-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrealTime.py
87 lines (68 loc) · 2.62 KB
/
realTime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from PIL import Image
from pathlib import Path
import torch
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt
from torch import nn
from facenet_pytorch import MTCNN
import streamlit as st
# import sys
# sys.path.insert(0, str(Path(__file__).resolve().parent))
from ageModular.age_model_builder import model_AGEV0
from genModular.gen_model_builder import GENV0
from ageModular.age_predict import predict_age
from genModular.gen_predict import predict_gender
from genModular.gen_utils import load_model
st.write("Real Time Age and Gender Prediction")
@st.cache_resource
def load_age_model():
age_model = model_AGEV0(input_shape=1, output_shape=1)
load_model(age_model, model_path="models", model_name="AGEV0.pth")
return age_model
@st.cache_resource
def load_gen_model():
gen_model = GENV0(input_shape=1, output_shape=1)
load_model(gen_model, model_path="models", model_name="GENV0.pt")
return gen_model
# @st.cache_resource
def load_face_detector():
mtcnn = MTCNN(keep_all=True, min_face_size=20, thresholds=[0.6, 0.7, 0.7])
return mtcnn
age_model = load_age_model()
gen_model = load_gen_model()
mtcnn = load_face_detector()
img = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])
button = st.button("Predict")
cols = st.columns(2)
if button and img:
img = cv2.imdecode(np.frombuffer(img.read(), np.uint8), cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# ih, iw, ic = img_arr.shape
# if img_arr.shape[2] == 4:
# img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGRA2RGB)
# else:
# img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB)
# img_rgb = cv2.cvtColor(img_arr, cv2.COLOR_BGR2GRAY)
# print(img_rgb.shape)
img_pil = Image.fromarray(img_rgb)
boxes, conf = mtcnn.detect(img_pil)
# print(results.detections)
with cols[0]:
if len(boxes) == 0:
st.write("No face detected")
else:
st.write("Number of people detected: ", len(boxes))
# print(boxes)
for box in boxes:
x1, y1, x2, y2 = [int(coord) for coord in box]
face = img_rgb[y1:y2, x1:x2]
# img = cv2.rectangle(img_arr, (xmin, ymin), (width, height), (255, 0, 0), 2)
# face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
st.image(face, caption="Detected Face")
age = predict_age(face, model=age_model)
gender = predict_gender(face, model=gen_model)
st.write(f"Age: {age}\nGender: {gender}")
with cols[1]:
st.image(img_rgb)