-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstra Algorithm.cs
74 lines (64 loc) · 2.44 KB
/
Dijkstra Algorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
using System;
using System.Collections.Generic;
namespace ConsoleApplication
{
public class Program
{
private const double _infinity = double.PositiveInfinity;
private static Dictionary<string, Dictionary<string, double>> _graph = new Dictionary<string, Dictionary<string, double>>();
private static List<string> _processed = new List<string>();
public static void Main(string[] args)
{
_graph.Add("start", new Dictionary<string, double>());
_graph["start"].Add("a", 6.0);
_graph["start"].Add("b", 2.0);
_graph.Add("a", new Dictionary<string, double>());
_graph["a"].Add("fin", 1.0);
_graph.Add("b", new Dictionary<string, double>());
_graph["b"].Add("a", 3.0);
_graph["b"].Add("fin", 5.0);
_graph.Add("fin", new Dictionary<string, double>());
var costs = new Dictionary<string, double>();
costs.Add("a", 6.0);
costs.Add("b", 2.0);
costs.Add("fin", _infinity);
var parents = new Dictionary<string, string>();
parents.Add("a", "start");
parents.Add("b", "start");
parents.Add("fin", null);
var node = FindLowestCostNode(costs);
while (node != null)
{
var cost = costs[node];
var neighbors = _graph[node];
foreach (var n in neighbors.Keys)
{
var new_cost = cost + neighbors[n];
if (costs[n] > new_cost)
{
costs[n] = new_cost;
parents[n] = node;
}
}
_processed.Add(node);
node = FindLowestCostNode(costs);
}
Console.WriteLine(string.Join(", ", costs));
}
private static string FindLowestCostNode(Dictionary<string, double> costs)
{
var lowestCost = double.PositiveInfinity;
string lowestCostNode = null;
foreach (var node in costs)
{
var cost = node.Value;
if (cost < lowestCost && !_processed.Contains(node.Key))
{
lowestCost = cost;
lowestCostNode = node.Key;
}
}
return lowestCostNode;
}
}
}