-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathct_eval.py
509 lines (430 loc) · 24.7 KB
/
ct_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# ---------------------------------------------------------------
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# This file has been modified from ECT codebase, which built upon EDM.
#
# Source:
# https://github.com/NVlabs/edm/blob/main/generate.py (EDM)
# https://github.com/locuslab/ect/blob/main/ct_eval.py (ECT)
#
# The license for these can be found in license/ directory.
# The modifications to this file are subject to the same license.
# ---------------------------------------------------------------
import os
import re
import json
import click
import pickle
import psutil
import functools
import PIL.Image
import numpy as np
import torch
import dnnlib
from torch_utils import distributed as dist
from torch_utils import training_stats
from torch_utils import misc
from metrics import metric_main
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore', 'Grad strides do not match bucket view strides') # False warning printed by PyTorch 1.12.
#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
class CommaSeparatedList(click.ParamType):
name = 'list'
def convert(self, value, param, ctx):
_ = param, ctx
if value is None or value.lower() == 'none' or value == '':
return []
return value.split(',')
#----------------------------------------------------------------------------
@click.command()
# Main options.
@click.option('--outdir', help='Where to save the results', metavar='DIR', type=str, required=True)
@click.option('--data', help='Path to the dataset', metavar='ZIP|DIR', type=str, required=True)
@click.option('--cond', help='Train class-conditional model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--arch', help='Network architecture', type=click.Choice(['ddpmpp', 'ncsnpp', 'adm', 'edm2-cifar-s', 'edm2-cifar-m', 'edm2-img64-s', 'edm2-img64-m', 'edm2-img64-l', 'edm2-img64-xl' ]), default='ddpmpp', show_default=True)
@click.option('--precond', help='Preconditioning & loss function', metavar='vp|ve|edm', type=click.Choice(['vp', 've', 'edm', 'ct']), default='ct', show_default=True)
# Hyperparameters.
@click.option('--cbase', help='Channel multiplier [default: varies]', metavar='INT', type=int)
@click.option('--cres', help='Channels per resolution [default: varies]', metavar='LIST', type=parse_int_list)
@click.option('--dropout', help='Dropout probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.13, show_default=True)
@click.option('--augment', help='Augment probability', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0., show_default=True)
@click.option('--xflip', help='Enable dataset x-flips', metavar='BOOL', type=bool, default=False, show_default=True)
# Model Hyperparameters
@click.option('--mean', help='P_mean of Log Normal Distribution', metavar='FLOAT', type=click.FloatRange(), default=-1.1, show_default=True)
@click.option('--std', help='P_std of Log Normal Distribution', metavar='FLOAT', type=click.FloatRange(), default=2.0, show_default=True)
@click.option('--scale', help='Fourier Scale for NCSN++', metavar='FLOAT', type=click.FloatRange(min=0), default=1., show_default=True)
@click.option('--learnable_scale', help='Learnable Scale for NCSN++', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--attn_type', help='Attention type', metavar='STR', type=click.Choice(['dot', 'l2', 'none']), default='dot', show_default=True)
@click.option('--emb_norm', help='Embedding normalization', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--scheduler', help='Type of consistency scheduler', metavar='STR', type=click.Choice(['logsnr', 'power', 'sigmoid']), default='sigmoid', show_default=True)
@click.option('--double', help='How often to save latest checkpoints', metavar='TICKS', type=click.IntRange(min=1), default=500, show_default=True)
@click.option('-q', help='Decay Factor', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=1.4, show_default=True)
@click.option('-c', help='Constant c for Huber Loss', metavar='FLOAT', type=click.FloatRange(), default=0.0, show_default=True)
@click.option('-k', help='Consistency condition hyperparams.', metavar='FLOAT', type=click.FloatRange(), default=8.0, show_default=True)
@click.option('-b', help='Consistency condition hyperparams.', metavar='FLOAT', type=click.FloatRange(), default=1.0, show_default=True)
@click.option('--cut', help='Cutoff value.', metavar='FLOAT', type=click.FloatRange(), default=4.0, show_default=True)
# Performance-related.
@click.option('--fp16', help='Enable mixed-precision training', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--bench', help='Enable cuDNN benchmarking', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--cache', help='Cache dataset in CPU memory', metavar='BOOL', type=bool, default=True, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=1, show_default=True)
# I/O-related.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--nosubdir', help='Do not create a subdirectory for results', is_flag=True)
@click.option('--seed', help='Random seed [default: random]', metavar='INT', type=int)
@click.option('--resume', help='Load network pickle', metavar='PKL|URL', type=str)
@click.option('-n', '--dry_run', help='Print training options and exit', is_flag=True)
# Evaluation
@click.option('--mid_t', help='Sampler steps [default working value: 0.821]', multiple=True, default=None)
@click.option('--metrics', help='Comma-separated list or "none" [default: fid50k_full]', type=CommaSeparatedList(), default='fid50k_full')
@click.option('--im_dir', help='Path to the synthetic image directory, for distillation error evaluation', metavar='DIR', type=str, default=None)
@click.option('--latent_dir', help='Path to the noise directory, for distillation error evaluation', metavar='DIR', type=str, default=None)
@click.option('--save_pth', help='Save the .pth file', is_flag=True)
@click.option('--deterministic', help='Use deterministic evaluation', is_flag=True)
@click.option('--dfid_ts', help='Comma-separated list of t_max values for FID calculation', type=CommaSeparatedList(), default='1.,2.,3.,4.')
def main(**kwargs):
"""Train ECMs using the techniques described in the
blog "Consistency Models Made Easy".
"""
opts = dnnlib.EasyDict(kwargs)
torch.multiprocessing.set_start_method('spawn')
dist.init()
# Initialize config dict.
c = dnnlib.EasyDict()
c.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=opts.data, use_labels=opts.cond, xflip=opts.xflip, cache=opts.cache)
c.network_kwargs = dnnlib.EasyDict()
# Validate dataset options.
try:
dataset_obj = dnnlib.util.construct_class_by_name(**c.dataset_kwargs)
dataset_name = dataset_obj.name
c.dataset_kwargs.resolution = dataset_obj.resolution # be explicit about dataset resolution
c.dataset_kwargs.max_size = len(dataset_obj) # be explicit about dataset size
if opts.cond and not dataset_obj.has_labels:
raise click.ClickException('--cond=True requires labels specified in dataset.json')
del dataset_obj # conserve memory
except IOError as err:
raise click.ClickException(f'--data: {err}')
# Network architecture.
if opts.arch == 'ddpmpp':
c.network_kwargs.update(model_type='SongUNet', embedding_type='positional', encoder_type='standard', decoder_type='standard')
c.network_kwargs.update(channel_mult_noise=1, resample_filter=[1,1], model_channels=128, channel_mult=[2,2,2], attn_type=opts.attn_type, emb_norm=opts.emb_norm)
elif opts.arch == 'ncsnpp':
c.network_kwargs.update(model_type='SongUNet', embedding_type='fourier', encoder_type='residual', decoder_type='standard', scale=opts.scale, learnable_scale=opts.learnable_scale)
c.network_kwargs.update(channel_mult_noise=2, resample_filter=[1,3,3,1], model_channels=128, channel_mult=[2,2,2], attn_type=opts.attn_type, emb_norm=opts.emb_norm)
elif opts.arch == 'adm':
c.network_kwargs.update(model_type='DhariwalUNet', model_channels=192, channel_mult=[1,2,3,4])
elif 'edm2-img64' in opts.arch:
nc_dict = {'s': 192, 'm': 256, 'l': 320, 'xl': 384}
c.network_kwargs.update(model_type='EDM2UNet', model_channels=nc_dict[opts.arch.split('-')[-1]])
c.network_kwargs.update(scale=opts.scale, emb_norm=opts.emb_norm, learnable_scale=opts.learnable_scale)
elif opts.arch == 'edm2-cifar-m':
c.network_kwargs.update(model_type='EDM2UNet', model_channels=128, attn_resolutions=[16], channel_mult=[2,2,2], num_blocks=4) # For cifar-10
c.network_kwargs.update(scale=opts.scale, emb_norm=opts.emb_norm, learnable_scale=opts.learnable_scale)
elif opts.arch == 'edm2-cifar-s':
c.network_kwargs.update(model_type='EDM2UNet', model_channels=128, attn_resolutions=[16], channel_mult=[1,2,2,2]) # For cifar-10
c.network_kwargs.update(scale=opts.scale, emb_norm=opts.emb_norm, learnable_scale=opts.learnable_scale)
else:
raise ValueError(f"Unrecognized architecture: {opts.arch}")
# Preconditioning.
c.network_kwargs.class_name = 'training.networks.ECMPrecond'
# Network options.
if opts.cbase is not None:
c.network_kwargs.model_channels = opts.cbase
if opts.cres is not None:
c.network_kwargs.channel_mult = opts.cres
if opts.augment:
c.network_kwargs.augment_dim = 9
c.network_kwargs.update(dropout=opts.dropout, use_fp16=opts.fp16)
# Trainig options.
c.update(cudnn_benchmark=opts.bench)
if opts.mid_t is not None:
opts.mid_t = [float(x) for x in opts.mid_t]
c.update(mid_t=opts.mid_t, metrics=opts.metrics, deterministic=opts.deterministic)
c.update(im_dir=opts.im_dir, latent_dir=opts.latent_dir)
# Random seed.
if opts.seed is not None:
c.seed = opts.seed
else:
c.seed = 0
# Checkpoint to evaluate.
c.resume_pkl = opts.resume
c.save_pth = opts.save_pth
# Description string.
cond_str = 'cond' if c.dataset_kwargs.use_labels else 'uncond'
dtype_str = 'fp16' if c.network_kwargs.use_fp16 else 'fp32'
desc = f'{dataset_name:s}-{cond_str:s}-{opts.arch:s}-{opts.precond:s}-gpus{dist.get_world_size():d}-{dtype_str:s}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Pick output directory.
if dist.get_rank() != 0:
c.run_dir = None
elif opts.nosubdir:
c.run_dir = opts.outdir
else:
prev_run_dirs = []
if os.path.isdir(opts.outdir):
prev_run_dirs = [x for x in os.listdir(opts.outdir) if os.path.isdir(os.path.join(opts.outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(opts.outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
c.dfid_ts = [round(float(t), 3) for t in opts.dfid_ts]
# Print options.
dist.print0()
dist.print0('Evaluarion options:')
dist.print0(json.dumps(c, indent=2))
dist.print0()
dist.print0(f'Output directory: {c.run_dir}')
dist.print0(f'Dataset path: {c.dataset_kwargs.path}')
dist.print0(f'Class-conditional: {c.dataset_kwargs.use_labels}')
dist.print0(f'Network architecture: {opts.arch}')
dist.print0(f'Preconditioning & loss: {opts.precond}')
dist.print0(f'Number of GPUs: {dist.get_world_size()}')
dist.print0(f'Mixed-precision: {c.network_kwargs.use_fp16}')
dist.print0(f'DFID_ts: {c.dfid_ts}')
# Dry run?
if opts.dry_run:
dist.print0('Dry run; exiting.')
return
# Create output directory.
dist.print0('Creating output directory...')
if dist.get_rank() == 0:
os.makedirs(c.run_dir, exist_ok=True)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f:
json.dump(c, f, indent=2)
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
if opts.resume is not None:
if os.path.isdir(opts.resume):
# Recursively find all .pkl files in the directory
checkpoint_paths = []
for root, dirs, files in os.walk(opts.resume):
for file in files:
if file.endswith('.pkl'):
checkpoint_paths.append(os.path.join(root, file))
assert len(checkpoint_paths) > 0, f"No checkpoints found in {opts.resume}"
else:
# Load a single checkpoint
checkpoint_paths = [opts.resume]
checkpoint_paths = sorted(checkpoint_paths)
for ckpt_path in tqdm(checkpoint_paths):
c.resume_pkl = ckpt_path
print(f"Evaluating checkpoint: {ckpt_path}")
evaluation(**c)
#----------------------------------------------------------------------------
def setup_snapshot_image_grid(training_set, random_seed=0):
rnd = np.random.RandomState(random_seed)
gw = np.clip(7680 // training_set.image_shape[2], 7, 16)
gh = np.clip(4320 // training_set.image_shape[1], 4, 16)
# No labels => show random subset of training samples.
if not training_set.has_labels:
all_indices = list(range(len(training_set)))
rnd.shuffle(all_indices)
grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)]
else:
# Group training samples by label.
label_groups = dict() # label => [idx, ...]
for idx in range(len(training_set)):
label = tuple(training_set.get_details(idx).raw_label.flat[::-1])
if label not in label_groups:
label_groups[label] = []
label_groups[label].append(idx)
# Reorder.
label_order = sorted(label_groups.keys())
for label in label_order:
rnd.shuffle(label_groups[label])
# Organize into grid.
grid_indices = []
for y in range(gh):
label = label_order[y % len(label_order)]
indices = label_groups[label]
grid_indices += [indices[x % len(indices)] for x in range(gw)]
label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))]
# Load data.
images, labels = zip(*[training_set[i] for i in grid_indices])
return (gw, gh), np.stack(images), np.stack(labels)
#----------------------------------------------------------------------------
def save_image_grid(img, fname, drange, grid_size):
lo, hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
gw, gh = grid_size
_N, C, H, W = img.shape
img = img.reshape(gh, gw, C, H, W)
img = img.transpose(0, 3, 1, 4, 2)
img = img.reshape(gh * H, gw * W, C)
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
#----------------------------------------------------------------------------
@torch.no_grad()
def generator_fn(
net, latents, class_labels=None,
t_max=80, mid_t=None, data=None, noise=None
):
# Time step discretization.
mid_t = [] if mid_t is None else mid_t
t_steps = torch.tensor([t_max]+list(mid_t), dtype=torch.float64, device=latents.device)
# t_0 = T, t_N = 0
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])])
# Sampling steps
x = latents.to(torch.float64) * t_steps[0]
if data is not None:
x = x + data
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
x = net(x, t_cur, class_labels).to(torch.float64)
if t_next > 0:
if noise is not None:
x = x + t_next * noise
else:
x = x + t_next * torch.randn_like(x)
return x
@torch.no_grad()
def edm_sampler(
net, latents, class_labels=None, randn_like=torch.randn_like,
num_steps=18, sigma_min=0.002, t_max=80, rho=7,
S_churn=0, S_min=0, S_max=float('inf'), S_noise=1, data=None
):
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(t_max, net.sigma_max)
# Time step discretization.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
# Main sampling loop.
x_next = latents.to(torch.float64) * t_steps[0]
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
t_hat = net.round_sigma(t_cur + gamma * t_cur)
x_hat = x_cur + (t_hat ** 2 - t_cur ** 2).sqrt() * S_noise * randn_like(x_cur)
# Euler step.
denoised = net(x_hat, t_hat, class_labels).to(torch.float64)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
denoised = net(x_next, t_next, class_labels).to(torch.float64)
d_prime = (x_next - denoised) / t_next
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
return x_next
#----------------------------------------------------------------------------
def evaluation(
run_dir = '.', # Output directory.
dataset_kwargs = {}, # Options for training set.
network_kwargs = {}, # Options for model and preconditioning.
batch_size = None, # Total batch size for one training iteration.
seed = 0, # Global random seed.
resume_pkl = None, # Start from the given network snapshot, None = random initialization.
mid_t = None, # Intermediate t for few-step generation.
metrics = None, # Metrics for evaluation.
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
device = torch.device('cuda'),
im_dir = None, # Path to the synthetic image directory, for distillation error evaluation.
latent_dir = None, # Path to the noise directory, for distillation error evaluation.
save_pth = False, # Save the .pth file.
dfid_ts = None, # List of t_max values for FID calculation
deterministic = False, # Use deterministic sampling
):
# Initialize.
np.random.seed((seed * dist.get_world_size() + dist.get_rank()) % (1 << 31))
torch.manual_seed(np.random.randint(1 << 31))
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
if batch_size is None:
# Default batch size
batch_gpu = 251
else:
batch_gpu = batch_size // dist.get_world_size()
# Load dataset.
dist.print0('Loading dataset...')
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # subclass of training.dataset.Dataset
# Construct network.
dist.print0('Constructing network...')
interface_kwargs = dict(img_resolution=dataset_obj.resolution, img_channels=dataset_obj.num_channels, label_dim=dataset_obj.label_dim)
net = dnnlib.util.construct_class_by_name(**network_kwargs, **interface_kwargs) # subclass of torch.nn.Module
net.eval().requires_grad_(False).to(device)
if dist.get_rank() == 0:
with torch.no_grad():
images = torch.zeros([batch_gpu, net.img_channels, net.img_resolution, net.img_resolution], device=device)
sigma = torch.ones([batch_gpu], device=device)
labels = torch.zeros([batch_gpu, net.label_dim], device=device)
misc.print_module_summary(net, [images, sigma, labels], max_nesting=2)
# Resume training from previous snapshot.
if resume_pkl is not None:
dist.print0(f'Loading network weights from "{resume_pkl}"...')
if resume_pkl.endswith('.pkl'):
if dist.get_rank() != 0:
torch.distributed.barrier() # rank 0 goes first
with dnnlib.util.open_url(resume_pkl, verbose=(dist.get_rank() == 0)) as f:
data = pickle.load(f)
if dist.get_rank() == 0:
torch.distributed.barrier() # other ranks follow
misc.copy_params_and_buffers(src_module=data['ema'], dst_module=net, require_all=True) #False)
del data # conserve memory
elif resume_pkl.endswith('.pt') or resume_pkl.endswith('.pth'):
if dist.get_rank() != 0:
torch.distributed.barrier() # rank 0 goes first
net.load_state_dict(torch.load(resume_pkl, map_location='cpu'), strict=True)
if dist.get_rank() == 0:
torch.distributed.barrier() # other ranks follow
if save_pth:
torch.save(net.state_dict(), os.path.join(run_dir, 'model.pth'))
# Export sample images.
grid_size = None
grid_z = None
grid_c = None
if dist.get_rank() == 0:
dist.print0('Exporting sample images...')
grid_size, images, labels = setup_snapshot_image_grid(training_set=dataset_obj)
save_image_grid(images, os.path.join(run_dir, 'data.png'), drange=[0,255], grid_size=grid_size)
grid_z = torch.randn([labels.shape[0], net.img_channels, net.img_resolution, net.img_resolution], device=device)
grid_z = grid_z.split(batch_gpu)
grid_c = torch.from_numpy(labels).to(device)
grid_c = grid_c.split(batch_gpu)
# Few-step Evaluation. If deterministic, give a fixed noise.
few_step_fn = functools.partial(generator_fn, mid_t=mid_t, noise=torch.randn([1, net.img_channels, net.img_resolution, net.img_resolution], device=device) if deterministic else None)
if dist.get_rank() == 0:
dist.print0('Exporting final sample images...')
images = [few_step_fn(net, z, c).cpu() for z, c in zip(grid_z, grid_c)]
images = torch.cat(images).numpy()
save_image_grid(images, os.path.join(run_dir, 'sample.png'), drange=[-1,1], grid_size=grid_size)
del images
dist.print0('Evaluating few-step generation...')
dist.print0(f"mid_t: {mid_t}, deterministic: {deterministic}")
for _ in range(1):
for metric in metrics:
result_dict = metric_main.calc_metric(metric=metric,
generator_fn=few_step_fn, G=net, G_kwargs={},
dataset_kwargs=dataset_kwargs, num_gpus=dist.get_world_size(), rank=dist.get_rank(), device=device, im_dir=im_dir, latent_dir=latent_dir,
dfid_ts=dfid_ts) # Pass dfid_ts to calc_metric
if dist.get_rank() == 0:
metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=f'{resume_pkl}')
# Done.
dist.print0()
dist.print0('Exiting...')
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------