-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheficiency_test.py
171 lines (144 loc) · 5.11 KB
/
eficiency_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import time
import pandas as pd
import networkx as nx
import staticmap as stm
import matplotlib.pyplot as plt
from geopy.geocoders import Nominatim
from haversine import haversine
import collections as cl
from jutge import read, read_line
url = 'https://api.bsmsa.eu/ext/api/bsm/gbfs/v2/en/station_information'
bicing = pd.DataFrame.from_records(pd.read_json(url)['data']['stations'], index='station_id')
def Sorting_algorithm(dist=1000):
G = nx.Graph()
v = sorted(list(bicing.itertuples()), key=lambda station: station.lat)
for i in range(len(v)):
G.add_node(v[i])
j = i + 1
while(j < len(v) and v[j].lat - v[i].lat <= dist):
distance = haversine((v[i].lat, v[i].lon), (v[j].lat, v[j].lon))
if distance <= dist:
G.add_edge(v[i], v[j], weight = distance)
j += 1
return G
def Create_Matrix(bicing, dist, sizex, sizey, lat_min, lon_min):
matrix = [[list() for j in range(sizey)] for i in range(sizex)]
for st in bicing.itertuples():
dpx = int(haversine((lat_min, st.lon), (st.lat, st.lon)) // dist)
dpy = int(haversine((st.lat, lon_min), (st.lat, st.lon)) // dist)
matrix[dpx][dpy].append(st)
return matrix
def possible_quadrants(M, i, j, verticales, horizontales):
pos = [(M[i][j])]
if i + 1 < verticales:
pos.append(M[i + 1][j])
if j + 1 < horizontales:
pos.append(M[i + 1][j + 1])
if j + 1 < horizontales:
pos.append(M[i][j+1])
if i - 1 >= 0:
pos.append(M[i - 1][j + 1])
return pos
def Graph_creation(M, dist):
G = nx.Graph()
verticales = len(M)
horizontales = len(M[0])
for i in range(verticales):
for j in range(horizontales):
for point in M[i][j]:
G.add_node(point)
for quadrant in possible_quadrants(M, i, j, verticales, horizontales):
for point2 in quadrant:
distance = haversine((point.lat, point.lon), (point2.lat, point2.lon))
if distance <= dist and point != point2:
G.add_edge(point, point2, weight=distance)
return G
def Create_Graph(bicing, dist, sizex, sizey, lat_min, lon_min):
M = Create_Matrix(bicing, dist, sizex, sizey, lat_min, lon_min)
return Graph_creation(M, dist)
def Calculate_dimensions(bicing, dist):
first = True
for st in bicing.itertuples():
if first:
lat_min = lat_max = st.lat
lon_min = lon_max = st.lon
first = False
else:
if st.lat < lat_min:
lat_min = st.lat
elif st.lat > lat_max:
lat_max = st.lat
if st.lon < lon_min:
lon_min = st.lon
elif st.lon > lon_max:
lon_max = st.lon
sizex = int(haversine((lat_min, lon_min), (lat_max, lon_min)) // dist + 1)
sizey = int(haversine((lat_min, lon_min), (lat_min, lon_max)) // dist + 1)
return sizex, sizey, lat_min, lon_min
def Linear_Graph(dist=1000):
dist /= 1000
sizex, sizey, lat_min, lon_min = Calculate_dimensions(bicing, dist)
return Create_Graph(bicing, dist, sizex, sizey, lat_min, lon_min)
def Quadratic_graph(dist=1000):
G = nx.Graph()
dist /= 1000
for st in bicing.itertuples():
G.add_node(st)
for dt in bicing.itertuples():
distancia = haversine((st.lat, st.lon), (dt.lat, dt.lon))
if st != dt and dist <= distancia:
G.add_edge(st, dt, weight=distancia)
def read_input():
print("Hi, this is an efficiency test to prove the graph creation speed.")
inicio = 0
while inicio < 2:
print("Please, introduce an start distance for the loop (bigger than 2): ")
inicio = read(int)
fin = inicio
while fin <= inicio:
print("Fine, now introduce a finish distance for the loop (bigger than the start distance)")
fin = read(int)
incremento = 0
while incremento <= 0:
print("Finally, introduce an increment for the loop (bigger than 0):")
incremento = read(int)
return inicio, fin, incremento
def main():
inicio, fin, incremento = read_input()
vx = []
v1 = []
v2 = []
v3 = []
for i in range(inicio, fin, incremento):
vx.append(i)
for x in range(inicio, fin, incremento):
c = 0
r = 0
sr = 0
cont = 0
cont += 1
start1 = time.time()
G = Quadratic_graph(x)
finish1 = time.time()
c += finish1 - start1
print("Quadratic done")
start2 = time.time()
Gp = Sorting_algorithm(x)
finish2 = time.time()
r += finish2 - start2
print("Medium speed done")
start3 = time.time()
Gq = Linear_Graph(x)
finish3 = time.time()
sr += finish3 - start3
print("Linear done")
print("This has been with distance ==", x)
v1.append(c / cont)
v2.append(r / cont)
v3.append(sr / cont)
plt.plot(vx, v1, 'ro')
plt.plot(vx, v2, 'bs')
plt.plot(vx, v3, 'g^')
plt.axis([inicio, fin, 0, 2])
plt.show()
main()