7c3vL290b59e/Tq1QuOjo7VVEpCiLKEQiGuX7+OqKgoXL9+HdevX8eNGzeQnZ1d00WrViYAzAGYvdoErzbTV2mif41f24wkNr6MjffavrwNMv6FguN7ANTUtLkU3GhJLwBf13QhNFQEoABAPoCcV1sugCwAGa+2TADPATx7taW9+rcuBkbJyclITk7G33//LT7m7u6Ovn37ol+/fggKCoKVlVUNlpAQw3X37l0cPXoU4eHhuHDhAjIzM2u6SFphAcAZgKPEZg+g/qutHgCbV5v1q83y1XV17Qs7ChTckFpA9NdAfRWvKwPwGEAKgP8A3ANwF0Diq38LtFhGXUtISEBCQgK2bNkCc3NzDBkyBG+99RaGDBkCc3Pzmi4eIXotOTkZ+/btw549e8Tzn9VFLgDcXm1tALQA0PTV1qAGy2VIKLjRkn8APHztmLxqO8nXr1f3VbWJqg2NJP7lo3K1o2SVpInEZoqKqkwBuGDG/NVm8WqzQsVfDMowBuD6anudEMB9AFcBxAOIAXAZQJ6SedekwsJCHDhwAAcOHIC1tTVmzJiBefPm0eKrhGgRYwynTp3CN998UycHZ7gC6AGgI4AOrzZ7LeRbCq7mPBdcbXrBq60QFd0JilHRzaDk1TWirQwVXRRE3RWEr/0r2c1BUZcIKHgt6fVuFrc0eQAaouBGS5JebfqEBy7AsUVFlak9AAdUVKc6A2jyapP1FwkfFX/BvPXqWBm4QOcCgLMAQsH9wNZmubm52LBhA77//nuMGzcOH330ETw9PWu6WITUWWVlZdi7dy++/vprXL9+vaaLo7RmAIIA9AXQG0AjJa+TrOF+goqm/Wfgmvolm/6zwQUvRH00iZ+GoqOj63T1qaoUfVyMi4th9fw5bNPTYfvsGeyePUO9p09h//QpjEtL5V5XamyMRy1b4n6bNkhwd0eOpSXKy8tRXl6O0tJS8fDMkpISqWGbhYWFyM/PR0FBAfLy8pCTk4OsrCzk5+fr4q1XMn36dHz11Vdo0IAqmglRRVhYGObMmYOEhASd34vP58POzg62trawtrYWTx9hYWEBc3Nz8dQSpqamMDU1lZp+wsjICEZ8Ppo+eYI2CQlomZiIBs+eKbxfvo0NXjZujExnZ2Q7OCDb0RHZDg4orFcPjC97armqptuo6/r3748WLVponI8q398U3BDdKysDEhOBuDggMhK4cAG4eVP2uXw+MGAAMHEiMHIkoMZw7bKyMmRmZiI9PV08LPTx48d4+PAhkpOT8eDBA9y7dw/l5eUavjHA3t4ea9euxdSpUyst6koIkfbs2TMsWrQIv/32m1bys7W1RZs2bdC8eXPxFA/Ozs5wdHSEg4MDGjZsCCsrK/WCh3v3gN27gd9+A5KTZZ9jaQn06AH06gV07Qp06AA4OWn0noh8FNwoQMFNLZGRAZw/Dxw7Bhw9Cjx9WvkcS0tg8mRg7lzAzU2rty8uLkZCQgKuX7+O6OhonDt3Djdu3FA7vx49emDXrl1o2bKlFktJiP7YsWMH5s2bp/bwbUtLS/Tq1Qu9evWCj48PvL290bhxY+3WepSXA3//DWzcyP0R9joeD+jeHRgyBAgM5IIZY+rdUV0ouFGAgptaiDHg2jXgr7+4v5IePpRO5/G4XyYLFgB+ftxrHXjx4gXCw8Nx8OBBHDlyROXmrXr16uHPP/9EYGCgTspHSF1UXFyMuXPn4qefflL52tatW4tHK3bq1AkmJiY6KCGAvDzg11+B77+vXEvD5wP9+wPjx3O/h6gZusZQcKMABTe1nFAIREQAu3YBf/wBFLw2kNzfH/jqK64KWIcKCgpw9OhRbN26FSdPnlT6Oj6fj9WrV+Pjjz/W+3Z0QqqSmpqKUaNGITIyUulrbG1t8c4772D8+PHo0KGDbn+OSkqAn34CVq0Cnj+XTmvbFpg+HRg3DnBx0V0ZiNJU+v5mBiY7O5sBYNnZ2TVdFFKVjAzG1q5lrHFjxrj6nYpt1CjG7typlmLEx8ezCRMmMGNjY1mjJGVub775JsvPz6+W8hFSG12+fJk5Ozsr/TPTuHFjtm7duur53VxezthvvzHWvHnl3y0BAYwdP86dQ2oVVb6/KbghtV9JCfeLqGVL6V9CJiaMLV3KWGFhtRQjKSmJDR06VOlf1v7+/hTgEIN0/vx5ZmlpqdTPiaWlJVu3bh0rLi6unsLdvs1Yr16Vg5q33mLs5s3qKQNRiyrf3zS8g9R+JiZce3dCAvDjj4Bo/afSUq46uUMHrnOyjrVo0QJHjhzBoUOHlJrILywsDMHBwSh4vWmNED128eJFBAUFKdVnbdSoUbhz5w4WLlwIU1NT3RasuBj4/HPu98XFixXHBw4EYmKAPXuAdu10WwZSbSi4IXWHiQkwezaQlAQsWVIxSiExEejbF5gzByjS7dRXPB4PI0aMQEJCAiZNmlTl+WfPnsWwYcNQWFjbpykkRHOXLl1SKrCxtrbGX3/9hQMHDqBx48a6L9i1a0DHjsCKFVw/GwBo1Qo4eRI4dQro1En3ZSDVioIbUvdYWgJffAFcvcoNyxT58UfA1xe4f78aimCJHTt24LvvvoORkZHCc0NDQzFs2DAU6TjwIqQmXb58GYMGDUJenuLFVdzc3BAVFYU33nhD94VijBsF1b07cPs2d8zYGAgJAa5fBwICdF8GUiMouCF1l6cnV738ww+AaFHL+Hjur7C//tL57Xk8Hj788EOcOXOmylmKz5w5g5kzZyqc4ZmQuuq///7D0KFDkZubq/C8oUOH4sqVK3B3d9d9ofLzuXmyZsyoqNH18QFiY4HVqyt+ZxC9RMENqduMjID33weiooA2bbhjOTnA6NHAxx9zQ8t1zM/PDxEREXB2dlZ43u7du/Hjjz/qvDyEVKfCwkK88cYbePnypcLzJk2ahMOHD8PW1lb3hXr4EOjWjZthWOS997gZ0r29dX9/UuMouCH6wcsLiI4G3n674tg333AdkYuLdX57Nzc3hIWFwamKqdfnzZuHiIgInZeHkOrAGMOcOXMQFxen8LyJEydi27ZtVTbhasXVq1zz9K1Xa1JbWQF//gls2gQIBLq/P6kVKLgh+sPampv474cfuFlFAW4ERGAgkJWl89u3adMGYWFhcBSN5pKhrKwMb775JlJTU3VeHkJ07eeff8b27dsVnjN+/Hhs3769egKbU6eAPn2AtDTutZsbNxJK8o8eYhAouCH6hcfjmqkOH65oUz93jlvY7vFjnd++bdu2CAsLQ7169eSek5qaijFjxqBUwUrphNR2ly9fxgcffKDwnFGjRmHnzp3VE9js2sUtjyDq0Ozry812LmquJgaFghuin4KDgfDwinVgbt0C+vUDqqHGxN3dHX/88YfCaeMvXryI1atX67wshOhCQUEBxo0bpzBA9/T0rN7AZsoUoKyMez1iBBAaSutAGTAKboj+6tqV60DYogX3+t49bgG89HSd33rQoEFYuXKlwnNWr16NO3fu6LwshGjb559/juTXF5iUYGtri0OHDsHS0lL3hdm7F5g6lRv2DXAdhw8coNFQBo6CG6LfWrXianBcXbnXCQncjKQZGTq/9aefforg4GC56SUlJZg5cyaE1TCiixBtiY+Px/r16xWe89tvv6FVq1a6L8yhQ9ygAdHP0PvvA//7HzeKkhg0Cm6I/mvSBDh7FhDNhCqavCs7W6e35fP52L17N1q3bi33nAsXLmDbtm06LQch2lJeXo4ZM2agvLxc7jnLly/H0KFDdV+Y48eBt94CRGV55x3gu++4fnfE4FFwQwxD8+ZcG7xoqHZsLDeCQtRGryO2trb4/fffwefL/1H76KOPkCYa3UFILfa///0PMTExctO7d++OpUuX6r4g8fHAm29y68sBwMSJwJYtFaMkicGjTwIxHG5uXIBTvz73+sQJYMECnd+2S5cuCkeVZGVlYf78+TovByGaSElJwZIlS+SmGxsb4+eff9Z9B+LUVG7AgGj9qlGjgG3bqCmKSKHghhgWDw/g4EFuEU6AmxNn0yad33bVqlUKVxLfs2cPQkNDdV4OQtS1YMEChQtifvzxx/Dy8tJtIQoKgOHDK6Z1EM1CLFpEl5BXKLghhqdvX+Cnnypef/ghV4ujQ9bW1thURRAVEhJCa0+RWik6Ohp/KVivrVWrVvjss890WwihkFsrKjqae920qfR8VoRIoOCGGKapU4HFi7l9oZDrmKjj1cSDg4Px5ptvyk2Pjo7G33//rdMyEKKOqgKXn376Cea6DjJWr+aGeAPckgr//FPRh46Q11BwQwzX6tXcZF8At9jm22/rfB2q7777DjY2NnLTlyxZonAkCiHVLTw8HKdOnZKbPmnSJPTr10+3hTh/Hli+nNvn87llVWgBTKIABTfEcPH5XHu9aKh2bCzwySc6vaWzszM+/vhjuem3b9/GH3/8odMyEKIsxhg+/fRTuekCgUD3M22/eAGMG1cxl82KFdwyC4QoQMENMWxWVsC+fYCpKfd640auuluH5s6dCwcHB7npy5cvR0lJiU7LQIgyjh49isjISLnp77//Pho1aqS7AjDGNSE/ecK97tcPUBBsESJCwQ0hHToAkjOuTpkCPHqks9tZWVkpHFKbnJyMX3/9VWf3J0QZQqFQ4efU2toan+i4phMbNwL//svtN2zI1bTSkG+iBApuCAGAOXMq+t9kZAATJlRUg+vAu+++q3Bo+KpVq1BQUKCz+xNSlX379uH69ety0xcuXIgGulyY8urVik7/ALc4pouL7u5H9AoFN4QA3JTtW7dyw0sBrgPjjz/q7HYCgQArVqyQm56WlobffvtNZ/cnRBHGGNauXSs33d7eXrcTT5aWcs1RohmIP/oIGDRId/cjeoeCG0JE6tcHdu6seP3JJ8DDhzq73aRJk9CmTRu56Rs3bqR5b0iNOH/+POLj4+Wmf/rppwpH/Wls7Vrg2jVu39sb+OIL3d2L6CUKbgiR5OcHvPsut5+fD8yYwXVq1AFjY2OsXLlSbnpCQgJOnz6tk3sTosjGjRvlprm4uGD27Nm6u/mtW4Do58LIiFtaQdThnxAl1Whwc/78eQQHB8PFxQU8Hg+HDx+u8pri4mIsWbIEzZo1g0AggKurK62qTLTr668rVhA/c4b75aojo0aNQosWLeSmf/vttzq7NyGyJCUlKZxMcu7cubqbsK+8HJg2Tbo5qlMn3dyL6LUaDW7y8/PRvn37KqellzRmzBiEhoZi69atSExMxJ9//qmwap8QldnYAD//XPF64ULg6VOd3MrIyAgffvih3PQTJ04gISFBJ/cmRJYffvhBbnOohYUFZsyYobubb9wIXLnC7bdpUzFxHyEq4rFa0qjP4/Fw6NAhjBCNWJHhxIkTePvtt/HgwQPUF63srKKcnBzY2toiOztbt23GpO6bPJkboQEAI0dyC27qQG5uLho3boycnByZ6bNmzcLmzZt1cm9CJOXk5KBx48bIzc2Vmf7ee++p9MeoSh4+5Ba2LSzkOvhfvAj06KGbe5E6SZXv7zrV5+bIkSPo3Lkzvv76azRq1Ahubm5YtGgRCgsL5V5TXFyMnJwcqY0QpXz7LeDoyO0fOsQ1UemAtbU1pk+fLjd9586dePnypU7uTYikrVu3yg1sACisZdTYwoVcYAMAH3xAgQ3RSJ0Kbh48eICLFy/i5s2bOHToEDZu3IgDBw7gvffek3vNmjVrYGtrK94UzS1CiJT69blRGyJz51b0BdCyDz74AHy+7B/HwsJC/PLLLzq5LyEi5eXl+P777+WmDxkyRHddAM6eragZdXQEVq3SzX2IwahTwY1QKASPx8Pvv/+Orl27YvDgwdiwYQN27twpt/YmJCQE2dnZ4u2RDmeeJXpo4kSga1du//ZtYMsWndymefPmCptk//e//6GsrEwn9yYEAP755x88VDD1wbx583Rz47Iy7g8HkTVruH5vhGigTgU3zs7OaNSoEWxtbcXH3N3dwRjD48ePZV4jEAhgY2MjtRGiND4fkPxrdtkybiE/HVD05fHkyROFKzMToqmtW7fKTfP09ET//v11c+OffgJu3uT2O3fm+roRoqE6Fdz07NkTT58+RV5envjY3bt3wefz0Vg0dJcQbevWreIXblYWsHSpTm7Tq1cvdFIw7HXHjh06uS8haWlpOH78uNz0efPmgcfjaf/GL19K/zx9/z33BwUhGqrRT1FeXh7i4+PFM2EmJycjPj4eKSkpALgmpUmTJonPHzduHOzt7TF16lTcvn0b58+fx0cffYRp06bpbt4FQgCuqtzKitv/+WdAweyt6uLxeJgzZ47c9L///hsZGRlavy8hv//+O8rLy2Wm2draYty4cbq58bJlQGYmtz9hAuDrq5v7EINTo8FNTEwMfHx84OPjAwBYsGABfHx8sGzZMgBAamqqONABuNWUT58+jaysLHTu3Bnjx49HcHCwwk5whGiFs3PFX5hCofSCflo0evRoWFhYyEwrKSnBn3/+qZP7EsPFGMP27dvlpr/99tu6+eMxMZFrkgIAS0vpzvuEaKjWzHNTXWieG6K24mLA3R1ITuZeh4YC/fpp/TZTpkzBTsk1riR07twZ0dHRWr8nMVwxMTHo0qWL3PTLly+jW7du2r/xmDHA/v3c/sqVOmvuJfpDb+e5IaRGCQQVa94AQEiITtadmjJlity0mJgY3BR1viRECxT15Wrbti26ikYLalNMTEVg4+AA6HKFcWKQKLghRBVjxwJeXtz+lSuAEuuhqapPnz5wdXWVm04di4m2FBcX448//pCbPmXKFN10JP7004r9pUsr+rMRoiUU3BCiCiMjYPXqitdLlnDzdGgRn89XWHuze/dulOpoMkFiWI4cOYJMUYfe1/D5fEycOFH7Nw0NBUSr3bu6AjNnav8exOBRcEOIqoYMAXr25PYTEoDdu7V+C8lRgq9LT0/HiRMntH5PYngU1QIGBgbCxcVFuzdkjGvOFVm1CjA11e49CAEFN4SojsfjhoaLLF8OFBVp9RbNmzeHn5+f3HRFo1sIUUZqaqrCIFlR7aHaDh0CRB3ivby4Zl5CdICCG0LU0bs3MHgwt//oEfDrr1q/xdSpU+WmHTt2TOECh4RU5cCBAxAKhTLT6tWrh2HDhmn3hkIhN6+NyOrVXDMvITpAwQ0h6vrii4r9r78GSkq0mv2oUaNgJaejZXFxMY4eParV+xHD8tdff8lNGzt2LMzMzLR7wyNHgFu3uP3u3bnmXUJ0hIIbQtTl41PxC/rRI+C337SavaWlpcLFNA8cOKDV+xHD8ezZM5w/f15u+vjx47V7Q8aAL7+seP3ZZ1zzLiE6QsENIZpYsqRi/6uvADlT2Ktr9OjRctOOHz+O/Px8rd6PGIZDhw5B3vytLi4u6N69u3ZvePo0N7cNAHToUNGkS4iOUHBDiCZ8fQF/f27/3r2Kicm0JCAgAJaWljLTCgoKaNQUUYuiJqk33ngDfG0vXilZa/Ppp1RrQ3SOghtCNCVZe7N6NddxUkvMzc0xdOhQuemKvqQIkeXly5cICwuTm66otlAtFy8CoiawNm2AN97Qbv6EyEDBDSGa6tcPEK29c+MG8O+/Ws1+1KhRctP++ecfFGl5GDrRb3///bfcFcAdHBzQq1cv7d5QstYmJIRGSJFqQcENIZri8aRrb778UqtrTgUFBcldlTkvLw+nRbO9EqIERR3RR44cCSNtBh+xsYCo6dTVFRg3Tnt5E6IABTeEaMPQoYC3N7d/5Qpw7pzWsrayssKgQYPkptOoKaKsrKwsnDlzRm66olpCtXzzTcX+xx8DJibazZ8QOSi4IUQbeDzgk08qXn/7rVazV9QP4siRIyjR8hw7RD/9888/ctclq1+/vsJZsVWWkgKIAu+GDQEFk1ISom0U3BCiLaNHA40bc/v//MONntKSoUOHwlTOGjxZWVk4e/as1u5F9JeiWr7hw4fDRJs1Kz/8UDE1wnvvAdqeFJAQBSi4IURbTEyADz7g9hkDvvtOa1nb2NggICBAbjqNmiJVycvLw8mTJ+Wma3WUVG4u8PPP3L5AAMyerb28CVECBTeEaNOMGYCFBbe/fTuQmam1rBV9+Rw7dkzupGyEAEBoaCiKi4tlptna2qJ///7au9n27UBODrc/fjzg6Ki9vAlRAgU3hGhTvXoVfQsKCir+etWCYcOGyR3J8vTpU1y7dk1r9yL659ixY3LThg4dCoFAoJ0blZcDGzdWvJ4/Xzv5EqICCm4I0ba5cytmYP3hB0BOB05V1atXDz179pSbrujLixg2xliVwY3WHDkCJCdz+wEBgKen9vImREkU3BCiba1bA8HB3P6TJ1pdkmGwgjV5KLgh8ty8eROPHz+Wmcbn8xX251LZhg0V+1RrQ2oIBTeE6MKCBRX7WhwWPkS0CrkMkZGRePnypdbuRfSHosDX19cX9evX186NYmK45RYAwMMDCAzUTr6EqIiCG0J0oU8fwMeH24+JqVgRWUPt2rVDkyZNZKYJhUKcOnVKK/ch+kVRcKMoYFbZ5s0V+5LNs4RUMwpuCNEFHo+b20NkyxYtZcujpimikszMTERERMhNV/R5UklWFvDnn9y+jQ03SoqQGkLBDSG6MnYs90se4H7pZ2VpJVtFX0YnTpyQuygiMUynT5+W+5lwcXGBt2jZEE3t3g0UFnL7kyYBlpbayZcQNVBwQ4iuWFpyv+QBblj4b79pJdt+/frJna34xYsXiNFSExjRD4pq8wYPHgyeNpqOGJOunXz3Xc3zJEQDFNwQokuSv+S3bNHKauFWVlYK1wA6evSoxvcg+kEoFOL48eNy07XWJHXxInD7NrffqxcN/yY1joIbQnTJ05P7ZQ8At24BCvo+qIL63RBlxMXFIT09XWaaiYmJ9mYllqy1mTVLO3kSogEKbgjRNclf9lrqWKwouImNjUVaWppW7kPqNkWBbu/evWEj6hOmiefPK1b/trcHRo3SPE9CNETBDSG6NmoU90sf4Cb0e/5c4yxbt26NVq1ayU1X1BRBDEe1DAHfsQMoKeH2p06l1b9JrUDBDSG6ZmZWsd5USQm3qKAWKPpyOnPmjFbuQequrKwsREdHy03XSn8boRD46aeK1zNnap4nIVpAwQ0h1UHyl/7WrVrpWBwUFCQ37ezZs7RKuIELDw+HUCiUmebq6oo2bdpofpNz54CkJG6/f39u6RFCagEKbgipDq1bA6IRTnfvApGRGmfZu3dvuUPC09LScFs0eoUYJEW1dwMGDNDOEHDJWsgZMzTPjxAtoeCGkOoiapoCtNI0ZWFhAV9fX7npoaGhGt+D1F2K/v+1MkoqJ6eiI7GdHTB8uOZ5EqIlFNwQUl1GjQKsrbn9vXuB/HyNs1T0JUX9bgzXkydPcOfOHbnp/fr10/wm+/ZVzEg8bhx1JCa1CgU3hFQXS0tgzBhuPzcXOHhQ4ywVBTfnzp1DWVmZxvcgdc/Zs2flpnl5ecHBwUHzm0jWPkrWShJSC1BwQ0h10nLTVJcuXWBlZSUzLScnh5ZiMFA6b5JKTAQuXeL2PT2BTp00z5MQLaLghpDq1KNHxYiSsDAgOVmj7ExMTNC3b1+56dTvxvAwxnQf3OzYUbE/dSqgjc7JhGgRBTeEVCceD5gypeL1zp0aZ6noy4qCG8Nz7949PH78WGaakZER+vTpo9kNysuBXbtEGQLjx2uWHyE6QMENIdVt0iSA/+pHb8cObiI0DSgKbi5duoRCUadPYhAUBbRdu3bVfMmFU6eAp0+5/SFDAEdHzfIjRAdqNLg5f/48goOD4eLiAh6Ph8OHDyt9bUREBIyNjdGhQwedlY8QnWjcGBg4kNv/7z8gPFyj7Dw9PdGwYUOZacXFxYjQ0mKdpG7QeZMUdSQmdUCNBjf5+flo3749Nm3apNJ1WVlZmDRpkvZWtCWkukl+KYiq+NXE5/MVDu2lpinDUV5ernCklMa/M7OzgSNHuP2GDbmaG0JqoRoNboKCgvDFF19g5MiRKl03a9YsjBs3TuEEZoTUasOGAaLmgUOHgKIijbKjfjcEAOLj45GZmSkzzdzcXPPfmQcPAsXF3P7YsYCJiWb5EaIjda7Pzfbt2/HgwQMsX75cqfOLi4uRk5MjtRFS48zNgTfe4PZzcgAFqzcrY8CAAXLTYmNjkZWVpVH+pG5QFMj27t0bAoFAsxv88UfF/rhxmuVFiA7VqeDm3r17+OSTT/Dbb7/B2NhYqWvWrFkDW1tb8dakSRMdl5IQJY0dW7Ev+aWhhubNm6N58+Yy04RCIc6dO6dR/qRuCAsLk5umcZNUWhogavJq0QLo2lWz/AjRoToT3JSXl2PcuHH4/PPP4ebmpvR1ISEhyM7OFm+PHj3SYSkJUUG/foBopth//+X6M2hA0ZfXhQsXNMqb1H5lZWUKO49rHNzs21cxsm/cOJrbhtRqdSa4yc3NRUxMDN5//30YGxvD2NgYK1euxLVr12BsbCy3E51AIICNjY3URkitYGwMvPUWt19czPW90YCfaNVxGc6fP69R3qT2u3btGnJzc2Wm2djYaD6ylJqkSB1SZ4IbGxsb3LhxA/Hx8eJt1qxZaNOmDeLj49GtW7eaLiIhqpP8ktCwaUrR5GxxcXHIy8vTKH9SuymqnevVqxeMjIzUzzwpCYiK4vbbtwfc3dXPi5BqoFzHFR3Jy8vD/fv3xa+Tk5MRHx+P+vXro2nTpggJCcGTJ0+wa9cu8Pl8eHp6Sl3v4OAAMzOzSscJqTO6dQOaN+eWYQgNBZ49U3tStCZNmqBZs2b477//KqWVl5cjMjISA0Xz6xC9o6h2rnfv3ppl/uefFftUa0PqgBqtuYmJiYGPjw98fHwAAAsWLICPjw+WLVsGAEhNTUVKSkpNFpEQ3eLxKr4shEKuX4MGFNXeUNOU/mKMKay50WjJBcaA33+veP322+rnRUg14THGWE0Xojrl5OTA1tYW2dnZ1P+G1A63bnErKwNA9+5AZKTaWf3yyy+YOXOmzLS+ffsiXMPZkEntlJCQAA8PD5lpZmZmyM7OhqmpqXqZx8cDr/4ARe/eAAXJpIao8v1dZ/rcEKK32rUDvL25/cuXgQcP1M5K0V/oly9fRrFoAjaiVxTV2nTv3l39wAagjsSkTqLghpDaQPJLY/9+tbNxc3ODg2h4+WuKi4sRHR2tdt6k9lLU5Khxk5SoqdTYGBg9Wv28CKlGFNwQUhu8+WbFvgbBDY/HU9h5lOa70U86C25iYrjFXQGgf3+gQQP18yKkGlFwQ0ht0KIF0LEjtx8bq7OmKepUrH/+++8/uZOTGhsbo3v37upnLhloU60NqUMouCGktpCsvfnrL7WzUVRzExERgfLycrXzJrWPooC1U6dOsLS0VC9jxoADB7h9IyNgxAj18iGkBqgd3JSWluLRo0dITExERkaGNstEiGGS/MtYg6Ypb29vuSMJcnNzce3aNbXzJrWPzoaAx8Vx8y8BgL8/NUmROkWl4CY3NxebN29G3759YWNjA1dXV7i7u6Nhw4Zo1qwZZsyYQR0WCVFXq1aAaIr86Gjg4UO1sjEyMkKvXr3kplPTlH7R2eR9kgG2ZK0iIXWA0sHNhg0b4Orqiu3bt2PAgAE4fPgw4uPjcffuXURGRmL58uUoKytDQEAABg0ahHv37umy3ITop2pomqJOxfojPT0diYmJMtN4PJ7CIFchySYpPh8YOVLNEhJSM5RefiE6Ohrnz59Hu3btZKZ37doV06ZNw5YtW7B9+3ZcuHABrVu31lpBCTEIo0cDS5Zw+/v3AwsXqpVNVZ2KGWPg0arOdZ6iQNXLywv16tVTL+P4eG49KQDw8wMaNlQvH0JqiNLBzZ+Sa4soIBAIMGvWLLULRIhBc3PjJvS7fp1bqDAlBWjaVOVsOnfuDDMzMxQVFVVKe/HiBe7evYs2bdpoo8SkBl28eFFumkZNUqJaG4CapEidpFKfm+3bt8tclI8QokWSHYvVbJoyNTVFt27d5KZHarDEA6k9FP0/qh3cMFbR34aapEgdpVJw895776FFixZo0aIFpk+fjt9++w1PnjzRVdkIMUxamtCvZ8+ectMouKn7ioqKEBcXJzdd0f+/QtevA6I+k336qL1KPSE1SaXgJisrC2fOnMGkSZNw//59zJgxA02bNkWbNm0wa9Ys7N27F8+ePdNVWQkxDG3bViykGRkJPH6sVja+vr5y0y5duqRWnqT2iI2NRWlpqcy0xo0bo3HjxuplTE1SRA+oFNwIBAL4+/tjxYoVOHfuHDIzM3HmzBm89dZbuH37NqZMmYJGjRrpqqyEGI5Royr2jxxRKwtFM9PeunUL2dnZauVLagdFtW+KAtsqHT7M/cvjUZMUqbM0mqGYz+eDz+eDx+OBx+OBMYamanR+JIS8RvJL5dAhtbJo0KAB3NzcZKYxxnDlyhW18iW1g6Latx49eqiX6f37wM2b3H737oCzs3r5EFLDVApuSkpKcP78eaxcuRJ+fn6wtbXFu+++i9TUVMyYMQP37t3DAw3WxCGEvOLtDbi6cvvh4UBmplrZUNOUfmKM6abmRlRrA9ByC6ROUym4sbW1xcSJE5Geno45c+YgOTkZd+7cwc8//4wJEyagSZMmuionIYZFskmgrAw4elStbBR9yVGn4rrrv//+Q1pamsw0gUAAHx8f9TKWrCWkJilSh6kU3LRv3x5paWk4f/48Lly4gIiICLx8+VJXZSPEsGmhaUpR88Tly5chFArVypfULEW1bp07d4apqanqmaalcR3YAaBdO4AmYSV1mErBzeXLl/Hy5Ut8/fXXMDc3x9dffw1nZ2d4enri/fffx/79+5Genq6rshJiWHr0qJgZ9sQJoLBQ5Sw8PDxgbW0tMy07Oxt37tzRpISkhuikSerIEW6OG4CapEidp3KHYisrKwwaNAhr165FVFSUONgxMTHBjBkz4OLiootyEmJ4jIyAYcO4/YIC4PRpNbIwUjiZH/W7qZt0EtxQkxTRI2qPlhIKhYiKisKPP/6I77//Hr/++itycnKo3w0h2iT5JSPZ2VMF1O9Gv+Tn5yM+Pl5uulrBTU4OEBrK7TdpAnTsqF7hCKkllF5bCgCuXLmC8PBwhIeH4+LFi8jLy0Pjxo3h5+eH77//Hv7+/nAVjfAghGiuf3/AygrIy+OaDcrKAGOVfmwV9ruh4KbuiYmJQXl5ucw0V1dXOKszfPvYMUA0IeCIEVyHdkLqMJV+S3bv3h1OTk7w9/fHhg0b4O/vj5YtW+qqbIQQMzMgKIhbhuHlS+DiRW6VZhUoapZKSEhARkYG6tevr2FBSXVR1JRITVKEcFRqlkpISMDTp0/x+++/45133pEZ2DBRhzRCiHZIdu5Uo2mqXr16cHd3l5seFRWleplIjdF6f5viYq7mBgDq1wc0WU2ckFpCpeCmTZs2AIBvvvlGZnp5eTnGjRuneakIIRWGDAFMTLj9w4crRrSogJqm9ENVk/epNTPx2bNcsycABAer3OxJSG2kVofib775Blu3bpU6Vl5ejrffflthRzdCiBpsbQF/f27/v/+AGzdUzoI6FeuH+/fv48WLFzLTzM3N4e3trXqmkmuXDR+uZskIqV3UCm6OHj2KRYsW4cCr1WPLysrw5ptv4tatWwgLC9NqAQkh4P6iFvnnH5UvVxTcREVF0WR+dYSiJsQuXbrARFTDpyzGKj5PAgEQEKBB6QipPdQKbrp06YK//voL06ZNw5EjRzBq1CgkJiYiLCwMTk5O2i4jIUQyuFFjlfC2bdvCzs5OZlpubi4SExPVLBipToqCG7X621y9Cjx5wu337w9YWqpZMkJqF7XnuenXrx927dqFUaNGITk5GefOnYOjo6M2y0YIEWnWjFtMEwCuXOGmylcBn89Hly5d5KZTp+K6QdFK7opGxcklWQsoGUATUscp3XPsjTfekHm8YcOGsLOzw8yZM8XHDh48qHnJCCHSgoOB69e5/X//Bd55R6XLu3btitNyZjm+cuUKpkyZomEBiS4VFxcr7NPYtWtX1TOVDG6GDlX9ekJqKaWDG1tbW5nHAwMDtVYYQogCw4YBX37J7f/zj8rBjaK/7BXVCJDa4fr16ygpKZGZ1qhRIzRq1Ei1DJ88AWJjuf2OHYHGjTUsISG1h9LBzfbt23VZDkJIVTp3BpycuCap06e5hTTNzZW+XFGz1LVr11BUVAQzMzNtlJTogKKmQ7Vqbf79t2KfmqSInlG7zw0hpJrx+RVNB4WFFWsBKcnJyQlNmzaVmVZWVoarV69qWkKiQ4pq19QKbiQ7posWaCVETygd3AwaNAiXL1+u8rzc3FysXbsWmzZt0qhghBAZNBw1pehLkJqmajetBjf5+RXBcaNGgI+PBiUjpPZRulnqzTffxKhRo2Bra4vg4GB07twZLi4uMDMzQ2ZmJm7fvo2LFy/i2LFjGDJkiNxZjAkhGhgwgFtvqqiIa1YQCrkaHSV169ZNPD/V6yi4qb2ysrLkDtfn8Xjo3LmzahmeOcMtuwBwATMtlEn0jNLBzfTp0zFhwgTs378fe/fuxc8//4zs7GwA3A+Xh4cHAgMDER0drXAdG0KIBiwsuADn33+B1FSuQ6iCvjSvo5qbuik6Olpumru7O2xsbFTLULLWj/rbED2k0iIiAoEAEyZMwIQJEwAA2dnZKCwshL29veozYxJC1BMcXNEZ9MgRlYKbjh07gs/ny5yR+P79+3j58iXs7e21VVKiJVptkhIKgaNHuX0LC6BfPw1KRkjtpFGHYltbWzg5OVFgQ0h1kpyPRPQlpSQrKyu0a9dObrqiGgJSc7Qa3MTEAM+ecfsDB3LNnIToGRotRUhd4+LCzUsCcNPnP32q0uU0303dwhhTOAxc5ZmJJQNimriP6CkKbgipi4YMqdg/flylSxX9pU/LMNQ+jx49wjNRTctrBAIBvLy8VMvw2LGK/cGDNSgZIbVXjQY358+fR3BwMFxcXMDj8XD48GGF5x88eBADBw5Ew4YNYWNjA19fX5w8ebJ6CktIbSL5paRi01RVnYoZY+qWiuiAotq0jh07qtYtIC2Na5YCgA4duFpAQvSQysFNeXk5zp8/j6ysLI1vnp+fj/bt2ys9J8758+cxcOBAHDt2DLGxsfD390dwcDBNPkYMT5cuQIMG3P7p04CcaflladeuHSwsLGSmvXjxAg8fPtRCAYm2aHWxTMlaPsnaP0L0jEqjpQDAyMgIAQEBSEhIgJ2dnUY3DwoKQlBQkNLnb9y4Uer16tWr8ffff+Off/6BD01CRQyJkREQFATs3g3k5QEXLgD9+yt1qbGxMTp16oQLFy7ITL9y5QqaN2+uzdISDWi1M7FkkxQFN0SPqdUs5enpiQcPHmi7LCoTCoXIzc1F/fr15Z5TXFyMnJwcqY0QvaCjpinqd1N7lJeXI0bUjCSDSsFNaSlw6hS3b28PqLNkAyF1hFrBzRdffIFFixbh33//RWpqao0FD+vWrUNeXh7GjBkj95w1a9bA1tZWvDVp0qTaykeITgUGcjU4gPRf5EpQ9KWozDIrpHrcvHkT+fn5MtPs7e3RokUL5TO7eBEQ/X4eNKjis0OIHlIruBk8eDCuXbuGYcOGoXHjxqhXrx7q1asHOzs71KtXT9tllOmPP/7A559/jn379sHBwUHueSEhIcjOzhZvjx49qpbyEaJz9eoBPXpw+4mJQFKS0pcq6qsRGxuLYtHU/KRGRUZGyk3r2rUreKosmyBZu0dNUkTPqdznBgDCwsK0XQ6V7NmzB++88w7279+PAQMGKDxXIBBAIBBUU8kIqWaDB3P9bQCu9uaDD5S6rGnTpnB2dkZqamqltJKSEsTFxcHX11ebJSVquHTpktw0lf9/RLV7fD5X60eIHlMruOnbt6+2y6G0P//8E9OmTcOePXswhP76IIZuyBAgJITbP3pU6eCGx+OhR48e+Ouvv2SmR0ZGUnBTCyiquekhqrVTRnIykJDA7fv6Agr6KRKiD9Se5+bChQuYMGECevTogSdPngAAdu/ejYsXLyqdR15eHuLj4xEfHw8ASE5ORnx8PFJSUgBwTUqTJk0Sn//HH39g0qRJWL9+Pbp164a0tDSkpaWJF/AkxOB4egKifmTh4YCc/hmyKApeFNUYkOqRnp6O+/fvy0zj8/mqdSamJiliYNQKbv766y8EBgbC3NwccXFx4vb57OxsrF69Wul8YmJi4OPjIx7GvWDBAvj4+GDZsmUAgNTUVHGgAwA///wzysrKMGfOHDg7O4u3uXPnqvM2CKn7eLyKUVPFxUBoqNKXKvrLPzIykibzq2GKOnZ7eXnB2tpa+cxoVmJiYNQeLbVlyxb88ssvUrNj9uzZE3FxcUrn4+fnB8ZYpW3Hjh0AgB07diA8PFx8fnh4uMLzCTFIai7F0LFjR5iamspMe/r0qdQfFqT6aa2/TWEhIOon2agR4O2tYckIqf3UCm4SExPRp0+fSsdtbW21MnMxIUQF/v6AKEg5cQJQssZFIBCgU6dOctOpaapmKXr+KvW3OXcOKCri9oOCuNo+QvScWsGNk5OTzLbgixcvqjbvAiFEc1ZWQO/e3P7Dh9ywcCUpqgFQ1JmV6FZpaSmio6PlpqtUcyNZmzdokAalIqTuUCu4mTFjBubOnYuoqCjweDw8ffoUv//+OxYtWoTZs2dru4yEkKpILmOiQtOUohoAqrmpOfHx8SgS1ba8pmHDhmjZsqXymYk+D8bGQBVTZxCiL9QaCv7JJ59AKBSif//+KCgoQJ8+fSAQCLBo0SJ8oORQVEKIFgUFAYsWcfsnTgDz5yt1maIagPj4eOTn58PS0lIbJSQqUFRr5uvrq/zkfUlJwL173H6PHoCtrRZKR0jtp1bNDY/Hw5IlS5CRkYGbN2/i8uXLeP78OVatWqXt8hFClOHuXjEk/Nw5oKBAqctcXFzQrFkzmWlVrWtEdEdr/W1OnKjYpyYpYkDUCm7Onj2LoqIimJqawsPDA127doWVlZW2y0YIURaPV9E0VVzMzXmjpKqGhJPqV1XNjdIkgxvJpktC9Jxawc2wYcNgZ2eH3r17Y+nSpThz5gwKCwu1XTZCiCok/zJXod8NTeZXuzx58kTuMHxjY2N07txZuYyKioCzZ7l9JyegfXstlZCQ2k+t4CYzMxOhoaEICgrClStXMHLkSNjZ2aFnz5747LPPtF1GQogy+vfnOo0CWutUTJP5VT9FtTYdOnSAhYWFchlduFDRPDloEA0BJwZFreDGxMQEPXv2xKeffoqTJ0/i8uXLGDt2LK5cuYI1a9Zou4yEEGXY2AA9e3L7SUmAnKn7X+ft7Q1zc3OZaS9evJC7BADRDa1N3kf9bYgBUyu4uXv3Ln7++WeMGzcOjRo1Qt++fZGdnY1169apNEMxIUTL1BgSbmJionCdImqaql5aWyxT9P/P5wMDB2pYKkLqFrWCm7Zt22Lp0qXw9PTE8ePH8fz5cxw6dAhz585Fe2rXJaTmSP6FLvmXexUU1QhERUVpUiKiguLiYoV/ICpdc/PffxWrgHfrRquAE4OjVnDz4YcfolGjRli5ciVmzZqFJUuW4NSpUyhQcvgpIURHvL0BFxduPyysYtr9KlBwUztcu3YNJSUlMtOcnZ3RtGlT5TKiUVLEwKkV3GzcuBFxcXFIS0tDSEgISkpKsGTJEjRo0AA9RW3+hJDqx+NV1N4UFgLnzyt1Wbdu3eSmXbt2jf5wqSaKVgLv3r278pP3UXBDDJxawY1IeXk5SktLUVxcjKKiIhQXFyNRhXVtCCE6EBhYsX/ypFKXODo6wtXVVWZaeXk59aWrJopqyRQFoFJKS4HQUG6/QQOgY0ctlIyQukXtZilvb284Ojri3XffxdOnTzFjxgxcvXoVz58/13YZCSGqGDCA60QKKB3cAIq/PKlpqnpoJbi5fBnIzeX2Bw6s+CwQYkDUWlsqNTUVM2fOhJ+fHzw9PbVdJkKIJurXB7p0AaKigFu3gMePgcaNq7ysW7du2Lt3r8w0Cm5078WLF0hKSpKZxufzlZ+8TzKglazFI8SAqBXc7N+/X9vlIIRoU2AgF9wA3Jfd9OlVXqKoZkBRXxCiHYoCSE9PT+WXuJEMbgICNCwVIXWT2vWVSUlJ+OCDDzBgwAAMGDAAH374ody/Oggh1UyNfjc+Pj4wNpb9986jR4+QmpqqjZIRObTSJPXiBRAby+17ewPOzlooGSF1j1rBzcmTJ+Hh4YErV67A29sb3t7eiIqKQrt27XD69Gltl5EQoqquXQFbW27/zBmgvLzKS8zNzdGhQwe56dQ0pVtaCW5OnwZEy2VQkxQxYGoFN5988gnmz5+PqKgobNiwARs2bEBUVBTmzZuHxYsXa7uMhBBVGRtzHYsBIDMTiI5W6jLqVFwzhEIhrly5Ijdd6eCG+tsQAkDN4CYhIQHTZbThT5s2Dbdv39a4UIQQLVCjaYqCm5px9+5dZGVlyUyztraGu7t71ZkwBpw6xe1bWAC9emmvgITUMWoFNw0bNkR8fHyl4/Hx8XBwcNC0TIQQbdBycBMdHY1yJZq3iOoUBY5dunSBkZFR1ZncuAGI+kX5+QECgXYKR0gdpNZoqRkzZmDmzJl48OCBeCG3iIgIrF27FgsWLNBqAQkhamraFGjbFrhzhxs5lZkJ1Kun8JLWrVujXr16yMzMrJSWl5eH27dvw8vLS1clNlha6W9DTVKEiKkV3CxduhTW1tZYv349QkJCAAAuLi5YsWIFPvzwQ60WkBCigcBALrgRCrlZa0ePVng6j8dDt27dcELOoptRUVEU3OgABTeEaJdazVIlJSWYOXMmHj9+jOzsbGRnZ+Px48eYO3eu8mufEEJ0j/rd1HoFBQW4du2a3HSlgpv8fODCBW6/WTPAzU1LpSOkblIpuHn+/DmCgoJgZWUFGxsbdO/eHenp6bC2ttZV+Qghmujbt6LvxcmTFcOEFaDJ/KpXXFyc3L5MzZo1g5OTU9WZnDsHiFYTDwzkFlAlxICpFNwsXrwY8fHxWLlyJdatW4esrCy88847uiobIURTFhZA797c/qNHgBIL23bt2lVu2q1bt5ArWreIaIVWmqREo6QAapIiBCr2uTl9+jR27NiBwFc/PEOHDoW7uzuKi4shoJ75hNROgYHcRH4A9yXYtq3C0+3t7dG6dWvcu3evUhpjDDExMfD399dFSQ2SVoMbIyOgXz8tlIqQuk2lmpunT5+iffv24tetW7eGQCCgadkJqc0k1xeS/AtfAUVfqjExMZqWiEhQ9DyVCm4ePQISEkQXAHZ22ikYIXWYyh2KX59vwcjICEyJdnxCSA3x8gIcHbn98PCKvhkKdOnSRW4aBTfa8/LlSyQnJ8tMMzIygo+PT9WZSC55QwtlEgJAxeCGMQY3NzfUr19fvOXl5cHHx0fqGCGkFuHxKr708vOByMgqL+ncubPcNAputEfRs2zXrh0sLCyqzkSyNm7gQC2UipC6T6U+N9u3b9dVOQghuhQQAOzeze2fOsWNolKgQ4cOMDIykjmK58GDB3j58iXs7e11UVKDoii4UVR7JlZeXlFzY2PDLZhKCFEtuJk8ebKuykEI0SXRIpoAF9x8+aXC0y0sLNCuXTtcv35dZnpsbCwCqAlEY4qCG0W1Z2JXrwIZGdx+//7cgqmEEPUm8SOE1DFOToBoMEBsLPDiRZWXUL8b3YtWsFq7UjU3kk1SFGwSIkbBDSGGQvTlxxi3FEMVFNUcKPpSJspJTU3FkydPZKaZmprC09Oz6kwouCFEJgpuCDEUKg4Jp07FuhUbGys3zdvbu+q5w3JzgUuXuP2WLYEWLbRYOkLqNgpuCDEUvXoBZmbc/qlTVS7F4OXlBVNTU5lpjx8/RlpamrZLaFA0bpI6dw4oLeX2qdaGECkaBTclJSVITExEWVmZtspDCNEVMzOgTx9u//FjbrVwBQQCAby9veWmU+2NZjTuTEzz2xAil1rBTUFBAaZPny4eUZGSkgIA+OCDD/DVV19ptYCEEC2ipqlaQbSMhTxKBTeSSy7QchiESFEruAkJCcG1a9cQHh4OM1E1N4ABAwZg7969WiscIUTLVAxuFDWPUKdi9T169Ajp6eky08zNzeHh4aE4g5SUipq3bt0AW1stl5CQuk2t4Obw4cP43//+h169eoHH44mPt2vXDklJSUrnc/78eQQHB8PFxQU8Hg+HDx+u8prw8HB07NgRAoEArVq1wo4dO9R4B4QYKE9PwNmZ2w8PB4qLFZ5eVc0NLb2iHkW1Nj4+PjCuar4aySYpmpWYkErUCm6eP38OBweHSsfz8/Olgp2q5Ofno3379ti0aZNS5ycnJ2PIkCHw9/dHfHw85s2bh3feeQcnT55U+p6EGDQer+LLsKCgyqUYPDw8YG5uLjMtPT0djx8/1nYJDYLWmqQAbtV3QogUtYKbzp074+jRo+LXooDm119/ha+vr9L5BAUF4YsvvsDIkSOVOn/Lli1o3rw51q9fD3d3d7z//vsYPXo0vv32W9XeACGGTPIvfckaABmMjY0VLt5ITVPq0WikVHk5cOYMt29rCygzsooQA6NWcLN69Wp8+umnmD17NsrKyvDdd98hICAA27dvx5dVTOuuicjISAyQnEYeQGBgICIV/PVZXFyMnJwcqY0Qg/b6UgxVoE7F2qVxZ2LJJRf69aMlFwiRQa3gplevXoiPj0dZWRm8vLxw6tQpODg4IDIyEp06ddJ2GcXS0tLg6OgodczR0RE5OTkoLCyUec2aNWtga2sr3po0aaKz8hFSJzg5AaIh3rGxwMuXCk+n4Ea7Hjx4gKysLJlp1tbWcHNzU5wBzUpMSJXUDvlbtmyJX375RZtl0YmQkBAsWLBA/DonJ4cCHEICAoDr1yuWYhgzRu6pVa0xxRhTqa+doVPUJNWpUyfw+VX8zUmdiQmpktrBjVAoxP3795Geng6hUCiV1kc0UZiWOTk54dmzZ1LHnj17BhsbG7mdHgUCQdXTmBNiaAYOBNat4/ZPnVIY3Li5ucHKygp5eXmV0jIzM5GcnIwWNPW/0hQtu1Blk1ReHhARwe23aMEtu0AIqUSt4Oby5csYN24c/vvvv0pDQXk8HsrLy7VSuNf5+vri2LFjUsdOnz6tUidmQgiA3r0BgYAbCn76NFeDI6f2hc/no1OnTjh37pzM9Li4OApuVBAXFyc3rcpm/fPnackFQpSgVp+bWbNmoXPnzrh58yYyMjKQmZkp3jJEHd2UkJeXh/j4eMTHxwPghnrHx8eLZzwOCQnBpEmTpO774MEDfPzxx7hz5w5+/PFH7Nu3D/Pnz1fnbRBiuMzNK5ZiSEkB7t5VeHrHjh3lpin6sibSGGOaBTeS/W2oSYoQudSqubl37x4OHDiAVq1aaXTzmJgY+EtMGy7qGzN58mTs2LEDqamp4kAHAJo3b46jR49i/vz5+O6779C4cWP8+uuvCKR5HghR3cCBFf03Tp8G2rSRe6qi4EZRMwuR9vDhQ7mdiW1sbNCyqmYm0f8Xn8+NlCKEyKRWcNOtWzfcv39f4+DGz89P4QynsmYf9vPzw9WrVzW6LyEEXLPGxx9z+6dOAe+/L/dURTUKcXFx1KlYSYoCQR8fH8WdiR8/Bm7f5va7dgXs7LRbOEL0iFrBzQcffICFCxciLS0NXl5eMDExkUpXtJIwIaSW8PICHByA9HQgLIzry/Haz7KIm5sbLCwsUFBQUCntxYsXePz4MY1CVIKiJilFtWMAKibuA6i/DSFVUCu4GTVqFABg2rRp4mM8Hk/815uuOhQTQrSIz+eapn7/nRuFc/ky19FYBiMjI3To0AGXLl2SmR4XF0fBjRI0Cm5ofhtClKZWh+Lk5ORK24MHD8T/EkLqCMlOqVXMVqyoaYr63VRNo87EQmFFzY21NdcsRQiRS62am2bNmmm7HISQmvB6cLNqldxTacSUZh4/foznz5/LTLOwsFA8M3F8PCC61t9fbvMhIYSjdHBz5MgRBAUFwcTEBEeOHFF47rBhwzQuGCGkGri4AJ6ewM2bQHQ0t2ZR/foyT6XgRjOKnlGHDh1gZGQk/2JaBZwQlSgd3IwYMQJpaWlwcHDAiBEj5J5HfW4IqWMCA7ngRrQUw5tvyjzN3d0dAoEAxcXFldJSU1ORmpoKZ2dnXZe2ztJafxsKbgipktJ9boRCIRwcHMT78jYKbAipYyQ7p548Kfc0ExMTtG/fXm461d4opnZ/m7w84OJFbp+WXCBEKWp1KCaE6JHevQEzM27/1CmuBkcOappSn6JO1wprbs6doyUXCFGR2sFNaGgohg4dipYtW6Jly5YYOnQozkjOw0AIqRskl2J49AhITJR7KgU36hE128kiEAjg7u4u/2JqkiJEZWoFNz/++CMGDRoEa2trzJ07F3PnzoWNjQ0GDx6MTZs2abuMhBBdU7JpipZhUI+iWdW9vb0rTYQqRfT/YWTEjZQihFRJreBm9erV+Pbbb/Hnn3/iww8/xIcffog//vgD3377LVavXq3tMhJCdE2yRkDBfDeenp5yv4gfPXokd6izoVO7v81//1XUpPn6Ara2Wi4ZIfpJreAmKysLgwYNqnQ8ICAA2dnZGheKEFLN2rUDRCOdwsMBGSOiAK4JxdPTU242tO6bbGqPlKJZiQlRi1rBzbBhw3Do0KFKx//++28MHTpU40IRQqoZj1fx5VlQAEREyD2VmqZUp3ZnYgpuCFGL0vPcfP/99+J9Dw8PfPnllwgPD4evry8A4PLly4iIiMDChQu1X0pCiO4FBgI7d3L7p04B/frJPK1jx47YunWrzDTqVFzZixcvkJKSIjPNxMREfk1YeXnFkgv16gGdO+uohIToHx5jCsZ9SmjevLlyGfJ4tXp9qZycHNja2iI7Oxs2NjY1XRxCao/nz7lVwgGgQwdAThNTVFQUunfvLjOtRYsWSEpK0lEB66bTp08jQE6ti4+Pj/yA8PJlrp8NwE2suG+fjkpISN2gyve30jU3ycnJGheMEFKLNWwIdOwIxMVxaxk9ewY4OlY6zdvbG3w+H0KhsFLagwcPkJ2dDVvq+CqmqB+Sj4+P/AupSYoQtanc56a0tBQtW7ZEQkKCLspDCKlJkqOmTp+WeYq5uTnatm0rN4v4+HgtF6puUzu4kRyST8ENISpRObgxMTFBUVGRLspCCKlpSs53o+hLmYIbaWoFN1lZQFQUt9+2LdC0qfYLRogeU2u01Jw5c7B27VqUlZVpuzyEkJrUowdgZcXtnzoFyGh6AhQHNzQcvEJ+fj7u3r0rM43H48lfqys0lOtQDAAypt0ghCimdJ8bSdHR0QgNDcWpU6fg5eUFS0tLqfSDBw9qpXCEkGpmasqNkjpyBEhP5/reyBiqTMGNcq5fvw55YzZat24NK1Eg+boTJyr2ackFQlSmVnBjZ2eHUaNGabsshJDaYNAgLrgBuKYpGcFNhw4d5F5++/ZtFBcXQyAQ6KiAdYdaTVKMVTQJmpkBffvqoGSE6De1gpvt27druxyEkNpCsqbgxAkgJKTSKfXr10ezZs3w33//VUorKyvDzZs3FS8rYCAUBTdyA8SEBG4BU4Bb0NTcXPsFI0TPqb0qOCFET7VoAbRuze1fugTk5Mg8jToVV02tmhvJJinqb0OIWtSquWnevDl4PJ7c9No8iR8hRAmDBgH37gFlZcDZs8CIEZVO6dChAw4fPizzcup3w02bcePGDbnpcoMbyVFqFNwQoha1gpt58+ZJvS4tLcXVq1dx4sQJfPTRR9ooFyGkJgUGAj/8wO2fOCEzuKFOxYrduXMHJSUlMtNcXFzgIJoNWlJBAXDuHLffpAk3DJwQojK1gpu5c+fKPL5p0ybExMRoVCBCSC3g58eNnCop4WoSGOMW15SgKLi5du0aysvLYWRkpOOC1l5qNUmdP1+xIvugQZWeOSFEOVrtcxMUFIS//vpLm1kSQmqCpSXQuze3//AhIGOulsaNG8Pe3l7m5fn5+Qa/xpRanYlpCDghWqHV4ObAgQOoX7++NrMkhNQUyf4eMmYr5vF41DSlgFo1N6LnbGQE9O+vg1IRYhhUCm5WrlyJ/Px8+Pj4oGPHjuLNx8cHzs7O+PTTT/Hpp5/qqqyEkOr0+pBwGSi4kY0xpnDEmMzn9vAhcOcOt9+9O2Bnp4uiEWIQVOpz8/nnn2PWrFkYPny41GgpPp+Phg0bws/PT+GCeoSQOsTTE3BxAZ4+BcLDgaIiblI5CYom8zPk4CY5ORnZ2dky02xtbdG8efPKCTRKihCtUSm4EU0jvmLFCl2UhRBSm/B43Jfstm1AYSE3iue1fiBV1dwwxhROG6GvFNXadOjQQfYzof42hGiNyn1uDPEXFSEGKyioYv/48UrJbm5usLCwkHnp8+fPkZqaqquS1WoqdyYuLgbOnOH2GzYEaHZnQjSicnDj5uaG+vXrK9wIIXpi4ECucysAHDtWKdnIyAje3t5yLzfUpimVOxNfvAjk5XH7QUEAnyaPJ0QTKs9z8/nnn8PW1lYXZSGE1Da2tkDPntz8K/fuAffvA61aSZ3i4+ODy5cvy7z86tWrGDJkSHWUtFZRObiRDBwla8sIIWpRObh5++23Zc+sSQjRT4MHc8ENwDVNffCBVDKNmJL2/PlzPH36VGaaQCCAu7t75QRRkx+fDwQE6LB0hBgGleo+qb8NIQZo8OCKfRlNU1XNVGxoFHUmbteuHUxMTKQPJidzK4EDgK8vQE37hGhMpeBGNFqKEGJAPD2Bxo25/bAwbv0jCe3atZO7zEJSUhJy5Kwqrq9Unt9GsqO2ZCBJCFGbSsGNUCikJilCDA2PV/GlW1zMBTgSzM3NFc5vdf36dV2Wrtapahh4JZK1YRTcEKIV1CWfEFK1KpqmaDK/CioNAy8sBM6e5fadnYH27XVXMEIMCAU3hJCq9e8PiPqKHDvGrRIuQVFwo6gmQ98UFBQgMTFRbnqlYfPnznEBDsAFkNSvkRCtqBXBzaZNm+Dq6gozMzN069YNV65cUXj+xo0b0aZNG5ibm6NJkyaYP38+ioqKqqm0hBggKyugb19uX3INpFcouOHcvHkTQqFQZlqrVq1gY2MjfZCapAjRiRoPbvbu3YsFCxZg+fLliIuLQ/v27REYGIj09HSZ5//xxx/45JNPsHz5ciQkJGDr1q3Yu3cvLdhJiK4paJpSFNzcvHkTpaWlOipU7aJSfxvGgKNHuX1jY2DAAJ2VixBDU+PBzYYNGzBjxgxMnToVHh4e2LJlCywsLLBt2zaZ51+6dAk9e/bEuHHj4OrqioCAAIwdO7bK2h5CiIYkJ5d7Lbhp0KABGotGVL2mpKQEd16r6dFXKgU39+4BDx5w+717A6/X6hBC1FajwU1JSQliY2MxQOIvFj6fjwEDBiAyMlLmNT169EBsbKw4mHnw4AGOHTuGwXKqdIuLi5GTkyO1EULU0KYNIFrN+sIF4LWfJWqaUjG4EdXaANQkRYiW1Whw8+LFC5SXl8PR0VHquKOjI9LS0mReM27cOKxcuRK9evWCiYkJWrZsCT8/P7nNUmvWrIGtra14a9KkidbfByEGgccDREsplJYCp05JJRt6cFNeXq5w2Hul5/PvvxX7FNwQolU13iylqvDwcKxevRo//vgj4uLicPDgQRw9ehSrVq2SeX5ISAiys7PF26NHj6q5xITokeDgiv1//pFKMvTh4Pfv30d+fr7MtAYNGsDFxaXiQHZ2xZIWLVoAspZkIISoTeW1pbSpQYMGMDIywrNnz6SOP3v2DE5OTjKvWbp0KSZOnIh33nkHAODl5YX8/HzMnDkTS5YsAf+11XQFAgEEAoFu3gAhhqZvX27kVF4e1++mvFy8anhVNTeMMb1ewqWqmYml3vuJE0BZGbcfHExDwAnRshqtuTE1NUWnTp0QGhoqPiYUChEaGgpfX1+Z1xQUFFQKYERTv9PyEITomEBQsbDjixeAxGrgzZs3h7W1tczLMjMz9b7WVKX+NpJNUpK1YYQQrajxZqkFCxbgl19+wc6dO5GQkIDZs2cjPz8fU6dOBQBMmjQJISEh4vODg4OxefNm7NmzB8nJyTh9+jSWLl2K4OBguevbEEK0SPLLWOJLms/no72CGXb1vd+N0sFNWVnFaDMbG26kFCFEq2q0WQoA3nrrLTx//hzLli1DWloaOnTogBMnTog7GaekpEjV1Hz22Wfg8Xj47LPP8OTJEzRs2BDBwcH48ssva+otEGJYRDPpMsb1u1mzRpzUoUMHXLx4UeZl8fHxGDZsWHWVstopHdxERgIZGdx+YCBgaqrTchFiiHjMwNpycnJyYGtri+zs7MqzhRJClNOjB/clDXBztbwaIr5161Zxf7jXjRw5EgcPHqyuElartLQ0ODs7y0wzMzNDbm4ujI1f/S25eDHw9dfc/q5dwMSJ1VRKQuo2Vb6/a7xZihBSBw0dWrEvMWrKx8dH7iX63Cx17do1uWleXl4VgQ1Q8bz4fOmJEQkhWkPBDSFEdXKGhHt4eEh/kUtITk5GVlaWjgtWM5RukkpKAhISuH1fX6BBA52WixBDRcENIUR1np5As2bc/rlz4tmKzczM4K5gzhZFNRx1maJ5fKRqs2iUFCHVgoIbQojqeLyKL+fXZitWNN9NTEyMjgtWMxS9L6nnITnxIQU3hOgMBTeEEPXI6XejKLiJiIjQYYFqxrNnz5CUlCQzjcfjwcvLi3uRnc3VcgFcB2yalZgQnaHghhCiHj8/brZigGtueTXjbo8ePeReEhERoXeTbSoK2Nq3bw8r0TM6doxmJSakmlBwQwhRj0BQseBjRoZ4raSOHTvCzMxM5iXp6em4f/9+dZWwWsib1wcAevXqVfHi0KGK/ZEjdVgiQggFN4QQ9Ul+Sb/68jY1NUXXrl3lXqIoGKiLFL2fnj17cjtFRRWzEtvbA5JBDyFE6yi4IYSob/Dgihl2Dx0ChEIAr9VYvEafgpv8/HzExcXJTRc/h9OnAdGK4cOGAXKGyxNCtIOCG0KI+mxsgAEDuP0nT4BXo4YUBTf61Kn4ypUrKC8vl5nWrFkzNG7cmHsh2ST1xhvVUDJCDBsFN4QQzUg2Tb1aXsHX1xc8OR1mExMT8fz58+oomc4p1SRVVgYcOcLtW1lVBIOEEJ2h4IYQoplhw7ilBACuhoIx2NnZwdPTU+4l+lJ7o1Rn4gsXgJcvuf3BgwE5na0JIdpDwQ0hRDMODhUdZO/eFS8voO/9bsrLyxEpWjxUBvH7p1FShFQ7Cm4IIZqT7EfyqmlK3/vd3LhxA7m5uTLTbG1t0a5dO4CxiuDG1LRi6DwhRKcouCGEaG7EiIr9V1/m4j4nMsTGxqKgoEDHhdItRbVPPXr0AJ/P5zpYP37MHRwwgOuATQjROQpuCCGaa9YM6NiR24+LAx4+RNOmTStGC72mtLQU0dHR1VhA7VOqv82rWiwA1CRFSDWi4IYQoh2STVOHDoHH4+ltvxvGWNXBjWSTFJ/PdbwmhFQLCm4IIdohGdzs3w9AcdNUXe53k5KSgidPnshMMzExQZcuXYAbN4DERO5gr15cx2tCSLWg4IYQoh3u7kC7dtx+ZCSQkqKw5ubSpUtyJ8Cr7RTV2nTq1Anm5ubA3r0VB8eMqYZSEUJEKLghhGjPW29V7O/fDy8vL1hbW8s8NTs7Gzdu3KimgmnXhQsX5KaJm6REwQ2fD4weXU0lI4QAFNwQQrRJMrjZuxdGRkbo0aOH3NPPnj1bDYXSvtDQULlpvXr14jpVJyVxB/z8AEfH6ikYIQQABTeEEG1ycwM6dOD2o6OBBw/Qp08fuacrChJqq5SUFNy/f19mmrgTtWSTlGTARwipFhTcEEK0S/LLfN8+9O/fX+6p58+fR2lpaTUUSnsUBWQ+Pj6wr18f2LePO2BkRAtlElIDKLghhGiXZOfZvXvRqVMn2MiZvC4vLw9XrlyppoJph6Lgpl+/fkBUFPDff9yBAQOABg2qqWSEEBEKbggh2tWiBdClC7cfHw/jBw/g5+cn9/S61O+GMaawvP3796cmKUJqAQpuCCHa91rHYkVNU3Wp382dO3eQmpoqM83ExAS9e/YUz/EDExPpZSkIIdWGghtCiPa9+WbFfhX9biIjI+vMOlOKArHu3bvD8to1QDS5X0AAUK9eNZWMECKJghtCiPY1bQr4+nL7N2/CgzE4OTnJPLWkpKTOLMWgKLihJilCag8KbgghuvH22+Jd3h9/cJ1t5agLTVPl5eUIDw+Xmz6gTx9gzx7uhUAADB9ePQUjhFRCwQ0hRDfeeosbCg0Au3ZhgL+/3FPrQnATFxeHrKwsmWkWFhbo+vIl8OIFd2D4cEDOCDFCiO5RcEMI0Q1HRyAoiNt/8gSDzczknhoXF4eMjIxqKph6FAVgffr0gckff1QcmDy5GkpECJGHghtCiO5IfMk7njiBli1byjyNMYZz585VV6nUomgI+JDu3YF//+VeODlxnYkJITWGghtCiO4EB1eMGDp4EEN695Z7am1umiouLlbY6Xl4QQEgmml5wgTA2LiaSkYIkYWCG0KI7ggEwNix3H5hIcabmso9tTYHN5GRkSgsLJSZZm9vj8aSZacmKUJqHAU3hBDdkviy73D9utzT7ty5g0ePHlVHiVR26tQpuWkTO3YELzaWe9GxI+DpWU2lIoTIQ8ENIUS3unQB2rYFAJhevozBr/ZlOXnyZHWVSiWKyjWJsYoXU6bovjCEkCpRcEMI0S0eT+pLf179+nJPrY3BTXp6OuLi4mSmGQHwEtVGmZhUNMERQmoUBTeEEN2bMAHgc79uej14AJ6c086cOYOysrLqK5cSTp8+LTdtkrMzjNPTuRdDhtAK4ITUEhTcEEJ0r1EjYMAAAIB5WhoGCwQyT8vKykJ0dHR1lqxKimqTPrCwqHhBTVKE1BoU3BBCqseMGeLdEDs7uafVpqYpoVAotzOxC4D2ycncCycnYPDg6isYIUShWhHcbNq0Ca6urjAzM0O3bt1w5coVhednZWVhzpw5cHZ2hkAggJubG44dO1ZNpSWEqGX4cMDZGQDg+/w5Gsk5rTYFN9evX8ezZ89kps3i88EXCrkXM2dyfW4IIbVCjQc3e/fuxYIFC7B8+XLExcWhffv2CAwMRLqoHfs1JSUlGDhwIB4+fIgDBw4gMTERv/zyCxo1kverkhBSK5iYiGtv+EIhZsg57cqVK8jMzKy+cikgr9bGGMBs0UR9RkZStVKEkJpX48HNhg0bMGPGDEydOhUeHh7YsmULLCwssG3bNpnnb9u2DRkZGTh8+DB69uwJV1dX9O3bF+3bt6/mkhNCVDZjhngxzdl8PmTN4ysUCmvNhH7yapGGA2hQUsK9GDYMaNy4+gpFCKlSjQY3JSUliI2NxYBXHQ0BgM/nY8CAAYiMjJR5zZEjR+Dr64s5c+bA0dERnp6eWL16NcrLy2WeX1xcjJycHKmNEFJDGjfmmqcAOAiFGCHntNrQNJWfny93yYX3pF68J/McQkjNqdHg5sWLFygvL4ejo6PUcUdHR6Slpcm85sGDBzhw4ADKy8tx7NgxLF26FOvXr8cXX3wh8/w1a9bA1tZWvDVp0kTr74MQooLZsyt25Zxy8uRJMMnJ8WpAeHg4SkS1MxLaAugneuHmBvTrV+kcQkjNqvFmKVUJhUI4ODjg559/RqdOnfDWW29hyZIl2LJli8zzQ0JCkJ2dLd5q6/TuhBiMfv24oABckCBrvuJHjx7hzp071Vqs18mrPZol9WKWeP4eQkjtUaM/lQ0aNICRkVGl0QjPnj2Dk5OTzGucnZ3h5uYGo1ft9gDg7u6OtLQ0mX9lCQQC2NjYSG2EkBrE5ytde1OTZN3fAsAU0Qtzc5rbhpBaqkaDG1NTU3Tq1Emq86CoM6Gvr6/Ma3r27In79+9DKBqCCeDu3btwdnaGqYIVhwkhtcjkyVxwAGAqADsZpxw/frw6SyQlOTkZd+/erXR8KgBb0YuxY4F69aqzWIQQJdV4feqCBQvwyy+/YOfOnUhISMDs2bORn5+PqVOnAgAmTZqEkJAQ8fmzZ89GRkYG5s6di7t37+Lo0aNYvXo15syZU1NvgRCiqnr1gEmTAADWAD6QcUpYWFiNDQA4cuRIpWMmAD6WPPCBrFITQmoDWSMxq9Vbb72F58+fY9myZUhLS0OHDh1w4sQJcSfjlJQU8CXatJs0aYKTJ09i/vz58Pb2RqNGjTB37lwsXrxYq+UqLy9HaWmpVvMkpC4xMTGRav7Vuo8/Bvv1V/DKyzEXwAYA+RLJpaWlOHnyJN58803dlUGOv//+u9Kx8QCail4MHgx06FCNJSKEqILHanpIQjXLycmBra0tsrOzZfa/YYwhLS0NWVlZ1V84QmoZOzs7ODk5gceTt9SlhiZOBH77DQCwEFyAI2nChAnYvXu3bu4tR2ZmJho2bCg1vQQfQAIAN9GBiAigR49qLRchhq6q729JNV5zU9uIAhsHBwdYWFjo7pc6IbUYYwwFBQXimcKdXy2boHUhIeLgZhGATQCKJZKPHj2K0tJSmFTj0gbHjh2rNG/WaFQENszPDzwKbAip1Si4kVBeXi4ObOzt7Wu6OITUKPNXHX7T09Ph4OCgmyYqDw+UDR8O47//hjO4DruSkzpkZmbi4sWL8Pf31/695ZDVJPWpxD5vyZJqKwshRD013qG4NhH1sbGwsKjhkhBSO4h+FnTZ/8x4+XLx/mJU/otLVudeXSkuLsaJEyekjg0FIFrcJdPNDejfv9rKQwhRDwU3MlBTFCGcavlZ8PFBiqcnAMAVwLjXkv/+++9qm604PDwcubm5Usck62ksvvgCoN8PhNR6FNwYAD8/P8ybN0/jfKZMmYIRI0ZonI+2PHz4EDweD/Hx8Upfo61nQbTLQmL5lBUABBJpycnJuHXrVrWU4/VaomEAur/af2hjA8GoUdVSDkKIZii40RNTpkwBj8ertN2/f19r9/juu++wY8cOpc5dsWIFeDweBg0aVCntm2++AY/Hg5+fn9bKRuq2BsOH4/Kr0Q/NAcx9LV1WPxhtY4xJBTcmANZJpD+YOJGWWiCkjqCfVD0yaNAgpKamSm3NmzfXON/y8nIIhULY2trCzs5O6eucnZ0RFhaGx48fSx3ftm0bmjZtKucqYqhuTJ4M0RilJQAcJNKqo9/N1atXpT6rcwC0frV/DoDXsmU6LwMhRDsouFHA2toaAoGgxjdra2ulyisQCODk5CS1yRrhkpmZiUmTJqFevXqwsLBAUFAQ7t27J07fsWMH7OzscOTIEXh4eEAgECAlJaVSs9SBAwfg5eUFc3Nz2NvbY8CAAcjPr5iGzcHBAQEBAdi5c6f42KVLl/DixQsMGTJEqkxCoRArV65E48aNIRAIxJM5Srpy5Qp8fHxgZmaGzp074+rVq5Xe282bNxEUFAQrKys4Ojpi4sSJePHihVLPj9Qs35kz8eurfRsAKyXSrly5gqdPn+r0/pK1Q/UBiEIZIYBdHTqgoYODrMsIIbUQBTcKlJSU1JpNm6ZMmYKYmBgcOXIEkZGRYIxh8ODBUiNiCgoKsHbtWvz666+4desWHF77xZ6amoqxY8di2rRpSEhIQHh4ON54441KHT+nTZsm1ZS1bds2jB8/vtI6YN999x3Wr1+PdevW4fr16wgMDMSwYcPEQVdeXh6GDh0KDw8PxMbGYsWKFVi0aJFUHllZWejXrx98fHwQExODEydO4NmzZxgzZow2HhvRsXbt2mFr06YQLbjwDgBPiXRd194cPnxYvL8cgGjVqF0A3MeP1+m9CSFaxgxMdnY2A8Cys7MrpRUWFrLbt2+zwsJCxhhjpqamDECNb6amplW+r8mTJzMjIyNmaWkp3kaPHs0YY6xv375s7ty5jDHG7t69ywCwiIgI8bUvXrxg5ubmbN++fYwxxrZv384AsPj4+Er3GD58OGOMsdjYWAaAPXz4UGZ5li9fztq3b89KSkqYg4MDO3fuHMvLy2PW1tbs2rVrbO7cuaxv377i811cXNiXX34plUeXLl3Ye++9xxhj7KeffmL29vbi/xvGGNu8eTMDwK5evcoYY2zVqlUsICBAKo9Hjx4xACwxMbHSsyBVe/1nQtfmzZvHPgYYe7WdlPg56N27t87ue/PmTfF92gCs9NX98wDmLPH5IYTUHEXf36+jSfz0iL+/PzZv3ix+bWlpWemchIQEGBsbo1u3buJj9vb2aNOmDRISEsTHTE1N4e3tLfde7du3R//+/eHl5YXAwEAEBARg9OjRqPfaKskmJiaYMGECtm/fjgcPHsDNza1Svjk5OXj69Cl69uwpdbxnz564du2auNze3t4wMzMTp7++cvy1a9cQFhYGKyurSuVNSkqCm5tbpeOkdhk+fDgGbdyIWeA6FgcAGA7gbwAXLlzAw4cP4erqqvX7Si7xsBEVc+2sBWDbti19dgipY6hZSo9YWlqiVatW4k2TKfPNzc0VznFiZGSE06dP4/jx4/Dw8MAPP/yANm3aIDk5udK506ZNw/79+7Fp0yZMmzZN7TJVJS8vD8HBwYiPj5fa7t27hz59+ujsvkR7evfuDXsXF6nVt38BIPok//7771q/p1AoFOf7PgDR+L7H4EZLvf3221q/JyFEtyi4MTDu7u4oKytDVFSU+NjLly+RmJgIDw8PlfLi8Xjo2bMnPv/8c1y9ehWmpqY4dOhQpfPatWuHdu3a4ebNmxg37vUp2gAbGxu4uLggIiJC6nhERIS4TO7u7rh+/TqKiorE6ZcvX5Y6v2PHjrh16xZcXV2lgrxWrVrJrMUitY+RkRHGjRuHAwAOvzrWEMBucL+sdu/erfUJ/c6dO4fHjx+jPaSHfs8EUAhu8U5CSN1CwY0CpqamtWbTltatW2P48OGYMWMGLl68iGvXrmHChAlo1KgRhg8frnQ+UVFRWL16NWJiYpCSkoKDBw/i+fPncHd3l3n+2bNnkZqaKnco+UcffYS1a9di7969SExMxCeffIL4+HjMncvNeDJu3DjweDzMmDEDt2/fxrFjx7Bu3TqpPObMmYOMjAyMHTsW0dHRSEpKwsmTJzF16tRKCyGS2mvixIkAgOngak8AoD+4pRkSExMRExOj1fvt3r0bFgD2oGLywA0AjgPo0aMHWrZsqdX7EUJ0j/rcKPD6NOz6Yvv27Zg7dy6GDh2KkpIS9OnTB8eOHVNp5WUbGxucP38eGzduRE5ODpo1a4b169cjKChI5vlV1Zx8+OGHyM7OxsKFC5Geng4PDw8cOXIErVtzM41YWVnhn3/+waxZs+Dj4wMPDw+sXbsWoyRmjBXV/ixevBgBAQEoLi5Gs2bNMGjQIPBp8rU6w9vbG15eXrhx4wbGAzgLwAjc0PBwAL/99hu6dOmilXsVFhbiwIED+AFA21fH4gCEvNqnWhtC6iYe03Ydby2Xk5MDW1tbZGdnw+bVjKgiRUVFSE5ORvPmzaU6rhJiqGrqZ+Kbb77Bxx9zPW9WgBuaDQAPAQy2t8e11FSVgnF59u7di6Nvv41dr17nAegI4B64zvCpqamwt7fX+D6EEM0p+v5+Hf05SwipdUTNkACwCsCFV8ddAex5+RJhBw5o5T73v/4a2yRevwcusAGAIUOGUGBDSB1FwQ0hpNZp1KgR+vXrBwAoB7dS+KNXad4AWr/3HpCZqdE9snbtwsdxceK2+c3gOi6LUJMUIXUXBTeEkFpJ1LEY4DoW9wMgWoCheVYWyvr3B7Kz1cv82DFYT5sGUcPWdnBrSYnY2dlh6NCh6uVNCKlxFNwQQmqlN954A+bm5uLX98EFOGmvXhtfvQr07QtcuaJ8pqWlwIYNYG+8AaNXI+h+A7fUg2TnwzFjxkAgEMjKgRBSB1BwQwiplaytrTFy5EipY4nghoU/Fx24dg3o3h2YMQN4/hwKhYUBHToACxeCV1wMANgLYAq4xTElSdYaEULqHgpuCCG11tSpUysduw3AH8BN0QHGgF9/BdzcgPfeA/74A0hJAUpKgKgoYMMGICgI6NcPuH0bABfMbAIwAVyfHkmtWrVCjx49dPWWCCHVgOa5IYTUWv3794ePjw+uXr0qdfwWAB8Ay+zt8VlpKXg5OUBWFrB5M7cBgLExUFZWKc+sNm0wIDERsXLuuWjRIpoXiZA6jn6CCSG1Fo/HwyeffCIzrQzAspcvcWjNGmDyZMDI6LUTXgtsnJyArVsxvGFDuYGNk5MTJk+erHG5CSE1i2puCCG12qhRo9C6dWvcu3dPZvryzZsx4to18H/4Abh8GYiIAC5cANLSAB8foFcvbvPwwMVLl3D+4kW591q4cCFN4EmIHqCaG1Krubq6YuPGjVrLLzw8HDweD1lZWRrl8/DhQ/B4PMTHx2ulXNowZcoUjBgxQunztfUsdM3IyAiLFy+Wm37z5k0cPXoUsLYGBg4EVqwAQkOBW7eA334DZs0CPD0BPh9r1qyRm0+9evXw7rvv6uAdEEKqGwU3esLPzw/z5s2rdHzHjh1yF6usTjweD4cPH1b5uujoaMycOVPp80VBx+ubtidka9KkCVJTU+Hp6anU+aJyvL6SeXFxMezt7cHj8RAeHq7VMuqTiRMnolGjRnLTly1bhpKSEoV5XLhwAceOHZOb/sEHH8Da2lrtMhJCag8KbohOVfWFU5WGDRvCwsJC5evOnDmD1NRU8bZp0yaNyiGppKQERkZGcHJygrGx8i27TZo0wfbt26WOHTp0CFZWVlorm74yNTXFwoUL5abHx8eL16KS5fnz53j77bflpltYWODDDz/UqIyEkNqDghsDImq2WLduHZydnWFvb485c+agtLRUfE5xcTEWL16MJk2aQCAQoFWrVti6das4/ebNmwgKCoKVlRUcHR0xceJEvHjxQpzu5+eH999/H/PmzUODBg0QGBgIV1dXAMDIkSPB4/HEr5OSkjB8+HA4OjrCysoKXbp0wZkzZ6TK/HqzFI/Hw6+//oqRI0fCwsICrVu3xpEjRyq9V3t7ezg5OYk3W1tbuc/lr7/+Qrt27SAQCODq6or169dXKsOqVaswadIk2NjYYObMmZWapTIzMzF+/Hg0bNgQ5ubmaN26daVAZvLkydizZw8KCwvFx7Zt2yazA+uNGzfQr18/mJubw97eHjNnzkReXp44vby8HAsWLICdnR3s7e3x8ccf4/U1cIVCIdasWYPmzZvD3Nwc7du3xwEtrclUE2bMmIH69evLTf/uu+9w8ODBSseFQiEmTpyIp0+fyriKM3PmTFpHihA9QsGNgQkLC0NSUhLCwsKwc+dO7NixAzt27BCnT5o0CX/++Se+//57JCQk4KeffhLXLGRlZaFfv37w8fFBTEwMTpw4gWfPnmHMmDFS99i5cydMTU0RERGBLVu2IDo6GgCwfft2pKamil/n5eVh8ODBCA0NxdWrVzFo0CAEBwcjJSVF4Xv4/PPPMWbMGFy/fh2DBw/G+PHjkZGRodbziI2NxZgxY/D222/jxo0bWLFiBZYuXSr1TABg3bp1aN++Pa5evYqlS5dWymfp0qW4ffs2jh8/joSEBGzevBkNGjSQOqdTp05wdXXFX3/9BQBISUnB+fPnK00Yl5+fj8DAQNSrVw/R0dHYv38/zpw5g/fff198zvr167Fjxw5s27YNFy9eREZGBg4dOiSVz5o1a7Br1y5s2bIFt27dwvz58zFhwgScO3dOrWdV06ysrDB//nyF50ybNg0PHjyQOvbVV1/h5MmTcq8RCAQKa4UIIXUQMzDZ2dkMAMvOzq6UVlhYyG7fvs0KCwulEzp1YqxRo+rfOnVS+n317duXzZ07t9Lx7du3M1tbW8YYY5MnT2bNmjVjZWVl4vQ333yTvfXWW4wxxhITExkAdvr0aZn3WLVqFQsICJA69ujRIwaAJSYmisvh4+NT6VoA7NChQ1W+j3bt2rEffvhB/LpZs2bs22+/lcrns88+E7/Oy8tjANjx48cZY4wlJyczAMzc3JxZWlqKt7i4OMYYY2FhYQwAy8zMZIwxNm7cODZw4ECpMnz00UfMw8NDqgwjRoyQOkd0n6tXrzLGGAsODmZTp06V+75E73/jxo3M39+fMcbY559/zkaOHMkyMzMZABYWFsYYY+znn39m9erVY3l5eeLrjx49yvh8PktLS2OMMebs7My+/vprcXppaSlr3LgxGz58OGOMsaKiImZhYcEuXbokVY7p06ezsWPHynwWssj9magh+fn5zMPDg4FbLUHm5unpyc6ePctycnLYunXrGJ/PV3i+5HMkhNReir6/X0dDwZWRlgY8eVLTpdCKdu3awUhiPhBnZ2fcuHEDANdvwcjICH379pV57bVr1xAWFiazj0hSUhLc3NwAcDUUysjLy8OKFStw9OhRpKamoqysDIWFhVXW3Hh7e4v3LS0tYWNjg/T0dKlz9u7dC3d3d/HrJk2ayMwrISEBw4cPlzrWs2dPbNy4EeXl5eJn1blzZ4Vlmj17NkaNGoW4uDgEBARgxIgRMme5nTBhAj755BM8ePAAO3bswPfffy+zTO3bt4elpaVUmYRCIRITE2FmZobU1FR069ZNnG5sbIzOnTuLm6bu37+PgoICDBw4UCrvkpIS+Pj4KHwvtZmFhQX279+PLl26oKCgQOY5N2/eRL9+/WBiYiLV5CrLkCFDqNaGED1EwY0ynJxq/X1tbGyQLWOF5KysLKn+JiYmJlLpPB4PQiG3so7kIoWy5OXlITg4GGvXrq2U5uzsLN6X/FJWZNGiRTh9+jTWrVuHVq1awdzcHKNHj66yE7Ki9yDSpEkTtGrVSqlyKKOq9xQUFIT//vsPx44dw+nTp9G/f3/MmTMH69atkzrP3t4eQ4cOxfTp01FUVISgoCDk5uZqrZwiov45R48erTTKqK4vCOnh4YHNmzdXOdleVYFNkyZNsHPnTpqNmBA9RMGNMmJiaroEVWrTpg1OnTpV6XhcXJy4RqUqXl5eEAqFOHfuHAYMGFApvWPHjvjrr7/g6uqq0ighgAtIysulV/GJiIjAlClTxIsj5uXl4eHDhyrlqyl3d3dERERUKpebm5tUDZcyGjZsiMmTJ2Py5Mno3bs3Pvroo0rBDcD1Cxk8eDAWL14s8x7u7u7YsWMH8vPzxUFVREQE+Hw+2rRpA1tbWzg7OyMqKgp9+vQBAJSVlSE2NhYdO3YEwAUAAoEAKSkpcmvi6rJJkybh3Llz2LZtm1rXGxsbY+/evdSJmBA9RX+y6InZs2fj7t27+PDDD3H9+nUkJiZiw4YN+PPPP5Wudnd1dcXkyZMxbdo0HD58GMnJyQgPD8e+ffsAAHPmzEFGRgbGjh2L6OhoJCUl4eTJk5g6dWqlwEVW3qGhoUhLS0NmZiYAoHXr1jh48CDi4+Nx7do1jBs3rlINjK4tXLgQoaGhWLVqFe7evYudO3fif//7HxYtWqRSPsuWLcPff/+N+/fv49atW/j333+lmsUkDRo0CM+fP8fKlStlpo8fPx5mZmaYPHkybt68ibCwMHzwwQeYOHEiHB0dAQBz587FV199hcOHD+POnTt47733pCbjs7a2xqJFizB//nzs3LkTSUlJiIuLww8//ICdO3eq9N5qqx9++EHpeYZet2bNGvj6+mq5RISQ2oKCGz3RokULnD9/Hnfu3MGAAQPQrVs37Nu3D/v378egQYOUzmfz5s0YPXo03nvvPbRt2xYzZsxAfn4+AMDFxQUREREoLy9HQEAAvLy8MG/ePNjZ2VVZtb9+/XqcPn0aTZo0Eff52LBhA+rVq4cePXogODgYgYGB4pqH6tKxY0fs27cPe/bsgaenJ5YtW4aVK1diypQpKuVjamqKkJAQeHt7o0+fPjAyMsKePXtknsvj8dCgQQOYmprKTLewsMDJkyeRkZGBLl26YPTo0ejfvz/+97//ic9ZuHAhJk6ciMmTJ8PX1xfW1tbiGjCRVatWYenSpVizZg3c3d0xaNAgHD16FM2bN1fpvdVWFhYWOHz4sNI1kyLvv/8+9bMhRM/xGHttcgw9l5OTA1tbW2RnZ8PGxkYqraioCMnJyWjevDmtL0MI6sbPRHZ2NlasWIFffvlFHIjL4unpiaVLl1aauoAQUjco+v5+HdXcEELqNFtbW3z77bd49OgRvvrqK6nO7QDQv39/nDhxAtevX6fAhhADQR2KCSF6oV69eli8eDHmz5+PuLg4PHr0CF26dBHPiE0IMRwU3BBC9IqpqSm6d++O7t2713RRCCE1pFY0S23atAmurq4wMzNDt27dcOXKFaWu27NnD3g8HkaMGKHbAhJCCCGkzqjx4Gbv3r1YsGABli9fjri4OLRv3x6BgYGVZpx93cOHD7Fo0SL07t27mkpKCCGEkLqgxoObDRs2YMaMGZg6dSo8PDywZcsWWFhYKJycq7y8HOPHj8fnn3+OFi1aaL1MBjaAjBC56GeBEFIX1WhwU1JSgtjYWKnZcPl8PgYMGIDIyEi5161cuRIODg6YPn16lfcoLi5GTk6O1CaPaFp/eWvWEGJoRD8Lry95QQghtVmNdih+8eIFysvLxbOuijg6OuLOnTsyr7l48SK2bt2K+Ph4pe6xZs0afP7550qda2RkBDs7O3GTmIWFBXg8nlLXEqJPGGMoKChAeno67OzsVF6KghBCalKdGi2Vm5uLiRMn4pdffkGDBg2UuiYkJAQLFiwQv87JyZG7QjQAOL1arLKqPj+EGAI7OzvxzwQhhNQVNRrcNGjQAEZGRnj27JnU8WfPnsn8hZqUlISHDx8iODhYfEy0FpGxsTESExPRsmVLqWsEAoFKqyDzeDw4OzvDwcGhylWFCdFnJiYmVGNDCKmTajS4MTU1RadOnRAaGioezi0UChEaGor333+/0vlt27bFjRs3pI599tlnyM3NxXfffaewRkZVRkZG9IudEEIIqYNqvFlqwYIFmDx5Mjp37oyuXbti48aNyM/Px9SpUwEAkyZNQqNGjbBmzRqYmZlVWgXYzs4OANReHZgQQggh+qXGg5u33noLz58/x7Jly5CWloYOHTrgxIkT4k7GKSkpVa44TQghhBAiQquCE0IIIaTWU+X7u8ZrbqqbKJZTNN8NIYQQQmoX0fe2MnUyBhfc5ObmAoBWOx8TQgghpHrk5ubC1tZW4TkG1ywlFArx9OlTWFtba32CPtEcOo8ePaImLyXQ81INPS/l0bNSDT0v1dDzUo22nhdjDLm5uXBxcamyL67B1dzw+Xw0btxYp/ewsbGhD7wK6Hmphp6X8uhZqYael2roealGG8+rqhobERqGRAghhBC9QsENIYQQQvQKBTdaJBAIsHz5cpWWezBk9LxUQ89LefSsVEPPSzX0vFRTE8/L4DoUE0IIIUS/Uc0NIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwU4U1a9agS5cusLa2hoODA0aMGIHExESZ5zLGEBQUBB6Ph8OHD0ulpaSkYMiQIbCwsICDgwM++ugjlJWVVcM7qF7KPC8/Pz/weDypbdasWVLnGMLzUvazFRkZiX79+sHS0hI2Njbo06cPCgsLxekZGRkYP348bGxsYGdnh+nTpyMvL68630q1qOp5PXz4sNLnSrTt379ffJ4hfLYA5T5faWlpmDhxIpycnGBpaYmOHTvir7/+kjqHPl8VkpKSMHLkSDRs2BA2NjYYM2YMnj17JnWOoTyvzZs3w9vbWzx3ja+vL44fPy5OLyoqwpw5c2Bvbw8rKyuMGjWq0rPS6c8iIwoFBgay7du3s5s3b7L4+Hg2ePBg1rRpU5aXl1fp3A0bNrCgoCAGgB06dEh8vKysjHl6erIBAwawq1evsmPHjrEGDRqwkJCQanwn1UOZ59W3b182Y8YMlpqaKt6ys7PF6YbyvJR5VpcuXWI2NjZszZo17ObNm+zOnTts7969rKioSHzOoEGDWPv27dnly5fZhQsXWKtWrdjYsWNr4i3pVFXPq6ysTOozlZqayj7//HNmZWXFcnNzxecYwmeLMeU+XwMHDmRdunRhUVFRLCkpia1atYrx+XwWFxcnPoc+X9zzysvLYy1atGAjR45k169fZ9evX2fDhw9nXbp0YeXl5eJ8DOV5HTlyhB09epTdvXuXJSYmsk8//ZSZmJiwmzdvMsYYmzVrFmvSpAkLDQ1lMTExrHv37qxHjx7i63X9s0jBjYrS09MZAHbu3Dmp41evXmWNGjViqamplYKbY8eOMT6fz9LS0sTHNm/ezGxsbFhxcXF1Fb1GyHpeffv2ZXPnzpV7jaE+L1nPqlu3buyzzz6Te83t27cZABYdHS0+dvz4ccbj8diTJ090Wt6aJu9nUVKHDh3YtGnTxK8N9bPFmOznZWlpyXbt2iV1Xv369dkvv/zCGKPPl+TzOnnyJOPz+VJ/iGVlZTEej8dOnz7NGDPs58UYY/Xq1WO//vory8rKYiYmJmz//v3itISEBAaARUZGMsZ0/7NIzVIqys7OBgDUr19ffKygoADjxo3Dpk2b4OTkVOmayMhIeHl5wdHRUXwsMDAQOTk5uHXrlu4LXYNkPS8A+P3339GgQQN4enoiJCQEBQUF4jRDfV6vP6v09HRERUXBwcEBPXr0gKOjI/r27YuLFy+Kr4mMjISdnR06d+4sPjZgwADw+XxERUVV7xuoZvI+WyKxsbGIj4/H9OnTxccM9bMFyH5ePXr0wN69e5GRkQGhUIg9e/agqKgIfn5+AOjzBVQ8r+LiYvB4PKm5WszMzMDn88U/k4b6vMrLy7Fnzx7k5+fD19cXsbGxKC0txYABA8TntG3bFk2bNkVkZCQA3f8sUnCjAqFQiHnz5qFnz57w9PQUH58/fz569OiB4cOHy7wuLS1N6j8QgPh1Wlqa7gpcw+Q9r3HjxuG3335DWFgYQkJCsHv3bkyYMEGcbojPS9azevDgAQBgxYoVmDFjBk6cOIGOHTuif//+uHfvHgDueTg4OEjlZWxsjPr16+vtswLkf7Ykbd26Fe7u7ujRo4f4mCF+tgD5z2vfvn0oLS2Fvb09BAIB3n33XRw6dAitWrUCQJ8vyefVvXt3WFpaYvHixSgoKEB+fj4WLVqE8vJypKamAjC853Xjxg1YWVlBIBBg1qxZOHToEDw8PJCWlgZTU1PY2dlJne/o6Ch+Drr+WTS4hTM1MWfOHNy8eVPqL+cjR47g7NmzuHr1ag2WrHaS9bwAYObMmeJ9Ly8vODs7o3///khKSkLLli2ru5i1gqxnJRQKAQDvvvsupk6dCgDw8fFBaGgotm3bhjVr1tRIWWsDeZ8tkcLCQvzxxx9YunRpNZesdpL3vJYuXYqsrCycOXMGDRo0wOHDhzFmzBhcuHABXl5eNVTamifreTVs2BD79+/H7Nmz8f3334PP52Ps2LHo2LFjlStU66s2bdogPj4e2dnZOHDgACZPnoxz587VdLEAUHCjtPfffx///vsvzp8/L7Wq+NmzZ5GUlFQpQh01ahR69+6N8PBwODk54cqVK1Lpol7jspqx9IG85yVLt27dAAD3799Hy5YtDe55yXtWzs7OAAAPDw+p893d3ZGSkgKAex7p6elS6WVlZcjIyNDLZwUo99k6cOAACgoKMGnSJKnjhvbZAuQ/r6SkJPzvf//DzZs30a5dOwBA+/btceHCBWzatAlbtmyhz9drn6+AgAAkJSXhxYsXMDY2hp2dHZycnNCiRQsAhvfzaGpqKq7l69SpE6Kjo/Hdd9/hrbfeQklJCbKysqS+G589eyZ+Djr/WdS4146eEwqFbM6cOczFxYXdvXu3Unpqaiq7ceOG1AaAfffdd+zBgweMsYqOU8+ePRNf99NPPzEbGxupUS/6oKrnJcvFixcZAHbt2jXGmOE8r6qelVAoZC4uLpU6FHfo0EE8okDUgTEmJkacfvLkSb3swKjKZ6tv375s1KhRlY4bymeLsaqf1/Xr1xkAdvv2banjAQEBbMaMGYwx+nxVJTQ0lPF4PHbnzh3GmGE9L1n8/f3Z5MmTxR2KDxw4IE67c+eOzA7FuvpZpOCmCrNnz2a2trYsPDxcaohpQUGB3GsgZyh4QEAAi4+PZydOnGANGzbUy+GnVT2v+/fvs5UrV7KYmBiWnJzM/v77b9aiRQvWp08fcR6G8ryU+Wx9++23zMbGhu3fv5/du3ePffbZZ8zMzIzdv39ffM6gQYOYj48Pi4qKYhcvXmStW7fWy6Gnyv4s3rt3j/F4PHb8+PFKeRjKZ4uxqp9XSUkJa9WqFevduzeLiopi9+/fZ+vWrWM8Ho8dPXpUnA99vio+X9u2bWORkZHs/v37bPfu3ax+/fpswYIFUvkYyvP65JNP2Llz51hycjK7fv06++STTxiPx2OnTp1ijHFDwZs2bcrOnj3LYmJimK+vL/P19RVfr+ufRQpuqgBA5rZ9+3aF10gGN4wx9vDhQxYUFMTMzc1ZgwYN2MKFC1lpaaluC18DqnpeKSkprE+fPqx+/fpMIBCwVq1asY8++khqeCVjhvG8lP1srVmzhjVu3JhZWFgwX19fduHCBan0ly9fsrFjxzIrKytmY2PDpk6dKp7XRZ8o+7xCQkJYkyZNpOYekWQIny3GlHted+/eZW+88QZzcHBgFhYWzNvbu9LQcPp8bRefs3jxYubo6MhMTExY69at2fr165lQKJTKx1Ce17Rp01izZs2Yqakpa9iwIevfv784sGGMscLCQvbee++xevXqMQsLCzZy5EiWmpoqlYcufxZpVXBCCCGE6BXD7OJNCCGEEL1FwQ0hhBBC9AoFN4QQQgjRKxTcEEIIIUSvUHBDCCGEEL1CwQ0hhBBC9AoFN4QQQgjRKxTcEEIIIUSvUHBDiAEJDw8Hj8dDVlaWRvlMmTIFI0aM0EqZtJlXbb731q1bERAQUO3lOXHiBDp06CBeZZ4QQ0DBDSF10JYtW2BtbY2ysjLxsby8PJiYmMDPz0/qXFFAk5SUhB49eiA1NRW2trY6LZ/onjweD3w+H7a2tvDx8cHHH3+M1NRUqXO/++477NixQ6flefjwIXg8HuLj46v93gBQVFSEpUuXYvny5Tq/1+sGDRoEExMT/P7779V+b0JqCgU3hNRB/v7+yMvLQ0xMjPjYhQsX4OTkhKioKBQVFYmPh4WFoWnTpmjZsiVMTU3h5OQEHo9XLeVMTEzE06dPER0djcWLF+PMmTPw9PTEjRs3xOfY2trCzs5Obh4lJSU6K19V99aWAwcOwMbGBj179tT5vWSZMmUKvv/++xq5NyE1gYIbQuqgNm3awNnZGeHh4eJj4eHhGD58OJo3b47Lly9LHff39xfvSzZL7dixA3Z2djh58iTc3d1hZWWFQYMGSdWulJeXY8GCBbCzs4O9vT0+/vhjKLsknYODA5ycnODm5oa3334bERERaNiwIWbPni0+5/WmGD8/P7z//vuYN28eGjRogMDAQADAzZs3ERQUBCsrKzg6OmLixIl48eKF+DqhUIivv/4arVq1gkAgQNOmTfHll18CAJo3bw4A8PHxAY/HE9duvX7v4uJifPjhh3BwcICZmRl69eqF6OhoqWfJ4/EQGhqKzp07w8LCAj169EBiYqLC57Bnzx4EBwdLHVPmuQqFQqxZswbNmzeHubk52rdvjwMHDkidc+TIEbRu3RpmZmbw9/fHzp07KzU9BgcHIyYmBklJSQrLSYi+oOCGkDrK398fYWFh4tdhYWHw8/ND3759xccLCwsRFRUlDm5kKSgowLp167B7926cP38eKSkpWLRokTh9/fr12LFjB7Zt24aLFy8iIyMDhw4dUqvM5ubmmDVrFiIiIpCeni73vJ07d8LU1BQRERHYsmULsrKy0K9fP/j4+CAmJgYnTpzAs2fPMGbMGPE1ISEh+Oqrr7B06VLcvn0bf/zxBxwdHQEAV65cAQCcOXMGqampOHjwoMz7fvzxx/jrr7+wc+dOxMXFoVWrVggMDERGRobUeUuWLMH69esRExMDY2NjTJs2TeH7vnjxIjp37ix1TJnnumbNGuzatQtbtmzBrVu3MH/+fEyYMAHnzp0DACQnJ2P06NEYMWIErl27hnfffRdLliypdP+mTZvC0dERFy5cUFhOQvSGVtYWJ4RUu19++YVZWlqy0tJSlpOTw4yNjVl6ejr7448/WJ8+fRhjjIWGhjIA7L///mOMMRYWFsYAsMzMTMYYY9u3b2cA2P3798X5btq0iTk6OopfOzs7s6+//lr8urS0lDVu3JgNHz5cbtlev4+k48ePMwAsKiqKMcbY5MmTpfLq27cv8/Hxkbpm1apVLCAgQOrYo0ePGACWmJjIcnJymEAgYL/88ovM8iQnJzMA7OrVq1LHJe+dl5fHTExM2O+//y5OLykpYS4uLuL3L3pfZ86cEZ9z9OhRBoAVFhbKvHdmZiYDwM6fPy91vKrnWlRUxCwsLNilS5ekrps+fTobO3YsY4yxxYsXM09PT6n0JUuWyHz2Pj4+bMWKFTLLSIi+Ma6hmIoQoiE/Pz/k5+cjOjoamZmZcHNzQ8OGDdG3b19MnToVRUVFCA8PR4sWLdC0aVO5+VhYWKBly5bi187OzuJalezsbKSmpqJbt27idGNjY3Tu3FnppqnXia5T1O+nU6dOUq+vXbuGsLAwWFlZVTo3KSkJWVlZKC4uRv/+/dUqkyif0tJSqX4xJiYm6Nq1KxISEqTO9fb2Fu87OzsDANLT02U+58LCQgCAmZmZ+Jgyz/X+/fsoKCjAwIEDpfIrKSmBj48PAK5PU5cuXaTSu3btKvP9mZubo6CgQM67J0S/UHBDSB3VqlUrNG7cGGFhYcjMzETfvn0BAC4uLmjSpAkuXbqEsLAw9OvXT2E+JiYmUq95PJ7agYsyRIGCq6ur3HMsLS2lXufl5SE4OBhr166tdK6zszMePHig1TJWRfKZiYI0eUOt7e3twePxkJmZqdI98vLyAABHjx5Fo0aNpNIEAoFKeQFARkYGGjZsqPJ1hNRF1OeGkDrM398f4eHhCA8PlxoC3qdPHxw/fhxXrlxR2N+mKra2tnB2dkZUVJT4WFlZGWJjY9XKr7CwED///DP69Omj0hdtx44dcevWLbi6uqJVq1ZSm6WlJVq3bg1zc3OEhobKvN7U1BQA14lXHtFosoiICPGx0tJSREdHw8PDQ+myyrq3h4cHbt++LT6mzHP18PCAQCBASkpKpffcpEkTAFzHcskRcwCkOkCLFBUVISkpSVzjQ4i+o+CGkDrM398fFy9eRHx8vLjmBgD69u2Ln376CSUlJRoFNwAwd+5cfPXVVzh8+DDu3LmD9957T+lJANPT05GWloZ79+5hz5496NmzJ168eIHNmzerVIY5c+YgIyMDY8eORXR0NJKSknDy5ElMnToV5eXlMDMzw+LFi/Hxxx9j165dSEpKwuXLl7F161YA3Kgtc3NzcUfk7OzsSvewtLTE7Nmz8dFHH+HEiRO4ffs2ZsyYgYKCAkyfPl2l8r4uMDAQFy9elDpW1XO1trbGokWLMH/+fOzcuRNJSUmIi4vDDz/8gJ07dwIA3n33Xdy5cweLFy/G3bt3sW/fPvG8PZLNfpcvX4ZAIICvr69G74OQuoKapQipw/z9/VFYWIi2bduKRwYBXHCTm5srHjKuiYULFyI1NRWTJ08Gn8/HtGnTMHLkSJkBwuvatGkDHo8HKysrtGjRAgEBAViwYAGcnJxUKoOLiwsiIiKwePFiBAQEoLi4GM2aNcOgQYPA53N/oy1duhTGxsZYtmwZnj59CmdnZ8yaNQsA15/l+++/x8qVK7Fs2TL07t1bahi9yFdffQWhUIiJEyciNzcXnTt3xsmTJ1GvXj2Vyvu66dOno3PnzsjOzhZPoKjMc121ahUaNmyINWvW4MGDB7Czs0PHjh3x6aefAuCGuB84cAALFy7Ed999B19fXyxZsgSzZ8+Warr6888/MX78eFhYWGj0PgipK3hMl43rhBBCAABvvvkmOnbsiJCQEJ3e58svv8SWLVvw6NEjAMCLFy/EzVei+X4I0XfULEUIIdXgm2++kTnaS1M//vgjoqOj8eDBA+zevRvffPMNJk+eLE5/+PAhfvzxRwpsiEGhmhtCCKnD5s+fj7179yIjIwNNmzbFxIkTERISAmNj6nVADBcFN4QQQgjRK9QsRQghhBC9QsENIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwQwghhBC9QsENIYQQQvQKBTeEEEII0SsU3BBCCCFEr1BwQwghhBC98n/D28aidkixHAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUTUlEQVR4nOzdd3gU1dfA8e+mkEIIoYXeeydUIZTQCRABQZQiVRQEBRFFfooUC6CAWFBekWahSBUFgdB7qKFIkyYICS2EkELazvvHZJfdZDdkky0p5/M8+2Rm7szk5LJhT+69c69GURQFIYQQQohcwsnRAQghhBBCWJMkN0IIIYTIVSS5EUIIIUSuIsmNEEIIIXIVSW6EEEIIkatIciOEEEKIXEWSGyGEEELkKpLcCCGEECJXkeRGCCGEELmKJDdCCCGEyFXydHKzd+9egoKCKFWqFBqNhg0bNlh8D0VRmD17NtWqVcPNzY3SpUvz6aefWj9YIYQQQmSIi6MDcKSYmBjq16/PsGHDeOGFFzJ1j7Fjx7Jt2zZmz55N3bp1iYiIICIiwsqRCiGEECKjNLJwpkqj0bB+/Xp69uypPxYfH88HH3zAihUriIyMpE6dOsyaNYuAgAAAzp8/T7169Th79izVq1d3TOBCCCGEMJKnu6WeZcyYMRw6dIiVK1dy+vRpXnzxRbp06cI///wDwB9//EGlSpX4888/qVixIhUqVODVV1+VlhshhBDCgSS5MePGjRssWbKE1atX06pVKypXrsyECRNo2bIlS5YsAeDq1av8+++/rF69mp9++omlS5dy/Phx+vTp4+DohRBCiLwrT4+5Sc+ZM2dITk6mWrVqRsfj4+MpUqQIAFqtlvj4eH766Sf9eYsWLaJRo0ZcvHhRuqqEEEIIB5Dkxozo6GicnZ05fvw4zs7ORmVeXl4AlCxZEhcXF6MEqGbNmoDa8iPJjRBCCGF/ktyY4efnR3JyMnfv3qVVq1Ymz/H39ycpKYkrV65QuXJlAC5dugRA+fLl7RarEEIIIZ7K009LRUdHc/nyZUBNZubOnUvbtm0pXLgw5cqVY+DAgRw4cIA5c+bg5+fHvXv32LFjB/Xq1aNbt25otVqaNGmCl5cX8+bNQ6vVMnr0aLy9vdm2bZuDfzohhBAib8rTyc3u3btp27ZtmuODBw9m6dKlJCYm8sknn/DTTz9x69YtihYtynPPPce0adOoW7cuALdv3+bNN99k27Zt5M+fn8DAQObMmUPhwoXt/eMIIYQQgjye3AghhBAi95FHwYUQQgiRq0hyI4QQQohcJc89LaXVarl9+zYFChRAo9E4OhwhhBBCZICiKDx+/JhSpUrh5JR+20yeS25u375N2bJlHR2GEEIIITLh5s2blClTJt1zHJrc7N27ly+++ILjx48TFhaWZuFKU3799Vc+//xz/vnnHwoWLEhgYCBffPGFftbgZylQoACgVo63t3dWfwQjiYmJbNu2jU6dOuHq6mrVe+dGUl+WkfrKOKkry0h9WUbqyzLWqq+oqCjKli2r/xxPj0OTm5iYGOrXr8+wYcN44YUXnnn+gQMHGDRoEF9++SVBQUHcunWLkSNHMmLECNatW5eh76nrivL29rZJcuPp6Ym3t7e84TNA6ssyUl8ZJ3VlGakvy0h9Wcba9ZWRISUOTW4CAwMJDAzM8PmHDh2iQoUKvPXWWwBUrFiR119/nVmzZtkqRCGEEELkMDnqaanmzZtz8+ZNNm/ejKIo3LlzhzVr1tC1a1dHhyaEEEKIbCJHDSj29/fn119/5aWXXuLJkyckJSURFBTE/PnzzV4THx9PfHy8fj8qKgpQm8kSExOtGp/ufta+b24l9WUZqa+Mk7qyjNSXZaS+LGOt+rLk+mwzQ7FGo3nmgOJz587RoUMH3n77bTp37kxYWBjvvvsuTZo0YdGiRSavmTp1KtOmTUtzfPny5Xh6elorfCGEEELYUGxsLP379+fRo0fPHDObo5KbV155hSdPnrB69Wr9sf3799OqVStu375NyZIl01xjquWmbNmy3L9/3yYDioODg+nYsaMMMssAqS/LSH1lnNSVZaS+LCP1ZRlr1VdUVBRFixbNUHKTo7qlYmNjcXExDtnZ2RlQJ/cxxc3NDTc3tzTHXV1dbfamtOW9cyOpL8tIfWWc1JVlpL4sI/VlmazWlyXXOnRAcXR0NKGhoYSGhgJw7do1QkNDuXHjBgCTJk1i0KBB+vODgoJYt24d33//PVevXuXAgQO89dZbNG3alFKlSjniRxBCCCFENuPQlptjx47Rtm1b/f748eMBGDx4MEuXLiUsLEyf6AAMGTKEx48f8+233/LOO+/g4+NDu3bt5FFwIYQQQug5NLkJCAgw250EsHTp0jTH3nzzTd58800bRiWEEEKInCxHzXMjhBBCCPEsOWpAcXa0efNmduzYAagrjl+9epXdu3c/c8VSHUtWJk99rm4/va+pX05OTvqvqV/Ozs76r87Ozri4uOi/5suXTz8YLF++fPqB2m5ubnh4eODp6al/5c+fP8M/vxBC5GYJCQlER0cTFxdHbGwssbGxPHnyRP8kb0JCAgkJCfq51xITE0lKSiI5OVn/NTk5Ga1Wq/+a+qUoCoqioNVqAfT7up6RZ31NvZ0Rlpzfr18/i+5tDZLcZNH+/fuZO3euo8PIdvLnz0+BAgXw9vamUKFCFC5cmMKFC1OkSBGKFy9OiRIlKFKkCFevXuXhw4cUK1bMokRPCCHsLSkpidu3b3P16lUOHjzI9evXuX//Pnfu3CEiIoKHDx8SERFBZGQkjx8/5vHjxyQkJDg6bIdr0qQJHh4edv2ektxYSWOg7TPPAiUDX829tAZfTb2SU15aIMnEKwFITPmaADwB4lO+xqV8tZaYmBhiYmIIDw9/5rnjx4+nQIEClC9fnipVqlCrVi1q1qxJzZo1qV27Nu7u7laMTAgh0hceHs7Zs2c5f/4858+f58KFC1y7do2bN2+SnJzskJicAQ/APeXllvI1H+Ca8sqH+qHuknK+4bYz6jgUUy9Nqm3DFya20/tqaCVwM9M/cdZIcmMlLYHPHR2EFcSmvB4bvKKAhwav+8A94G7K6xbwIIvf9/Hjx5w9e5azZ8+yYcMG/XEXFxfq1atHkyZNaNq0Ka1bt6Zy5crSyiOEsIr4+HgOHz7MoUOHOHLkCEePHuW///6zyfdyBUoBJQBfoFjK18JAoZSXD+ANeAEFUr56oiYuOU0IktyIbMIz5VXUwuueAP+hvpGvAP8Al4FLwEXUFqPMSEpK4sSJE5w4cYL/+7//A6BChQp07NiRjh070qVLFwoUKJDJuwsh8qKLFy+yefNmgoOD2bNnD7GxsVa7d2GgNlDF4FURKAMUR57isRdJbqzkD+B6qmOp2xbM7adu+kvvpWs2dMa4KdEZ46ZHw2ZJ15SvuubLfCkvw6ZNj5SXJ+pfCrq/GjLaS+rO01/k1N1zicAF4DRwEjgMHCfz3WDXr19n4cKFLFy4EHd3d7p168bLL79Mt27d7N6vK4TIGa5du8aqVatYuXIlp06dsso9SwLNgWZAPaAuUNoK99UC0agt59FADGqLelzKKz7VKzHVSzcUIdngq27Igu5r6mEOhkMfUr8wsW34FTPH/85sBViBJDdWciXllds4AwVRm0p1zaZFUZtSfVH/Eilj8PIxcQ9X1F/6usCAlGMJQCiwG9gK7E85ZqknT56wdu1a1q5di5eXFwMHDuStt96iZs2ambibECI3SUpKYv369Xz99dfs378/y/crCXQCOqIORSifweu0QBhqy/Z/Kdt3ULv176F26z8EIlO+xmQ5UiHJTRb16tWLihUrApCcnMyZM2eoW7eufs0rS6T3aF3qsow84mfupXt0UPcYYXJyMoqi6B8zNHz8UPdYouFjigkJCVyPj+difDxPnjwhLi5O/5ij8+PHFIuKovSTJ1QFaqImNTVRkxydfEDTlNd7qL/Mu4ENwDogwuLaU5fzWLBgAQsWLKBz586MGzeOzp07y/gcIfKYhw8f8uOPP/LNN99w82bWRn00APoC3VBbZ9LzADiT8roIXHNyIix/fh56e+Pm5YWnpyceHh64u7sbTadRIV8+qqZMteHq6oqLi4v+pZuaQzdNh0aj0e8bTu9hON0HGE8FottP72vqbVMy+3+pn58fFy5cyNS1mSXJTRY1adKEJk2aAOrKp5s3b6Zr1655fjG15ORkYmJiePToERERERy8e5eE06dxPXmSgn//TYnr1ykZGak/Pz/qfx7dgO+AYNSR9mtQm2EttXXrVrZu3UqTJk344osvaNOmTdZ/KCFEthYXF8dXX33FzJkzefToUabvUxUYCLwEVDf3vZyc+K9UKe5XrUpsvXoofn7kr1qVEoULU7NQIby9vXF3d5c/rlA/GyW5EbmCs7Mz3t7eeHt7U7ZsWfVgx45G5ySGhXFq9mwa3rsHwcE4pTw27gp0TXl9BSwFvkcdpGypo0ePEhAQQPfu3Zk5cya1a9fO7I8khMimkpOT+fnnn5k8eXKmn3RyBroDb6B2PaWmaDQojRrh1KULSe3bE/zgAYHPP0/VPP6HbHYlA7eF4xQtyq3WrUletAin27fh6FGYMAF0yRDqGJ+3UZ+6OuztTZtM/hX0559/Uq9ePSZMmEBcXGbagoQQ2dHp06dp2rQpQ4cOzVRi4wH8z92dMA8PNpAqsdFoICAAvv8eTXg4TkePwscfo/j7o7hI20B2JsmNyB40GmjcGL74Aq5fh/37YehQMJjAr1lUFLsVhTt16jC9Uye8vLws+hZarZY5c+bQsGFDQkJCrPwDCCHsKSkpiU8//ZTGjRtz4sQJi6+vV7Uqf3XqRGThwnz65AnFDP/oqVxZ/b/ov/9g1y4YORJ8fa0YvbA1SW5E9uPkBP7+sHix+p/L7NlQqZK+2PfsWSZv20bkc8+x5csvef755y3q175w4QItWrRg0qRJxMfH2+InEELYkO53+MMPPyQxMeOzaBUrVoyJ777Lv1OmEPr4MV22bSNfRMrjCxoNdO8Of/0Fly6prcilStnoJxC2JsmNyN6KFIF33oGLF2HpUvUvqhTO27fT+d13+b1GDa6ePs348ePx9vbO0G21Wi0zZ86kbdu2hIWF2Sh4IYS1rV27lsaNG3P06NEMX9OgQQOWLFnCzd9/Z+a+fZSbNg2N4dIwffrA6dPwxx/QpYv6B5bI0eRfUOQMLi4weDBcuABLlkD5lBkmkpLg88+p0KULc/z9+e+///j4448z3GV16NAhGjduzJEjR2wYvBAiq7RaLR999BF9+vQhJiZjM8H4+fmxdetWTuzZw5Bjx3Br2RIOH356Qs+ecOoUrF4NderYJnDhEJLciJzFxQWGDIFz52DyZHBzU4/fugW9e1Ng7Fg+HDeOK1euMHr0aFwyMOjv9u3btG7dmmXLltk2diFEpkRFRdGrVy8+/vjjDJ1fvnx5fvnlF44dO0YnHx80DRvC/Pmg1aonVK8OwcGwfj3Ue9bsNSInkuRG5EyenjB9Opw9C127Pj2+ZAn4+eF7/Trffvstp06donHjxs+8XXx8PEOGDGHq1KnpTqYohLCvu3fv0qpVKzZu3PjMc52cnJg4cSIXLlxgwMsv4zRjBrRoAVdS5o/Pnx9mzVK7oDp0sHHkwpEkuRE5W5Uq8Oef6ngcXVfU5cvqgOQ5c6hVsyaHDh3i448/ztDEitOmTWPy5MmS4AiRDYSHh9O2bVtOnz79zHOrVavGgQMHmDlzJu5RUdC+PXz4ISQnqyc895zaBfXee5AvJ66xLSwhyY3I+TQadTzOyZPQtKl6LClJfdph2DBckpP58MMPOXr0KNWqVXvm7T799FMmTZokCY4QDnT79m0CAgI4d+7cM88dNWoUJ0+e5LnnnlNbZZo2hT171EInJ7ULe+9eowcSRO4myY3IPapUUefH+d//nh5bulRtfr53j/r16xMSEkJXw24sM2bNmsWECRMkwRHCAW7dukVAQAAXL15M97x8+fKxaNEivvvuOzw9PWHjRrXV9t9/1RNKlVKTnOnTQWYSzlMkuRG5i6srfPoprFr1dALA/fuhSRM4fx4fHx82btzI/wwTIDPmzp3L9OnTbRywEMLQw4cP6dChA//8k/6CKyVLlmTPnj0MGzZMPTBnjvr0U3S0ut+kiTrrecuWtg1YZEuS3IjcqW9f2Lfv6SRc//4LbdrA6dM4Ozvz6aef8ssvvzxz9fapU6eyYsUKOwQshEhMTKRPnz7PXGSxdu3aHDt2TO2GUhSYOlXthta1tL78stpiI5Pw5VmS3Ijcq3FjOHIE/PzU/Xv3oG1bSJmqfcCAAaxcufKZj4sPHTqUQ4cO2TpaIfI0RVEYM2YMO3fuTPe8evXqsWvXLkqVKqUmM//7H0yb9vSEqVNh+XLw8LBtwCJbk+RG5G6lS8POneqTEgAREdCuHaSsLdWnTx9Wr16d7pNU8fHx9OjRg+vXr9shYCHypi+//JIffvgh3XMaNGjAzp07KVasmJrYjB8PM2c+PWHePJgyRX3IQORpktyI3M/HB7Ztg1at1P1Hj6BjR7U/HujZsydr165NN8G5d+8e3bt3Jyoqyg4BC5G3/PHHH0yYMCHdcxo2bMiOHTsoUqTI08Rm3rynJ3z/PYwda9tARY4hyY3IGwoUUBfEa9dO3X/8GLp1g5RBi0FBQSxcuDDdW/z999+MHj3a1pEKkafcuHGDQYMGpftkYvny5dm8eTOFCxdWD3z++dPERqNRF9kdOdL2wYocQ5IbkXfkz69O+Nemjbp/7x507gx37gAwePBgJk2alO4tfvnlF3799VdbRypEnpCcnMzAgQOJjIw0e06BAgX4888/KV68uHrgp5/g/fefnrBoEQwdattARY4jyY3IWzw8YMMGqFtX3b92TV2+4fFjAD755BN69+6d7i1GjRrF1atXbRyoELnfzJkz2bdvn9lyJycnfvvtN+roFrXcsgWGD396wmefSWIjTJLkRuQ9Pj5qF1XZsur+iRPQuzckJuLk5MRPP/2U7npUjx8/ZuDAgSQlJdknXiFyocOHDzNlypR0z/nqq6/o0qWLunP8OPTpo84+DjBmjHELjhAGJLkReVPp0rB1KxQqpO4HB+v/o/T09GT9+vUU0pWZoFuvSghhuaioKAYMGECybt0nE1555RXGjBmj7ty/D716QUyMut+njzrmRp6KEmZIciPyrpo11enadU9JzZ0Lv/0GQJkyZZ45wPiTTz4hJOWRciFExo0fPz7drt1KlSoxf/58dSc5Gfr1g5s31f0WLeDnn+EZE3CKvE2SG5G3tWxp/DjpsGHw998A9O7dm1dffdXspVqtlpEjR0r3lBAW2LdvH4sWLTJb7uzszPLlyylQoIB6YPJk2L5d3S5eHFavfrq0ihBmSHIjxKhR8Mor6nZMDLzwAqTMZzNv3rx0VxIPDQ3l66+/tkeUQuR4CQkJvP766+meM23aNJo1a6bubNgAM2ao287OasuqLKkgMkCSGyE0GliwAOrXV/cvXVKfwFAU8ufPz4oVK9Kd4O+jjz7ixo0bdgpWiJxr9uzZnD9/3mx569ateV83SPjyZRg82PBiaN3axhGK3EKSGyEAPD1h7Vr1SSqAdetgyRJAnRl18uTJZi+NiYnhrbfeskOQQuRcV65cSXcQvqenJ8uWLVMXs01KUltTdTOCv/SSzD4sLCLJjRA6lSvrExpA/c80ZdDje++9R/Xq1c1e+vvvv/P777/bOkIhciRFURg9ejRPnjwxe87UqVOpUKGCujNzJhw+rG5XqQI//ihPRgmLODS52bt3L0FBQZQqVQqNRsOGDRueeU18fDwffPAB5cuXx83NjQoVKrB48WLbByvyhp491UHFANHRMGgQJCfj5ubGggUL0r30zTffJEb3qKoQQm/NmjVs3brVbHndunUZN26cunPs2NNVvp2c1CejvLxsH6TIVRya3MTExFC/fv2nj/xlQN++fdmxYweLFi3i4sWLrFixIt2/qIWw2Lx5ULGiun3ggNrXDwQEBDDYcAxAKjdv3pTBxUKkkpCQ8HQcjQkajYb/+7//U8e1xcaq3VG6JxA/+ACee85OkYrcxMWR3zwwMJDAwMAMn79lyxb27NnD1atX9Quo6ZsxhbCWAgXU9Wtat1ZXH548WV2DqkEDZs+ezR9//EFERITJS2fNmsXrr7/+dIE/IfK4H3/8Md05bV577TWaN2+u7rz/Ply4oG43aqT+7gmRCTlqzM3GjRtp3Lgxn3/+OaVLl6ZatWpMmDCBuLg4R4cmcpuWLWHiRHU7MRGGDIGkJIoWLcoXX3xh9rJHjx4xc+ZM+8QoRDYXHR3N9OnTzZb7+voyQ/eo97598M036ra7O/zyy9MJNoWwkENbbix19epV9u/fj7u7O+vXr+f+/fu88cYbPHjwgCWGA0ENxMfHEx8fr9+PShl9n5iYSGJiolXj093P2vfNrbJ9fX34IS6bNqE5cwZOnSJ53jy0Y8cyYMAA5s+fz4kTJ0xe9s033zBq1CjKlClj1XCyfX1lI1JXlrFVfc2dO5c7d+6YLZ8+fTpeXl4kxsTg8vrr6IYMJ3/2GdrKldU/LLIheX9Zxlr1Zcn1GkVRlCx9NyvRaDSsX7+enj17mj2nU6dO7Nu3j/DwcAoWLAjAunXr6NOnDzExMXh4eKS5ZurUqUzTDU4zsHz5cjw9Pa0Wv8idCl26RKuJE9EoCknu7uz45hueFCvGqVOn0l30r2PHjowePdqOkQqRvURFRTFy5EhiY2NNlpcuXZqvv/4aZ2dnqq5dS62ffwbgYdWq7J05U5ZXEGnExsbSv39/Hj16hLe3d7rn5qjkZvDgwRw4cIDLly/rj50/f55atWpx6dIlqlatmuYaUy03ZcuW5f79+8+sHEslJiYSHBxMx44d0530TahySn05jRmD8w8/AKDt0YPk1asB6NKlCzt37jR9jZMToaGh1KhRw2px5JT6yg6krixji/qaOHEiX375pdnylStX8sILL8C1a7g0aIAmLg7FyYmkQ4fAz88qMdiKvL8sY636ioqKomjRohlKbnJUt5S/vz+rV68mOjoar5RHAy9duoSTk5PZLgA3Nzfc3NzSHHd1dbXZm9KW986Nsn19zZypTgN/9y5Ov/+O05YtEBTEzJkzadq0qclLtFot06ZNY82aNVYPJ9vXVzYidWUZa9XXzZs3+e6778yWN2nShL59+6rdUG+/DSnjJjVvvomrmd+p7EjeX5bJan1Zcq1DBxRHR0cTGhpKaGgoANeuXSM0NFQ/lf2kSZMYNGiQ/vz+/ftTpEgRhg4dyrlz59i7dy/vvvsuw4YNM9klJYRVFCqkrhiu8+abEBNDkyZN6NOnj9nL1q5dy9mzZ+0QoBDZy6xZs4xazFObOXMmGo0G1q+HzZvVg6VKQTqDj4WwhEOTm2PHjuHn54dfShPk+PHj8fPz46OPPgIgLCzMaM0eLy8vgoODiYyMpHHjxgwYMICgoCCZW0TYXv/+0L69uv3vv/DZZwB88skn6nTxZsiTUyKvuXPnTrqrfnfs2JF27dqpc9oYLqnw1Vdg5aECIu9yaLdUQEAA6Q35Wbp0aZpjNWrUIDg42IZRCWGCRgPffQd16qhPcMyZA6+9RvXq1Rk2bBgLFy40edmKFSuYPn06lSpVsnPAQjjGV199le4yC/pHv2fPhv/+U7e7dIHeve0QncgrctQ8N0I4VLVqoFsgMz4eJk0C4MMPP8TFxfTfCVqtNt15cYTITR49epTujPM9evSgUaNGcPs2zJqlHnRxgS+/lLWjhFVJciOEJT78EIoUUbdXrIDDhylXrhwDBgwwe8mSJUsIDw+3U4BCOM53332nn0vMlEkpfxDw4YdqtxTAqFFgxacKhQBJboSwjI/P00X9AMaPB0Vh4sSJ6gBJE+Lj49N9JFaI3CAuLo558+aZLW/bti3NmjWDEydAN+TAxwfSmS9KiMyS5EYIS7322tO/NA8dgtWrqVmzZrpzNH3//fc8fPjQPvEJ4QCLFy/m7t27ZssnTZqkrtX2zjvqV1DXjtK1hAphRZLcCGEpV1f9SuGAugbVkydPm9xNePz4cbpjEYTIyRITE9MdW9aoUSM6dOgAv/8Ou3erB6tUgTFj7BOgyHMkuREiM7p2hY4d1e3r1+H772nSpAntdY+Lm/DNN9+kO/eHEDnV+vXr+ffff82WT5o0CY1Wqx+ED8Dnn0O+fHaITuRFktwIkRkajXHrzcyZEBPD//73P7OX3L17l7Vr19ohOCHs69tvvzVbVqNGDXr16gXLl8OFC+pBf39IpxtXiKyS5EaIzKpXD/r2Vbfv3oX582nbtq3ZJRkA6ZoSuc6ZM2fYt2+f2fL33nsPJ63WeCD+J5/Io9/CpiS5ESIrpkx5+p/055+jiY5m3LhxZk8/ePCgfrkRIXKD9BL2YsWK0b9/f/jpJ7hyRT3Yrh0EBNgnOJFnSXIjRFbUqqUuzQDw4AF8/TW9e/emePHiZi+R1huRWzx69IhffvnFbPmIESNw02iM14yS9aOEHUhyI0RWTZkCuvWlZs8mX2wsI0aMMHv6r7/+Ko+Fi1xh2bJlxMTEmCxzcnLi9ddfhyVL1PXYADp3VsfbCGFjktwIkVVVq8Irr6jbkZHw5Ze8/vrrZhfUjIuLM7lumhA5iaIofPfdd2bLn3/+ecr5+qrja3Sk1UbYiSQ3QljDRx+pa+QAfPklZfLnT3dSv++++w6tVmuf2ISwgR07dnDx4kWz5aNHj4Yff3y6OGb37pDOYHshrEmSGyGsoWJFGDZM3X78GObPV/9zN+Py5cuyur3I0dIbO1a9enXat24NhhP7GT4tJYSNSXIjhLVMnAhOKb9SX31FQNOm1KpVy+zp33//vZ0CE8K6bt26xcaNG82Wjx49Gs3KlXDjhnqga1do2NBO0QkhyY0Q1lOpErz0krp9/z6axYt54403zJ6+adOmdNfiESK7+umnn8x2q+bPn59BAwfCrFlPD77/vp0iE0IlyY0Q1mT4n/js2Qzq1w8vLy+TpyYlJfHrr7/aKTAhrENRlHQHxA8cOJCC+/bBuXPqAX9/aNXKPsEJkUKSGyGsqV49tQke4MYNCvz5Jy/pWnNMWLJkCYpuhWQhcoBDhw5x6dIls+UjXn0VZsx4ekBabYQDSHIjhLUZLg44cyZDBw82e+qZM2c4ceKEHYISwjqWLFlitqxu3bo0jI6Gw4fVA3XqQLdudopMiKckuRHC2lq2fDpR2fnztHjwgGrVqpk9Xea8ETlFTEwMq1atMls+ZMgQNKnH2sgaUsIBJLkRwhYMWm80s2YxZMgQs6cuX76c+Ph4OwQlRNasW7eOx48fmyxzcXFhSIMGsGWLeqBChacD7IWwM0luhLCFrl2hbl11+/Bhhtepg5OT6V+3iIiIdB+rFSK7SK9Lqlu3bhT++eenByZMeDqxpRB2JsmNELag0YDB6uC+K1bQqVMns6en96EhRHZw7do1du3aZbb89V69YPlydcfHB9JprRTC1iS5EcJW+veHokXV7dWrGfn882ZP3bp1K7dv37ZTYEJY7qeffjJb5uvrS6fr1yEhQT0wYgTkz2+fwIQwQZIbIWzF3R1ee03dTkqi282b+Pj4mDxVq9Xyyy+/2C82ISygKArLli0zWz64Xz+c/+//1B0nJ0hn6REh7EGSGyFsadQoSFkd3OXHHxnUt6/ZU1esWGGvqISwSEhICNeuXTNbPqZECQgLU3d69oTy5e0TmBBmSHIjhC2VKQN9+qjb9+4xrmRJs6eGhoZy4cIFOwUmRMatXLnSbFmjRo0ot2HD0wNvvWX7gIR4BkluhLA1g//sK2zcSNUqVcyemt6HiBCOkJycnO7cNu+0bAkhIepOvXrQurWdIhPCPEluhLC15s2hcWMANCdPMrFlS7Onrly5UpZjENnK3r17CQ8PN1mm0Wjo8e+/Tw+MHSuT9olsQZIbIWxNozFqvXlRNzbBhIsXLxIaGmqHoITImPTGgvV87jk8//xT3SlSBPr1s1NUQqRPkhsh7KFvX/D1BcB7xw7a1qpl9lQZWCyyi4SEBNasWWO2/H1fX0hKUndeew08POwUmRDpk+RGCHtwc4OhQ9XtpCQ+KlfO7KmrVq1Cq9XaKTAhzAsODubhw4cmy1ydnWl08qS6o9Goc9sIkU1IciOEvRj85+9/7hzmRibcuHGDQ4cO2ScmIdKRXiviRD8/nG/cUHc6dYKKFe0UlRDPJsmNEPZSuTJ07AiA640bvFWzptlTpWtKOFpsbCwbDB/xTmWE4cD311+3fUBCWECSGyHsyeBDYEy+fGZPW716NUm6sQxCOMCmTZuIiYkxWVbRzY2yuoHvJUtC9+72C0yIDJDkRgh7ev55KFECgMpnz1LKzGOzd+/eZffu3XYMTAhj6c259FnlymiSk9Wd4cPB1dVOUQmRMZLcCGFPrq4wbBgAmuRkPk5nnMK6devsFZUQRmJjY/nrr79MljkBz9+9q+5oNPDqq/YLTIgMcmhys3fvXoKCgihVqhQajSbd/t3UDhw4gIuLCw0aNLBZfELYxIgR+onOXnz0yOzA4g0bNshTU8Ihtm3bRlxcnMmynu7ueN6/r+4EBso6UiJbcmhyExMTQ/369Zk/f75F10VGRjJo0CDat29vo8iEsKEKFaBzZwAKPHhAFzNdU2FhYYToprUXwo7SazWcVLjw0x0ZSCyyKYcmN4GBgXzyySf06tXLoutGjhxJ//79ad68uY0iE8LGDD4U3ita1Oxp0jUl7C0hIYE//vjDZFlxoKFuKYbSpaFrV/sFJoQFctyYmyVLlnD16lWmTJni6FCEyLxu3fQzFreKiKCQmdPWrVsna00Ju9q9ezeRkZEmywY7O+Ok6yodMgRcXOwWlxCWyFHvzH/++Yf333+fffv24ZLBX6r4+Hji4+P1+1FRUQAkJiaSmJho1fh097P2fXOrvF5fTv364fzVVzgnJ/MSsMDEOVevXuX48ePUr18/z9eXJaSuLGNYX+kttzDKwwOio9Vz+/WDPFq/8v6yjLXqy5Lrc0xyk5ycTP/+/Zk2bRrVqlXL8HUzZsxg2rRpaY5v27YNT09Pa4aoFxwcbJP75lZ5tb68K1Sgbcr2SDc3Fhgk4YZmz55NP4MFCfNqfWWG1JVltmzZwurVq02W+QEVUhKbiOrV2Xf5Mly+bMfosh95f1kmq/UVGxub4XM1SjZp89ZoNKxfv56ePXuaLI+MjKRQoUI4Ozvrj2m1WhRFwdnZmW3bttGuXbs015lquSlbtiz379/H29vbqj9DYmIiwcHBdOzYEVeZ9+GZpL7ApUkTNKdOAVATuGDinDp16nDixAmpLwtIXVlGV19eXl506NDB5DlfaTS8lfJxkfTddyh5+BFweX9Zxlr1FRUVRdGiRXn06NEzP79zTMuNt7c3Z86cMTr23XffsXPnTtasWUNFM/OFuLm54ebmlua4q6urzd6Utrx3bpSn62vIEHj7bQAGA5NMnHL27FmuX79OhQoVgDxeXxaSurLMn3/+afK4KzDYxUXthnJzw6VfP5m4D3l/WSqr9WXJtQ4dUBwdHU1oaCihKdN4X7t2jdDQUG6kLMY2adIkBg0aBICTkxN16tQxevn6+uLu7k6dOnXInz+/o34MITKvf3/9oMyhLi5mfyHXr19vv5hEnqQoitm5xroCBXXjHXr1Ah8fe4UlRKY4NLk5duwYfn5++Pn5ATB+/Hj8/Pz46KOPAHWeD12iI0Su5Ourf5y2eFISpjsE5JFwYXvXrl3j+vXrJsuGGO4MHmyHaITIGod2SwUEBKT7mOvSpUvTvX7q1KlMnTrVukEJYW+DB8PGjeomsM3EKSEhIdy6dcuuYYm85fDhwyaPFwW6azSgKOoimSkr2wuRneW4eW6EyHW6d4ciRQB4QaPB3DC5LVu22C8mkeccO3bM5PF+gIvuj9BXXgGDhzqEyK4kuRHC0fLlg5RHvd0VhT5mTtu0aZP9YhJ5yq1bt7h69arJslcMd6RLSuQQktwIkR288vQjpJ+ZU3bu3Gk0rYEQ1mJuBfCqQBPdjp8f1Kplr5CEyBJJboTIDpo0gcqVAWgHlDBxSmxsbJrpEISwBnOtgkaJ9oABdolFCGuQ5EaI7ECjUR8LR/2lfMnMaebGRQiRWXFxcezcudNkWX/dhkYDL5l7VwqR/UhyI0R2YbDEQn8zpxw7dkwW0hRWtXPnTuLi4tIcbwhU1+20aQNlytgzLCGyRJIbIbKLmjXVcQ1AU6CKiVPu378vXVPCqszNSmyUYPc3l24LkT1JciNEdmLQemNuYLE8NSWsRVEUk8mNE/CybsfVFXr3tmdYQmSZJDdCZCcv6z9SzHZNbd682T6xiFzv9OnT/Pfff2mOtwJK63a6dIHChe0ZlhBZJsmNENlJ2bLQujUANYAGJk45cuQId+/etWdUIpeSLimRW0lyI0R2Y/BhYupjRVEUs/OSCGGJP/74I82xfPB0Isn8+SEoyJ4hCWEVmU5uEhMTuXnzJhcvXiQiIsKaMQmRt/Xpo18pvB+gMXGKqQ8lISxx584djhw5kuZ4Z0DfCdWzp5rgCJHDWJTcPH78mO+//542bdrg7e1NhQoVqFmzJsWKFaN8+fKMGDGCo0eP2ipWIfKGIkXUcQ5AGcDfxCnbtm0jMTHRrmGJ3GXr1q0mpxV42XCnn7lh7UJkbxlObubOnUuFChVYsmQJHTp0YMOGDYSGhnLp0iUOHTrElClTSEpKolOnTnTp0oV//vnHlnELkbsZTJj2oonix48fc+jQIfvFI3IdUwuxugP6TqhChWQFcJFjuWT0xKNHj7J3715q165tsrxp06YMGzaMBQsWsGTJEvbt20fVqlWtFqgQeUpQkLqgZkICfYBxQOq/sbds2ULrlMHHQlgiOTmZbdu2pTneBSig2+nZU30PCpEDZbjlZsWKFWYTG0Nubm6MHDmSYcOGZSkwIfK0ggX1XVOlMN01ZeovbyEy4vjx4zx48CDNcaNWwr597RaPENZm0ZibJUuW8O+//9oqFiGEIYMPF1MfMydPniQ8PNx+8Yhcw1yX1PO6nUKFoH17e4YkhFVZlNy88cYbVKpUiUqVKjF8+HB++eUXbt26ZavYhMjbgoLAzQ1QH8019ctqqmtBiGcxldx0Abx0O716qTMTC5FDWZTcREZGsn37dgYNGsTly5cZMWIE5cqVo3r16owcOZJVq1Zx584dW8UqRN7i7a3vmiqJdE0J64iIiCAkJCTNcaPWQemSEjmcRcmNm5sbbdu2ZerUqezZs4eHDx+yfft2XnrpJc6dO8eQIUMoXbr0s28khMiYF5+OgjD1cbNt2zaSk5PtF4/I8bZv345WqzU6ZviUlFK4MLRrZ/e4hLCmLM1Q7OTkhJOTExqNBo1Gg6IolCtXzlqxCSGCglDS6Zp68OABJ06csHtYIucy1doXyNMuKY10SYlcwKLkJiEhgb179zJ9+nQCAgIoWLAgr7/+OmFhYYwYMYJ//vmHq1ev2ipWIfIeb280gYEAlABamjhFuqZERimKYvL9Ik9Jidwmw/PcABQsWBBfX1+CgoIYPXo0K1eupESJEraKTQgBatfUhg2A2jW1N1Xxli1bmDx5sr2jEjnQmTNnCAsLMzpm2CWlLVQIp7Zt7R6XENZmUctN/fr1CQ8PZ+/evezbt48DBw6YnCtBCGFFQUFoUyZT603aX9rDhw/z8OFDu4clcp5ndUnJU1Iit7AouTl8+DAPHjzg888/x8PDg88//5ySJUtSp04dxowZw+rVq7l7966tYhUibypQwKhrqnmqYq1Wy/bt2+0elsh5TCU3Lxhsa194IU25EDmRxQOKvby86NKlC7NmzSIkJESf7Li6ujJixAhKlSpliziFyNM0vXvrt019/Pz111/2C0bkSNHR0ezfv9/omCtPu6SeeHigBATYOywhbMKiMTeGtFotR48eZffu3ezatYsDBw4QExND+fLlrRmfEAKge3e0zs44JSfzAvBOquLt27ejKAoajcYR0YkcYPfu3WlWkm8HFEzZvtu0KSVlLSmRS1jUcnPkyBE+//xzunbtio+PD82bN2f+/Pn4+vry9ddfc/XqVa5du2arWIXIuwoVIqlVKwAqAH6pim/evMmlS5fsHZXIQUx1XfY22A5rnrrDU4icy6KWm+eee44SJUrQtm1b5s6dS9u2balcubKtYhNCGHB+8UXYvRtQu6ZOpioPDg6mevXq9g5L5BDBwcFG+05Az5TtxHz5uOeXOmUWIueyqOXm/Pnz3L59m19//ZVXX33VZGKjKIrVghNCPKV9/nl088r2NlEug4qFObdv3+bcuXNGx1oCxVK2E9u3JzllskghcgOLkhvdX4VffPGFyfLk5GT69++f9aiEEGkVL85/FSoAUBOokap4165dJCUl2TsqkQOYSnwNB6bne/ll+wUjhB1kavmFL774gkWLFhkdS05O5uWXXyY0NNQacQkhTHho8DRL6qemoqKiOHr0qF3jETlD6i4pDU/fP0lOTihdu9o9JiFsKVPJzaZNm5gwYQJr1qwBICkpiRdffJG///6bXbt2WTVAIcRTd1q00G+beiQ89YeYEIqipGm5aQyUTdmOaNgQChZMc50QOVmmkpsmTZqwdu1ahg0bxsaNG+nduzcXL15k165dshyDEDYU5+tLeJkyADQCUk+8IMmNSO3vv/8mPDzc6JhhYuw9ZIhd4xHCHjK9Kni7du346aef6N27N9euXWPPnj0UL17cmrEJIUxQevbUb/dKVXb48GEeP35s13hE9mYq4dUNSE8G3GWhTJELZfhR8BfMTMtdrFgxfHx8eO211/TH1q1bl/XIhBAmFXntNfj2W0D9C3yeQVlSUhJ79uyhe/fujghNZEOpu6RqA1VTtm9WqECFYsUg1eR+QuR0GU5uCprpk+3cubPVghFCPJumRg1uFyxIqUePaAEUBe4blG/fvl2SGwFAQkICe/bsMTrWw3DHoBVQiNwkw8nNkiVLbBmHEMICES1bUmrTJpyB7sBSgzIZdyN0Dh8+TExMjNExw+SmzOjR9g1ICDvJ9Jgba9i7dy9BQUGUKlUKjUbDhg0b0j1/3bp1dOzYkWLFiuHt7U3z5s3ZunWrfYIVIhspMXKkfrtHqrJz585x69Yt+wYksqXUiW4poGnK9jVvb1yqVLF7TELYQ4aTmy5dunD48OFnnvf48WNmzZrF/Pnzn3luTEwM9evXz9C5oCZDHTt2ZPPmzRw/fpy2bdsSFBTEyZOpJ6IXIncr2rUr91zUhtdOgEeqcpmtWEDa5OZ5g+37/v72DUYIO8pwt9SLL75I7969KViwIEFBQTRu3JhSpUrh7u7Ow4cPOXfuHPv372fz5s1069bN7CzGhgIDAwkMDMxwsPPmzTPa/+yzz/j999/5448/8JN1UURe4uTE5Ro1KHb2LJ5AR2CjQfG2bdsYPHiwg4IT2UFERESaSR0NW/mKGzwEIkRuk+HkZvjw4QwcOJDVq1ezatUqfvjhBx49egSARqOhVq1adO7cmaNHj1KzZk2bBWxIq9Xy+PFjChcubPac+Ph44uPj9ftRUVEAJCYmkmjlJwR097P2fXMrqS/LpK4vTa9ecPYsoH5oGSY3W7du5cmTJzg7O9s5yuxB3luwZcsWtFqtfr8A0C5l+5azMyUCA9PUU16uL0tIfVnGWvVlyfUaJQsrXT569Ii4uDiKFCmCq6trZm+jBqLRsH79enpaMHr/888/Z+bMmVy4cAFfX1+T50ydOpVp06alOb58+XI8PT0zG64QDpcQFUXgoEF4AfeAEoDWoPyLL76gatWqpi8Wud4333zDjh079Pt9gVUp27+XLQvffOOQuITIrNjYWPr378+jR4/w9vZO99wMt9yYUrBgQbOPiNva8uXLmTZtGr///rvZxAZg0qRJjB8/Xr8fFRVF2bJl6dSp0zMrx1KJiYkEBwfTsWPHLCd7eYHUl2VM1dehd96h9b17FANaAPsNzo+JiaFrHl0zKK+/txRF4Y033jA6Ztgl5TN4MC0M3ht5vb4sJfVlGWvVl67nJSOylNw4ysqVK3n11VdZvXo1HTp0SPdcNzc33Nzc0hx3dXW12ZvSlvfOjaS+LGNYX9EdOsCKFYD64WWY3AQHBzNlyhT7B5iN5NX31pkzZ7h9+7Z+3xXQpTKRQIOxY03WS16tr8yS+rJMVuvLkmsd+ih4ZqxYsYKhQ4eyYsUKunXr5uhwhHCoSmPGkJSy3TNV2aFDh3j48KGdIxLZwZYtW4z22wA+KdtHixWjYNGi9g5JCLtyaHITHR1NaGgooaGhAFy7do3Q0FBu3LgBqF1KgwYN0p+/fPlyBg0axJw5c2jWrBnh4eGEh4frBzYLkddUb96ckJSWySpALYMyrVZrNOZC5B2pkxvDLqno9u3tG4wQDmBxcpOcnMzevXuJjIzM8jc/duwYfn5++se4x48fj5+fHx999BEAYWFh+kQH4IcffiApKYnRo0dTsmRJ/Wvs2LFZjkWInEij0XCjQQP9fuoJ/WSSy7wnOjqa/fv3Gx3TzW+TAFQcNcruMQlhbxaPuXF2dqZTp06cP38eHx+fLH3zgIAA0ntYa+nSpUb7u3fvztL3EyI3KjhoEISEABAEzDAo27JlC4qioNFoHBKbsL/du3eTkJCg368PlEvZPuDqSpuWLR0SlxD2lKluqTp16nD16lVrxyKEyIQW/ftzJmW7GVDMoOy///7j3LlzDohKOErqLqkgg+0bDRrg5JTjhloKYbFMvcs/+eQTJkyYwJ9//klYWBhRUVFGLyGE/fj4+HCyTBlA/YVOPcw+9YedyN3SS24KDhhg32CEcJBMJTddu3bl1KlTPP/885QpU4ZChQpRqFAhfHx8KFSokLVjFEI8Q1KXLvrtoFRlMu4m77h8+TJXrlzR75fg6UKZpwD//v0dEZYQdpepeW527dpl7TiEEFlQd/hw7v74I76oC2m6AbpFR/bs2UNMTAz58+d3XIDCLlInsoateMdKlGB4sWIIkRdkKrlp06aNteMQQmRBo6ZNWeXmRr/4eLyAAED3MZeQkMCePXvy7GzFeUl6XVKJBq17QuR2mR5Ztm/fPgYOHEiLFi24desWAD///HOaRxCFELbn5OREeNOm+n3pmsp7EhISjFrV3VFXiwcIB+oMHeqIsIRwiEwlN2vXrqVz5854eHhw4sQJ/arbjx494rPPPrNqgEKIjCk+cKC+Kyp1crNt2zZ7hyPs7ODBg8TExOj32wG6pYGDXV1p1ry5Q+ISwhEy/bTUggULWLhwodFaD/7+/pw4ccJqwQkhMq5tUBC6v9vLoc5vonPhwgWjCTFF7pO6dc4wwb3VsKGsgSTylEwlNxcvXqR169ZpjhcsWNAqMxcLISxXsmRJTpQqpd+Xrqm8JfW/b/eUr0+AYvKUlMhjMpXclChRgsuXL6c5vn//fipVqpTloIQQmdS9u35Tuqbyjrt373Ly5En9vh9QJmV7B9AuKPW7QYjcLVPJzYgRIxg7diwhISFoNBpu377Nr7/+yoQJExgl65YI4TDN+vblVMp2U9R5TnS2b99OUlKSiatEThccHGy0b5jKhBQrRsWKFe0bkBAOlqlHwd9//320Wi3t27cnNjaW1q1b4+bmxoQJE3jzzTetHaMQIoP8/f35ysWF+ilJTFdgcUpZZGQkR48epbkMLM11zHVJASjdUs9ZLUTul6mWG41GwwcffEBERARnz57l8OHD3Lt3j48//tja8QkhLODu7k5448b6/dQfazLuJvfRarVGXY7FgSYp2yeBpi+84IiwhHCoTCU3O3fu5MmTJ+TLl49atWrRtGlTvLy8rB2bECITKvbty72U7Y5APoMyGXeT+5w5c4Y7d+7o9w2natzi5ETbtm3tH5QQDpap5Ob555/Hx8eHVq1aMXnyZLZv305cXJy1YxNCZEKnwED+StkuABg+1xgSEsLDhw8dEJWwlfSWXPivfn35w1PkSZlKbh4+fMiOHTsIDAzkyJEj9OrVCx8fH/z9/fnwww+tHaMQwgLVq1fncJEi+n3DDzutVsuOHTvsH5SwGcPkxhV1bTGAe0DZ3r0dEZIQDpep5MbV1RV/f3/+97//sXXrVg4fPky/fv04cuQIM2bMsHaMQggLaDQaXLp2RfdcVPdU5dI1lXvExMQYLXnTGrW1DuAv1FY8IfKiTCU3ly5d4ocffqB///6ULl2aNm3a8OjRI2bPni0zFAuRDbR+/nl0H3lVgGoGZVu3bkVRFAdEJaxtz549JCQk6PcNW+n2FShAgwYN7B6TENlBph4Fr1GjBsWKFWPs2LG8//771K1bF41GY+3YhBCZ1L59ez7TaAhISWK6AZdSym7cuME///xDtWrVzF4vcobU89voWumSAE2XLjg5ZXptZCFytEy989966y1Kly7N9OnTGTlyJB988AHbtm0jNjbW2vEJITKhUKFC3KxXT7+f+pFwGXeTOxj+O1ZNeQHsB1p2T90hKUTekankZt68eZw4cYLw8HAmTZpEQkICH3zwAUWLFsXf39/aMQohMqFq9+5cTdluDXgblElyk/PdvXuXM2fO6PcNE9hNQIcOHewekxDZRZbaLJOTk0lMTCQ+Pp4nT54QHx/PxYsXrRWbECIL2nfowJ8p266oc97o7Nq1C61W64CohLXs3LnTaN+wneZcxYqUMlhEVYi8JtPdUvXq1aN48eK8/vrr3L59mxEjRnDy5Enu3bv37BsIIWyuefPmbM/3dAo/w7/sIyIiCA0NtXtMwnoMW98M5zO6ClSUp6REHpepAcVhYWG89tprBAQEUKdOHWvHJISwAjc3N7StWhGzYwf5UZMbDaB7Tmr79u00bNjQcQGKLNm+fbt+uxNq6xzAn6itdkLkZZlquVm9ejVjxoyRxEaIbK51p07oPgJ9gUYGZTLuJue6evUq169f1+8bLbmg0RAQEGDvkITIVjI95ubKlSu8+eabdOjQgQ4dOvDWW29x5coVa8YmhMii9u3bs8lg3/BDcN++fcTHx9s7JGEFhompBtB1QsUAj/z8KFSokCPCEiLbyFRys3XrVmrVqsWRI0eoV68e9erVIyQkhNq1a6eZd0EI4TgNGjTgUMGC+n3DcTdxcXEcPnzY/kGJLDNMbvyAkrrjqK11QuR1mUpu3n//fd5++21CQkKYO3cuc+fOJSQkhHHjxjFx4kRrxyiEyCRnZ2eqtW/PqZT9pqjdUzrSNZXzaLVaoyelDFvjNqO21gmR12UquTl//jzDhw9Pc3zYsGGcO3cuy0EJIaynffv2bDbY72ywLclNznP27Fmjp1INk5ud+fLJXGNCkMnkplixYiYfIw0NDcXX1zftBUIIh0md3Bh+GB45coTHjx/bOySRBYYJaRGgWcr2WaCMvz8eHh6OCEuIbCVTj4KPGDGC1157jatXr9KiRQsADhw4wKxZsxg/frxVAxRCZE21atW4UaoUD2/fphBqy40zkAwkJSWxd+9eunVLvUCDyK4Mk5suPP0LdRPSJSWETqaSm8mTJ1OgQAHmzJnDpEmTAChVqhRTp07lrbfesmqAQois0Wg0tO3Yka3LlvEyUAhoDvpVw3fs2CHJTQ6RmJjInj179Pupx9vMkuRGCCCT3VIJCQm89tpr/Pfffzx69IhHjx7x33//MXbsWFkdXIhsKL2uKRl3k3McPXqU6OhoQP3Pu0vK8UfA2QIFaNy4saNCEyJbsSi5uXfvHoGBgXh5eeHt7c1zzz3H3bt3KVCggK3iE0JYQfv27dkC6FaTMkxuTp8+zYMHDxwQlbDU7t279dvNgMIp29sA/4AAXFwy1RgvRK5jUXIzceJEQkNDmT59OrNnzyYyMpJXX33VVrEJIaykVKlSFK5enaMp+/WB0gble/fudUBUwlKGyY1hgroJaNeunb3DESLbsijNDw4OZunSpXTurD5M2r17d2rWrEl8fDxubm42CVAIYR0BAQFsvnhR/3RNV2Bhyvbu3bvp1auXgyITGZGQkMCBAwf0+4ajpLYA42TJBSH0LGq5uX37NvXr19fvV61aFTc3N8LCwqwemBDCugICAozG3Rh+OBq2CIjs6dixY8TGxgLqjMR+uuNAQqFC1KtXz1GhCZHtWDyg2NnZOc2+oihmzk7f3r17CQoKolSpUmg0GjZs2PDMa3bv3k3Dhg1xc3OjSpUqLF26NFPfW4i8pk2bNhwH7qTstwfypWzLuJvszzABDTQ4vhlo3bo1Tk6ZXipQiFzHot8GRVGoVq0ahQsX1r+io6Px8/MzOpZRMTEx1K9fn/nz52fo/GvXrtGtWzfatm1LaGgo48aN49VXX2Xr1q2W/BhC5EklS5akWvXqbEnZ9wJaGZTLuJvszdx4m80gq4ALkYpFY26WLFli1W8eGBhIYGDgs09MsWDBAipWrMicOXMAqFmzJvv37+fLL7/UjwMSQpinG3czOGW/K+piiyDjbrIzw/E2rkDHlOP3gaPAAkluhDBiUXIzePDgZ59kQ4cOHaJDhw5Gxzp37sy4cePMXhMfH098fLx+PyoqClAnw0pMTLRqfLr7Wfu+uZXUl2WsUV8tW7bkzf/7P5JRZykOBN5JKdu1a1eu+bfIbe+tw4cP68fbtAC8U45vAQoWKkTNmjWz9LPmtvqyNakvy1irviy5PkdNihAeHk7x4sWNjhUvXpyoqCji4uJMrqkyY8YMpk2blub4tm3b8PT0tEmcwcHBNrlvbiX1ZZms1FdiYiKRwEHULqmaQEXgGuqCjKtWrcpV81bllvfWmjVr9Nupu6SqVq3Kli1b0lyTGbmlvuxF6ssyWa0vXYKfETkqucmMSZMmGa13FRUVRdmyZenUqRPe3t7pXGm5xMREgoOD6dixI66urla9d24k9WUZa9XXzJkz2Xzpkn68TSDwHeqYOnd3d7p27ZrO1TlDbntvGY5L1P3raIGtwP/69s3yv1luqy9bk/qyjLXqS9fzkhE5KrkpUaIEd+7cMTp2584dvL29za6E6+bmZnIOHldXV5u9KW1579xI6ssyWa2vtm3bsvnSJWak7HdFTW4A9u/fT58+fbIaYraRG95biYmJ+vE25YA6KccPAxGos09b62fMDfVlT1JflslqfVlybY56drB58+Zp1sEJDg6mefPmDopIiJwnICCA08CtlP12gHvKtsx3k/0Yzm+T+hHwQjK/jRAmZSm5SUhI4OLFiyQlJWXq+ujoaEJDQwkNDQXUR71DQ0O5ceMGoHYpDRo0SH/+yJEjuXr1Ku+99x4XLlzgu+++47fffuPtt9/Oyo8hRJ7Spk0bAP2Efh5AQMr26dOniYiIcEBUwpz0HgGX+W2EMC1TvxWxsbEMHz4cT09PateurU9G3nzzTWbOnJnh+xw7dgw/Pz/8/NS5NsePH4+fnx8fffQRAGFhYfp7A1SsWJFNmzYRHBxM/fr1mTNnDj/++KM8Bi6EBUqWLEn16tX5y+CY7kNTURSZ7yab0SU3bqgTLwKEA6HI/DZCmJOp5GbSpEmcOnWK3bt34+7urj/eoUMHVq1aleH7BAQEoChKmpdu1uGlS5emaSYPCAjg5MmTxMfHc+XKFYYMGZKZH0GIPC0gIIDtgO7BSsMWgV27djkgImFKYmIi+/fvB9Sn2/KnHP8LUJDkRghzMpXcbNiwgW+//ZaWLVui0Wj0x2vXrs2VK1esFpwQwjYCAgJ4DOxL2a8MVE3Zlpab7OP48eP68Tapu6RkvI0Q5mUqubl37x6+vr5pjsfExBglO0KI7Cn1uBt4upDmqVOnePTokd1jEmnt27dPv61LbpKAYKBVq1Yy3kYIMzL1m9G4cWM2bdqk39clND/++KM8uSREDlCyZEkqV65slNwYjrs5ePCgI8ISqeiSm8pA9ZRjB4FHqIOJhRCmZWqem88++4zAwEDOnTtHUlISX331FefOnePgwYPs2bPH2jEKIWygdevWLLlyhetABaAN6mKa0ahdU5as+yasT6vV6sfbdDM4rvuzUpIbIczLVMtNy5YtCQ0NJSkpibp167Jt2zZ8fX05dOgQjRo1snaMQggbaNVKnaNY92GZj6dP4xh2hwjH+Pvvv3n48CFgPN5mE5A/f379U6ZCiLQyPUNx5cqVWbhwoTVjEULYke4v/03A6JRj3YDfgSNHjphdr03Yh25gd36ezkN0A/gb6NiiBS4uOWqCeSHsKtO/HVqtlsuXL3P37l20Wq1RmTSXCpH9VapUiZIlS7I7LIw41Mn8dC0EiYmJHDlyRD/wWNifrvWsPeocN/C0lU3X6iaEMC1Tyc3hw4fp378///77L4qiGJVpNBqSk5OtEpwQwnY0Gg2tW7dm1apV7ERttSkNNECdIG7v3r2S3DiI4WSKpsbbSHIjRPoyNeZm5MiRNG7cmLNnzxIREcHDhw/1L5m6XYicI/W4G3jaeiPjbhzn6tWrhIWFAU//PZ4AO1EXD2zWrJmjQhMiR8hUy80///zDmjVrqFKlirXjEULYkeG4G51uwGfAwYMHSUpKkrEdDqBrtakHlEk5tguIA1o0aSJjoYR4hky13DRr1ozLly9bOxYhhJ3Vrl2bQoUKcQM4m3LsOaAI6qScJ0+edFxweZiu1UweARciczL1J9mbb77JO++8Q3h4OHXr1sXV1dWoXKYEFyJncHJyomXLlvzxxx9sBuqg/sXTBfgVtQWhSZMmDo0xLzI13kY34aKMtxHi2TKV3PTu3RuAYcOG6Y9pNBoURZEBxULkMK1ateKPP/5gE/BeyrFuqMnNvn37eOeddxwXXB50+/Ztrly5QmHUVjSA88A11P9n/f39HRecEDlEppKba9euWTsOIYSD6Lo5DgKRgA/QGXBGTW60Wq2sYWRHui4p3b8BPO2Sql+/PgULFnREWELkKJlKbsqXL2/tOIQQDtKwYUM8PT2JjY1lK/AS6FsNDkREcP78eWrXru3YIPOQ9MbbSJeUEBmT4eRm48aNBAYG4urqysaNG9M99/nnn89yYEII+3B1daV58+bs2LGDzajJDagfrgdQx39IcmM/+/btwxl13BNAFOq/A8hgYiEyKsPJTc+ePQkPD8fX15eePXuaPU/G3AiR87Rq1YodO3bwF6BFHVTcHfgfcODAAUaNGuXQ+PKKyMhIzpw5QwvUJ9YAtgKJKdvSciNExmQ4uTFcYiH1cgtCiJxN96F5DwgBmgN1gfKoyY2wj8OHD6MoCt0Njv2Z8rVq1aoUL17cEWEJkePIKEEhBM2aNcPZWR2++qfB8W7A9evXuXXrlkPiymv2798PoE9utMBfKdvylJQQGZfp5GbHjh10796dypUrU7lyZbp378727dutGZsQwk7y58+Pn58fYJzc6D5kpfXGPg4cOEAF1PmGQG1Fu5ey3bJlS4fEJEROlKnk5rvvvqNLly4UKFCAsWPHMnbsWLy9venatSvz58+3doxCCDvQtQycBm6mHGsH5Odpi4KwncTEREJCQoyekjJMNKXlRoiMy1Ry89lnn/Hll1+yYsUK3nrrLd566y2WL1/Ol19+yWeffWbtGIUQdmD44an7UHUD2iMtN/Zw8uRJ4uLiTI63KVKkCNWrV3dEWELkSJlKbiIjI+nSpUua4506deLRo0dZDkoIYX+mkhtQu6ZCQ0N5/Pix3WPKSw4cOEB+oG3K/k3UVjRQ/200Go1jAhMiB8pUcvP888+zfv36NMd///13unfvbuIKIUR2V6pUKSpWrAjATiA25Xg31CckQ0JCHBVanrB//37ao7aWgXGCKeNthLBMhh8F//rrr/XbtWrV4tNPP2X37t00b94cUB9hPHDggKxDI0QO1rJlS65du8YTYAcQBJQC/FBbFjp06ODQ+HIrRVE4cOAAHxsck/E2QmRehpObL7/80mi/UKFCnDt3jnPnzumP+fj4sHjxYj788EPrRSiEsBt/f39+/vlnQJ3yPyjleHdkULEtXblyhbt37ugHE8eitp4BuLm50ahRIwdFJkTOlOHkRhbLFCL3M2wh2GRwvDvw5eHDJCUl4eKSqSXpRDoOHDiAH2orGaitZk9Stps0aYKbm5vpC4UQJlk85iYxMZHKlStz/vx5W8QjhHCgWrVq4ePjA8B/QGjK8aaAV3Q0Z86ccUxgudyBAwdMPiUF0iUlRGZYnNy4urry5MmTZ58ohMhxnJycaNGihX4/9WzF0jVlG/v378dwuWHDVjMZTCyE5TL1tNTo0aOZNWsWSUlJ1o5HCOFghi0FGw2O90Dmu7GFiIgIHp8/j25UzXHAcLELw2RTCJExmeo8P3r0KDt27GDbtm3UrVuX/PnzG5WvW7fOKsEJIezPsKXgGHAbdSxIB2D83r0oiiJzrljRwYMH9QO3AX432K5VqxaFCxe2d0hC5HiZSm58fHzo3bu3tWMRQmQDTZo0wdXVlcTERBTgD+B1wAOoHRbGjRs3KF++vGODzEX2799PD4N9w9YyGW8jROZkKrlZsmSJteMQQmQTHh4eNGrUiMOHDwNqS8LrKWXPo7Y0SHJjPaF79zI9Zftf4JRBmSQ3QmROplcFF0LkXoYfqjuB6JTt7sAhGVRsNQkJCRQ9dox8KfsbU5VLciNE5mSq5aZixYrp9rlfvXo10wEJIRyvRYsWzJkzB4B4YCvQG/AFordvd2BkuUtoaChdEhP1+4bjbXx9falcubL9gxIiF8hUcjNu3Dij/cTERE6ePMmWLVt49913rRGXEMKBdMuq6GxETW4Aav7zDzExMWkeJBCWO7xvH6+kbD8C9hqUtWjRQgZuC5FJmUpuxo4da/L4/PnzOXbsWJYCEkI4XsmSJalYsaJ+ZvJNQDLgDAQpCkePHiUgIMCBEeYOkX/+SaGU7c1AokGZPAIuROZZdcxNYGAga9eutfi6+fPnU6FCBdzd3WnWrBlHjhxJ9/x58+ZRvXp1PDw8KFu2LG+//bZMLCiElRm23jwAdDPc1AAu/P67qUuEhUoZ/DGYerxN6tYzIUTGWTW5WbNmjcVzMqxatYrx48czZcoUTpw4Qf369encuTN37941ef7y5ct5//33mTJlCufPn2fRokWsWrWK//3vf9b4EYQQKVK3HBh++ObbssW+weRCN2/coF20OlQ7EfjLoMzV1VUWyxQiCyzqlpo+fTrvvPMOLVu2NOoLVhSF8PBw7t27x3fffWdRAHPnzmXEiBEMHToUgAULFrBp0yYWL17M+++/n+b8gwcP4u/vT//+/QGoUKEC/fr1IyQkxKLvK4RIX+rk5ndgdsp2zcuX0Wq1ODnJA5eZ9feqVXRJ2d6DOuZGp2HDhnh4eDggKiFyB4uSm2nTpjFy5Eh69OhhlNw4OTlRrFgxAgICqFGjRobvl5CQwPHjx5k0aZLRvTp06MChQ4dMXtOiRQt++eUXjhw5QtOmTbl69SqbN2/mlVdeMXl+fHw88fHx+v2oqChAHQSdmJho8prM0t3P2vfNraS+LGPv+qpRowb58+cnJiYGgMvAeaAm0CwpiYt791Ilmz6qnBPeW0kGXfipu6See+45u8aeE+orO5H6soy16suS6y1KbhRFAWDq1KkWBWTO/fv3SU5Opnjx4kbHixcvzoULF0xe079/f+7fv0/Lli1RFIWkpCRGjhxptltqxowZTJs2Lc3xbdu24enpmfUfwoTg4GCb3De3kvqyjD3rq1KlSkYrga9HTW6cgNDp07lk5uGC7CI7v7eqhIbqtzekKnNzc2Pz5s32DAfI3vWVHUl9WSar9RUbG5vhcy1+WsrRjybu3r2bzz77jO+++45mzZpx+fJlxo4dy8cff8zkyZPTnD9p0iTGjx+v34+KiqJs2bJ06tQJb29vq8aWmJhIcHAwHTt2xNXV1ar3zo2kvizjiPoKCQlJk9zo/oyofekSNbt2tUsclsru76248+fxTmlRPgbcTFX+xhtvUKpUKbvFk93rK7uR+rKMtepL1/OSERYnN9WqVXtmghMREZGhexUtWhRnZ2fu3LljdPzOnTuUKFHC5DWTJ0/mlVde4dVXXwWgbt26xMTE8Nprr/HBBx+kGQPg5uaGm5tbmvu4urra7E1py3vnRlJflrFnfbVq1YoZM2bo93UfxGWBmrdu4RobCwUL2iWWzMiu760bP/yA7k+r1MsMly9f3mHLW2TX+squpL4sk9X6suRai5ObadOmUdBK/5nly5ePRo0asWPHDnr27AmAVqtlx44djBkzxuQ1sbGxaRIYZ2dn4Gm3mRDCOp577rk0x9YDbwGuQPTq1Xil/KEhMi7fpk367fWpymR+GyGyzuLk5uWXX8bX19dqAYwfP57BgwfTuHFjmjZtyrx584iJidE/PTVo0CBKly6t/+sxKCiIuXPn4ufnp++Wmjx5MkFBQfokRwhhHYUKFaJmzZqcP39ef2wdanID8HjZMkluLHXnDqWvXwfUAdqpRxfK/DZCZJ1FyY0txtu89NJL3Lt3j48++ojw8HAaNGjAli1b9IOMb9y4YdRS8+GHH6LRaPjwww+5desWxYoVIygoiE8//dTqsQkh1JYEw+RmP3AfKAoUDgmBuDiQx5YzTNmwQT/BWOpWG5CWGyGsIVNPS1nbmDFjzHZD7d6922jfxcWFKVOmMGXKFJvEIoQw1qJFCxYtWqTfT0ad82Y44JaYCMHB8Pzzjgovx4n99Vd0q3KlHm/j6elJvXr17B2SELmORTNwabVaq3ZJCSGyP1MtCYYtDto1a+wXTE736BHuBw8CcAM4nqq4adOmMkBVCCuQ6UWFEOmqVq1ammVVtgOPU7aTf/8dZDKzjNm0CefkZEC6pISwJUluhBDpcnJywj/VTMTxqKtYA7hGRcHevXaPKydS1j3tiDKV3LRs2dJ+wQiRi0lyI4R4pvbt26c5ZjReZF3q0SMijbg4lJRZh++hDsw25OLiQqtWrewelhC5kSQ3Qohn6tChQ5pjm1FbcAC069ZBSneLMGPLFpzi4gB1LanUtdW8eXO8vLzsHpYQuZEkN0KIZ6pVq1aaWcOjgS0p207h4bA/dVuEMLJqlX5ztYliUwmkECJzJLkRQjyTRqMx2TW1ynDnt9/sFk+OExuL8scfADwAdpg4xVT9CiEyR5IbIUSGmGpZ+AOI0+2sWQNJSfYMKefYvBlNyorG64DUteTl5UXTpk3tHpYQuZUkN0KIDDHVshDN06emuHtXnpoyx6BLapWJ4jZt2sj8NkJYkSQ3QogMKVu2LNWqVUtz3KgzapWpj+48LjoaUhbKvAvsNnGKjLcRwrokuRFCZJip1ps/gVjdztq10jWV2p9/qutvAWtJ+5QUyHgbIaxNkhshRIaZamGIRU1wAHjwAHbutGdI2Z/BQGtTQ659fX2pU6eO/eIRIg+Q5EYIkWEBAQFoNJo0x40+tOWpqaceP4aUifvCAVMjktq3b2+yToUQmSfJjRAiwwoXLkyjRo3SHN+MOrgYUGcrTkiwZ1jZ18aNEK9OdbgG0Jo4RcbbCGF9ktwIISxi6sM4DvWxcAAePoQdpmZyyYOe0SUFktwIYQuS3AghLGJu8KvRc1IrVtgllmzt4UPYos7hfJu0a0kBVKlShXLlytk1LCHyAkluhBAW8ff3x83NLc3xLUCkbmfdOoiJsWNU2dDq1fruuVWAYuIUeUpKCNuQ5EYIYREPDw/atWuX5ng8BmsmxcTA77/bM6zs55df9Js/mzmlW7du9olFiDxGkhshhMW6d+9u8vgvRju/mDwnT7h+HfbtA+AccNLEKe7u7tJyI4SNSHIjhLCYuRaHfcC/up1t2+DOHXuFlL0sX67fNJfitWvXDk9PT/vEI0QeI8mNEMJi5cuXp27dummOK8Cvup3k5Ly5HIOiwM9PO6J+NXOaudYvIUTWSXIjhMiUDHVN/WxutEkuduIEXLgAwB7ghpnTZLyNELYjyY0QIlPMJTfngZO6GXePHdN/0OcZBmONzHVJ1atXTx4BF8KGJLkRQmRKs2bNKFKkiMmynxWDB59/NdcxkwslJenn+EnQaFhj5jTpkhLCtiS5EUJkirOzM127djVZtgLQ6lpvfvlFHYeSF+zYoR9E/ScG8/6kIsmNELYlyY0QItPMfUiHA3tcXdWd69dhv6n5eXMhgzFGP5lJ6IoWLUrTpk3tFZEQeZIkN0KITOvUqRMuLi4myxYZLp65aJGdInKghw9h7VoAot3c+MvMaV27dsXZ2dl+cQmRB0lyI4TINB8fH1q1amWybB0Qp1um4bffIDLSbnE5xC+/wJMnACx3csLcuujSJSWE7UlyI4TIEnMf1nHAxgIFUnbijCa2y3UUBRYu1O9+FRdn8jQXFxc6depkr6iEyLMkuRFCZElQUJDZss/u33+6s3Bh7h1YfOQInDkDwI3SpTln5rTWrVtTsGBB+8UlRB4lyY0QIkuqVq1KtWrVTJadBu5UqKDuhIbC8eP2Csu+fvhBv7nIyfx/q+klgkII65HkRgiRZemNI1ml65oCo66bXCMqClauBEBboACzb940e6qMtxHCPiS5EUJkWXotEtMvXULx8lJ3li+H6Gg7RWUnK1ZAbCwA5xs0INbMaTVq1KBKlSr2i0uIPEySGyFElvn7+5sdS/IgPp4bLVqoO9HRuW8xTYPWqAXJyWZPk1YbIexHkhshRJa5uroSGBhotvxXT8+nO7mpa+rECf04ouQGDViYzpgiGW8jhP1IciOEsIr0Wibmh4Sg1K+v7oSEqElBbrBggX7z7HPPER8fb/K0QoUK0ULXeiWEsDlJboQQVhEYGGh25t3bYWHc7Nbt6YGvvrJTVDZ0//7T5RYKFODHWHOjbdS6MTeTsxDC+rJFcjN//nwqVKiAu7s7zZo148iRI+meHxkZyejRoylZsiRubm5Uq1aNzZs32ylaIYQphQsXxt/f32z5zwCFCqk7K1ZAeLhd4rKZH37Qz0isDBvGmm3bzJ4qXVJC2JfDk5tVq1Yxfvx4pkyZwokTJ6hfvz6dO3fm7t27Js9PSEigY8eOXL9+nTVr1nDx4kUWLlxI6dKl7Ry5ECK19Lqm1m/dCq+/ru4kJsJ339kpKhtISID589VtjYYzAQGEm0nWnJ2d6dy5sx2DE0I4PLmZO3cuI0aMYOjQodSqVYsFCxbg6enJ4sWLTZ6/ePFiIiIi2LBhA/7+/lSoUIE2bdpQX9efL4RwmPRaKI4fP054796g6575/nt9y0eOs3o13L6tbvfsydqTJ82e2qpVKwrpWqyEEHbh0E7ghIQEjh8/zqRJk/THnJyc6NChA4cOHTJ5zcaNG2nevDmjR4/m999/p1ixYvTv35+JEyea7O+Pj483GuQXFRUFQGJiIomJiVb9eXT3s/Z9cyupL8vkhPqqVKkSlStX5sqVKybL1x89yuu9e+O0ahXcv0/Szz+jDBli9ThsWleKgvOXX+r/MkwaM4aN77xj9vTAwMBs/W8GOeO9lZ1IfVnGWvVlyfUOTW7u379PcnIyxYsXNzpevHhxLly4YPKaq1evsnPnTgYMGMDmzZu5fPkyb7zxBomJiUyZMiXN+TNmzGDatGlpjm/btg1Pw8dTrSg4ONgm982tpL4sk93rq1atWmaTm8WLF1Orb1/apMx1E/Ppp+wuVgw0GpvEYou6Knz+PK1SHvmOrFSJNVeuEBoaavZ8Ly+vHDMmMLu/t7IbqS/LZLW+YtMZtJ9ajhu+r9Vq8fX15YcffsDZ2ZlGjRpx69YtvvjiC5PJzaRJkxg/frx+PyoqirJly9KpUye8vb2tGltiYiLBwcF07NgRV1dXq947N5L6skxOqS8PDw/++OMPk2Vnz56lfnAw2vXrcTp0iIL//ks3Dw+Udu2sGoMt68p52TL9tteHHxL7+LHZc6tUqcKIESOs+v1tIae8t7ILqS/LWKu+dD0vGeHQ5KZo0aI4Oztz584do+N37tyhRIkSJq8pWbIkrq6uRl1QNWvWJDw8nISEBPLly2d0vpubG25ubmnu4+rqarM3pS3vnRtJfVkmu9dX27Zt8fHxITIyMk3ZkydP2L17Nz3ffhtSup5dvvkGbDTg1up1df06/P67ul2iBC79+7Pp+efNnt6zZ89s/W+VWnZ/b2U3Ul+WyWp9WXKtQwcU58uXj0aNGrFjxw79Ma1Wy44dO2jevLnJa/z9/bl8+TJarVZ/7NKlS5QsWTJNYiOEsD9XV1e6du1qtnzjxo3QqxeUK6ce2LQp50zq99lnoPu/5403iIqPZ9euXWZPfz6dxEcIYTsOf1pq/PjxLFy4kGXLlnH+/HlGjRpFTEwMQ4cOBWDQoEFGA45HjRpFREQEY8eO5dKlS2zatInPPvuM0aNHO+pHEEKkkt6H+p9//kmyRgMTJz49+NFHdogqi65ehSVL1G1vbxg9mq1bt5od5FikSBGZlVgIB3H4mJuXXnqJe/fu8dFHHxEeHk6DBg3YsmWLfpDxjRs3cHJ6moOVLVuWrVu38vbbb1OvXj1Kly7N2LFjmWj4H6UQwqG6dOmCq6uryQ/+e/fucfjwYfyHD4eZM+HmTbX1JiQEmjVzQLQZ9PHHkJSkbr/9NhQuzO+6LioTunfvbnbGZiGEbTk8uQEYM2YMY8aMMVm2e/fuNMeaN2/O4cOHbRyVECKzChYsSEBAgNmnIzZu3KjOZjx5Mrz2mnrwo49g61Y7RmmBS5fgp5/U7UKF4O23SUxMZNOmTWYvkS4pIRzH4d1SQojcKb0P940bN6obQ4ZAxYrq9rZtsH+/7QPLjGnTno61mTABChbkwIEDJgdNg/ogQ6dOnewXnxDCiCQ3QgibSG+24gsXLnDp0iVwdTUeb5Mdx96cO6euhQVQtCi8+SZAul1S7du3x8vLyx7RCSFMkORGCGET5cuXp0GDBmbL9a03AwdC1arq9q5d6is7mToVFEXdfu89KFAARVHSTW6kS0oIx5LkRghhMxnqmnJxAcMJON97D5KTbRxZBh0+rK4jBVC8OKQ8lXnu3DmuXbtm9jJZBVwIx5LkRghhMz169DBbduDAAe7du6fuvPwy1Kmjbh87BosW2SG6Z0hO1iczAHz4IaQs2ZJeq02TJk0oVaqUraMTQqRDkhshhM34+flRunRpk2VarfbpMg3OzvDtt08LJ02C+/ftEGE6fvjh6eSC9erByJH6ovXr15u9TLqkhHA8SW6EEDaj0WjS/bBft27d0502bWDAAHU7IgL+9z8bR5eOe/eMv//8+Wr3GercW8eOHTN7qSQ3QjieJDdCCJt64YUXzJYFBwcbL4b3xRdQoIC6/eOPcOSIjaMz4/33QfeY96BB0LKlvii9VpvKlStTt25dGwcnhHgWSW6EEDbVpk0bChUqZLIsISGBzZs3Pz1QsqQ6pwyoTyiNHm3/wcWHD8Pixeq2tzd8/rlRsVFrUyovvPACGo3GltEJITJAkhshhE25urpmvGsKYMwY48HFX31lw+hSiYt7OmMyqEsupCwFA3Dnzh327dtn9vL0WqmEEPYjyY0QwubS+9DfvHkzcXFxTw+4uqpjXHQmToQDB2wYXQpFgTfegDNn1P169dR9Axs3bkTRzXmTSqlSpWjatKmtoxRCZIAkN0IIm+vYsSP58+c3WRYTE5N2DarWrZ+uGp6UBC++CHfu2DbIH3+EpUvV7fz51VmJXYyX30uvS6pXr15Gi/wKIRxHfhOFEDbn4eFB165dzZabTBo++QTatlW3w8LUuXB0q3Jb27FjaneYzsKFUKuW0SmRkZHs2LHD7C2kS0qI7EOSGyGEXaT34b9x40YSExOND7q4qK0nugnxdu9WJ9KztogI6NMHEhLU/TffhH790py2adOmtDGmKFy4MK1bt7Z+bEKITJHkRghhF127diVfvnwmyx4+fMiePXvSFhQvDr/99rR7aNYs+Ppr6wUVGQndu8O//6r7zz0Hs2ebPDW9LqkePXrgkqoLSwjhOPLbaEZycrLZv9LMSUxMxMXFhSdPnpCcXdbGycakvixj7/pydXXF2dnZavfz9vamY8eObNq0yWT5unXr6NChQ9oCf3814Rg3Tt0fO1Z9qkk3JiezHjyATp2ezkJcrJi6jpSJBCw2Npa//vrL7K2kS0qI7EWSm1QURSE8PJxI3QReFl5bokQJbt68KXNdZIDUl2UcUV8+Pj6UKFHCat/vhRdeSDe5+eabb0wnVG+9pXYfTZ+u7r//vprgTJkCmYntzh3o0AHOnlX3ixWD4GAoU8bk6X/99ZfxE10GvLy8TCdlQgiHkeQmFV1i4+vri6enp0X/qWu1WqKjo/Hy8pKnJjJA6ssy9qwvRVGIjY3l7t27AJQsWdIq933++edxcnJCq9WmKbtz5w579uyhXbt2aS/UaNTJ/dzdny6LMG2auv7UjBlPZzXOiBMnoH9/uHhR3S9ZErZvTzOA2NDKlSvNlnXr1g13d/eMf38hhM1JcmMgOTlZn9gUKVLE4uu1Wi0JCQm4u7vLh3UGSH1Zxt715eHhAcDdu3fx9fW1ShdV0aJFCQgIYOfOnSbLV6xYYTq50Zk0CTw84O231f3582HNGnWyvWHD1AU4zbl1Cz74AH76SZ3TBqBsWdi5E6pUMXtZVFQUf/75p9ly6ZISIvuRTxQDujE2np6eDo5EiOxB97tg6fiz9Lz00ktmy9auXUuC7qklc8aNU1fsdnVV9+/cUWcVbtAAvvwSDh2C+Hi1LDwcNmxQr6laFZYte5rY1KgBe/emm9iA+iTXkydPTJblz5+f7t27px+vEMLuJLkxQcZ/CKGyxe9C7969zT5Z9PDhQ7Zt2/bsm4wYAefPQ+/eT4+dPQvjx0OLFrgUKUKn4cNxLVcOevVSl3DQjZnx8YG5c+HUKahQ4ZnfasWKFWbLevToIX8MCZENSXKTBwQEBDBO96RJFgwZMoSePXtm+T7Wcv36dTQaDaGhoRm+xlp1ITKvSJEidOrUyWx5euNbjFSurHZJ7dsHTZoYFWkSEvB48MD4fBcX9Umry5fVbi0zj6UbevDgQbrJ1ssvv5yxWIUQdiXJTS4xZMgQNBpNmtfly5et9j2++uorluqmp3+GqVOnotFo6NKlS5qyL774Ao1Gk/7YCpGr9TMxSZ7Ohg0biI2NzfjNWraEkBAIDYUFC2DIEJRq1Uj09ETbqhW89x6sXw+3b8O8eWDBeLq1a9eSZGZW5EKFCtG5c+eMxymEsBsZUJyLdOnShSVLlhgdK1asWJbvm5ycjEajoWDBghZdV7JkSXbt2sV///1HGYNHbBcvXky5cuWyHJfIuXr06IG7u7vJsSwxMTFs2rSJF198MeM31Gigfn319frrJCUmsnnzZrp27YqTbmxOJqTXitS7d2+zkxIKIRxLWm7SUaBAAdzc3DL88vDwoHjx4nh4eFh03bNeBTL4mKubmxslSpQwepl6wuXhw4cMGjSIQoUK4enpSWBgIP/884++fOnSpfj4+LBx40Zq1aqFm5sbN27cSNMttWbNGurWrYuHhwdFihShQ4cOxMTE6Mt9fX3p1KkTy5Yt0x87ePAg9+/fp1u3bkYxabVapk+fTpkyZXBzc6NBgwZs2bLF6JwjR47g5+eHu7s7jRs35uTJk2l+trNnzxIYGIiXlxfFixfnlVde4f79+xmqP2E/BQoUSHcgbnrjXOzl9u3b7N6922y5dEkJkX1JcpOOhISEbPOypiFDhnDs2DE2btzIoUOHUBSFrl27Gj0RExsby6xZs/jxxx/5+++/8fX1NbpHWFgY/fr1Y9iwYZw/f57du3fzwgsvoOieREkxbNgwo66sxYsXM2DAgDR/8X711VfMmTOH2bNnc/r0aTp37szzzz+vT7qio6Pp3r07tWrV4vjx40ydOpUJEyYY3SMyMpJ27drh5+fHsWPH2LJlC3fu3KFv377WqDZhZel1TW3evJlHjx7ZMZq0Vq9eneb9rFO8eHECAgLsG5AQIsMkuclF/vzzT7y8vPQvU836//zzDxs3buTHH3+kVatW1K9fn19//ZVbt26xYcMG/XmJiYl89913tGjRgurVq6d5IiQsLIykpCReeOEFKlSoQN26dXnjjTfw8vIyOq979+5ERUWxd+9eYmJi+O233xg2bFiauGbPns3EiRN5+eWXqV69OrNmzaJBgwbMmzcPgOXLl6PValm0aBG1a9eme/fuvPvuu0b3+Pbbb/Hz8+Ozzz6jRo0a+Pn5sXjxYnbt2sWlS5cyWavCVgIDA822SsbHxxu9Hx0hvdajvn37WnVpCiGEdUlyk4u0bduW0NBQ/etrEwsMnj9/HhcXF5o1a6Y/VqRIEapXr8758+f1x/Lly0e9evXMfq/69evTvn176taty4svvsjChQt5+PBhmvNcXV0ZOHAgS5YsYfXq1VSrVi3NfaOiorh9+zb+/v5Gx/39/fUxnT9/nnr16hnNBNu8eXOj80+dOsWuXbuMErwaNWoAcOXKFbM/i3AMDw8PevXqZbb8559/tmM0xv755x9CQkLMlqfX6iSEcDwZUJyL5M+fnyrPmJAsozw8PNKd48TZ2Zng4GAOHjzItm3b+Oabb/jggw8ICQmhYsWKRucOGzaMZs2acfbsWZOtNtYSHR1NUFAQs2bNSlNmreUDhHW9/PLL/PTTTybLduzYwbVr19K8n+xh0aJFZsvKly/Pc889Z8dohBCWkpabPKZmzZokJSUZ/VX64MEDLl68SK101tYxRaPR4O/vz7Rp0zh58iT58uVj/fr1ac6rXbs2tWvX5uzZs/Tv3z9Nube3N6VKleLAgQNGxw8cOKCPqWbNmpw+fdro6ZrDhw8bnd+wYUP+/vtvKlSoQJUqVYxe+fPnt+hnE/bRoUMHihYtarY89dN/9pCYmGg0CD61l19+WSb6FCKbk+QmHfny5cs2L2upWrUqPXr0YMSIEezfv59Tp04xcOBASpcuTY8ePTJ8n5CQED777DOOHTvGjRs3WLduHffu3aNmzZomz9+5cydhYWH4+PiYLH/33XeZNWsWq1at4uLFi7z//vuEhoYyduxYAPr3749Go2HEiBGcO3eOzZs3M3v2bKN7jB49moiICPr168fRo0e5cuUKW7duZejQoSQnJ2f4ZxP24+rqyqBBg8yWL1682O7/dps3byY8PNxsuS1bH4UQ1iHdUul4/PixRedrtVqioqLw9vbO1gtBLlmyhLFjx9K9e3cSEhJo3bo1mzdvxtWC+UC8vb3Zu3cv8+bNIyoqivLlyzNnzhwCAwNNnv+slpO33nqLR48e8c4773D37l1q1arFxo0bqVq1KgBeXl788ccfjBw5Ej8/P2rVqsWsWbPobTD9vq71Z+LEiXTq1In4+HjKly9Ply5dsvW/R143fPhw5s6da7Ls1q1bbN26la5du9otnh9//NFsWatWrahWrZrdYhFCZI5GMfesYy4VFRVFwYIFefToEd7e3kZlT5480ffxGw5czaicktxkF1JflnFEfWX1dyKjWrRowaFDh0yWvfDCC6xdu9ai+yUaTOJnSdJ+69YtypUrh1arNVm+bNmydFuacqrM1ldeJfVlGWvVV3qf36nJJ4oQwuFeffVVs2UbN27kzp07dolj2bJlZhMbb29v+vTpY5c4hBBZI8mNEMLh+vbtm2aOJJ2kpCSzT1RZk24eJXP69+8vK4ALkUNIciOEcDgvL690lzP48ccfzc4WbC27d+/m6tWrZsvTa10SQmQvktwIIbKF9JKHS5cusWvXLpt+/++//95sWYMGDWjYsKFNv78QwnqyRXIzf/58KlSogLu7O82aNePIkSMZum7lypVoNBqjxRyFEDlT06ZNqV27ttnycePGGa1/Zk27d+9mzZo1ZsuHDx8uc9sIkYM4PLlZtWoV48ePZ8qUKZw4cYL69evTuXNn7t69m+51169fZ8KECbRq1cpOkQohbEmj0aTbenPmzBm++uorq3/fhIQERo0aZbbczc2NAQMGWP37CiFsx+HJzdy5cxkxYgRDhw6lVq1aLFiwAE9PTxYvXmz2muTkZAYMGMC0adOoVKmSHaMVQtjSK6+8ku6cSFOnTuXmzZtW/Z6zZ8/mwoULZsv79etHoUKFrPo9hRC25dBJ/BISEjh+/DiTJk3SH3NycqJDhw5m57wAmD59Or6+vgwfPpx9+/al+z3i4+OJj4/X70dFRQHqc/epm7gTExNRFAWtVmv2cdD06AY86u4h0if1ZRlH1JdWq0VRFBITE+2yCra3tzfvv/8+kydPNlkeExPDm2++yerVq9O9j+53+1ndWNeuXePjjz82W54/f34mT55ss+6w7CKj9SVUUl+WsVZ9WXK9Q5Ob+/fvk5ycTPHixY2OFy9e3OxfUvv372fRokWEhoZm6HvMmDGDadOmpTm+bdu2NI91uri4UKJECaKjo0lISMjYD2GCpTMb53VSX5axZ30lJCQQFxfH3r17SUpKssv3rFGjBmXKlOG///4zWf77778zbdo0mjRp8sx7BQcHmy1TFIVPP/3UaL2y1F588UXOnDnDmTNnnh14LpBefYm0pL4sk9X6io2NzfC5OWr5hcePH/PKK6+wcOHCdBfbMzRp0iTGjx+v34+KiqJs2bJ06tTJ5AzFN2/exMvLK1OzsSqKwuPHjylQoIAMPsyAjNRXpUqVGDt2rH6NqazavXs37du358GDB2bXucqI69evU7lyZY4fP06DBg2sEtuzPKu+hg4dSmRkpMnFS03JSF08efIEDw8PWrdubdMZilMrVKgQHTp0MFu+ZMkShg4dSrly5UyWJyYmEhwcTMeOHc3OiLpgwQKOHTtm9nvUqVOH+fPn54kZaDNSX+IpqS/LWKu+dD0vGeHQ5KZo0aI4OzunmX30zp07lChRIs35V65c4fr16wQFBemP6ZrnXVxcuHjxIpUrVza6xs3NDTc3tzT3cnV1TVPJycnJaDQanJycMjW9vS4W3T3sKSAggAYNGjBv3jyj40uXLmXcuHFERkbaNZ7UNBoN69evN3qyLSP1dfToUfLnz5/h+rx+/ToVK1ZMc3zAgAH88ssv+vtk9t9Yp3z58oSFhVG0aNEM3UeXjBw6dIjnnntOfzw+Pp5SpUoRERHBrl27CAgIMHuPZ9WXRqOx6L2XkbpwcnJCo9GY/H2xpfbt2zNo0CCzk/fdvn2b7t27s2/fvnT/0DEX9+rVq5+ZMOvG/+Ul9v53zumkviyT1fqy5FqHDijOly8fjRo1YseOHfpjWq2WHTt20Lx58zTn16hRgzNnzhAaGqp/Pf/887Rt25bQ0FDKli1rz/BFBmSlew+gWLFimfqA2b59O2FhYfrX/PnzsxSHoYSEBJydnSlRogQuLhn/+6Bs2bIsWbLE6Nj69evNzsyb133xxRfpDuS9cOEC3bt3JyYmxqL77ty5k4EDB6Y7KeDw4cPx9/e36L5CiOzD4U9LjR8/noULF7Js2TLOnz/PqFGjiImJYejQoQAMGjRIP+DY3d2dOnXqGL18fHwoUKAAderUIV++fI78UbK9IUOG0LNnT2bPnk3JkiUpUqQIo0ePNhqkFR8fz8SJEylbtixubm5UqVLFaEr6s2fPEhgYiJeXF8WLF+eVV17h/v37+vKAgADGjBnDuHHjKFq0KJ07d6ZChQoA9OrVC41Go9+/cuUK/fv3p2TJknh5edGkSRO2b99uFHOFChWMWqM0Gg0//vgjvXr1wtPTk6pVq7Jx48Y0P2uRIkUoUaKE/lWwYEGz9bJ27Vpq166Nm5sbFSpUYM6cOWli+Pjjjxk0aBDe3t689tprXL9+HY1Gox/79fDhQwYMGECxYsXw8PCgatWqaRKZwYMHs3LlSuLi4vTHFi9ezODBg9PEdObMGdq1a4eHhwdFihThtddeIzo6Wl+enJzM+PHj8fHxoUiRIrz33ntpPqy1Wi0zZsygYsWKeHh4UL9+/XTncslufH19mTlzZrrnhISE0Lt373THzRg6evQoPXv2TDfpLlKkCLNmzbIoViFE9uLw5Oall15i9uzZfPTRRzRo0IDQ0FC2bNmiH2R848YNwsLCHBxl7rFr1y6uXLnCrl27WLZsGUuXLmXp0qX68kGDBrFixQq+/vprzp8/z//93//pWxYiIyNp164dfn5+HDt2jC1btnDnzh369u1r9D2WLVtGvnz5OHDgAAsWLODo0aOAOk4iLCxMvx8dHU3Hjh0JDg7m5MmTdOnShaCgIG7cuJHuzzBt2jT69u3L6dOn6dq1KwMGDCAiIiJT9XH8+HH69u3Lyy+/zJkzZ5g6dSqTJ082qhNQHxeuX78+J0+eNPkkz+TJkzl37hx//fUX58+f5/vvv0/TXdKoUSMqVKigX+H6xo0b7N27l1deecXovJiYGDp37kyhQoU4evQoq1evZvv27bz55pv6c+bMmcPSpUtZvHgx+/fvJyIiIs1YmxkzZvDTTz+xYMEC/v77b95++20GDhzInj17MlVXjvDqq68SGBiY7jlbt26lUaNGHD9+3Ow5ycnJfPHFF7Rs2fKZA7J/+OEHihQpkql4hRDZhJLHPHr0SAGUR48epSmLi4tTzp07p8TFxRkXNGqkKKVLP/OlLV1aSS5VStFm4NwMvRo1yvDP1aZNG2Xs2LFpji9ZskQpWLCgoiiKMnjwYKV8+fJKUlKSvvzFF19UXnrpJUVRFOXixYsKoAQHB5v8Hh9//LHSqVMno2M3b95UAOXixYv6OPz8/NJcCyjr1683OpacnKw8fPhQSU5O1h+rXbu28s033+j3y5cvr3z55ZdG9/nwww/1+9HR0Qqg/PXXX4qiKMq1a9cUQPHw8FDy58+vf504cUJRFEXZtWuXAigPHz5UFEVR+vfvr3Ts2NEornfffVepVauWUQw9e/Y0Okf3fU6ePKkoiqIEBQUpQ4cOTfNzp/75582bp7Rt21ZRFEWZNm2a0qtXL+Xhw4cKoOzatUtRFEX54YcflEKFCinR0dH66zdt2qQ4OTkpFy9eVJKTk5WSJUsqn3/+ub48MTFRKVOmjNKjRw9FURTlyZMniqenp3Lw4EGjOIYPH67069fPZF2YYvZ3wo6ioqKUxo0bK0C6LxcXF2Xq1KnK/fv3lYSEBGXDhg1KfHy8EhoaqrRs2fKZ1wPKV1995bCf05F09ZWQkODoUHIEqS/LWKu+0vv8Ti1HPS3lMOHhcOvWM0/TpLyys9q1axvNV1KyZEn9Y66hoaE4OzvTpk0bk9eeOnWKXbt2mRwjcuXKFapVqwaoLRQZER0dzeTJk/XjY5KSkoiLi3tmy029evX02/nz58fb2zvNjNarVq2iZs2a+n1z47HOnz9Pjx49jI75+/szb948kpOT9XXVuHHjdGMaNWoUvXv35sSJE3Tq1ImePXvSokWLNOcNHDiQ999/n6tXr7J06VK+/vprkzHVr1/faDI7f39/tFot//zzD8WKFSMsLIxmzZrpy11cXGjcuLG+a+ry5cvExsbSsWNHo3snJCTg5+eX7s+S3RQoUIDNmzfTsmVLLl26ZPa8pKQkpk6dytSpU6lZsyYeHh4MHz6cBw8eZOj7/O9//+Ott96yVthCCAeS5CYjTDy5ZYqC+riuRqOxTpKTwe8L6uRnjx49SnM8MjLSaLxJ6tHmGo1G/xSOh4dHut8jOjqaoKAgk+MRSpYsqd9Ob4ZZQ++++y7btm1j9uzZVKtWDQ8PD/r06fPMQcjp/Qw6ZcuWpUqVKhmKIyOe9TMFBgby77//snnzZoKDg2nfvj2jR49m9uzZRucVKVKE7t27M3z4cJ48eUJgYKBN5q3Rjc/ZtGkTpUuXNioz9fRgdlesWDG2bt2Kv78/t2/ffub558+ft+j+r776Kp988klmwxNCZDOS3GREOnNhGFK0WqKiovD29kZj50fBq1evzrZt29IcP3HihL5F5Vnq1q2LVqtlz549JucYadiwIWvXrqVChQoWPSUEakKSnJxsdOzgwYP079+fXr164eTkRHR0NNevX7fovllVs2ZNDhw4YHTswIEDVKtWzeIZeYsVK8bgwYMZPHgwrVq14t13302T3AAMGzaMrl27MnHiRJPfo2bNmixdupSYmBh9UnXgwAGcnJyoWrUqBQsWpGTJkoSEhNC6dWtAbbU4fvy4fuXqWrVq4ebmxo0bN8y2xOU0FSpUYMuWLbRp04aHDx9a7b69evXi+++/l7mphMhFHD6gWFjHqFGjuHTpEm+99RanT5/m4sWLzJ07lxUrVvDOO+9k6B4VKlRg8ODBDBs2jA0bNnDt2jV2797Nb7/9BsDo0aOJiIigX79+HD16lCtXrrB161aGDh2aJnExde8dO3YQHh6u/2CqUqUKf/zxB6GhoZw6dYr+/fvbfRmGd955hx07dvDxxx9z6dIlli1bxrfffsuECRMsus9HH33E77//zuXLl/n777/5888/jbrFDHXp0oV79+4xffp0k+UDBgzA3d2dwYMHc/bsWXbt2sWbb77JwIED8fX1BWDs2LHMnDmTDRs2cOHCBd544w2juYwKFCjAhAkTePvtt1m2bBlXrlzhxIkTfPPNNyxbtsyiny07qVu3LocOHdIncVmh0Wh49913WbVqlcXJuhAie5PkJpeoVKkSe/fu5cKFC3To0IFmzZrx22+/sXr1arp06ZLh+3z//ff06dOHN954gxo1ajBixAj9PCKlSpXiwIEDJCcn06lTJ+rWrcu4cePw8fF55sRxc+bMITg4mLJly+rHfMyZMwcfHx9atmxJUFAQnTt3tsqHliUaNmzIb7/9xsqVK6lTpw4fffQR06dPZ8iQIRbdJ1++fEyaNIl69erRunVrnJ2dWblypclzNRoNRYsWNTt1gaenJ1u3biUiIoImTZrQp08f2rdvzzfffKM/55133uGVV15h8ODBNG/enAIFCtCrVy+j+3z88cdMnjyZGTNmULNmTbp06cKmTZtMTnKYk1SvXp3Dhw/z0UcfZXq9q0qVKrFnzx4+//xzmYRNiFxIoyjpzGSVC0VFRVGwYEEePXpkcvmFa9euUbFixUxNNa816Jay9wzFOZHUl2UcUV9Z/Z2wtaNHjzJ48GCLxti8/vrrzJ49WyZPNJCYmMjmzZvp2rWrJHsZIPVlGWvVV3qf36lJW6wQIsdq0qQJp0+f5o8//uCvv/5i//79aRIdT09PmjVrRsuWLRkwYADVq1d3ULRCCHuR5EYIkaO5uLjQq1cvfbfcgwcPOHz4MAcPHqR79+40btxY/roWIo+R5EYIkasUKVKETp06kZSUJImNEHmUDHQQQgghRK4iyY0QQgghchVJbkzIYw+QCWGW/C4IIXIiSW4M6PrmY2NjHRyJENmD7ndBxq0IIXISGVBswNnZGR8fH/0ijJ6enhZNya7VaklISODJkycyb0sGSH1Zxp71pSgKsbGx3L17Fx8fn0xPlieEEI4gyU0qJVIWq0y9ynRGKIpCXFwcHh4esk5NBkh9WcYR9eXj46P/nRBCiJxCkptUNBoNJUuWxNfXl8TERIuuTUxMZO/evbRu3Vqa8TNA6ssy9q4vV1dXabERQuRIktyY4ezsbPF/7M7OziQlJeHu7i4f1hkg9WUZqS8hhMgYGegghBBCiFxFkhshhBBC5CqS3AghhBAiV8lzY250k5JFRUVZ/d6JiYnExsYSFRUlYyIyQOrLMlJfGSd1ZRmpL8tIfVnGWvWl+9zOyOSieS65efz4MQBly5Z1cCRCCCGEsNTjx48pWLBguudolDw2v7pWq+X27dsUKFDA6nOFREVFUbZsWW7evIm3t7dV750bSX1ZRuor46SuLCP1ZRmpL8tYq74UReHx48eUKlXqmROZ5rmWGycnJ8qUKWPT7+Ht7S1veAtIfVlG6ivjpK4sI/VlGakvy1ijvp7VYqMjA4qFEEIIkatIciOEEEKIXEWSGytyc3NjypQpuLm5OTqUHEHqyzJSXxkndWUZqS/LSH1ZxhH1lecGFAshhBAid5OWGyGEEELkKpLcCCGEECJXkeRGCCGEELmKJDfPMGPGDJo0aUKBAgXw9fWlZ8+eXLx40eS5iqIQGBiIRqNhw4YNRmU3btygW7dueHp64uvry7vvvktSUpIdfgL7ykh9BQQEoNFojF4jR440Oicv1FdG31uHDh2iXbt25M+fH29vb1q3bk1cXJy+PCIiggEDBuDt7Y2Pjw/Dhw8nOjranj+KXTyrvq5fv57mfaV7rV69Wn9eXnhvQcbeX+Hh4bzyyiuUKFGC/Pnz07BhQ9auXWt0jry/nrpy5Qq9evWiWLFieHt707dvX+7cuWN0Tl6pr++//5569erp565p3rw5f/31l778yZMnjB49miJFiuDl5UXv3r3T1JVNfxcVka7OnTsrS5YsUc6ePauEhoYqXbt2VcqVK6dER0enOXfu3LlKYGCgAijr16/XH09KSlLq1KmjdOjQQTl58qSyefNmpWjRosqkSZPs+JPYR0bqq02bNsqIESOUsLAw/evRo0f68rxSXxmpq4MHDyre3t7KjBkzlLNnzyoXLlxQVq1apTx58kR/TpcuXZT69esrhw8fVvbt26dUqVJF6devnyN+JJt6Vn0lJSUZvafCwsKUadOmKV5eXsrjx4/15+SF95aiZOz91bFjR6VJkyZKSEiIcuXKFeXjjz9WnJyclBMnTujPkfeXWl/R0dFKpUqVlF69eimnT59WTp8+rfTo0UNp0qSJkpycrL9PXqmvjRs3Kps2bVIuXbqkXLx4Ufnf//6nuLq6KmfPnlUURVFGjhyplC1bVtmxY4dy7Ngx5bnnnlNatGihv97Wv4uS3Fjo7t27CqDs2bPH6PjJkyeV0qVLK2FhYWmSm82bNytOTk5KeHi4/tj333+veHt7K/Hx8fYK3SFM1VebNm2UsWPHmr0mr9aXqbpq1qyZ8uGHH5q95ty5cwqgHD16VH/sr7/+UjQajXLr1i2bxuto5n4XDTVo0EAZNmyYfj+vvrcUxXR95c+fX/npp5+MzitcuLCycOFCRVHk/WVYX1u3blWcnJyM/hCLjIxUNBqNEhwcrChK3q4vRVGUQoUKKT/++KMSGRmpuLq6KqtXr9aXnT9/XgGUQ4cOKYpi+99F6Zay0KNHjwAoXLiw/lhsbCz9+/dn/vz5lChRIs01hw4dom7duhQvXlx/rHPnzkRFRfH333/bPmgHMlVfAL/++itFixalTp06TJo0idjYWH1ZXq2v1HV19+5dQkJC8PX1pUWLFhQvXpw2bdqwf/9+/TWHDh3Cx8eHxo0b64916NABJycnQkJC7PsD2Jm595bO8ePHCQ0NZfjw4fpjefW9Babrq0WLFqxatYqIiAi0Wi0rV67kyZMnBAQEAPL+gqf1FR8fj0ajMZqrxd3dHScnJ/3vZF6tr+TkZFauXElMTAzNmzfn+PHjJCYm0qFDB/05NWrUoFy5chw6dAiw/e+iJDcW0Gq1jBs3Dn9/f+rUqaM//vbbb9OiRQt69Ohh8rrw8HCjf0BAvx8eHm67gB3MXH3179+fX375hV27djFp0iR+/vlnBg4cqC/Pi/Vlqq6uXr0KwNSpUxkxYgRbtmyhYcOGtG/fnn/++QdQ68PX19foXi4uLhQuXDjX1hWYf28ZWrRoETVr1qRFixb6Y3nxvQXm6+u3334jMTGRIkWK4Obmxuuvv8769eupUqUKIO8vw/p67rnnyJ8/PxMnTiQ2NpaYmBgmTJhAcnIyYWFhQN6rrzNnzuDl5YWbmxsjR45k/fr11KpVi/DwcPLly4ePj4/R+cWLF9fXg61/F/PcwplZMXr0aM6ePWv0l/PGjRvZuXMnJ0+edGBk2ZOp+gJ47bXX9Nt169alZMmStG/fnitXrlC5cmV7h5ktmKorrVYLwOuvv87QoUMB8PPzY8eOHSxevJgZM2Y4JNbswNx7SycuLo7ly5czefJkO0eWPZmrr8mTJxMZGcn27dspWrQoGzZsoG/fvuzbt4+6des6KFrHM1VfxYoVY/Xq1YwaNYqvv/4aJycn+vXrR8OGDZ+5QnVuVb16dUJDQ3n06BFr1qxh8ODB7Nmzx9FhAZLcZNiYMWP4888/2bt3r9Gq4jt37uTKlStpMtTevXvTqlUrdu/eTYkSJThy5IhRuW7UuKlurNzAXH2Z0qxZMwAuX75M5cqV81x9maurkiVLAlCrVi2j82vWrMmNGzcAtT7u3r1rVJ6UlERERESurCvI2HtrzZo1xMbGMmjQIKPjee29Bebr68qVK3z77becPXuW2rVrA1C/fn327dvH/PnzWbBggby/Ur2/OnXqxJUrV7h//z4uLi74+PhQokQJKlWqBOS938d8+fLpW/kaNWrE0aNH+eqrr3jppZdISEggMjLS6LPxzp07+nqw+e9ilkft5HJarVYZPXq0UqpUKeXSpUtpysPCwpQzZ84YvQDlq6++Uq5evaooytOBU3fu3NFf93//93+Kt7e30VMvucGz6suU/fv3K4By6tQpRVHyTn09q660Wq1SqlSpNAOKGzRooH+iQDeA8dixY/ryrVu35soBjJa8t9q0aaP07t07zfG88t5SlGfX1+nTpxVAOXfunNHxTp06KSNGjFAURd5fz7Jjxw5Fo9EoFy5cUBQlb9WXKW3btlUGDx6sH1C8Zs0afdmFCxdMDii21e+iJDfPMGrUKKVgwYLK7t27jR4xjY2NNXsNZh4F79SpkxIaGqps2bJFKVasWK58/PRZ9XX58mVl+vTpyrFjx5Rr164pv//+u1KpUiWldevW+nvklfrKyHvryy+/VLy9vZXVq1cr//zzj/Lhhx8q7u7uyuXLl/XndOnSRfHz81NCQkKU/fv3K1WrVs2Vj55m9Hfxn3/+UTQajfLXX3+luUdeeW8pyrPrKyEhQalSpYrSqlUrJSQkRLl8+bIye/ZsRaPRKJs2bdLfR95fT99fixcvVg4dOqRcvnxZ+fnnn5XChQsr48ePN7pPXqmv999/X9mzZ49y7do15fTp08r777+vaDQaZdu2bYqiqI+ClytXTtm5c6dy7NgxpXnz5krz5s3119v6d1GSm2cATL6WLFmS7jWGyY2iKMr169eVwMBAxcPDQylatKjyzjvvKImJibYN3gGeVV83btxQWrdurRQuXFhxc3NTqlSporz77rtGj1cqSt6or4y+t2bMmKGUKVNG8fT0VJo3b67s27fPqPzBgwdKv379FC8vL8Xb21sZOnSofl6X3CSj9TVp0iSlbNmyRnOPGMoL7y1FyVh9Xbp0SXnhhRcUX19fxdPTU6lXr16aR8Pl/bVEf87EiROV4sWLK66urkrVqlWVOXPmKFqt1ug+eaW+hg0bppQvX17Jly+fUqxYMaV9+/b6xEZRFCUuLk554403lEKFCimenp5Kr169lLCwMKN72PJ3UVYFF0IIIUSukjeHeAshhBAi15LkRgghhBC5iiQ3QgghhMhVJLkRQgghRK4iyY0QQgghchVJboQQQgiRq0hyI4QQQohcRZIbIYQQQuQqktwIkYfs3r0bjUZDZGRklu4zZMgQevbsaZWYrHmv7Py9Fy1aRKdOnewez5YtW2jQoIF+lXkh8gJJboTIgRYsWECBAgVISkrSH4uOjsbV1ZWAgACjc3UJzZUrV2jRogVhYWEULFjQpvHpvqdGo8HJyYmCBQvi5+fHe++9R1hYmNG5X331FUuXLrVpPNevX0ej0RAaGmr37w3w5MkTJk+ezJQpU2z+vVLr0qULrq6u/Prrr3b/3kI4iiQ3QuRAbdu2JTo6mmPHjumP7du3jxIlShASEsKTJ0/0x3ft2kW5cuWoXLky+fLlo0SJEmg0GrvEefHiRW7fvs3Ro0eZOHEi27dvp06dOpw5c0Z/TsGCBfHx8TF7j4SEBJvF96zvbS1r1qzB29sbf39/m38vU4YMGcLXX3/tkO8thCNIciNEDlS9enVKlizJ7t279cd2795Njx49qFixIocPHzY63rZtW/22YbfU0qVL8fHxYevWrdSsWRMvLy+6dOli1LqSnJzM+PHj8fHxoUiRIrz33ntkdEk6X19fSpQoQbVq1Xj55Zc5cOAAxYoVY9SoUfpzUnfFBAQEMGbMGMaNG0fRokXp3LkzAGfPniUwMBAvLy+KFy/OK6+8wv379/XXabVaPv/8c6pUqYKbmxvlypXj008/BaBixYoA+Pn5odFo9K1bqb93fHw8b731Fr6+vri7u9OyZUuOHj1qVJcajYYdO3bQuHFjPD09adGiBRcvXky3HlauXElQUJDRsYzUq1arZcaMGVSsWBEPDw/q16/PmjVrjM7ZuHEjVatWxd3dnbZt27Js2bI0XY9BQUEcO3aMK1eupBunELmFJDdC5FBt27Zl165d+v1du3YREBBAmzZt9Mfj4uIICQnRJzemxMbGMnv2bH7++Wf27t3LjRs3mDBhgr58zpw5LF26lMWLF7N//34iIiJYv359pmL28PBg5MiRHDhwgLt375o9b9myZeTLl48DBw6wYMECIiMjadeuHX5+fhw7dowtW7Zw584d+vbtq79m0qRJzJw5k8mTJ3Pu3DmWL19O8eLFAThy5AgA27dvJywsjHXr1pn8vu+99x5r165l2bJlnDhxgipVqtC5c2ciIiKMzvvggw+YM2cOx44dw8XFhWHDhqX7c+/fv5/GjRsbHctIvc6YMYOffvqJBQsW8Pfff/P2228zcOBA9uzZA8C1a9fo06cPPXv25NSpU7z++ut88MEHab5/uXLlKF68OPv27Us3TiFyDausLS6EsLuFCxcq+fPnVxITE5WoqCjFxcVFuXv3rrJ8+XKldevWiqIoyo4dOxRA+ffffxVFUZRdu3YpgPLw4UNFURRlyZIlCqBcvnxZf9/58+crxYsX1++XLFlS+fzzz/X7iYmJSpkyZZQePXqYjS319zH0119/KYASEhKiKIqiDB482Ohebdq0Ufz8/Iyu+fjjj5VOnToZHbt586YCKBcvXlSioqIUNzc3ZeHChSbjuXbtmgIoJ0+eNDpu+L2jo6MVV1dX5ddff9WXJyQkKKVKldL//Lqfa/v27fpzNm3apABKXFycye/98OFDBVD27t1rdPxZ9frkyRPF09NTOXjwoNF1w4cPV/r166coiqJMnDhRqVOnjlH5Bx98YLLu/fz8lKlTp5qMUYjcxsVBOZUQIosCAgKIiYnh6NGjPHz4kP9v525CouriOI5/R8bGcYyKGGgsTcxemEXQNBkSOUyRtWnRokWEiEmUtQizGixyUUSGqwrsBVpYi15o0SbKRcwsNKyhqEUm1QxRkCEyNigzvlTPsxjm0vhSTj49MNPvA4L33HvPPeds/HvP/39XrFiB3W7H4/FQW1vLyMgIgUCA0tJSiouLp+0nPz+fZcuWGccOh8N4qxKNRunr62P9+vXGebPZjNvtnvHW1ETJ+36W97N27dqU45cvX+L3+ykoKJh0bSgU4suXL4yOjrJ58+bfGlOyn/Hx8ZS8mNzcXMrLy3n9+nXKtatXrzZ+dzgcAPT390+5zvF4HIC8vDyjbSbr+u7dO2KxGFu2bEnpb2xsjDVr1gCJnKZ169alnC8vL59yflarlVgsNs3sRbKLghuRDFVWVsaSJUvw+/0MDg7i8XgAKCwspKioiMePH+P3+9m0adNP+8nNzU05NplMvx24zEQyUCgpKZn2GpvNlnI8PDzM9u3bOXfu3KRrHQ4H4XD4Px3jr/y4ZskgbbpS64ULF2IymRgcHEzrGcPDwwDcv3+fxYsXp5yzWCxp9QUQiUSw2+1p3yeSiZRzI5LBvF4vgUCAQCCQUgJeWVnJgwcPePr06U/zbX5l3rx5OBwOnjx5YrR9/fqVZ8+e/VZ/8Xicq1evUllZmdYfWpfLxatXrygpKaGsrCzlx2azsXz5cqxWK48ePZry/jlz5gCJJN7pJKvJurq6jLbx8XGCwSBOp3PGY53q2U6nk56eHqNtJuvqdDqxWCx8+PBh0pyLioqARGL5jxVzQEoCdNLIyAihUMh44yOS7RTciGQwr9dLZ2cnL168MN7cAHg8Hq5cucLY2NisghuAQ4cO0dLSwr179+jt7eXAgQMz/ghgf38/nz9/5u3bt9y6dYsNGzYwMDDApUuX0hrDwYMHiUQi7Nq1i2AwSCgUoqOjg9raWr59+0ZeXh4+n49jx45x/fp1QqEQ3d3dXLt2DUhUbVmtViMRORqNTnqGzWajvr6eo0eP8vDhQ3p6eti7dy+xWIy6urq0xjvR1q1b6ezsTGn71brOnTuXI0eO0NDQQHt7O6FQiOfPn3Px4kXa29sB2LdvH729vfh8Pt68ecOdO3eM7/b8uO3X3d2NxWKhoqJiVvMQyRTalhLJYF6vl3g8zqpVq4zKIEgEN0NDQ0bJ+Gw0NjbS19dHTU0NOTk57Nmzhx07dkwZIEy0cuVKTCYTBQUFlJaWUlVVxeHDh1m0aFFaYygsLKSrqwufz0dVVRWjo6MsXbqUbdu2kZOT+B/t5MmTmM1mmpub+fTpEw6Hg/379wOJfJYLFy5w6tQpmpub2bhxY0oZfVJLSwvfv3+nurqaoaEh3G43HR0dLFiwIK3xTlRXV4fb7SYajRofUJzJup4+fRq73c7Zs2cJh8PMnz8fl8vF8ePHgUSJ+927d2lsbOT8+fNUVFRw4sQJ6uvrU7aubt68ye7du8nPz5/VPEQyhemfP7m5LiIiAOzcuROXy0VTU9Mffc6ZM2e4fPkyHz9+BGBgYMDYvkp+70ck22lbSkTkf9Da2jpltddstbW1EQwGCYfD3Lhxg9bWVmpqaozz79+/p62tTYGN/FX05kZEJIM1NDRw+/ZtIpEIxcXFVFdX09TUhNmsrAP5eym4ERERkayibSkRERHJKgpuREREJKsouBEREZGsouBGREREsoqCGxEREckqCm5EREQkqyi4ERERkayi4EZERESyioIbERERySr/Ak1e+KgUYaRwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -267,7 +248,8 @@ "ax.plot(wind_directions, uf_power, label=\"UncertainFlorisModel\", color='r', lw=2)\n", "ax.set_xlabel(\"Wind Direction (deg)\")\n", "ax.set_ylabel(\"Turbine Power (kW)\")\n", - "ax.legend()" + "ax.legend()\n", + "ax.grid()" ] } ], @@ -287,7 +269,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.10.6" } }, "nbformat": 4, diff --git a/docs/intro_concepts.ipynb b/docs/intro_concepts.ipynb index c72e8e0f0..60d8e96ea 100644 --- a/docs/intro_concepts.ipynb +++ b/docs/intro_concepts.ipynb @@ -5,7 +5,7 @@ "id": "86e53920", "metadata": {}, "source": [ - "(concepts_intro)=\n", + "(intro_concepts)=\n", "# Introductory Concepts\n", "\n", "FLORIS is a Python-based software library for calculating wind farm performance considering\n", diff --git a/examples/009_parallel_models.py b/examples/009_parallel_models.py index a7f4e241d..60f20762c 100644 --- a/examples/009_parallel_models.py +++ b/examples/009_parallel_models.py @@ -1,9 +1,9 @@ """Example 9: Parallel Models This example demonstrates how to use the ParFlorisModel class to parallelize the -calculation of the FLORIS model. ParFlorisModel inherits from the FlorisModel -and so can be used in the same way with a consistent interface.The ParFlorisModel - replaces the ParallelFlorisModel +calculation of the FLORIS model. ParFlorisModel inherits from the FlorisModel +and so can be used in the same way with a consistent interface. ParFlorisModel +replaces the ParallelFlorisModel, which will be deprecated in a future release. """ @@ -23,21 +23,21 @@ # Instantiate the FlorisModel fmodel = FlorisModel("inputs/gch.yaml") - # The ParFlorisModel can be instatiated either from a FlorisModel or from + # The ParFlorisModel can be instantiated either from a FlorisModel or from # the input file. pfmodel_1 = ParFlorisModel("inputs/gch.yaml") # Via input file pfmodel_2 = ParFlorisModel(fmodel) # Via FlorisModel # The ParFlorisModel has additional inputs which define the parallelization - # but don't effect the output. + # but don't affect the output. pfmodel_3 = ParFlorisModel( fmodel, interface="multiprocessing", # Default max_workers=2, # Defaults to num_cpu - n_wind_condition_splits=2, # Defaults to max_workers) + n_wind_condition_splits=2, # Defaults to max_workers ) - # Define a simple inflow with just 1 wind speed + # Define a simple inflow time_series = TimeSeries( wind_speeds=np.arange(1, 25, 0.5), wind_directions=270.0, turbulence_intensities=0.06 ) @@ -72,8 +72,8 @@ f"close: {np.allclose(powers_fmodel, powers_pfmodel_3)}" ) - # Given that ParFlorisModel is a subclass of FlorisModel, it can also be used as - # an input to the UncertainFlorisModel class. This allows for parallelization of + # Because ParFlorisModel is a subclass of FlorisModel, it can also be used as + # an input to the UncertainFlorisModel class. This allows for parallelization of # the uncertainty calculations. ufmodel = UncertainFlorisModel(fmodel) pufmodel = UncertainFlorisModel(pfmodel_1)