forked from rmrao/img2stl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeshcreator.py
176 lines (164 loc) · 5.28 KB
/
meshcreator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
def get_triangles(npimage, depth=10):
"""
Makes upper left and lower right triangles. Takes in numpy array, returns array of triangles. Automatically
excludes invalid triangles (triangles with one vertex off the edge)
"""
npimage = npimage + depth
h, w = npimage.shape
y, x = np.indices((h, w))
cube = np.dstack((x, y, npimage))
ults = np.zeros((h-1, w-1, 3, 4))
lrts = np.zeros((h-1, w-1, 3, 4))
ults[:,:,:,1] = cube[:-1,:-1]
ults[:,:,:,2] = cube[:-1,1:]
ults[:,:,:,3] = cube[1:,:-1]
lrts[:,:,:,1] = cube[1:,1:]
lrts[:,:,:,2] = cube[1:,:-1]
lrts[:,:,:,3] = cube[:-1,1:]
sides = make_sides(ults, lrts)
ults = ults.reshape(((ults.shape[0])*(ults.shape[1]), 3, 4))
lrts = lrts.reshape(((lrts.shape[0])*(lrts.shape[1]), 3, 4))
triset = get_cross(np.concatenate((ults, lrts, sides)))
triset = np.swapaxes(triset, 1, 2).copy()
triset = np.concatenate((triset, make_bottom(h-1, w-1)))
return normalize_triangles(triset)
def make_sides(ults, lrts):
"""Creates the sides of the base."""
a = ults[0].copy()
a[:,:,3] = a[:,:,1]
a[:,2,3] = 0
b = ults[:,0].copy()
b[:,:,2] = b[:,:,1]
b[:,:,2][:,2] = 0
c = ults[-1].copy()
c[:,1,1:3] = c[:,1,1:3] + 1
c[:,2,1:3] = 0
d = ults[:,-1].copy()
d[:,0,1] = d[:,0,1] + 1
d[:,0,3] = d[:,0,3] + 1
d[:,2,1] = 0
d[:,2,3] = 0
e = lrts[0].copy()
e[:,1,1:3] = e[:,1,1:3] - 1
e[:,2,1:3] = 0
f = lrts[:,0].copy()
f[:,0,1] = f[:,0,1] - 1
f[:,0,3] = f[:,0,3] - 1
f[:,2,1] = 0
f[:,2,3] = 0
g = lrts[-1].copy()
g[:,1,3] = g[:,1,3] + 1
g[:,2,3] = 0
h = lrts[:,-1].copy()
h[:,0,2] = h[:,0,2] + 1
h[:,2,2] = 0
a[:,:,[1,2]] = a[:,:,[2,1]]
b[:,:,[1,2]] = b[:,:,[2,1]]
c[:,:,[1,2]] = c[:,:,[2,1]]
d[:,:,[1,2]] = d[:,:,[2,1]]
e[:,:,[1,2]] = e[:,:,[2,1]]
f[:,:,[1,2]] = f[:,:,[2,1]]
g[:,:,[1,2]] = g[:,:,[2,1]]
h[:,:,[1,2]] = h[:,:,[2,1]]
return np.concatenate((a, b, c, d, e, f, g, h))
def make_bottom(height, width):
"""Creates the bottom of the base"""
bottom = np.array([[[width, 0, 0], [0, 0, 0], [0, height, 0]], \
[[width, height, 0], [width, 0, 0], [0, height, 0]]])
triset = np.zeros((2, 4, 3))
triset[0,1:] = bottom[0]
triset[1,1:] = bottom[1]
for tri in triset:
v1 = tri[2] - tri[1]
v2 = tri[3] - tri[1]
tri[0] = np.cross(v1, v2)
return triset
def normalize_triangles(triset):
"""
Makes sure model can fit on MakerBot plate. Note: the sizing may be off when using different software
or a different printer. All sizes are in mm not inches.
"""
xsize = triset[:,1:,0].ptp()
if xsize > 140:
triset = triset * 140 / float(xsize)
ysize = triset[:,1:,1].ptp()
if ysize > 140:
triset = triset * 140 / float(ysize)
zsize = triset[:,1:,2].ptp()
if zsize > 100:
triset = triset * 100 / float(zsize)
return triset
def get_cross(triset):
"""
Sets the normal vector for each triangle. This is necessary for some 3D printing
software, including MakerWare.
"""
t1 = triset[:,:,1]
t2 = triset[:,:,2]
t3 = triset[:,:,3]
v1 = t2 - t1
v2 = t3 - t1
triset[:,:,0] = np.cross(v1, v2)
return triset
def to_mesh(npimage, filename, depth=1, double=False, _ascii=False):
"""
Writes an npimage to stl file. Splits each pixel into two triangles.
npimage - the image to convert represented as a numpy array.
filename - a string naming the file to write to. File will write to current working directory
unless another path is given.
depth - the depth of the back plate. Should probably be between 10 and 30. A thicker plate gives
greater stability, but uses more material and has a longer build time. For writing jpg or
png images, a depth of 10 probably suffices.
_ascii - gives option to write ascii stl file. By default it will write a binary stl file, which is
harder to debug, but which takes up far less space.
"""
if not filename[-4:].lower() == '.stl':
filename += '.stl'
if isinstance(npimage, np.ma.core.MaskedArray):
npimage = npimage.data
triset = get_triangles(npimage, depth)
if double:
triset2 = triset.copy()
triset2[:,0] = -triset2[:,0]
triset2[:,1:,2] = -triset2[:,1:,2]
triset = np.concatenate((triset, triset2))
write_binary(triset, filename) if not _ascii else write_ascii(triset, filename)
def write_binary(triset, filename):
"""
Writes a binary stl file, given a set of triangles and normal vectors, along with a filename.
"""
triset = triset.astype('<f4')
triset = triset.reshape((triset.shape[0], 12))
buff = np.zeros((triset.shape[0],), dtype=('f4,'*12+'i2'))
for n in range(12): # Fills in array by column
col = 'f' + str(n)
buff[col] = triset[:,n]
# Took the header straight from stl.py
strhdr = "binary STL format"
strhdr += (80-len(strhdr))*" "
ntri = len(buff)
larray = np.zeros((1,),dtype='<u4')
larray[0] = ntri
f = open(filename, 'wb')
f.write(strhdr)
f.write(larray.tostring())
buff.tofile(f)
f.close()
def write_ascii(triset, filename):
"""
Writes an ascii stl file, given a set of triangles and normal vectors, along with a filename.
Generally good for debugging, results in a much bigger file.
"""
f = open(filename, 'w')
f.write("solid bozo\n")
for t in triset:
f.write("facet normal %e %e %e\n" % tuple(t[0]))
f.write("\touter loop\n")
f.write("\t\tvertex %e %e %e\n" % tuple(t[1]))
f.write("\t\tvertex %e %e %e\n" % tuple(t[2]))
f.write("\t\tvertex %e %e %e\n" % tuple(t[3]))
f.write("\tendloop\n")
f.write("endfacet\n")
f.write("endwolid bozo")
f.close()