-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
simpleCUFFT_callback.cu
336 lines (279 loc) · 12.2 KB
/
simpleCUFFT_callback.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Example showing the use of CUFFT for fast 1D-convolution using FFT.
* This sample is the same as simpleCUFFT, except that it uses a callback
* function to perform the pointwise multiply and scale, on input to the
* inverse transform.
*
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// includes, project
#include <cuda_runtime.h>
#include <cufft.h>
#include <cufftXt.h>
#include <helper_functions.h>
#include <helper_cuda.h>
// Complex data type
typedef float2 Complex;
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
static __device__ __host__ inline Complex ComplexScale(Complex, float);
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
// This is the callback routine prototype
static __device__ cufftComplex ComplexPointwiseMulAndScale(void *a,
size_t index,
void *cb_info,
void *sharedmem);
typedef struct _cb_params {
Complex *filter;
float scale;
} cb_params;
// This is the callback routine. It does complex pointwise multiplication with
// scaling.
static __device__ cufftComplex ComplexPointwiseMulAndScale(void *a,
size_t index,
void *cb_info,
void *sharedmem) {
cb_params *my_params = (cb_params *)cb_info;
return (cufftComplex)ComplexScale(
ComplexMul(((Complex *)a)[index], (my_params->filter)[index]),
my_params->scale);
}
// Define the device pointer to the callback routine. The host code will fetch
// this and pass it to CUFFT
__device__ cufftCallbackLoadC myOwnCallbackPtr = ComplexPointwiseMulAndScale;
// Filtering functions
void Convolve(const Complex *, int, const Complex *, int, Complex *);
// Padding functions
int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
int runTest(int argc, char **argv);
// The filter size is assumed to be a number smaller than the signal size
#define SIGNAL_SIZE 50
#define FILTER_KERNEL_SIZE 11
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
struct cudaDeviceProp properties;
int device;
checkCudaErrors(cudaGetDevice(&device));
checkCudaErrors(cudaGetDeviceProperties(&properties, device));
if (!(properties.major >= 2)) {
printf("simpleCUFFT_callback requires CUDA architecture SM2.0 or higher\n");
return EXIT_WAIVED;
}
return runTest(argc, argv);
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUFFT callbacks
////////////////////////////////////////////////////////////////////////////////
int runTest(int argc, char **argv) {
printf("[simpleCUFFT_callback] is starting...\n");
findCudaDevice(argc, (const char **)argv);
// Allocate host memory for the signal
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
// Initialize the memory for the signal
for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) {
h_signal[i].x = rand() / (float)RAND_MAX;
h_signal[i].y = 0;
}
// Allocate host memory for the filter
Complex *h_filter_kernel =
(Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);
// Initialize the memory for the filter
for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) {
h_filter_kernel[i].x = rand() / (float)RAND_MAX;
h_filter_kernel[i].y = 0;
}
// Pad signal and filter kernel
Complex *h_padded_signal;
Complex *h_padded_filter_kernel;
int new_size =
PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,
&h_padded_filter_kernel, FILTER_KERNEL_SIZE);
int mem_size = sizeof(Complex) * new_size;
// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc((void **)&d_signal, mem_size));
// Copy host memory to device
checkCudaErrors(
cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));
// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(cudaMalloc((void **)&d_filter_kernel, mem_size));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size,
cudaMemcpyHostToDevice));
// Create one CUFFT plan for the forward transforms, and one for the reverse
// transform with load callback.
cufftHandle plan, cb_plan;
size_t work_size;
checkCudaErrors(cufftCreate(&plan));
checkCudaErrors(cufftCreate(&cb_plan));
checkCudaErrors(cufftMakePlan1d(plan, new_size, CUFFT_C2C, 1, &work_size));
checkCudaErrors(cufftMakePlan1d(cb_plan, new_size, CUFFT_C2C, 1, &work_size));
// Define a structure used to pass in the device address of the filter kernel,
// and the scale factor
cb_params h_params;
h_params.filter = d_filter_kernel;
h_params.scale = 1.0f / new_size;
// Allocate device memory for parameters
cb_params *d_params;
checkCudaErrors(cudaMalloc((void **)&d_params, sizeof(cb_params)));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_params, &h_params, sizeof(cb_params),
cudaMemcpyHostToDevice));
// The host needs to get a copy of the device pointer to the callback
cufftCallbackLoadC hostCopyOfCallbackPtr;
checkCudaErrors(cudaMemcpyFromSymbol(&hostCopyOfCallbackPtr, myOwnCallbackPtr,
sizeof(hostCopyOfCallbackPtr)));
// Now associate the load callback with the plan.
cufftResult status =
cufftXtSetCallback(cb_plan, (void **)&hostCopyOfCallbackPtr,
CUFFT_CB_LD_COMPLEX, (void **)&d_params);
if (status == CUFFT_LICENSE_ERROR) {
printf("This sample requires a valid license file.\n");
printf(
"The file was either not found, out of date, or otherwise invalid.\n");
return EXIT_WAIVED;
}
checkCudaErrors(cufftXtSetCallback(cb_plan, (void **)&hostCopyOfCallbackPtr,
CUFFT_CB_LD_COMPLEX, (void **)&d_params));
// Transform signal and kernel
printf("Transforming signal cufftExecC2C\n");
checkCudaErrors(cufftExecC2C(plan, (cufftComplex *)d_signal,
(cufftComplex *)d_signal, CUFFT_FORWARD));
checkCudaErrors(cufftExecC2C(plan, (cufftComplex *)d_filter_kernel,
(cufftComplex *)d_filter_kernel, CUFFT_FORWARD));
// Transform signal back, using the callback to do the pointwise multiply on
// the way in.
printf("Transforming signal back cufftExecC2C\n");
checkCudaErrors(cufftExecC2C(cb_plan, (cufftComplex *)d_signal,
(cufftComplex *)d_signal, CUFFT_INVERSE));
// Copy device memory to host
Complex *h_convolved_signal = h_padded_signal;
checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size,
cudaMemcpyDeviceToHost));
// Allocate host memory for the convolution result
Complex *h_convolved_signal_ref =
(Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
// Convolve on the host
Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,
h_convolved_signal_ref);
// check result
bool bTestResult =
sdkCompareL2fe((float *)h_convolved_signal_ref,
(float *)h_convolved_signal, 2 * SIGNAL_SIZE, 1e-5f);
// Destroy CUFFT context
checkCudaErrors(cufftDestroy(plan));
checkCudaErrors(cufftDestroy(cb_plan));
// cleanup memory
free(h_signal);
free(h_filter_kernel);
free(h_padded_signal);
free(h_padded_filter_kernel);
free(h_convolved_signal_ref);
checkCudaErrors(cudaFree(d_signal));
checkCudaErrors(cudaFree(d_filter_kernel));
checkCudaErrors(cudaFree(d_params));
return bTestResult ? EXIT_SUCCESS : EXIT_FAILURE;
}
// Pad data
int PadData(const Complex *signal, Complex **padded_signal, int signal_size,
const Complex *filter_kernel, Complex **padded_filter_kernel,
int filter_kernel_size) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
int new_size = signal_size + maxRadius;
// Pad signal
Complex *new_data = (Complex *)malloc(sizeof(Complex) * new_size);
memcpy(new_data + 0, signal, signal_size * sizeof(Complex));
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));
*padded_signal = new_data;
// Pad filter
new_data = (Complex *)malloc(sizeof(Complex) * new_size);
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));
memset(new_data + maxRadius, 0,
(new_size - filter_kernel_size) * sizeof(Complex));
memcpy(new_data + new_size - minRadius, filter_kernel,
minRadius * sizeof(Complex));
*padded_filter_kernel = new_data;
return new_size;
}
////////////////////////////////////////////////////////////////////////////////
// Filtering operations
////////////////////////////////////////////////////////////////////////////////
// Computes convolution on the host
void Convolve(const Complex *signal, int signal_size,
const Complex *filter_kernel, int filter_kernel_size,
Complex *filtered_signal) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
// Loop over output element indices
for (int i = 0; i < signal_size; ++i) {
filtered_signal[i].x = filtered_signal[i].y = 0;
// Loop over convolution indices
for (int j = -maxRadius + 1; j <= minRadius; ++j) {
int k = i + j;
if (k >= 0 && k < signal_size) {
filtered_signal[i] =
ComplexAdd(filtered_signal[i],
ComplexMul(signal[k], filter_kernel[minRadius - j]));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Complex operations
////////////////////////////////////////////////////////////////////////////////
// Complex addition
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {
Complex c;
c.x = a.x + b.x;
c.y = a.y + b.y;
return c;
}
// Complex scale
static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {
Complex c;
c.x = s * a.x;
c.y = s * a.y;
return c;
}
// Complex multiplication
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {
Complex c;
c.x = a.x * b.x - a.y * b.y;
c.y = a.x * b.y + a.y * b.x;
return c;
}