N time series |
Time (mins) |
N cpus |
CVWindows |
Cost (Dollars) |
10,000 |
0.32 |
128 |
7 |
$0.14 |
100,000 |
0.74 |
128 |
7 |
$0.33 |
1,000,000 |
4.81 |
128 |
7 |
$2.14 |
5,000,000 |
21.87 |
128 |
7 |
$9.73 |
10,000,000 |
44.12 |
128 |
7 |
$19.63 |
N time series |
Croston |
SeasNaive |
Naive |
ADIDA |
HistoricAverage |
SeasWindowAverage |
iMAPA |
WindowAverage |
SeasExpSmooth |
10,000 |
4.1045 |
0.0414 |
8.0418 |
4.1366 |
4.0313 |
0.026 |
4.1366 |
4.0239 |
8.0377 |
100,000 |
4.1035 |
0.0418 |
8.0403 |
4.1373 |
4.0307 |
0.0261 |
4.1373 |
4.0233 |
8.0372 |
1,000,000 |
4.1046 |
0.0417 |
8.0417 |
4.1381 |
4.0314 |
0.026 |
4.1381 |
4.024 |
8.038 |
5,000,000 |
4.1042 |
0.0417 |
8.0416 |
4.1377 |
4.0311 |
0.026 |
4.1377 |
4.0237 |
8.038 |
10,000,000 |
4.1043 |
0.0417 |
8.0418 |
4.1379 |
4.0313 |
0.026 |
4.1379 |
4.0239 |
8.0381 |
To reproduce the main results you have:
- Install the conda environment using,
conda env create -f environment.yml
- Activate the environment using,
conda activate benchmarks_at_scale
- Generate the data using,
- Run the experiments using,