We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
module @outs_t27_4 { func.func @main() -> tensor<?xf32> { %cst = stablehlo.constant dense<0.000000e+00> : tensor<f32> %cst_0 = stablehlo.constant dense<1.000000e+00> : tensor<f32> %cst_1 = stablehlo.constant dense<5.000000e+00> : tensor<f32> %c = stablehlo.constant dense<> : tensor<0xi32> %c_2 = stablehlo.constant dense<> : tensor<0xi32> %0 = stablehlo.compare EQ, %c, %c_2 : (tensor<0xi32>, tensor<0xi32>) -> tensor<0xi1> %1 = stablehlo.select %0, %c, %c : tensor<0xi1>, tensor<0xi32> %2 = stablehlo.dynamic_broadcast_in_dim %cst_0, %1, dims = [] : (tensor<f32>, tensor<0xi32>) -> tensor<f32> %3 = stablehlo.dynamic_broadcast_in_dim %cst_1, %1, dims = [] : (tensor<f32>, tensor<0xi32>) -> tensor<f32> %4 = stablehlo.subtract %2, %3 : tensor<f32> %cst_3 = stablehlo.constant dense<5.000000e-01> : tensor<f32> %5 = stablehlo.compare EQ, %c, %c_2 : (tensor<0xi32>, tensor<0xi32>) -> tensor<0xi1> %6 = stablehlo.select %5, %c, %c : tensor<0xi1>, tensor<0xi32> %7 = stablehlo.dynamic_broadcast_in_dim %4, %6, dims = [] : (tensor<f32>, tensor<0xi32>) -> tensor<f32> %8 = stablehlo.dynamic_broadcast_in_dim %cst_3, %6, dims = [] : (tensor<f32>, tensor<0xi32>) -> tensor<f32> %9 = stablehlo.divide %7, %8 : tensor<f32> %10 = stablehlo.floor %9 : tensor<f32> %11 = stablehlo.compare EQ, %c, %c_2 : (tensor<0xi32>, tensor<0xi32>) -> tensor<0xi1> %12 = stablehlo.select %11, %c, %c : tensor<0xi1>, tensor<0xi32> %13 = stablehlo.dynamic_broadcast_in_dim %cst, %12, dims = [] : (tensor<f32>, tensor<0xi32>) -> tensor<f32> %14 = stablehlo.dynamic_broadcast_in_dim %10, %12, dims = [] : (tensor<f32>, tensor<0xi32>) -> tensor<f32> %15 = stablehlo.subtract %13, %14 : tensor<f32> %16 = stablehlo.convert %15 : (tensor<f32>) -> tensor<i32> %c_4 = stablehlo.constant dense<1> : tensor<1xi32> %17 = stablehlo.dynamic_broadcast_in_dim %16, %c_4, dims = [] : (tensor<i32>, tensor<1xi32>) -> tensor<1xi32> %18 = stablehlo.dynamic_iota %17, dim = 0 : (tensor<1xi32>) -> tensor<?xf32> %19 = stablehlo.dynamic_broadcast_in_dim %16, %c_4, dims = [] : (tensor<i32>, tensor<1xi32>) -> tensor<1xi32> %20 = stablehlo.dynamic_broadcast_in_dim %cst_3, %19, dims = [] : (tensor<f32>, tensor<1xi32>) -> tensor<?xf32> %21 = stablehlo.get_dimension_size %18, dim = 0 : (tensor<?xf32>) -> tensor<i32> %22 = stablehlo.reshape %21 : (tensor<i32>) -> tensor<1xi32> %23 = stablehlo.compare EQ, %22, %c_4 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi1> %24 = stablehlo.get_dimension_size %20, dim = 0 : (tensor<?xf32>) -> tensor<i32> %25 = stablehlo.reshape %24 : (tensor<i32>) -> tensor<1xi32> %26 = stablehlo.select %23, %25, %22 : tensor<1xi1>, tensor<1xi32> %27 = stablehlo.dynamic_broadcast_in_dim %18, %26, dims = [0] : (tensor<?xf32>, tensor<1xi32>) -> tensor<?xf32> %28 = stablehlo.dynamic_broadcast_in_dim %20, %26, dims = [0] : (tensor<?xf32>, tensor<1xi32>) -> tensor<?xf32> %29 = stablehlo.multiply %27, %28 : tensor<?xf32> %30 = stablehlo.dynamic_broadcast_in_dim %16, %c_4, dims = [] : (tensor<i32>, tensor<1xi32>) -> tensor<1xi32> %31 = stablehlo.dynamic_broadcast_in_dim %cst_0, %30, dims = [] : (tensor<f32>, tensor<1xi32>) -> tensor<?xf32> %32 = stablehlo.get_dimension_size %29, dim = 0 : (tensor<?xf32>) -> tensor<i32> %33 = stablehlo.reshape %32 : (tensor<i32>) -> tensor<1xi32> %34 = stablehlo.compare EQ, %33, %c_4 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi1> %35 = stablehlo.get_dimension_size %31, dim = 0 : (tensor<?xf32>) -> tensor<i32> %36 = stablehlo.reshape %35 : (tensor<i32>) -> tensor<1xi32> %37 = stablehlo.select %34, %36, %33 : tensor<1xi1>, tensor<1xi32> %38 = stablehlo.dynamic_broadcast_in_dim %29, %37, dims = [0] : (tensor<?xf32>, tensor<1xi32>) -> tensor<?xf32> %39 = stablehlo.dynamic_broadcast_in_dim %31, %37, dims = [0] : (tensor<?xf32>, tensor<1xi32>) -> tensor<?xf32> %40 = stablehlo.add %38, %39 : tensor<?xf32> return %40 : tensor<?xf32> } }
The text was updated successfully, but these errors were encountered:
We have fix internally, will be pushed out in the next sync (tomorrow morning)
Sorry, something went wrong.
There is no longer an error on the main branch.
No branches or pull requests
The text was updated successfully, but these errors were encountered: