|
45 | 45 | from tensorrt_llm.llmapi.utils import enable_llm_debug |
46 | 46 | from tensorrt_llm.mapping import Mapping |
47 | 47 | from tensorrt_llm.models.modeling_utils import QuantConfig |
| 48 | +from tensorrt_llm.quantization.mode import QuantAlgo |
48 | 49 | from tensorrt_llm.quantization.utils.fp8_utils import ( |
49 | 50 | resmooth_to_fp8_e8m0, transform_sf_into_required_layout) |
50 | 51 |
|
@@ -457,10 +458,13 @@ def __init__(self, |
457 | 458 | layer_idx=layer_idx, |
458 | 459 | # DS-R1 W4A8 is only supported through custom quantization script from |
459 | 460 | # examples/quantization/quantize_mixed_precision_moe.py |
460 | | - weight_loading_mode=(MoEWeightLoadingMode.W4A8_CUSTOM |
461 | | - if model_config.quant_config.quant_mode. |
462 | | - is_int4_weight_only_per_group() else |
463 | | - MoEWeightLoadingMode.VANILLA)) |
| 461 | + weight_loading_mode=( |
| 462 | + MoEWeightLoadingMode.W4A8_CUSTOM |
| 463 | + if self._get_experts_quant_config( |
| 464 | + model_config, |
| 465 | + layer_idx).layer_quant_mode.is_int4_weight_only_per_group() |
| 466 | + else MoEWeightLoadingMode.VANILLA), |
| 467 | + ) |
464 | 468 |
|
465 | 469 | self.mapping = model_config.mapping |
466 | 470 |
|
@@ -525,6 +529,13 @@ def _compute_shared_expert_tp_size(self, intermediate_size: int, |
525 | 529 |
|
526 | 530 | return shared_tp_size, shared_output_scale |
527 | 531 |
|
| 532 | + @staticmethod |
| 533 | + def _get_experts_quant_config(model_config, layer_idx: int): |
| 534 | + if model_config.quant_config_dict is None: |
| 535 | + return None |
| 536 | + return model_config.quant_config_dict.get( |
| 537 | + f"model.layers.{layer_idx}.mlp.experts", model_config.quant_config) |
| 538 | + |
528 | 539 | def compute_routed_output(self, hidden_states, hidden_states_fp4, |
529 | 540 | all_rank_num_tokens, all_rank_max_num_tokens, |
530 | 541 | do_finalize): |
@@ -635,6 +646,9 @@ def __init__(self, model_config: ModelConfig[PretrainedConfig], |
635 | 646 | quant_config = self._get_decoder_layer_quant_config( |
636 | 647 | model_config, layer_idx) |
637 | 648 | self.is_nvfp4 = quant_config.layer_quant_mode.has_nvfp4() |
| 649 | + assert ( |
| 650 | + quant_config.quant_algo |
| 651 | + is not QuantAlgo.MIXED_PRECISION), "MIXED_PRECISION is ambiguous" |
638 | 652 |
|
639 | 653 | has_tp = mapping.has_tp() |
640 | 654 |
|
|
0 commit comments