-
Notifications
You must be signed in to change notification settings - Fork 189
/
gmachine.py
478 lines (452 loc) · 18.9 KB
/
gmachine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from __future__ import division
import cnc.logging_config as logging_config
from cnc import hal
from cnc.pulses import *
from cnc.coordinates import *
from cnc.heater import *
from cnc.enums import *
from cnc.watchdog import *
class GMachineException(Exception):
""" Exceptions while processing gcode line.
"""
pass
class GMachine(object):
""" Main object which control and keep state of whole machine: steppers,
spindle, extruder etc
"""
AUTO_FAN_ON = AUTO_FAN_ON
def __init__(self):
""" Initialization.
"""
self._position = Coordinates(0.0, 0.0, 0.0, 0.0)
# init variables
self._velocity = 0
self._spindle_rpm = 0
self._local = None
self._convertCoordinates = 0
self._absoluteCoordinates = 0
self._plane = None
self._fan_state = False
self._heaters = dict()
self.reset()
hal.init()
self.watchdog = HardwareWatchdog()
def release(self):
""" Free all resources.
"""
self._spindle(0)
for h in self._heaters:
self._heaters[h].stop()
self._fan(False)
hal.deinit()
def reset(self):
""" Reinitialize all program configurable thing.
"""
self._velocity = min(MAX_VELOCITY_MM_PER_MIN_X,
MAX_VELOCITY_MM_PER_MIN_Y,
MAX_VELOCITY_MM_PER_MIN_Z,
MAX_VELOCITY_MM_PER_MIN_E)
self._spindle_rpm = 1000
self._local = Coordinates(0.0, 0.0, 0.0, 0.0)
self._convertCoordinates = 1.0
self._absoluteCoordinates = True
self._plane = PLANE_XY
# noinspection PyMethodMayBeStatic
def _spindle(self, spindle_speed):
hal.join()
hal.spindle_control(100.0 * spindle_speed / SPINDLE_MAX_RPM)
def _fan(self, state):
hal.fan_control(state)
self._fan_state = state
def _heat(self, heater, temperature, wait):
# check if sensor is ok
if heater == HEATER_EXTRUDER:
measure = hal.get_extruder_temperature
control = hal.extruder_heater_control
coefficients = EXTRUDER_PID
elif heater == HEATER_BED:
measure = hal.get_bed_temperature
control = hal.bed_heater_control
coefficients = BED_PID
else:
raise GMachineException("unknown heater")
try:
measure()
except (IOError, OSError):
raise GMachineException("can not measure temperature")
if heater in self._heaters:
self._heaters[heater].stop()
del self._heaters[heater]
if temperature != 0:
if heater == HEATER_EXTRUDER and self.AUTO_FAN_ON:
self._fan(True)
self._heaters[heater] = Heater(temperature, coefficients, measure,
control)
if wait:
self._heaters[heater].wait()
def __check_delta(self, delta):
pos = self._position + delta
if not pos.is_in_aabb(Coordinates(0.0, 0.0, 0.0, 0.0),
Coordinates(TABLE_SIZE_X_MM, TABLE_SIZE_Y_MM,
TABLE_SIZE_Z_MM, 0)):
raise GMachineException("out of effective area")
# noinspection PyMethodMayBeStatic
def __check_velocity(self, max_velocity):
if max_velocity.x > MAX_VELOCITY_MM_PER_MIN_X \
or max_velocity.y > MAX_VELOCITY_MM_PER_MIN_Y \
or max_velocity.z > MAX_VELOCITY_MM_PER_MIN_Z \
or max_velocity.e > MAX_VELOCITY_MM_PER_MIN_E:
raise GMachineException("out of maximum speed")
def _move_linear(self, delta, velocity):
delta = delta.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
if delta.is_zero():
return
self.__check_delta(delta)
logging.info("Moving linearly {}".format(delta))
gen = PulseGeneratorLinear(delta, velocity)
self.__check_velocity(gen.max_velocity())
hal.move(gen)
# save position
self._position = self._position + delta
@staticmethod
def __quarter(pa, pb):
if pa >= 0 and pb >= 0:
return 1
if pa < 0 and pb >= 0:
return 2
if pa < 0 and pb < 0:
return 3
if pa >= 0 and pb < 0:
return 4
def __adjust_circle(self, da, db, ra, rb, direction, pa, pb, ma, mb):
r = math.sqrt(ra * ra + rb * rb)
if r == 0:
raise GMachineException("circle radius is zero")
sq = self.__quarter(-ra, -rb)
if da == 0 and db == 0: # full circle
ea = da
eb = db
eq = 5 # mark as non-existing to check all
else:
if da - ra == 0:
ea = 0
else:
b = (db - rb) / (da - ra)
ea = math.copysign(math.sqrt(r * r / (1.0 + abs(b))), da - ra)
eb = math.copysign(math.sqrt(r * r - ea * ea), db - rb)
eq = self.__quarter(ea, eb)
ea += ra
eb += rb
# iterate coordinates quarters and check if we fit table
q = sq
pq = q
for _ in range(0, 4):
if direction == CW:
q -= 1
else:
q += 1
if q <= 0:
q = 4
elif q >= 5:
q = 1
if q == eq:
break
is_raise = False
if (pq == 1 and q == 4) or (pq == 4 and q == 1):
is_raise = (pa + ra + r > ma)
elif (pq == 1 and q == 2) or (pq == 2 and q == 1):
is_raise = (pb + rb + r > mb)
elif (pq == 2 and q == 3) or (pq == 3 and q == 2):
is_raise = (pa + ra - r < 0)
elif (pq == 3 and q == 4) or (pq == 4 and q == 3):
is_raise = (pb + rb - r < 0)
if is_raise:
raise GMachineException("out of effective area")
pq = q
return ea, eb
def _move_circular(self, delta, radius, velocity, direction):
delta = delta.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
radius = radius.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
self.__check_delta(delta)
# get delta vector and put it on circle
circle_end = Coordinates(0, 0, 0, 0)
if self._plane == PLANE_XY:
circle_end.x, circle_end.y = \
self.__adjust_circle(delta.x, delta.y, radius.x, radius.y,
direction, self._position.x,
self._position.y, TABLE_SIZE_X_MM,
TABLE_SIZE_Y_MM)
circle_end.z = delta.z
elif self._plane == PLANE_YZ:
circle_end.y, circle_end.z = \
self.__adjust_circle(delta.y, delta.z, radius.y, radius.z,
direction, self._position.y,
self._position.z, TABLE_SIZE_Y_MM,
TABLE_SIZE_Z_MM)
circle_end.x = delta.x
elif self._plane == PLANE_ZX:
circle_end.z, circle_end.x = \
self.__adjust_circle(delta.z, delta.x, radius.z, radius.x,
direction, self._position.z,
self._position.x, TABLE_SIZE_Z_MM,
TABLE_SIZE_X_MM)
circle_end.y = delta.y
circle_end.e = delta.e
circle_end = circle_end.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
logging.info("Moving circularly {} {} {} with radius {}"
" and velocity {}".format(self._plane, circle_end,
direction, radius, velocity))
gen = PulseGeneratorCircular(circle_end, radius, self._plane,
direction, velocity)
self.__check_velocity(gen.max_velocity())
# if finish coords is not on circle, move some distance linearly
linear_delta = delta - circle_end
linear_gen = None
if not linear_delta.is_zero():
logging.info("Moving additionally {} to finish circle command".
format(linear_delta))
linear_gen = PulseGeneratorLinear(linear_delta, velocity)
self.__check_velocity(linear_gen.max_velocity())
# do movements
hal.move(gen)
if linear_gen is not None:
hal.move(linear_gen)
# save position
self._position = self._position + circle_end + linear_delta
def safe_zero(self, x=True, y=True, z=True):
""" Move head to zero position safely.
:param x: boolean, move X axis to zero
:param y: boolean, move Y axis to zero
:param z: boolean, move Z axis to zero
"""
if x and not y:
self._move_linear(Coordinates(-self._position.x, 0, 0, 0),
MAX_VELOCITY_MM_PER_MIN_X)
elif y and not x:
self._move_linear(Coordinates(0, -self._position.y, 0, 0),
MAX_VELOCITY_MM_PER_MIN_X)
elif x and y:
d = Coordinates(-self._position.x, -self._position.y, 0, 0)
self._move_linear(d, min(MAX_VELOCITY_MM_PER_MIN_X,
MAX_VELOCITY_MM_PER_MIN_Y))
if z:
d = Coordinates(0, 0, -self._position.z, 0)
self._move_linear(d, MAX_VELOCITY_MM_PER_MIN_Z)
def position(self):
""" Return current machine position (after the latest command)
Note that hal might still be moving motors and in this case
function will block until motors stops.
This function for tests only.
:return current position.
"""
hal.join()
return self._position
def plane(self):
""" Return current plane for circular interpolation. This function for
tests only.
:return current plane.
"""
return self._plane
def fan_state(self):
""" Check if fan is on.
:return True if fan is on, False otherwise.
"""
return self._fan_state
def __get_target_temperature(self, heater):
if heater not in self._heaters:
return 0
return self._heaters[heater].target_temperature()
def extruder_target_temperature(self):
""" Return desired extruder temperature.
:return Temperature in Celsius, 0 if disabled.
"""
return self.__get_target_temperature(HEATER_EXTRUDER)
def bed_target_temperature(self):
""" Return desired bed temperature.
:return Temperature in Celsius, 0 if disabled.
"""
return self.__get_target_temperature(HEATER_BED)
def do_command(self, gcode):
""" Perform action.
:param gcode: GCode object which represent one gcode line
:return String if any answer require, None otherwise.
"""
if gcode is None:
return None
answer = None
logging.debug("got command " + str(gcode.params))
# read command
c = gcode.command()
if c is None and gcode.has_coordinates():
c = 'G1'
# read parameters
if self._absoluteCoordinates:
coord = gcode.coordinates(self._position - self._local,
self._convertCoordinates)
coord = coord + self._local
delta = coord - self._position
else:
delta = gcode.coordinates(Coordinates(0.0, 0.0, 0.0, 0.0),
self._convertCoordinates)
# coord = self._position + delta
velocity = gcode.get('F', self._velocity)
radius = gcode.radius(Coordinates(0.0, 0.0, 0.0, 0.0),
self._convertCoordinates)
# check parameters
if velocity < MIN_VELOCITY_MM_PER_MIN:
raise GMachineException("feed speed too low")
# select command and run it
if c == 'G0': # rapid move
vl = max(MAX_VELOCITY_MM_PER_MIN_X,
MAX_VELOCITY_MM_PER_MIN_Y,
MAX_VELOCITY_MM_PER_MIN_Z,
MAX_VELOCITY_MM_PER_MIN_E)
l = delta.length()
if l > 0:
proportion = abs(delta) / l
if proportion.x > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_X / proportion.x)
if v < vl:
vl = v
if proportion.y > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_Y / proportion.y)
if v < vl:
vl = v
if proportion.z > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_Z / proportion.z)
if v < vl:
vl = v
if proportion.e > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_E / proportion.e)
if v < vl:
vl = v
self._move_linear(delta, vl)
elif c == 'G1': # linear interpolation
self._move_linear(delta, velocity)
elif c == 'G2': # circular interpolation, clockwise
self._move_circular(delta, radius, velocity, CW)
elif c == 'G3': # circular interpolation, counterclockwise
self._move_circular(delta, radius, velocity, CCW)
elif c == 'G4': # delay in s
if not gcode.has('P'):
raise GMachineException("P is not specified")
pause = gcode.get('P', 0)
if pause < 0:
raise GMachineException("bad delay")
hal.join()
time.sleep(pause)
elif c == 'G17': # XY plane select
self._plane = PLANE_XY
elif c == 'G18': # ZX plane select
self._plane = PLANE_ZX
elif c == 'G19': # YZ plane select
self._plane = PLANE_YZ
elif c == 'G20': # switch to inches
self._convertCoordinates = 25.4
elif c == 'G21': # switch to mm
self._convertCoordinates = 1.0
elif c == 'G28': # home
axises = gcode.has('X'), gcode.has('Y'), gcode.has('Z')
if axises == (False, False, False):
axises = True, True, True
self.safe_zero(*axises)
hal.join()
if not hal.calibrate(*axises):
raise GMachineException("failed to calibrate")
elif c == 'G53': # switch to machine coords
self._local = Coordinates(0.0, 0.0, 0.0, 0.0)
elif c == 'G90': # switch to absolute coords
self._absoluteCoordinates = True
elif c == 'G91': # switch to relative coords
self._absoluteCoordinates = False
elif c == 'G92': # switch to local coords
if gcode.has_coordinates():
self._local = self._position - gcode.coordinates(
Coordinates(self._position.x - self._local.x,
self._position.y - self._local.y,
self._position.z - self._local.z,
self._position.e - self._local.e),
self._convertCoordinates)
else:
self._local = self._position
elif c == 'M3': # spindle on
spindle_rpm = gcode.get('S', self._spindle_rpm)
if spindle_rpm < 0 or spindle_rpm > SPINDLE_MAX_RPM:
raise GMachineException("bad spindle speed")
self._spindle(spindle_rpm)
self._spindle_rpm = spindle_rpm
elif c == 'M5': # spindle off
self._spindle(0)
elif c == 'M2' or c == 'M30': # program finish, reset everything.
self.reset()
elif c == 'M84': # disable motors
hal.disable_steppers()
# extruder and bed heaters control
elif c == 'M104' or c == 'M109' or c == 'M140' or c == 'M190':
if c == 'M104' or c == 'M109':
heater = HEATER_EXTRUDER
elif c == 'M140' or c == 'M190':
heater = HEATER_BED
else:
raise Exception("Unexpected heater command")
wait = c == 'M109' or c == 'M190'
if not gcode.has("S"):
raise GMachineException("temperature is not specified")
t = gcode.get('S', 0)
if ((heater == HEATER_EXTRUDER and t > EXTRUDER_MAX_TEMPERATURE) or
(heater == HEATER_BED and t > BED_MAX_TEMPERATURE) or
t < MIN_TEMPERATURE) and t != 0:
raise GMachineException("bad temperature")
self._heat(heater, t, wait)
elif c == 'M105': # get temperature
try:
et = hal.get_extruder_temperature()
except (IOError, OSError):
et = None
try:
bt = hal.get_bed_temperature()
except (IOError, OSError):
bt = None
if et is None and bt is None:
raise GMachineException("can not measure temperature")
answer = "E:{} B:{}".format(et, bt)
elif c == 'M106': # fan control
if gcode.get('S', 1) != 0:
self._fan(True)
else:
self._fan(False)
elif c == 'M107': # turn off fan
self._fan(False)
elif c == 'M111': # enable debug
logging_config.debug_enable()
elif c == 'M114': # get current position
hal.join()
p = self.position()
answer = "X:{} Y:{} Z:{} E:{}".format(p.x, p.y, p.z, p.e)
elif c is None: # command not specified(ie just F was passed)
pass
# commands below are added just for compatibility
elif c == 'M82': # absolute mode for extruder
if not self._absoluteCoordinates:
raise GMachineException("Not supported, use G90/G91")
elif c == 'M83': # relative mode for extruder
if self._absoluteCoordinates:
raise GMachineException("Not supported, use G90/G91")
else:
raise GMachineException("unknown command")
# save parameters on success
self._velocity = velocity
logging.debug("position {}".format(self._position))
return answer