|
1 | | -import unittest |
2 | | - |
3 | | -import torch |
4 | | - |
5 | | -SKIP_TEST = None |
6 | | -try: |
7 | | - from apex.contrib.transducer import TransducerJoint |
8 | | - from apex.contrib.transducer import _transducer_ref as transducer_ref |
9 | | -except ImportError as e: |
10 | | - SKIP_TEST = e |
11 | | - |
12 | | - |
13 | | -@unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") |
14 | | -class TransducerJointTest(unittest.TestCase): |
15 | | - def setUp(self, seed=1234): |
16 | | - torch.manual_seed(seed) |
17 | | - |
18 | | - def gen_input(self, for_vector_kernel): |
19 | | - self.B = 4 |
20 | | - T_min = 51 |
21 | | - T_max = 101 |
22 | | - U_min = 12 |
23 | | - U_max = 25 |
24 | | - if for_vector_kernel: |
25 | | - H = 512 |
26 | | - else: |
27 | | - H = 509 |
28 | | - dtype = torch.float16 |
29 | | - device = "cuda" |
30 | | - |
31 | | - self.f_tst = torch.randn((self.B, T_max, H), dtype=dtype, requires_grad=True, device=device) |
32 | | - self.g_tst = torch.randn((self.B, U_max, H), dtype=dtype, requires_grad=True, device=device) |
33 | | - self.h_grad = torch.randn(self.B, T_max, U_max, H, dtype=dtype, device=device) |
34 | | - self.f_len = torch.randint(T_min, T_max+1, (self.B,), dtype=torch.int, device=device) |
35 | | - self.g_len = torch.randint(U_min, U_max+1, (self.B,), dtype=torch.int, device=device) |
36 | | - self.f_len[torch.randint(0, self.B, (1,)).item()] = T_max |
37 | | - self.g_len[torch.randint(0, self.B, (1,)).item()] = U_max |
38 | | - self.dropout_prob = 0.5 |
39 | | - |
40 | | - # Make sure gradients from out-of-bound locations are zero. This should be guaranteed by |
41 | | - # the loss function |
42 | | - for b in range(self.B): |
43 | | - self.h_grad[b, self.f_len[b]:, :, :] = 0 |
44 | | - self.h_grad[b, :, self.g_len[b]:, :] = 0 |
45 | | - self.h_grad_packed = self._pack(self.h_grad, self.f_len, self.g_len) |
46 | | - |
47 | | - |
48 | | - def _pack(self, x, f_len, g_len): |
49 | | - B = x.size(0) |
50 | | - list_x = [] |
51 | | - for b in range(B): |
52 | | - list_x_row = [x[b, t, :g_len[b]] for t in range(f_len[b])] |
53 | | - x_row = torch.cat(list_x_row) |
54 | | - list_x.append(x_row) |
55 | | - x_packed = torch.cat(list_x).data.clone() |
56 | | - x_packed.requires_grad = True |
57 | | - batch_offset = torch.cumsum(f_len * g_len, dim=0) |
58 | | - return x_packed |
59 | | - |
60 | | - def _unpack(self, x, f_len, g_len): |
61 | | - batch_offset = torch.cumsum(f_len * g_len, dim=0) |
62 | | - x_unpacked = torch.zeros_like(self.h_grad, dtype=torch.uint8) |
63 | | - B = self.h_grad.size(0) |
64 | | - H = self.h_grad.size(-1) |
65 | | - for b in range(B): |
66 | | - my_batch_offset = 0 if b == 0 else batch_offset[b-1] |
67 | | - my_f_len = f_len[b] |
68 | | - my_g_len = g_len[b] |
69 | | - for t in range(my_f_len): |
70 | | - x_unpacked[b, t, :my_g_len] = x[my_batch_offset + t*my_g_len : |
71 | | - my_batch_offset + t*my_g_len + my_g_len] |
72 | | - return x_unpacked |
73 | | - |
74 | | - def run_transducer_joint(self, for_vector_kernel, pack_output, relu, dropout): |
75 | | - self.gen_input(for_vector_kernel=for_vector_kernel) |
76 | | - # Generate reference |
77 | | - f_ref = self.f_tst.data.clone() |
78 | | - g_ref = self.g_tst.data.clone() |
79 | | - f_ref.requires_grad = True |
80 | | - g_ref.requires_grad = True |
81 | | - |
82 | | - my_joint = TransducerJoint(pack_output=pack_output, relu=relu, dropout=dropout, |
83 | | - dropout_prob=self.dropout_prob, probe_mask=True) |
84 | | - if not pack_output: |
85 | | - h_tst = my_joint( f=self.f_tst, |
86 | | - g=self.g_tst, |
87 | | - f_len=self.f_len, |
88 | | - g_len=self.g_len) |
89 | | - h_tst.backward(self.h_grad) |
90 | | - if dropout: |
91 | | - mask = my_joint.mask_probe[0] |
92 | | - else: |
93 | | - batch_offset = torch.cumsum(self.f_len * self.g_len, dim=0) |
94 | | - h_tst = my_joint( f=self.f_tst, |
95 | | - g=self.g_tst, |
96 | | - f_len=self.f_len, |
97 | | - g_len=self.g_len, |
98 | | - batch_offset=batch_offset, |
99 | | - packed_batch=batch_offset[-1]) |
100 | | - h_tst.backward(self.h_grad_packed) |
101 | | - if dropout: |
102 | | - mask_packed = my_joint.mask_probe[0] |
103 | | - mask = self._unpack(mask_packed, self.f_len, self.g_len) |
104 | | - |
105 | | - # reference |
106 | | - h_ref, f_grad_ref, g_grad_ref \ |
107 | | - = transducer_ref.transducer_joint_reference(f=f_ref, |
108 | | - g=g_ref, |
109 | | - h_grad=self.h_grad, |
110 | | - f_len=self.f_len, |
111 | | - g_len=self.g_len, |
112 | | - pack_output=pack_output, |
113 | | - relu=relu, |
114 | | - dropout=dropout, |
115 | | - dropout_prob=self.dropout_prob, |
116 | | - mask=mask if dropout else None) |
117 | | - |
118 | | - f_grad_tst = self.f_tst.grad |
119 | | - g_grad_tst = self.g_tst.grad |
120 | | - |
121 | | - self.assertTrue(torch.allclose(h_ref, h_tst, atol=1e-5, rtol=1e-5)) |
122 | | - self.assertTrue(torch.allclose(f_grad_ref, f_grad_tst, atol=1e-5, rtol=1e-5)) |
123 | | - self.assertTrue(torch.allclose(g_grad_ref, g_grad_tst, atol=1e-4, rtol=1e-4)) |
124 | | - |
125 | | - def test_transducer_joint(self): |
126 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=False, dropout=False) |
127 | | - |
128 | | - def test_transducer_joint_vec(self): |
129 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=False, dropout=False) |
130 | | - |
131 | | - def test_transducer_joint_pack(self): |
132 | | - self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=False, dropout=False) |
133 | | - |
134 | | - def test_transducer_joint_vec_pack(self): |
135 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=False, dropout=False) |
136 | | - |
137 | | - def test_transducer_joint_relu(self): |
138 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=False) |
139 | | - |
140 | | - def test_transducer_joint_vec_relu(self): |
141 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=True, dropout=False) |
142 | | - |
143 | | - def test_transducer_joint_pack_relu(self): |
144 | | - self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=True, dropout=False) |
145 | | - |
146 | | - def test_transducer_joint_vec_pack_relu(self): |
147 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=False) |
148 | | - |
149 | | - @unittest.expectedFailure |
150 | | - def test_transducer_joint_relu_dropout(self): |
151 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=True) |
152 | | - |
153 | | - @unittest.expectedFailure |
154 | | - def test_transducer_joint_vec_relu_dropout(self): |
155 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=True, dropout=True) |
156 | | - |
157 | | - @unittest.expectedFailure |
158 | | - def test_transducer_joint_pack_relu_dropout(self): |
159 | | - self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=True, dropout=True) |
160 | | - |
161 | | - @unittest.expectedFailure |
162 | | - def test_transducer_joint_vec_pack_relu_dropout(self): |
163 | | - self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=True) |
164 | | - |
165 | | - |
166 | | -if __name__ == '__main__': |
167 | | - unittest.main() |
| 1 | +import unittest |
| 2 | + |
| 3 | +import torch |
| 4 | + |
| 5 | +SKIP_TEST = None |
| 6 | +try: |
| 7 | + from apex.contrib.transducer import TransducerJoint |
| 8 | + from apex.contrib.transducer import _transducer_ref as transducer_ref |
| 9 | +except ImportError as e: |
| 10 | + SKIP_TEST = e |
| 11 | + |
| 12 | + |
| 13 | +@unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") |
| 14 | +class TransducerJointTest(unittest.TestCase): |
| 15 | + def setUp(self, seed=1234): |
| 16 | + torch.manual_seed(seed) |
| 17 | + |
| 18 | + def gen_input(self, for_vector_kernel): |
| 19 | + self.B = 4 |
| 20 | + T_min = 51 |
| 21 | + T_max = 101 |
| 22 | + U_min = 12 |
| 23 | + U_max = 25 |
| 24 | + if for_vector_kernel: |
| 25 | + H = 512 |
| 26 | + else: |
| 27 | + H = 509 |
| 28 | + dtype = torch.float16 |
| 29 | + device = "cuda" |
| 30 | + |
| 31 | + self.f_tst = torch.randn((self.B, T_max, H), dtype=dtype, requires_grad=True, device=device) |
| 32 | + self.g_tst = torch.randn((self.B, U_max, H), dtype=dtype, requires_grad=True, device=device) |
| 33 | + self.h_grad = torch.randn(self.B, T_max, U_max, H, dtype=dtype, device=device) |
| 34 | + self.f_len = torch.randint(T_min, T_max+1, (self.B,), dtype=torch.int, device=device) |
| 35 | + self.g_len = torch.randint(U_min, U_max+1, (self.B,), dtype=torch.int, device=device) |
| 36 | + self.f_len[torch.randint(0, self.B, (1,)).item()] = T_max |
| 37 | + self.g_len[torch.randint(0, self.B, (1,)).item()] = U_max |
| 38 | + self.dropout_prob = 0.5 |
| 39 | + |
| 40 | + # Make sure gradients from out-of-bound locations are zero. This should be guaranteed by |
| 41 | + # the loss function |
| 42 | + for b in range(self.B): |
| 43 | + self.h_grad[b, self.f_len[b]:, :, :] = 0 |
| 44 | + self.h_grad[b, :, self.g_len[b]:, :] = 0 |
| 45 | + self.h_grad_packed = self._pack(self.h_grad, self.f_len, self.g_len) |
| 46 | + |
| 47 | + |
| 48 | + def _pack(self, x, f_len, g_len): |
| 49 | + B = x.size(0) |
| 50 | + list_x = [] |
| 51 | + for b in range(B): |
| 52 | + list_x_row = [x[b, t, :g_len[b]] for t in range(f_len[b])] |
| 53 | + x_row = torch.cat(list_x_row) |
| 54 | + list_x.append(x_row) |
| 55 | + x_packed = torch.cat(list_x).data.clone() |
| 56 | + x_packed.requires_grad = True |
| 57 | + batch_offset = torch.cumsum(f_len * g_len, dim=0) |
| 58 | + return x_packed |
| 59 | + |
| 60 | + def _unpack(self, x, f_len, g_len): |
| 61 | + batch_offset = torch.cumsum(f_len * g_len, dim=0) |
| 62 | + x_unpacked = torch.zeros_like(self.h_grad, dtype=torch.uint8) |
| 63 | + B = self.h_grad.size(0) |
| 64 | + H = self.h_grad.size(-1) |
| 65 | + for b in range(B): |
| 66 | + my_batch_offset = 0 if b == 0 else batch_offset[b-1] |
| 67 | + my_f_len = f_len[b] |
| 68 | + my_g_len = g_len[b] |
| 69 | + for t in range(my_f_len): |
| 70 | + x_unpacked[b, t, :my_g_len] = x[my_batch_offset + t*my_g_len : |
| 71 | + my_batch_offset + t*my_g_len + my_g_len] |
| 72 | + return x_unpacked |
| 73 | + |
| 74 | + def run_transducer_joint(self, for_vector_kernel, pack_output, relu, dropout): |
| 75 | + self.gen_input(for_vector_kernel=for_vector_kernel) |
| 76 | + # Generate reference |
| 77 | + f_ref = self.f_tst.data.clone() |
| 78 | + g_ref = self.g_tst.data.clone() |
| 79 | + f_ref.requires_grad = True |
| 80 | + g_ref.requires_grad = True |
| 81 | + |
| 82 | + my_joint = TransducerJoint(pack_output=pack_output, relu=relu, dropout=dropout, |
| 83 | + dropout_prob=self.dropout_prob, probe_mask=True) |
| 84 | + if not pack_output: |
| 85 | + h_tst = my_joint( f=self.f_tst, |
| 86 | + g=self.g_tst, |
| 87 | + f_len=self.f_len, |
| 88 | + g_len=self.g_len) |
| 89 | + h_tst.backward(self.h_grad) |
| 90 | + if dropout: |
| 91 | + mask = my_joint.mask_probe[0] |
| 92 | + else: |
| 93 | + batch_offset = torch.cumsum(self.f_len * self.g_len, dim=0) |
| 94 | + h_tst = my_joint( f=self.f_tst, |
| 95 | + g=self.g_tst, |
| 96 | + f_len=self.f_len, |
| 97 | + g_len=self.g_len, |
| 98 | + batch_offset=batch_offset, |
| 99 | + packed_batch=batch_offset[-1]) |
| 100 | + h_tst.backward(self.h_grad_packed) |
| 101 | + if dropout: |
| 102 | + mask_packed = my_joint.mask_probe[0] |
| 103 | + mask = self._unpack(mask_packed, self.f_len, self.g_len) |
| 104 | + |
| 105 | + # reference |
| 106 | + h_ref, f_grad_ref, g_grad_ref \ |
| 107 | + = transducer_ref.transducer_joint_reference(f=f_ref, |
| 108 | + g=g_ref, |
| 109 | + h_grad=self.h_grad, |
| 110 | + f_len=self.f_len, |
| 111 | + g_len=self.g_len, |
| 112 | + pack_output=pack_output, |
| 113 | + relu=relu, |
| 114 | + dropout=dropout, |
| 115 | + dropout_prob=self.dropout_prob, |
| 116 | + mask=mask if dropout else None) |
| 117 | + |
| 118 | + f_grad_tst = self.f_tst.grad |
| 119 | + g_grad_tst = self.g_tst.grad |
| 120 | + |
| 121 | + torch.testing.assert_close(h_ref, h_tst, atol=1e-5, rtol=1e-5) |
| 122 | + torch.testing.assert_close(f_grad_ref, f_grad_tst, atol=1e-5, rtol=1e-5) |
| 123 | + torch.testing.assert_close(g_grad_ref, g_grad_tst, atol=1e-4, rtol=1e-4) |
| 124 | + |
| 125 | + def test_transducer_joint(self): |
| 126 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=False, dropout=False) |
| 127 | + |
| 128 | + def test_transducer_joint_vec(self): |
| 129 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=False, dropout=False) |
| 130 | + |
| 131 | + def test_transducer_joint_pack(self): |
| 132 | + self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=False, dropout=False) |
| 133 | + |
| 134 | + def test_transducer_joint_vec_pack(self): |
| 135 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=False, dropout=False) |
| 136 | + |
| 137 | + def test_transducer_joint_relu(self): |
| 138 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=False) |
| 139 | + |
| 140 | + def test_transducer_joint_vec_relu(self): |
| 141 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=True, dropout=False) |
| 142 | + |
| 143 | + def test_transducer_joint_pack_relu(self): |
| 144 | + self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=True, dropout=False) |
| 145 | + |
| 146 | + def test_transducer_joint_vec_pack_relu(self): |
| 147 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=False) |
| 148 | + |
| 149 | + @unittest.expectedFailure |
| 150 | + def test_transducer_joint_relu_dropout(self): |
| 151 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=True) |
| 152 | + |
| 153 | + @unittest.expectedFailure |
| 154 | + def test_transducer_joint_vec_relu_dropout(self): |
| 155 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=False, relu=True, dropout=True) |
| 156 | + |
| 157 | + @unittest.expectedFailure |
| 158 | + def test_transducer_joint_pack_relu_dropout(self): |
| 159 | + self.run_transducer_joint(for_vector_kernel=False, pack_output=True, relu=True, dropout=True) |
| 160 | + |
| 161 | + @unittest.expectedFailure |
| 162 | + def test_transducer_joint_vec_pack_relu_dropout(self): |
| 163 | + self.run_transducer_joint(for_vector_kernel=True, pack_output=True, relu=True, dropout=True) |
| 164 | + |
| 165 | + |
| 166 | +if __name__ == '__main__': |
| 167 | + unittest.main() |
0 commit comments