|
45 | 45 | from tensorrt_llm.llmapi.utils import enable_llm_debug |
46 | 46 | from tensorrt_llm.mapping import Mapping |
47 | 47 | from tensorrt_llm.models.modeling_utils import QuantConfig |
| 48 | +from tensorrt_llm.quantization.mode import QuantAlgo |
48 | 49 | from tensorrt_llm.quantization.utils.fp8_utils import ( |
49 | 50 | resmooth_to_fp8_e8m0, transform_sf_into_required_layout) |
50 | 51 |
|
@@ -462,10 +463,13 @@ def __init__(self, |
462 | 463 | layer_idx=layer_idx, |
463 | 464 | # DS-R1 W4A8 is only supported through custom quantization script from |
464 | 465 | # examples/quantization/quantize_mixed_precision_moe.py |
465 | | - weight_loading_mode=(MoEWeightLoadingMode.W4A8_CUSTOM |
466 | | - if model_config.quant_config.quant_mode. |
467 | | - is_int4_weight_only_per_group() else |
468 | | - MoEWeightLoadingMode.VANILLA)) |
| 466 | + weight_loading_mode=( |
| 467 | + MoEWeightLoadingMode.W4A8_CUSTOM |
| 468 | + if self._get_experts_quant_config( |
| 469 | + model_config, |
| 470 | + layer_idx).layer_quant_mode.is_int4_weight_only_per_group() |
| 471 | + else MoEWeightLoadingMode.VANILLA), |
| 472 | + ) |
469 | 473 |
|
470 | 474 | self.mapping = model_config.mapping |
471 | 475 |
|
@@ -530,6 +534,13 @@ def _compute_shared_expert_tp_size(self, intermediate_size: int, |
530 | 534 |
|
531 | 535 | return shared_tp_size, shared_output_scale |
532 | 536 |
|
| 537 | + @staticmethod |
| 538 | + def _get_experts_quant_config(model_config, layer_idx: int) -> QuantConfig: |
| 539 | + if getattr(model_config, "quant_config_dict", None) is None: |
| 540 | + return model_config.quant_config |
| 541 | + return model_config.quant_config_dict.get( |
| 542 | + f"model.layers.{layer_idx}.mlp.experts", model_config.quant_config) |
| 543 | + |
533 | 544 | def compute_routed_output(self, hidden_states, hidden_states_fp4, |
534 | 545 | all_rank_num_tokens, all_rank_max_num_tokens, |
535 | 546 | do_finalize): |
@@ -640,6 +651,9 @@ def __init__(self, model_config: ModelConfig[PretrainedConfig], |
640 | 651 | quant_config = self._get_decoder_layer_quant_config( |
641 | 652 | model_config, layer_idx) |
642 | 653 | self.is_nvfp4 = quant_config.layer_quant_mode.has_nvfp4() |
| 654 | + assert ( |
| 655 | + quant_config.quant_algo |
| 656 | + is not QuantAlgo.MIXED_PRECISION), "MIXED_PRECISION is ambiguous" |
643 | 657 |
|
644 | 658 | has_tp = mapping.has_tp() |
645 | 659 |
|
|
0 commit comments