-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
nerf_loader.cu
866 lines (715 loc) · 31.8 KB
/
nerf_loader.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* NVIDIA CORPORATION and its licensors retain all intellectual property
* and proprietary rights in and to this software, related documentation
* and any modifications thereto. Any use, reproduction, disclosure or
* distribution of this software and related documentation without an express
* license agreement from NVIDIA CORPORATION is strictly prohibited.
*/
/** @file nerfloader.cu
* @author Alex Evans & Thomas Müller, NVIDIA
* @brief Loads a NeRF data set from NeRF's original format
*/
#include <neural-graphics-primitives/common_device.cuh>
#include <neural-graphics-primitives/common.h>
#include <neural-graphics-primitives/nerf_loader.h>
#include <neural-graphics-primitives/thread_pool.h>
#include <neural-graphics-primitives/tinyexr_wrapper.h>
#include <filesystem/path.h>
#include <json/json.hpp>
#include <natural_sort.hpp>
#include <stb_image/stb_image.h>
#define _USE_MATH_DEFINES
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <string>
#include <vector>
using namespace std::literals;
namespace ngp {
__global__ void convert_rgba32(const uint64_t num_pixels, const uint8_t* __restrict__ pixels, uint8_t* __restrict__ out, bool white_2_transparent = false, bool black_2_transparent = false, uint32_t mask_color = 0) {
const uint64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_pixels) return;
uint8_t rgba[4];
*((uint32_t*)&rgba[0]) = *((uint32_t*)&pixels[i*4]);
// NSVF dataset has 'white = transparent' madness
if (white_2_transparent && rgba[0] == 255 && rgba[1] == 255 && rgba[2] == 255) {
rgba[3] = 0;
}
if (black_2_transparent && rgba[0] == 0 && rgba[1] == 0 && rgba[2] == 0) {
rgba[3] = 0;
}
if (mask_color != 0 && mask_color == *((uint32_t*)&rgba[0])) {
// turn the mask into hot pink
rgba[0] = 0xFF; rgba[1] = 0x00; rgba[2] = 0xFF; rgba[3] = 0x00;
}
*((uint32_t*)&out[i*4]) = *((uint32_t*)&rgba[0]);
}
__global__ void from_fullp(const uint64_t num_elements, const float* __restrict__ pixels, __half* __restrict__ out) {
const uint64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
out[i] = (__half)pixels[i];
}
template <typename T>
__global__ void copy_depth(const uint64_t num_elements, float* __restrict__ depth_dst, const T* __restrict__ depth_pixels, float depth_scale) {
const uint64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
if (depth_pixels == nullptr || depth_scale <= 0.f) {
depth_dst[i] = 0.f; // no depth data for this entire image. zero it out
} else {
depth_dst[i] = depth_pixels[i] * depth_scale;
}
}
template <typename T>
__global__ void sharpen(const uint64_t num_pixels, const uint32_t w, const T* __restrict__ pix, T* __restrict__ destpix, float center_w, float inv_totalw) {
const uint64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_pixels) return;
float rgba[4] = {
(float)pix[i*4+0]*center_w,
(float)pix[i*4+1]*center_w,
(float)pix[i*4+2]*center_w,
(float)pix[i*4+3]*center_w
};
int64_t i2=i-1; if (i2<0) i2=0; i2*=4;
for (int j=0;j<4;++j) rgba[j]-=(float)pix[i2++];
i2=i-w; if (i2<0) i2=0; i2*=4;
for (int j=0;j<4;++j) rgba[j]-=(float)pix[i2++];
i2=i+1; if (i2>=num_pixels) i2-=num_pixels; i2*=4;
for (int j=0;j<4;++j) rgba[j]-=(float)pix[i2++];
i2=i+w; if (i2>=num_pixels) i2-=num_pixels; i2*=4;
for (int j=0;j<4;++j) rgba[j]-=(float)pix[i2++];
for (int j=0;j<4;++j) destpix[i*4+j]=(T)max(0.f, rgba[j] * inv_totalw);
}
__device__ inline float luma(const vec4& c) {
return c[0] * 0.2126f + c[1] * 0.7152f + c[2] * 0.0722f;
}
__global__ void compute_sharpness(ivec2 sharpness_resolution, ivec2 image_resolution, uint32_t n_images, const void* __restrict__ images_data, EImageDataType image_data_type, float* __restrict__ sharpness_data) {
const uint32_t x = threadIdx.x + blockIdx.x * blockDim.x;
const uint32_t y = threadIdx.y + blockIdx.y * blockDim.y;
const uint32_t i = threadIdx.z + blockIdx.z * blockDim.z;
if (x >= sharpness_resolution.x || y >= sharpness_resolution.y || i>=n_images) return;
const size_t sharp_size = sharpness_resolution.x * sharpness_resolution.y;
sharpness_data += sharp_size * i + x + y * sharpness_resolution.x;
// overlap patches a bit
int x_border = 0; // (image_resolution.x/sharpness_resolution.x)/4;
int y_border = 0; // (image_resolution.y/sharpness_resolution.y)/4;
int x1 = (x*image_resolution.x)/sharpness_resolution.x-x_border, x2 = ((x+1)*image_resolution.x)/sharpness_resolution.x+x_border;
int y1 = (y*image_resolution.y)/sharpness_resolution.y-y_border, y2 = ((y+1)*image_resolution.y)/sharpness_resolution.y+y_border;
// clamp to 1 pixel in from edge
x1=max(x1,1); y1=max(y1,1);
x2=min(x2,image_resolution.x-2); y2=min(y2,image_resolution.y-2);
// yes, yes I know I should do a parallel reduction and shared memory and stuff. but we have so many tiles in flight, and this is load-time, meh.
float tot_lap=0.f,tot_lap2=0.f,tot_lum=0.f;
float scal=1.f/((x2-x1)*(y2-y1));
for (int yy=y1;yy<y2;++yy) {
for (int xx=x1; xx<x2; ++xx) {
vec4 n, e, s, w, c;
c = read_rgba(ivec2{xx, yy}, image_resolution, images_data, image_data_type, i);
n = read_rgba(ivec2{xx, yy-1}, image_resolution, images_data, image_data_type, i);
w = read_rgba(ivec2{xx-1, yy}, image_resolution, images_data, image_data_type, i);
s = read_rgba(ivec2{xx, yy+1}, image_resolution, images_data, image_data_type, i);
e = read_rgba(ivec2{xx+1, yy}, image_resolution, images_data, image_data_type, i);
float lum = luma(c);
float lap = lum * 4.f - luma(n) - luma(e) - luma(s) - luma(w);
tot_lap += lap;
tot_lap2 += lap*lap;
tot_lum += lum;
}
}
tot_lap*=scal;
tot_lap2*=scal;
tot_lum*=scal;
float variance_of_laplacian = tot_lap2 - tot_lap * tot_lap;
*sharpness_data = (variance_of_laplacian) ; // / max(0.00001f,tot_lum*tot_lum); // var / (tot+0.001f);
}
NerfDataset create_empty_nerf_dataset(size_t n_images, int aabb_scale, bool is_hdr) {
NerfDataset result{};
result.n_images = n_images;
result.sharpness_resolution = { 128, 72 };
result.sharpness_data.enlarge( result.sharpness_resolution.x * result.sharpness_resolution.y * result.n_images );
result.xforms.resize(n_images);
result.metadata.resize(n_images);
result.pixelmemory.resize(n_images);
result.depthmemory.resize(n_images);
result.raymemory.resize(n_images);
result.scale = NERF_SCALE;
result.offset = {0.5f, 0.5f, 0.5f};
result.aabb_scale = aabb_scale;
result.is_hdr = is_hdr;
result.paths = std::vector<std::string>(n_images, "");
for (size_t i = 0; i < n_images; ++i) {
result.xforms[i].start = mat4x3::identity();
result.xforms[i].end = mat4x3::identity();
}
return result;
}
void read_lens(const nlohmann::json& json, Lens& lens, vec2& principal_point, vec4& rolling_shutter) {
ELensMode mode = ELensMode::Perspective;
ELensMode opencv_mode = json.value("is_fisheye", false) ? ELensMode::OpenCVFisheye : ELensMode::OpenCV;
auto read_opencv_parameter = [&](const std::string& name, size_t idx) {
if (json.contains(name)) {
lens.params[idx] = json[name];
if (lens.params[idx] != 0.f) {
mode = opencv_mode;
}
}
};
read_opencv_parameter("k1", 0);
read_opencv_parameter("k2", 1);
read_opencv_parameter("k3", 2);
read_opencv_parameter("k4", 3);
read_opencv_parameter("p1", 2);
read_opencv_parameter("p2", 3);
if (json.contains("cx")) {
principal_point.x = (float)json["cx"] / (float)json["w"];
}
if (json.contains("cy")) {
principal_point.y = (float)json["cy"] / (float)json["h"];
}
if (json.contains("rolling_shutter")) {
// The rolling shutter is a float4 of [A,B,C,D] where the time
// for each pixel is t= A + B * u + C * v + D * motionblur_time,
// where u and v are the pixel coordinates within (0-1).
// The resulting t is used to interpolate between the start
// and end transforms for each training xform.
float motionblur_amount = 0.f;
if (json["rolling_shutter"].size() >= 4) {
motionblur_amount = float(json["rolling_shutter"][3]);
}
rolling_shutter = {float(json["rolling_shutter"][0]), float(json["rolling_shutter"][1]), float(json["rolling_shutter"][2]), motionblur_amount};
}
if (json.contains("ftheta_p0")) {
lens.params[0] = json["ftheta_p0"];
lens.params[1] = json["ftheta_p1"];
lens.params[2] = json["ftheta_p2"];
lens.params[3] = json["ftheta_p3"];
lens.params[4] = json["ftheta_p4"];
lens.params[5] = json["w"];
lens.params[6] = json["h"];
mode = ELensMode::FTheta;
}
if (json.contains("latlong")) {
mode = ELensMode::LatLong;
}
if (json.contains("equirectangular")) {
mode = ELensMode::Equirectangular;
}
// If there was an outer distortion mode, don't override it with nothing.
if (mode != ELensMode::Perspective) {
lens.mode = mode;
}
}
bool read_focal_length(const nlohmann::json &json, vec2 &focal_length, const ivec2 &res) {
auto read_focal_length = [&](int resolution, const std::string& axis) {
if (json.contains(axis + "_fov")) {
return fov_to_focal_length(resolution, (float)json[axis + "_fov"]);
} else if (json.contains("fl_"s + axis)) {
return (float)json["fl_"s + axis];
} else if (json.contains("camera_angle_"s + axis)) {
return fov_to_focal_length(resolution, (float)json["camera_angle_"s + axis] * 180 / PI());
} else {
return 0.0f;
}
};
// x_fov is in degrees, camera_angle_x in radians. Yes, it's silly.
float x_fl = read_focal_length(res.x, "x");
float y_fl = read_focal_length(res.y, "y");
if (x_fl != 0) {
focal_length = vec2(x_fl);
if (y_fl != 0) {
focal_length.y = y_fl;
}
} else if (y_fl != 0) {
focal_length = vec2(y_fl);
} else {
return false;
}
return true;
}
NerfDataset load_nerf(const std::vector<fs::path>& jsonpaths, float sharpen_amount) {
if (jsonpaths.empty()) {
throw std::runtime_error{"Cannot load NeRF data from an empty set of paths."};
}
tlog::info() << "Loading NeRF dataset from";
NerfDataset result{};
std::ifstream f{native_string(jsonpaths.front())};
nlohmann::json transforms = nlohmann::json::parse(f, nullptr, true, true);
ThreadPool pool;
struct LoadedImageInfo {
ivec2 res = ivec2(0);
bool image_data_on_gpu = false;
EImageDataType image_type = EImageDataType::None;
bool white_transparent = false;
bool black_transparent = false;
uint32_t mask_color = 0;
void *pixels = nullptr;
uint16_t *depth_pixels = nullptr;
Ray *rays = nullptr;
float depth_scale = -1.f;
};
std::vector<LoadedImageInfo> images;
LoadedImageInfo info = {};
if (transforms["camera"].is_array()) {
throw std::runtime_error{"hdf5 is no longer supported. please use the hdf52nerf.py conversion script"};
}
// nerf original format
std::vector<nlohmann::json> jsons;
std::transform(
jsonpaths.begin(), jsonpaths.end(),
std::back_inserter(jsons), [](const auto& path) {
return nlohmann::json::parse(std::ifstream{native_string(path)}, nullptr, true, true);
}
);
std::vector<std::string> supported_image_formats = {
"png", "jpg", "jpeg", "bmp", "gif", "tga", "pic", "pnm", "psd", "exr",
};
auto resolve_path = [&supported_image_formats](const fs::path& base_path, const fs::path& local_path) {
fs::path path = local_path.is_absolute() ? local_path : (base_path / local_path);
if (path.extension().empty() && !path.exists()) {
for (const auto& format : supported_image_formats) {
if (path.with_extension(format).exists()) {
return path.with_extension(format);
}
}
}
return path;
};
result.n_images = 0;
for (size_t i = 0; i < jsons.size(); ++i) {
auto& json = jsons[i];
fs::path base_path = jsonpaths[i].parent_path();
if (!json.contains("frames") || !json["frames"].is_array()) {
tlog::warning() << " " << jsonpaths[i] << " does not contain any frames. Skipping.";
continue;
}
tlog::info() << " " << jsonpaths[i];
auto& frames = json["frames"];
float sharpness_discard_threshold = json.value("sharpness_discard_threshold", 0.0f); // Keep all by default
std::sort(frames.begin(), frames.end(), [](const auto& frame1, const auto& frame2) {
return SI::natural::compare<std::string>(frame1["file_path"], frame2["file_path"]);
});
for (auto&& frame : frames) {
// Compatibility with Windows paths on Linux. (Breaks linux filenames with "\\" in them, which is acceptable for us.)
frame["file_path"] = replace_all(frame["file_path"], "\\", "/");
if (frame.contains("depth_path")) {
frame["depth_path"] = replace_all(frame["depth_path"], "\\", "/");
}
}
if (json.contains("n_frames")) {
size_t cull_idx = std::min(frames.size(), (size_t)json["n_frames"]);
frames.get_ptr<nlohmann::json::array_t*>()->resize(cull_idx);
}
if (frames[0].contains("sharpness")) {
auto frames_copy = frames;
frames.clear();
// Kill blurrier frames than their neighbors
const int neighborhood_size = 3;
for (int i = 0; i < (int)frames_copy.size(); ++i) {
float mean_sharpness = 0.0f;
int mean_start = std::max(0, i-neighborhood_size);
int mean_end = std::min(i + neighborhood_size, (int)frames_copy.size() - 1);
for (int j = mean_start; j < mean_end; ++j) {
mean_sharpness += float(frames_copy[j].value("sharpness", 1.0));
}
mean_sharpness /= (mean_end - mean_start);
if (resolve_path(base_path, frames_copy[i]["file_path"]).exists() && frames_copy[i].value("sharpness", 1.0) > sharpness_discard_threshold * mean_sharpness) {
frames.emplace_back(frames_copy[i]);
} else {
// tlog::info() << "discarding frame " << frames_copy[i]["file_path"];
// fs::remove(resolve_path(base_path, frames_copy[i]["file_path"]));
}
}
}
for (size_t i = 0; i < frames.size(); ++i) {
result.paths.emplace_back(frames[i]["file_path"]);
}
result.n_images += frames.size();
}
images.resize(result.n_images);
result.xforms.resize(result.n_images);
result.metadata.resize(result.n_images);
result.pixelmemory.resize(result.n_images);
result.depthmemory.resize(result.n_images);
result.raymemory.resize(result.n_images);
result.scale = NERF_SCALE;
result.offset = {0.5f, 0.5f, 0.5f};
std::vector<std::future<void>> futures;
size_t image_idx = 0;
if (result.n_images == 0) {
throw std::invalid_argument{"No training images were found for NeRF training!"};
}
auto progress = tlog::progress(result.n_images);
result.from_mitsuba = false;
bool fix_premult = false;
bool enable_ray_loading = true;
bool enable_depth_loading = true;
std::atomic<int> n_loaded{0};
BoundingBox cam_aabb;
for (size_t i = 0; i < jsons.size(); ++i) {
auto& json = jsons[i];
fs::path base_path = jsonpaths[i].parent_path();
std::string jp = jsonpaths[i].str();
auto lastdot = jp.find_last_of('.'); if (lastdot==std::string::npos) lastdot = jp.length();
auto lastunderscore = jp.find_last_of('_'); if (lastunderscore == std::string::npos) lastunderscore=lastdot; else lastunderscore++;
std::string part_after_underscore(jp.begin()+lastunderscore,jp.begin()+lastdot);
if (json.contains("enable_ray_loading")) {
enable_ray_loading = bool(json["enable_ray_loading"]);
tlog::info() << "enable_ray_loading=" << enable_ray_loading;
}
if (json.contains("enable_depth_loading")) {
enable_depth_loading = bool(json["enable_depth_loading"]);
tlog::info() << "enable_depth_loading is " << enable_depth_loading;
}
if (json.contains("normal_mts_args")) {
result.from_mitsuba = true;
}
if (json.contains("fix_premult")) {
fix_premult = (bool)json["fix_premult"];
}
if (result.from_mitsuba) {
result.scale = 0.66f;
result.offset = {0.25f * result.scale, 0.25f * result.scale, 0.25f * result.scale};
}
if (json.contains("render_aabb")) {
result.render_aabb.min={float(json["render_aabb"][0][0]),float(json["render_aabb"][0][1]),float(json["render_aabb"][0][2])};
result.render_aabb.max={float(json["render_aabb"][1][0]),float(json["render_aabb"][1][1]),float(json["render_aabb"][1][2])};
}
if (json.contains("sharpen")) {
sharpen_amount = json["sharpen"];
}
if (json.contains("white_transparent")) {
info.white_transparent = bool(json["white_transparent"]);
}
if (json.contains("black_transparent")) {
info.black_transparent = bool(json["black_transparent"]);
}
if (json.contains("scale")) {
result.scale = json["scale"];
}
if (json.contains("importance_sampling")) {
result.wants_importance_sampling = json["importance_sampling"];
}
if (json.contains("n_extra_learnable_dims")) {
result.n_extra_learnable_dims = json["n_extra_learnable_dims"];
}
Lens lens = {};
vec2 principal_point = vec2(0.5f);
vec4 rolling_shutter = vec4(0.0f);
if (json.contains("integer_depth_scale")) {
info.depth_scale = json["integer_depth_scale"];
}
// Lens parameters
read_lens(json, lens, principal_point, rolling_shutter);
if (json.contains("aabb_scale")) {
result.aabb_scale = json["aabb_scale"];
}
if (json.contains("offset")) {
result.offset =
json["offset"].is_array() ?
vec3{float(json["offset"][0]), float(json["offset"][1]), float(json["offset"][2])} :
vec3{float(json["offset"]), float(json["offset"]), float(json["offset"])};
}
if (json.contains("aabb")) {
// map the given aabb of the form [[minx,miny,minz],[maxx,maxy,maxz]] via an isotropic scale and translate to fit in the (0,0,0)-(1,1,1) cube, with the given center at 0.5,0.5,0.5
const auto& aabb=json["aabb"];
float length = std::max(0.000001f,std::max(std::max(std::abs(float(aabb[1][0])-float(aabb[0][0])),std::abs(float(aabb[1][1])-float(aabb[0][1]))),std::abs(float(aabb[1][2])-float(aabb[0][2]))));
result.scale = 1.f/length;
result.offset = { ((float(aabb[1][0])+float(aabb[0][0]))*0.5f)*-result.scale + 0.5f , ((float(aabb[1][1])+float(aabb[0][1]))*0.5f)*-result.scale + 0.5f,((float(aabb[1][2])+float(aabb[0][2]))*0.5f)*-result.scale + 0.5f};
}
if (json.contains("frames") && json["frames"].is_array()) {
for (int j = 0; j < json["frames"].size(); ++j) {
auto& frame = json["frames"][j];
nlohmann::json& jsonmatrix_start = frame.contains("transform_matrix_start") ? frame["transform_matrix_start"] : frame["transform_matrix"];
nlohmann::json& jsonmatrix_end = frame.contains("transform_matrix_end") ? frame["transform_matrix_end"] : jsonmatrix_start;
const vec3 p = vec3{float(jsonmatrix_start[0][3]), float(jsonmatrix_start[1][3]), float(jsonmatrix_start[2][3])} * result.scale + result.offset;
const vec3 q = vec3{float(jsonmatrix_end[0][3]), float(jsonmatrix_end[1][3]), float(jsonmatrix_end[2][3])} * result.scale + result.offset;
cam_aabb.enlarge(p);
cam_aabb.enlarge(q);
}
}
if (json.contains("up")) {
// axes are permuted as for the xforms below
result.up[0] = float(json["up"][1]);
result.up[1] = float(json["up"][2]);
result.up[2] = float(json["up"][0]);
}
if (json.contains("envmap") && product(result.envmap_resolution) > 0) {
fs::path envmap_path = resolve_path(base_path, json["envmap"]);
if (!envmap_path.exists()) {
throw std::runtime_error{fmt::format("Environment map {} does not exist.", envmap_path.str())};
}
if (equals_case_insensitive(envmap_path.extension(), "exr")) {
result.envmap_data = load_exr_gpu(envmap_path, &result.envmap_resolution.x, &result.envmap_resolution.y);
result.is_hdr = true;
} else {
result.envmap_data = load_stbi_gpu(envmap_path, &result.envmap_resolution.x, &result.envmap_resolution.y);
}
}
if (json.contains("frames") && json["frames"].is_array()) pool.parallel_for_async<size_t>(0, json["frames"].size(), [&progress, &n_loaded, &result, &images, &json, &resolve_path, &supported_image_formats, base_path, image_idx, info, rolling_shutter, principal_point, lens, part_after_underscore, fix_premult, enable_depth_loading, enable_ray_loading](size_t i) {
size_t i_img = i + image_idx;
auto& frame = json["frames"][i];
LoadedImageInfo& dst = images[i_img];
dst = info; // copy defaults
std::string json_provided_path = frame["file_path"];
if (json_provided_path == "") {
char buf[256];
snprintf(buf, 256, "%s_%03d/rgba.png", part_after_underscore.c_str(), (int)i);
json_provided_path = buf;
}
fs::path path = resolve_path(base_path, json_provided_path);
if (!path.exists()) {
throw std::runtime_error{fmt::format("Could not find image file '{}'.", path.str())};
}
int comp = 0;
if (equals_case_insensitive(path.extension(), "exr")) {
dst.pixels = load_exr_to_gpu(&dst.res.x, &dst.res.y, path.str().c_str(), fix_premult);
dst.image_type = EImageDataType::Half;
dst.image_data_on_gpu = true;
result.is_hdr = true;
} else {
dst.image_data_on_gpu = false;
uint8_t* img = load_stbi(path, &dst.res.x, &dst.res.y, &comp, 4);
if (!img) {
throw std::runtime_error{"Could not open image file: "s + std::string{stbi_failure_reason()}};
}
fs::path alphapath = resolve_path(base_path, fmt::format("{}.alpha.{}", frame["file_path"], path.extension()));
if (alphapath.exists()) {
int wa = 0, ha = 0;
uint8_t* alpha_img = load_stbi(alphapath, &wa, &ha, &comp, 4);
if (!alpha_img) {
throw std::runtime_error{"Could not load alpha image "s + alphapath.str()};
}
ScopeGuard mem_guard{[&]() { stbi_image_free(alpha_img); }};
if (wa != dst.res.x || ha != dst.res.y) {
throw std::runtime_error{fmt::format("Alpha image {} has wrong resolution.", alphapath.str())};
}
tlog::success() << "Alpha loaded from " << alphapath;
for (int i = 0; i < product(dst.res); ++i) {
img[i*4+3] = (uint8_t)(255.0f*srgb_to_linear(alpha_img[i*4]*(1.f/255.f))); // copy red channel of alpha to alpha.png to our alpha channel
}
}
fs::path maskpath = path.parent_path() / fmt::format("dynamic_mask_{}.png", path.basename());
if (maskpath.exists()) {
int wa = 0, ha = 0;
uint8_t* mask_img = load_stbi(maskpath, &wa, &ha, &comp, 4);
if (!mask_img) {
throw std::runtime_error{fmt::format("Dynamic mask {} could not be loaded.", maskpath.str())};
}
ScopeGuard mem_guard{[&]() { stbi_image_free(mask_img); }};
if (wa != dst.res.x || ha != dst.res.y) {
throw std::runtime_error{fmt::format("Dynamic mask {} has wrong resolution.", maskpath.str())};
}
dst.mask_color = 0x00FF00FF; // HOT PINK
for (int i = 0; i < product(dst.res); ++i) {
if (mask_img[i*4] != 0 || mask_img[i*4+1] != 0 || mask_img[i*4+2] != 0) {
*(uint32_t*)&img[i*4] = dst.mask_color;
}
}
}
dst.pixels = img;
dst.image_type = EImageDataType::Byte;
}
if (!dst.pixels) {
throw std::runtime_error{fmt::format("Could not load image file '{}'.", path.str())};
}
if (enable_depth_loading && info.depth_scale > 0.f && frame.contains("depth_path")) {
fs::path depthpath = resolve_path(base_path, frame["depth_path"]);
if (depthpath.exists()) {
int wa = 0, ha = 0;
dst.depth_pixels = load_stbi_16(depthpath, &wa, &ha, &comp, 1);
if (!dst.depth_pixels) {
throw std::runtime_error{fmt::format("Could not load depth image '{}'.", depthpath.str())};
}
if (wa != dst.res.x || ha != dst.res.y) {
throw std::runtime_error{fmt::format("Depth image {} has wrong resolution.", depthpath.str())};
}
}
}
fs::path rayspath = path.parent_path() / fmt::format("rays_{}.dat", path.basename());
if (enable_ray_loading && rayspath.exists()) {
uint32_t n_pixels = product(dst.res);
dst.rays = (Ray*)malloc(n_pixels * sizeof(Ray));
std::ifstream rays_file{native_string(rayspath), std::ios::binary};
rays_file.read((char*)dst.rays, n_pixels * sizeof(Ray));
std::streampos fsize = 0;
fsize = rays_file.tellg();
rays_file.seekg(0, std::ios::end);
fsize = rays_file.tellg() - fsize;
if (fsize > 0) {
tlog::warning() << fsize << " bytes remaining in rays file " << rayspath;
}
for (uint32_t px = 0; px < n_pixels; ++px) {
result.nerf_ray_to_ngp(dst.rays[px]);
}
result.has_rays = true;
}
nlohmann::json& jsonmatrix_start = frame.contains("transform_matrix_start") ? frame["transform_matrix_start"] : frame["transform_matrix"];
nlohmann::json& jsonmatrix_end = frame.contains("transform_matrix_end") ? frame["transform_matrix_end"] : jsonmatrix_start;
if (frame.contains("driver_parameters")) {
vec3 light_dir{
frame["driver_parameters"].value("LightX", 0.f),
frame["driver_parameters"].value("LightY", 0.f),
frame["driver_parameters"].value("LightZ", 0.f)
};
result.metadata[i_img].light_dir = result.nerf_direction_to_ngp(normalize(light_dir));
result.has_light_dirs = true;
result.n_extra_learnable_dims = 0;
}
bool got_fl = read_focal_length(json, result.metadata[i_img].focal_length, dst.res);
got_fl |= read_focal_length(frame, result.metadata[i_img].focal_length, dst.res);
if (!got_fl) {
throw std::runtime_error{"Couldn't read fov."};
}
for (int m = 0; m < 3; ++m) {
for (int n = 0; n < 4; ++n) {
result.xforms[i_img].start[n][m] = float(jsonmatrix_start[m][n]);
result.xforms[i_img].end[n][m] = float(jsonmatrix_end[m][n]);
}
}
// set these from the base settings
result.metadata[i_img].rolling_shutter = rolling_shutter;
result.metadata[i_img].principal_point = principal_point;
result.metadata[i_img].lens = lens;
// see if there is a per-frame override
read_lens(frame, result.metadata[i_img].lens, result.metadata[i_img].principal_point, result.metadata[i_img].rolling_shutter);
result.xforms[i_img].start = result.nerf_matrix_to_ngp(result.xforms[i_img].start);
result.xforms[i_img].end = result.nerf_matrix_to_ngp(result.xforms[i_img].end);
progress.update(++n_loaded);
}, futures);
if (json.contains("frames")) {
image_idx += json["frames"].size();
}
}
wait_all(futures);
tlog::success() << "Loaded " << images.size() << " images after " << tlog::durationToString(progress.duration());
tlog::info() << " cam_aabb=" << cam_aabb;
if (result.has_rays) {
tlog::success() << "Loaded per-pixel rays.";
}
if (!images.empty() && images[0].mask_color) {
tlog::success() << "Loaded dynamic masks.";
}
result.sharpness_resolution = { 128, 72 };
result.sharpness_data.enlarge( result.sharpness_resolution.x * result.sharpness_resolution.y * result.n_images );
// copy / convert images to the GPU
for (uint32_t i = 0; i < result.n_images; ++i) {
const LoadedImageInfo& m = images[i];
result.set_training_image(i, m.res, m.pixels, m.depth_pixels, m.depth_scale * result.scale, m.image_data_on_gpu, m.image_type, EDepthDataType::UShort, sharpen_amount, m.white_transparent, m.black_transparent, m.mask_color, m.rays);
CUDA_CHECK_THROW(cudaDeviceSynchronize());
}
CUDA_CHECK_THROW(cudaDeviceSynchronize());
// free memory
for (uint32_t i = 0; i < result.n_images; ++i) {
if (images[i].image_data_on_gpu) {
CUDA_CHECK_THROW(cudaFree(images[i].pixels));
} else {
free(images[i].pixels);
}
free(images[i].rays);
free(images[i].depth_pixels);
}
return result;
}
void NerfDataset::set_training_image(int frame_idx, const ivec2& image_resolution, const void* pixels, const void* depth_pixels, float depth_scale, bool image_data_on_gpu, EImageDataType image_type, EDepthDataType depth_type, float sharpen_amount, bool white_transparent, bool black_transparent, uint32_t mask_color, const Ray *rays) {
if (frame_idx < 0 || frame_idx >= n_images) {
throw std::runtime_error{"NerfDataset::set_training_image: invalid frame index"};
}
size_t n_pixels = product(image_resolution);
size_t img_size = n_pixels * 4; // 4 channels
size_t image_type_stride = image_type_size(image_type);
// copy to gpu if we need to do a conversion
GPUMemory<uint8_t> images_data_gpu_tmp;
GPUMemory<uint8_t> depth_tmp;
if (!image_data_on_gpu && image_type == EImageDataType::Byte) {
images_data_gpu_tmp.resize(img_size * image_type_stride);
images_data_gpu_tmp.copy_from_host((uint8_t*)pixels);
pixels = images_data_gpu_tmp.data();
if (depth_pixels) {
depth_tmp.resize(n_pixels * depth_type_size(depth_type));
depth_tmp.copy_from_host((uint8_t*)depth_pixels);
depth_pixels = depth_tmp.data();
}
image_data_on_gpu = true;
}
// copy or convert the pixels
pixelmemory[frame_idx].resize(img_size * image_type_size(image_type));
void* dst = pixelmemory[frame_idx].data();
switch (image_type) {
default: throw std::runtime_error{"unknown image type in set_training_image"};
case EImageDataType::Byte: linear_kernel(convert_rgba32, 0, nullptr, n_pixels, (uint8_t*)pixels, (uint8_t*)dst, white_transparent, black_transparent, mask_color); break;
case EImageDataType::Half: // fallthrough is intended
case EImageDataType::Float: CUDA_CHECK_THROW(cudaMemcpy(dst, pixels, img_size * image_type_size(image_type), image_data_on_gpu ? cudaMemcpyDeviceToDevice : cudaMemcpyHostToDevice)); break;
}
// copy over depths if provided
if (depth_scale >= 0.f) {
depthmemory[frame_idx].resize(img_size);
float* depth_dst = depthmemory[frame_idx].data();
if (depth_pixels && !image_data_on_gpu) {
depth_tmp.resize(n_pixels * depth_type_size(depth_type));
depth_tmp.copy_from_host((uint8_t*)depth_pixels);
depth_pixels = depth_tmp.data();
}
switch (depth_type) {
default: throw std::runtime_error{"unknown depth type in set_training_image"};
case EDepthDataType::UShort: linear_kernel(copy_depth<uint16_t>, 0, nullptr, n_pixels, depth_dst, (const uint16_t*)depth_pixels, depth_scale); break;
case EDepthDataType::Float: linear_kernel(copy_depth<float>, 0, nullptr, n_pixels, depth_dst, (const float*)depth_pixels, depth_scale); break;
}
} else {
depthmemory[frame_idx].free_memory();
}
// apply requested sharpening
if (sharpen_amount > 0.f) {
if (image_type == EImageDataType::Byte) {
GPUMemory<uint8_t> images_data_half(img_size * sizeof(__half));
linear_kernel(from_rgba32<__half>, 0, nullptr, n_pixels, (uint8_t*)pixels, (__half*)images_data_half.data(), white_transparent, black_transparent, mask_color);
pixelmemory[frame_idx] = std::move(images_data_half);
dst = pixelmemory[frame_idx].data();
image_type = EImageDataType::Half;
}
assert(image_type == EImageDataType::Half || image_type == EImageDataType::Float);
GPUMemory<uint8_t> images_data_sharpened(img_size * image_type_size(image_type));
float center_w = 4.f + 1.f / sharpen_amount; // center_w ranges from 5 (strong sharpening) to infinite (no sharpening)
if (image_type == EImageDataType::Half) {
linear_kernel(sharpen<__half>, 0, nullptr, n_pixels, image_resolution.x, (__half*)dst, (__half*)images_data_sharpened.data(), center_w, 1.f / (center_w - 4.f));
} else {
linear_kernel(sharpen<float>, 0, nullptr, n_pixels, image_resolution.x, (float*)dst, (float*)images_data_sharpened.data(), center_w, 1.f / (center_w - 4.f));
}
pixelmemory[frame_idx] = std::move(images_data_sharpened);
dst = pixelmemory[frame_idx].data();
}
if (sharpness_data.size() > 0) {
// compute overall sharpness
const dim3 threads = { 16, 8, 1 };
const dim3 blocks = { div_round_up((uint32_t)sharpness_resolution.x, threads.x), div_round_up((uint32_t)sharpness_resolution.y, threads.y), 1 };
sharpness_data.enlarge(sharpness_resolution.x * sharpness_resolution.y);
compute_sharpness<<<blocks, threads, 0, nullptr>>>(sharpness_resolution, image_resolution, 1, dst, image_type, sharpness_data.data() + sharpness_resolution.x * sharpness_resolution.y * (size_t)frame_idx);
}
metadata[frame_idx].pixels = pixelmemory[frame_idx].data();
metadata[frame_idx].depth = depthmemory[frame_idx].data();
metadata[frame_idx].resolution = image_resolution;
metadata[frame_idx].image_data_type = image_type;
if (rays) {
raymemory[frame_idx].resize(n_pixels);
CUDA_CHECK_THROW(cudaMemcpy(raymemory[frame_idx].data(), rays, n_pixels * sizeof(Ray), cudaMemcpyHostToDevice));
} else {
raymemory[frame_idx].free_memory();
}
metadata[frame_idx].rays = raymemory[frame_idx].data();
update_metadata(frame_idx, frame_idx + 1);
}
void NerfDataset::update_metadata(int first, int last) {
if (last < 0) {
last = n_images;
}
if (last > n_images) {
last = n_images;
}
int n = last - first;
if (n <= 0) {
return;
}
metadata_gpu.enlarge(last);
CUDA_CHECK_THROW(cudaMemcpy(metadata_gpu.data() + first, metadata.data() + first, n * sizeof(TrainingImageMetadata), cudaMemcpyHostToDevice));
}
}