-
Notifications
You must be signed in to change notification settings - Fork 7
/
test.py
218 lines (178 loc) · 8.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
'''
This file is used for testing models.
'''
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ioff()
from tensorflow.keras import backend as K
K.set_image_data_format('channels_last')
from os.path import join
from os import makedirs
import csv
import SimpleITK as sitk
from tqdm import tqdm
import numpy as np
import scipy.ndimage.morphology
from skimage import measure, filters
from metrics import dc, jc, assd
from load_3D_data import generate_test_batches
def threshold_mask(raw_output, threshold):
if threshold == 0:
try:
threshold = filters.threshold_otsu(raw_output)
except:
threshold = 0.5
print('\tThreshold: {}'.format(threshold))
raw_output[raw_output > threshold] = 1
raw_output[raw_output < 1] = 0
all_labels = measure.label(raw_output)
props = measure.regionprops(all_labels)
props.sort(key=lambda x: x.area, reverse=True)
thresholded_mask = np.zeros(raw_output.shape)
if len(props) >= 2:
if props[0].area / props[1].area > 5: # if the largest is way larger than the second largest
thresholded_mask[all_labels == props[0].label] = 1 # only turn on the largest component
else:
thresholded_mask[all_labels == props[0].label] = 1 # turn on two largest components
thresholded_mask[all_labels == props[1].label] = 1
elif len(props):
thresholded_mask[all_labels == props[0].label] = 1
thresholded_mask = scipy.ndimage.morphology.binary_fill_holes(thresholded_mask).astype(np.uint8)
return thresholded_mask
def test(args, test_list, model_list, net_input_shape):
if args.weights_path == '':
weights_path = join(args.check_dir, args.output_name + '_model_' + args.time + '.hdf5')
else:
weights_path = args.weights_path
output_dir = join(args.data_root_dir, 'results', args.net, 'split_' + str(args.split_num))
raw_out_dir = join(output_dir, 'raw_output')
fin_out_dir = join(output_dir, 'final_output')
fig_out_dir = join(output_dir, 'qual_figs')
try:
makedirs(raw_out_dir)
except:
pass
try:
makedirs(fin_out_dir)
except:
pass
try:
makedirs(fig_out_dir)
except:
pass
if len(model_list) > 1:
eval_model = model_list[1]
else:
eval_model = model_list[0]
try:
eval_model.load_weights(weights_path)
except:
print("Unable to find weights. Testing with random weights.")
eval_model.summary(positions=[.38, .65, .75, 1.])
# Set up placeholders
outfile = ''
if args.compute_dice:
dice_arr = np.zeros((len(test_list)))
outfile += 'dice_'
if args.compute_jaccard:
jacc_arr = np.zeros((len(test_list)))
outfile += 'jacc_'
if args.compute_assd:
assd_arr = np.zeros((len(test_list)))
outfile += 'assd_'
# Testing the network
print('Testing... This will take some time...')
with open(join(output_dir, args.save_prefix + outfile + 'scores.csv'), 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
row = ['Scan Name']
if args.compute_dice:
row.append('Dice Coefficient')
if args.compute_jaccard:
row.append('Jaccard Index')
if args.compute_assd:
row.append('Average Symmetric Surface Distance')
writer.writerow(row)
for i, img in enumerate(tqdm(test_list)):
img_data = np.load(join(args.data_root_dir, 'imgs','images_'+img[0])).T# 3d:(slices, 512, 512), 2d:(512, 512, channels=4)
img_data = img_data[np.newaxis,:,:]
sitk_img = sitk.GetImageFromArray(img_data)
num_slices = img_data.shape[0]
output_array = eval_model.predict(generate_test_batches(args.data_root_dir, [img],
net_input_shape,
batchSize=args.batch_size,
numSlices=args.slices,
subSampAmt=0,
stride=1),
steps=num_slices, max_queue_size=1, workers=1,
use_multiprocessing=False, verbose=1)
if args.net.find('caps') != -1:
output = output_array[0][:,:,:,0]
#recon = output_array[1][:,:,:,0]
else:
output = output_array[:,:,:,0]
output_img = sitk.GetImageFromArray(output)
print('Shape of numpy array : ', output.shape)
print('Segmenting Output')
output_bin = threshold_mask(output, args.thresh_level)
output_mask = sitk.GetImageFromArray(output_bin)
print('Saving Output')
sitk.WriteImage(output_img, join(raw_out_dir, img[0][:-4] + '_raw_output' + img[0][-4:].replace(".npy",".mhd")))
sitk.WriteImage(output_mask, join(fin_out_dir, img[0][:-4] + '_final_output' + img[0][-4:].replace(".npy",".mhd")))
# Load gt mask
gt_data = np.load(join(args.data_root_dir,'masks','masks_'+img[0])).T
gt_data = gt_data[np.newaxis,:,:]
sitk_mask = sitk.GetImageFromArray(gt_data)
# Plot Qual Figure
print('Creating Qualitative Figure for Quick Reference')
f, ax = plt.subplots(1, 3, figsize=(15, 5))
ax[0].imshow(img_data[img_data.shape[0] // 3, :, :], alpha=1, cmap='gray')
ax[0].imshow(output_bin[img_data.shape[0] // 3, :, :], alpha=0.5, cmap='Blues')
ax[0].imshow(gt_data[img_data.shape[0] // 3, :, :], alpha=0.2, cmap='Reds')
ax[0].set_title('Slice {}/{}'.format(img_data.shape[0] // 3, img_data.shape[0]))
ax[0].axis('off')
ax[1].imshow(img_data[img_data.shape[0] // 2, :, :], alpha=1, cmap='gray')
ax[1].imshow(output_bin[img_data.shape[0] // 2, :, :], alpha=0.5, cmap='Blues')
ax[1].imshow(gt_data[img_data.shape[0] // 2, :, :], alpha=0.2, cmap='Reds')
ax[1].set_title('Slice {}/{}'.format(img_data.shape[0] // 2, img_data.shape[0]))
ax[1].axis('off')
ax[2].imshow(img_data[img_data.shape[0] // 2 + img_data.shape[0] // 4, :, :], alpha=1, cmap='gray')
ax[2].imshow(output_bin[img_data.shape[0] // 2 + img_data.shape[0] // 4, :, :], alpha=0.5,
cmap='Blues')
ax[2].imshow(gt_data[img_data.shape[0] // 2 + img_data.shape[0] // 4, :, :], alpha=0.2,
cmap='Reds')
ax[2].set_title(
'Slice {}/{}'.format(img_data.shape[0] // 2 + img_data.shape[0] // 4, img_data.shape[0]))
ax[2].axis('off')
fig = plt.gcf()
fig.suptitle(img[0][:-4])
plt.savefig(join(fig_out_dir, img[0][:-4] + '_qual_fig' + '.png'),
format='png', bbox_inches='tight')
plt.close('all')
row = [img[0][:-4]]
if args.compute_dice:
print('Computing Dice')
dice_arr[i] = dc(output_bin, gt_data)
print('\tDice: {}'.format(dice_arr[i]))
row.append(dice_arr[i])
if args.compute_jaccard:
print('Computing Jaccard')
jacc_arr[i] = jc(output_bin, gt_data)
print('\tJaccard: {}'.format(jacc_arr[i]))
row.append(jacc_arr[i])
if args.compute_assd:
print('Computing ASSD')
assd_arr[i] = assd(output_bin, gt_data, voxelspacing=sitk_img.GetSpacing(), connectivity=1)
print('\tASSD: {}'.format(assd_arr[i]))
row.append(assd_arr[i])
writer.writerow(row)
row = ['Average Scores']
if args.compute_dice:
row.append(np.mean(dice_arr))
if args.compute_jaccard:
row.append(np.mean(jacc_arr))
if args.compute_assd:
row.append(np.mean(assd_arr))
writer.writerow(row)
print('Done.')