-
Notifications
You must be signed in to change notification settings - Fork 183
MOABB bibliography
Sylvain Chevallier edited this page Jan 10, 2023
·
24 revisions
To cite MOABB, you could use the following paper:
Vinay Jayaram and Alexandre Barachant. "MOABB: trustworthy algorithm benchmarking for BCIs." Journal of neural engineering 15.6 (2018): 066011. DOI
To explore academic works that cite/use MOABB you can check out the Connected Papers Link
- Bleuzé, A., Mattout, J., & Congedo, M. (2022). Tangent space alignment: Transfer learning for Brain-Computer Interface. Frontiers in Human Neuroscience.
- Kobler, R. J., Hirayama, J. I., Zhao, Q., & Kawanabe, M. (2022). SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG. NeurIPS
- Fang, Y., Yap, P. T., Lin, W., Zhu, H., & Liu, M. (2022). Source-Free Unsupervised Domain Adaptation: A Survey. arXiv preprint.
- Wilson, D., Gemein, L. A. W., Schirrmeister, R. T., & Ball, T. (2022). Deep Riemannian Networks for EEG Decoding. arXiv preprint.
- Demir, A., Khalil, I., & Kiziltan, B. (2022). EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive Activity from EEG. arXiv
- D. Kostas-Heliokinde (2022) On the difficulty of training deep neural networks with raw encephalography data. PhD
- X. Chen, X. Teng, H. Chen, Y. Pan, P. Geyer. (2022) Toward reliable signals decoding for electroencephalogram: A benchmark study to EEGNeX. arXiv
- Barthélemy, Q., Chevallier, S., Bertrand-Lalo, R., & Clisson, P. (2022). End-to-end P300 BCI using Bayesian accumulation of Riemannian probabilities. Brain Computer Interface journal
- Couvy-Duchesne, B., Bottani, S., Camenen, E., Fang, F., Fikere, M., Gonzalez-Astudillo, J., ... & Wright, M. (2022). Main existing datasets for open data research on humans. HAL
- P. Guetschel, T. Papadopoulo, M. Tangermann. Embedding neurophysiological signals. Proc. of the IEEE MetroXRAINE conference, Oct 2022, Roma, Italy. HAL
- Zoumpourlis, G., & Patras, I. (2022). Motor Imagery Decoding Using Ensemble Curriculum Learning and Collaborative Training. arXiv preprint arXiv:2211.11460.
- Matthijs Pals, Rafael J. Pérez Belizón, Nicolas Berberich, Stefan K. Ehrlich, John Nassour & Gordon Cheng. "Demonstrating the Viability of Mapping Deep Learning Based EEG Decoders to Spiking Networks on Low-powered Neuromorphic Chips", IEEE Engineering in Medicine & Biology Society (EMBC). DOI
- Jan Sosulski, Jan-Philip Kemmer & Michael Tangermann Improving Covariance Matrices Derived from Tiny Training Datasets for the Classification of Event-Related Potentials with Linear Discriminant Analysis. Neuroinformatics (2020). DOI
- Xu, Jiachen, Moritz Grosse-Wentrup, and Vinay Jayaram. "Tangent space spatial filters for interpretable and efficient Riemannian classification." Journal of neural engineering 17.2 (2020): 026043. DOI
- Rodrigues, Pedro, Marco Congedo, and Christian Jutten. "Dimensionality transcending: a method for merging BCI datasets with different dimensionalities." IEEE Transactions on Biomedical Engineering (2020). DOI
- Xu, Jiachen, Moritz Grosse-Wentrup, and Vinay Jayaram. "Interpretable Riemannian classification in brain-computer interfacing." (2019). DOI
- Xu, Jiachen, Vinay Jayaram, Bernhard Schölkopf, Moritz Grosse-Wentrup. "Feature extraction from the Hermitian manifold for Brain-Computer Interfaces." 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. DOI
- Congedo, Marco, Pedro Luiz Coelho Rodrigues, and Christian Jutten. "The Riemannian minimum distance to means field classifier." 8th Graz Brain-Computer Interface Conference 2019. 2019. DOI
- Rodrigues, Pedro Luiz Coelho, Christian Jutten, and Marco Congedo. "Riemannian procrustes analysis: Transfer learning for brain–computer interfaces." IEEE Transactions on Biomedical Engineering 66.8 (2018): 2390-2401. DOI
- Vinay Jayaram and Alexandre Barachant. "MOABB: trustworthy algorithm benchmarking for BCIs." Journal of neural engineering 15.6 (2018): 066011. DOI