-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImage_Retrieval.cpp
394 lines (335 loc) · 10.8 KB
/
Image_Retrieval.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#include <string.h>
#include <vector>
#include "boost/algorithm/string.hpp"
#include "google/protobuf/text_format.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/io.hpp"
#include <iostream> // 1. 用于将extract_features的结果保存在txt里
#include <fstream>
#include <sstream>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgcodecs.hpp>
#include<math.h>
#include <algorithm>
using caffe::Blob;
using caffe::Caffe;
using caffe::Datum;
using caffe::Net;
using std::string;
namespace db = caffe::db;
using namespace cv;
using namespace std;
template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv);
string ReadLine(char *filename,int line);
void imshowMany(const std::string& _winName, vector<Mat>& _imgs);
int main(int argc, char** argv) {
return feature_extraction_pipeline<float>(argc, argv);
// return feature_extraction_pipeline<double>(argc, argv);
}
string ReadLine(char *filename,int line)
{
int i=0;
string temp;
fstream file;
file.open(filename,ios::in);
while(getline(file,temp)&&i<line-1)
{
i++;
}
file.close();
return temp;
}
template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv) {
::google::InitGoogleLogging(argv[0]);
const int num_required_args = 7;
if (argc < num_required_args) {
LOG(ERROR) <<
"This program takes in a trained network and an input data layer, and then"
" extract features of the input data produced by the net.\n"
"Usage: extract_features pretrained_net_param"
" feature_extraction_proto_file extract_feature_blob_name1[,name2,...]"
" save_feature_dataset_name1[,name2,...] num_mini_batches db_type"
" [CPU/GPU] [DEVICE_ID=0]\n"
"Note: you can extract multiple features in one pass by specifying"
" multiple feature blob names and dataset names separated by ','."
" The names cannot contain white space characters and the number of blobs"
" and datasets must be equal.";
return 1;
}
int arg_pos = num_required_args;
ifstream inFile_all("/root/caffe/examples/temp/allfeature.txt",ios::in);
arg_pos = num_required_args;
if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) {
LOG(ERROR) << "Using GPU";
int device_id = 0;
if (argc > arg_pos + 1) {
device_id = atoi(argv[arg_pos + 1]);
CHECK_GE(device_id, 0);
}
LOG(ERROR) << "Using Device_id=" << device_id;
Caffe::SetDevice(device_id);
Caffe::set_mode(Caffe::GPU);
}
else {
LOG(ERROR) << "Using CPU";
Caffe::set_mode(Caffe::CPU);
}
arg_pos = 0; // the name of the executable
std::string pretrained_binary_proto(argv[++arg_pos]);
// Expected prototxt contains at least one data layer such as
// the layer data_layer_name and one feature blob such as the
// fc7 top blob to extract features.
/*
layers {
name: "data_layer_name"
type: DATA
data_param {
source: "/path/to/your/images/to/extract/feature/images_leveldb"
mean_file: "/path/to/your/image_mean.binaryproto"
batch_size: 128
crop_size: 227
mirror: false
}
top: "data_blob_name"
top: "label_blob_name"
}
layers {
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
bottom: "fc7"
top: "fc7"
}
*/
std::string feature_extraction_proto(argv[++arg_pos]); // 网络模型
boost::shared_ptr<Net<Dtype> > feature_extraction_net(
new Net<Dtype>(feature_extraction_proto, caffe::TEST));
feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto);
std::string extract_feature_blob_names(argv[++arg_pos]); // 待提取的层
std::vector<std::string> blob_names;
boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(","));
std::string save_feature_dataset_names(argv[++arg_pos]); // 将 待提取的层 放在 哪个文件夹
std::vector<std::string> dataset_names;
boost::split(dataset_names, save_feature_dataset_names,
boost::is_any_of(","));
CHECK_EQ(blob_names.size(), dataset_names.size()) <<
" the number of blob names and dataset names must be equal";
size_t num_features = blob_names.size();
for (size_t i = 0; i < num_features; i++) { // 待提取的层
CHECK(feature_extraction_net->has_blob(blob_names[i]))
<< "Unknown feature blob name " << blob_names[i]
<< " in the network " << feature_extraction_proto;
}
int num_mini_batches = atoi(argv[++arg_pos]);
LOG(ERROR) << "Extracting Features";
vector<float> feature_single;
Datum datum;
std::vector<int> image_indices(num_features, 0);
for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) {
feature_extraction_net->Forward();
for (int i = 0; i < num_features; ++i) {
const boost::shared_ptr<Blob<Dtype> > feature_blob =
feature_extraction_net->blob_by_name(blob_names[i]);
int batch_size = feature_blob->num();
int dim_features = feature_blob->count() / batch_size;
const Dtype* feature_blob_data;
for (int n = 0; n < batch_size; ++n) {
datum.set_height(feature_blob->height());
datum.set_width(feature_blob->width());
datum.set_channels(feature_blob->channels());
datum.clear_data();
datum.clear_float_data();
feature_blob_data = feature_blob->cpu_data() +
feature_blob->offset(n);
for (int d = 0; d < dim_features; ++d) {
// outfile << feature_blob_data[d] << " "; // 3. 把结果输出
feature_single.push_back(feature_blob_data[d]);
}
// outfile << "\n";
string key_str = caffe::format_int(image_indices[i], 10);
} // for (int n = 0; n < batch_size; ++n)
} // for (int i = 0; i < num_features; ++i)
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
vector<float> feature_all[200];
vector<pair<float,int> > simRate;
float data;
for(int i = 0;i < 200; i++)
{
int count = 0;
while(!inFile_all.eof()&&count != 4096)
{
inFile_all>>data;
feature_all[i].push_back(data);
count++;
}
}
for(int j = 0;j < 200;j++)
{
float n = 0,Rate;
for(int k = 0;k < 4096;k++)
{
n += (feature_all[j][k] - feature_single[k])*(feature_all[j][k] - feature_single[k]);
}
Rate = sqrt(n);
simRate.push_back(pair<float,int>(Rate,j));
}
sort(simRate.begin(),simRate.end());
char filename[]="/root/caffe/examples/temp/file_list_train.txt";
vector<string> adress;
vector<int> num;
string temp;
ofstream outFile("/home/lee/classification_test/ture_pic.txt",ofstream::trunc);
int n = 0,m = simRate.size() - 1;
Mat src;
string para1 = "/home/lee/important/resultimage/TURE_Image/";
string para2 = "/home/lee/important/resultimage/FALSE_Image/";
double sumSimRate = 0.0;
for(int i = 0; i < simRate.size();i++){
sumSimRate += simRate[i].first;
}
int ranking = 0;
int fill = 0;
cout<<endl;
while(n < simRate.size())
{
temp = ReadLine(filename,simRate[n].second+1);
temp.erase(temp.end()-2,temp.end());
adress.push_back(temp);
if(n < 12)
{
src = imread(temp);
temp.erase(temp.begin(),temp.begin()+40);
para1 += temp;
imwrite(para1,src);
outFile<<para1;
if(simRate[n].second < 100 && simRate[n].second >= 10)
{
outFile<<fill;
outFile<<simRate[n].second;
}
if(simRate[n].second < 10)
{
outFile<<fill<<fill;
outFile<<simRate[n].second;
}
if(simRate[n].second >=100)
{
outFile<<simRate[n].second;
}
outFile<<endl;
para1 = "/home/lee/important/resultimage/TURE_Image/";
ranking ++;
cout<<"image: "<<temp<<"; rate: "<<(sumSimRate-simRate[n].first*10)*100/sumSimRate<<"%"<<"; ranking: "<<ranking<<endl;
n ++;
continue;
}
temp.erase(temp.begin(),temp.begin()+40);
ranking ++;
cout<<"image: "<<temp<<"; rate: "<<(sumSimRate-simRate[n].first*10)*100/sumSimRate<<"%"<<"; ranking:"<<ranking<<endl;
n ++;
}
while(simRate.size() - m < 51)
{
temp = ReadLine(filename,simRate[m].second+1);
temp.erase(temp.end()-2,temp.end());
src = imread(temp);
temp.erase(temp.begin(),temp.begin()+40);
para2 += temp;
imwrite(para2,src);
para2 = "/home/lee/important/resultimage/FALSE_Image/";
m --;
}
vector<Mat> imgs(12);
for(int i = 0; i < 12;i ++)
{
string str = adress[i];
imgs[i] = imread(str);
}
inFile_all.close();
outFile.close();
imshowMany("Image Retrieval", imgs);
LOG(ERROR) << "Retrieval Successfully ";
waitKey();
return 0;
}
void imshowMany(const std::string& _winName, vector<Mat>& _imgs)
{
int nImg = (int)_imgs.size();
Mat dispImg;
int size;
int x, y;
// w - Maximum number of images in a row
// h - Maximum number of images in a column
int w, h;
// scale - How much we have to resize the image
float scale;
int max;
if (nImg <= 0)
{
printf("Number of arguments too small....\n");
return;
}
else if (nImg > 12)
{
printf("Number of arguments too large....\n");
return;
}
else if (nImg == 1)
{
w = h = 1;
size = 300;
}
else if (nImg == 2)
{
w = 2; h = 1;
size = 300;
}
else if (nImg == 3 || nImg == 4)
{
w = 2; h = 2;
size = 300;
}
else if (nImg == 5 || nImg == 6)
{
w = 3; h = 2;
size = 200;
}
else if (nImg == 7 || nImg == 8)
{
w = 4; h = 2;
size = 200;
}
else
{
w = 4; h = 3;
size = 150;
}
dispImg.create(Size(100 + size*w, 60 + size*h), CV_8UC3);
for (int i= 0, m=20, n=20; i<nImg; i++, m+=(20+size))
{
x = _imgs[i].cols;
y = _imgs[i].rows;
max = (x > y)? x: y;
scale = (float) ( (float) max / size );
if (i%w==0 && m!=20)
{
m = 20;
n += 20+size;
}
Mat imgROI = dispImg(Rect(m, n, (int)(x/scale), (int)(y/scale)));
resize(_imgs[i], imgROI, Size((int)(x/scale), (int)(y/scale)));
}
namedWindow(_winName);
imshow(_winName, dispImg);
}