-
Notifications
You must be signed in to change notification settings - Fork 30
/
step2_2_qat_training.py
313 lines (279 loc) · 17.3 KB
/
step2_2_qat_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import argparse
import torch
import torch.utils.data
from torch import nn
import json
# from torchvision import models
sys.path.insert(0, "./vision")
try:
# This repository is needed to add QDQ nodes in residual branches
# Modified the model definition as instructed in the pytorch-quantization toolkit:
# https://github.com/NVIDIA/TensorRT/blob/main/tools/pytorch-quantization/examples/torchvision/models/classification/resnet.py#L154-L155
from torchvision import models
except ImportError:
print("Error importing pytorch's torchvision repository!")
from train_utils import train_loop, evaluate, data_loading, eval_baseline, prune_trained_model_custom, collect_stats, compute_amax
sys.path.append("./vision/references/classification/")
try:
from train import load_data
import utils as utils_vision
except ImportError:
print("Error importing pytorch's vision repository!")
# QAT Toolkit
from pytorch_quantization import quant_modules
def train_qat(args, criterion, data_loader, data_loader_test, data_loader_val, data_loader_calib):
# Enable model quantization: relevant layers will be quantized except residual connections
quant_modules.initialize()
try:
# Instantiate model and quantize residual branches (quantize=True)
model_qat = models.__dict__[args.model_name](pretrained=True, quantize=True)
except NotImplementedError:
print("Model definition doesn't accept `quantize` parameter. Instantiating model without quantizing residual connections.")
model_qat = models.__dict__[args.model_name](pretrained=True)
# quant_modules.deactivate()
if args.distributed:
model_qat = torch.nn.parallel.DistributedDataParallel(model_qat, device_ids=[args.gpu])
else:
model_qat = torch.nn.DataParallel(model_qat.cuda(args.device))
model_qat_without_ddp = model_qat.module
# Set optimizer
optimizer = torch.optim.SGD(model_qat.parameters(), lr=args.qat_lr)
if not args.is_dense_training:
print("Training Sparse model!")
prune_trained_model_custom(model_qat, optimizer, compute_sparse_masks=False)
sparse_ckpt_path = os.path.join(args.output_dir, args.sparse_ckpt)
if os.path.exists(sparse_ckpt_path):
print("> Loading Sparse ckpt from {}!".format(sparse_ckpt_path))
try:
load_dict = torch.load(sparse_ckpt_path)
except Exception:
print("Loading checkpoint from distributed model. Mapping GPU location to local single-GPU setting.")
load_dict = torch.load(sparse_ckpt_path, map_location="cuda:{}".format(args.device))
try:
model_qat.load_state_dict(load_dict["model_state_dict"]) # , strict=False)
except Exception:
model_qat_without_ddp.load_state_dict(load_dict["model_state_dict"], strict=False)
qat_ckpt_path = os.path.join(args.output_dir, args.qat_ckpt)
if os.path.exists(qat_ckpt_path) and not args.rewrite_qat_weights:
print("> Loading QAT ckpt from {}!".format(qat_ckpt_path))
load_dict = torch.load(qat_ckpt_path)
model_qat_without_ddp.load_state_dict(load_dict["model_state_dict"])
else:
# ======== Model calibration ========
print("> Calibration started...")
calibrated_ckpt = os.path.join(args.output_dir, "calibrated_ckpt.pth")
if os.path.exists(calibrated_ckpt):
checkpoint = torch.load(calibrated_ckpt, map_location="cuda:{}".format(args.device))
model_qat_without_ddp.load_state_dict(checkpoint, strict=False)
else:
collect_stats(
model_qat_without_ddp,
data_loader_calib,
num_batches=len(data_loader_calib),
)
amax_computation_method = "entropy"
compute_amax(model_qat_without_ddp, method=amax_computation_method)
# Save the calibrated model
torch.save(model_qat_without_ddp.state_dict(), calibrated_ckpt)
# ======== QAT fine-tuning ========
print("> Fine-tuning started...")
# Set LR scheduler
if args.lr_scheduler == "step":
main_lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=args.lr_step_size,
gamma=args.lr_gamma
)
elif args.lr_scheduler == "multistep":
main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=args.lr_milestones, gamma=args.lr_gamma
)
else:
raise ("LR Scheduler {} not supported!".format(args.lr_scheduler))
if args.lr_warmup_epochs > 0:
if args.lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
)
elif args.lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_lr_scheduler, main_lr_scheduler],
milestones=[args.lr_warmup_epochs]
)
else:
lr_scheduler = main_lr_scheduler
# Training loop
train_loop(model_qat, model_qat_without_ddp, criterion, optimizer, data_loader, data_loader_val,
torch.device("cuda:{}".format(args.device)),
lr_scheduler=lr_scheduler, epoch=args.qat_epoch, args=args,
summary_writer_dir=os.path.join(args.output_dir, "logs", "quant"),
save_ckpt_path=qat_ckpt_path, opset=13,
steps_per_epoch=args.qat_steps_per_epoch)
# Load BEST model
if os.path.exists(qat_ckpt_path):
print("> Loading QAT ckpt from {}!".format(qat_ckpt_path))
load_dict = torch.load(qat_ckpt_path)
model_qat_without_ddp.load_state_dict(load_dict["model_state_dict"])
# Evaluate model
acc1, acc5 = None, None
if args.eval_qat:
with torch.no_grad():
acc1, acc5, _ = evaluate(model_qat_without_ddp, criterion, data_loader_test, device="cuda", print_freq=args.print_freq)
return model_qat, acc1, acc5
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="This script fine-tunes a sparse or dense model via QAT.")
parser.add_argument("--model_name", type=str, default="resnet34",
help="See more model names at https://pytorch.org/vision/stable/models.html and "
" https://github.com/pytorch/vision/tree/main/torchvision/models")
parser.add_argument("--data_dir", type=str, default="/media/Data/imagenet_data", help="Path to ImageNet dataset.")
parser.add_argument("--batch_size", type=int, default=128, help="Batch size.")
parser.add_argument("--train_data_size", type=int, default=None,
help="If None, take the entire train data. Otherwise, take subset.")
parser.add_argument("--test_data_size", type=int, default=None,
help="Dataset to be used for the final model evaluation (to obtain accuracy)."
" If None, take the entire val data. Otherwise, take subset.")
parser.add_argument("--calib_data_size", type=int, default=68,
help="Dataset to be used for model calibration."
" If None, take the entire val data. Otherwise, take subset.")
parser.add_argument("--val_data_size", type=int, default=None,
help="Dataset to be used during training to check for best checkpoint."
" If None, take the entire val data. Otherwise, take subset."
" Test and Val data are obtained from the same dataset. The only difference is the number"
" of samples. The motivation behind this is that a small val data should be enough to "
" check for the best checkpoint while removing the time bottleneck of the validation"
" step during training. After training is done, the model can then be evaluated on the "
" complete val data.")
parser.add_argument("--device", type=int, default=0, help="GPU number.")
parser.add_argument("--output_dir", type=str, default="./weights_qat",
help="Path to save outputs (log files, checkpoint, ...).")
# Sparse params
parser.add_argument("--sparse_ckpt", type=str, default="sparse-finetuned_best.pth",
help="Sparse checkpoint filename (must be inside `output_dir`). If checkpoint exists, simply "
"load it. Otherwise, perform Sparse fine-tuning and save checkpoint.")
# QAT params
parser.add_argument("--qat_epoch", type=int, default=10,
help="Number of epochs to fine-tune QAT model.")
parser.add_argument("--qat_steps_per_epoch", type=int, default=500,
help="Steps per epoch: number of steps = train_data_size/batch_size."
" If None, use the entire train data in each epoch. Otherwise, use a subset."
" Note that setting train_data_size=500*bs is equivalent to setting train_data_size=None"
" and steps_per_epoch=500. The only difference is that by setting train_data_size "
" directly, it will update the train_loop verbose print.")
parser.add_argument("--qat_lr", type=float, default=0.001, help="Base learning rate for QAT workflow.")
parser.add_argument("--qat_ckpt", type=str, default="quant-finetuned_best.pth",
help="QAT checkpoint filename (must be inside `output_dir` and of type .pth)."
" If checkpoint exists, simply load it. "
" Otherwise, perform QAT fine-tuning and save checkpoint.")
# LR scheduler params
parser.add_argument("--lr_scheduler", default="multistep", type=str, help="LR Scheduler, options={multistep, step}")
parser.add_argument("--lr_warmup_method", default="constant", type=str, help="Warmup method, options={constant, linear}")
parser.add_argument("--lr_warmup_epochs", default=1, type=int, help="the number of epochs to warmup (default: 0)")
parser.add_argument("--lr_warmup_decay", default=0.1, type=float, help="the decay for lr") # 0.01
parser.add_argument("--lr_step_size", default=4, type=int,
help="Decrease lr every step-size epochs. Needed for StepLR.")
parser.add_argument("--lr_gamma", default=0.1, type=float,
help="Decrease lr by a factor of lr-gamma. Needed for both Step and MultiStepR.")
parser.add_argument('--lr_milestones', nargs='+', type=int, default=[2, 7],
help='Milestones for MultiStepLR scheduler. Use like: --milestones 1 2 7')
# torchvision args
parser.add_argument("--print_freq", default=20, type=int, help="print frequency")
# distributed training parameters
parser.add_argument("--world_size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist_url", default="env://", type=str, help="url used to set up distributed training")
parser.add_argument("--model_ema", action="store_true", help="enable tracking Exponential Moving Average of model parameters")
parser.add_argument("--model_ema_steps", type=int, default=32,
help="the number of iterations that controls how often to update the EMA model (default: 32)")
parser.add_argument("--model_ema_decay", type=float, default=0.99998,
help="decay factor for Exponential Moving Average of model parameters (default: 0.99998)")
parser.add_argument("--clip_grad_norm", default=None, type=float, help="the maximum gradient norm (default None)")
# Dataloader arguments from 'vision' repo
parser.add_argument("--cache-dataset", dest="cache_dataset", action="store_true",
help="Cache the datasets for quicker initialization. It also serializes the transforms")
parser.add_argument("--test-only", dest="test_only", action="store_true", help="Only test the model")
parser.add_argument("--auto-augment", default=None, type=str, help="auto augment policy (default: None)")
parser.add_argument("--ra-magnitude", default=9, type=int, help="magnitude of auto augment policy")
parser.add_argument("--augmix-severity", default=3, type=int, help="severity of augmix policy")
parser.add_argument("--random-erase", default=0.0, type=float, help="random erasing probability (default: 0.0)")
parser.add_argument("--interpolation", default="bilinear", type=str, help="the interpolation method (default: bilinear)")
parser.add_argument("--val-resize-size", default=256, type=int, help="the resize size used for validation (default: 256)")
parser.add_argument("--val-crop-size", default=224, type=int, help="the central crop size used for validation (default: 224)")
parser.add_argument("--train-crop-size", default=224, type=int, help="the random crop size used for training (default: 224)")
parser.add_argument("--ra-sampler", action="store_true", help="whether to use Repeated Augmentation in training")
parser.add_argument("--ra-reps", default=3, type=int, help="number of repetitions for Repeated Augmentation (default: 3)")
parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
# Distributed
parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
# Eval params
parser.add_argument("--save_baseline", dest="save_baseline", action="store_true", help="Save baseline model.")
parser.add_argument("--eval_baseline", dest="eval_baseline", action="store_true", help="Evaluate baseline model.")
parser.add_argument("--eval_qat", dest="eval_qat", action="store_true", help="Evaluate QAT model.")
parser.add_argument("--rewrite_qat_weights", dest="rewrite_qat_weights", action="store_true", help="Rewrite QAT checkpoint if it exists.")
parser.add_argument("--is_dense_training", dest="is_dense_training", action="store_true",
help="True if we should activate Dense QAT training instead of Sparse.")
args = parser.parse_args()
utils_vision.init_distributed_mode(args)
if args.distributed:
print("Running distributed script with world size of {}".format(args.world_size))
else:
print("Running script in non-distributed manner!")
args.output_dir = os.path.join(args.output_dir, args.model_name)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Data loading
print("---------- Loading data ----------")
_, _, data_loader_calib = data_loading(
args.data_dir, args.batch_size, args,
val_data_size=args.calib_data_size
)
data_loader, data_loader_test, data_loader_val = data_loading(
args.data_dir, args.batch_size, args,
args.train_data_size, args.test_data_size, args.val_data_size
)
# Set loss criteria
criterion = nn.CrossEntropyLoss()
# ############# BASELINE ##################
assert hasattr(models, args.model_name), print("Model {} not supported!".format(args.model_name))
model, acc1, acc5 = eval_baseline(args, criterion, data_loader_test)
# ############# QAT #######################
if args.is_dense_training:
print("---------- Fine-tuning Dense as QAT model for {} epochs ----------".format(args.qat_epoch))
else:
print("---------- Fine-tuning Sparse as QAT model for {} epochs ----------".format(args.qat_epoch))
model_qat, acc1_qat, acc5_qat = train_qat(
args, criterion, data_loader, data_loader_test, data_loader_val, data_loader_calib
)
# ############ Write logs to 'out.log' and Save args into 'args.json' ###############
results_str = " ------------ Evaluation Results ------------\n"
if args.eval_baseline:
results_str += "Baseline: Top-1 {:.3f}%, Top-5: {:.3f}%\n".format(acc1, acc5)
if args.eval_qat:
results_str += "QAT: Top-1 {:.3f}%, Top-5 {:.3f}%\n".format(acc1_qat, acc5_qat)
results_str += " ------------ CMD -------------------\n"
results_str += '\n'.join(sys.argv[1:])
with open(os.path.join(args.output_dir, "out_qat.log"), 'w') as f:
f.write(results_str)
with open(os.path.join(args.output_dir, "args_qat.json"), 'w') as f:
json.dump(args.__dict__, f, indent=2)
print("End!")