-
Notifications
You must be signed in to change notification settings - Fork 5
/
training_distributed.py
251 lines (210 loc) · 8.91 KB
/
training_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# © 2024 Nokia
# Licensed under the BSD 3 Clause Clear License
# SPDX-License-Identifier: BSD-3-Clause-Clear
import os
import torch
import sys
import pandas as pd
import torch.multiprocessing as mp
import wandb
import augmentations
import joblib
import torch_optimizer as toptim
from dataset import dataset_selector, PPGDataset
from tqdm import tqdm
from models.transformer import TransformerSimple
from models import efficientnet
from models.resnet import ResNet1D
from pytorch_metric_learning import losses
from training import train_step, training
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from datetime import datetime
torch.autograd.set_detect_anomaly(True)
def ddp_setup(rank, world_size):
"""
Args:
rank: Unique identifier of each process
world_size: Total number of processes
"""
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
init_process_group(backend="nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def save_model(model, directory, filename, content, prefix=""):
"""
Helper function to save model.
Args:
model (torch.nn.Module): Model to train
directory (string): directory to save model
filename (string): model name for saving
prefix (String): Prefix for correct path
"""
# Check if directory exists, if not, create it
if not os.path.exists(f"{prefix}../models/{directory}"):
os.makedirs(f"{prefix}../models/{directory}")
torch.save(model.state_dict(), f"{prefix}../models/{directory}/{filename}_{content}.pt")
def train_step(epoch, model, dataloader, criterion, optimizer, device):
"""
One training step in distributed setting.
Args:
model (torch.nn.Module): Model to train
dataloader (torch.utils.data.Dataloader): A training dataloader with signals
criterion (torch.nn.<Loss>): Loss function to optimizer
optimizer (torch.optim): Optimizer to modify weights
device (string): training device; use GPU
Returns:
train_loss (float): The training loss for the epoch
"""
model.to(device)
model.train()
dataloader.sampler.set_epoch(epoch)
train_loss = 0
for i, (X, y) in enumerate(dataloader):
print(f"[Rank {torch.distributed.get_rank()}] Processing batch {i}")
signal_view1 = X[0].to(device)
signal_view2 = X[1].to(device)
z_1, _ = model(signal_view1)
z_2, _ = model(signal_view2)
loss = criterion(z_1, z_2)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
return train_loss / len(dataloader)
def training(model, epochs, train_dataloader, criterion, optimizer, device, directory, filename, wandb=None):
"""
Training a SimCLR model
Args:
model (torch.nn.Module): Model to train
epochs (int): No. of epochs to train
train_dataloader (torch.utils.data.Dataloader): A training dataloader with signals
criterion (torch.nn.<Loss>): Loss function to optimizer
optimizer (torch.optim): Optimizer to modify weights
device (string): training device; use GPU
directory (string): directory to save model
filename (string): model name for saving
wandb (wandb): wandb object for experiment tracking
Returns:
dict_log (dictionary): A dictionary log with metrics
"""
dict_log = {'train_loss': []}
best_lost = float('inf')
for e in tqdm(range(epochs)):
epoch_loss = train_step(epoch=e,
model=model,
dataloader=train_dataloader,
criterion=criterion,
optimizer=optimizer,
device=device)
if wandb and device=="cuda:0":
wandb.log({"Train Loss": epoch_loss})
dict_log['train_loss'].append(epoch_loss)
print(f"[{device}] Epoch: {e+1}/{epochs} | Train Loss: {epoch_loss:.4f}")
if device == "cuda:0" and epoch_loss < best_lost:
best_lost = epoch_loss
print(f"Saving model to: {directory}")
content = f"epoch{e+1}_loss{epoch_loss:.4f}"
save_model(model, directory, filename, content)
return dict_log
def main(rank, world_size, dataset, epochs, batch_size):
ddp_setup(rank, world_size)
num_workers = 0
shuffle = True
distributed = True
lr = 0.0001
label_name = "age"
prob_dictionary = {'g_p': 0.35, 'n_p': 0.20, 'w_p':0.0, 'f_p':0.20, 's_p':0.4, 'c_p':0.5}
fs_target = 125
use_projection = True
simclr_transform = augmentations.get_transformations(g_p=prob_dictionary['g_p'],
n_p=prob_dictionary['n_p'],
w_p=prob_dictionary['w_p'],
f_p=prob_dictionary['f_p'],
s_p=prob_dictionary['s_p'],
c_p=prob_dictionary['c_p'])
train_dataloader, val_dataloader, test_dataloader = dataset_selector(key=dataset,
CustomDataset=PPGDataset,
label_name=label_name,
fs_target=fs_target,
simclr_transform=simclr_transform,
batch_size=batch_size,
shuffle=shuffle,
distributed=distributed)
# model_config = {'d_model': 1250,
# 'nhead': 2,
# 'dim_feedforward': 2048,
# 'trans_dropout': 0.0,
# 'proj_dropout': 0.0,
# 'num_layers': 2,
# 'h1': 1024,
# 'embedding_size': 512}
# model = TransformerSimple(model_config=model_config)
model_config = {'base_filters': 32,
'kernel_size': 3,
'stride': 2,
'groups': 1,
'n_block': 18,
'n_classes': 512,
}
model = ResNet1D(in_channels=1,
base_filters=model_config['base_filters'],
kernel_size=model_config['kernel_size'],
stride=model_config['stride'],
groups=model_config['groups'],
n_block=model_config['n_block'],
n_classes=model_config['n_classes'],
use_projection=use_projection)
# model_config = {'h1': 64,
# 'h2': 32,
# 'h3': 128,
# 'h4': 256,
# 'h5': 384,
# 'h6': 512,
# 'h7': 768,
# 'h8': 1024}
# model = efficientnet.EfficientNetB0Base(in_channels=1, dict_channels=model_config)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
device = "cuda:" + str(rank)
print(device)
model.to(device)
model = DDP(model, device_ids=[rank], output_device=rank, find_unused_parameters=True)
criterion = losses.SelfSupervisedLoss(losses.NTXentLoss())
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
### Experiment Tracking ###
experiment_name = f"{dataset}_resnet"
name = "papagei_p_emb"
group_name = f"{dataset}_PPG"
config = {"learning_rate": lr,
"epochs": epochs,
"batch_size": batch_size,
"augmentations": prob_dictionary}
wandb.init(project=experiment_name,
config=config | model_config,
name=name,
group=group_name,
mode="offline")
run_id = wandb.run.id
time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
model_filename = f'{experiment_name}_{name}_{run_id}_{time}'
dict_log = training(model=model,
train_dataloader=train_dataloader,
epochs=epochs,
criterion=criterion,
optimizer=optimizer,
device=device,
directory=time,
filename=model_filename,
wandb=wandb)
wandb.finish()
joblib.dump(dict_log, f"../models/{time}/{model_filename}_log.p")
destroy_process_group()
if __name__ == "__main__":
torch.autograd.set_detect_anomaly(True)
world_size = 8
epochs = 15000
batch_size = 128
datasets = ['vital_mesa_mimic']
for d in datasets:
mp.spawn(main, args=(world_size, d, epochs, batch_size), nprocs=world_size)