-
Notifications
You must be signed in to change notification settings - Fork 1
/
gnn.py
361 lines (299 loc) · 13.3 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
'''
© 2024 Nokia
Licensed under the BSD 3-Clause Clear License
SPDX-License-Identifier: BSD-3-Clause-Clear
'''
from math import sqrt
import torch
import pytorch_lightning as pl
import torch.nn.functional as F
from torch_geometric.loader import DataLoader
from torch_geometric.nn import HeteroConv, Linear, LayerNorm, TransformerConv
from utils import get_sinr
# %% Data Module
class GNNDataModule(pl.LightningDataModule):
def __init__(self, dataset_name, train_batch_size, val_batch_size,
test_batch_size):
super().__init__()
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
self.test_batch_size = test_batch_size
self.dataset_name = dataset_name
self.num_workers = 0
_, self.files_split_dict = torch.load(self.dataset_name)
self.filenames = list(self.files_split_dict.keys())
def setup(self, stage=None):
self.dataset, files_split_dict = torch.load(self.dataset_name)
self.train_set = []
self.val_set = []
self.test_set = []
for file_name in files_split_dict.keys():
tmp_data = self.dataset[file_name]
split = files_split_dict[file_name]
if stage == 'fit':
self.train_set.extend(tmp_data[:int(split[0]*len(tmp_data))])
self.val_set.append(
tmp_data[int(split[0]*len(tmp_data)):
int((split[0]+split[1])*len(tmp_data))])
if stage == 'test':
self.test_set.append(
tmp_data[int((split[0]+split[1])*len(tmp_data)):
int((split[0]+split[1]+split[2])
* len(tmp_data))])
def train_dataloader(self):
return DataLoader(self.train_set, batch_size=self.train_batch_size,
shuffle=True, num_workers=self.num_workers)
def val_dataloader(self):
return [DataLoader(elem, batch_size=self.val_batch_size,
shuffle=False, num_workers=self.num_workers)
for elem in self.val_set]
def test_dataloader(self):
return [DataLoader(elem, batch_size=self.test_batch_size,
shuffle=False, num_workers=self.num_workers)
for elem in self.test_set]
# %% GNN Modules
class CoreGNNHeteroModule(pl.LightningModule):
def __init__(self, train_batch_size, val_batch_size,
test_batch_size, files_dict, lr, hc, heads, **kwargs):
super().__init__()
self.save_hyperparameters("train_batch_size", "val_batch_size",
"test_batch_size", "files_dict",
"lr", "hc", "heads")
self.save_hyperparameters(kwargs)
self.filenames = []
for filename in files_dict.keys():
self.filenames.append(filename)
self.batch_size = train_batch_size
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
self.test_batch_size = test_batch_size
self.lr = lr
self.heads = heads
self.hc = hc
self.val_step_outputs = [[] for x in range(len(self.filenames))]
def common_step(self, batch):
y_hat = self(batch)
y = batch['channel'].y
return y_hat, y
def training_step(self, batch, batch_idx):
y_hat, y = self.common_step(batch)
SINR, SINR_hat = get_sinr(batch, y_hat)
train_loss = F.mse_loss(SINR_hat, SINR, reduction='mean')
acc = torch.abs((SINR-SINR_hat)/SINR)
self.log('acc', 1-acc.mean(),
batch_size=self.train_batch_size, prog_bar=True)
self.log("train_loss", train_loss, batch_size=self.train_batch_size)
return train_loss
def validation_step(self, batch, batch_idx, dataloader_idx=0):
y_hat, y = self.common_step(batch)
SINR, SINR_hat = get_sinr(batch, y_hat)
idx = torch.cumsum(batch['channel'].n_ues, dim=0)
device = SINR_hat.device
SINR_hat = torch.tensor(
[min(SINR_hat[idx[i]-batch['channel'].n_ues[i]:idx[i]]).item()
for i in range(len(idx))]).to(device)
acc = torch.abs((batch['channel'].sinr-SINR_hat)/batch['channel'].sinr)
acc = 1-acc.mean()
self.log('val_acc_{}'.format(self.filenames[dataloader_idx]),
acc, add_dataloader_idx=False,
batch_size=self.val_batch_size, prog_bar=False)
val_loss = F.mse_loss(
SINR_hat, batch['channel'].sinr, reduction='mean')
self.log('val_loss_{}'.format(self.filenames[dataloader_idx]),
val_loss, add_dataloader_idx=False,
batch_size=self.val_batch_size, prog_bar=False)
# Save the validation loss on this dataset to be used in the method
# on_validation_epoch_end()
self.val_step_outputs[dataloader_idx].append(acc)
return val_loss
# Log the average loss over all validation datasets (outputs of all
# validation_step calls)
def on_validation_epoch_end(self):
flat_list = []
for idx in range(len(self.val_step_outputs)):
flat_list.extend(self.val_step_outputs[idx])
# Free memory
self.val_step_outputs[idx].clear()
avg_loss = sum(flat_list) / len(flat_list)
self.log("hp_metric", avg_loss, prog_bar=True)
def test_step(self, batch, batch_idx, dataloader_idx=0):
y_hat, y = self.common_step(batch)
SINR, SINR_hat = get_sinr(batch, y_hat)
idx = torch.cumsum(batch['channel'].n_ues, dim=0)
device = SINR_hat.device
SINR_hat = torch.tensor(
[min(SINR_hat[idx[i]-batch['channel'].n_ues[i]:idx[i]]).item()
for i in range(len(idx))]).to(device)
acc = torch.abs((batch['channel'].sinr-SINR_hat)/batch['channel'].sinr)
self.log('test_acc_{}'.format(self.filenames[dataloader_idx]),
1-acc.mean(), add_dataloader_idx=False,
batch_size=self.test_batch_size, prog_bar=False)
test_loss = F.mse_loss(
SINR_hat, batch['channel'].sinr, reduction='mean')
self.log('test_loss_{}'.format(self.filenames[dataloader_idx]),
test_loss, add_dataloader_idx=False,
batch_size=self.test_batch_size, prog_bar=False)
return test_loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer
class GNNLinearPrecodingPyG(CoreGNNHeteroModule):
def __init__(self, train_batch_size, val_batch_size, test_batch_size,
files_dict, lr, hc, heads):
files_dict = files_dict
super().__init__(train_batch_size, val_batch_size,
test_batch_size, files_dict, lr, hc, heads)
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
hc = hc
heads = heads
aggr = 'sum'
num_layers = len(hc)
self.convs = torch.nn.ModuleList()
self.norms = torch.nn.ModuleList()
for i in range(num_layers-1):
in_channels = hc[i]
out_channels = int(hc[i+1] / heads)
conv = HeteroConv({
('channel', 'same_ue', 'channel'):
TransformerConv(in_channels, out_channels,
heads=heads, dropout=0.0, root_weight=True),
('channel', 'same_ap', 'channel'):
TransformerConv(in_channels, out_channels,
heads=heads, dropout=0.0, root_weight=True)
}, aggr=aggr)
self.convs.append(conv)
self.norms.append(LayerNorm(hc[i+1]))
self.lin = Linear(hc[-1], 6)
def reset_parameters(self):
for conv, norm in zip(self.convs, self.norms):
conv.reset_parameters()
norm.reset_parameters()
self.lin.reset_parameters()
def forward(self, batch):
if hasattr(batch['channel'], 'batch'):
channel_batch = batch['channel'].batch
else:
channel_batch = None
x_dict = batch.x_dict
edge_index_dict = batch.edge_index_dict
for conv, norm in zip(self.convs, self.norms):
x_dict = conv(x_dict, edge_index_dict)
x_dict = {'channel': norm(x_dict['channel'].relu(), channel_batch)}
return self.lin(x_dict['channel'])
class FastGNNLinearPrecodingLightning(CoreGNNHeteroModule):
def __init__(self, train_batch_size, val_batch_size, test_batch_size,
files_dict, lr, hc, heads):
files_dict = files_dict
super().__init__(train_batch_size, val_batch_size,
test_batch_size, files_dict, lr, hc, heads)
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
heads = heads
self.model = FastGNNLinearPrecoding(hc, heads)
def reset_parameters(self):
self.model.reset_parameters()
def forward(self, batch):
x = batch['channel'].x
edge_index_ue = batch['channel', 'same_ue', 'channel'].edge_index
edge_index_ap = batch['channel', 'same_ap', 'channel'].edge_index
return self.model(x, edge_index_ue, edge_index_ap)
class FastGNNLinearPrecoding(torch.nn.Module):
def __init__(self, hc, heads):
'''
Implementation of a single attention head GNNLinearPrecoding without
PyG. This implementation can be compiled and has faster inference than
GNNLinearPrecoding.
Parameters
----------
hc : list of layer sizes.
heads : Not used. # TODO
'''
super().__init__()
# TODO: heads not used at the moment (single head implementation only)
self.heads = 1
self.hc = hc
self.num_layers = len(hc)-1
self.convs1 = torch.nn.ModuleList()
self.convs2 = torch.nn.ModuleList()
self.convs3 = torch.nn.ModuleList()
self.convs4 = torch.nn.ModuleList()
self.convs5 = torch.nn.ModuleList()
self.convs6 = torch.nn.ModuleList()
self.convs7 = torch.nn.ModuleList()
self.convs8 = torch.nn.ModuleList()
self.norms = torch.nn.ModuleList()
self.relu = torch.nn.ReLU()
for i in range(self.num_layers):
self.convs1.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs2.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs3.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs4.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs5.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs6.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs7.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.convs8.append(torch.nn.Linear(
hc[i], int(hc[i+1]), bias=True))
self.norms.append(torch.nn.LayerNorm(hc[i+1]))
self.lin = torch.nn.Linear(hc[-1], 6)
def forward(self, x, edge_index_ue, edge_index_ap):
device = x.device
num_nodes = x.shape[0]
tensor_zeros = torch.zeros(
(num_nodes, ), dtype=x.dtype, device=device)
for conv1, conv2, conv3, conv4, conv5, conv6,\
conv7, conv8, norm in zip(self.convs1, self.convs2, self.convs3,
self.convs4, self.convs5, self.convs6,
self.convs7, self.convs8, self.norms):
# edge index ue
row_j, row_i = edge_index_ue[0][:], edge_index_ue[1][:]
x1 = conv1(x)
x2 = conv2(x)
x3 = conv3(x)
x4 = conv4(x)
x2 = x2[row_j]
x3 = x3[row_i]
x4 = x4[row_j]
d = int(x1.shape[1]/self.heads)
zeros_repeat = torch.zeros(
(num_nodes, d), dtype=x.dtype, device=device)
x_3_4 = x3*x4
alpha_num = torch.sum(x_3_4, dim=1, dtype=x_3_4.dtype)
alpha_num = torch.exp(alpha_num/sqrt(d))
alpha_den = torch.scatter_add(tensor_zeros, 0, row_i, alpha_num)
alpha_den = alpha_den[row_i]
alpha = alpha_num/alpha_den
alpha = alpha.unsqueeze(1)
alpha_x2 = alpha*x2
out = torch.scatter_add(
zeros_repeat, 0, row_i.unsqueeze(1).expand(-1, d), alpha_x2)
OUT = out+x1
# edge index ap
row_j, row_i = edge_index_ap[0][:], edge_index_ap[1][:]
x5 = conv5(x)
x6 = conv6(x)
x7 = conv7(x)
x8 = conv8(x)
x6 = x6[row_j]
x7 = x7[row_i]
x8 = x8[row_j]
x_7_8 = x7*x8
alpha_num = torch.sum(x_7_8, dim=1, dtype=x_7_8.dtype)
alpha_num = torch.exp(alpha_num/sqrt(d))
alpha_den = torch.scatter_add(tensor_zeros, 0, row_i, alpha_num)
alpha_den = alpha_den[row_i]
alpha = alpha_num/alpha_den
alpha = alpha.unsqueeze(1)
alpha_x6 = alpha*x6
out = torch.scatter_add(
zeros_repeat, 0, row_i.unsqueeze(1).expand(-1, d), alpha_x6)
OUT = OUT+out+x5
x = norm(self.relu(OUT))
return self.lin(x)