-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathgenerate_alpha.py
518 lines (447 loc) · 26.4 KB
/
generate_alpha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Generate random images using the techniques described in the paper
"Elucidating the Design Space of Diffusion-Based Generative Models"."""
import os
import re
import click
import tqdm
import pickle
import numpy as np
import torch
import PIL.Image
import dnnlib
from torch_utils import distributed as dist
from torchvision.utils import make_grid, save_image
from torch.distributions import Beta
import glob
from torch_utils import misc
#----------------------------------------------------------------------------
# Proposed EDM sampler (Algorithm 2).
def edm_sampler(
net, latents, class_labels=None, randn_like=torch.randn_like,
num_steps=18, sigma_min=0.002, sigma_max=80, rho=7,
S_churn=0, S_min=0, S_max=float('inf'), S_noise=0, alpha=0., pfgm=False,
pfgmpp=False, align=False, D=128, align_precond=False,
):
if pfgm:
#print("rho:", rho)
# Adjust noise levels based on what's supported by the network.
N = net.img_channels * net.img_resolution * net.img_resolution
r_min = 0.55 / np.sqrt(N / (D - 2 - 1))
r_max = 2500 / np.sqrt(N / (D - 2 - 1))
# Time step discretization.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
t_steps = (r_max ** (1 / rho) + step_indices / (num_steps - 1) * (
r_min ** (1 / rho) - r_max ** (1 / rho))) ** rho
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
# samples_norm = torch.sqrt(latents) * r_max
# samples_norm = samples_norm.view(len(samples_norm), -1)
# # Uniformly sample the angle direction
# gaussian = torch.randn(len(latents), N).to(samples_norm.device)
# unit_gaussian = gaussian / torch.norm(gaussian, p=2, dim=1, keepdim=True)
# # Radius times the angle direction
# init_samples = unit_gaussian * samples_norm
# latents = init_samples.reshape((len(latents), net.img_channels, net.img_resolution, net.img_resolution))
x_next = latents.to(torch.float64)
# Main sampling loop.
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
t_hat = net.round_sigma(t_cur)
x_hat = x_cur
# Euler step.
x_drift, z_drift = net(x_hat, t_hat, class_labels)
x_drift = x_drift.view(len(x_drift), -1).to(torch.float64)
z_drift = z_drift.to(torch.float64) * np.sqrt(D)
# Predicted normalized Poisson field
v = torch.cat([x_drift, z_drift[:, None]], dim=1)
dt_dz = 1 / (v[:, -1] + 1e-5)
dx_dt = v[:, :-1].view(len(x_drift), net.img_channels,
net.img_resolution,
net.img_resolution)
dx_dz = dx_dt * dt_dz.view(-1, *([1] * len(x_hat.size()[1:])))
d_cur = dx_dz
x_next = x_hat + (t_next - t_hat) * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
x_drift_new, z_drift_new = net(x_next, t_next, class_labels)
x_drift_new = x_drift_new.view(len(x_drift_new), -1).to(torch.float64)
z_drift_new = z_drift_new.to(torch.float64) * np.sqrt(D)
# Predicted normalized Poisson field
v_new = torch.cat([x_drift_new, z_drift_new[:, None]], dim=1)
dt_dz_new = 1 / (v_new[:, -1] + 1e-5)
dx_dt_new = v_new[:, :-1].view(len(x_drift_new), net.img_channels,
net.img_resolution,
net.img_resolution)
dx_dz_new = dx_dt_new * dt_dz_new.view(-1, *([1] * len(x_next.size()[1:])))
d_prime = dx_dz_new
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
else:
N = net.img_channels * net.img_resolution * net.img_resolution
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
if align:
sigma_min *= np.sqrt(1 + N/D)
sigma_max *= np.sqrt(1 + N/D)
#print("sigma max:", sigma_max, "sigma min:", sigma_min)
# Time step discretization.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (
sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
#t_steps = t_steps[:-2]
if pfgmpp:
x_next = latents.to(torch.float64)
else:
x_next = latents.to(torch.float64) * t_steps[0]
# Main sampling loop.
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
gaussian = torch.randn((len(x_cur), N)).to(x_cur.device)
unit_gaussian = gaussian / torch.norm(gaussian, p=2, dim=1, keepdim=True)
unit_gaussian = unit_gaussian.view_as(x_cur)
#if i < 15:
x_cur += torch.randn_like(x_cur) * t_cur * alpha
# radius = x_cur.view(len(x_cur), -1).norm(p=2, dim=1) * alpha
# radius = radius.reshape((-1, 1, 1, 1))
# x_cur += unit_gaussian * radius
# norm = x_cur.view(len(x_cur), -1).norm(p=2, dim=1)/(t_cur * np.sqrt(N))
# print(f"i:{i}, t cur:{t_cur:.3f}, norm/\sigma * sqrt({N}):",
# f"max: {max(norm):.3f}, min: {min(norm):.3f}")
# Increase noise temporarily.
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
t_hat = net.round_sigma(t_cur + gamma * t_cur)
x_hat = x_cur + (t_hat ** 2 - t_cur ** 2).sqrt() * S_noise * randn_like(x_cur)
# Euler step.
if align_precond:
t_old = t_hat / np.sqrt(1 + N/D)
#print(t_old, t_hat)
denoised = net(x_hat, t_hat, class_labels, sigma_old=t_old).to(torch.float64)
else:
denoised = net(x_hat, t_hat, class_labels).to(torch.float64)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
if align_precond:
t_old = t_next / np.sqrt(1 + N/D)
denoised = net(x_next, t_next, class_labels, sigma_old=t_old).to(torch.float64)
else:
denoised = net(x_next, t_next, class_labels).to(torch.float64)
d_prime = (x_next - denoised) / t_next
x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
#print("mean final norm:", x_next.reshape((len(x_next), -1)).norm(p=2, dim=1).mean(), x_next.shape)
return x_next
#----------------------------------------------------------------------------
# Generalized ablation sampler, representing the superset of all sampling
# methods discussed in the paper.
def ablation_sampler(
net, latents, class_labels=None, randn_like=torch.randn_like,
num_steps=18, sigma_min=None, sigma_max=None, rho=7,
solver='heun', discretization='edm', schedule='linear', scaling='none',
epsilon_s=1e-3, C_1=0.001, C_2=0.008, M=1000, alpha=1,
S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
):
assert solver in ['euler', 'heun']
assert discretization in ['vp', 've', 'iddpm', 'edm']
assert schedule in ['vp', 've', 'linear']
assert scaling in ['vp', 'none']
# Helper functions for VP & VE noise level schedules.
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5
vp_sigma_deriv = lambda beta_d, beta_min: lambda t: 0.5 * (beta_min + beta_d * t) * (sigma(t) + 1 / sigma(t))
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
ve_sigma = lambda t: t.sqrt()
ve_sigma_deriv = lambda t: 0.5 / t.sqrt()
ve_sigma_inv = lambda sigma: sigma ** 2
# Select default noise level range based on the specified time step discretization.
if sigma_min is None:
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=epsilon_s)
sigma_min = {'vp': vp_def, 've': 0.02, 'iddpm': 0.002, 'edm': 0.002}[discretization]
if sigma_max is None:
vp_def = vp_sigma(beta_d=19.1, beta_min=0.1)(t=1)
sigma_max = {'vp': vp_def, 've': 100, 'iddpm': 81, 'edm': 80}[discretization]
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
# Compute corresponding betas for VP.
vp_beta_d = 2 * (np.log(sigma_min ** 2 + 1) / epsilon_s - np.log(sigma_max ** 2 + 1)) / (epsilon_s - 1)
vp_beta_min = np.log(sigma_max ** 2 + 1) - 0.5 * vp_beta_d
# Define time steps in terms of noise level.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
if discretization == 'vp':
orig_t_steps = 1 + step_indices / (num_steps - 1) * (epsilon_s - 1)
sigma_steps = vp_sigma(vp_beta_d, vp_beta_min)(orig_t_steps)
elif discretization == 've':
orig_t_steps = (sigma_max ** 2) * ((sigma_min ** 2 / sigma_max ** 2) ** (step_indices / (num_steps - 1)))
sigma_steps = ve_sigma(orig_t_steps)
elif discretization == 'iddpm':
u = torch.zeros(M + 1, dtype=torch.float64, device=latents.device)
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
for j in torch.arange(M, 0, -1, device=latents.device): # M, ..., 1
u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
else:
assert discretization == 'edm'
sigma_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
# Define noise level schedule.
if schedule == 'vp':
sigma = vp_sigma(vp_beta_d, vp_beta_min)
sigma_deriv = vp_sigma_deriv(vp_beta_d, vp_beta_min)
sigma_inv = vp_sigma_inv(vp_beta_d, vp_beta_min)
elif schedule == 've':
sigma = ve_sigma
sigma_deriv = ve_sigma_deriv
sigma_inv = ve_sigma_inv
else:
assert schedule == 'linear'
sigma = lambda t: t
sigma_deriv = lambda t: 1
sigma_inv = lambda sigma: sigma
# Define scaling schedule.
if scaling == 'vp':
s = lambda t: 1 / (1 + sigma(t) ** 2).sqrt()
s_deriv = lambda t: -sigma(t) * sigma_deriv(t) * (s(t) ** 3)
else:
assert scaling == 'none'
s = lambda t: 1
s_deriv = lambda t: 0
# Compute final time steps based on the corresponding noise levels.
t_steps = sigma_inv(net.round_sigma(sigma_steps))
t_steps = torch.cat([t_steps, torch.zeros_like(t_steps[:1])]) # t_N = 0
# Main sampling loop.
t_next = t_steps[0]
x_next = latents.to(torch.float64) * (sigma(t_next) * s(t_next))
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
# Increase noise temporarily.
gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= sigma(t_cur) <= S_max else 0
t_hat = sigma_inv(net.round_sigma(sigma(t_cur) + gamma * sigma(t_cur)))
x_hat = s(t_hat) / s(t_cur) * x_cur + (sigma(t_hat) ** 2 - sigma(t_cur) ** 2).clip(min=0).sqrt() * s(t_hat) * S_noise * randn_like(x_cur)
# Euler step.
h = t_next - t_hat
denoised = net(x_hat / s(t_hat), sigma(t_hat), class_labels).to(torch.float64)
d_cur = (sigma_deriv(t_hat) / sigma(t_hat) + s_deriv(t_hat) / s(t_hat)) * x_hat - sigma_deriv(t_hat) * s(t_hat) / sigma(t_hat) * denoised
x_prime = x_hat + alpha * h * d_cur
t_prime = t_hat + alpha * h
# Apply 2nd order correction.
if solver == 'euler' or i == num_steps - 1:
x_next = x_hat + h * d_cur
else:
assert solver == 'heun'
denoised = net(x_prime / s(t_prime), sigma(t_prime), class_labels).to(torch.float64)
d_prime = (sigma_deriv(t_prime) / sigma(t_prime) + s_deriv(t_prime) / s(t_prime)) * x_prime - sigma_deriv(t_prime) * s(t_prime) / sigma(t_prime) * denoised
x_next = x_hat + h * ((1 - 1 / (2 * alpha)) * d_cur + 1 / (2 * alpha) * d_prime)
return x_next
#----------------------------------------------------------------------------
# Wrapper for torch.Generator that allows specifying a different random seed
# for each sample in a minibatch.
class StackedRandomGenerator:
def __init__(self, device, seeds):
super().__init__()
self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds]
self.seeds = seeds
self.device = device
def randn(self, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators])
def rand_beta_prime(self, size, N=3072, D=128, **kwargs):
# sample from beta_prime (N/2, D/2)
# print(f"N:{N}, D:{D}")
assert size[0] == len(self.seeds)
latent_list = []
beta_gen = Beta(torch.FloatTensor([N / 2.]), torch.FloatTensor([D / 2.]))
for seed in self.seeds:
torch.manual_seed(seed)
sample_norm = beta_gen.sample().to(kwargs['device']).double()
# inverse beta distribution
inverse_beta = sample_norm / (1-sample_norm)
if kwargs['pfgm']:
r_max = 2500 / np.sqrt(N / (D - 2 - 1))
sample_norm = torch.sqrt(inverse_beta) * r_max
elif kwargs['pfgmpp']:
#S_max = 200 if D==128 else 80
S_max = 80
if kwargs['align']:
S_max *= np.sqrt(1 + N/D)
sample_norm = torch.sqrt(inverse_beta) * S_max * np.sqrt(D)
gaussian = torch.randn(N).to(sample_norm.device)
unit_gaussian = gaussian / torch.norm(gaussian, p=2)
init_sample = unit_gaussian * sample_norm
latent_list.append(init_sample.reshape((1, *size[1:])))
latent = torch.cat(latent_list, dim=0)
return latent
def randn_like(self, input):
return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device)
def randint(self, *args, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])
#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', metavar='PATH|URL', type=str)
@click.option('--outdir', help='Where to save the output images', metavar='DIR', type=str, required=True)
@click.option('--seeds', help='Random seeds (e.g. 1,2,5-10)', metavar='LIST', type=parse_int_list, default='0-63', show_default=True)
@click.option('--subdirs', help='Create subdirectory for every 1000 seeds', is_flag=True)
@click.option('--save_images', help='only save a batch images for grid visualization', is_flag=True)
@click.option('--class', 'class_idx', help='Class label [default: random]', metavar='INT', type=click.IntRange(min=0), default=None)
@click.option('--batch', 'max_batch_size', help='Maximum batch size', metavar='INT', type=click.IntRange(min=1), default=64, show_default=True)
@click.option('--steps', 'num_steps', help='Number of sampling steps', metavar='INT', type=click.IntRange(min=1), default=18, show_default=True)
@click.option('--sigma_min', help='Lowest noise level [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True))
@click.option('--sigma_max', help='Highest noise level [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True))
@click.option('--rho', help='Time step exponent', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=7, show_default=True)
@click.option('--S_churn', 'S_churn', help='Stochasticity strength', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--S_min', 'S_min', help='Stoch. min noise level', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--S_max', 'S_max', help='Stoch. max noise level', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--S_noise', 'S_noise', help='Stoch. noise inflation', metavar='FLOAT', type=float, default=0, show_default=True)
#@click.option('--alpha', 'alpha', help='noise norm', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--ckpt', 'ckpt', help='begin ckpt', metavar='INT', type=int, default=0, show_default=True)
@click.option('--resume', 'resume', help='resume ckpt', metavar='INT', type=int, default=None, show_default=True)
@click.option('--end_ckpt', 'end_ckpt', help='end ckpt', metavar='INT', type=int, default=100000000, show_default=True)
@click.option('--solver', help='Ablate ODE solver', metavar='euler|heun', type=click.Choice(['euler', 'heun']))
@click.option('--disc', 'discretization', help='Ablate time step discretization {t_i}', metavar='vp|ve|iddpm|edm', type=click.Choice(['vp', 've', 'iddpm', 'edm']))
@click.option('--schedule', help='Ablate noise schedule sigma(t)', metavar='vp|ve|linear', type=click.Choice(['vp', 've', 'linear']))
@click.option('--scaling', help='Ablate signal scaling s(t)', metavar='vp|none', type=click.Choice(['vp', 'none']))
@click.option('--edm', help='load edm model', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--pfgm', help='Train PFGM', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--pfgmpp', help='Train pfgmpp', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--align', help='Align', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--align_precond', help='Align', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--aug_dim', help='additional dimension', metavar='INT', type=click.IntRange(min=2), default=128, show_default=True)
def main(ckpt, end_ckpt, outdir, subdirs, seeds, class_idx, max_batch_size, save_images, pfgm, pfgmpp, align, aug_dim, edm, device=torch.device('cuda'), **sampler_kwargs):
"""Generate random images using the techniques described in the paper
"Elucidating the Design Space of Diffusion-Based Generative Models".
Examples:
\b
# Generate 64 images and save them as out/*.png
python generate.py --outdir=out --seeds=0-63 --batch=64 \\
--network=https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-vp.pkl
\b
# Generate 1024 images using 2 GPUs
torchrun --standalone --nproc_per_node=2 generate.py --outdir=out --seeds=0-999 --batch=64 \\
--network=https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-cond-vp.pkl
"""
dist.init()
num_batches = ((len(seeds) - 1) // (max_batch_size * dist.get_world_size()) + 1) * dist.get_world_size()
all_batches = torch.as_tensor(seeds).tensor_split(num_batches)
rank_batches = all_batches[dist.get_rank() :: dist.get_world_size()]
if not edm:
stats = glob.glob(os.path.join(outdir, "training-state-*.pt"))
else:
stats = glob.glob(os.path.join(outdir, "network-snapshot-*.pkl"))
done_list = []
alpha_list = [i/20. for i in range(1, 10)]
alpha_list = [0, 0.1, 0.2]
for ckpt_dir in stats:
# Load network.
dist.print0(f'Loading network from "{ckpt_dir}"...')
# Rank 0 goes first.
if dist.get_rank() != 0:
torch.distributed.barrier()
# with dnnlib.util.open_url(network_pkl, verbose=(dist.get_rank() == 0)) as f:
# net = pickle.load(f)['ema'].to(device)
if edm:
with dnnlib.util.open_url(ckpt_dir, verbose=(dist.get_rank() == 0)) as f:
net = pickle.load(f)['ema'].to(device)
ckpt_num = 0
else:
ckpt_num = int(ckpt_dir[-9:-3])
data = torch.load(ckpt_dir, map_location=torch.device('cpu'))
net = data['ema'].to(device)
assert net.D == aug_dim
# Other ranks follow.
if dist.get_rank() == 0:
torch.distributed.barrier()
for alpha in alpha_list:
if seeds[-1] > 49999 and seeds[-1] <= 99999:
temp_dir = os.path.join(outdir, f'ckpt_2_{ckpt_num:06d}_alpha_{alpha}')
elif seeds[-1] > 99999:
temp_dir = os.path.join(outdir, f'ckpt_3_{ckpt_num:06d}_alpha_{alpha}')
else:
temp_dir = os.path.join(outdir, f'ckpt_{ckpt_num:06d}_alpha_{alpha}')
if not edm:
if ckpt_num < ckpt or ckpt_num > end_ckpt or ckpt_num in done_list:
continue
if os.path.exists(temp_dir) and not save_images:
continue
# Loop over batches.
dist.print0(f'Generating {len(seeds)} images to "{temp_dir}"...')
for batch_seeds in tqdm.tqdm(rank_batches, unit='batch', disable=(dist.get_rank() != 0)):
torch.distributed.barrier()
batch_size = len(batch_seeds)
if batch_size == 0:
continue
N = net.img_channels * net.img_resolution * net.img_resolution
# Pick latents and labels.
rnd = StackedRandomGenerator(device, batch_seeds)
if pfgm or pfgmpp:
latents = rnd.rand_beta_prime(
[batch_size, net.img_channels, net.img_resolution, net.img_resolution],
N=N,
D=aug_dim,
pfgm=pfgm,
pfgmpp=pfgmpp,
align=align,
device=device)
else:
latents = rnd.randn([batch_size, net.img_channels, net.img_resolution, net.img_resolution],
device=device)
class_labels = None
if net.label_dim:
class_labels = torch.eye(net.label_dim, device=device)[
rnd.randint(net.label_dim, size=[batch_size], device=device)]
if class_idx is not None:
class_labels[:, :] = 0
class_labels[:, class_idx] = 1
# Generate images.
sampler_kwargs = {key: value for key, value in sampler_kwargs.items() if value is not None}
have_ablation_kwargs = any(
x in sampler_kwargs for x in ['solver', 'discretization', 'schedule', 'scaling'])
sampler_fn = ablation_sampler if have_ablation_kwargs else edm_sampler
images = sampler_fn(net, latents, class_labels, randn_like=rnd.randn_like,
pfgm=pfgm, pfgmpp=pfgmpp, D=aug_dim, align=align, alpha=alpha, **sampler_kwargs)
# Save images
if save_images:
# save a small batch of images
images_ = (images + 1) / 2.
print("len:", len(images))
image_grid = make_grid(images_, nrow=int(np.sqrt(len(images))))
save_image(image_grid, os.path.join(outdir, f'ode_images_{ckpt_num}_{alpha}.png'))
continue
images_np = (images * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
for seed, image_np in zip(batch_seeds, images_np):
# image_dir = os.path.join(temp_dir, f'{seed - seed % 1000:06d}') if subdirs else outdir
image_dir = os.path.join(temp_dir, f'{seed - seed % 1000:06d}')
os.makedirs(image_dir, exist_ok=True)
image_path = os.path.join(image_dir, f'{seed:06d}.png')
if image_np.shape[2] == 1:
PIL.Image.fromarray(image_np[:, :, 0], 'L').save(image_path)
else:
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
# Done.
torch.distributed.barrier()
torch.distributed.barrier()
dist.print0('Done.')
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------