You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CHANGELOG.md
+6Lines changed: 6 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,5 +1,11 @@
1
1
# TensorRT OSS Release Changelog
2
2
3
+
## 10.13.3 GA - 2025-9-8
4
+
- Added support for TensorRT API Capture and Replay feature, see the [developer guide](https://docs.nvidia.com/deeplearning/tensorrt/latest/inference-library/advanced.html) for more information.
5
+
- Demo changes
6
+
- Added support for Flux Kontext pipeline.
7
+
8
+
3
9
## 10.13.2 GA - 2025-8-18
4
10
- Added support for CUDA 13.0, dropped support for CUDA 11.X
Copy file name to clipboardExpand all lines: README.md
+21-20Lines changed: 21 additions & 20 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -32,7 +32,7 @@ To build the TensorRT-OSS components, you will first need the following software
32
32
33
33
**TensorRT GA build**
34
34
35
-
- TensorRT v10.13.2.6
35
+
- TensorRT v10.13.3.9
36
36
- Available from direct download links listed below
37
37
38
38
**System Packages**
@@ -86,24 +86,24 @@ To build the TensorRT-OSS components, you will first need the following software
86
86
87
87
Else download and extract the TensorRT GA build from [NVIDIA Developer Zone](https://developer.nvidia.com) with the direct links below:
88
88
89
-
-[TensorRT 10.13.2.6 for CUDA 13.0, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.2/tars/TensorRT-10.13.2.6.Linux.x86_64-gnu.cuda-13.0.tar.gz)
90
-
-[TensorRT 10.13.2.6 for CUDA 12.9, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.2/tars/TensorRT-10.13.2.6.Linux.x86_64-gnu.cuda-12.9.tar.gz)
91
-
-[TensorRT 10.13.2.6 for CUDA 13.0, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.2/zip/TensorRT-10.13.2.6.Windows.win10.cuda-13.0.zip)
92
-
-[TensorRT 10.13.2.6 for CUDA 12.9, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.2/zip/TensorRT-10.13.2.6.Windows.win10.cuda-12.9.zip)
89
+
-[TensorRT 10.13.3.9 for CUDA 13.0, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.3/tars/TensorRT-10.13.3.9.Linux.x86_64-gnu.cuda-13.0.tar.gz)
90
+
-[TensorRT 10.13.3.9 for CUDA 12.9, Linux x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.3/tars/TensorRT-10.13.3.9.Linux.x86_64-gnu.cuda-12.9.tar.gz)
91
+
-[TensorRT 10.13.3.9 for CUDA 13.0, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.3/zip/TensorRT-10.13.3.9.Windows.win10.cuda-13.0.zip)
92
+
-[TensorRT 10.13.3.9 for CUDA 12.9, Windows x86_64](https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.13.3/zip/TensorRT-10.13.3.9.Windows.win10.cuda-12.9.zip)
93
93
94
94
**Example: Ubuntu 22.04 on x86-64 with cuda-13.0**
95
95
96
96
```bash
97
97
cd~/Downloads
98
-
tar -xvzf TensorRT-10.13.2.6.Linux.x86_64-gnu.cuda-13.0.tar.gz
99
-
export TRT_LIBPATH=`pwd`/TensorRT-10.13.2.6
98
+
tar -xvzf TensorRT-10.13.3.9.Linux.x86_64-gnu.cuda-13.0.tar.gz
> NOTE: Alternatively, you can download and install TensorRT packages from [NVIDIA TensorRT Developer Zone](https://developer.nvidia.com/tensorrt).
35
34
36
-
### Install required packages
37
-
38
-
```bash
39
-
export TRT_OSSPATH=/workspace
40
-
cd$TRT_OSSPATH/demo/Diffusion
41
-
pip3 install -r requirements.txt
42
-
```
43
35
44
36
> NOTE: demoDiffusion has been tested on systems with NVIDIA H100, A100, L40, T4, and RTX4090 GPUs, and the following software configuration.
45
37
46
38
```
47
-
diffusers 0.31.0
48
-
onnx 1.15.0
39
+
diffusers 0.35.0
40
+
onnx 1.18.0
49
41
onnx-graphsurgeon 0.5.2
50
-
onnxruntime 1.16.3
51
-
polygraphy 0.49.9
52
-
tensorrt 10.13.2.6
42
+
onnxruntime 1.19.2
43
+
polygraphy 0.49.22
44
+
tensorrt 10.13.3.9
53
45
tokenizers 0.13.3
54
-
torch 2.2.0
55
-
transformers 4.42.2
46
+
torch 2.8.0a0+5228986c39.nv25.6
47
+
transformers 4.52.4
56
48
controlnet-aux 0.0.6
57
-
nvidia-modelopt 0.15.1
49
+
nvidia-modelopt 0.31.0
58
50
```
59
51
60
52
# Running demoDiffusion
@@ -210,7 +202,7 @@ Run the command below to generate an image using Stable Diffusion 3 and Stable D
210
202
python3 demo_txt2img_sd3.py "A vibrant street wall covered in colorful graffiti, the centerpiece spells \"SD3 MEDIUM\", in a storm of colors" --version sd3 --hf-token=$HF_TOKEN
211
203
212
204
# Stable Diffusion 3.5-medium
213
-
python3 demo_txt2img_sd35.py "a beautiful photograph of Mt. Fuji during cherry blossom" --version=3.5-medium --denoising-steps=30 --guidance-scale 3.5 --hf-token=$HF_TOKEN --bf16
205
+
python3 demo_txt2img_sd35.py "a beautiful photograph of Mt. Fuji during cherry blossom" --version=3.5-medium --denoising-steps=30 --guidance-scale 3.5 --hf-token=$HF_TOKEN --bf16 --download-onnx-models
214
206
215
207
# Stable Diffusion 3.5-large
216
208
python3 demo_txt2img_sd35.py "a beautiful photograph of Mt. Fuji during cherry blossom" --version=3.5-large --denoising-steps=30 --guidance-scale 3.5 --hf-token=$HF_TOKEN --bf16 --download-onnx-models
@@ -234,13 +226,13 @@ Note that a denosing-percentage is applied to the number of denoising-steps when
234
226
235
227
```bash
236
228
# Depth
237
-
python3 demo_controlnet_sd35.py "a photo of a man" --controlnet-type depth --hf-token=$HF_TOKEN --denoising-steps 40 --guidance-scale 4.5 --bf16
229
+
python3 demo_controlnet_sd35.py "a photo of a man" --controlnet-type depth --hf-token=$HF_TOKEN --denoising-steps 40 --guidance-scale 4.5 --bf16 --download-onnx-models
238
230
239
231
# Canny
240
-
python3 demo_controlnet_sd35.py "A Night time photo taken by Leica M11, portrait of a Japanese woman in a kimono, looking at the camera, Cherry blossoms" --controlnet-type canny --hf-token=$HF_TOKEN --denoising-steps 60 --guidance-scale 3.5 --bf16
232
+
python3 demo_controlnet_sd35.py "A Night time photo taken by Leica M11, portrait of a Japanese woman in a kimono, looking at the camera, Cherry blossoms" --controlnet-type canny --hf-token=$HF_TOKEN --denoising-steps 60 --guidance-scale 3.5 --bf16 --download-onnx-models
241
233
242
234
# Blur
243
-
python3 demo_controlnet_sd35.py "generated ai art, a tiny, lost rubber ducky in an action shot close-up, surfing the humongous waves, inside the tube, in the style of Kelly Slater" --controlnet-type blur --hf-token=$HF_TOKEN --denoising-steps 60 --guidance-scale 3.5 --bf16
235
+
python3 demo_controlnet_sd35.py "generated ai art, a tiny, lost rubber ducky in an action shot close-up, surfing the humongous waves, inside the tube, in the style of Kelly Slater" --controlnet-type blur --hf-token=$HF_TOKEN --denoising-steps 60 --guidance-scale 3.5 --bf16 --download-onnx-models
244
236
```
245
237
246
238
### Generate a video guided by an initial image using Stable Video Diffusion
@@ -414,6 +406,21 @@ python3 demo_txt2img_flux.py "A painting of a barista creating an intricate latt
414
406
# FP8
415
407
python3 demo_txt2img_flux.py "A painting of a barista creating an intricate latte art design, with the 'Coffee Creations' logo skillfully formed within the latte foam. In a watercolor style, AQUACOLTOK. White background." --hf-token=$HF_TOKEN --lora-path "SebastianBodza/flux_lora_aquarel_watercolor" --lora-weight 1.0 --onnx-dir=onnx-flux-lora --engine-dir=engine-flux-lora --fp8
0 commit comments