-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANN.py
33 lines (28 loc) · 1.26 KB
/
ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy
def sigmoid(inpt):
return 1.0/(1.0+numpy.exp(-1*inpt))
def relu(inpt):
result = inpt
result[inpt<0] = 0
return result
def predict_outputs(weights_mat, data_inputs, data_outputs, activation="relu"):
predictions = numpy.zeros(shape=(data_inputs.shape[0]))
for sample_idx in range(data_inputs.shape[0]):
r1 = data_inputs[sample_idx, :]
for curr_weights in weights_mat:
r1 = numpy.matmul(r1, curr_weights)
if activation == "relu":
r1 = relu(r1)
elif activation == "sigmoid":
r1 = sigmoid(r1)
predicted_label = numpy.where(r1 == numpy.max(r1))[0][0]
predictions[sample_idx] = predicted_label
correct_predictions = numpy.where(predictions == data_outputs)[0].size
accuracy = (correct_predictions/data_outputs.size)*100
return accuracy, predictions
def fitness(weights_mat, data_inputs, data_outputs, activation="relu"):
accuracy = numpy.empty(shape=(weights_mat.shape[0]))
for sol_idx in range(weights_mat.shape[0]):
curr_sol_mat = weights_mat[sol_idx, :]
accuracy[sol_idx], _ = predict_outputs(curr_sol_mat, data_inputs, data_outputs, activation=activation)
return accuracy