-
Notifications
You must be signed in to change notification settings - Fork 485
/
deepstream_imagedata-multistream_redaction.py
502 lines (435 loc) · 19.4 KB
/
deepstream_imagedata-multistream_redaction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#!/usr/bin/env python3
################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import argparse
import sys
sys.path.append('../')
import gi
import configparser
gi.require_version('Gst', '1.0')
gi.require_version('GstRtspServer', '1.0')
from gi.repository import GLib, Gst, GstRtspServer
from ctypes import *
import time
import sys
import math
import platform
from common.platform_info import PlatformInfo
from common.bus_call import bus_call
from common.FPS import PERF_DATA
import numpy as np
import pyds
import cv2
import os
import os.path
from os import path
perf_data = None
frame_count = {}
saved_count = {}
global PGIE_CLASS_ID_PERSON
PGIE_CLASS_ID_PERSON = 0
PGIE_CLASS_ID_BAG = 1
global PGIE_CLASS_ID_FACE
PGIE_CLASS_ID_FACE = 2
MAX_DISPLAY_LEN = 64
MUXER_OUTPUT_WIDTH = 720
MUXER_OUTPUT_HEIGHT = 576
MUXER_BATCH_TIMEOUT_USEC = 33000
TILED_OUTPUT_WIDTH = 720
TILED_OUTPUT_HEIGHT = 576
GST_CAPS_FEATURES_NVMM = "memory:NVMM"
pgie_classes_str = ["Person", "Bag", "Face"]
MIN_CONFIDENCE = 0.3
MAX_CONFIDENCE = 0.4
# tiler_sink_pad_buffer_probe will extract metadata received on tiler sink pad
# and update params for drawing rectangle, object information etc.
def tiler_sink_pad_buffer_probe(pad, info, u_data):
frame_number = 0
num_rects = 0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.NvDsFrameMeta.cast()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number = frame_meta.frame_num
l_obj = frame_meta.obj_meta_list
num_rects = frame_meta.num_obj_meta
is_first_obj = True
save_image = False
obj_counter = {
PGIE_CLASS_ID_PERSON: 0,
PGIE_CLASS_ID_BAG: 0,
PGIE_CLASS_ID_FACE: 0
}
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
obj_meta = pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1
# osd_rect_params = pyds.NvOSD_RectParams.cast(obj_meta.rect_params)
# Draw black patch to cover faces (class_id = 2), can change to other colors
if (obj_meta.class_id == PGIE_CLASS_ID_FACE):
obj_meta.rect_params.border_width = 0
obj_meta.rect_params.has_bg_color = 1
obj_meta.rect_params.bg_color.red = 0.0
obj_meta.rect_params.bg_color.green = 0.0
obj_meta.rect_params.bg_color.blue = 0.0
obj_meta.rect_params.bg_color.alpha = 1.0
elif (obj_meta.class_id == PGIE_CLASS_ID_PERSON ) :
obj_meta.rect_params.border_width = 0
obj_meta.rect_params.has_bg_color = 1
obj_meta.rect_params.bg_color.red = 0.0
obj_meta.rect_params.bg_color.green = 0.0
obj_meta.rect_params.bg_color.blue = 0.0
obj_meta.rect_params.bg_color.alpha = 0.5
# Periodically check for objects and save the annotated object to file.
if saved_count["stream_{}".format(frame_meta.pad_index)] % 10 == 0 and obj_meta.class_id == PGIE_CLASS_ID_FACE :
if is_first_obj:
is_first_obj = False
# Getting Image data using nvbufsurface
# the input should be address of buffer and batch_id
n_frame = pyds.get_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id)
n_frame = crop_object(n_frame, obj_meta)
# convert python array into numpy array format in the copy mode.
frame_copy = np.array(n_frame, copy=True, order='C')
# convert the array into cv2 default color format
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_RGBA2BGRA)
if platform_info.is_integrated_gpu(): # If Jetson, since the buffer is mapped to CPU for retrieval, it must also be unmapped
pyds.unmap_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id) # The unmap call should be made after operations with the original array are complete.
# The original array cannot be accessed after this call.
save_image = True
try:
l_obj = l_obj.next
except StopIteration:
break
print("Frame Number=", frame_number, "Number of Objects=", num_rects, "Face_count=",
obj_counter[PGIE_CLASS_ID_FACE], "Person_count=", obj_counter[PGIE_CLASS_ID_PERSON])
# Update frame rate through this probe
stream_index = "stream{0}".format(frame_meta.pad_index)
global perf_data
perf_data.update_fps(stream_index)
if save_image:
img_path = "{}/stream_{}/frame_{}.jpg".format(folder_name, frame_meta.pad_index, frame_number)
cv2.imwrite(img_path, frame_copy)
saved_count["stream_{}".format(frame_meta.pad_index)] += 1
try:
l_frame = l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
def crop_object(image, obj_meta):
rect_params = obj_meta.rect_params
top = int(rect_params.top)
left = int(rect_params.left)
width = int(rect_params.width)
height = int(rect_params.height)
obj_name = pgie_classes_str[obj_meta.class_id]
crop_img = image[top:top+height, left:left+width]
return crop_img
def cb_newpad(decodebin, decoder_src_pad, data):
print("In cb_newpad\n")
caps = decoder_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)
# Need to check if the pad created by the decodebin is for video and not
# audio.
if (gstname.find("video") != -1):
# Link the decodebin pad only if decodebin has picked nvidia
# decoder plugin nvdec_*. We do this by checking if the pad caps contain
# NVMM memory features.
if features.contains("memory:NVMM"):
# Get the source bin ghost pad
bin_ghost_pad = source_bin.get_static_pad("src")
if not bin_ghost_pad.set_target(decoder_src_pad):
sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
else:
sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")
def decodebin_child_added(child_proxy, Object, name, user_data):
print("Decodebin child added:", name, "\n")
if name.find("decodebin") != -1:
Object.connect("child-added", decodebin_child_added, user_data)
if not platform_info.is_integrated_gpu() and name.find("nvv4l2decoder") != -1:
# Use CUDA unified memory in the pipeline so frames
# can be easily accessed on CPU in Python.
Object.set_property("cudadec-memtype", 2)
# print("Seting bufapi_version\n")
# Object.set_property("bufapi-version", True)
def create_source_bin(index, uri):
print("Creating source bin")
# Create a source GstBin to abstract this bin's content from the rest of the
# pipeline
bin_name = "source-bin-%02d" % index
print(bin_name)
nbin = Gst.Bin.new(bin_name)
if not nbin:
sys.stderr.write(" Unable to create source bin \n")
# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
sys.stderr.write(" Unable to create uri decode bin \n")
# We set the input uri to the source element
uri_decode_bin.set_property("uri", uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has beed created by the decodebin
uri_decode_bin.connect("pad-added", cb_newpad, nbin)
uri_decode_bin.connect("child-added", decodebin_child_added, nbin)
# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
if not bin_pad:
sys.stderr.write(" Failed to add ghost pad in source bin \n")
return None
return nbin
def main(uri_inputs,codec,bitrate ):
# Check input arguments
number_sources = len(uri_inputs)
global perf_data
perf_data = PERF_DATA(number_sources)
global folder_name
folder_name = "out_crops"
if path.exists(folder_name):
sys.stderr.write("The output folder %s already exists. Please remove it first.\n" % folder_name)
sys.exit(1)
os.mkdir(folder_name)
print("Frames will be saved in ", folder_name)
global platform_info
platform_info = PlatformInfo()
# Standard GStreamer initialization
Gst.init(None)
# Create gstreamer elements */
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
is_live = False
if not pipeline:
sys.stderr.write(" Unable to create Pipeline \n")
print("Creating streamux \n ")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
pipeline.add(streammux)
for i in range(number_sources):
os.mkdir(folder_name + "/stream_" + str(i))
frame_count["stream_" + str(i)] = 0
saved_count["stream_" + str(i)] = 0
print("Creating source_bin ", i, " \n ")
uri_name = uri_inputs[i]
if uri_name.find("rtsp://") == 0:
is_live = True
source_bin = create_source_bin(i, uri_name)
if not source_bin:
sys.stderr.write("Unable to create source bin \n")
pipeline.add(source_bin)
padname = "sink_%u" % i
sinkpad = streammux.request_pad_simple(padname)
if not sinkpad:
sys.stderr.write("Unable to create sink pad bin \n")
srcpad = source_bin.get_static_pad("src")
if not srcpad:
sys.stderr.write("Unable to create src pad bin \n")
srcpad.link(sinkpad)
print("Creating Pgie \n ")
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
sys.stderr.write(" Unable to create pgie \n")
# Add nvvidconv1 and filter1 to convert the frames to RGBA
# which is easier to work with in Python.
print("Creating nvvidconv1 \n ")
nvvidconv1 = Gst.ElementFactory.make("nvvideoconvert", "convertor1")
if not nvvidconv1:
sys.stderr.write(" Unable to create nvvidconv1 \n")
print("Creating filter1 \n ")
caps1 = Gst.Caps.from_string("video/x-raw(memory:NVMM), format=RGBA")
filter1 = Gst.ElementFactory.make("capsfilter", "filter1")
if not filter1:
sys.stderr.write(" Unable to get the caps filter1 \n")
filter1.set_property("caps", caps1)
print("Creating tiler \n ")
tiler = Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
if not tiler:
sys.stderr.write(" Unable to create tiler \n")
print("Creating nvvidconv \n ")
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
sys.stderr.write(" Unable to create nvvidconv \n")
print("Creating nvosd \n ")
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write(" Unable to create nvosd \n")
nvvidconv_postosd = Gst.ElementFactory.make("nvvideoconvert", "convertor_postosd")
if not nvvidconv_postosd:
sys.stderr.write(" Unable to create nvvidconv_postosd \n")
# Create a caps filter
caps = Gst.ElementFactory.make("capsfilter", "filter")
caps.set_property("caps", Gst.Caps.from_string("video/x-raw(memory:NVMM), format=I420"))
# Make the encoder
if codec == "H264":
encoder = Gst.ElementFactory.make("nvv4l2h264enc", "encoder")
print("Creating H264 Encoder")
elif codec == "H265":
encoder = Gst.ElementFactory.make("nvv4l2h265enc", "encoder")
print("Creating H265 Encoder")
if not encoder:
sys.stderr.write(" Unable to create encoder")
encoder.set_property('bitrate', bitrate)
if platform_info.is_integrated_gpu():
encoder.set_property('preset-level', 1)
encoder.set_property('insert-sps-pps', 1)
#encoder.set_property('bufapi-version', 1)
# Make the payload-encode video into RTP packets
if codec == "H264":
rtppay = Gst.ElementFactory.make("rtph264pay", "rtppay")
print("Creating H264 rtppay")
elif codec == "H265":
rtppay = Gst.ElementFactory.make("rtph265pay", "rtppay")
print("Creating H265 rtppay")
if not rtppay:
sys.stderr.write(" Unable to create rtppay")
# Make the UDP sink
updsink_port_num = 5400
sink = Gst.ElementFactory.make("udpsink", "udpsink")
if not sink:
sys.stderr.write(" Unable to create udpsink")
sink.set_property('host', '224.224.255.255')
sink.set_property('port', updsink_port_num)
sink.set_property('async', False)
sink.set_property('sync', 1)
print("Playing file {} ".format(uri_inputs))
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', number_sources)
streammux.set_property('batched-push-timeout', MUXER_BATCH_TIMEOUT_USEC)
pgie.set_property('config-file-path', "config_infer_primary_peoplenet.txt")
pgie_batch_size = pgie.get_property("batch-size")
if (pgie_batch_size != number_sources):
print("WARNING: Overriding infer-config batch-size", pgie_batch_size, " with number of sources ",
number_sources, " \n")
pgie.set_property("batch-size", number_sources)
tiler_rows = int(math.sqrt(number_sources))
tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
tiler.set_property("rows", tiler_rows)
tiler.set_property("columns", tiler_columns)
tiler.set_property("width", TILED_OUTPUT_WIDTH)
tiler.set_property("height", TILED_OUTPUT_HEIGHT)
if not platform_info.is_integrated_gpu():
# Use CUDA unified memory in the pipeline so frames
# can be easily accessed on CPU in Python.
mem_type = int(pyds.NVBUF_MEM_CUDA_UNIFIED)
streammux.set_property("nvbuf-memory-type", mem_type)
nvvidconv.set_property("nvbuf-memory-type", mem_type)
nvvidconv1.set_property("nvbuf-memory-type", mem_type)
tiler.set_property("nvbuf-memory-type", mem_type)
nvvidconv_postosd.set_property("nvbuf-memory-type", mem_type)
print("Adding elements to Pipeline \n")
pipeline.add(pgie)
pipeline.add(tiler)
pipeline.add(nvvidconv)
pipeline.add(filter1)
pipeline.add(nvvidconv1)
pipeline.add(nvosd)
pipeline.add(nvvidconv_postosd)
pipeline.add(caps)
pipeline.add(encoder)
pipeline.add(rtppay)
pipeline.add(sink)
print("Linking elements in the Pipeline \n")
streammux.link(pgie)
pgie.link(nvvidconv1)
nvvidconv1.link(filter1)
filter1.link(tiler)
tiler.link(nvvidconv)
nvvidconv.link(nvosd)
nvosd.link(nvvidconv_postosd)
nvvidconv_postosd.link(caps)
caps.link(encoder)
encoder.link(rtppay)
rtppay.link(sink)
# create an event loop and feed gstreamer bus mesages to it
loop = GLib.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)
# Start streaming
rtsp_port_num = 8554
server = GstRtspServer.RTSPServer.new()
server.props.service = "%d" % rtsp_port_num
server.attach(None)
factory = GstRtspServer.RTSPMediaFactory.new()
factory.set_launch( "( udpsrc name=pay0 port=%d buffer-size=524288 caps=\"application/x-rtp, media=video, clock-rate=90000, encoding-name=(string)%s, payload=96 \" )" % (updsink_port_num, codec))
factory.set_shared(True)
server.get_mount_points().add_factory("/ds-test", factory)
print("\n *** DeepStream: Launched RTSP Streaming at rtsp://localhost:%d/ds-test ***\n\n" % rtsp_port_num)
tiler_sink_pad = tiler.get_static_pad("sink")
if not tiler_sink_pad:
sys.stderr.write(" Unable to get sink pad \n")
else:
tiler_sink_pad.add_probe(Gst.PadProbeType.BUFFER, tiler_sink_pad_buffer_probe, 0)
# perf callback function to print fps every 5 sec
GLib.timeout_add(5000, perf_data.perf_print_callback)
print("Starting pipeline \n")
# start play back and listed to events
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except:
pass
# cleanup
print("Exiting app\n")
pipeline.set_state(Gst.State.NULL)
def parse_args():
parser = argparse.ArgumentParser(description='RTSP Output Sample Application Help ')
parser.add_argument("-i","--uri_inputs", metavar='N', type=str, nargs='+',
help='Path to inputs URI e.g. rtsp:// ... or file:// seperated by space')
parser.add_argument("-c", "--codec", default="H264",
help="RTSP Streaming Codec H264/H265 , default=H264", choices=['H264','H265'])
parser.add_argument("-b", "--bitrate", default=4000000,
help="Set the encoding bitrate ", type=int)
# Check input arguments
if len(sys.argv)==1:
parser.print_help(sys.stderr)
sys.exit(1)
args = parser.parse_args()
print("URI Inputs: " + str(args.uri_inputs ))
return args.uri_inputs , args.codec, args.bitrate
if __name__ == '__main__':
uri_inputs , out_codec, out_bitrate = parse_args()
sys.exit(main(uri_inputs, out_codec, out_bitrate ))