You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I installed pytorch-quantization, but I can not load the package.
Terminal:
# pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com pytorch-quantization
Looking in indexes: https://pypi.org/simple, https://pypi.nvidia.com
Collecting pytorch-quantization
Downloading https://pypi.nvidia.com/pytorch-quantization/pytorch_quantization-2.2.1-cp38-cp38-linux_x86_64.whl (2.8 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.8/2.8 MB 5.7 MB/s eta 0:00:00
Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from pytorch-quantization) (1.24.2)
Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.8/dist-packages (from pytorch-quantization) (2.1.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from pytorch-quantization) (1.10.1)
Collecting sphinx-glpi-theme (from pytorch-quantization)
Downloading sphinx_glpi_theme-0.6-py2.py3-none-any.whl.metadata (1.8 kB)
Collecting prettytable (from pytorch-quantization)
Downloading prettytable-3.11.0-py3-none-any.whl.metadata (30 kB)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.8/dist-packages (from pytorch-quantization) (6.0.2)
Requirement already satisfied: wcwidth in /usr/local/lib/python3.8/dist-packages (from prettytable->pytorch-quantization) (0.2.13)
Downloading prettytable-3.11.0-py3-none-any.whl (28 kB)
Downloading sphinx_glpi_theme-0.6-py2.py3-none-any.whl (4.2 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.2/4.2 MB 57.5 MB/s eta 0:00:00
Installing collected packages: sphinx-glpi-theme, prettytable, pytorch-quantization
Successfully installed prettytable-3.11.0 pytorch-quantization-2.2.1 sphinx-glpi-theme-0.6
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable.It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
[notice] A new release of pip is available: 24.3.1 -> 25.0
[notice] To update, run: python3 -m pip install --upgrade pip
# nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:16:58_PDT_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0
# find /usr/local/cuda -name libcudart.so
# export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# find /usr/local/cuda -name libcudart.so
# find /usr/local/cuda-12.2 -name libcudart.so
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudart.so
# export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH
# echo $LD_LIBRARY_PATH
/usr/local/cuda-12.2/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:
Python code:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch_tensorrt
from torch.utils.tensorboard import SummaryWriter
import pytorch_quantization
from pytorch_quantization import nn as quant_nn
from pytorch_quantization import quant_modules
from pytorch_quantization.tensor_quant import QuantDescriptor
from pytorch_quantization import calib
from tqdm import tqdm
print(pytorch_quantization.__version__)
import os
import sys
sys.path.insert(0, "../examples/int8/training/vgg16")
from vgg16 import vgg16
The encountered error:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[7], line 12
8 import torch_tensorrt
10 from torch.utils.tensorboard import SummaryWriter
---> 12 import pytorch_quantization
13 from pytorch_quantization import nn as quant_nn
14 from pytorch_quantization import quant_modules
File /usr/local/lib/python3.8/dist-packages/pytorch_quantization/__init__.py:20
18 from absl import logging
19 from .version import __version__
---> 20 from .quant_modules import *
22 logging.use_absl_handler()
File /usr/local/lib/python3.8/dist-packages/pytorch_quantization/quant_modules.py:23
20 from contextlib import contextmanager
22 import torch
---> 23 from pytorch_quantization import nn as quant_nn
25 __all__ = ['initialize', 'deactivate', 'enable_onnx_export']
27 # Definition of the named tuple that is used to store mapping of the quantized modules
File /usr/local/lib/python3.8/dist-packages/pytorch_quantization/nn/__init__.py:19
1 #
2 # SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
3 # SPDX-License-Identifier: Apache-2.0
(...)
15 # limitations under the License.
16 #
---> 19 from pytorch_quantization.nn.modules.tensor_quantizer import *
20 from pytorch_quantization.nn.modules.quant_conv import *
21 from pytorch_quantization.nn.modules.quant_linear import *
File /usr/local/lib/python3.8/dist-packages/pytorch_quantization/nn/modules/tensor_quantizer.py:24
21 import torch
22 from torch import nn
---> 24 from pytorch_quantization.tensor_quant import QuantDescriptor, tensor_quant, fake_tensor_quant, scaled_e4m3
25 from pytorch_quantization.nn.modules.clip import Clip
27 from pytorch_quantization import calib
File /usr/local/lib/python3.8/dist-packages/pytorch_quantization/tensor_quant.py:28
25 import torch._C._onnx as _C_onnx
26 from torch.autograd import Function
---> 28 from pytorch_quantization import cuda_ext
30 from torch.onnx import symbolic_helper
33 class ScaledQuantDescriptor():
ImportError: libcudart.so.11.0: cannot open shared object file: No such file or directory
Versions:
Python 3.8.10
PyTorch 2.4.1+cu121
How can I solve this error?
The text was updated successfully, but these errors were encountered:
pytorch-quantization is a deprecated package (from the error message, it's looking for CUDA 11 libraries), we recommend using https://github.com/NVIDIA/TensorRT-Model-Optimizer to optimize your models now.
@kevinch-nv
Thank you for your response and for introducing TensorRT-Model-Optimizer. I appreciate the detailed information.
I have one question. I am interested in applying pruning and quantization to computer vision models, including ResNet, rather than LLMs. The documentation primarily discusses LLM-related optimizations. Is it also possible to use Model Optimizer for computer vision models?
I installed
pytorch-quantization
, but I can not load the package.Terminal:
Python code:
The encountered error:
Versions:
Python 3.8.10
PyTorch 2.4.1+cu121
How can I solve this error?
The text was updated successfully, but these errors were encountered: