forked from petercorke/robotics-toolbox-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDstar.m
518 lines (438 loc) · 18.7 KB
/
Dstar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
%Dstar D* navigation class
%
% A concrete subclass of the abstract Navigation class that implements the D*
% navigation algorithm. This provides minimum distance paths and
% facilitates incremental replanning.
%
% Methods::
% Dstar Constructor
% plan Compute the cost map given a goal and map
% query Find a path
% plot Display the obstacle map
% display Print the parameters in human readable form
% char Convert to string% costmap_modify Modify the costmap
%--
% modify_cost Modify the costmap
%
% Properties (read only)::
% distancemap Distance from each point to the goal.
% costmap Cost of traversing cell (in any direction).
% niter Number of iterations.
%
% Example::
% load map1 % load map
% goal = [50,30];
% start=[20,10];
% ds = Dstar(map); % create navigation object
% ds.plan(goal) % create plan for specified goal
% ds.query(start) % animate path from this start location
%
% Notes::
% - Obstacles are represented by Inf in the costmap.
% - The value of each element in the costmap is the shortest distance from the
% corresponding point in the map to the current goal.
%
% References::
% - The D* algorithm for real-time planning of optimal traverses,
% A. Stentz,
% Tech. Rep. CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon University, 1994.
% https://www.ri.cmu.edu/pub_files/pub3/stentz_anthony__tony__1994_2/stentz_anthony__tony__1994_2.pdf
% - Robotics, Vision & Control, Sec 5.2.2,
% Peter Corke, Springer, 2011.
%
% See also Navigation, DXform, PRM.
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% Implementation notes:
%
% All the state is kept in the structure called d
% X is an index into the array of states.
% state pointers are kept as matlab array index rather than row,col format
%TODO use pgraph class
% pic 7/09
classdef Dstar < Navigation
properties (SetAccess=private, GetAccess=private)
G % index of goal point
% info kept per cell (state)
b % backpointer (0 means not set)
t % tag: NEW OPEN CLOSED
h % distance map, path cost
validplan % a plan has been computed for current costmap
% list of open states: 2xN matrix
% each open point is a column, row 1 = index of cell, row 2 = k
openlist
openlist_maxlen % keep track of maximum length
% tag state values
NEW = 0;
OPEN = 1;
CLOSED = 2;
end
properties (SetAccess=private, GetAccess=public)
niter
costmap % world cost map: obstacle = Inf
end
methods
% constructor
function ds = Dstar(world, varargin)
%Dstar.Dstar D* constructor
%
% DS = Dstar(MAP, OPTIONS) is a D* navigation object, and MAP is an
% occupancy grid, a representation of a planar world as a
% matrix whose elements are 0 (free space) or 1 (occupied).
% The occupancy grid is coverted to a costmap with a unit cost
% for traversing a cell.
%
% Options::
% 'goal',G Specify the goal point (2x1)
% 'metric',M Specify the distance metric as 'euclidean' (default)
% or 'cityblock'.
% 'inflate',K Inflate all obstacles by K cells.
% 'progress' Don't display the progress spinner
%
% Other options are supported by the Navigation superclass.
%
% See also Navigation.Navigation.
% invoke the superclass constructor
ds = ds@Navigation(world, varargin{:});
% init the D* state variables
ds.reset();
if ~isempty(ds.goal)
ds.goal_change();
end
ds.reset();
end
function reset(ds)
%Dstar.reset Reset the planner
%
% DS.reset() resets the D* planner. The next instantiation
% of DS.plan() will perform a global replan.
% build the matrices required to hold the state of each cell for D*
ds.b = zeros(size(ds.costmap), 'uint32'); % backpointers
ds.t = zeros(size(ds.costmap), 'uint8'); % tags
ds.h = Inf*ones(size(ds.costmap)); % path cost estimate
ds.openlist = zeros(2,0); % the open list, one column per point
ds.openlist_maxlen = -Inf;
ds.occgrid2costmap(ds.occgridnav);
ds.validplan = false; % plan doesn't match costmap
end
function s = char(ds)
%Dstar.char Convert navigation object to string
%
% DS.char() is a string representing the state of the Dstar
% object in human-readable form.
%
% See also Dstar.display, Navigation.char.
% most of the work is done by the superclass
s = char@Navigation(ds);
% Dstar specific stuff
if ~isempty(ds.costmap)
s = char(s, sprintf(' costmap: %dx%d, open list %d', size(ds.costmap), numcols(ds.openlist)));
else
s = char(s, sprintf(' costmap: empty:'));
end
if ds.validplan
s = char(s, sprintf(' plan: valid'));
else
s = char(s, sprintf(' plan: stale'));
end
end
function plot(ds, varargin)
%Dstar.plot Visualize navigation environment
%
% DS.plot() displays the occupancy grid and the goal distance
% in a new figure. The goal distance is shown by intensity which
% increases with distance from the goal. Obstacles are overlaid
% and shown in red.
%
% DS.plot(P) as above but also overlays a path given by the set
% of points P (Mx2).
%
% See also Navigation.plot.
plot@Navigation(ds, varargin{:}, 'distance', ds.h);
end
% invoked by Navigation.step
function n = next(ds, current)
if ~ds.validplan
error('Cost map has changed, replan');
end
X = sub2ind(size(ds.costmap), current(2), current(1));
X = ds.b(X);
if X == 0
n = [];
else
[r,c] = ind2sub(size(ds.costmap), X);
n = [c;r];
end
end
function plan(ds, varargin)
%Dstar.plan Plan path to goal
%
% DS.plan(OPTIONS) create a D* plan to reach the goal from all free cells
% in the map. Also updates a D* plan after changes to the costmap. The
% goal is as previously specified.
%
% DS.plan(GOAL,OPTIONS) as above but goal given explicitly.
%
% Options::
% 'animate' Plot the distance transform as it evolves
% 'progress' Display a progress bar
%
% Note::
% - If a path has already been planned, but the costmap was
% modified, then reinvoking this method will replan,
% incrementally updating the plan at lower cost than a full
% replan.
% - The reset method causes a fresh plan, rather than replan.
%
% See also Dstar.reset.
opt.progress = true;
opt.animate = false;
[opt,args] = tb_optparse(opt, varargin);
% was a goal given here
if ~isempty(args) && isvec(args{1},2)
goal = args{1};
ds.setgoal(goal);
ds.reset();
end
% check we have a goal
assert(~isempty(ds.goal), 'RTB:Dstar:plan', 'no goal specified here or in constructor');
goal = ds.goal;
% keep goal in index rather than row,col format
ds.G = sub2ind(size(ds.occgridnav), goal(2), goal(1));
ds.INSERT(ds.G, 0, 'goalset');
ds.h(ds.G) = 0;
ds.niter = 0;
if opt.progress
% for replanning we don't really know how many iterations, so scale it to
% the worst case, a full replan
hprog = Navigation.progress_init('D* planning');
end
% number of free cells, upper bound on number of iterations, trapped free
% cells will never be reached
nfree = prod(size(ds.occgridnav)) - sum(sum(ds.occgridnav > 0));
nupdate = round(nfree/100);
while true
ds.niter = ds.niter + 1;
if opt.progress && mod(ds.niter, nupdate) == 0
Navigation.progress(hprog, ds.niter/nfree);
if opt.animate
Navigation.show_distance(ds.h);
end
end
if ds.PROCESS_STATE() < 0
break;
end
end
if opt.progress
Navigation.progress_delete(hprog);
end
ds.validplan = true;
fprintf('%d iterations\n', ds.niter)
end
function set_cost(ds, costmap)
%Dstar.set_cost Set the current costmap
%
% DS.set_cost(C) sets the current costmap. The cost map is the same size
% as the occupancy grid and the value of each element represents the cost
% of traversing the cell. A high value indicates that the cell is more costly
% (difficult) to traverese. A value of Inf indicates an obstacle.
%
% Notes::
% - After the cost map is changed the path should be replanned by
% calling DS.plan().
%
% See also Dstar.modify_cost.
if ~all(size(costmap) == size(ds.occgridnav))
error('costmap must be same size as occupancy grid');
end
ds.costmap = costmap;
ds.validplan = false;
end
function modify_cost(ds, xy, newcost)
%Dstar.modify_cost Modify cost map
%
% DS.modify_cost(P, C) modifies the cost map for the points described by
% the columns of P (2xN) and sets them to the corresponding elements of C
% (1xN). For the particular case where P (2x2) the first and last columns
% define the corners of a rectangular region which is set to C (1x1).
%
% Notes::
% - After one or more point costs have been updated the path
% should be replanned by calling DS.plan().
%
% See also Dstar.set_cost.
function modify(ds, x, y, newcost)
X = sub2ind(size(ds.costmap), y, x);
ds.costmap(X) = newcost;
if ds.t(X) == ds.CLOSED
ds.INSERT(X, ds.h(X), 'modifycost');
end
end
if all(size(xy) == [2 2]) && numel(newcost) == 1
% a rectangular region is specified
for xx=xy(1,1):xy(1,2)
for yy=xy(2,1):xy(2,2)
modify(ds, xx, yy, newcost);
end
end
elseif numcols(xy) == numel(newcost)
% a set of column vectors specifying the points to change
for i=1:numcols(xy)
modify(ds, xy(1,i), xy(2,i), newcost(i));
end
else
error('number of columns of P and C must match');
end
ds.validplan = false;
end
end % public methods
methods (Access=protected)
function occgrid2costmap(ds, og, cost)
if nargin < 3
cost = 1;
end
ds.costmap = og;
ds.costmap(ds.costmap==1) = Inf; % occupied cells have Inf driving cost
ds.costmap(ds.costmap==0) = cost; % unoccupied cells have driving cost
end
% The main D* function as per the Stentz paper, comments Ln are the original
% line numbers.
function r = PROCESS_STATE(d)
%% states with the lowest k value are removed from the
%% open list
X = d.MIN_STATE(); % L1
if isempty(X) % L2
r = -1;
return;
end
k_old = d.GET_KMIN(); d.DELETE(X); % L3
if k_old < d.h(X) % L4
d.message('k_old < h(X): %f %f\n', k_old, d.h(X));
for Y=d.neighbours(X) % L5
if (d.h(Y) <= k_old) && (d.h(X) > d.h(Y)+d.c(Y,X)) % L6
d.b(X) = Y;
d.h(X) = d.h (Y) + d.c(Y,X); % L7
end
end
end
%% can we lower the path cost of any neighbours?
if k_old == d.h(X) % L8
d.message('k_old == h(X): %f\n', k_old);
for Y=d.neighbours(X) % L9
if (d.t(Y) == d.NEW) || ... % L10-12
( (d.b(Y) == X) && (d.h(Y) ~= (d.h(X) + d.c(X,Y))) ) || ...
( (d.b(Y) ~= X) && (d.h(Y) > (d.h(X) + d.c(X,Y))) )
d.b(Y) = X; d.INSERT(Y, d.h(X)+d.c(X,Y), 'L13'); % L13
end
end
else % L14
d.message('k_old > h(X)');
for Y=d.neighbours(X) % L15
if (d.t(Y) == d.NEW) || ( (d.b(Y) == X) && (d.h(Y) ~= (d.h(X) + d.c(X,Y))) )
d.b(Y) = X; d.INSERT(Y, d.h(X)+d.c(X,Y), 'L18'); % L18
else
if ( (d.b(Y) ~= X) && (d.h(Y) > (d.h(X) + d.c(X,Y))) )
d.INSERT(X, d.h(X), 'L21'); % L21
else
if (d.b(Y) ~= X) && (d.h(X) > (d.h(Y) + d.c(Y,X))) && ...
(d.t(Y) == d.CLOSED) && d.h(Y) > k_old
d.INSERT(Y, d.h(Y), 'L25'); % L25
end
end
end
end
end
r = 0;
return;
end % process_state(0
function kk = k(ds, X)
i = ds.openlist(1,:) == X;
kk = ds.openlist(2, i);
end
% add node to open list
function INSERT(ds, X, h_new, where)
% where is for diagnostic purposes only
ds.message('insert (%s) %d = %f\n', where, X, h_new);
i = find(ds.openlist(1,:) == X);
if length(i) > 1
error('D*:INSERT: state in open list %d times', X);
end
if ds.t(X) == ds.NEW
k_new = h_new;
% add a new column to the open list
ds.openlist = [ds.openlist [X; k_new]];
elseif ds.t(X) == ds.OPEN
k_new = min( ds.openlist(2,i), h_new );
elseif ds.t(X) == ds.CLOSED
k_new = min( ds.h(X), h_new );
% add a new column to the open list
ds.openlist = [ds.openlist [X; k_new]];
end
if numcols(ds.openlist) > ds.openlist_maxlen
ds.openlist_maxlen = numcols(ds.openlist);
end
ds.h(X) = h_new;
ds.t(X) = ds.OPEN;
end
% remove node from open list
function DELETE(ds, X)
ds.message('delete %d\n', X);
i = find(ds.openlist(1,:) == X);
if length(i) ~= 1
error('D*:DELETE: state %d doesnt exist', X);
end
if length(i) > 1
disp('hello')
end
ds.openlist(:,i) = []; % remove the column
ds.t(X) = ds.CLOSED;
end
% return the index of the open state with the smallest k value
function ms = MIN_STATE(ds)
if isempty(ds.openlist)
ms = [];
else
% find the minimum k value on the openlist
[~,i] = min(ds.openlist(2,:));
% return its index
ms = ds.openlist(1,i);
end
end
function kmin = GET_KMIN(ds)
kmin = min(ds.openlist(2,:));
end
% return the cost of moving from state X to state Y
function cost = c(ds, X, Y)
[r,c] = ind2sub(size(ds.costmap), [X; Y]);
dist = sqrt(sum(diff([r c]).^2));
dcost = (ds.costmap(X) + ds.costmap(Y))/2;
cost = dist * dcost;
end
% return index of neighbour states as a row vector
function Y = neighbours(ds, X)
dims = size(ds.costmap);
[r,c] = ind2sub(dims, X);
% list of 8-way neighbours
Y = [r-1 r-1 r-1 r r r+1 r+1 r+1; c-1 c c+1 c-1 c+1 c-1 c c+1];
k = (min(Y)>0) & (Y(1,:)<=dims(1)) & (Y(2,:)<=dims(2));
Y = Y(:,k);
Y = sub2ind(dims, Y(1,:)', Y(2,:)')';
end
end % protected methods
end % classdef