-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmodel.py
220 lines (199 loc) · 9.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import copy
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
print(device)
def clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def clone_params(param, N):
return nn.ParameterList([copy.deepcopy(param) for _ in range(N)])
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class GraphLayer(nn.Module):
def __init__(self, in_features, hidden_features, out_features, num_of_nodes,
num_of_heads, dropout, alpha, concat=True):
super(GraphLayer, self).__init__()
self.in_features = in_features
self.hidden_features = hidden_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.num_of_nodes = num_of_nodes
self.num_of_heads = num_of_heads
self.W = clones(nn.Linear(in_features, hidden_features), num_of_heads)
self.a = clone_params(nn.Parameter(torch.rand(size=(1, 2 * hidden_features)), requires_grad=True), num_of_heads)
self.ffn = nn.Sequential(
nn.Linear(out_features, out_features),
nn.ReLU()
)
if not concat:
self.V = nn.Linear(hidden_features, out_features)
else:
self.V = nn.Linear(num_of_heads * hidden_features, out_features)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
if concat:
self.norm = LayerNorm(hidden_features)
else:
self.norm = LayerNorm(hidden_features)
def initialize(self):
for i in range(len(self.W)):
nn.init.xavier_normal_(self.W[i].weight.data)
for i in range(len(self.a)):
nn.init.xavier_normal_(self.a[i].data)
if not self.concat:
nn.init.xavier_normal_(self.V.weight.data)
nn.init.xavier_normal_(self.out_layer.weight.data)
def attention(self, linear, a, N, data, edge):
data = linear(data).unsqueeze(0)
assert not torch.isnan(data).any()
# edge: 2*D x E
h = torch.cat((data[:, edge[0, :], :], data[:, edge[1, :], :]), dim=0)
data = data.squeeze(0)
# h: N x out
assert not torch.isnan(h).any()
# edge_h: 2*D x E
edge_h = torch.cat((h[0, :, :], h[1, :, :]), dim=1).transpose(0, 1)
# edge: 2*D x E
edge_e = torch.exp(self.leakyrelu(a.mm(edge_h).squeeze()) / np.sqrt(self.hidden_features * self.num_of_heads))
assert not torch.isnan(edge_e).any()
# edge_e: E
edge_e = torch.sparse_coo_tensor(edge, edge_e, torch.Size([N, N]))
e_rowsum = torch.sparse.mm(edge_e, torch.ones(size=(N, 1)).to(device))
# e_rowsum: N x 1
row_check = (e_rowsum == 0)
e_rowsum[row_check] = 1
zero_idx = row_check.nonzero()[:, 0]
edge_e = edge_e.add(
torch.sparse.FloatTensor(zero_idx.repeat(2, 1), torch.ones(len(zero_idx)).to(device), torch.Size([N, N])))
# edge_e: E
h_prime = torch.sparse.mm(edge_e, data)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime.div_(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
return h_prime
def forward(self, edge, data=None):
N = self.num_of_nodes
if self.concat:
h_prime = torch.cat([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=1)
else:
h_prime = torch.stack([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=0).mean(
dim=0)
h_prime = self.dropout(h_prime)
if self.concat:
return F.elu(self.norm(h_prime))
else:
return self.V(F.relu(self.norm(h_prime)))
class VariationalGNN(nn.Module):
def __init__(self, in_features, out_features, num_of_nodes, n_heads, n_layers,
dropout, alpha, variational=True, none_graph_features=0, concat=True):
super(VariationalGNN, self).__init__()
self.variational = variational
self.num_of_nodes = num_of_nodes + 1 - none_graph_features
self.embed = nn.Embedding(self.num_of_nodes, in_features, padding_idx=0)
self.in_att = clones(
GraphLayer(in_features, in_features, in_features, self.num_of_nodes,
n_heads, dropout, alpha, concat=True), n_layers)
self.out_features = out_features
self.out_att = GraphLayer(in_features, in_features, out_features, self.num_of_nodes,
n_heads, dropout, alpha, concat=False)
self.n_heads = n_heads
self.dropout = nn.Dropout(dropout)
self.parameterize = nn.Linear(out_features, out_features * 2)
self.out_layer = nn.Sequential(
nn.Linear(out_features, out_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(out_features, 1))
self.none_graph_features = none_graph_features
if none_graph_features > 0:
self.features_ffn = nn.Sequential(
nn.Linear(none_graph_features, out_features//2),
nn.ReLU(),
nn.Dropout(dropout))
self.out_layer = nn.Sequential(
nn.Linear(out_features + out_features//2, out_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(out_features, 1))
for i in range(n_layers):
self.in_att[i].initialize()
def data_to_edges(self, data):
data = data.bool()
length = data.size()[0]
nonzero = data.nonzero()
if nonzero.size()[0] == 0:
return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]])
if self.training:
mask = torch.rand(nonzero.size()[0])
mask = mask > 0.05
nonzero = nonzero[mask]
if nonzero.size()[0] == 0:
return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]])
nonzero = nonzero.transpose(0, 1) + 1
lengths = nonzero.size()[1]
input_edges = torch.cat((nonzero.repeat(1, lengths),
nonzero.repeat(lengths, 1).transpose(0, 1)
.contiguous().view((1, lengths ** 2))), dim=0)
nonzero = torch.cat((nonzero, torch.LongTensor([[length + 1]]).to(device)), dim=1)
lengths = nonzero.size()[1]
output_edges = torch.cat((nonzero.repeat(1, lengths),
nonzero.repeat(lengths, 1).transpose(0, 1)
.contiguous().view((1, lengths ** 2))), dim=0)
return input_edges.to(device), output_edges.to(device)
def reparameterise(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
else:
return mu
def encoder_decoder(self, data):
N = self.num_of_nodes
input_edges, output_edges = self.data_to_edges(data)
h_prime = self.embed(torch.arange(N).long().to(device))
for attn in self.in_att:
h_prime = attn(input_edges, h_prime)
if self.variational:
h_prime = self.parameterize(h_prime).view(-1, 2, self.out_features)
h_prime = self.dropout(h_prime)
mu = h_prime[:, 0, :]
logvar = h_prime[:, 1, :]
h_prime = self.reparameterise(mu, logvar)
mu = mu[data, :]
logvar = logvar[data, :]
h_prime = self.out_att(output_edges, h_prime)
if self.variational:
return h_prime[-1], 0.5 * torch.sum(logvar.exp() - logvar - 1 + mu.pow(2)) / mu.size()[0]
else:
return h_prime[-1], torch.tensor(0.0).to(device)
def forward(self, data):
# Concate batches
batch_size = data.size()[0]
# In eicu data the first feature whether have be admitted before is not included in the graph
if self.none_graph_features == 0:
outputs = [self.encoder_decoder(data[i, :]) for i in range(batch_size)]
return self.out_layer(F.relu(torch.stack([out[0] for out in outputs]))), \
torch.sum(torch.stack([out[1] for out in outputs]))
else:
outputs = [(data[i, :self.none_graph_features],
self.encoder_decoder(data[i, self.none_graph_features:])) for i in range(batch_size)]
return self.out_layer(F.relu(
torch.stack([torch.cat((self.features_ffn(torch.FloatTensor([out[0]]).to(device)), out[1][0]))
for out in outputs]))), \
torch.sum(torch.stack([out[1][1] for out in outputs]), dim=-1)