forked from BerensRWU/DenseMap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
77 lines (67 loc) · 2.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import os
import matplotlib.pyplot as plt
import cv2
from depth_map import dense_map
# Class for the calibration matrices for KITTI data
class Calibration:
def __init__(self, calib_filepath):
calibs = self.read_calib_file(calib_filepath)
self.P = calibs['P2']
self.P = np.reshape(self.P, [3,4])
self.L2C = calibs['Tr_velo_to_cam']
self.L2C = np.reshape(self.L2C, [3,4])
self.R0 = calibs['R0_rect']
self.R0 = np.reshape(self.R0,[3,3])
@staticmethod
def read_calib_file(filepath):
data = {}
with open(filepath, 'r') as f:
for line in f.readlines():
line = line.rstrip()
if len(line)==0: continue
key, value = line.split(':', 1)
try:
data[key] = np.array([float(x) for x in value.split()])
except ValueError:
pass
return data
# From LiDAR coordinate system to Camera Coordinate system
def lidar2cam(self, pts_3d_lidar):
n = pts_3d_lidar.shape[0]
pts_3d_hom = np.hstack((pts_3d_lidar, np.ones((n,1))))
pts_3d_cam_ref = np.dot(pts_3d_hom, np.transpose(self.L2C))
pts_3d_cam_rec = np.transpose(np.dot(self.R0, np.transpose(pts_3d_cam_ref)))
return pts_3d_cam_rec
# From Camera Coordinate system to Image frame
def rect2Img(self, rect_pts, img_width, img_height):
n = rect_pts.shape[0]
points_hom = np.hstack((rect_pts, np.ones((n,1))))
points_2d = np.dot(points_hom, np.transpose(self.P)) # nx3
points_2d[:,0] /= points_2d[:,2]
points_2d[:,1] /= points_2d[:,2]
mask = (points_2d[:,0] >= 0) & (points_2d[:,0] <= img_width) & (points_2d[:,1] >= 0) & (points_2d[:,1] <= img_height)
mask = mask & (rect_pts[:,2] > 2)
return points_2d[mask,0:2], mask
if __name__ == "__main__":
root = "data/"
image_dir = os.path.join(root, "image_2")
velodyne_dir = os.path.join(root, "velodyne")
calib_dir = os.path.join(root, "calib")
# Data id
cur_id = 21
# Loading the image
img = cv2.imread(os.path.join(image_dir, "%06d.png" % cur_id))
# Loading the LiDAR data
lidar = np.fromfile(os.path.join(velodyne_dir, "%06d.bin" % cur_id), dtype=np.float32).reshape(-1, 4)
# Loading Calibration
calib = Calibration(os.path.join(calib_dir, "%06d.txt" % cur_id))
# From LiDAR coordinate system to Camera Coordinate system
lidar_rect = calib.lidar2cam(lidar[:,0:3])
# From Camera Coordinate system to Image frame
lidarOnImage, mask = calib.rect2Img(lidar_rect, img.shape[1], img.shape[0])
# Concatenate LiDAR position with the intesity (3), with (2) we would have the depth
lidarOnImage = np.concatenate((lidarOnImage, lidar_rect[mask,2].reshape(-1,1)), 1)
out = dense_map(lidarOnImage.T, img.shape[1], img.shape[0], 1)
plt.figure(figsize=(20,40))
plt.imsave("depth_map_%06d.png" % cur_id, out)