|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 18, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import csp\n", |
| 10 | + "from datetime import datetime, timedelta\n", |
| 11 | + "\n", |
| 12 | + "from csp.adapters.parquet import ParquetOutputConfig, ParquetReader, ParquetWriter\n", |
| 13 | + "from typing import Dict, List\n", |
| 14 | + "\n", |
| 15 | + "class MySmolStruct(csp.Struct):\n", |
| 16 | + " v: str\n", |
| 17 | + " z: int = 12\n", |
| 18 | + "\n", |
| 19 | + "class MySillyStruct(csp.Struct):\n", |
| 20 | + " header: str = \"abad\"\n", |
| 21 | + " x: int\n", |
| 22 | + " ms: MySmolStruct\n", |
| 23 | + "\n", |
| 24 | + "\n", |
| 25 | + "class MyStruct(csp.Struct):\n", |
| 26 | + " x: int\n", |
| 27 | + " v: float = 1.0\n", |
| 28 | + " bb: MySillyStruct = MySillyStruct()\n", |
| 29 | + "\n", |
| 30 | + "\n", |
| 31 | + "@csp.node\n", |
| 32 | + "def dedup(real: csp.ts[\"T\"], hist: csp.ts[\"T\"], flag: csp.ts[bool]) -> csp.ts[\"T\"]:\n", |
| 33 | + " if csp.ticked(flag):\n", |
| 34 | + " csp.make_passive(hist)\n", |
| 35 | + " \n", |
| 36 | + " if csp.ticked(hist):\n", |
| 37 | + " return real\n", |
| 38 | + " \n", |
| 39 | + " if csp.ticked(real):\n", |
| 40 | + " return real\n", |
| 41 | + "\n", |
| 42 | + "\n", |
| 43 | + "# big_vals = [MyStruct(x=3) * 100]\n", |
| 44 | + "tup_size = 1_000_000\n", |
| 45 | + "# tups = [(timedelta(microseconds= i), MyStruct(x=3) ) for i in range(tup_size)]\n", |
| 46 | + "# tup2 = [(timedelta(microseconds = i), MyStruct(x=3) ) for i in range(tup_size)]\n", |
| 47 | + "\n", |
| 48 | + "path = \"/Users/neej/dev/csp/test_tup.pq\"\n", |
| 49 | + "path2 = \"/Users/neej/dev/csp/test_tup2.pq\"\n", |
| 50 | + "\n", |
| 51 | + "@csp.graph\n", |
| 52 | + "def write_vals():\n", |
| 53 | + "\n", |
| 54 | + " writer = ParquetWriter(\n", |
| 55 | + " file_name=path, timestamp_column_name=\"csp_time\", config=ParquetOutputConfig(allow_overwrite=True)\n", |
| 56 | + " )\n", |
| 57 | + " tups = [(timedelta(microseconds= i), MyStruct(x=3) ) for i in range(tup_size)]\n", |
| 58 | + " tups_csp = csp.curve(typ=MyStruct, data=tups)\n", |
| 59 | + " writer.publish_struct(tups_csp)\n", |
| 60 | + "\n", |
| 61 | + "csp.run(write_vals, starttime=datetime(2020, 1, 1), endtime=datetime(2099, 1, 1))\n", |
| 62 | + "\n", |
| 63 | + "@csp.graph\n", |
| 64 | + "def g_fast():\n", |
| 65 | + " # vals1 = csp.curve(typ=MyStruct, data=tups)\n", |
| 66 | + " # vals2 = csp.curve( typ=MyStruct, data=tup2 )\n", |
| 67 | + " struct_reader = ParquetReader(path, time_column=\"csp_time\")\n", |
| 68 | + " vals1 = struct_reader.subscribe_all(MyStruct)\n", |
| 69 | + "\n", |
| 70 | + " struct_reader2 = ParquetReader(path2, time_column=\"csp_time\")\n", |
| 71 | + " vals2 = struct_reader2.subscribe_all(MyStruct)\n", |
| 72 | + "\n", |
| 73 | + "\n", |
| 74 | + " flag = csp.const(True)\n", |
| 75 | + " filt1 = csp.filter(flag, vals1)\n", |
| 76 | + " res = csp.merge(filt1, vals2)\n", |
| 77 | + " csp.add_graph_output(\"res\", res)\n", |
| 78 | + "\n", |
| 79 | + "\n", |
| 80 | + "\n", |
| 81 | + "@csp.graph\n", |
| 82 | + "def g_slow():\n", |
| 83 | + " struct_reader = ParquetReader(path, time_column=\"csp_time\")\n", |
| 84 | + " vals1 = struct_reader.subscribe_all(MyStruct)\n", |
| 85 | + "\n", |
| 86 | + " struct_reader2 = ParquetReader(path2, time_column=\"csp_time\")\n", |
| 87 | + " vals2 = struct_reader2.subscribe_all(MyStruct)\n", |
| 88 | + "\n", |
| 89 | + " flag = csp.const(True)\n", |
| 90 | + " res = dedup(vals1, vals2, flag)\n", |
| 91 | + " csp.add_graph_output(\"res\", res)\n", |
| 92 | + "\n", |
| 93 | + "\n", |
| 94 | + "with csp.profiler.Profiler(cycle_file=\"cycle_data_slow.csv\", node_file=\"node_data_slow.csv\") as p:\n", |
| 95 | + " csp.run(g_slow, starttime=datetime(1970, 1, 1), endtime=datetime(2099, 1, 1))\n", |
| 96 | + "\n", |
| 97 | + "with csp.profiler.Profiler(cycle_file=\"cycle_data_fast.csv\", node_file=\"node_data_fast.csv\") as p:\n", |
| 98 | + " csp.run(g_fast, starttime=datetime(1970, 1, 1), endtime=datetime(2099, 1, 1))\n", |
| 99 | + "\n" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": 19, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "name": "stdout", |
| 109 | + "output_type": "stream", |
| 110 | + "text": [ |
| 111 | + "CYCLE FAST\n", |
| 112 | + "\n", |
| 113 | + "Overall Execution Time Statistics:\n" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "data": { |
| 118 | + "text/html": [ |
| 119 | + "<div><style>\n", |
| 120 | + ".dataframe > thead > tr,\n", |
| 121 | + ".dataframe > tbody > tr {\n", |
| 122 | + " text-align: right;\n", |
| 123 | + " white-space: pre-wrap;\n", |
| 124 | + "}\n", |
| 125 | + "</style>\n", |
| 126 | + "<small>shape: (1, 4)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>overall_mean_time_us</th><th>overall_variance_us</th><th>overall_std_dev_us</th><th>total_samples</th></tr><tr><td>f64</td><td>f64</td><td>f64</td><td>u32</td></tr></thead><tbody><tr><td>2.859916</td><td>7.21443</td><td>2.685969</td><td>1000001</td></tr></tbody></table></div>" |
| 127 | + ], |
| 128 | + "text/plain": [ |
| 129 | + "shape: (1, 4)\n", |
| 130 | + "┌──────────────────────┬─────────────────────┬────────────────────┬───────────────┐\n", |
| 131 | + "│ overall_mean_time_us ┆ overall_variance_us ┆ overall_std_dev_us ┆ total_samples │\n", |
| 132 | + "│ --- ┆ --- ┆ --- ┆ --- │\n", |
| 133 | + "│ f64 ┆ f64 ┆ f64 ┆ u32 │\n", |
| 134 | + "╞══════════════════════╪═════════════════════╪════════════════════╪═══════════════╡\n", |
| 135 | + "│ 2.859916 ┆ 7.21443 ┆ 2.685969 ┆ 1000001 │\n", |
| 136 | + "└──────────────────────┴─────────────────────┴────────────────────┴───────────────┘" |
| 137 | + ] |
| 138 | + }, |
| 139 | + "metadata": {}, |
| 140 | + "output_type": "display_data" |
| 141 | + } |
| 142 | + ], |
| 143 | + "source": [ |
| 144 | + "import polars as pl\n", |
| 145 | + "\n", |
| 146 | + "from IPython.display import display\n", |
| 147 | + "\n", |
| 148 | + "# df = pl.read_csv(\"node_data_fast.csv\").group_by(\"Node Type\").agg(pl.col(\"Execution Time\").sum())\n", |
| 149 | + "# display(df)\n", |
| 150 | + "# df[\"Execution Time\"].sum()\n", |
| 151 | + "\n", |
| 152 | + "df = pl.read_csv(\"cycle_data_fast.csv\")\n", |
| 153 | + "# display(df)\n", |
| 154 | + "print(\"CYCLE FAST\")\n", |
| 155 | + "import numpy as np\n", |
| 156 | + "\n", |
| 157 | + "# Overall statistics across all node types\n", |
| 158 | + "overall_stats = df.select([\n", |
| 159 | + " (pl.col('Execution Time').mean() * 1_000_000).alias('overall_mean_time_us'),\n", |
| 160 | + " (pl.col('Execution Time').var() * 1_000_000 * 1_000_000).alias('overall_variance_us'), # multiply twice since variance is squared\n", |
| 161 | + " (pl.col('Execution Time').std() * 1_000_000).alias('overall_std_dev_us'),\n", |
| 162 | + " pl.col('Execution Time').count().alias('total_samples')\n", |
| 163 | + "]).with_columns([\n", |
| 164 | + " pl.col(['overall_mean_time_us', 'overall_variance_us', 'overall_std_dev_us'])\n", |
| 165 | + "])\n", |
| 166 | + "\n", |
| 167 | + "print(\"\\nOverall Execution Time Statistics:\")\n", |
| 168 | + "display(overall_stats)" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": 20, |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [ |
| 176 | + { |
| 177 | + "name": "stdout", |
| 178 | + "output_type": "stream", |
| 179 | + "text": [ |
| 180 | + "CYCLE SLOW\n", |
| 181 | + "\n", |
| 182 | + "Overall Execution Time Statistics:\n" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "data": { |
| 187 | + "text/html": [ |
| 188 | + "<div><style>\n", |
| 189 | + ".dataframe > thead > tr,\n", |
| 190 | + ".dataframe > tbody > tr {\n", |
| 191 | + " text-align: right;\n", |
| 192 | + " white-space: pre-wrap;\n", |
| 193 | + "}\n", |
| 194 | + "</style>\n", |
| 195 | + "<small>shape: (1, 4)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>overall_mean_time_us</th><th>overall_variance_us</th><th>overall_std_dev_us</th><th>total_samples</th></tr><tr><td>f64</td><td>f64</td><td>f64</td><td>u32</td></tr></thead><tbody><tr><td>1.583237</td><td>5.8768</td><td>2.424211</td><td>1000001</td></tr></tbody></table></div>" |
| 196 | + ], |
| 197 | + "text/plain": [ |
| 198 | + "shape: (1, 4)\n", |
| 199 | + "┌──────────────────────┬─────────────────────┬────────────────────┬───────────────┐\n", |
| 200 | + "│ overall_mean_time_us ┆ overall_variance_us ┆ overall_std_dev_us ┆ total_samples │\n", |
| 201 | + "│ --- ┆ --- ┆ --- ┆ --- │\n", |
| 202 | + "│ f64 ┆ f64 ┆ f64 ┆ u32 │\n", |
| 203 | + "╞══════════════════════╪═════════════════════╪════════════════════╪═══════════════╡\n", |
| 204 | + "│ 1.583237 ┆ 5.8768 ┆ 2.424211 ┆ 1000001 │\n", |
| 205 | + "└──────────────────────┴─────────────────────┴────────────────────┴───────────────┘" |
| 206 | + ] |
| 207 | + }, |
| 208 | + "metadata": {}, |
| 209 | + "output_type": "display_data" |
| 210 | + } |
| 211 | + ], |
| 212 | + "source": [ |
| 213 | + "import polars as pl\n", |
| 214 | + "\n", |
| 215 | + "from IPython.display import display\n", |
| 216 | + "\n", |
| 217 | + "df = pl.read_csv(\"cycle_data_slow.csv\")\n", |
| 218 | + "# display(df)\n", |
| 219 | + "print(\"CYCLE SLOW\")\n", |
| 220 | + "import numpy as np\n", |
| 221 | + "\n", |
| 222 | + "# Overall statistics across all node types\n", |
| 223 | + "overall_stats = df.select([\n", |
| 224 | + " (pl.col('Execution Time').mean() * 1_000_000).alias('overall_mean_time_us'),\n", |
| 225 | + " (pl.col('Execution Time').var() * 1_000_000 * 1_000_000).alias('overall_variance_us'), # multiply twice since variance is squared\n", |
| 226 | + " (pl.col('Execution Time').std() * 1_000_000).alias('overall_std_dev_us'),\n", |
| 227 | + " pl.col('Execution Time').count().alias('total_samples')\n", |
| 228 | + "]).with_columns([\n", |
| 229 | + " pl.col(['overall_mean_time_us', 'overall_variance_us', 'overall_std_dev_us'])\n", |
| 230 | + "])\n", |
| 231 | + "\n", |
| 232 | + "print(\"\\nOverall Execution Time Statistics:\")\n", |
| 233 | + "display(overall_stats)" |
| 234 | + ] |
| 235 | + } |
| 236 | + ], |
| 237 | + "metadata": { |
| 238 | + "kernelspec": { |
| 239 | + "display_name": "Python 3", |
| 240 | + "language": "python", |
| 241 | + "name": "python3" |
| 242 | + }, |
| 243 | + "language_info": { |
| 244 | + "codemirror_mode": { |
| 245 | + "name": "ipython", |
| 246 | + "version": 3 |
| 247 | + }, |
| 248 | + "file_extension": ".py", |
| 249 | + "mimetype": "text/x-python", |
| 250 | + "name": "python", |
| 251 | + "nbconvert_exporter": "python", |
| 252 | + "pygments_lexer": "ipython3", |
| 253 | + "version": "3.12.5" |
| 254 | + } |
| 255 | + }, |
| 256 | + "nbformat": 4, |
| 257 | + "nbformat_minor": 2 |
| 258 | +} |
0 commit comments