-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_batch.py
196 lines (158 loc) · 6.12 KB
/
benchmark_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
Implementation of a benchmark system based on dictionary look-up.
Algorithm:
For each test image, perform normalizd dot-product with every training image
normalized dot product = x dot y / ||x|| / ||y||
Find the one with highest dot-product value
Look up the one's angle as predicted angle for test image
Compute the mean absolute error
"""
import numpy as np
import sys, os
from dictionary import *
import pdb
import time
import numpy.linalg as la
import theano
import theano.tensor as T
import math
from compute_disorientation import *
data_path = 'training-data'
train_file1 = 'EBSDDictionary_100.h5'
train_file2 = 'EBSDDictionary_50.h5'
test_file = 'EBSDrandom.h5'
train_files = [train_file1, train_file2]
#train_files = [train_file1]
def run_benchmark(target_id=0):
seed = 8484
nb_train = 300000
nb_test = 30000
batch_size = 1000
batch_size2 = 100
print 'Current target id is: ', target_id
startT = time.time()
print '\nGet data...'
dic = Dictionary(data_path, train_files, test_file)
(train_X, train_y), (test_X, test_y), (valid_X, valid_y) = dic.get_normalized_data(seed,nb_train,nb_test,label_idx=('eu',target_id), target_id=target_id)
nb_train = train_X.shape[0]
nb_test = test_X.shape[0]
train_X = np.reshape(train_X,(nb_train,-1)).T.astype('float32')
test_X = np.reshape(test_X,(nb_test,-1)).astype('float32')
print '\tshape of test X: ',np.shape(test_X)
print '\t\texpecting: (%d, 3600)'%nb_test
print '\tshape of train X: ',np.shape(train_X)
print '\t\texpecting: (3600, %d)'%nb_train
print 'Finished, used %s seconds.\n'%(time.time() - startT)
# Implement dot-prod with Theano
x1 = T.fmatrix()
x2 = T.fmatrix()
x1_norm = T.sqrt(T.nlinalg.diag(T.dot(x1,x1.T))) # nb_test * 1
x2_norm = T.sqrt(T.nlinalg.diag(T.dot(x2.T,x2))) # nb_train * 1
denominator = T.outer(x1_norm,x2_norm) # nb_test * nb_train
d = T.dot(x1,x2) / denominator
print 'Compile Theano function dotImg ...'
dotImg = theano.function(
inputs = [x1,x2],
outputs = d,
allow_input_downcast = True)
# Implement dot-prod with Theano
dd = T.fmatrix()
ag = T.argmax(dd,axis=1)
print 'Compile Theano function argmaxIdx ...'
argmaxIdx = theano.function(
inputs = [dd],
outputs = ag,
allow_input_downcast = True)
print '\tstart calculating...'
startT = time.time()
N = nb_test
N2 = nb_train
best_idx = None
print '\tbatch size for left matrix %d, total %d'%(batch_size,N)
print '\tbatch size for right matrix %d, total %d'%(batch_size2,N2)
for start,end in zip(range(0,N+1,batch_size), range(batch_size,N+1,batch_size)):
print '\t\tLeft matrix at --- ',start,end
dot_matx = None
for start2,end2 in zip(range(0,N2+1,batch_size2), range(batch_size2,N2+1,batch_size2)):
#print '\t\t\tRight matrix at --- ',start2,end2
ins = [test_X[start:end], train_X[:,start2:end2]]
dot_matx_ = dotImg(*ins)
if dot_matx is None:
dot_matx = dot_matx_
else:
dot_matx = np.hstack((dot_matx,dot_matx_))
#print '\t\t\tshape of dot product matrix: ',np.shape(dot_matx)
best_idx_ = argmaxIdx(dot_matx)
if best_idx is None:
best_idx = best_idx_
else:
best_idx = np.hstack((best_idx,best_idx_))
print '\t\tshape of best index matrix: ',np.shape(best_idx)
#print '\tshape of dot product result: ',np.shape(dot_matx)
#print '\t\t\texpecting: (%d, %d)'%(nb_test,nb_train)
print 'Finished calculating dot product & index matrix, used %s secconds.\n'%(time.time()-startT)
#dotmat = dotProd(test_X,train_X)
#print '\tstart calculating...'
#startT = time.time()
#pdb.set_trace()
print 'End shape of best index result: ',np.shape(best_idx)
print '\texpecting: %d'%nb_test
startT = time.time()
# Implement MAE with Theano
y1 = T.fvector()
y2 = T.fvector()
e = T.mean(T.abs_(y1-y2))
print 'Compile Theano function maeImg ...'
maeImg = theano.function(
inputs = [y1,y2],
outputs = e,
allow_input_downcast = True)
se = T.mean((y1 - y2)**2)
mseImg = theano.function(
inputs=[y1, y2],
outputs=se,
allow_input_downcast=True)
#print 'train_y', train_y.shape, best_idx.shape, nb_test, test_y.shape
pred_y = np.reshape(train_y[best_idx],(nb_test,))
test_y = np.reshape(test_y,(nb_test,))
pred_y = dic.get_original_labels(pred_y)
test_y = dic.get_original_labels(test_y)
print 'Testing labels: ', np.mean(test_y), np.median(test_y), np.std(test_y)
print "\tStart calculating..."
mae = maeImg(test_y,pred_y)
mse = mseImg(test_y, pred_y)
print 'Finished calculating MAE, used %s secconds.'%(time.time()-startT)
print "Benchmark system, MAE = %f MSE= %f\n"%(mae, mse)
return pred_y, test_y, mae, mse
if __name__=="__main__":
target_ids = [0,1,2]
maes = []
mses = []
maeds = []
mseds = []
predicted = None
actual = None
for t_id in target_ids:
pred_y, test_y, mae, mse = run_benchmark(t_id)
print 'For target_id ', t_id, ' mae is ', mae
maes.append(mae)
maeds.append(mae * 180 / math.pi)
mses.append(mse)
mseds.append(mse * ((180./math.pi)**2))
pred_y = np.reshape(pred_y, newshape=(-1,1))
test_y = np.reshape(test_y, newshape=(-1,1))
if predicted is None:
predicted = pred_y
actual = test_y
else:
predicted = np.concatenate((predicted, pred_y), axis=1)
actual = np.concatenate((actual, test_y), axis=1)
print 'predicted shape', predicted.shape
print 'actual shape', actual.shape
print 'all maes are: ', maes
print 'all mses are: ', mses
print 'all maes (in degree are ) are: ', maeds
print 'all mses (in degree are ) are: ', mseds
print 'computing disorientation'
disorientation = compute_disorientations(predicted, actual, is_degree=False)
print 'mean disorientation is: ', disorientation