This repository has been archived by the owner on Jan 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 126
/
nv_wavenet_reference.h
101 lines (81 loc) · 4.09 KB
/
nv_wavenet_reference.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/******************************************************************************
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#include "matrix.h"
#include <vector>
void nvWavenetEmbed(std::vector<int>& yInPrev, std::vector<int>& yInCur, Matrix& embeddingsPrev, Matrix& embeddingsCur, Matrix& x);
void nvWavenetLayer(int r, int batch_size, Matrix& Wprev, Matrix& Wcur, Matrix& Bh, Matrix& Lh, Matrix& Wres, Matrix& Bres, Matrix& Wskip, Matrix& Bskip, Matrix& Xtmd, Matrix& Xin, Matrix& Xout, Matrix& skipIn, Matrix& skipOut, bool lastLayer);
void nvWavenetFinal(Matrix& WskipOut, Matrix& BskipOut, Matrix& Wout, Matrix& Bout, Matrix& skip, Matrix& skipOut, Matrix& out, Matrix& p);
void nvWavenetSelect(int sample, Matrix& p, Matrix& randomSelectors, std::vector<int>& y);
class nvWavenetReference {
private:
int m_numLayers;
int m_maxBatch;
int m_maxSamples;
int m_R;
int m_S;
int m_A;
int m_maxDilation;
Matrix* m_embeddingsPrev;
Matrix* m_embeddingsCur;
std::vector<Matrix*> m_Wprev;
std::vector<Matrix*> m_Wcur;
std::vector<Matrix*> m_Bh;
std::vector< std::vector<Matrix*> > m_Lh;
std::vector<Matrix*> m_Wres;
std::vector<Matrix*> m_Bres;
std::vector<Matrix*> m_Wskip;
std::vector<Matrix*> m_Bskip;
Matrix* m_Wzs;
Matrix* m_Bzs;
Matrix* m_Wza;
Matrix* m_Bza;
std::vector<int> m_yInPrev;
std::vector<int> m_yInCur;
Matrix* m_outputSelectors;
int m_lastSample;
std::vector< std::vector<Matrix*> > m_Xt;
std::vector<Matrix*> m_skipOut;
Matrix* m_Zs;
Matrix* m_Za;
Matrix* m_P;
public:
nvWavenetReference(int num_layers, int max_batch, int max_samples, int R, int S, int A, int max_dilation);
~nvWavenetReference();
// Model initialization
void setEmbeddings (float* embedPrev, float* embedCur);
void setLayerWeights (int layer, float* Wprev, float* Wcur, float* Bh, float* Wres, float* Bres, float* Wskip, float* Bskip);
void setOutWeights (float* Wzs, float* Bzs, float* Wza, float* Bza);
void setInputs (float* Lh, float* outputSelectors);
// Fetch intermediate results
void getXtOut(int layer, float* Xt);
void getSkipOut(int layer, float* SkipOut);
void getZs(float* Zs);
void getZa(float* Za);
void getP(float* P);
// Run
void run(int num_samples, int batch_size, int* yOut);
};