From 5a7b6789582e9959f1105676f31ab37f877f76d7 Mon Sep 17 00:00:00 2001 From: jreps Date: Wed, 21 Aug 2024 21:49:24 -0400 Subject: [PATCH] Develop (#324) - merged cohortmethod/sccs/evidence synth into estimation module - improved characterization module - bug fixes - updated modules for latest HADES Co-authored-by: nhall6 Co-authored-by: Jamie Gilbert Co-authored-by: Frank DeFalco Co-authored-by: Nathan Hall <106178605+nhall6@users.noreply.github.com> Co-authored-by: Chris Knoll Co-authored-by: Anthony Sena --- DESCRIPTION | 11 +- NAMESPACE | 31 +- NEWS.md | 15 +- R/OhdsiShinyModules.R | 4 +- R/about-main.R | 271 +- R/characterization-aggregateFeatures.R | 870 ------ R/characterization-caseSeries.R | 743 +++++ R/characterization-cohorts.R | 1225 ++++++--- R/characterization-database.R | 320 +++ R/characterization-dechallengeRechallenge.R | 350 ++- R/characterization-incidence.R | 2416 ++++++++--------- R/characterization-main.R | 629 ++++- R/characterization-riskFactors.R | 1004 +++++++ R/characterization-timeToEvent.R | 382 +-- R/cohort-diagnostics-characterization.R | 5 +- R/cohort-diagnostics-cohort-overlap.R | 7 +- ...hort-diagnostics-compareCharacterization.R | 1 + R/cohort-diagnostics-conceptsInDataSource.R | 1 + R/cohort-diagnostics-counts.R | 2 + R/cohort-diagnostics-databaseInformation.R | 1 + R/cohort-diagnostics-definition.R | 4 +- R/cohort-diagnostics-incidenceRates.R | 1 + R/cohort-diagnostics-inclusionRules.R | 1 + R/cohort-diagnostics-indexEventBreakdown.R | 1 + R/cohort-diagnostics-main-ui.R | 2 + R/cohort-diagnostics-main.R | 209 +- R/cohort-diagnostics-orphanConcepts.R | 13 +- R/cohort-diagnostics-timeDistributions.R | 1 + R/cohort-diagnostics-visitContext.R | 1 + R/cohort-generator-main.R | 306 ++- R/cohort-method-diagnosticsSummary.R | 389 --- R/cohort-method-main.R | 293 -- R/components-data-viewer.R | 108 +- R/components-helpInfo.R | 2 +- R/components-largeTableViewer.R | 2 +- R/data-diagnostic-drill.R | 4 +- R/data-diagnostic-main.R | 6 +- R/data-diagnostic-summary.R | 4 +- R/datasources-main.R | 16 +- ...R => estimation-cohort-method-attrition.R} | 4 +- ...timation-cohort-method-covariateBalance.R} | 165 +- R/estimation-cohort-method-diagnostics.R | 264 ++ ...=> estimation-cohort-method-full-result.R} | 14 +- ...> estimation-cohort-method-kaplainMeier.R} | 4 +- R/estimation-cohort-method-plots.R | 156 ++ ...cohort-method-populationCharacteristics.R} | 11 +- ...wer.R => estimation-cohort-method-power.R} | 10 +- ...stimation-cohort-method-propensityModel.R} | 4 +- ...hort-method-propensityScoreDistribution.R} | 4 +- ...y.R => estimation-cohort-method-results.R} | 260 +- ...stimation-cohort-method-systematicError.R} | 4 +- R/estimation-main.R | 414 +++ R/estimation-sccs-diagnostics.R | 261 ++ R/estimation-sccs-plots.R | 163 ++ ...-full.R => estimation-sccs-results-full.R} | 452 ++- ...cs-results.R => estimation-sccs-results.R} | 235 +- R/evidence-synth-cm.R | 549 ---- R/evidence-synth-main.R | 275 -- R/evidence-synth-sccs.R | 536 ---- R/helper-getPredictionProtocol.R | 8 +- R/helpers-componentsCreateCustomColDefList.R | 35 +- R/helpers-example.R | 20 + R/helpers-migrations.R | 4 +- R/helpers-sccsPlots.R | 64 +- R/home-main.R | 101 + R/patient-level-prediction-calibration.R | 4 +- R/patient-level-prediction-covariateSummary.R | 4 +- R/patient-level-prediction-cutoff.R | 4 +- R/patient-level-prediction-designSummary.R | 4 +- R/patient-level-prediction-diagnostics.R | 4 +- R/patient-level-prediction-discrimination.R | 4 +- R/patient-level-prediction-main.R | 14 +- R/patient-level-prediction-modelSummary.R | 16 +- R/patient-level-prediction-netbenefit.R | 4 +- R/patient-level-prediction-settings.R | 4 +- R/patient-level-prediction-validation.R | 4 +- R/phevaluator-main.R | 15 +- R/report-main.R | 1050 +++++++ R/sccs-diagnosticsSummary.R | 465 ---- R/sccs-main.R | 216 -- README.md | 12 +- _pkgdown.yml | 130 +- docs/404.html | 34 +- docs/articles/AddingShinyModules.html | 36 +- docs/articles/Characterization.html | 241 ++ docs/articles/CohortDiagnostics.html | 297 ++ docs/articles/CohortMethod.html | 274 ++ docs/articles/Cohorts.html | 255 ++ docs/articles/DataSources.html | 251 ++ docs/articles/EvidenceSynthesis.html | 238 ++ docs/articles/Prediction.html | 241 ++ docs/articles/SelfControlledCaseSeries.html | 323 +++ docs/articles/index.html | 50 +- docs/authors.html | 54 +- docs/index.html | 47 +- docs/news/index.html | 47 +- docs/pkgdown.yml | 14 +- docs/reference/LargeDataTable.html | 34 +- docs/reference/OhdsiShinyModules.html | 40 +- docs/reference/aboutHelperFile.html | 40 +- docs/reference/aboutServer.html | 47 +- docs/reference/aboutViewer.html | 40 +- ...aracterizationAggregateFeaturesServer.html | 32 +- ...aracterizationAggregateFeaturesViewer.html | 32 +- ...erizationDechallengeRechallengeServer.html | 32 +- ...erizationDechallengeRechallengeViewer.html | 32 +- .../reference/characterizationHelperFile.html | 42 +- .../characterizationIncidenceServer.html | 68 +- .../characterizationIncidenceViewer.html | 42 +- docs/reference/characterizationServer.html | 42 +- .../characterizationTableServer.html | 32 +- .../characterizationTableViewer.html | 32 +- .../characterizationTimeToEventServer.html | 32 +- .../characterizationTimeToEventViewer.html | 32 +- docs/reference/characterizationViewer.html | 42 +- docs/reference/cohortCountsModule.html | 58 +- docs/reference/cohortCountsView.html | 58 +- docs/reference/cohortDefinitionsModule.html | 58 +- docs/reference/cohortDefinitionsView.html | 58 +- .../cohortDiagCharacterizationView.html | 58 +- .../cohortDiagnosticsHelperFile.html | 54 +- docs/reference/cohortDiagnosticsServer.html | 54 +- docs/reference/cohortDiagnosticsView.html | 58 +- docs/reference/cohortGeneratorHelperFile.html | 40 +- docs/reference/cohortGeneratorServer.html | 40 +- docs/reference/cohortGeneratorViewer.html | 40 +- .../cohortMethodAttritionServer.html | 56 +- .../cohortMethodAttritionViewer.html | 56 +- .../cohortMethodCovariateBalanceServer.html | 56 +- .../cohortMethodCovariateBalanceViewer.html | 56 +- .../cohortMethodDiagnosticsSummaryServer.html | 32 +- .../cohortMethodDiagnosticsSummaryViewer.html | 32 +- docs/reference/cohortMethodHelperFile.html | 32 +- .../cohortMethodKaplanMeierServer.html | 56 +- .../cohortMethodKaplanMeierViewer.html | 56 +- ...MethodPopulationCharacteristicsServer.html | 56 +- ...MethodPopulationCharacteristicsViewer.html | 56 +- docs/reference/cohortMethodPowerServer.html | 56 +- docs/reference/cohortMethodPowerViewer.html | 56 +- .../cohortMethodPropensityModelServer.html | 56 +- .../cohortMethodPropensityModelViewer.html | 56 +- ...cohortMethodPropensityScoreDistServer.html | 56 +- ...cohortMethodPropensityScoreDistViewer.html | 56 +- .../cohortMethodResultSummaryServer.html | 32 +- .../cohortMethodResultSummaryViewer.html | 32 +- docs/reference/cohortMethodServer.html | 32 +- .../cohortMethodSystematicErrorServer.html | 56 +- .../cohortMethodSystematicErrorViewer.html | 56 +- docs/reference/cohortMethodViewer.html | 32 +- docs/reference/cohortOverlapView.html | 58 +- .../compareCohortCharacterizationView.html | 58 +- docs/reference/conceptsInDataSourceView.html | 58 +- .../reference/createCdDatabaseDataSource.html | 58 +- docs/reference/createCustomColDefList.html | 41 +- docs/reference/createLargeSqlQueryDt.html | 34 +- docs/reference/dataDiagnosticDrillServer.html | 44 +- docs/reference/dataDiagnosticDrillViewer.html | 44 +- docs/reference/dataDiagnosticHelperFile.html | 44 +- docs/reference/dataDiagnosticServer.html | 44 +- .../dataDiagnosticSummaryServer.html | 44 +- .../dataDiagnosticSummaryViewer.html | 44 +- docs/reference/dataDiagnosticViewer.html | 44 +- docs/reference/databaseInformationView.html | 58 +- docs/reference/datasourcesHelperFile.html | 41 +- docs/reference/datasourcesServer.html | 41 +- docs/reference/datasourcesViewer.html | 41 +- docs/reference/estimationHelperFile.html | 54 +- docs/reference/estimationServer.html | 70 +- docs/reference/estimationViewer.html | 64 +- .../evidenceSynthesisHelperFile.html | 32 +- docs/reference/evidenceSynthesisServer.html | 32 +- docs/reference/evidenceSynthesisViewer.html | 32 +- .../reference/getCirceRenderedExpression.html | 58 +- docs/reference/getEnabledCdReports.html | 58 +- .../getExampleConnectionDetails.html | 140 + docs/reference/getLogoImage.html | 34 +- docs/reference/homeHelperFile.html | 145 + docs/reference/homeServer.html | 159 ++ docs/reference/homeViewer.html | 151 ++ docs/reference/incidenceRatesView.html | 58 +- docs/reference/inclusionRulesView.html | 58 +- docs/reference/index.html | 412 +-- docs/reference/indexEventBreakdownView.html | 58 +- docs/reference/largeTableServer.html | 34 +- docs/reference/largeTableView.html | 34 +- docs/reference/makeButtonLabel.html | 41 +- docs/reference/orpahanConceptsView.html | 75 +- ...tientLevelPredictionCalibrationServer.html | 60 +- ...tientLevelPredictionCalibrationViewer.html | 60 +- ...LevelPredictionCovariateSummaryServer.html | 60 +- ...LevelPredictionCovariateSummaryViewer.html | 60 +- .../patientLevelPredictionCutoffServer.html | 60 +- .../patientLevelPredictionCutoffViewer.html | 60 +- ...entLevelPredictionDesignSummaryServer.html | 60 +- ...entLevelPredictionDesignSummaryViewer.html | 60 +- ...tientLevelPredictionDiagnosticsServer.html | 60 +- ...tientLevelPredictionDiagnosticsViewer.html | 60 +- ...ntLevelPredictionDiscriminationServer.html | 60 +- ...ntLevelPredictionDiscriminationViewer.html | 60 +- .../patientLevelPredictionHelperFile.html | 60 +- ...ientLevelPredictionModelSummaryServer.html | 60 +- ...ientLevelPredictionModelSummaryViewer.html | 60 +- .../patientLevelPredictionNbServer.html | 60 +- .../patientLevelPredictionNbViewer.html | 60 +- .../patientLevelPredictionServer.html | 60 +- .../patientLevelPredictionSettingsServer.html | 60 +- .../patientLevelPredictionSettingsViewer.html | 60 +- ...atientLevelPredictionValidationServer.html | 60 +- ...atientLevelPredictionValidationViewer.html | 60 +- .../patientLevelPredictionViewer.html | 60 +- docs/reference/phevaluatorHelperFile.html | 37 +- docs/reference/phevaluatorServer.html | 37 +- docs/reference/phevaluatorViewer.html | 37 +- docs/reference/reportHelperFile.html | 145 + docs/reference/reportServer.html | 183 ++ docs/reference/reportViewer.html | 151 ++ docs/reference/resultTableServer.html | 46 +- docs/reference/resultTableViewer.html | 51 +- docs/reference/sccsHelperFile.html | 32 +- docs/reference/sccsServer.html | 32 +- docs/reference/sccsView.html | 32 +- docs/reference/timeDistributionsView.html | 58 +- docs/reference/visitContextView.html | 58 +- docs/sitemap.xml | 45 + extras/OhdsiShinyModules.pdf | Bin 181102 -> 0 bytes extras/codeToCreateCharacterizationDatabase.R | 260 ++ extras/codeToCreateDescriptiveDatabase.R | 175 -- extras/codeToCreateEstimationDatabase.R | 358 ++- extras/examples/app.R | 70 + extras/examples/largeTable.R | 47 - hs_err_pid47729.log | 1199 ++++++++ inst/about-www/about.html | 26 +- .../characterization.html | 12 +- .../cohort-diagnostics.html | 7 +- .../cohort-generator.html | 4 +- inst/cohort-method-www/cohort-method.html | 3 - .../characterization-incidence-colDefs.csv | 30 + .../characterization-incidence-colDefs.json | 1649 ----------- ...ohortMethod-covariate-balance-colDefs.json | 442 +++ inst/datasources-www/datasources.html | 16 +- inst/estimation-www/estimation.html | 28 + .../evidence-synthesis.html | 6 +- inst/extdata/results.sqlite | Bin 0 -> 3100672 bytes inst/extdata/results_old.sqlite | Bin 0 -> 3084288 bytes inst/home-www/home.html | 0 .../main.Rmd | 10 +- .../model-design.Rmd | 25 +- .../patient-level-prediction.html | 3 +- inst/phevaluator-www/phevaluator.html | 8 +- inst/report-www/report.html | 1 + inst/sccs-www/sccs.html | 2 - man/OhdsiShinyModules.Rd | 11 + man/aboutHelperFile.Rd | 6 + man/aboutServer.Rd | 11 +- man/aboutViewer.Rd | 6 + ...characterizationAggregateFeaturesServer.Rd | 28 - ...characterizationAggregateFeaturesViewer.Rd | 20 - ...cterizationDechallengeRechallengeServer.Rd | 28 - ...cterizationDechallengeRechallengeViewer.Rd | 20 - man/characterizationHelperFile.Rd | 8 + man/characterizationIncidenceServer.Rd | 26 +- man/characterizationIncidenceViewer.Rd | 8 + man/characterizationServer.Rd | 8 + man/characterizationTableServer.Rd | 24 - man/characterizationTableViewer.Rd | 20 - man/characterizationTimeToEventServer.Rd | 28 - man/characterizationTimeToEventViewer.Rd | 20 - man/characterizationViewer.Rd | 8 + man/cohortCountsModule.Rd | 24 + man/cohortCountsView.Rd | 24 + man/cohortDefinitionsModule.Rd | 24 + man/cohortDefinitionsView.Rd | 24 + man/cohortDiagCharacterizationView.Rd | 24 + man/cohortDiagnosticsHelperFile.Rd | 20 +- man/cohortDiagnosticsServer.Rd | 20 +- man/cohortDiagnosticsView.Rd | 24 + man/cohortGeneratorHelperFile.Rd | 6 + man/cohortGeneratorServer.Rd | 6 + man/cohortGeneratorViewer.Rd | 6 + man/cohortMethodAttritionServer.Rd | 24 +- man/cohortMethodAttritionViewer.Rd | 24 +- man/cohortMethodCovariateBalanceServer.Rd | 24 +- man/cohortMethodCovariateBalanceViewer.Rd | 24 +- man/cohortMethodDiagnosticsSummaryServer.Rd | 28 - man/cohortMethodDiagnosticsSummaryViewer.Rd | 17 - man/cohortMethodHelperFile.Rd | 17 - man/cohortMethodKaplanMeierServer.Rd | 24 +- man/cohortMethodKaplanMeierViewer.Rd | 24 +- ...rtMethodPopulationCharacteristicsServer.Rd | 25 +- ...rtMethodPopulationCharacteristicsViewer.Rd | 25 +- man/cohortMethodPowerServer.Rd | 24 +- man/cohortMethodPowerViewer.Rd | 24 +- man/cohortMethodPropensityModelServer.Rd | 24 +- man/cohortMethodPropensityModelViewer.Rd | 24 +- man/cohortMethodPropensityScoreDistServer.Rd | 25 +- man/cohortMethodPropensityScoreDistViewer.Rd | 25 +- man/cohortMethodResultSummaryServer.Rd | 28 - man/cohortMethodResultSummaryViewer.Rd | 17 - man/cohortMethodServer.Rd | 21 - man/cohortMethodSystematicErrorServer.Rd | 24 +- man/cohortMethodSystematicErrorViewer.Rd | 24 +- man/cohortMethodViewer.Rd | 17 - man/cohortOverlapView.Rd | 24 + man/compareCohortCharacterizationView.Rd | 24 + man/conceptsInDataSourceView.Rd | 24 + man/createCdDatabaseDataSource.Rd | 24 + man/createCustomColDefList.Rd | 8 + man/dataDiagnosticDrillServer.Rd | 10 + man/dataDiagnosticDrillViewer.Rd | 10 + man/dataDiagnosticHelperFile.Rd | 10 + man/dataDiagnosticServer.Rd | 10 + man/dataDiagnosticSummaryServer.Rd | 10 + man/dataDiagnosticSummaryViewer.Rd | 10 + man/dataDiagnosticViewer.Rd | 10 + man/databaseInformationView.Rd | 24 + man/datasourcesHelperFile.Rd | 8 + man/datasourcesServer.Rd | 8 + man/datasourcesViewer.Rd | 8 + man/estimationHelperFile.Rd | 39 + man/estimationServer.Rd | 50 + man/estimationViewer.Rd | 42 + man/evidenceSynthesisHelperFile.Rd | 17 - man/evidenceSynthesisServer.Rd | 28 - man/evidenceSynthesisViewer.Rd | 20 - man/getCirceRenderedExpression.Rd | 24 + man/getEnabledCdReports.Rd | 24 + man/getExampleConnectionDetails.Rd | 19 + man/homeHelperFile.Rd | 23 + man/{sccsServer.Rd => homeServer.Rd} | 20 +- man/homeViewer.Rd | 26 + man/incidenceRatesView.Rd | 24 + man/inclusionRulesView.Rd | 24 + man/indexEventBreakdownView.Rd | 24 + man/makeButtonLabel.Rd | 8 + man/orpahanConceptsView.Rd | 42 +- ...patientLevelPredictionCalibrationServer.Rd | 26 + ...patientLevelPredictionCalibrationViewer.Rd | 26 + ...ntLevelPredictionCovariateSummaryServer.Rd | 26 + ...ntLevelPredictionCovariateSummaryViewer.Rd | 26 + man/patientLevelPredictionCutoffServer.Rd | 26 + man/patientLevelPredictionCutoffViewer.Rd | 26 + ...tientLevelPredictionDesignSummaryServer.Rd | 26 + ...tientLevelPredictionDesignSummaryViewer.Rd | 26 + ...patientLevelPredictionDiagnosticsServer.Rd | 26 + ...patientLevelPredictionDiagnosticsViewer.Rd | 26 + ...ientLevelPredictionDiscriminationServer.Rd | 26 + ...ientLevelPredictionDiscriminationViewer.Rd | 26 + man/patientLevelPredictionHelperFile.Rd | 26 + ...atientLevelPredictionModelSummaryServer.Rd | 26 + ...atientLevelPredictionModelSummaryViewer.Rd | 26 + man/patientLevelPredictionNbServer.Rd | 26 + man/patientLevelPredictionNbViewer.Rd | 26 + man/patientLevelPredictionServer.Rd | 26 + man/patientLevelPredictionSettingsServer.Rd | 26 + man/patientLevelPredictionSettingsViewer.Rd | 26 + man/patientLevelPredictionValidationServer.Rd | 26 + man/patientLevelPredictionValidationViewer.Rd | 26 + man/patientLevelPredictionViewer.Rd | 26 + man/phevaluatorHelperFile.Rd | 4 + man/phevaluatorServer.Rd | 4 + man/phevaluatorViewer.Rd | 4 + man/reportHelperFile.Rd | 23 + man/reportServer.Rd | 46 + man/reportViewer.Rd | 26 + man/resultTableServer.Rd | 11 + man/resultTableViewer.Rd | 16 +- man/sccsHelperFile.Rd | 17 - man/sccsView.Rd | 14 - man/timeDistributionsView.Rd | 24 + man/visitContextView.Rd | 24 + tests/resources/cDatabase/databaseFile.sqlite | Bin 0 -> 266240 bytes .../databaseFile.sqlite | Bin 131072 -> 0 bytes .../resources/cmDatabase/databaseFile.sqlite | Bin 372736 -> 0 bytes .../resources/esDatabase/databaseFile.sqlite | Bin 479232 -> 0 bytes .../resources/estDatabase/databaseFile.sqlite | Bin 0 -> 1236992 bytes .../sccsDatabase/databaseFile.sqlite | Bin 114688 -> 0 bytes tests/testthat/setup.R | 44 +- ...test-characterization-aggregate-features.R | 33 - .../test-characterization-caseSeries.R | 76 + .../testthat/test-characterization-cohorts.R | 102 +- .../testthat/test-characterization-database.R | 85 + ...-characterization-dechallengeRechallenge.R | 37 +- .../test-characterization-incidence.R | 72 +- tests/testthat/test-characterization-main.R | 143 +- .../test-characterization-riskFactors.R | 69 + .../test-characterization-timeToEvent.R | 39 +- .../test-cohort-method-DiagnosticsSummary.R | 66 - tests/testthat/test-cohort-method-main.R | 22 - ...test-estimation-cohort-method-attrition.R} | 20 +- ...timation-cohort-method-covariateBalance.R} | 17 +- ...est-estimation-cohort-method-diagnostics.R | 38 + ...st-estimation-cohort-method-full-result.R} | 19 +- ...st-estimation-cohort-method-kaplanMeier.R} | 8 +- .../test-estimation-cohort-method-plots.R | 82 + ...cohort-method-populationCharacteristics.R} | 6 +- ... => test-estimation-cohort-method-power.R} | 14 +- ...stimation-cohort-method-propensityModel.R} | 6 +- ...ation-cohort-method-propensityScoreDist.R} | 12 +- .../test-estimation-cohort-method-results.R | 78 + ...stimation-cohort-method-systematicError.R} | 6 +- tests/testthat/test-estimation-main.R | 94 + .../test-estimation-sccs-diagnostics.R | 26 + tests/testthat/test-estimation-sccs-plots.R | 78 + .../test-estimation-sccs-results-full.R | 205 ++ tests/testthat/test-estimation-sccs-results.R | 76 + tests/testthat/test-evidence-synth-cm.R | 94 - tests/testthat/test-evidence-synth-main.R | 63 - tests/testthat/test-evidence-synth-sccs.R | 75 - tests/testthat/test-helpers-sccsPlots.R | 2 +- tests/testthat/test-home.R | 27 + tests/testthat/test-report-main.R | 31 + tests/testthat/test-sccs-main.R | 239 -- tests/testthat/test-sccs-results-full.R | 42 - tests/testthat/test-sccs-results.R | 29 - vignettes/Characterization.Rmd | 52 + vignettes/CohortDiagnostics.Rmd | 69 + vignettes/CohortMethod.Rmd | 60 + vignettes/Cohorts.Rmd | 62 + vignettes/DataSources.Rmd | 61 + vignettes/EvidenceSynthesis.Rmd | 60 + vignettes/Prediction.Rmd | 76 + vignettes/SelfControlledCaseSeries.Rmd | 82 + 422 files changed, 24641 insertions(+), 10271 deletions(-) delete mode 100644 R/characterization-aggregateFeatures.R create mode 100644 R/characterization-caseSeries.R create mode 100644 R/characterization-database.R create mode 100644 R/characterization-riskFactors.R delete mode 100644 R/cohort-method-diagnosticsSummary.R delete mode 100644 R/cohort-method-main.R rename R/{cohort-method-attrition.R => estimation-cohort-method-attrition.R} (99%) rename R/{cohort-method-covariateBalance.R => estimation-cohort-method-covariateBalance.R} (81%) create mode 100644 R/estimation-cohort-method-diagnostics.R rename R/{cohort-method-full-result.R => estimation-cohort-method-full-result.R} (93%) rename R/{cohort-method-kaplainMeier.R => estimation-cohort-method-kaplainMeier.R} (99%) create mode 100644 R/estimation-cohort-method-plots.R rename R/{cohort-method-populationCharacteristics.R => estimation-cohort-method-populationCharacteristics.R} (98%) rename R/{cohort-method-power.R => estimation-cohort-method-power.R} (98%) rename R/{cohort-method-propensityModel.R => estimation-cohort-method-propensityModel.R} (98%) rename R/{cohort-method-propensityScoreDistribution.R => estimation-cohort-method-propensityScoreDistribution.R} (99%) rename R/{cohort-method-resultSummary.R => estimation-cohort-method-results.R} (62%) rename R/{cohort-method-systematicError.R => estimation-cohort-method-systematicError.R} (99%) create mode 100644 R/estimation-main.R create mode 100644 R/estimation-sccs-diagnostics.R create mode 100644 R/estimation-sccs-plots.R rename R/{sccs-results-full.R => estimation-sccs-results-full.R} (51%) rename R/{sccs-results.R => estimation-sccs-results.R} (61%) delete mode 100644 R/evidence-synth-cm.R delete mode 100644 R/evidence-synth-main.R delete mode 100644 R/evidence-synth-sccs.R create mode 100644 R/helpers-example.R create mode 100644 R/home-main.R create mode 100644 R/report-main.R delete mode 100644 R/sccs-diagnosticsSummary.R delete mode 100644 R/sccs-main.R create mode 100644 docs/articles/Characterization.html create mode 100644 docs/articles/CohortDiagnostics.html create mode 100644 docs/articles/CohortMethod.html create mode 100644 docs/articles/Cohorts.html create mode 100644 docs/articles/DataSources.html create mode 100644 docs/articles/EvidenceSynthesis.html create mode 100644 docs/articles/Prediction.html create mode 100644 docs/articles/SelfControlledCaseSeries.html create mode 100644 docs/reference/getExampleConnectionDetails.html create mode 100644 docs/reference/homeHelperFile.html create mode 100644 docs/reference/homeServer.html create mode 100644 docs/reference/homeViewer.html create mode 100644 docs/reference/reportHelperFile.html create mode 100644 docs/reference/reportServer.html create mode 100644 docs/reference/reportViewer.html delete mode 100644 extras/OhdsiShinyModules.pdf create mode 100644 extras/codeToCreateCharacterizationDatabase.R delete mode 100644 extras/codeToCreateDescriptiveDatabase.R create mode 100644 extras/examples/app.R delete mode 100644 extras/examples/largeTable.R create mode 100644 hs_err_pid47729.log delete mode 100644 inst/cohort-method-www/cohort-method.html create mode 100644 inst/components-columnInformation/characterization-incidence-colDefs.csv delete mode 100644 inst/components-columnInformation/characterization-incidence-colDefs.json create mode 100644 inst/components-columnInformation/cohortMethod-covariate-balance-colDefs.json create mode 100644 inst/estimation-www/estimation.html create mode 100755 inst/extdata/results.sqlite create mode 100755 inst/extdata/results_old.sqlite create mode 100644 inst/home-www/home.html create mode 100644 inst/report-www/report.html delete mode 100644 inst/sccs-www/sccs.html delete mode 100644 man/characterizationAggregateFeaturesServer.Rd delete mode 100644 man/characterizationAggregateFeaturesViewer.Rd delete mode 100644 man/characterizationDechallengeRechallengeServer.Rd delete mode 100644 man/characterizationDechallengeRechallengeViewer.Rd delete mode 100644 man/characterizationTableServer.Rd delete mode 100644 man/characterizationTableViewer.Rd delete mode 100644 man/characterizationTimeToEventServer.Rd delete mode 100644 man/characterizationTimeToEventViewer.Rd delete mode 100644 man/cohortMethodDiagnosticsSummaryServer.Rd delete mode 100644 man/cohortMethodDiagnosticsSummaryViewer.Rd delete mode 100644 man/cohortMethodHelperFile.Rd delete mode 100644 man/cohortMethodResultSummaryServer.Rd delete mode 100644 man/cohortMethodResultSummaryViewer.Rd delete mode 100644 man/cohortMethodServer.Rd delete mode 100644 man/cohortMethodViewer.Rd create mode 100644 man/estimationHelperFile.Rd create mode 100644 man/estimationServer.Rd create mode 100644 man/estimationViewer.Rd delete mode 100644 man/evidenceSynthesisHelperFile.Rd delete mode 100644 man/evidenceSynthesisServer.Rd delete mode 100644 man/evidenceSynthesisViewer.Rd create mode 100644 man/getExampleConnectionDetails.Rd create mode 100644 man/homeHelperFile.Rd rename man/{sccsServer.Rd => homeServer.Rd} (51%) create mode 100644 man/homeViewer.Rd create mode 100644 man/reportHelperFile.Rd create mode 100644 man/reportServer.Rd create mode 100644 man/reportViewer.Rd delete mode 100644 man/sccsHelperFile.Rd delete mode 100644 man/sccsView.Rd create mode 100644 tests/resources/cDatabase/databaseFile.sqlite delete mode 100644 tests/resources/characterizationDatabase/databaseFile.sqlite delete mode 100644 tests/resources/cmDatabase/databaseFile.sqlite delete mode 100644 tests/resources/esDatabase/databaseFile.sqlite create mode 100644 tests/resources/estDatabase/databaseFile.sqlite delete mode 100644 tests/resources/sccsDatabase/databaseFile.sqlite delete mode 100644 tests/testthat/test-characterization-aggregate-features.R create mode 100644 tests/testthat/test-characterization-caseSeries.R create mode 100644 tests/testthat/test-characterization-database.R create mode 100644 tests/testthat/test-characterization-riskFactors.R delete mode 100644 tests/testthat/test-cohort-method-DiagnosticsSummary.R delete mode 100644 tests/testthat/test-cohort-method-main.R rename tests/testthat/{test-cohort-method-attrition.R => test-estimation-cohort-method-attrition.R} (60%) rename tests/testthat/{test-cohort-method-CovariateBalance.R => test-estimation-cohort-method-covariateBalance.R} (89%) create mode 100644 tests/testthat/test-estimation-cohort-method-diagnostics.R rename tests/testthat/{test-cohort-method-full-result.R => test-estimation-cohort-method-full-result.R} (50%) rename tests/testthat/{test-cohort-method-KaplanMeier.R => test-estimation-cohort-method-kaplanMeier.R} (79%) create mode 100644 tests/testthat/test-estimation-cohort-method-plots.R rename tests/testthat/{test-cohort-method-PopulationCharacteristics.R => test-estimation-cohort-method-populationCharacteristics.R} (82%) rename tests/testthat/{test-cohort-method-Power.R => test-estimation-cohort-method-power.R} (80%) rename tests/testthat/{test-cohort-method-propensityModel.R => test-estimation-cohort-method-propensityModel.R} (86%) rename tests/testthat/{test-cohort-method-PropensityScoreDist.R => test-estimation-cohort-method-propensityScoreDist.R} (80%) create mode 100644 tests/testthat/test-estimation-cohort-method-results.R rename tests/testthat/{test-cohort-method-systematicError.R => test-estimation-cohort-method-systematicError.R} (91%) create mode 100644 tests/testthat/test-estimation-main.R create mode 100644 tests/testthat/test-estimation-sccs-diagnostics.R create mode 100644 tests/testthat/test-estimation-sccs-plots.R create mode 100644 tests/testthat/test-estimation-sccs-results-full.R create mode 100644 tests/testthat/test-estimation-sccs-results.R delete mode 100644 tests/testthat/test-evidence-synth-cm.R delete mode 100644 tests/testthat/test-evidence-synth-main.R delete mode 100644 tests/testthat/test-evidence-synth-sccs.R create mode 100644 tests/testthat/test-home.R create mode 100644 tests/testthat/test-report-main.R delete mode 100644 tests/testthat/test-sccs-main.R delete mode 100644 tests/testthat/test-sccs-results-full.R delete mode 100644 tests/testthat/test-sccs-results.R create mode 100644 vignettes/Characterization.Rmd create mode 100644 vignettes/CohortDiagnostics.Rmd create mode 100644 vignettes/CohortMethod.Rmd create mode 100644 vignettes/Cohorts.Rmd create mode 100644 vignettes/DataSources.Rmd create mode 100644 vignettes/EvidenceSynthesis.Rmd create mode 100644 vignettes/Prediction.Rmd create mode 100644 vignettes/SelfControlledCaseSeries.Rmd diff --git a/DESCRIPTION b/DESCRIPTION index 37cb355f..16e43631 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,8 +1,11 @@ Package: OhdsiShinyModules Type: Package Title: Repository of Shiny Modules for OHDSI Result Viewers -Version: 2.1.5 -Author: Jenna Reps +Version: 3.0.0 +Authors@R: c( + person("Jenna", "Reps", email = "jreps@its.jnj.com", role = c("aut", "cre")), + person("Nathan", "Hall", role = c("aut")), + person("Jamie", "Gibert", role = c("aut"))) Maintainer: Jenna Reps Description: Install this package to access useful shiny modules for building shiny apps to explore results using the OHDSI tools . License: Apache License 2.0 @@ -24,11 +27,13 @@ Imports: htmltools, lubridate, methods, + openxlsx, ParallelLogger, plotly, purrr, reactable, readr, + ReportGenerator, RJSONIO, rlang, rmarkdown, @@ -36,6 +41,7 @@ Imports: shiny, shinycssloaders, shinydashboard, + shinyglide, shinyWidgets, SqlRender, stringi, @@ -54,5 +60,6 @@ Suggests: testthat, withr Remotes: + ohdsi/ReportGenerator, ohdsi/ResultModelManager RoxygenNote: 7.3.1 diff --git a/NAMESPACE b/NAMESPACE index 7702d5cd..97074e8f 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -4,18 +4,10 @@ export(LargeDataTable) export(aboutHelperFile) export(aboutServer) export(aboutViewer) -export(characterizationAggregateFeaturesServer) -export(characterizationAggregateFeaturesViewer) -export(characterizationDechallengeRechallengeServer) -export(characterizationDechallengeRechallengeViewer) export(characterizationHelperFile) export(characterizationIncidenceServer) export(characterizationIncidenceViewer) export(characterizationServer) -export(characterizationTableServer) -export(characterizationTableViewer) -export(characterizationTimeToEventServer) -export(characterizationTimeToEventViewer) export(characterizationViewer) export(cohortCountsView) export(cohortDefinitionsView) @@ -30,9 +22,6 @@ export(cohortMethodAttritionServer) export(cohortMethodAttritionViewer) export(cohortMethodCovariateBalanceServer) export(cohortMethodCovariateBalanceViewer) -export(cohortMethodDiagnosticsSummaryServer) -export(cohortMethodDiagnosticsSummaryViewer) -export(cohortMethodHelperFile) export(cohortMethodKaplanMeierServer) export(cohortMethodKaplanMeierViewer) export(cohortMethodPopulationCharacteristicsServer) @@ -43,12 +32,8 @@ export(cohortMethodPropensityModelServer) export(cohortMethodPropensityModelViewer) export(cohortMethodPropensityScoreDistServer) export(cohortMethodPropensityScoreDistViewer) -export(cohortMethodResultSummaryServer) -export(cohortMethodResultSummaryViewer) -export(cohortMethodServer) export(cohortMethodSystematicErrorServer) export(cohortMethodSystematicErrorViewer) -export(cohortMethodViewer) export(cohortOverlapView) export(compareCohortCharacterizationView) export(conceptsInDataSourceView) @@ -65,11 +50,15 @@ export(databaseInformationView) export(datasourcesHelperFile) export(datasourcesServer) export(datasourcesViewer) -export(evidenceSynthesisHelperFile) -export(evidenceSynthesisServer) -export(evidenceSynthesisViewer) +export(estimationHelperFile) +export(estimationServer) +export(estimationViewer) export(getEnabledCdReports) +export(getExampleConnectionDetails) export(getLogoImage) +export(homeHelperFile) +export(homeServer) +export(homeViewer) export(incidenceRatesView) export(inclusionRulesView) export(indexEventBreakdownView) @@ -103,9 +92,9 @@ export(patientLevelPredictionViewer) export(phevaluatorHelperFile) export(phevaluatorServer) export(phevaluatorViewer) -export(sccsHelperFile) -export(sccsServer) -export(sccsView) +export(reportHelperFile) +export(reportServer) +export(reportViewer) export(timeDistributionsView) export(visitContextView) importFrom(dplyr,"%>%") diff --git a/NEWS.md b/NEWS.md index a0b6fc9a..f880d780 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,6 +1,19 @@ +OhdsiShinyModules v2.2.1 +======================== +- Fixed issue in DatabaseConnector check for pooled connections of sqlite databases on cohort diagnotiscs load (from main hotfix) + +OhdsiShinyModules v2.2.0 +======================== +- Combined cohort method, sccs and evidence synthesis into one estimation module with shared target and outcome ids +- Characterizations now share the target id +- Updated tests to get them all working +- Cleaned R check (but cohort incidence still has many notes) + + OhdsiShinyModules v2.1.5 ======================== -Fixed issue in DatabaseConnector check for pooled connections of sqlite databases on cohort diagnotiscs load +Fixed bug of orphan concepts report not displaying +Fixed bug in orphan concepts where negative database ids were causing dynamic sql queries to crash OhdsiShinyModules v2.1.4 ======================== diff --git a/R/OhdsiShinyModules.R b/R/OhdsiShinyModules.R index 77722f5a..4aaeef44 100644 --- a/R/OhdsiShinyModules.R +++ b/R/OhdsiShinyModules.R @@ -19,7 +19,9 @@ #' OhdsiShinyModules #' #' @description A selection of shiny modules for exploring standardized OHDSI results +#' #' @name OhdsiShinyModules +#' @keywords internal #' @importFrom dplyr %>% #' @importFrom rlang .data -"_PACKAGE" +"_PACKAGE" \ No newline at end of file diff --git a/R/about-main.R b/R/about-main.R index d3019a49..f5225ad7 100644 --- a/R/about-main.R +++ b/R/about-main.R @@ -21,13 +21,14 @@ #' #' @details #' Returns the location of the about helper file -#' +#' @family {About} #' @return #' string location of the about helper file #' #' @export -aboutHelperFile <- function(){ - fileLoc <- system.file('about-www', "about.html", package = "OhdsiShinyModules") +aboutHelperFile <- function() { + fileLoc <- + system.file('about-www', "about.html", package = "OhdsiShinyModules") return(fileLoc) } @@ -37,36 +38,59 @@ aboutHelperFile <- function(){ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {About} #' @return #' The user interface to the home page module #' #' @export -aboutViewer <- function( - id = 'homepage' - ) { +aboutViewer <- function(id = 'homepage') { ns <- shiny::NS(id) - shinydashboard::box( - status = 'info', width = 12, - title = shiny::span( shiny::icon("info"), "About OHDSI Viewer"), - solidHeader = TRUE, - - shiny::fluidPage( - shiny::fluidRow( - shiny::includeMarkdown( - path = system.file( - 'about-document', - "introduction.md", - package = "OhdsiShinyModules" - ) - ) - ) + #shinydashboard::dashboardBody( + shiny::div( + shiny::fluidRow( + shiny::tags$head(shiny::tags$style( + shiny::HTML(".small-box {height: 200px; width: 100%;}") + )), + shinydashboard::box(width = "100%", + shiny::htmlTemplate( + system.file("about-www", "about.html", package = utils::packageName()) + )) + # ) + ), + shiny::fluidRow( + shinydashboard::valueBoxOutput(ns("datasourcesBox"), width = 3), + shinydashboard::valueBoxOutput(ns("cohortsBox"), width = 3), + shinydashboard::valueBoxOutput(ns("characterizationBox"), width = 3), + shinydashboard::valueBoxOutput(ns("cohortDiagnosticsBox"), width = 3) + ), + shiny::fluidRow( + shinydashboard::valueBoxOutput(ns("cohortMethodBox"), width = 3), + shinydashboard::valueBoxOutput(ns("predictionBox"), width = 3), + shinydashboard::valueBoxOutput(ns("sccsBox"), width = 3), + shinydashboard::valueBoxOutput(ns("evidenceSynthesisBox"), width = 3) ) - ) } +targetedValueBox <- function( + value, + subtitle, + icon, + color, + href, + target = "_new" + ) { + valueBox <- shinydashboard::valueBox( + value = value, + subtitle = subtitle, + icon = icon, + color = color, + href = href + ) + shiny::tagAppendAttributes(valueBox,.cssSelector="a", target=target) +} + #' The module server for the shiny app home #' #' @details @@ -75,21 +99,196 @@ aboutViewer <- function( #' @param id the unique reference id for the module #' @param connectionHandler a connection to the database with the results #' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' +#' @param config the config from the app.R file that contains a list of which modules to include +#' @family {About} #' @return #' The server for the shiny app home #' #' @export -aboutServer <- function( - id = 'homepage', - connectionHandler = NULL, - resultDatabaseSettings = NULL - ) { - shiny::moduleServer( - id, - function(input, output, session) { - - - } - ) +aboutServer <- function(id = 'homepage', + connectionHandler = NULL, + resultDatabaseSettings = NULL, + config) { + shiny::moduleServer(id, + function(input, output, session) { + tab_names <- character() + # Loop through shinyModules and extract tabName values + for (i in seq_along(config[["shinyModules"]])) { + tab_name <- config[["shinyModules"]][[i]][["tabName"]] + tab_names <- c(tab_names, tab_name) + } + # View the extracted tabName values + # print(tab_names) + + output$datasourcesBox <- + shinydashboard::renderValueBox({ + if ("DataSources" %in% tab_names) { + targetedValueBox( + value = "Data Sources", + subtitle = "Data sources used in this analysis", + icon = shiny::icon("database"), + color = "aqua", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/DataSources.html" + ) + } else { + targetedValueBox( + value = "Data Sources", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("database"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/DataSources.html" + ) + } + }) + + output$cohortsBox <- + shinydashboard::renderValueBox({ + if ("Cohorts" %in% tab_names) { + targetedValueBox( + value = "Cohorts", + subtitle = "Cohorts included in this analysis", + icon = shiny::icon("user-gear"), + color = "purple", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/Cohorts.html" + ) + } else { + targetedValueBox( + value = "Cohorts", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("user-gear"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/Cohorts.html" + ) + } + }) + + output$characterizationBox <- + shinydashboard::renderValueBox({ + if ("Characterization" %in% tab_names) { + targetedValueBox( + value = "Characterization", + subtitle = "Characterization results for this analysis", + icon = shiny::icon("table"), + color = "teal", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/Characterization.html" + ) + } else { + targetedValueBox( + value = "Characterization", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("table"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/Characterization.html" + ) + } + }) + + output$cohortDiagnosticsBox <- + shinydashboard::renderValueBox({ + if ("CohortDiagnostics" %in% tab_names) { + targetedValueBox( + value = "Cohort Diagnostics", + subtitle = "Cohort Diagnostics results for the cohorts included in this analysis", + icon = shiny::icon("users"), + color = "yellow", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/CohortDiagnostics.html" + ) + } else { + targetedValueBox( + value = "Cohort Diagnostics", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("users"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/CohortDiagnostics.html" + ) + } + }) + + + output$cohortMethodBox <- + shinydashboard::renderValueBox({ + if ("CohortMethod" %in% tab_names) { + targetedValueBox( + value = "Cohort Method", + subtitle = "Cohort Method results for this analysis", + icon = shiny::icon("chart-column"), + color = "maroon", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/CohortMethod.html" + ) + } else { + targetedValueBox( + value = "Cohort Method", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("chart-column"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/CohortMethod.html" + ) + } + }) + + output$predictionBox <- + shinydashboard::renderValueBox({ + if ("Prediction" %in% tab_names) { + targetedValueBox( + value = "Prediction", + subtitle = "Patient-level Prediction results for this analysis", + icon = shiny::icon("chart-line"), + color = "blue", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/Prediction.html" + ) + } else { + targetedValueBox( + value = "Prediction", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("chart-line"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/Prediction.html" + ) + } + }) + + output$sccsBox <- + shinydashboard::renderValueBox({ + if ("SCCS" %in% tab_names) { + targetedValueBox( + value = "SCCS", + subtitle = "Self-Controlled Case Series results for this analysis", + icon = shiny::icon("people-arrows"), + color = "red", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/SelfControlledCaseSeries.html" + ) + } else { + targetedValueBox( + value = "SCCS", + subtitle = "This module was not included in this analysis", + icon = shiny::icon("people-arrows"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/SelfControlledCaseSeries.html" + ) + } + }) + + output$evidenceSynthesisBox <- + shinydashboard::renderValueBox({ + if ("Meta" %in% tab_names) { + targetedValueBox( + value = "Meta", + subtitle = "Meta Analysis results for this analysis", + icon = shiny::icon("sliders"), + color = "olive", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/EvidenceSynthesis.html" + ) + } else { + targetedValueBox( + value = "Meta", + subtitle = + "This module was not included in this analysis", + icon = shiny::icon("sliders"), + color = "black", + href = "https://ohdsi.github.io/OhdsiShinyModules/articles/EvidenceSynthesis.html" + ) + } + }) + + }) } diff --git a/R/characterization-aggregateFeatures.R b/R/characterization-aggregateFeatures.R deleted file mode 100644 index 0f64b826..00000000 --- a/R/characterization-aggregateFeatures.R +++ /dev/null @@ -1,870 +0,0 @@ -# @file characterization-aggregateFeatures.R -# -# Copyright 2024 Observational Health Data Sciences and Informatics -# -# This file is part of OhdsiShinyModules -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -#' The module viewer for exploring aggregate feature results -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the description aggregate feature module -#' -#' @export -characterizationAggregateFeaturesViewer <- function(id) { - ns <- shiny::NS(id) - - shiny::div( - - infoHelperViewer( - id = "helper", - helpLocation= system.file("characterization-www", "help-OutcomeStratified.html", package = utils::packageName()) - ), - - - # module that does input selection for a single row DF - inputSelectionViewer( - id = ns("input-selection") - ), - - # COV: RUN_ID DATABASE_ID COHORT_DEFINITION_ID COVARIATE_ID SUM_VALUE AVERAGE_VALUE - # COV REF: RUN_ID DATABASE_ID COVARIATE_ID COVARIATE_NAME ANALYSIS_ID CONCEPT_ID - # settings: RUN_ID DATABASE_ID COVARIATE_SETTING_JSON RISK_WINDOW_START START_ANCHOR RISK_WINDOW_END END_ANCHOR - # cohort_details: RUN_ID DATABASE_ID COHORT_DEFINITION_ID TARGET_COHORT_ID OUTCOME_COHORT_ID COHORT_TYPE - # analysis_ref: RUN_ID DATABASE_ID ANALYSIS_ID ANALYSIS_NAME DOMAIN_ID START_DAY END_DAY IS_BINARY MISSING_MEANS_ZERO - # cov cont: RUN_ID DATABASE_ID COHORT_DEFINITION_ID COVARIATE_ID COUNT_VALUE MIN_VALUE MAX_VALUE AVERAGE_VALUE STANDARD_DEVIATION MEDIAN_VALUE P_10_VALUE P_25_VALUE P_75_VALUE P_90_VALUE - # add table with options to select T, O and TAR - - # add UI to pick database/type 1 and database/type 2 - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection")), - - shinydashboard::tabBox( - width = "100%", - # Title can include an icon - title = shiny::tagList(shiny::icon("gear"), "Table and Plots"), - shiny::tabPanel("Binary Feature Table", - resultTableViewer(ns('binaryTable')) - ), - shiny::tabPanel("Continuous Feature Table", - resultTableViewer(ns('continuousTable')) - ), - shiny::tabPanel("Binary Feature Plot", - shinycssloaders::withSpinner( - plotly::plotlyOutput(ns("binaryPlot")) - ) - ), - shiny::tabPanel("Continuous Feature Plot", - shinycssloaders::withSpinner( - plotly::plotlyOutput(ns("continuousPlot")) - ) - ) - ) - ) - ) -} - - -#' The module server for exploring aggregate features results -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler the connection to the prediction result database -#' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' -#' @return -#' The server to the description aggregate features module -#' -#' @export -characterizationAggregateFeaturesServer <- function( - id, - connectionHandler, - resultDatabaseSettings -) { - shiny::moduleServer( - id, - function(input, output, session) { - - # get the possible options - options <- getAggregateFeatureOptions( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - # get databases - databases <- getAggregateFeatureDatabases( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - # input selection component - inputSelected <- inputSelectionServer( - id = "input-selection", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 4, - varName = 'targetIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Target: ', - choices = options$targets, - selected = options$targets[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - createInputSetting( - rowNumber = 1, - columnWidth = 4, - varName = 'outcomeIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Outcome: ', - choices = options$outcomes, - selected = options$outcomes[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) - , - createInputSetting( - rowNumber = 1, - columnWidth = 4, - varName = 'tarIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Time at risk: ', - choices = options$tars, - selected = options$tars[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) - , - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'database', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Database: ', - choices = databases, - selected = databases[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) - , - createInputSetting( - rowNumber = 2, - columnWidth = 3, - varName = 'firstO', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Restrict to first O: ', - choices = c(T,F), - selected = T, - multiple = F - ) - ) - , - createInputSetting( - rowNumber = 2, - columnWidth = 3, - varName = 'index', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Index: ', - choices = c('T', 'O'), - selected = 'T', - multiple = F - ) - ) - ) - ) - - allData <- shiny::reactive({ - characterizationGetAggregateData( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - targetId = inputSelected()$targetIds, - outcomeId = inputSelected()$outcomeIds, - riskWindowStart = options$tarList[[which(options$tars == ifelse(is.null(inputSelected()$tarIds),options$tars[1],inputSelected()$tarIds))]]$riskWindowStart, - riskWindowEnd = options$tarList[[which(options$tars == ifelse(is.null(inputSelected()$tarIds),options$tars[1],inputSelected()$tarIds))]]$riskWindowEnd, - startAnchor = options$tarList[[which(options$tars == ifelse(is.null(inputSelected()$tarIds),options$tars[1],inputSelected()$tarIds))]]$startAnchor, - endAnchor = options$tarList[[which(options$tars == ifelse(is.null(inputSelected()$tarIds),options$tars[1],inputSelected()$tarIds))]]$endAnchor, - database = inputSelected()$database, - firstO = inputSelected()$firstO, - index = inputSelected()$index - ) - }) - - output$binaryPlot <- plotly::renderPlotly( - characterizationFeaturePlot( - data = allData()$binary, - valueColumn = 'averageValue' - ) - ) - output$continuousPlot <- plotly::renderPlotly( - characterizationFeaturePlot( - data = allData()$continuous, - valueColumn = 'averageValue' - ) - ) - - binaryData <- shiny::reactive({ - characterizationFeatureTable( - data = allData()$binary - ) - }) - - continuousData <- shiny::reactive({ - characterizationFeatureTable( - data = allData()$continuous - ) - }) - - binTableOutputs <- resultTableServer( - id = "binaryTable", - df = binaryData, - colDefsInput = list( - covariateName = reactable::colDef( - name = "Covariate Name", - filterable = T - ), - comp1T = reactable::colDef( - name = "T without O mean", - format = reactable::colFormat(digits = 2, percent = T) - ), - comp1sdT = reactable::colDef( - name = "T without O stdev", - format = reactable::colFormat(digits = 2) - ), - comp2T = reactable::colDef( - name = "T with O mean", - format = reactable::colFormat(digits = 2, percent = T) - ), - comp2sdT = reactable::colDef( - name = "T with O stdev", - format = reactable::colFormat(digits = 2) - ), - comp1O = reactable::colDef( - name = "O without T mean", - format = reactable::colFormat(digits = 2, percent = T) - ), - comp1sdO = reactable::colDef( - name = "O without T stdev", - format = reactable::colFormat(digits = 2) - ), - comp2O = reactable::colDef( - name = "O with T mean", - format = reactable::colFormat(digits = 2, percent = T) - ), - comp2sdO = reactable::colDef( - name = "O with T stdev", - format = reactable::colFormat(digits = 2) - ), - analysisName = reactable::colDef( # not sure this will work now - filterInput = function(values, name) { - shiny::tags$select( - # Set to undefined to clear the filter - onchange = sprintf("Reactable.setFilter('desc-bin-select', '%s', event.target.value || undefined)", name), - # "All" has an empty value to clear the filter, and is the default option - shiny::tags$option(value = "", "All"), - lapply(unique(values), shiny::tags$option), - "aria-label" = sprintf("Filter %s", name), - style = "width: 100%; height: 28px;" - ) - } - ), - standardizedMeanDiff = reactable::colDef( - format = reactable::colFormat(digits = 2) - ) - ), - addActions = NULL - ) - - conTableOutputs <- resultTableServer( - id = "continuousTable", - df = continuousData, - colDefsInput = list( - covariateName = reactable::colDef( - name = "Covariate Name", - filterable = T - ), - comp1T = reactable::colDef( - name = "T without O mean", - format = reactable::colFormat(digits = 2) - ), - comp1sdT = reactable::colDef( - name = "T without O stdev", - format = reactable::colFormat(digits = 2) - ), - comp2T = reactable::colDef( - name = "T with O mean", - format = reactable::colFormat(digits = 2) - ), - comp2sdT = reactable::colDef( - name = "T with O stdev", - format = reactable::colFormat(digits = 2) - ), - comp1O = reactable::colDef( - name = "O without T mean", - format = reactable::colFormat(digits = 2) - ), - comp1sdO = reactable::colDef( - name = "O without T stdev", - format = reactable::colFormat(digits = 2) - ), - comp2O = reactable::colDef( - name = "O with T mean", - format = reactable::colFormat(digits = 2) - ), - comp2sdO = reactable::colDef( - name = "O with T stdev", - format = reactable::colFormat(digits = 2) - ), - analysisName = reactable::colDef( - filterInput = function(values, name) { - shiny::tags$select( - # Set to undefined to clear the filter - onchange = sprintf("Reactable.setFilter('desc-cont-select', '%s', event.target.value || undefined)", name), - # "All" has an empty value to clear the filter, and is the default option - shiny::tags$option(value = "", "All"), - lapply(unique(values), shiny::tags$option), - "aria-label" = sprintf("Filter %s", name), - style = "width: 100%; height: 28px;" - ) - } - ), - standardizedMeanDiff = reactable::colDef( - format = reactable::colFormat(digits = 2) - ) - ), - addActions = NULL - ) - - #elementId = "desc-cont-select" - - - - return(invisible(NULL)) - } - ) -} - - -getAggregateFeatureOptions <- function( - connectionHandler, - resultDatabaseSettings -){ - - - shiny::withProgress(message = 'Getting feature comparison options', value = 0, { - - sql <- "SELECT DISTINCT t.COHORT_NAME as TARGET, cd.TARGET_COHORT_ID, - o.COHORT_NAME as outcome, cd.OUTCOME_COHORT_ID, - s.RISK_WINDOW_START, s.START_ANCHOR, s.RISK_WINDOW_END, s.END_ANCHOR - FROM @schema.@c_table_prefixCOHORT_DETAILS cd - inner join @schema.@c_table_prefixSETTINGS s - on cd.run_id = s.run_id and cd.database_id = s.database_id - inner join @schema.@cg_table_prefixCOHORT_DEFINITION t - on cd.TARGET_COHORT_ID = t.COHORT_DEFINITION_ID - inner join @schema.@cg_table_prefixCOHORT_DEFINITION o - on cd.OUTCOME_COHORT_ID = o.COHORT_DEFINITION_ID - WHERE cd.TARGET_COHORT_ID != 0 AND cd.OUTCOME_COHORT_ID != 0;" - - shiny::incProgress(1/2, detail = paste("Extracting options")) - - options <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix - ) - - shiny::incProgress(2/2, detail = paste("Finished")) - - }) - - targets <- unique(options$targetCohortId) - names(targets) <- unique(options$target) - - outcomes <- unique(options$outcomeCohortId) - names(outcomes) <- unique(options$outcome) - - options <- unique( - options %>% - dplyr::select( - "riskWindowStart", - "riskWindowEnd", - "startAnchor", - "endAnchor" - ) - ) - - tarList <- lapply( - 1:nrow(options), - function(i){ - list( - riskWindowStart = options$riskWindowStart[i], - riskWindowEnd = options$riskWindowEnd[i], - startAnchor = options$startAnchor[i], - endAnchor = options$endAnchor[i] - ) - }) - - tars <- unlist( - lapply( - 1:nrow(options), - function(i){ - paste0( - '(',options$startAnchor[i],' + ', options$riskWindowStart[i], - ') - (', options$endAnchor[i],' + ', options$riskWindowEnd[i], - ')' - ) - }) - ) - - return( - list( - targets = targets, - outcomes = outcomes, - tars = tars, - tarList = tarList - ) - ) -} - -getAggregateFeatureDatabases <- function( - connectionHandler, - resultDatabaseSettings -){ - - shiny::withProgress(message = 'Finding databases', value = 0, { - sql <- "SELECT DISTINCT s.DATABASE_ID, d.CDM_SOURCE_ABBREVIATION as database_name - FROM @schema.@c_table_prefixCOHORT_DETAILS cd - inner join @schema.@database_table d - on cd.database_id = d.database_id - inner join @schema.@c_table_prefixSETTINGS s - on s.database_id = d.database_id - and s.run_id = cd.run_id;" - - shiny::incProgress(1/2, detail = paste("Extracting databases")) - - - databases <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - database_table = resultDatabaseSettings$databaseTable - ) - - shiny::incProgress(2/2, detail = paste("Finished")) - - } - ) - - dbs <- databases$databaseId - names(dbs) <- databases$databaseName - - return(dbs) -} - -# pulls all data for a target and outcome -# edited to only use Ts and TnOs -characterizationGetAggregateData <- function( - connectionHandler, - resultDatabaseSettings, - targetId, - outcomeId, - riskWindowStart, - riskWindowEnd, - startAnchor, - endAnchor, - database, - firstO, - index -){ - - if(is.null(targetId)){ - return(NULL) - } - - #get types based on index and first - outcomeType <- ifelse(firstO, 'firstO', 'O') - firstPart <- ifelse(index == 'T', 'T', outcomeType) - secondPart <- ifelse(index == 'T',outcomeType, 'T') - - type1 <- firstPart - type2 <- paste0(firstPart, 'n', secondPart) - - # if type is TnOc TnfirstOc the extract T minus TnO / TnOfirst - - shiny::withProgress(message = 'Getting Feature Comparison Data', value = 0, { - sql <- "SELECT s.RUN_ID, cd.COHORT_DEFINITION_ID - FROM @schema.@c_table_prefixSETTINGS s - inner join - @schema.@c_table_prefixCOHORT_DETAILS cd - on cd.database_id = s.database_id and - cd.run_id = s.run_id - WHERE cd.TARGET_COHORT_ID = @target_id and cd.OUTCOME_COHORT_ID = @outcome_id - and s.RISK_WINDOW_START = @risk_window_start and s.START_ANCHOR = '@start_anchor' - and s.RISK_WINDOW_END = @risk_window_end and s.END_ANCHOR = '@end_anchor' - and s.DATABASE_ID = '@database_id' and cd.COHORT_TYPE = '@type';" - - settingsFirst <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - target_id = ifelse(type1 %in% c('firstO','O'), 0, targetId), - outcome_id = ifelse(type1 %in% c('T', 'allT'), 0, outcomeId), - risk_window_start = riskWindowStart, - start_anchor = startAnchor, - risk_window_end = riskWindowEnd, - end_anchor = endAnchor, - database_id = database, - type = type1 - ) - - shiny::incProgress(1/5, detail = paste("Got first runId and cohortId")) - - - sql <- "SELECT s.RUN_ID, cd.COHORT_DEFINITION_ID - FROM @schema.@c_table_prefixSETTINGS s - inner join - @schema.@c_table_prefixCOHORT_DETAILS cd - on cd.database_id = s.database_id and - cd.run_id = s.run_id - WHERE cd.TARGET_COHORT_ID = @target_id and cd.OUTCOME_COHORT_ID = @outcome_id - and s.RISK_WINDOW_START = @risk_window_start and s.START_ANCHOR = '@start_anchor' - and s.RISK_WINDOW_END = @risk_window_end and s.END_ANCHOR = '@end_anchor' - and s.DATABASE_ID = '@database_id' and cd.COHORT_TYPE = '@type';" - - settingsSecond <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - target_id = ifelse(type2 %in% c('firstO','O'), 0, targetId), - outcome_id = ifelse(type2 %in% c('T', 'allT'), 0, outcomeId), - risk_window_start = riskWindowStart, - start_anchor = startAnchor, - risk_window_end = riskWindowEnd, - end_anchor = endAnchor, - database_id = database, - type = type2 - ) - - if(nrow(settingsSecond) == 0){ - print('no second setting') - settingsSecond <- settingsFirst - } - - shiny::incProgress(2/5, detail = paste("Got second runId and CohortId")) - - sql <- "SELECT - case when t.covariate_id is NULL then tno.covariate_id else t.covariate_id end covariate_id, - t.sum_value - tno.sum_value as comp1_count, - tno.sum_value as comp2_count, - case when (t.sum_value - tno.sum_value)*1.0/(cc.row_count - cctno.row_count) is NULL then 0 else (t.sum_value - tno.sum_value)*1.0/(cc.row_count - cctno.row_count) end as comp1_@index, - case when tno.average_value is NULL then 0 else tno.average_value end as comp2_@index, - sqrt( (t.sum_value - tno.sum_value)*1.0/(cc.row_count - cctno.row_count) * (1-( (t.sum_value - tno.sum_value)*1.0/(cc.row_count - cctno.row_count) )) ) as comp1sd_@index, - sqrt( (tno.average_value)*(1-(tno.average_value))) as comp2sd_@index, - cov_ref.COVARIATE_NAME, - an_ref.ANALYSIS_NAME - - FROM - - (select * FROM @schema.@c_table_prefixCOVARIATES - where - DATABASE_ID = '@database_id' and - COHORT_DEFINITION_ID = @cohort_def_1 and - RUN_ID in (@run_id_1) - ) t - full join - (select * FROM @schema.@c_table_prefixCOVARIATES - where - DATABASE_ID = '@database_id' and - COHORT_DEFINITION_ID = @cohort_def_2 and - RUN_ID in (@run_id_2) - ) tno - - on - t.covariate_id = tno.covariate_id - and t.run_id = tno.run_id - - INNER JOIN - @schema.@c_table_prefixCOHORT_COUNTS cc - on cc.cohort_definition_id = t.cohort_definition_id - and cc.run_id = t.run_id - and cc.database_id = t.database_id - - INNER JOIN - @schema.@c_table_prefixCOHORT_COUNTS cctno - on cctno.cohort_definition_id = tno.cohort_definition_id - and cctno.run_id = tno.run_id - and cctno.database_id = tno.database_id - - INNER JOIN - @schema.@c_table_prefixCOVARIATE_REF cov_ref - ON cov_ref.covariate_id = t.covariate_id - and cov_ref.run_id = case when t.run_id is NULL then tno.run_id else t.run_id end - and cov_ref.database_id = t.database_id - - INNER JOIN - @schema.@c_table_prefixANALYSIS_REF an_ref - ON an_ref.analysis_id = cov_ref.analysis_id - and an_ref.run_id = cov_ref.run_id - and an_ref.database_id = cov_ref.database_id - - ;" - - shiny::incProgress(3/5, detail = paste("Getting binary data")) - - binary <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - cohort_def_1 = settingsFirst$cohortDefinitionId[1], - cohort_def_2 = settingsSecond$cohortDefinitionId[1], - database_id = database, - run_id_1 = paste(settingsFirst$runId, collapse = ','), - run_id_2 = paste(settingsSecond$runId, collapse = ','), - index = index - ) - - shiny::incProgress(4/5, detail = paste("Getting continuous data")) - - sql <- "SELECT - case when t.covariate_id is NULL then tno.covariate_id else t.covariate_id end covariate_id, - t.count_value - tno.count_value as comp1_count, - tno.count_value as comp2_count, - case when (t.count_value*t.average_value - tno.count_value*tno.average_value)*1.0/(cc.row_count-tnocc.row_count) is NULL then 0 else (t.count_value*t.average_value - tno.count_value*tno.average_value)*1.0/(cc.row_count-tnocc.row_count) end as comp1_@index, - case when tno.average_value is NULL then 0 else tno.average_value end as comp2_@index, - sqrt( (square(t.standard_deviation)*cc.row_count - square(tno.standard_deviation)*tnocc.row_count)/ (cc.row_count - tnocc.row_count)) as comp1sd_@index, - tno.standard_deviation as comp2sd_@index, - cov_ref.COVARIATE_NAME, - an_ref.ANALYSIS_NAME - - FROM - - (select * FROM @schema.@c_table_prefixCOVARIATES_continuous - where - DATABASE_ID = '@database_id' and - COHORT_DEFINITION_ID = @cohort_def_1 and - RUN_ID in (@run_id_1) - ) t - full join - (select * FROM @schema.@c_table_prefixCOVARIATES_continuous - where - DATABASE_ID = '@database_id' and - COHORT_DEFINITION_ID = @cohort_def_2 and - RUN_ID in (@run_id_2) - ) tno - - on - t.covariate_id = tno.covariate_id - and t.run_id = tno.run_id - - INNER JOIN - @schema.@c_table_prefixCOHORT_COUNTS cc - on cc.cohort_definition_id = t.cohort_definition_id - and cc.run_id = t.run_id - and cc.database_id = t.database_id - - INNER JOIN - @schema.@c_table_prefixCOHORT_COUNTS tnocc - on tnocc.cohort_definition_id = tno.cohort_definition_id - and tnocc.run_id = tno.run_id - and tnocc.database_id = tno.database_id - - INNER JOIN - @schema.@c_table_prefixCOVARIATE_REF cov_ref - ON cov_ref.covariate_id = t.covariate_id - and cov_ref.run_id = case when t.run_id is NULL then tno.run_id else t.run_id end - and cov_ref.database_id = t.database_id - - INNER JOIN - @schema.@c_table_prefixANALYSIS_REF an_ref - ON an_ref.analysis_id = cov_ref.analysis_id - and an_ref.run_id = cov_ref.run_id - and an_ref.database_id = cov_ref.database_id - - ;" - - continuous <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - cohort_def_1 = settingsFirst$cohortDefinitionId[1], - cohort_def_2 = settingsSecond$cohortDefinitionId[1], - database_id = database, - run_id_1 = paste(settingsFirst$runId, collapse = ','), - run_id_2 = paste(settingsSecond$runId, collapse = ','), - index = index - ) - - shiny::incProgress(5/5, detail = paste("Finished")) - } - ) - - return(list( - binary = binary, - continuous = continuous - )) -} - -characterizationFeaturePlot <- function( - data, - valueColumn = 'averageValue' -){ - - if(is.null(data)){ - return(NULL) - } - - # selecting the column anmes that has _index appended to it - comp1Name <- paste0('comp1', c('O', 'T'))[paste0('comp1', c('O', 'T')) %in% colnames(data)] - comp2Name <- paste0('comp2', c('O', 'T'))[paste0('comp2', c('O', 'T')) %in% colnames(data)] - data$comp1 <- data[,comp1Name] - data$comp2 <- data[,comp2Name] - - maxval <- max(max(data$comp1),max(data$comp2)) - - plot <- plotly::plot_ly( - data = data, - x = ~.data$comp1, - y = ~.data$comp2, - showlegend = F - ) %>% - plotly::add_markers(color=factor(data$analysisName), - hoverinfo = 'text', - text = ~paste( - '\n',descGetType(data$covariateName), - '\n',descGetName(data$covariateName), - '\n',descGetTime(data$covariateName) - ), - showlegend = T - ) %>% - plotly::add_trace(x= c(0,maxval), y = c(0,maxval),mode = 'lines', - line = list(dash = "dash"), color = I('black'), - type='scatter', showlegend = FALSE) %>% - plotly::layout(#title = 'Prevalance of baseline predictors in persons with and without outcome', - xaxis = list(title = "Prevalance in selection 1"), - yaxis = list(title = "Prevalance in selection 2"), - #legend = l, showlegend = T, - legend = list(orientation = 'h', y = -0.3), showlegend = T) - - - return(plot) -} - -descGetType <- function(x){ - return(unlist(lapply(strsplit(x = x, split = ' during'), function(y){y[1]}))) -} - -descGetName <- function(x){ - return(unlist(lapply(strsplit(x = x, split = ': '), function(y){y[length(y)]}))) -} - -descGetTime <- function(x){ - part1 <- unlist(lapply(strsplit(x = x, split = ' during '), function(y){y[2]})) - return(unlist(lapply(strsplit(x = part1, split = ': '), function(y){y[1]}))) -} - - -characterizationFeatureTable <- function( - data -){ - - if(is.null(data)){ - return(NULL) - } - - # selecting the column that as _index appended to it - comp1Name <- paste0('comp1', c('O', 'T'))[paste0('comp1', c('O', 'T')) %in% colnames(data)] - comp2Name <- paste0('comp2', c('O', 'T'))[paste0('comp2', c('O', 'T')) %in% colnames(data)] - comp1sdName <- paste0('comp1sd', c('O', 'T'))[paste0('comp1sd', c('O', 'T')) %in% colnames(data)] - comp2sdName <- paste0('comp2sd', c('O', 'T'))[paste0('comp2sd', c('O', 'T')) %in% colnames(data)] - - if(sum(is.null(data[comp1sdName]))>0){ - data[comp1sdName][is.null(data[comp1sdName])] <- 0 - } - if(sum(is.null(data[comp2sdName]))>0){ - data[comp2sdName][is.null(data[comp2sdName])] <- 0 - } - - data <- data %>% - dplyr::mutate( - standardizedMeanDiff = (.data[[comp1Name]] - .data[[comp2Name]])/(sqrt((.data[[comp1sdName]]^2 + .data[[comp2sdName]]^2))) - ) %>% - dplyr::select( - "covariateName", - "analysisName", - comp1Name, - comp1sdName, - comp2Name, - comp2sdName, - "standardizedMeanDiff" - ) - - if(sum(is.null(data$standardizedMeanDiff))>0){ - data$standardizedMeanDiff[is.null(data$standardizedMeanDiff)] <- 0 - } - - if(sum(!is.finite(data$standardizedMeanDiff))>0){ - data$standardizedMeanDiff[!is.finite(data$standardizedMeanDiff)] <- 0 - } - - return(data) -} diff --git a/R/characterization-caseSeries.R b/R/characterization-caseSeries.R new file mode 100644 index 00000000..9a3ef0f4 --- /dev/null +++ b/R/characterization-caseSeries.R @@ -0,0 +1,743 @@ +# @file characterization-aggregateFeatures.R +# +# Copyright 2024 Observational Health Data Sciences and Informatics +# +# This file is part of OhdsiShinyModules +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + + +characterizationCaseSeriesViewer <- function(id) { + ns <- shiny::NS(id) + + shiny::div( + + # module that does input selection for a single row DF + shiny::uiOutput(ns("inputs")), + + shiny::conditionalPanel( + condition = 'input.generate != 0', + ns = ns, + + inputSelectionDfViewer(id = ns('inputSelected'), title = 'Selected'), + + shinydashboard::tabBox( + width = "100%", + # Title can include an icon + title = shiny::tagList(shiny::icon("gear"), "Case Series"), + shiny::tabPanel("Binary Feature Table", + resultTableViewer(ns('binaryTable')) + ), + shiny::tabPanel("Continuous Feature Table", + resultTableViewer(ns('continuousTable')) + ) + ) + ) + ) + +} + + + +characterizationCaseSeriesServer <- function( + id, + connectionHandler, + resultDatabaseSettings, + targetId, #reactive + outcomeId #reactive +) { + shiny::moduleServer( + id, + function(input, output, session) { + + # get databases + options <- shiny::reactive({ + characterizationGetCaseSeriesOptions( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId() + ) + }) + + output$inputs <- shiny::renderUI({ # need to make reactive? + + shiny::div( + shiny::selectInput( + inputId = session$ns('databaseId'), + label = 'Database: ', + choices = options()$databaseIds, + selected = options()$databaseIds[1], + multiple = F + ), + + shiny::selectInput( + inputId = session$ns('tarInd'), + label = 'Time-at-risk: ', + choices = options()$tarInds, + selected = options()$tarInds[1], + multiple = F + ), + + shiny::actionButton( + inputId = session$ns('generate'), + label = 'Generate' + ) + ) + + }) + + # save the selections + selected <- shiny::reactiveVal(NULL) + + shiny::observeEvent(input$generate, { + + selected(data.frame( + database = names(options()$databaseIds)[which(input$databaseId == options()$databaseIds)], + time_at_risk = names(options()$tarInds)[which(input$tarInd == options()$tarInds)] + )) + + inputSelectionDfServer( + id = 'inputSelected', + dataFrameRow = selected, + ncol = 1 + ) + + allData <- characterizationGetCaseSeriesData( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId(), + databaseId = input$databaseId, + tar = options()$tarList[[which(options()$tarInds == input$tarInd)]] + ) + + binTableOutputs <- resultTableServer( + id = "binaryTable", + df = allData$binary, + details = data.frame( + database = names(options()$databaseIds)[which(input$databaseId == options()$databaseIds)], + tar = names(options()$tarInds)[which(input$tarInd == options()$tarInds)], + target = options()$targetName, + outcome = options()$outcomeName, + description = "Case series binary features before target index, during exposure and after outcome index" + ), + downloadedFileName = 'case_series_binary', + colDefsInput = colDefsBinary( + elementId = session$ns('binary-table-filter') + ), # function below + addActions = NULL, + elementId = session$ns('binary-table-filter') + ) + + conTableOutputs <- resultTableServer( + id = "continuousTable", + df = allData$continuous, + details = data.frame( + database = names(options()$databaseIds)[which(input$databaseId == options()$databaseIds)], + tar = names(options()$tarInds)[which(input$tarInd == options()$tarInds)], + target = options()$targetName, + outcome = options()$outcomeName, + description = "Case series continuous features before target index, during exposure and after outcome index" + ), + downloadedFileName = 'case_series_continuous', + colDefsInput = colDefsContinuous( + elementId = session$ns('continuous-table-filter') + ), # function below + addActions = NULL, + elementId = session$ns('continuous-table-filter') + ) + + }) + + return(invisible(NULL)) + } + ) +} + + +characterizationGetCaseSeriesOptions <- function( + connectionHandler, + resultDatabaseSettings, + targetId, + outcomeId +){ + + sql <- "SELECT distinct s.database_id, d.CDM_SOURCE_ABBREVIATION as database_name, + s.setting_id, + s.RISK_WINDOW_START, s.RISK_WINDOW_END, + s.START_ANCHOR, s.END_ANCHOR, + ct1.cohort_name as target_name, + ct2.cohort_name as outcome_name + + from + @schema.@c_table_prefixsettings s + inner join @schema.@database_meta_table d + on s.database_id = d.database_id + inner join @schema.@c_table_prefixcohort_details cd + on s.setting_id = cd.setting_id + and s.database_id = cd.database_id + and cd.target_cohort_id = @target_id + and cd.outcome_cohort_id = @outcome_id + and cd.cohort_type = 'Cases' + + inner join + @schema.@cg_table_prefixcohort_definition ct1 + on + ct1.cohort_definition_id = cd.target_cohort_id + + inner join + @schema.@cg_table_prefixcohort_definition ct2 + on + ct2.cohort_definition_id = cd.outcome_cohort_id + + + ;" + + options <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + target_id = targetId, + outcome_id = outcomeId, + database_meta_table = resultDatabaseSettings$databaseTable, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix + ) + + outcomeName <- unique(options$outcomeName) + targetName <- unique(options$targetName) + + db <- unique(options$databaseId) + names(db) <- unique(options$databaseName) + + tar <- unique(options[,c('startAnchor','riskWindowStart', 'endAnchor', 'riskWindowEnd')]) + tarList <- lapply(1:nrow(tar), function(i) as.list(tar[i,])) + #tar <- unique(options$settingId) + tarInds <- 1:nrow(tar) + names(tarInds) <- unique(paste0('(', tar$startAnchor, ' + ', tar$riskWindowStart, ') - (', + tar$endAnchor, ' + ', tar$riskWindowEnd, ')' + )) + + return( + list( + databaseIds = db, + tarInds = tarInds, + tarList = tarList, + outcomeName = outcomeName, + targetName = targetName + ) + ) + +} + + +characterizationGetCaseSeriesData <- function( + connectionHandler, + resultDatabaseSettings, + targetId, + outcomeId, + databaseId, + tar +){ + + shiny::withProgress(message = 'Getting case series data', value = 0, { + shiny::incProgress(1/4, detail = paste("Extracting binary")) + + sql <- "SELECT + case + when cov.cohort_type = 'CasesBefore' then 'Before' + when cov.cohort_type = 'CasesBetween' then 'During' + when cov.cohort_type = 'CaseAfter' then 'After' + end as type, + cr.covariate_name, + s.min_prior_observation, s.outcome_washout_days, + s.case_post_outcome_duration, s.case_pre_target_duration, + cov.covariate_id, cov.sum_value, cov.average_value + from + @schema.@c_table_prefixcovariates cov + inner join @schema.@c_table_prefixcovariate_ref cr + on cov.setting_id = cr.setting_id and + cov.database_id = cr.database_id and + cov.covariate_id = cr.covariate_id + + inner join @schema.@c_table_prefixsettings s + on cov.setting_id = s.setting_id + and cov.database_id = s.database_id + + where cov.target_cohort_id = @target_id + and cov.outcome_cohort_id = @outcome_id + and cov.cohort_type in ('CasesBetween','CasesAfter','CasesBefore') + --and cov.setting_id = @setting_id + and s.risk_window_start = @risk_window_start + and s.risk_window_end = @risk_window_end + and s.start_anchor = '@start_anchor' + and s.end_anchor = '@end_anchor' + and cov.database_id = '@database_id' + and cr.analysis_id in (109, 110, 217, 218, 305, 417, 418, 505, 605, 713, 805, 926, 927) + ;" + + binary <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + target_id = targetId, + outcome_id = outcomeId, + risk_window_start = tar$riskWindowStart, + risk_window_end = tar$riskWindowEnd, + start_anchor = tar$startAnchor, + end_anchor = tar$endAnchor, + database_id = databaseId + ) + + # now process into table + binary <- caseSeriesTable( + data = binary + ) + + shiny::incProgress(3/4, detail = paste("Extracting continuous")) + + sql <- "SELECT + case + when cov.cohort_type = 'CasesBefore' then 'Before' + when cov.cohort_type = 'CasesBetween' then 'During' + when cov.cohort_type = 'CasesAfter' then 'After' + end as type, + cr.covariate_name, + s.min_prior_observation, s.outcome_washout_days, + s.case_post_outcome_duration, s.case_pre_target_duration, + cov.covariate_id, + cov.count_value, cov.min_value, cov.max_value, cov.average_value, + cov.standard_deviation, cov.median_value, cov.p_10_value, + cov.p_25_value, cov.p_75_value, cov.p_90_value + from + @schema.@c_table_prefixcovariates_continuous cov + inner join @schema.@c_table_prefixcovariate_ref cr + on cov.setting_id = cr.setting_id and + cov.database_id = cr.database_id and + cov.covariate_id = cr.covariate_id + + inner join @schema.@c_table_prefixsettings s + on cov.setting_id = s.setting_id + and cov.database_id = s.database_id + + where cov.target_cohort_id = @target_id + and cov.outcome_cohort_id = @outcome_id + and cov.cohort_type in ('CasesBetween','CasesAfter','CasesBefore') + and s.risk_window_start = @risk_window_start + and s.risk_window_end = @risk_window_end + and s.start_anchor = '@start_anchor' + and s.end_anchor = '@end_anchor' + and cov.database_id = '@database_id' + and cr.analysis_id in (109, 110, 217, 218, 305, 417, 418, 505, 605, 713, 805, 926, 927) + ;" + + # TODO - how to remove prior outcomes?? + continuous <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + target_id = targetId, + outcome_id = outcomeId, + risk_window_start = tar$riskWindowStart, + risk_window_end = tar$riskWindowEnd, + start_anchor = tar$startAnchor, + end_anchor = tar$endAnchor, + database_id = databaseId + ) + + shiny::incProgress(4/4, detail = paste("Done")) + + }) + + return( + list( + binary = binary, + continuous = continuous + ) + ) +} + + +# now process into table +caseSeriesTable <- function( + data +){ + + # Before Index Cases + beforeData <- data %>% + dplyr::filter(.data$type == 'Before') + Nbefore <- getCountFromFE( + sumValue = beforeData$sumValue, + averageValue = beforeData$averageValue + ) + + # After Index Cases + afterData <- data %>% + dplyr::filter(.data$type == 'After') + Nafter <- getCountFromFE( + sumValue = afterData$sumValue, + averageValue = afterData$averageValue + ) + + # During Index Cases + duringData <- data %>% + dplyr::filter(.data$type == 'During') + Nduring <- getCountFromFE( + sumValue = duringData$sumValue, + averageValue = duringData$averageValue + ) + + beforeData <- beforeData %>% + dplyr::mutate( + sumValueBefore = .data$sumValue, + averageValueBefore = .data$averageValue, + ) %>% + dplyr::select("covariateName", "covariateId", 'minPriorObservation', 'outcomeWashoutDays','casePostOutcomeDuration', 'casePreTargetDuration', "sumValueBefore", "averageValueBefore") + + afterData <-afterData %>% + dplyr::mutate( + sumValueAfter = .data$sumValue, + averageValueAfter = .data$averageValue, + ) %>% + dplyr::select("covariateName", "covariateId", 'minPriorObservation', 'outcomeWashoutDays','casePostOutcomeDuration', 'casePreTargetDuration', "sumValueAfter", "averageValueAfter") + + duringData <- duringData %>% + dplyr::mutate( + sumValueDuring = .data$sumValue, + averageValueDuring = .data$averageValue, + ) %>% + dplyr::select("covariateName", "covariateId", 'minPriorObservation', 'outcomeWashoutDays','casePostOutcomeDuration', 'casePreTargetDuration', "sumValueDuring", "averageValueDuring") + + + + allResults <- beforeData %>% + dplyr::full_join( + y = duringData, + by = c("covariateName", "covariateId", 'minPriorObservation', 'outcomeWashoutDays','casePostOutcomeDuration', 'casePreTargetDuration') + ) %>% + dplyr::full_join( + y = afterData, + by = c("covariateName", "covariateId", 'minPriorObservation', 'outcomeWashoutDays','casePostOutcomeDuration', 'casePreTargetDuration') + ) + + return(allResults) +} + +colDefsBinary <- function( + elementId + ){ + result <- list( + covariateName = reactable::colDef( + header = withTooltip("Covariate Name", + "Name of the covariate"), + filterable = T, + minWidth = 300 + ), + covariateId = reactable::colDef( + show = F + ), + minPriorObservation = reactable::colDef( + header = withTooltip("Min Prior Observation", + "Minimum prior observation time (days)"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + outcomeWashoutDays = reactable::colDef( + header = withTooltip("Outcome Washout Days", + "Number of days for the outcome washout"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + casePostOutcomeDuration = reactable::colDef( + header = withTooltip("Days Post-outcome Covariate Window", + "Number of days after the outcome we look for the covariate"), + filterable = T + ), + casePreTargetDuration = reactable::colDef( + header = withTooltip("Days Pre-exposure Covariate Window", + "Number of days before the exposure we look for the covariate"), + filterable = T + ), + sumValueBefore = reactable::colDef( + header = withTooltip("# Cases with Feature Pre-exposure", + "Number of cases with the covariate prior to exposure"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('<', abs(value)) + } + ), + averageValueBefore = reactable::colDef( + header = withTooltip("% of Cases with Feature Pre-exposure", + "Percent of cases with the covariate prior to exposure"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = T) + ), + sumValueDuring = reactable::colDef( + header = withTooltip("# of Cases with Feature Between Exposure & Outcome", + "Number of cases with the covariate between the exposure and outcome"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('<', abs(value)) + } + ), + averageValueDuring = reactable::colDef( + header = withTooltip("% of Cases with Feature Between Exposure & Outcome", + "Percent of cases with the covariate between the exposure and outcome"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = T) + ), + sumValueAfter = reactable::colDef( + header = withTooltip("# of Cases with Feature Post-outcome", + "Number of cases with the covariate after the outcome"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('<', abs(value)) + } + ), + averageValueAfter = reactable::colDef( + header = withTooltip("% of Cases with Feature Post-outcome", + "Percent of cases with the covariate after the outcome"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = T) + ), + + analysisName = reactable::colDef( + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ) + ) + return(result) +} + +colDefsContinuous <- function( + elementId + ){ + result <- list( + cohortDefinitionId = reactable::colDef( + header = withTooltip("Cohort ID", + "Unique identifier of the cohort"), + filterable = T + ), + type = reactable::colDef( + header = withTooltip("Time of Cases Relative to Index", + "Time period relative to index date for cases for the covariate"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + covariateName = reactable::colDef( + header = withTooltip("Covariate Name", + "Name of the covariate"), + filterable = T, + minWidth = 300 + ), + covariateId = reactable::colDef( + show = F + ), + minPriorObservation = reactable::colDef( + header = withTooltip("Min Prior Observation", + "Minimum prior observation time (days)"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + outcomeWashoutDays = reactable::colDef( + header = withTooltip("Outcome Washout Days", + "Number of days for the outcome washout"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + casePostOutcomeDuration = reactable::colDef( + header = withTooltip("Days Post-outcome Covariate Window", + "Number of days after the outcome we look for the covariate"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + casePreTargetDuration = reactable::colDef( + header = withTooltip("Days Pre-exposure Covariate Window", + "Number of days before the exposure we look for the covariate"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + countValue = reactable::colDef( + header = withTooltip("# Cases with Feature", + "Number of cases with the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F), + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + minValue = reactable::colDef( + header = withTooltip("Min Value", + "Minimum value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + maxValue = reactable::colDef( + header = withTooltip("Max Value", + "Maximum value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + averageValue = reactable::colDef( + header = withTooltip("Average Value", + "Average value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + standardDeviation = reactable::colDef( + header = withTooltip("SD", + "Standard deviation of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + medianValue = reactable::colDef( + header = withTooltip("Median Value", + "Median value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p10Value = reactable::colDef( + header = withTooltip("10th %tile", + "10th percentile value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p25Value = reactable::colDef( + header = withTooltip("25th %tile", + "25th percentile value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p75Value = reactable::colDef( + header = withTooltip("75th %tile", + "75th percentile value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p90Value = reactable::colDef( + header = withTooltip("90th %tile", + "90th percentile value of the covariate"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ) + ) + return(result) +} + + + +getCountFromFE <- function( + sumValue, + averageValue +){ + + Ns <- sumValue/averageValue + if(sum(is.finite(Ns)) > 0 ){ + maxN <- max(Ns[is.finite(Ns)]) + } else{ + message('Issue calculating N') + maxN <- 0 + } + return(maxN) +} diff --git a/R/characterization-cohorts.R b/R/characterization-cohorts.R index ea314c98..20ab24c6 100644 --- a/R/characterization-cohorts.R +++ b/R/characterization-cohorts.R @@ -17,214 +17,273 @@ # limitations under the License. -#' The module viewer for exploring 1 or more cohorts features -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the description cohorts features -#' -#' @export -characterizationTableViewer <- function(id) { +# view two cohorts and compare +characterizationCohortComparisonViewer <- function(id) { ns <- shiny::NS(id) - shiny::div( - - infoHelperViewer( - id = "helper", - helpLocation= system.file("characterization-www", "help-targetViewer.html", package = utils::packageName()) - ), - - + # module that does input selection for a single row DF - inputSelectionViewer( - id = ns("input-selection") - ), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection")), + shiny::div( - # add basic table - resultTableViewer(id = ns('mainTable')) - + # UI for inputs + # summary table + shinydashboard::box( + collapsible = TRUE, + title = "Options", + width = "100%", + shiny::uiOutput(ns("inputs")) + ), + + # displayed inputs + shiny::conditionalPanel( + condition = "input.generate != 0", + ns = ns, + + inputSelectionDfViewer(id = ns('inputSelected'), title = 'Selected'), + + # add basic table + shiny::tabsetPanel( + type = 'pills', + shiny::tabPanel( + title = 'Counts', + resultTableViewer(id = ns('countTable'), boxTitle = 'Counts') + ), + shiny::tabPanel( + title = 'Binary', + resultTableViewer(id = ns('mainTable'), boxTitle = 'Binary') + ), + shiny::tabPanel( + title = 'Continuous', + resultTableViewer(id = ns('continuousTable'), boxTitle = 'Continuous') + ) + ) + + ) ) - ) } -#' The module server for exploring 1 or more cohorts features -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler the connection to the prediction result database -#' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' -#' @return -#' The server to the cohorts features server -#' -#' @export -characterizationTableServer <- function( + +characterizationCohortComparisonServer <- function( id, connectionHandler, - resultDatabaseSettings + resultDatabaseSettings, + options, + parents, + parentIndex, # reactive + subTargetId # reactive ) { shiny::moduleServer( id, function(input, output, session) { - inputVals <- getDecCohortsInputs( - connectionHandler, - resultDatabaseSettings - ) + inputVals <- shiny::reactive({characterizationGetCohortsInputs( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = subTargetId + )}) - # input selection component - inputSelected <- inputSelectionServer( - id = "input-selection", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'targetIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Target: ', - choices = inputVals$cohortIds, - selected = inputVals$cohortIds, - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'databaseIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Database: ', - choices = inputVals$databaseIds, - selected = inputVals$databaseIds[1], - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + + # initial comp chilren + comparatorOptions <- characterizationGetChildren(options, 1) + output$inputs <- shiny::renderUI({ + + shiny::div( + shinyWidgets::pickerInput( + inputId = session$ns('comparatorGroup'), + label = 'Comparator Group: ', + choices = parents, + selected = parents[1], + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + #virtualScroll = 50, + #container = "div.tabbable", + dropupAuto = FALSE ) ), - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'analysisIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Covariate Type: ', - choices = inputVals$analysisIds, - selected = inputVals$analysisIds[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) + shiny::selectInput( + inputId = session$ns('comparatorId'), + label = 'Comparator: ', + choices = comparatorOptions, + selected = comparatorOptions[1], + multiple = F + ), + + shinyWidgets::pickerInput( + inputId = session$ns('databaseId'), + label = 'Database: ', + choices = inputVals()$databaseIds, + selected = inputVals()$databaseIds[1], + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + dropupAuto = F, + size = 10, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 500 ) - + ), + + shiny::actionButton( + inputId = session$ns('generate'), + label = 'Generate' + ) ) + + }) + + # update comparatorId + comparatorGroups <- shiny::reactiveVal() + comparatorIndex <- shiny::reactiveVal(1) + shiny::observeEvent(input$comparatorGroup,{ + comparatorIndex(which(input$comparatorGroup == parents)) + result <- characterizationGetChildren(options, comparatorIndex()) + comparatorGroups(result) + shiny::updateSelectInput( + session = session, + inputId = 'comparatorId', + label = 'Comparator: ', + choices = result, + selected = result[1] + ) + }) + + + # show selected inputs to user + inputSelectionDfServer( + id = 'inputSelected', + dataFrameRow = selected, + ncol = 1 ) - columns <- shiny::reactive({ + #get results + selected <- shiny::reactiveVal() + shiny::observeEvent(input$generate,{ - result <- list( - covariateId = reactable::colDef( - header = withTooltip("Covariate ID", - "Unique identifier of the covariate") - ), - covariateName = reactable::colDef( - header = withTooltip( - "Covariate Name", - "The name of the covariate" - ) - ), - analysisName = reactable::colDef( - header = withTooltip( - "Covariate Class", - "Class/type of the covariate" - ) + targetGroups <- characterizationGetChildren(options, parentIndex()) + + runTables <- TRUE + + if(is.null(subTargetId()) | is.null(input$comparatorId)){ + runTables <- FALSE + } + if(is.null(input$databaseId)){ + runTables <- FALSE + } + + if(subTargetId() == input$comparatorId){ + runTables <- FALSE + shiny::showNotification('Must select different cohorts') + } + + # ADDED + subTargetIds <- unlist(lapply(options[[parentIndex()]]$children, function(x){x$subsetId})) + subTargetNames <- unlist(lapply(options[[parentIndex()]]$children, function(x){x$subsetName})) + + selected( + data.frame( + Comparator = names(comparatorGroups())[which(comparatorGroups() == input$comparatorId)], + Database = names(inputVals()$databaseIds)[input$databaseId == inputVals()$databaseIds] ) ) - if(is.null(inputSelected()$targetIds) | is.null(inputSelected()$databaseIds)){ - return(result) - } else{ - temp <- expand.grid(inputSelected()$targetIds,inputSelected()$databaseIds) - temp[,2] <- as.double(as.character(temp[,2])) - - for(i in 1:nrow(temp)){ - - targetName = names(inputVals$cohortIds)[temp[i,1] == inputVals$cohortIds] - databaseName = names(inputVals$databaseIds)[temp[i,2] == inputVals$databaseIds] - - result[[length(result) + 1]] <- reactable::colDef( - header = withTooltip( - paste0("Count-", temp[i,1], '-',temp[i,2]), - paste0("The number of patients in database ", databaseName, ' and target ', targetName, ' who has the covariate') - ) - ) - - names(result)[length(result)] <- paste0('countT', temp[i,1], 'D', ifelse(temp[i,2] <0, 'n', ''), abs(temp[i,2]) ) - - result[[length(result) + 1]] <- reactable::colDef( - header = withTooltip( - paste0("Mean-", temp[i,1], '-', temp[i,2]), - paste0("The mean covariate value for patients in database ", databaseName, ' and target ', targetName) - ), - format = reactable::colFormat( - digits = 3 - ) - ) - names(result)[length(result)] <- paste0('averageT', temp[i,1], 'D', ifelse(temp[i,2] <0, 'n', ''), abs(temp[i,2]) ) - - } - return(result) + selection1 <- subTargetId() + + if(length(selection1) == 0){ + runTables <- FALSE + shiny::showNotification('No results for section 1') } - }) - - #get results - resultTable <- shiny::reactive({ - getCohortData( + selection2 <- input$comparatorId + + if(length(selection2) == 0){ + runTables <- FALSE + shiny::showNotification('No results for section 2') + } + + + if(runTables){ + resultTable <- characterizatonGetCohortData( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - targetIds = inputSelected()$targetIds, - databaseIds = inputSelected()$databaseIds, - analysisIds = inputSelected()$analysisIds + targetIds = c(selection1,selection2), + databaseIds = input$databaseId, + minThreshold = 0.01, + addSMD = T ) - }) - - resultTableServer( - id = 'mainTable', - df = resultTable, - colDefsInput = columns() - ) + + countTable <- characterizatonGetCohortCounts( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = c(selection1,selection2), + databaseIds = input$databaseId + ) + + continuousTable <- characterizatonGetCohortComparisonDataContinuous( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = c(selection1,selection2), + databaseIds = input$databaseId + ) + + resultTableServer( + id = 'mainTable', + df = resultTable, + details = data.frame( + Target = names(targetGroups)[which(targetGroups == subTargetId())], + Comparator = names(comparatorGroups())[which(comparatorGroups() == input$comparatorId)], + Database = names(inputVals()$databaseIds)[input$databaseId == inputVals()$databaseIds], + Analysis = 'Cohort comparison within database' + ), + downloadedFileName = 'cohort_comparison_binary', + colDefsInput = characterizationCohortsColumns( + addExtras = T, + elementId = session$ns('main-table-filter') + ), + elementId = session$ns('main-table-filter') + ) + + resultTableServer( + id = 'continuousTable', + df = continuousTable, + details = data.frame( + Target = names(targetGroups)[which(targetGroups == subTargetId())], + Comparator = names(comparatorGroups())[which(comparatorGroups() == input$comparatorId)], + Database = names(inputVals()$databaseIds)[input$databaseId == inputVals()$databaseIds], + Analysis = 'Cohort comparison within database' + ), + downloadedFileName = 'cohort_comparison_cont', + colDefsInput = characterizationCohortsColumnsContinuous( + addExtras = T, + elementId = session$ns('continuous-table-filter') + ), + elementId = session$ns('continuous-table-filter') + ) + + resultTableServer( + id = 'countTable', + df = countTable, + details = data.frame( + Target = names(targetGroups)[which(targetGroups == subTargetId())], + Comparator = names(comparatorGroups())[which(comparatorGroups() == input$comparatorId)], + Database = names(inputVals()$databaseIds)[input$databaseId == inputVals()$databaseIds], + Analysis = 'Cohort comparison within database' + ), + downloadedFileName = 'cohort_comparison_count', + colDefsInput = characteriationCountTableColDefs( + elementId = session$ns('count-table-filter') + ), + elementId = session$ns('count-table-filter') + )} + + }) return(invisible(NULL)) @@ -233,168 +292,722 @@ characterizationTableServer <- function( } -getCohortData <- function( +characterizationCohortsColumns <- function( + addExtras = F, + elementId + ){ + + res <- list( + covariateName = reactable::colDef( + header = withTooltip( + "Covariate Name", + "The name of the covariate" + ), + minWidth = 300 + ), + covariateId = reactable::colDef( + show = F, + header = withTooltip("Covariate ID", + "Unique identifier of the covariate") + ), + minPriorObservation = reactable::colDef( + header = withTooltip( + "Min Prior Obs", + "The minimum prior observation a patient in the target + population must have to be included."), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + SMD = reactable::colDef( + header = withTooltip("SMD", + "Standardized mean difference between the target and comparator percentages"), + format = reactable::colFormat(digits = 3) + ), + absSMD = reactable::colDef( + header = withTooltip("absSMD", + "Absolute standardized mean difference between the target and comparator percentages"), + format = reactable::colFormat(digits = 3), + filterable = TRUE, + filterMethod = reactable::JS("function(rows, columnId, filterValue) { + return rows.filter(function(row) { + return row.values[columnId] >= filterValue + }) + }"), + filterInput = function(values, name) { + oninput <- sprintf("Reactable.setFilter('%s', '%s', this.value)", elementId, name) + shiny::tags$input( + type = "range", + min = floor(min(values, na.rm = T)), + max = ceiling(max(values, na.rm = T)), + value = floor(min(values, na.rm = T)), + oninput = oninput, + onchange = oninput, # For IE11 support + "aria-label" = sprintf("Filter by minimum %s", name) + ) + } + ), + analysisName = reactable::colDef( + header = withTooltip( + "Covariate Class", + "Class/type of the covariate" + ) + ) + ) + + if(addExtras){ + res <- append( + res, + list( + sumValue_1 = reactable::colDef( + header = withTooltip("Target Sum", + "The total sum of the covariate for the target cohort."), + cell = function(value) { + if (value >= 0) value else '< min threshold' + } + ), + sumValue_2 = reactable::colDef( + header = withTooltip("Compatator Sum", + "The total sum of the covariate for the comparator cohort."), + cell = function(value) { + if (value >= 0) value else '< min threshold' + } + ), + averageValue_1 = reactable::colDef( + header = withTooltip("Target %", + "The percentage of the target cohort who had the covariate prior to index."), + cell = function(value) { + if (value >= 0) paste0(round(value*100, digits = 3),'%') else '< min threshold' + } + ), + averageValue_2 = reactable::colDef( + header = withTooltip("Comparator %", + "The percentage of the comparator cohort who had the covariate prior to index"), + cell = function(value) { + if (value >= 0) paste0(round(value*100, digits = 3),'%') else '< min threshold' + } + ) + ) + ) + } + return(res) +} + +characteriationCountTableColDefs <- function( + elementId + ){ + result <- list( + selection = reactable::colDef( + filterable = T + ), + cohortName = reactable::colDef( + header = withTooltip("Cohort", + "Name of the cohort"), + filterable = T + ), + minPriorObservation = reactable::colDef( + header = withTooltip( + "Min Prior Obs", + "The minimum prior observation a patient in the target + population must have to be included."), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + rowCount = reactable::colDef( + header = withTooltip("Record Count", + "Count of the number of records"), + filterable = T + ), + personCount = reactable::colDef( + header = withTooltip("Person Count", + "Count of the number of persons"), + filterable = T + ) + ) + return(result) +} + +characterizationCohortsColumnsContinuous <- function( + addExtras = F, + elementId + ){ + res <- list( + covariateName = reactable::colDef( + header = withTooltip( + "Covariate Name", + "The name of the covariate" + ), + filterable = T, + minWidth = 300, + ), + databaseName = reactable::colDef( + header = withTooltip( + "Database", + "The name of the database" + ), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + covariateId = reactable::colDef( + show = F, + header = withTooltip("Covariate ID", + "Unique identifier of the covariate") + ), + minPriorObservation = reactable::colDef( + header = withTooltip( + "Min Prior Obs", + "The minimum prior observation a patient in the target + population must have to be included."), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + outcomeWashoutPeriod = reactable::colDef( + show = F + ), + countValue = reactable::colDef( + header = withTooltip("Count", + "Number of people with the covariate in the cohort."), + cell = function(value) { + if (value >= 0) value else '< min threshold' + }, + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + averageValue = reactable::colDef( + header = withTooltip("Mean", + "The mean value of the covariate in the cohort"), + cell = function(value) { + if (value >= 0) round(value, digits = 3) else '< min threshold' + } + ), + standardDeviation = reactable::colDef( + header = withTooltip("StDev", + "The standard deviation value of the covariate in the cohort"), + cell = function(value) { + if (value >= 0) round(value, digits = 3) else '< min threshold' + } + ), + medianValue = reactable::colDef( + header = withTooltip("Median", + "The median value of the covariate in the cohort."), + cell = function(value) { + round(value, digits = 3) + } + ), + minValue = reactable::colDef( + header = withTooltip("Min Value", + "Minimum value of the covariate in the cohort"), + format = reactable::colFormat(digits = 3) + ), + maxValue = reactable::colDef( + header = withTooltip("Max Value", + "Maximum value the covariate in the cohort"), + format = reactable::colFormat(digits = 3) + ), + p25Value = reactable::colDef( + header = withTooltip("25th %tile", + "25th percentile value of the covariate in the cohort"), + format = reactable::colFormat(digits = 3) + ), + p75Value = reactable::colDef( + header = withTooltip("75th %tile", + "75th percentile value of the covariate in the cohort"), + format = reactable::colFormat(digits = 3) + ), + p10Value = reactable::colDef( + header = withTooltip("10th %tile", + "10th percentile value of the covariate in the cohort"), + format = reactable::colFormat(digits = 3) + ), + p90Value = reactable::colDef( + header = withTooltip("90th %tile", + "90th percentile value of the covariate in the cohort"), + format = reactable::colFormat(digits = 3) + ) + ) + + if(addExtras){ + res <- append( + res, + list( + SMD = reactable::colDef( + header = withTooltip("SMD", + "Standardized mean difference"), + format = reactable::colFormat(digits = 3) + ), + absSMD = reactable::colDef( + header = withTooltip("absSMD", + "Absolute standardized mean difference"), + format = reactable::colFormat(digits = 3) + ), + countValue_1 = reactable::colDef( + header = withTooltip("Target Count", + "Number of people with the covariate for the target cohort."), + cell = function(value) { + if (value >= 0) value else '< min threshold' + } + ), + countValue_2 = reactable::colDef( + header = withTooltip("Comparator Count", + "Number of people with the covariate for the comparator cohort."), + cell = function(value) { + if (value >= 0) value else '< min threshold' + } + ), + averageValue_1 = reactable::colDef( + header = withTooltip("Target Mean", + "The mean of the covariate for the target cohort."), + cell = function(value) { + if (value >= 0) round(value, digits = 3) else '< min threshold' + } + ), + averageValue_2 = reactable::colDef( + header = withTooltip("Comparator Mean", + "The mean of the covariate for the comparator cohort."), + cell = function(value) { + if (value >= 0) round(value, digits = 3) else '< min threshold' + } + ), + standardDeviation_1 = reactable::colDef( + header = withTooltip("Target StDev", + "The standard deviation of the covariate for the target cohort."), + cell = function(value) { + if (value >= 0) round(value, digits = 3) else '< min threshold' + } + ), + standardDeviation_2 = reactable::colDef( + header = withTooltip("Comparator StDev", + "The standard deviation of the covariate for the comparator cohort."), + cell = function(value) { + if (value >= 0) round(value, digits = 3) else '< min threshold' + } + ), + medianValue_1 = reactable::colDef( + header = withTooltip("Target Median", + "The median of the covariate for the target cohort."), + cell = function(value) { + round(value, digits = 3) + } + ), + medianValue_2 = reactable::colDef( + header = withTooltip("Comparator Median", + "The median of the covariate for the comparator cohort."), + cell = function(value) { + round(value, digits = 3) + } + ), + minValue_2 = reactable::colDef( + header = withTooltip("Comparator Min Value", + "Minimum value of the comparator cohort"), + format = reactable::colFormat(digits = 3) + ), + minValue_1 = reactable::colDef( + header = withTooltip("Target Min Value", + "Minimum value of the target cohort"), + format = reactable::colFormat(digits = 3) + ), + maxValue_2 = reactable::colDef( + header = withTooltip("Comparator Max Value", + "Maximum value of the comparator cohort"), + format = reactable::colFormat(digits = 3) + ), + maxValue_1 = reactable::colDef( + header = withTooltip("Target Max Value", + "Maximum value of the target cohort"), + format = reactable::colFormat(digits = 3) + ), + p25Value_2 = reactable::colDef( + header = withTooltip("Comparator 25th %tile", + "25th percentile value of the comparator cohort"), + format = reactable::colFormat(digits = 3) + ), + p25Value_1 = reactable::colDef( + header = withTooltip("Target 25th %tile", + "25th percentile value of the target cohort"), + format = reactable::colFormat(digits = 3) + ), + p75Value_2 = reactable::colDef( + header = withTooltip("Comparator 75th %tile", + "75th percentile value of the comparator cohort"), + format = reactable::colFormat(digits = 3) + ), + p75Value_1 = reactable::colDef( + header = withTooltip("Target 75th %tile", + "75th percentile value of the target cohort"), + format = reactable::colFormat(digits = 3) + ) + ) + ) + } + + return(res) +} + + +characterizatonGetCohortCounts <- function( connectionHandler, resultDatabaseSettings, targetIds, - databaseIds, - analysisIds + databaseIds ){ - if(is.null(targetIds) | is.null(databaseIds)){ - return(NULL) + start <- Sys.time() + result <- connectionHandler$queryDb( + sql = " +select distinct + cc.target_cohort_id as cohort_definition_id, + cc.min_prior_observation, + cc.row_count, + cc.person_count, + d.cdm_source_abbreviation as database_name, + d.database_id, + cg.cohort_name + from + @schema.@database_table d + inner join + @schema.@c_table_prefixcohort_counts cc + on d.database_id = cc.database_id + inner join + @schema.@cg_table_prefixcohort_definition cg + on cg.cohort_definition_id = cc.target_cohort_id + + where + cc.target_cohort_id in (@target_ids) + and cc.cohort_type = 'Target' + AND cc.database_id in (@database_ids) + ; + ", + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + target_ids = paste0(targetIds, collapse= ','), + database_ids = paste0("'",databaseIds,"'",collapse= ','), + database_table = resultDatabaseSettings$databaseTable + ) + end <- Sys.time() - start + message(paste0('Extracting ', nrow(result) ,' cohort count rows took: ', round(end, digits = 2), ' ', units(end))) + + if(length(targetIds)>1){ + result <- merge( + x = result, + y = data.frame( + selection = c('Target','Comparator'), + cohortDefinitionId = targetIds + ), + by = 'cohortDefinitionId' + ) + } else{ + result$selection <- result$databaseName } - combinations <- expand.grid(targetIds, databaseIds) - combinations[,2] <- as.double(as.character(combinations[,2])) + result <- result %>% dplyr::select( + 'selection', + 'cohortName', + 'minPriorObservation', + 'rowCount', + 'personCount' + ) -sql <- paste0( -"select ref.covariate_id, ref.covariate_name, an.analysis_name,", - -paste( - lapply(1:nrow(combinations), function(i){ - paste0( -"max(case when temp.selection_id = ",i," then temp.sum_value else 0 end) as count_t",combinations[i,1],'_d',ifelse(combinations[i,2] <0, 'n', ''),abs(combinations[i,2]),",", -"max(case when temp.selection_id = ",i," then temp.average_value else 0 end) as average_t",combinations[i,1],'_d',ifelse(combinations[i,2] <0, 'n', ''),abs(combinations[i,2]) -)}), collapse = ','), - -" from @schema.@c_table_prefixcovariate_ref ref - inner join @schema.@c_table_prefixanalysis_ref an - on an.RUN_ID = ref.RUN_ID and - an.analysis_id = ref.analysis_id and - ref.analysis_id in (@analysis_ids) + return(result) +} - left join -( ", - +characterizatonGetCohortData <- function( + connectionHandler, + resultDatabaseSettings, + targetIds, + databaseIds, + minThreshold = 0.01, + addSMD = F +){ -paste( - lapply(1:nrow(combinations), function(i){ - paste0( - " - select - co",i,".run_id, co",i,".COVARIATE_ID, co",i,".SUM_VALUE, co",i,".AVERAGE_VALUE, - ",i," as selection_id - from - @schema.@c_table_prefixCOVARIATES co",i," - inner join - (select * from @schema.@c_table_prefixcohort_details - where DATABASE_ID = '@database",i,"' and - TARGET_COHORT_ID = @target",i," and COHORT_TYPE = 'T' - ) as cd",i," - on co",i,".COHORT_DEFINITION_ID = cd",i,".COHORT_DEFINITION_ID - and co",i,".DATABASE_ID = cd",i,".DATABASE_ID" - ) - - }), collapse = ' union '), - -") temp -on ref.run_id = temp.run_id and -ref.covariate_id = temp.covariate_id + if(is.null(targetIds) | is.null(databaseIds)){ + warning('Ids cannot be NULL') + return(NULL) + } -group by -ref.covariate_id, ref.covariate_name, an.analysis_name -" + shiny::withProgress(message = 'characterizatonGetCohortData', value = 0, { + + shiny::incProgress(1/4, detail = paste("Setting types")) + + types <- data.frame( + type = 1:(length(targetIds)*length(databaseIds)), + cohortDefinitionId = rep(targetIds, length(databaseIds)), + databaseId = rep(databaseIds, length(targetIds)) + ) + + shiny::incProgress(2/4, detail = paste("Extracting data")) + + sql <- "select ref.covariate_name, + s.min_prior_observation, + cov.target_cohort_id as cohort_definition_id, + cov.* from + @schema.@c_table_prefixCOVARIATES cov + inner join + @schema.@c_table_prefixcovariate_ref ref + on cov.covariate_id = ref.covariate_id + and cov.setting_id = ref.setting_id + and cov.database_id = ref.database_id + inner join + @schema.@c_table_prefixsettings s + on s.database_id = cov.database_id + and s.setting_id = cov.setting_id + + where + cov.target_cohort_id in (@target_ids) + and cov.cohort_type = 'Target' + AND cov.database_id in (@database_ids) + AND cov.average_value >= @min_threshold;" + + start <- Sys.time() + # settings.min_characterization_mean needed? + res <- connectionHandler$queryDb( + sql = sql, + target_ids = paste0(targetIds, collapse = ','), + database_ids = paste0("'",databaseIds,"'", collapse = ','), + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + min_threshold = minThreshold + ) + end <- Sys.time() - start + shiny::incProgress(3/4, detail = paste("Extracted data")) + message(paste0('Extracting ', nrow(res) ,' characterization cohort rows took: ', round(end, digits = 2), ' ', units(end))) + + # add the first/section type + res <- merge(res, types, by = c('cohortDefinitionId','databaseId')) + + # pivot + result <- tidyr::pivot_wider( + data = res, + id_cols = c('covariateName', 'covariateId','minPriorObservation'), + names_from = 'type', + values_from = c('sumValue', 'averageValue'), + values_fn = mean, + values_fill = -1 + ) + + if(addSMD == T){ + # TODO get min_characterization_mean from settings table + # minCharacterizationMean <- minThreshold + # add SMD + if(sum(c('averageValue_1','averageValue_2') %in% colnames(result)) == 2){ + convertMissing <- function(vec){sapply(vec, function(x) ifelse(x==-1, minThreshold, x))} + + Ns <- c() + for(minPriorObservation in unique(result$minPriorObservation)){ + ind <- result$minPriorObservation == minPriorObservation + Ns <- rbind(Ns, + data.frame( + minPriorObservation = minPriorObservation, + N_1 = max(result$sumValue_1[ind]/result$averageValue_1[ind], na.rm = T), + N_2 = max(result$sumValue_2[ind]/result$averageValue_2[ind], na.rm = T) + ) + ) + } + result <- merge(result, Ns, by = 'minPriorObservation') + result$firstVar <- ((convertMissing(result$averageValue_1)-1)^2*result$sumValue_1 + (convertMissing(result$averageValue_1)-0)^2*(result$N_1-result$sumValue_1))/result$N_1 + result$secondVar <- ((convertMissing(result$averageValue_2)-1)^2*result$sumValue_2 + (convertMissing(result$averageValue_2)-0)^2*(result$N_2-result$sumValue_2))/result$N_2 + result$SMD <- (convertMissing(result$averageValue_1) - convertMissing(result$averageValue_2))/(sqrt((result$firstVar+result$secondVar)/2)) + result$absSMD <- abs(result$SMD) + result <- result %>% dplyr::select(-"firstVar",-"secondVar", -"N_1", -"N_2") + + } else{ + shiny::showNotification('Unable to add SMD due to missing columns') + } + } + shiny::incProgress(4/4, detail = paste("Done")) + }) + + return(result) +} -) +characterizatonGetCohortComparisonDataContinuous <- function( + connectionHandler, + resultDatabaseSettings, + targetIds, + databaseIds, + pivot = T +){ - inputs <- c( - as.character(combinations$Var2), - as.character(combinations$Var1), - resultDatabaseSettings$schema, - resultDatabaseSettings$cTablePrefix, - paste0(analysisIds, collapse = ',') - ) - names(inputs) <- c( - paste0('database', 1:nrow(combinations)), - paste0('target', 1:nrow(combinations)), - 'schema', - 'c_table_prefix', - 'analysis_ids' - ) - inputs <- as.list(inputs) - inputs$sql <- sql + if(is.null(targetIds) | is.null(databaseIds)){ + warning('Ids cannot be NULL') + return(NULL) + } + targetIds <- unique(targetIds) + databaseIds <- unique(databaseIds) - result <- do.call(connectionHandler$queryDb, inputs) - -return(result) + shiny::withProgress(message = 'characterizatonGetCohortDataContinuous', value = 0, { + + shiny::incProgress(1/4, detail = paste("Setting types")) + + types <- data.frame( + type = 1:(length(targetIds)*length(databaseIds)), + cohortDefinitionId = rep(targetIds, length(databaseIds)), + databaseId = rep(databaseIds, length(targetIds)) + ) + + shiny::incProgress(2/4, detail = paste("Extracting data")) + + sql <- "select ref.covariate_name, + s.min_prior_observation, + cov.target_cohort_id as cohort_definition_id, + cov.*, + d.CDM_SOURCE_ABBREVIATION as database_name + + from + @schema.@c_table_prefixCOVARIATES_continuous cov + inner join + @schema.@c_table_prefixcovariate_ref ref + on cov.covariate_id = ref.covariate_id + and cov.setting_id = ref.setting_id + and cov.database_id = ref.database_id + inner join + @schema.@c_table_prefixsettings s + on cov.setting_id = s.setting_id + and cov.database_id = s.database_id + inner join @schema.@database_meta_table d + on s.database_id = d.database_id + + where + cov.target_cohort_id in (@target_ids) + and cov.cohort_type = 'Target' + AND cov.database_id in (@database_ids);" + + start <- Sys.time() + # settings.min_characterization_mean needed? + res <- connectionHandler$queryDb( + sql = sql, + target_ids = paste0(targetIds, collapse = ','), + database_ids = paste0("'",databaseIds,"'", collapse = ','), + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + database_meta_table = resultDatabaseSettings$databaseTable + ) + end <- Sys.time() - start + shiny::incProgress(3/4, detail = paste("Extracted data")) + message(paste0('Extracting ', nrow(res) ,' continuous characterization cohort rows took: ', round(end, digits = 2), ' ', units(end))) + + # add the first/section type + res <- merge(res, types, by = c('cohortDefinitionId','databaseId')) + + if(pivot){ + # if pivot + res <- tidyr::pivot_wider( + data = res, + id_cols = c('covariateName', 'covariateId','minPriorObservation'), + names_from = 'type', + values_from = c('countValue', 'averageValue', 'standardDeviation', 'medianValue','minValue', 'maxValue', 'p25Value','p75Value'), + values_fn = mean, + values_fill = -1 + ) + + # if both have results then add SMD + if(length(unique(res$type)) == 2){ + res <- res %>% + dplyr::mutate( + SMD = (.data$averageValue_1-.data$averageValue_2)/(sqrt((.data$standardDeviation_1^2 + .data$standardDeviation_2^2)/2)) + ) %>% + dplyr::mutate( + absSMD = abs(.data$SMD) + ) + } + } else{ + # if multiple databases make the type the databaseName + res$type <- res$databaseName + res <- res %>% dplyr::select(-"cohortDefinitionId", -"databaseId", -"type", + -"settingId", -"targetCohortId", -"outcomeCohortId", + -"cohortType") %>% + dplyr::relocate("databaseName", .after = "covariateName") + } + + shiny::incProgress(4/4, detail = paste("Done")) + }) + + return(res) } - - -getDecCohortsInputs <- function( +characterizationGetCohortsInputs <- function( connectionHandler, - resultDatabaseSettings + resultDatabaseSettings, + targetId # reactive ) { - #shiny::withProgress(message = 'Getting target comparison inputs', value = 0, { - - - sql <- - ' select distinct c.cohort_definition_id, c.cohort_name from - @schema.@cg_table_prefixcohort_definition c - inner join - (select distinct TARGET_COHORT_ID as id - from @schema.@c_table_prefixcohort_details - ) ids - on ids.id = c.cohort_definition_id - ;' - - #shiny::incProgress(1/4, detail = paste("Extracting targetIds")) - - idVals <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix - ) - ids <- idVals$cohortDefinitionId - names(ids) <- idVals$cohortName - - #shiny::incProgress(2/4, detail = paste("Extracted targetIds")) - - sql <- 'select d.database_id, d.cdm_source_abbreviation as database_name - from @schema.@database_table d;' + sql <- "select distinct + d.database_id, d.cdm_source_abbreviation as database_name + from @schema.@database_table d - #shiny::incProgress(3/4, detail = paste("Extracting databaseIds")) + inner join + @schema.@c_table_prefixcohort_details cd + on d.database_id = cd.database_id + where cd.target_cohort_id = @target_id + and cd.cohort_type = 'Target' + ;" database <- connectionHandler$queryDb( sql = sql, schema = resultDatabaseSettings$schema, - database_table = resultDatabaseSettings$databaseTable + database_table = resultDatabaseSettings$databaseTable, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + target_id = targetId() ) databaseIds <- database$databaseId names(databaseIds) <- database$databaseName - - sql <- 'select distinct analysis_id, analysis_name - from @schema.@c_table_prefixanalysis_ref order by analysis_name desc;' - - #shiny::incProgress(3/4, detail = paste("Extracting databaseIds")) - - analyses <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix - ) - analysisIds <- analyses$analysisId - names(analysisIds) <- analyses$analysisName - - - #shiny::incProgress(4/4, detail = paste("Done")) - - # }) - return( list( - cohortIds = ids, - databaseIds = databaseIds, - analysisIds = analysisIds + databaseIds = databaseIds ) ) - -} +} \ No newline at end of file diff --git a/R/characterization-database.R b/R/characterization-database.R new file mode 100644 index 00000000..46b3b31e --- /dev/null +++ b/R/characterization-database.R @@ -0,0 +1,320 @@ +# @file characterization-timeToEvent.R +# +# Copyright 2024 Observational Health Data Sciences and Informatics +# +# This file is part of OhdsiShinyModules +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +# view two cohorts and compare +characterizationDatabaseComparisonViewer <- function(id) { + ns <- shiny::NS(id) + + shiny::div( + + # UI for inputs + # summary table + shinydashboard::box( + collapsible = TRUE, + title = "Options", + width = "100%", + shiny::uiOutput(ns("inputs")) + ), + + # displayed inputs + shiny::conditionalPanel( + condition = "input.generate != 0", + ns = ns, + + inputSelectionDfViewer(id = ns('inputSelected'), title = 'Selected'), + + # add basic table + shiny::tabsetPanel( + type = 'pills', + shiny::tabPanel( + title = 'Counts', + resultTableViewer(id = ns('countTable'), boxTitle = 'Counts') + ), + shiny::tabPanel( + title = 'Binary', + resultTableViewer(id = ns('mainTable'), boxTitle = 'Binary') + ), + shiny::tabPanel( + title = 'Continuous', + resultTableViewer(id = ns('continuousTable'), boxTitle = 'Continuous') + ) + ) + ) + ) +} + + + +characterizationDatabaseComparisonServer <- function( + id, + connectionHandler, + resultDatabaseSettings, + options, + parents, + parentIndex, # reactive + subTargetId # reactive +) { + shiny::moduleServer( + id, + function(input, output, session) { + + # TODO react to subTargetId + inputVals <- shiny::reactive({ + characterizationGetCohortsInputs( + connectionHandler, + resultDatabaseSettings, + targetId = subTargetId + )}) + + output$inputs <- shiny::renderUI({ + + shiny::div( + shiny::selectInput( + inputId = session$ns('databaseIds'), + label = 'Databases: ', + choices = inputVals()$databaseIds, + selected = inputVals()$databaseIds[1], + multiple = T + ), + + shiny::sliderInput( + inputId = session$ns('minThreshold'), + label = 'Covariate Threshold', + min = 0, + max = 1, + value = 0.01, + step = 0.01, + ticks = F + ), + + shiny::actionButton( + inputId = session$ns('generate'), + label = 'Generate' + ) + ) + + }) + + + # show selected inputs to user + inputSelectionDfServer( + id = 'inputSelected', + dataFrameRow = selected, + ncol = 1 + ) + + #get results + selected <- shiny::reactiveVal() + shiny::observeEvent(input$generate,{ + + if(is.null(input$databaseIds)){ + shiny::showNotification('No databases selected') + return(NULL) + } + if(length(input$databaseIds) == 0 ){ + shiny::showNotification('No databases selected') + return(NULL) + } + + selectedDatabases <- paste0( + names(inputVals()$databaseIds)[which(inputVals()$databaseIds %in% input$databaseIds)], + collapse = ',' + ) + + selected( + data.frame( + Databases = selectedDatabases, + `Minimum Covariate Threshold` = input$minThreshold + ) + ) + + + #get results + results <- list( + table = data.frame(), + databaseNames = data.frame( + id = 1, + databaseName = 'None' + ) + ) + continuousTable <- data.frame() + countTable <- data.frame() + + if(length(input$databaseIds) > 0){ + + countTable <- characterizatonGetCohortCounts( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = subTargetId(), + databaseIds = input$databaseIds + ) + + result <- characterizatonGetDatabaseComparisonData( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = subTargetId(), + databaseIds = input$databaseIds, + minThreshold = input$minThreshold + ) + + continuousTable <- characterizatonGetCohortComparisonDataContinuous( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = subTargetId(), + databaseIds = input$databaseIds, + pivot = F + ) + + } else{ + shiny::showNotification('No results') + } + + + databaseNames <- result$databaseNames + + meanColumns <- lapply(1:nrow(databaseNames), function(i){ + reactable::colDef( + header = withTooltip( + paste0(databaseNames$databaseName[i], ' %'), + paste0("The percentage of the target population in database ", databaseNames$databaseName[i], ' who had the covariate prior.') + ), + cell = function(value) { + if (value >= 0) paste0(round(value*100, digits = 3),' %') else '< min threshold' + } + ) + }) + names(meanColumns) <- unlist(lapply(1:nrow(databaseNames), function(i) paste0('averageValue_',databaseNames$id[i]))) + + sumColumns <- lapply(1:nrow(databaseNames), function(i){ + reactable::colDef( + header = withTooltip( + paste0(databaseNames$databaseName[i], " Count"), + paste0("The number of people in the target cohort in database ", databaseNames$databaseName[i], ' who have the covariate prior.') + ), + cell = function(value) { + if (value >= 0) value else '< min threshold' + } + ) + }) + names(sumColumns) <- unlist(lapply(1:nrow(databaseNames), function(i) paste0('sumValue_',databaseNames$id[i]))) + + targetGroups <- characterizationGetChildren(options, parentIndex()) + + resultTableServer( + id = 'countTable', + df = countTable, + details = data.frame( + Target = names(targetGroups)[which(targetGroups == subTargetId())], + Databases = selectedDatabases, + `Minimum Covariate Threshold` = input$minThreshold, + Analysis = 'Cohort comparison across databases' + ), + downloadedFileName = 'database_comparison_counts', + colDefsInput = characteriationCountTableColDefs( + elementId = session$ns('count-table-filter') + ), + elementId = session$ns('count-table-filter') + ) + resultTableServer( + id = 'mainTable', + df = result$table, + details = data.frame( + Target = names(targetGroups)[which(targetGroups == subTargetId())], + Databases = selectedDatabases, + `Minimum Covariate Threshold` = input$minThreshold, + Analysis = 'Cohort comparison across databases' + ), + downloadedFileName = 'database_comparison_binary', + colDefsInput = append( + characterizationCohortsColumns( + elementId = session$ns('main-table-filter') + ), + append( + sumColumns, + meanColumns + ) + ), + elementId = session$ns('main-table-filter') + ) + + resultTableServer( + id = 'continuousTable', + df = continuousTable, + details = data.frame( + Target = names(targetGroups)[which(targetGroups == subTargetId())], + Databases = selectedDatabases, + `Minimum Covariate Threshold` = input$minThreshold, + Analysis = 'Cohort comparison across databases' + ), + downloadedFileName = 'database_comparison_cont', + colDefsInput = characterizationCohortsColumnsContinuous( + elementId = session$ns('continuous-table-filter') + ), + elementId = session$ns('continuous-table-filter') + ) + }) + + + return(invisible(NULL)) + + }) + +} + +characterizatonGetDatabaseComparisonData <- function( + connectionHandler, + resultDatabaseSettings, + targetIds, + databaseIds, + minThreshold +){ + + result <- characterizatonGetCohortData( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + databaseIds = databaseIds, + minThreshold = minThreshold, + addSMD = length(databaseIds) == 2 + ) + + databaseNames <- connectionHandler$queryDb( + sql = "select cdm_source_abbreviation as database_name, database_id + from @schema.@database_table;", + schema = resultDatabaseSettings$schema, + database_table = resultDatabaseSettings$databaseTable + ) + + databaseNames <- merge( + databaseNames, + data.frame( + id = 1:length(databaseIds), + databaseId = databaseIds + ), + by = 'databaseId' + ) + + return( + list( + table = result, + databaseNames = databaseNames + ) + ) + +} diff --git a/R/characterization-dechallengeRechallenge.R b/R/characterization-dechallengeRechallenge.R index 3ecbb464..57e7b4a4 100644 --- a/R/characterization-dechallengeRechallenge.R +++ b/R/characterization-dechallengeRechallenge.R @@ -17,164 +17,254 @@ # limitations under the License. -#' The module viewer for exploring Dechallenge Rechallenge results -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the description Dechallenge Rechallenge module -#' -#' @export characterizationDechallengeRechallengeViewer <- function(id) { ns <- shiny::NS(id) shiny::div( - # helper component module - infoHelperViewer( - id = "helper", - helpLocation= system.file("characterization-www", "help-dechallengeRechallenge.html", package = utils::packageName()) - ), - - # input component module - inputSelectionViewer(id = ns('input-selection')), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection")), - - resultTableViewer(ns('tableResults')) + shiny::uiOutput(ns('warning')), - - ) + shinydashboard::box( + status = 'info', + width = '100%', + solidHeader = TRUE, + resultTableViewer(ns('tableResults')) + ) ) } - -#' The module server for exploring Dechallenge Rechallenge results -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler the connection to the prediction result database -#' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' -#' @return -#' The server to the Dechallenge Rechallenge module -#' -#' @export characterizationDechallengeRechallengeServer <- function( id, connectionHandler, - resultDatabaseSettings + resultDatabaseSettings, + targetId, + outcomeId ) { shiny::moduleServer( id, function(input, output, session) { - - # get the possible target ids - bothIds <- dechalRechalGetIds( - connectionHandler, - resultDatabaseSettings - ) - # input selection component - inputSelected <- inputSelectionServer( - id = "input-selection", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'targetId', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Target: ', - choices = bothIds$targetIds, - #choicesOpt = list(style = rep_len("color: black;", 999)), - selected = bothIds$targetIds[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'outcomeId', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Outcome: ', - choices = bothIds$outcomeIds, - #choicesOpt = list(style = rep_len("color: black;", 999)), - selected = bothIds$outcomeIds[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) + options <- shiny::reactive({ + characterizationGetCaseSeriesOptions( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId() ) - ) + }) + + # fetch data when targetId changes allData <-shiny::reactive({ getDechalRechalInputsData( - targetId = inputSelected()$targetId, - outcomeId = inputSelected()$outcomeId, + targetId = targetId(), + outcomeId = outcomeId(), connectionHandler = connectionHandler, resultDatabaseSettings ) }) + + + # warning when not unique + targetUniquePeople <- shiny::reactive({ + isCohortUniquePeople( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + cohortId = targetId() + ) + }) + + outcomeUniquePeople <- shiny::reactive({ + isCohortUniquePeople( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + cohortId = outcomeId() + ) + }) + + output$warning <- shiny::renderUI( + if(targetUniquePeople() || outcomeUniquePeople()){ + shinydashboard::box( + status = 'warning', + width = '100%', + title = shiny::span( shiny::icon("triangle-exclamation"),'Warnings'), + solidHeader = TRUE, + shiny::p( + ifelse(targetUniquePeople(), + 'WARNING: The target cohort does not have multiple records per person, so observing rechallenge attempts not possible.', + '') + ), + shiny::p( + ifelse(outcomeUniquePeople(), + 'WARNING: The outcome cohort does not have multiple records per person, so observing rechallenge attempts not possible.', + '') + ) + ) + } else{ + shiny::renderUI(shiny::div()) + } + ) - #databases(allData$databaseId) - #dechallengeStopInterval(allData$dechallengeStopInterval) - #dechallengeEvaluationWindow(allData$dechallengeEvaluationWindow) - - tableOutputs <- resultTableServer( - id = "tableResults", - df = allData, - colDefsInput = list( - targetCohortDefinitionId = reactable::colDef(show = F), - databaseId = reactable::colDef(show = F), - outcomeCohortDefinitionId = reactable::colDef(show = F), - - databaseName = reactable::colDef(name = 'Database'), - + + characteriationDechalRechalColDefs <- function(){ + result <- list( + databaseName = reactable::colDef( + header = withTooltip("Database", + "Name of the database"), + filterable = T + ), + databaseId = reactable::colDef( + show = F + ), + targetCohortDefinitionId = reactable::colDef( + show = F + ), + outcomeCohortDefinitionId = reactable::colDef( + show = F + ), + dechallengeStopInterval = reactable::colDef( + header = withTooltip("Dechallenge Stop Interval", + "An integer specifying the how much time to add to the cohort_end when determining whether the event starts during cohort and ends after"), + filterable = T + ), + dechallengeEvaluationWindow = reactable::colDef( + header = withTooltip("Dechallenge Evaluation Window", + "A period of time evaluated for outcome recurrence after discontinuation of exposure, among patients with challenge outcomes"), + filterable = T + ), + numExposureEras = reactable::colDef( + header = withTooltip("# of Exposure Eras", + "Distinct number of exposure events (i.e. drug eras) in a given target cohort"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + numPersonsExposed = reactable::colDef( + header = withTooltip("# of Exposed Persons", + "Distinct nuber of people exposed in target cohort. A person must have at least 1 day exposure to be included"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + numCases = reactable::colDef( + header = withTooltip("# of Cases", + "Distinct number of persons in outcome cohort. A person must have at least 1 day of observation time to be included"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + dechallengeAttempt = reactable::colDef( + header = withTooltip("# of Dechallenge Attempts", + "Distinct count of people with observable time after discontinuation of the exposure era during which the challenge outcome occurred"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + dechallengeFail = reactable::colDef( + header = withTooltip("# of Dechallenge Fails", + "Among people with challenge outcomes, the distinct number of people with outcomes during dechallengeEvaluationWindow"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + dechallengeSuccess = reactable::colDef( + header = withTooltip("# of Dechallenge Successes", + "Among people with challenge outcomes, the distinct number of people without outcomes during the dechallengeEvaluationWindow"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + rechallengeAttempt = reactable::colDef( + header = withTooltip("# of Rechallenge Attempts", + "Number of people with a new exposure era after the occurrence of an outcome during a prior exposure era"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + rechallengeFail = reactable::colDef( + header = withTooltip("# of Rechallenge Fails", + "Number of people with a new exposure era during which an outcome occurred, after the occurrence of an outcome during a prior exposure era"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), + rechallengeSuccess = reactable::colDef( + header = withTooltip("# of Rechallenge Successes", + "Number of people with a new exposure era during which an outcome did not occur, after the occurrence of an outcome during a prior exposure era"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else abs(value) + } + ), pctDechallengeAttempt = reactable::colDef( + header = withTooltip("% of Dechallenge Attempts", + "Percent of people with observable time after discontinuation of the exposure era during which the challenge outcome occurred"), + filterable = T, + #format = reactable::colFormat(digits = 2, percent = T), format = reactable::colFormat(digits = 2, percent = T) ), pctDechallengeSuccess = reactable::colDef( + header = withTooltip("% of Dechallenge Success", + "Among people with challenge outcomes, the percent of people with outcomes during dechallengeEvaluationWindow"), + filterable = T, format = reactable::colFormat(digits = 2, percent = T) ), pctDechallengeFail = reactable::colDef( + header = withTooltip("% of Dechallenge Fail", + "Among people with challenge outcomes, the percent of people without outcomes during the dechallengeEvaluationWindow"), + filterable = T, format = reactable::colFormat(digits = 2, percent = T) ), pctRechallengeAttempt = reactable::colDef( + header = withTooltip("% of Rechallenge Attempts", + "Percent of people with a new exposure era after the occurrence of an outcome during a prior exposure era"), + filterable = T, format = reactable::colFormat(digits = 2, percent = T) ), pctRechallengeSuccess = reactable::colDef( + header = withTooltip("% of Rechallenge Success", + "Percent of people with a new exposure era during which an outcome occurred, after the occurrence of an outcome during a prior exposure era"), + filterable = T, format = reactable::colFormat(digits = 2, percent = T) ), pctRechallengeFail = reactable::colDef( + header = withTooltip("% of Rechallenge Fail", + "Percent of people with a new exposure era during which an outcome did not occur, after the occurrence of an outcome during a prior exposure era"), + filterable = T, format = reactable::colFormat(digits = 2, percent = T) ) - ), + ) + return(result) + } + + tableOutputs <- resultTableServer( + id = "tableResults", + df = allData, + details = data.frame( + target = options()$targetName, + outcome = options()$outcomeName, + Analysis = 'Exposed Cases Summary - Dechallenge-Rechallenge' + ), + downloadedFileName = 'dechallege-rechallenge', + colDefsInput = characteriationDechalRechalColDefs(), addActions = c('fails') ) @@ -183,8 +273,8 @@ characterizationDechallengeRechallengeServer <- function( if(!is.null(tableOutputs$actionType())){ if(tableOutputs$actionType() == 'fails'){ result <- getDechalRechalFailData( - targetId = inputSelected()$targetId, - outcomeId = inputSelected()$outcomeId, + targetId = targetId(), + outcomeId = outcomeId(), databaseId = allData()$databaseId[tableOutputs$actionIndex()$index], # update? dechallengeStopInterval = allData()$dechallengeStopInterval[tableOutputs$actionIndex()$index], dechallengeEvaluationWindow = allData()$dechallengeEvaluationWindow[tableOutputs$actionIndex()$index], @@ -205,7 +295,7 @@ characterizationDechallengeRechallengeServer <- function( ) ) } else{ - showNotification("No fails to display") + shiny::showNotification("No fails to display") } } } @@ -227,6 +317,7 @@ characterizationDechallengeRechallengeServer <- function( ) } +# can delete? dechalRechalGetIds <- function( connectionHandler, resultDatabaseSettings @@ -376,6 +467,33 @@ getDechalRechalFailData <- function( } +isCohortUniquePeople <- function( + connectionHandler, + resultDatabaseSettings, + cohortId +) { + + sql <- "SELECT + cc.database_id, cc.cohort_id, cc.cohort_entries, cc.cohort_subjects + FROM @schema.@cg_table_prefixCOHORT_COUNT cc + where cc.cohort_id = @cohort_id + ;" + res <- tryCatch({connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + cohort_id = cohortId + )}, error = function(e){return(NULL)} + ) + + # if table is missing the warning will not happen + if(is.null(res)){ + return(T) + }else{ + return(sum(res$cohortEntries == res$cohortSubjects) == nrow(res)) + } +} + plotDechalRechal <- function( dechalRechalData, i = 1 diff --git a/R/characterization-incidence.R b/R/characterization-incidence.R index 8987653a..60a2d20b 100644 --- a/R/characterization-incidence.R +++ b/R/characterization-incidence.R @@ -38,43 +38,6 @@ as_ggplot <- function(x){ } -# is_null_unit <- function (x) -# { -# if (!grid::is.unit(x)) { -# return(FALSE) -# } -# all(grid::unitType(x) == "null") -# } -# -# force_panelsizes <- function(rows = NULL, cols = NULL, respect = NULL, total_width = NULL, total_height = NULL) { -# if (!is.null(rows) & !grid::is.unit(rows)) { -# rows <- grid::unit(rows, "null") -# } -# if (!is.null(cols) & !grid::is.unit(cols)) { -# cols <- grid::unit(cols, "null") -# } -# if (!is.null(total_width)) { -# if (grid::is.unit(cols) && !is_null_unit(cols)) { -# stop("Cannot set {.arg total_width} when {.arg cols} is not relative.") -# } -# if (!grid::is.unit(total_width)) { -# stop("{.arg total_width} must be a {.cls unit} object.") -# } -# rlang::arg_match0(grid::unitType(total_width), c("cm", "mm", "inches", "points")) -# } -# if (!is.null(total_height)) { -# if (grid::is.unit(rows) && !is_null_unit(rows)) { -# stop("Cannot set {.arg total_height} when {.arg rows} is not relative.") -# } -# if (!grid::is.unit(total_height)) { -# stop("{.arg total_height} must be a {.cls unit} object.") -# } -# rlang::arg_match0(grid::unitType(total_height), c("cm", "mm", "inches", "points")) -# } -# structure(list(rows = rows, cols = cols, respect = respect, total_width = total_width, total_height = total_height), class = "forcedsize") -# } - - # Define the custom age sorting function custom_age_sort <- function(age_categories) { # Extract the largest integer from each category @@ -87,29 +50,19 @@ custom_age_sort <- function(age_categories) { return(custom_order) } -base_breaks <- function(n = 10){ - function(x) { - axisTicks(log10(range(x, na.rm = TRUE)), log = TRUE, n = n) - } -} - break_setter = function(n = 5) { function(lims) {pretty(x = as.numeric(lims), n = n)} } - - - - #' The module viewer for exploring incidence results #' #' @details #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {Characterization} #' @return #' The user interface to the description incidence module #' @@ -117,19 +70,12 @@ break_setter = function(n = 5) { characterizationIncidenceViewer <- function(id) { ns <- shiny::NS(id) shiny::div( - - infoHelperViewer( - id = "helper", - helpLocation= system.file("characterization-www", "help-incidenceRate.html", package = utils::packageName()) - ), - inputSelectionViewer( - id = ns("input-selection-results") - ), + shiny::uiOutput(ns("inputOptions")), shiny::conditionalPanel( condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection-results")), + ns = ns, shiny::tabsetPanel( type = 'pills', @@ -284,7 +230,11 @@ characterizationIncidenceViewer <- function(id) { #' @param id the unique reference id for the module #' @param connectionHandler the connection to the prediction result database #' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' +#' @param parents a list of parent cohorts +#' @param parentIndex an integer specifying the parent index of interest +#' @param outcomes a reactive object specifying the outcomes of interest +#' @param targetIds a reactive vector of integer specifying the targetIds of interest +#' @family {Characterization} #' @return #' The server to the prediction incidence module #' @@ -292,494 +242,442 @@ characterizationIncidenceViewer <- function(id) { characterizationIncidenceServer <- function( id, connectionHandler, - resultDatabaseSettings + resultDatabaseSettings, + #options, # this gets overwritten in code below - why here? + parents, + parentIndex, # reactive + outcomes, # reactive + targetIds # reactive ) { shiny::moduleServer( id, function(input, output, session) { - ## ns <- session$ns - - options <- getIncidenceOptions( # written using getTargetOutcomes - connectionHandler, - resultDatabaseSettings - ) - - sortedAges <- custom_age_sort(options$ageGroupName) - - # Extract the integers from each TAR string - tarIntegers <- as.integer(gsub("[^0-9]", "", options$tar)) - # Sort the vector based on the extracted integers - sortedTars <- options$tar[order(tarIntegers)] - - # input selection component - inputSelectedResults <- inputSelectionServer( - id = "input-selection-results", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 12, - varName = 'firsttext', - inputReturn = T, - uiFunction = 'shiny::div', - uiInputs = list( - "Select Your Results", - style = "font-weight: bold; font-size: 20px; text-align: center; margin-bottom: 20px;" - ) - ), - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'targetIds', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Target: ', - choices = options$targetIds, - selected = options$targetIds[1], #default should be just one (the first) - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'outcomeIds', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Outcome: ', - choices = options$outcomeIds, - selected = options$outcomeIds[1], #default should be just one (the first) - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - # third row - createInputSetting( - rowNumber = 3, - columnWidth = 3, - varName = 'incidenceRateAgeFilter', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - collapse = T, - uiInputs = list( - label = 'Filter By Age Group: ', - choices = sortedAges, - selected = sortedAges, - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - - createInputSetting( - rowNumber = 3, - columnWidth = 3, - varName = 'incidenceRateGenderFilter', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - collapse = T, - uiInputs = list( - label = 'Filter By Sex: ', - choices = sort(options$genderName, decreasing = F), - selected = options$genderName, - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - createInputSetting( - rowNumber = 3, - columnWidth = 3, - varName = 'incidenceRateCalendarFilter', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - collapse = T, - uiInputs = list( - label = 'Filter By Start Year: ', - choices = sort(options$startYear, decreasing = T), - selected = options$startYear, - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - createInputSetting( - rowNumber = 3, - columnWidth = 3, - varName = 'incidenceRateTarFilter', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Select Time at risk (TAR)', - choices = sortedTars, - selected = sortedTars[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) + + ciOptions <- getIncidenceOptions(connectionHandler, resultDatabaseSettings) + + output$inputOptions <- shiny::renderUI({ + shinydashboard::box( + collapsible = TRUE, + title = "Options", + width = "100%", + + shiny::div( + "Select Your Results", + style = "font-weight: bold; font-size: 20px; text-align: center; margin-bottom: 20px;" + ), + + shiny::selectInput( + inputId = session$ns('outcomeIds'), + label = 'Outcome: ', + choices = outcomes(), + selected = 1, + multiple = T, + selectize = TRUE, + width = NULL, + size = NULL + ), + + shinyWidgets::pickerInput( + inputId = session$ns('databaseSelector'), + label = 'Filter By Database: ', + choices = ciOptions$databases, + selected = ciOptions$databases, + multiple = T, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 + ) + ), + + shinyWidgets::pickerInput( + inputId = session$ns('ageIds'), + label = 'Filter By Age Group: ', + choices = ciOptions$ageGroup, + selected = ciOptions$ageGroup, + multiple = T, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 + ) + ), + + shinyWidgets::pickerInput( + inputId = session$ns('sexIds'), + label = 'Filter By Sex: ', + choices = ciOptions$sex, + selected = ciOptions$sex, + multiple = T, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 + ) + ), + + shinyWidgets::pickerInput( + inputId = session$ns('startYears'), + label = 'Filter By Start Year: ', + choices = ciOptions$startYear, + selected = ciOptions$startYear, + multiple = T, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) + ), + + shinyWidgets::pickerInput( + inputId = session$ns('tars'), + label = 'Select Time at risk (TAR)', + choices = ciOptions$tar, + selected = ciOptions$tar[1], + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 + ) + ), + + shiny::actionButton( + inputId = session$ns('generate'), + label = 'Generate', + icon = shiny::icon('redo') ) ) - - # 4th row text - inputSelectedCustomPlot <- inputSelectionServer( - id = "input-selection-custom-plot", - inputSettingList = list( - createInputSetting( - rowNumber = 4, - columnWidth = 12, - varName = 'secondtext', - inputReturn = T, - uiFunction = 'shiny::div', - uiInputs = list( - "Configure Your Plot", - style = "font-weight: bold; font-size: 20px; text-align: center; margin-bottom: 20px; margin-top: 20px; " - ) - ), - - # plotting settings 5th row - - createInputSetting( - rowNumber = 5, - columnWidth = 3, - varName = 'plotYAxis', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Y Axis (Numeric) ', - choices = options$irPlotNumericChoices, - selected = "incidenceRateP100py", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + }) + + outcomeIds <- shiny::reactiveVal(NULL) + incidenceRateTarFilter <- shiny::reactiveVal(NULL) + incidenceRateCalendarFilter <- shiny::reactiveVal(NULL) + incidenceRateAgeFilter <- shiny::reactiveVal(NULL) + incidenceRateGenderFilter <- shiny::reactiveVal(NULL) + incidenceRateDbFilter <- shiny::reactiveVal(NULL) + shiny::observeEvent(input$generate,{ + incidenceRateTarFilter(names(ciOptions$tar)[(ciOptions$tar == input$tars)]) # filter needs actual value + incidenceRateCalendarFilter(input$startYears) + incidenceRateAgeFilter(input$ageIds) + incidenceRateGenderFilter(input$sexIds) + incidenceRateDbFilter(input$databaseSelector) + outcomeIds(input$outcomeIds) + }) + + + inputSelectedCustomPlot <- inputSelectionServer( + id = "input-selection-custom-plot", + inputSettingList = list( + createInputSetting( + rowNumber = 4, + columnWidth = 12, + varName = 'secondtext', + inputReturn = T, + uiFunction = 'shiny::div', + uiInputs = list( + "Configure Your Plot", + style = "font-weight: bold; font-size: 20px; text-align: center; margin-bottom: 20px; margin-top: 20px; " + ) + ), + + # plotting settings 5th row + + createInputSetting( + rowNumber = 5, + columnWidth = 3, + varName = 'plotYAxis', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'Y Axis (Numeric) ', + choices = ciOptions$irPlotNumericChoices, + selected = "incidenceRateP100py", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - - createInputSetting( - rowNumber = 5, - columnWidth = 3, - varName = 'plotXAxis', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'X Axis (Categorical) ', - choices = options$irPlotCategoricalChoices, - selected = "startYear", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + ) + ), + + createInputSetting( + rowNumber = 5, + columnWidth = 3, + varName = 'plotXAxis', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'X Axis (Categorical) ', + choices = ciOptions$irPlotCategoricalChoices, + selected = "startYear", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - - createInputSetting( - rowNumber = 5, - columnWidth = 3, - varName = 'plotXTrellis', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Row Trellis (Categorical) ', - choices = options$irPlotCategoricalChoices, - selected = "targetName", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + ) + ), + + createInputSetting( + rowNumber = 5, + columnWidth = 3, + varName = 'plotXTrellis', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'Row Trellis (Categorical) ', + choices = ciOptions$irPlotCategoricalChoices, + selected = "targetName", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - - createInputSetting( - rowNumber = 5, - columnWidth = 3, - varName = 'plotYTrellis', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Column Trellis (Categorical)', - choices = options$irPlotCategoricalChoices, - selected = "outcomeName", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + ) + ), + + createInputSetting( + rowNumber = 5, + columnWidth = 3, + varName = 'plotYTrellis', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'Column Trellis (Categorical)', + choices = ciOptions$irPlotCategoricalChoices, + selected = "outcomeName", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - - # row 6 - - createInputSetting( - rowNumber = 6, - columnWidth = 3, - varName = 'plotColor', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Color (Categorical)', - choices = options$irPlotCategoricalChoices, - selected = "cdmSourceAbbreviation", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + ) + ), + + # row 6 + + createInputSetting( + rowNumber = 6, + columnWidth = 3, + varName = 'plotColor', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'Color (Categorical)', + choices = ciOptions$irPlotCategoricalChoices, + selected = "cdmSourceAbbreviation", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - createInputSetting( - rowNumber = 6, - columnWidth = 3, - varName = 'plotSize', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Plot Point Size (Numeric)', - choices = options$irPlotNumericChoices, - selected = "outcomes", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + ) + ), + createInputSetting( + rowNumber = 6, + columnWidth = 3, + varName = 'plotSize', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'Plot Point Size (Numeric)', + choices = ciOptions$irPlotNumericChoices, + selected = "outcomes", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - createInputSetting( - rowNumber = 6, - columnWidth = 3, - varName = 'plotShape', - uiFunction = 'shinyWidgets::pickerInput', - updateFunction = 'shinyWidgets::updatePickerInput', - uiInputs = list( - label = 'Plot Point Shape (Categorical)', - choices = options$irPlotCategoricalChoices, - selected = "genderName", - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - dropupAuto = TRUE, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) + ) + ), + createInputSetting( + rowNumber = 6, + columnWidth = 3, + varName = 'plotShape', + uiFunction = 'shinyWidgets::pickerInput', + updateFunction = 'shinyWidgets::updatePickerInput', + uiInputs = list( + label = 'Plot Point Shape (Categorical)', + choices = ciOptions$irPlotCategoricalChoices, + selected = "genderName", + multiple = F, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + dropupAuto = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 ) - ), - - createInputSetting( - rowNumber = 6, - columnWidth = 3, - varName = 'irYscaleFixed', - uiFunction = 'shiny::checkboxInput', - uiInputs = list( - label = "Use same y-axis scale across plots?" - ) ) - + ), - + createInputSetting( + rowNumber = 6, + columnWidth = 3, + varName = 'irYscaleFixed', + uiFunction = 'shiny::checkboxInput', + uiInputs = list( + label = "Use same y-axis scale across plots?" ) + ) ) + ) - filteredData <- shiny::reactive( - { - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds) - ) { - return(data.frame()) - } - - else if(inputSelectedResults()$targetIds==inputSelectedResults()$outcomeIds && - length(inputSelectedResults()$targetIds)==1 && length(inputSelectedResults()$outcomeIds)==1 - ){ - shiny::validate("Target and outcome cohorts must differ from each other. Make a different selection.") - } - - else { - getIncidenceData(targetIds = inputSelectedResults()$targetIds, - outcomeIds = inputSelectedResults()$outcomeIds, - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) %>% + extractedData <- shiny::reactiveVal() + shiny::observeEvent(input$generate , + { + if (is.null(targetIds()) | + is.null(outcomeIds()) + ) { + shiny::validate("Please wait...") + } + + else if(targetIds()[1] == outcomeIds()[1] && + length(targetIds())==1 && length(outcomeIds())==1 + ){ + shiny::validate("Target and outcome cohorts must differ from each other. Make a different selection.") + } + + else { + result <- getIncidenceData(targetIds = targetIds(), + outcomeIds = outcomeIds(), + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings + ) + extractedData(result) + } + } + ) + + filteredData <- shiny::reactive({ + shiny::req(nrow(extractedData() > 0)) + if(nrow(extractedData()) > 0){ + extractedData() %>% dplyr::relocate("tar", .before = "outcomes") %>% dplyr::mutate(incidenceProportionP100p = as.numeric(.data$incidenceProportionP100p), incidenceRateP100py = as.numeric(.data$incidenceRateP100py), dplyr::across(dplyr::where(is.numeric), round, 4), - targetIdShort = paste("C", .data$targetCohortDefinitionId, sep = "-"), - outcomeIdShort = paste("C", .data$outcomeCohortDefinitionId, sep = "-")) %>% - dplyr::filter(.data$ageGroupName %in% !!inputSelectedResults()$incidenceRateAgeFilter & - .data$genderName %in% !!inputSelectedResults()$incidenceRateGenderFilter & - .data$startYear %in% !!inputSelectedResults()$incidenceRateCalendarFilter + targetNameShort = paste("C", .data$targetCohortDefinitionId, sep = "-"), + outcomeNameShort = paste("C", .data$outcomeCohortDefinitionId, sep = "-")) %>% + dplyr::filter(.data$ageGroupId %in% !! incidenceRateAgeFilter() & + .data$genderId %in% !! incidenceRateGenderFilter() & + .data$startYear %in% !! incidenceRateCalendarFilter() & + .data$tar %in% incidenceRateTarFilter() & + .data$cdmSourceAbbreviation %in% !! incidenceRateDbFilter() ) %>% - dplyr::relocate("targetIdShort", .after = "targetName") %>% - dplyr::relocate("outcomeIdShort", .after = "outcomeName") - } + dplyr::relocate("targetName", .after = "cdmSourceAbbreviation") %>% + dplyr::relocate("outcomeName", .after = "targetName") %>% + dplyr::relocate("targetNameShort", .after = "targetName") %>% + dplyr::relocate("outcomeNameShort", .after = "outcomeName") } - ) - - filteredDataAggregateForPlot <- shiny::reactive( - { - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds) - ) { - return(data.frame()) - } - - else if(inputSelectedResults()$targetIds==inputSelectedResults()$outcomeIds && - length(inputSelectedResults()$targetIds)==1 && length(inputSelectedResults()$outcomeIds)==1 - ){ - shiny::validate("Target and outcome cohorts must differ from each other. Make a different selection.") - } - - else { - getIncidenceData(targetIds = inputSelectedResults()$targetIds, - outcomeIds = inputSelectedResults()$outcomeIds, - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) %>% - dplyr::relocate("tar", .before = "outcomes") %>% - dplyr::mutate(incidenceProportionP100p = as.numeric(.data$incidenceProportionP100p), - incidenceRateP100py = as.numeric(.data$incidenceRateP100py), - dplyr::across(dplyr::where(is.numeric), round, 4), - targetIdShort = paste("C", .data$targetCohortDefinitionId, sep = "-"), - outcomeIdShort = paste("C", .data$outcomeCohortDefinitionId, sep = "-")) %>% - dplyr::relocate("targetIdShort", .after = "targetName") %>% - dplyr::relocate("outcomeIdShort", .after = "outcomeName") + }) - } + filteredDataAggregateForPlot <- shiny::reactive({ + if(nrow(extractedData()) > 0){ + extractedData() %>% + dplyr::relocate("tar", .before = "outcomes") %>% + dplyr::mutate(incidenceProportionP100p = as.numeric(.data$incidenceProportionP100p), + incidenceRateP100py = as.numeric(.data$incidenceRateP100py), + dplyr::across(dplyr::where(is.numeric), round, 4), + targetNameShort = paste("C", .data$targetCohortDefinitionId, sep = "-"), + outcomeNameShort = paste("C", .data$outcomeCohortDefinitionId, sep = "-")) %>% + dplyr::relocate("targetNameShort", .after = "targetName") %>% + dplyr::relocate("outcomeNameShort", .after = "outcomeName") } - ) - - - - incidenceColList <- ParallelLogger::loadSettingsFromJson( - system.file("components-columnInformation", - "characterization-incidence-colDefs.json", - package = "OhdsiShinyModules" - ) - ) + }) - ## CHECK - caused error for me but it is in Nate's latest code - class(incidenceColList$genderName$filterMethod) <- "JS_EVAL" - - renderIrTable <- shiny::reactive( - { - filteredData() - } - ) + incidenceColList <- .createCiColDefList() resultTableServer( id = "incidenceRateTable", - df = renderIrTable, - selectedCols = c("cdmSourceAbbreviation", "targetName", "targetIdShort", "outcomeName", "outcomeIdShort", + df = filteredData, + selectedCols = c("cdmSourceAbbreviation", "targetName", "targetNameShort", "outcomeName", "outcomeNameShort", "ageGroupName", "genderName", "startYear", "tar", "outcomes", "incidenceProportionP100p", "incidenceRateP100py"), sortedCols = c("ageGroupName", "genderName", "startYear", "incidenceRateP100py"), elementId = "incidence-select", colDefsInput = incidenceColList, downloadedFileName = "incidenceRateTable-" - ) - + ) + '%!in%' <- function(x,y)!('%in%'(x,y)) - + #ir plots - irPlotCustom <- shiny::reactive( + irPlotCustom <- shiny::reactive( # observeEvent generate instead? { - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { + if (is.null(targetIds()) | + is.null(outcomeIds())) { return(data.frame()) } + if(nrow(filteredData()) == 0){ + return(FALSE) + } - ifelse(inputSelectedResults()$incidenceRateTarFilter %in% filteredData()$tar, - plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter), - shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") + ifelse(incidenceRateTarFilter() %in% filteredData()$tar, + plotData <- filteredData() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()) %>% + dplyr::mutate(targetLabel = paste(.data$targetNameShort, " = ", .data$targetName), + outcomeLabel = paste(.data$outcomeNameShort, " = ", .data$outcomeName) + ), + shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") ) - + # Take the specific tar value you want to plot tar_value <- unique(plotData$tar)[1] @@ -787,9 +685,9 @@ characterizationIncidenceServer <- function( plotData$tooltip <- with(plotData, paste( "Incidence Rate:", incidenceRateP100py, "
", "Incidence Proportion:", incidenceProportionP100p, "
", - "Outcome ID:", outcomeIdShort, "
", + "Outcome ID:", outcomeNameShort, "
", "Outcome Name:", outcomeName, "
", - "Target ID:", targetIdShort, "
", + "Target ID:", targetNameShort, "
", "Target Name:", targetName, "
", "Data Source:", cdmSourceAbbreviation, "
", "Calendar Year:", startYear, "
", @@ -801,7 +699,7 @@ characterizationIncidenceServer <- function( "Outcomes:", outcomes )) - + # Check if color, size, shape, and trellis variables are selected, and set aesthetics accordingly color_aesthetic <- NULL size_aesthetic <- NULL @@ -809,19 +707,29 @@ characterizationIncidenceServer <- function( trellis_aesthetic_x <- NULL trellis_aesthetic_y <- NULL + # Get unique target and outcome labels + unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) + unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) + + # Combine all unique values into a final vector + final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) + + # Create the caption text with line breaks + caption_text <- paste(final_unique_values, collapse = "\n") + if (inputSelectedCustomPlot()$plotColor == "Target Cohort" | inputSelectedCustomPlot()$plotColor == "Outcome Cohort") { color_aesthetic <- if (inputSelectedCustomPlot()$plotColor == "Target Cohort") { - dplyr::vars(.data$targetIdShort) + dplyr::vars(.data$targetNameShort) } else if (inputSelectedCustomPlot()$plotColor == "Outcome Cohort") { - dplyr::vars(.data$outcomeIdShort) + dplyr::vars(.data$outcomeNameShort) } } if (inputSelectedCustomPlot()$plotShape == "Target Cohort" | inputSelectedCustomPlot()$plotShape == "Outcome Cohort") { shape_aesthetic <- if (inputSelectedCustomPlot()$plotShape == "Target Cohort") { - dplyr::vars(.data$targetIdShort) + dplyr::vars(.data$targetNameShort) } else if (inputSelectedCustomPlot()$plotShape == "Outcome Cohort") { - dplyr::vars(.data$outcomeIdShort) + dplyr::vars(.data$outcomeNameShort) } } @@ -868,7 +776,7 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis=="targetName" & inputSelectedCustomPlot()$plotXTrellis!="outcomeName" & inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$targetIdShort), + rows = dplyr::vars(.data$targetNameShort), cols = dplyr::vars(.data[[inputSelectedCustomPlot()$plotYTrellis]]), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + @@ -879,7 +787,7 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis!="targetName" & inputSelectedCustomPlot()$plotXTrellis=="outcomeName" & inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$outcomeIdShort), + rows = dplyr::vars(.data$outcomeNameShort), cols = dplyr::vars(.data[[inputSelectedCustomPlot()$plotYTrellis]]), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + @@ -891,7 +799,7 @@ characterizationIncidenceServer <- function( inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis=="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( rows = dplyr::vars(.data[[inputSelectedCustomPlot()$plotXTrellis]]), - cols = dplyr::vars(.data$targetIdShort), + cols = dplyr::vars(.data$targetNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -902,7 +810,7 @@ characterizationIncidenceServer <- function( inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis=="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( rows = dplyr::vars(.data[[inputSelectedCustomPlot()$plotXTrellis]]), - cols = dplyr::vars(.data$outcomeIdShort), + cols = dplyr::vars(.data$outcomeNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -912,8 +820,8 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis=="targetName" & inputSelectedCustomPlot()$plotXTrellis!="outcomeName" & inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis=="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$targetIdShort), - cols = dplyr::vars(.data$targetIdShort), + rows = dplyr::vars(.data$targetNameShort), + cols = dplyr::vars(.data$targetNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -923,8 +831,8 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis=="targetName" & inputSelectedCustomPlot()$plotXTrellis!="outcomeName" & inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis=="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$targetIdShort), - cols = dplyr::vars(.data$outcomeIdShort), + rows = dplyr::vars(.data$targetNameShort), + cols = dplyr::vars(.data$outcomeNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -934,8 +842,8 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis!="targetName" & inputSelectedCustomPlot()$plotXTrellis=="outcomeName" & inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis=="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$outcomeIdShort), - cols = dplyr::vars(.data$targetIdShort), + rows = dplyr::vars(.data$outcomeNameShort), + cols = dplyr::vars(.data$targetNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -945,8 +853,8 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis!="targetName" & inputSelectedCustomPlot()$plotXTrellis=="outcomeName" & inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis=="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$outcomeIdShort), - cols = dplyr::vars(.data$outcomeIdShort), + rows = dplyr::vars(.data$outcomeNameShort), + cols = dplyr::vars(.data$outcomeNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -957,7 +865,7 @@ characterizationIncidenceServer <- function( inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis=="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( rows = NULL, - cols = dplyr::vars(.data$outcomeIdShort), + cols = dplyr::vars(.data$outcomeNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -968,7 +876,7 @@ characterizationIncidenceServer <- function( inputSelectedCustomPlot()$plotYTrellis!="(None)" & inputSelectedCustomPlot()$plotYTrellis=="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( rows = NULL, - cols = dplyr::vars(.data$targetIdShort), + cols = dplyr::vars(.data$targetNameShort), scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + ggplot2::theme(strip.background = ggplot2::element_blank(), @@ -1000,7 +908,7 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis=="targetName" & inputSelectedCustomPlot()$plotXTrellis!="outcomeName" & inputSelectedCustomPlot()$plotYTrellis=="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$targetIdShort), + rows = dplyr::vars(.data$targetNameShort), cols = NULL, scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + @@ -1011,7 +919,7 @@ characterizationIncidenceServer <- function( else if (inputSelectedCustomPlot()$plotXTrellis!="(None)" & inputSelectedCustomPlot()$plotXTrellis!="targetName" & inputSelectedCustomPlot()$plotXTrellis=="outcomeName" & inputSelectedCustomPlot()$plotYTrellis=="(None)" & inputSelectedCustomPlot()$plotYTrellis!="targetName" & inputSelectedCustomPlot()$plotYTrellis!="outcomeName") { base_plot <- base_plot + ggplot2::facet_grid( - rows = dplyr::vars(.data$outcomeIdShort), + rows = dplyr::vars(.data$outcomeNameShort), cols = NULL, scales = if (inputSelectedCustomPlot()$irYscaleFixed) "fixed" else "free_y" ) + @@ -1031,15 +939,17 @@ characterizationIncidenceServer <- function( } + + # Rest of your ggplot code remains the same base_plot <- base_plot + ggplot2::labs( title = paste("Incidence Rate for TAR:", tar_value), - x = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% inputSelectedCustomPlot()$plotXAxis]), - y = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% inputSelectedCustomPlot()$plotYAxis]), - color = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% inputSelectedCustomPlot()$plotColor]), - size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% inputSelectedCustomPlot()$plotSize]), - shape = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% inputSelectedCustomPlot()$plotShape] - ) + x = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% inputSelectedCustomPlot()$plotXAxis]), + y = names(ciOptions$irPlotNumericChoices[ciOptions$irPlotNumericChoices %in% inputSelectedCustomPlot()$plotYAxis]), + color = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% inputSelectedCustomPlot()$plotColor]), + size = names(ciOptions$irPlotNumericChoices[ciOptions$irPlotNumericChoices %in% inputSelectedCustomPlot()$plotSize]), + shape = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% inputSelectedCustomPlot()$plotShape]), + caption = caption_text ) + ggplot2::scale_y_log10(breaks = scales::breaks_log(n=6)) + ggplot2::guides(alpha = "none") + # Remove the alpha legend @@ -1054,45 +964,14 @@ characterizationIncidenceServer <- function( legend.box.spacing = ggplot2::unit(3, "pt"), legend.text = ggplot2::element_text(size=10), legend.title = ggplot2::element_text(size=16, face = "bold"), - #plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12), - #legend.spacing.x = ggplot2::unit(2.0, 'cm'), - # legend.box = "horizontal", - # legend.key.size = ggplot2::unit(3, 'points'), #change legend key size - # legend.title = ggplot2::element_text(size=30), #change legend title font size - # legend.text = ggplot2::element_text(size=20), panel.spacing = ggplot2::unit(2, "lines"), - # strip.background = ggplot2::element_blank(), - strip.text = ggplot2::element_text(face="bold", size = 14) + strip.text = ggplot2::element_text(face="bold", size = 14), + plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, + margin = ggplot2::margin(t = 20)) ) + ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), color = ggplot2::guide_legend(override.aes = list(size = 6))) - # - # # Create a custom color scale - # color_scale <- RColorBrewer::colorRampPalette(brewer.pal(9, "YlOrRd"))(100) - # - # # Create a faceted heatmap by outcome and data source - # p <- ggplot2::ggplot(data = plotData, aes(x = targetIdShort, y = ageGroupName, - # text = paste("Outcome ID:", outcomeIdShort, "
Outcome:", outcomeName, - # "
Target ID:", targetIdShort, "
Target:", targetName, - # "
TAR:", tar, "
Age:", ageGroupName, "
Sex:", genderName, - # "
TAR:", - # "
Incidence Rate:", incidenceRateP100py))) + - # ggplot2::geom_tile(aes(fill = incidenceRateP100py), color = "white") + - # ggplot2::scale_fill_gradient(colors = color_scale, name = "Incidence Rate") + - # ggplot2::labs(title = "Incidence Rate by Strata Variables", - # x = "Target Population Cohort", - # y = "Age Category") + - # ggplot2::theme_minimal() + - # ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 45, hjust = 1), - # plot.title = element_text(hjust = 0.5)) + - # ggplot2::facet_grid(outcome ~ data_source, scales = "free_x", space = "free_x") - # - # # Convert the ggplot plot to a Plotly plot - # p <- plotly::ggplotly(p) - # - # - } @@ -1109,52 +988,55 @@ characterizationIncidenceServer <- function( #render the event reactive incidence plot without legend renderIrPlotCustomNoLegend <- shiny::reactive( { - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { + if (is.null(targetIds()) | + is.null(outcomeIds())) { shiny::validate("Please select at least one target and one outcome.") } + if(nrow(filteredData()) == 0){ + shiny::validate("No results.") + } else { - plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter) - - # Get the number of facets in both rows and columns - num_rows <- length(unique(plotData[[inputSelectedCustomPlot()$plotXTrellis]])) - num_cols <- length(unique(plotData[[inputSelectedCustomPlot()$plotYTrellis]])) - - max_length <- max(nchar(unique(inputSelectedCustomPlot()$plotXAxis))) - - base_plot <- irPlotCustom() - - p <- base_plot + - ggplot2::guides(shape = FALSE, color = FALSE, size = FALSE) - - # Convert the ggplot to a plotly object - p <- plotly::ggplotly(p, tooltip = "text") - - # Center the main plot title - p <- p %>% plotly::layout(title = list(x = 0.5, xanchor = "center"), - margin = list(t = 75, b = 150, l = 125, r = 25), - #add several xaxis placeholders in case row trellis has several distinct values (this is a workaround) - xaxis = list(tickangle = 45), - xaxis2 = list(tickangle = 45), - xaxis3 = list(tickangle = 45), - xaxis4 = list(tickangle = 45), - xaxis5 = list(tickangle = 45), - xaxis6 = list(tickangle = 45), - xaxis7 = list(tickangle = 45), - xaxis8 = list(tickangle = 45), - xaxis9 = list(tickangle = 45), - xaxis10 = list(tickangle = 45), - xaxis11 = list(tickangle = 45), - xaxis12 = list(tickangle = 45), - xaxis13 = list(tickangle = 45), - xaxis14 = list(tickangle = 45), - xaxis15 = list(tickangle = 45) - ) - - return(p) - + plotData <- filteredData() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()) + + # Get the number of facets in both rows and columns + num_rows <- length(unique(plotData[[inputSelectedCustomPlot()$plotXTrellis]])) + num_cols <- length(unique(plotData[[inputSelectedCustomPlot()$plotYTrellis]])) + + max_length <- max(nchar(unique(inputSelectedCustomPlot()$plotXAxis))) + + base_plot <- irPlotCustom() + + p <- base_plot + + ggplot2::guides(shape = FALSE, color = FALSE, size = FALSE) + + # Convert the ggplot to a plotly object + p <- plotly::ggplotly(p, tooltip = "text") + + # Center the main plot title + p <- p %>% plotly::layout(title = list(x = 0.5, xanchor = "center"), + margin = list(t = 75, b = 150, l = 125, r = 25), + #add several xaxis placeholders in case row trellis has several distinct values (this is a workaround) + xaxis = list(tickangle = 45), + xaxis2 = list(tickangle = 45), + xaxis3 = list(tickangle = 45), + xaxis4 = list(tickangle = 45), + xaxis5 = list(tickangle = 45), + xaxis6 = list(tickangle = 45), + xaxis7 = list(tickangle = 45), + xaxis8 = list(tickangle = 45), + xaxis9 = list(tickangle = 45), + xaxis10 = list(tickangle = 45), + xaxis11 = list(tickangle = 45), + xaxis12 = list(tickangle = 45), + xaxis13 = list(tickangle = 45), + xaxis14 = list(tickangle = 45), + xaxis15 = list(tickangle = 45) + ) + + return(p) + } } @@ -1163,14 +1045,17 @@ characterizationIncidenceServer <- function( #render the event reactive incidence plot without legend renderIrPlotCustom <- shiny::reactive( { - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { + if (is.null(targetIds()) | + is.null(outcomeIds())) { shiny::validate("Please select at least one target and one outcome.") } + if(nrow(filteredData()) == 0){ + shiny::validate("No results.") + } else { plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter) + dplyr::filter(.data$tar %in% incidenceRateTarFilter()) # Get the number of facets in both rows and columns num_rows <- length(unique(plotData[[inputSelectedCustomPlot()$plotXTrellis]])) @@ -1224,126 +1109,124 @@ characterizationIncidenceServer <- function( #by age - renderIrPlotStandardAge <- shiny::reactive( - { - - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { - return(data.frame()) - } - - ifelse(inputSelectedResults()$incidenceRateTarFilter %in% filteredData()$tar, - plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter), - shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") - ) - - #add check to make sure facetted plots fit nicely in plotting window (600px). this is currently nrow * ncol in facet_wrap() - ifelse(length(inputSelectedResults()$targetId) * length(inputSelectedResults()$outcomeId) <= 10, - plotData <- filteredData(), - shiny::validate("Too many Target-Outcome pairs selected to plot efficiently. Please choose fewer targets and/or outcomes.") + renderIrPlotStandardAge <- shiny::reactive({ + + + if (is.null(targetIds()) | + is.null(outcomeIds())) { + return(data.frame()) + } + if(nrow(filteredData()) == 0){ + shiny::validate("No results.") + } + + ifelse(incidenceRateTarFilter() %in% filteredData()$tar, + plotData <- filteredData() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()), + shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") + ) + + #add check to make sure facetted plots fit nicely in plotting window (600px). this is currently nrow * ncol in facet_wrap() + ifelse(length(targetIds()) * length(outcomeIds()) <= 10, + plotData <- filteredData(), + shiny::validate("Too many Target-Outcome pairs selected to plot efficiently. Please choose fewer targets and/or outcomes.") + ) + + #add check to make sure "> 1 distinct age is selected for by age plot"any" is in selection for year and sex + ifelse("Any" %in% incidenceRateCalendarFilter() & "Any" %in% incidenceRateGenderFilter(), + plotData <- filteredData(), + shiny::validate("This standard plot is designed to show results aggregated over all (`Any`) year and sex categories. Please make sure you have selected `Any` in the `Select your results` section above for these variables.") + ) + + plotData <- plotData %>% + dplyr::filter(#ageGroupName != "Any" & + .data$genderName == "Any" & + .data$startYear == "Any") %>% + dplyr::mutate(targetLabel = paste(.data$targetNameShort, " = ", .data$targetName), + outcomeLabel = paste(.data$outcomeNameShort, " = ", .data$outcomeName), + ageGroupName = factor(.data$ageGroupName, levels = custom_age_sort(.data$ageGroupName), ordered = TRUE) + ) %>% + dplyr::rename(Target = "targetNameShort", + Outcome = "outcomeNameShort", + Age = "ageGroupName") + + # Get unique target and outcome labels + unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) + unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) + + # Combine all unique values into a final vector + final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) + + # Create the caption text with line breaks + caption_text <- paste(final_unique_values, collapse = "\n") + + + # Take the specific tar value you want to plot + tar_value <- unique(plotData$tar)[1] + + + base_plot <- ggplot2::ggplot( + data = plotData, + ggplot2::aes(x = .data$Age, + y = .data$incidenceRateP100py, + color = .data$cdmSourceAbbreviation ) - - plotData <- plotData %>% - dplyr::filter(ageGroupName != "Any" & - genderName == "Any" & - startYear == "Any") %>% - dplyr::mutate(targetLabel = paste(targetIdShort, " = ", targetName), - outcomeLabel = paste(outcomeIdShort, " = ", outcomeName), - ageGroupName = factor(ageGroupName, levels = custom_age_sort(ageGroupName), ordered = TRUE) - ) %>% - dplyr::rename("Target" = targetIdShort, - "Outcome" = outcomeIdShort, - "Age" = ageGroupName) - - # plotHeightStandardAgeSex <- shiny::reactive({ - # paste(sum(length(unique(plotData$targetLabel)), length(unique(plotData$Age)), -3)*100, "px", sep="") - # }) - - # Get unique target and outcome labels - unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) - unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) - - # Combine all unique values into a final vector - final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) - - # Create the caption text with line breaks - caption_text <- paste(final_unique_values, collapse = "\n") - - - # Take the specific tar value you want to plot - tar_value <- unique(plotData$tar)[1] - - - base_plot <- ggplot2::ggplot( - data = plotData, - ggplot2::aes(x = Age, - y = incidenceRateP100py, - color = cdmSourceAbbreviation - ) + ) + + ggplot2::geom_point( + ggplot2::aes(size = 3) ) + - ggplot2::geom_point( - ggplot2::aes(size = 3) - ) + - #geom_jitter() + - #scale_size_continuous(range = c(5,15)) + - ggplot2::scale_colour_brewer(palette = "Dark2") + - ggplot2::facet_wrap( - Target~Outcome, - labeller = "label_both", - scales = "free_x", - nrow = 2, - ncol = 5 - #, - #strip.position = "right" - ) + - ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), - n.breaks = 4) - - base_plot <- base_plot + ggplot2::labs( - title = paste("Incidence Rate for Time at Risk:", tar_value), - x = paste(names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "ageGroupName"]), "\n"), - y = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "incidenceRateP100py"]), - color = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), - #size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "outcomes"]), - #shape = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "genderName"]), - caption = caption_text - ) + - ggplot2::guides(alpha = "none", size = "none") + # Remove the alpha and size legend - ggplot2::theme_bw() + - ggplot2::theme( - plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), - plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), - axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), - axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), - axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), - axis.text.y = ggplot2::element_text(size = 14), - legend.position = "bottom", - legend.box.spacing = ggplot2::unit(3, "pt"), - legend.text = ggplot2::element_text(size=10), - legend.title = ggplot2::element_text(size=16, face = "bold"), - legend.title.align = 0.5, - plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, - margin = ggplot2::margin(t = 20)), - #legend.spacing.x = ggplot2::unit(2.0, 'cm'), - # legend.box = "horizontal", - # legend.key.size = ggplot2::unit(3, 'points'), #change legend key size - # legend.title = ggplot2::element_text(size=30), #change legend title font size - # legend.text = ggplot2::element_text(size=20), - panel.spacing = ggplot2::unit(2, "lines"), - # strip.background = ggplot2::element_blank(), - strip.text = ggplot2::element_text(face="bold", size = 14), - strip.background = ggplot2::element_blank(), - strip.clip = "off" - ) + - ggplot2::guides(#shape = ggplot2::guide_legend(override.aes = list(size = 6)), - color = ggplot2::guide_legend(override.aes = list(size = 6)) - ) - - return(base_plot) - - } - ) + #geom_jitter() + + #scale_size_continuous(range = c(5,15)) + + ggplot2::scale_colour_brewer(palette = "Paired") + + ggplot2::facet_wrap( + Target~Outcome, + labeller = "label_both", + scales = "free_x", + nrow = 2, + ncol = 5 + #, + #strip.position = "right" + ) + + ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), + n.breaks = 4) + + base_plot <- base_plot + ggplot2::labs( + title = paste("Incidence Rate for Time at Risk:", tar_value), + x = paste(names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "ageGroupName"]), "\n"), + y = names(ciOptions$irPlotNumericChoices[ciOptions$irPlotNumericChoices %in% "incidenceRateP100py"]), + color = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), + #size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "outcomes"]), + #shape = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "genderName"]), + caption = caption_text + ) + + ggplot2::guides(alpha = "none", size = "none") + # Remove the alpha and size legend + ggplot2::theme_bw() + + ggplot2::theme( + plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), + plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), + axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), + axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), + axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), + axis.text.y = ggplot2::element_text(size = 14), + legend.position = "bottom", + legend.box.spacing = ggplot2::unit(3, "pt"), + legend.text = ggplot2::element_text(size=10), + legend.title = ggplot2::element_text(size=16, face = "bold"), + legend.title.align = 0.5, + plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, + margin = ggplot2::margin(t = 20)), + panel.spacing = ggplot2::unit(2, "lines"), + strip.text = ggplot2::element_text(face="bold", size = 14), + strip.background = ggplot2::element_blank(), + strip.clip = "off" + ) + + ggplot2::guides(#shape = ggplot2::guide_legend(override.aes = list(size = 6)), + color = ggplot2::guide_legend(override.aes = list(size = 6)) + ) + + return(base_plot) + + }) output$incidencePlotStandardAge<- shiny::renderPlot({ @@ -1360,606 +1243,568 @@ characterizationIncidenceServer <- function( cowplot::save_plot(file, plot = renderIrPlotStandardAge(), base_height = 12) } ) + + #by age and sex + renderIrPlotStandardAgeSex <- shiny::reactive({ + + if (is.null(targetIds()) | + is.null(outcomeIds())) { + return(data.frame()) + } + if(nrow(filteredData()) == 0){ + return(data.frame()) + } + + ifelse(incidenceRateTarFilter() %in% filteredData()$tar, + plotData <- filteredData() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()), + shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") + ) + + #add check to make sure facetted plots fit nicely in plotting window (600px). this is currently nrow * ncol in facet_wrap() + ifelse(length(targetIds()) * length(outcomeIds()) <= 10, + plotData <- filteredData(), + shiny::validate("Too many Target-Outcome pairs selected to plot efficiently. Please choose fewer targets and/or outcomes.") + ) + + #add check to make sure "Any" is in the year filter + ifelse("Any" %in% incidenceRateCalendarFilter(), + plotData <- filteredData(), + shiny::validate("This standard plot is designed to show results aggregated over all (`Any`) year categories. Please make sure you have selected `Any` in the `Select your results` section above for this variable.") + ) + + #add check to make sure males and females are included + ifelse(8507 %in% incidenceRateGenderFilter() & 8532 %in% incidenceRateGenderFilter(), + plotData <- filteredData(), + shiny::validate("This standard plot is designed to show results stratified by male and female biological sex. Please make sure you have both `Male` and `Female` selected above and try again.") + ) + + plotData <- plotData %>% + dplyr::filter( #ageGroupName != "Any" & + .data$genderName != "Any" & + .data$startYear == "Any") %>% + dplyr::mutate(targetLabel = paste(.data$targetNameShort, " = ", .data$targetName), + outcomeLabel = paste(.data$outcomeNameShort, " = ", .data$outcomeName), + ageGroupName = factor(.data$ageGroupName, levels = custom_age_sort(.data$ageGroupName), ordered = TRUE) + ) %>% + dplyr::rename(Target = "targetNameShort", + Outcome = "outcomeNameShort", + Age = "ageGroupName") + + # Get unique target and outcome labels + unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) + unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) + + # Combine all unique values into a final vector + final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) + + # Create the caption text with line breaks + caption_text <- paste(final_unique_values, collapse = "\n") + + + # Take the specific tar value you want to plot + tar_value <- unique(plotData$tar)[1] + + base_plot <- ggplot2::ggplot( + data = plotData, + ggplot2::aes(x = .data$Age, + y = .data$incidenceRateP100py, + shape = .data$genderName, + color = .data$cdmSourceAbbreviation + ) + ) + + ggplot2::geom_point( + ggplot2::aes(size = 3) + ) + + #geom_jitter() + + #scale_size_continuous(range = c(5,15)) + + ggplot2::scale_colour_brewer(palette = "Paired") + + ggplot2::facet_wrap( + Target~Outcome, + labeller = "label_both", + scales = "free_x", + nrow = 2, + ncol = 5 + #, + #strip.position = "right" + ) + + ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), + n.breaks = 4) + + base_plot <- base_plot + ggplot2::labs( + title = paste("Incidence Rate for Time at Risk:", tar_value), + x = paste(names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "ageGroupName"]), "\n"), + y = names(ciOptions$irPlotNumericChoices[ciOptions$irPlotNumericChoices %in% "incidenceRateP100py"]), + color = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), + #size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "outcomes"]), + shape = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "genderName"]), + caption = caption_text + ) + + ggplot2::guides(alpha = "none", size = "none") + # Remove the alpha and size legend + ggplot2::theme_bw() + + ggplot2::theme( + plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), + plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), + axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), + axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), + axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), + axis.text.y = ggplot2::element_text(size = 14), + legend.position = "bottom", + legend.box.spacing = ggplot2::unit(3, "pt"), + legend.text = ggplot2::element_text(size=10), + legend.title = ggplot2::element_text(size=16, face = "bold"), + legend.title.align = 0.5, + plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, + margin = ggplot2::margin(t = 20)), + panel.spacing = ggplot2::unit(2, "lines"), + strip.text = ggplot2::element_text(face="bold", size = 14), + strip.background = ggplot2::element_blank(), + strip.clip = "off" + ) + + ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), + color = ggplot2::guide_legend(override.aes = list(size = 6)) + ) + + return(base_plot) + + }) - - - #by age and sex - -renderIrPlotStandardAgeSex <- shiny::reactive( - { - - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { - return(data.frame()) - } - - ifelse(inputSelectedResults()$incidenceRateTarFilter %in% filteredData()$tar, - plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter), - shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") - ) - - #add check to make sure facetted plots fit nicely in plotting window (600px). this is currently nrow * ncol in facet_wrap() - ifelse(length(inputSelectedResults()$targetId) * length(inputSelectedResults()$outcomeId) <= 10, - plotData <- filteredData(), - shiny::validate("Too many Target-Outcome pairs selected to plot efficiently. Please choose fewer targets and/or outcomes.") - ) - - plotData <- plotData %>% - dplyr::filter(ageGroupName != "Any" & - genderName != "Any" & - startYear == "Any") %>% - dplyr::mutate(targetLabel = paste(targetIdShort, " = ", targetName), - outcomeLabel = paste(outcomeIdShort, " = ", outcomeName), - ageGroupName = factor(ageGroupName, levels = custom_age_sort(ageGroupName), ordered = TRUE) - ) %>% - dplyr::rename("Target" = targetIdShort, - "Outcome" = outcomeIdShort, - "Age" = ageGroupName) - - # plotHeightStandardAgeSex <- shiny::reactive({ - # paste(sum(length(unique(plotData$targetLabel)), length(unique(plotData$Age)), -3)*100, "px", sep="") - # }) - - # Get unique target and outcome labels - unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) - unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) - - # Combine all unique values into a final vector - final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) - - # Create the caption text with line breaks - caption_text <- paste(final_unique_values, collapse = "\n") - - - # Take the specific tar value you want to plot - tar_value <- unique(plotData$tar)[1] - - base_plot <- ggplot2::ggplot( - data = plotData, - ggplot2::aes(x = Age, - y = incidenceRateP100py, - shape = genderName, - color = cdmSourceAbbreviation - ) - ) + - ggplot2::geom_point( - ggplot2::aes(size = 3) - ) + - #geom_jitter() + - #scale_size_continuous(range = c(5,15)) + - ggplot2::scale_colour_brewer(palette = "Dark2") + - ggplot2::facet_wrap( - Target~Outcome, - labeller = "label_both", - scales = "free_x", - nrow = 2, - ncol = 5 - #, - #strip.position = "right" - ) + - ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), - n.breaks = 4) - - base_plot <- base_plot + ggplot2::labs( - title = paste("Incidence Rate for Time at Risk:", tar_value), - x = paste(names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "ageGroupName"]), "\n"), - y = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "incidenceRateP100py"]), - color = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), - #size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "outcomes"]), - shape = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "genderName"]), - caption = caption_text - ) + - ggplot2::guides(alpha = "none", size = "none") + # Remove the alpha and size legend - ggplot2::theme_bw() + - ggplot2::theme( - plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), - plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), - axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), - axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), - axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), - axis.text.y = ggplot2::element_text(size = 14), - legend.position = "bottom", - legend.box.spacing = ggplot2::unit(3, "pt"), - legend.text = ggplot2::element_text(size=10), - legend.title = ggplot2::element_text(size=16, face = "bold"), - legend.title.align = 0.5, - plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, - margin = ggplot2::margin(t = 20)), - #legend.spacing.x = ggplot2::unit(2.0, 'cm'), - # legend.box = "horizontal", - # legend.key.size = ggplot2::unit(3, 'points'), #change legend key size - # legend.title = ggplot2::element_text(size=30), #change legend title font size - # legend.text = ggplot2::element_text(size=20), - panel.spacing = ggplot2::unit(2, "lines"), - # strip.background = ggplot2::element_blank(), - strip.text = ggplot2::element_text(face="bold", size = 14), - strip.background = ggplot2::element_blank(), - strip.clip = "off" - ) + - ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), - color = ggplot2::guide_legend(override.aes = list(size = 6)) - ) - - return(base_plot) - - } -) + output$incidencePlotStandardAgeSex<- + shiny::renderPlot({ + renderIrPlotStandardAgeSex() + }) -output$incidencePlotStandardAgeSex<- - shiny::renderPlot({ - renderIrPlotStandardAgeSex() - }) - - -# Define a function to save the plot as an image -output$downloadPlotStandardAgeSex <- shiny::downloadHandler( - filename = function() { - paste("standard-age-sex-ir-plot-", Sys.Date(), ".png", sep = "") - }, - content = function(file) { - cowplot::save_plot(file, plot = renderIrPlotStandardAgeSex(), base_height = 12) - } -) - - - -# by calendar year -renderIrPlotStandardYear <- shiny::reactive( - { - - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { - return(data.frame()) - } - - ifelse(inputSelectedResults()$incidenceRateTarFilter %in% filteredData()$tar, - plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter), - shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") - ) - - ifelse(length(inputSelectedResults()$incidenceRateTarFilter %in% filteredData()$tar) == 1, - plotData <- filteredData() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter), - shiny::validate("Please select only one TAR at a time to view yearly plots.") - ) - - ifelse((length(inputSelectedResults()$targetIds) == 1) & - (length(inputSelectedResults()$outcomeIds) == 1), - plotData <- plotData, - shiny::validate("Please select only one Target and Outcome at a time to view yearly plots.") - ) - - - - plotData <- plotData %>% - dplyr::filter(genderName != "Any" & - startYear != "Any") %>% - dplyr::mutate(targetLabel = paste(targetIdShort, " = ", targetName), - outcomeLabel = paste(outcomeIdShort, " = ", outcomeName), - ageGroupName = factor(ageGroupName, levels = custom_age_sort(ageGroupName), ordered = TRUE) - ) %>% - dplyr::rename("Target" = targetIdShort, - "Outcome" = outcomeIdShort, - "Age" = ageGroupName) - - #get unique shorthand cohort name - unique_target <- unique(plotData$Target) - unique_outcome <- unique(plotData$Outcome) - - - # Get unique target and outcome labels - unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) - unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) - - # Combine all unique values into a final vector - final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) - - # Create the caption text with line breaks - caption_text <- paste(final_unique_values, collapse = "\n") - - - # Take the specific tar value you want to plot - tar_value <- unique(plotData$tar)[1] - - base_plot <- ggplot2::ggplot( - data = plotData, - ggplot2::aes(x = startYear, - y = incidenceRateP100py, - shape = genderName, - color = cdmSourceAbbreviation, - group = interaction(cdmSourceAbbreviation, genderName) + + # Define a function to save the plot as an image + output$downloadPlotStandardAgeSex <- shiny::downloadHandler( + filename = function() { + paste("standard-age-sex-ir-plot-", Sys.Date(), ".png", sep = "") + }, + content = function(file) { + cowplot::save_plot(file, plot = renderIrPlotStandardAgeSex(), base_height = 12) + } ) - ) + - ggplot2::geom_point( - ggplot2::aes(size = 2.5) - ) + - ggplot2::geom_line(ggplot2::aes(linetype = genderName)) + - ggplot2::scale_colour_brewer(palette = "Dark2") + - #geom_jitter() + - #scale_size_continuous(range = c(5,15)) + - # ggplot2::scale_colour_brewer(palette = "Dark2") + - # ggplot2::facet_grid( - # rows = dplyr::vars(Outcome), - # cols = dplyr::vars(Age), - # labeller = ggplot2::labeller(.rows = outcomeLabeller, - # .cols = ageLabeller), - # scales = "free_y" - # ) + - ggplot2::facet_wrap( - ~Age, - labeller = "label_both", - scales = "free_x", - nrow = 2 - ) + - # scale_y_continuous(#breaks = base_breaks(), - # trans = 'log10') - ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), - n.breaks = 3) - - base_plot <- base_plot + ggplot2::labs( - title = paste("Incidence Rate for Time at Risk:", tar_value), - subtitle = paste("Target = ", unique_target, "; Outcome = ", unique_outcome, sep = ""), - x = paste(names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "startYear"]), "\n"), - y = paste(names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "incidenceRateP100py"]), " (log10 scale)"), - color = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), - #size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "outcomes"]), - shape = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "genderName"]), - #linetype = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "genderName"]), - caption = caption_text - ) + - ggplot2::guides(alpha = "none", size = "none", linetype = "none") + # Remove the alpha and size legend - ggplot2::theme_bw() + - ggplot2::theme( - plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), - plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), - axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), - axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), - axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), - axis.text.y = ggplot2::element_text(size = 14), - legend.position = "bottom", - legend.box.spacing = ggplot2::unit(3, "pt"), - legend.text = ggplot2::element_text(size=10), - legend.title = ggplot2::element_text(size=16, face = "bold"), - legend.title.align = 0.5, - plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, - margin = ggplot2::margin(t = 20)), - #legend.spacing.x = ggplot2::unit(2.0, 'cm'), - # legend.box = "horizontal", - # legend.key.size = ggplot2::unit(3, 'points'), #change legend key size - # legend.title = ggplot2::element_text(size=30), #change legend title font size - # legend.text = ggplot2::element_text(size=20), - panel.spacing = ggplot2::unit(2, "lines"), - # strip.background = ggplot2::element_blank(), - strip.text = ggplot2::element_text(face="bold", size = 14), - strip.background = ggplot2::element_blank(), - strip.clip = "off" - ) + - ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), - color = ggplot2::guide_legend(override.aes = list(size = 6)) + + + + # by calendar year + renderIrPlotStandardYear <- shiny::reactive({ + + if (is.null(targetIds()) | + is.null(outcomeIds())) { + return(data.frame()) + } + if(nrow(filteredData()) == 0){ + return(data.frame()) + } + + ifelse(incidenceRateTarFilter() %in% filteredData()$tar, + plotData <- filteredData() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()), + shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") + ) + + ifelse(length(incidenceRateTarFilter() %in% filteredData()$tar) == 1, + plotData <- filteredData() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()), + shiny::validate("Please select only one TAR at a time to view yearly plots.") + ) + + ifelse((length(targetIds()) == 1) & + (length(outcomeIds()) == 1), + plotData <- plotData, + shiny::validate("Please select only one Target and Outcome at a time to view yearly plots.") + ) + + ifelse((length(incidenceRateCalendarFilter()) == 1) & + (incidenceRateCalendarFilter() == "Any"), + shiny::validate("Please select at least one start year besides `Any`. This plot depicts calendar trends over time on the x-axis, so at least one distinct year is required."), + plotData <- plotData + ) + + + + plotData <- plotData %>% + dplyr::filter(.data$genderName != "Any" & + .data$startYear != "Any") %>% + dplyr::mutate(targetLabel = paste(.data$targetNameShort, " = ", .data$targetName), + outcomeLabel = paste(.data$outcomeNameShort, " = ", .data$outcomeName), + ageGroupName = factor(.data$ageGroupName, levels = custom_age_sort(.data$ageGroupName), ordered = TRUE) + ) %>% + dplyr::rename(Target = "targetNameShort", + Outcome = "outcomeNameShort", + Age = "ageGroupName") + + #get unique shorthand cohort name + unique_target <- unique(plotData$Target) + unique_outcome <- unique(plotData$Outcome) + + + # Get unique target and outcome labels + unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) + unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) + + # Combine all unique values into a final vector + final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) + + # Create the caption text with line breaks + caption_text <- paste(final_unique_values, collapse = "\n") + + + # Take the specific tar value you want to plot + tar_value <- unique(plotData$tar)[1] + + plotData <- plotData %>% + dplyr::filter("Any" %!in% .data$startYear) %>% + dplyr::mutate(startYear = as.Date(paste0(.data$startYear, "-01-01")) + ) + + base_plot <- ggplot2::ggplot( + data = plotData, + ggplot2::aes(x = .data$startYear, + y = .data$incidenceRateP100py, + shape = .data$genderName, + color = .data$cdmSourceAbbreviation, + group = interaction(.data$cdmSourceAbbreviation, .data$genderName) + ) + ) + + ggplot2::geom_point( + ggplot2::aes(size = 2.5) + ) + + ggplot2::geom_line(ggplot2::aes(linetype = .data$genderName)) + + ggplot2::scale_colour_brewer(palette = "Paired") + + ggplot2::facet_wrap( + ~Age, + labeller = "label_both", + scales = "free_x", + nrow = 2 + ) + + ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), + n.breaks = 3) + + ggplot2::scale_x_date(breaks= seq(min(plotData$startYear), max(plotData$startYear), by = "3 years"), + date_labels = "%Y", + limits = c(min(plotData$startYear), + max(plotData$startYear)) + ) + + base_plot <- base_plot + ggplot2::labs( + title = paste("Incidence Rate for Time at Risk:", tar_value), + subtitle = paste("Target = ", unique_target, "; Outcome = ", unique_outcome, sep = ""), + x = paste(names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "startYear"]), "\n"), + y = paste(names(ciOptions$irPlotNumericChoices[ciOptions$irPlotNumericChoices %in% "incidenceRateP100py"]), " (log10 scale)"), + color = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), + shape = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "genderName"]), + caption = caption_text + ) + + ggplot2::guides(alpha = "none", size = "none", linetype = "none") + # Remove the alpha and size legend + ggplot2::theme_bw() + + ggplot2::theme( + plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), + plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), + axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), + axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), + axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), + axis.text.y = ggplot2::element_text(size = 14), + legend.position = "bottom", + legend.box.spacing = ggplot2::unit(3, "pt"), + legend.text = ggplot2::element_text(size=10), + legend.title = ggplot2::element_text(size=16, face = "bold"), + legend.title.align = 0.5, + plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, + margin = ggplot2::margin(t = 20)), + panel.spacing = ggplot2::unit(2, "lines"), + strip.text = ggplot2::element_text(face="bold", size = 14), + strip.background = ggplot2::element_blank(), + strip.clip = "off" + ) + + ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), + color = ggplot2::guide_legend(override.aes = list(size = 6)) + ) + + return(base_plot) + + }) + + output$incidencePlotStandardYear<- + shiny::renderPlot({ + renderIrPlotStandardYear() + }) + + + # Define a function to save the plot as an image + output$downloadPlotStandardYear <- shiny::downloadHandler( + filename = function() { + paste("standard-yearly-ir-plot-", Sys.Date(), ".png", sep = "") + }, + content = function(file) { + cowplot::save_plot(file, plot = renderIrPlotStandardYear(), base_height = 24) + } ) - - return(base_plot) - - } -) - -output$incidencePlotStandardYear<- - shiny::renderPlot({ - renderIrPlotStandardYear() - }) - - -# Define a function to save the plot as an image -output$downloadPlotStandardYear <- shiny::downloadHandler( - filename = function() { - paste("standard-yearly-ir-plot-", Sys.Date(), ".png", sep = "") - }, - content = function(file) { - cowplot::save_plot(file, plot = renderIrPlotStandardYear(), base_height = 24) - } -) - - - - - - - - -#aggregate (unstratified) + -renderIrPlotStandardAggregate <- shiny::reactive( - { - - if (is.null(inputSelectedResults()$targetIds) | - is.null(inputSelectedResults()$outcomeIds)) { - return(data.frame()) - } - - ifelse(inputSelectedResults()$incidenceRateTarFilter %in% filteredData()$tar, - plotData <- filteredDataAggregateForPlot() %>% - dplyr::filter(.data$tar %in% inputSelectedResults()$incidenceRateTarFilter), - shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") - ) - - #add check to make sure facetted plots fit nicely in plotting window (600px). this is currently nrow * ncol in facet_wrap() - ifelse(length(inputSelectedResults()$targetId) * length(inputSelectedResults()$outcomeId) <= 10, - plotData <- filteredData(), - shiny::validate("Too many Target-Outcome pairs selected to plot efficiently. Please choose fewer targets and/or outcomes.") - ) - - plotData <- plotData %>% - dplyr::filter(ageGroupName == "Any" & - genderName == "Any") %>% - dplyr::mutate(targetLabel = paste(targetIdShort, " = ", targetName), - outcomeLabel = paste(outcomeIdShort, " = ", outcomeName) - ) %>% - dplyr::rename("Target" = targetIdShort, - "Outcome" = outcomeIdShort, - "Age" = ageGroupName) - - # Get unique target and outcome labels - unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) - unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) - - # Combine all unique values into a final vector - final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) - - # Create the caption text with line breaks - caption_text <- paste(final_unique_values, collapse = "\n") - - - # Take the specific tar value you want to plot - tar_value <- unique(plotData$tar)[1] - - base_plot <- ggplot2::ggplot( - data = plotData, - ggplot2::aes(x = startYear, - y = incidenceRateP100py, - #shape = genderName, - color = cdmSourceAbbreviation + #aggregate (unstratified) + + renderIrPlotStandardAggregate <- shiny::reactive({ + + if (is.null(targetIds()) | + is.null(outcomeIds())) { + return(data.frame()) + } + if(nrow(filteredData()) == 0){ + return(data.frame()) + } + + ifelse(incidenceRateTarFilter() %in% filteredData()$tar, + plotData <- filteredDataAggregateForPlot() %>% + dplyr::filter(.data$tar %in% incidenceRateTarFilter()), + shiny::validate("Selected TAR is not found in your result data. Revise input selections or select a different TAR.") + ) + + #add check to make sure facetted plots fit nicely in plotting window (600px). this is currently nrow * ncol in facet_wrap() + ifelse(length(targetIds()) * length(outcomeIds()) <= 10, + plotData <- filteredData(), + shiny::validate("Too many Target-Outcome pairs selected to plot efficiently. Please choose fewer targets and/or outcomes.") + ) + + ifelse("Any" %in% incidenceRateAgeFilter() & + "Any" %in% incidenceRateGenderFilter() & + "Any" %in% incidenceRateCalendarFilter(), + plotData <- filteredData(), + shiny::validate("This plot requires the `Any` category to be selected to aggregate over all ages, sexes, and years. Please ensure `Any` is selected in each of these inputs above and try again.") + ) + + plotData <- plotData %>% + dplyr::filter(.data$ageGroupName == "Any" & + .data$genderName == "Any") %>% + dplyr::mutate(targetLabel = paste(.data$targetNameShort, " = ", .data$targetName), + outcomeLabel = paste(.data$outcomeNameShort, " = ", .data$outcomeName) + ) %>% + dplyr::rename(Target = "targetNameShort", + Outcome = "outcomeNameShort", + Age = "ageGroupName") + + # Get unique target and outcome labels + unique_target_labels <- strwrap(unique(plotData$targetLabel), width = 300) + unique_outcome_labels <- strwrap(unique(plotData$outcomeLabel), width = 300) + + # Combine all unique values into a final vector + final_unique_values <- unique(c(unique_target_labels, unique_outcome_labels)) + + # Create the caption text with line breaks + caption_text <- paste(final_unique_values, collapse = "\n") + + + # Take the specific tar value you want to plot + tar_value <- unique(plotData$tar)[1] + + base_plot <- ggplot2::ggplot( + data = plotData, + ggplot2::aes(x = .data$startYear, + y = .data$incidenceRateP100py, + color = .data$cdmSourceAbbreviation + ) + ) + + ggplot2::geom_point( + ggplot2::aes(size = 3) + ) + + #ggplot2::geom_jitter() + + #scale_size_continuous(range = c(5,15)) + + ggplot2::scale_colour_brewer(palette = "Paired") + + ggplot2::facet_wrap( + Target~Outcome, + labeller = "label_both", + scales = "free_x", + nrow = 2, + ncol = 5 + #, + #strip.position = "right" + ) + + ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), + n.breaks = 4) + + base_plot <- base_plot + ggplot2::labs( + title = paste("Incidence Rate for Time at Risk:", tar_value), + x = paste(names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "startYear"]), "\n"), + y = names(ciOptions$irPlotNumericChoices[ciOptions$irPlotNumericChoices %in% "incidenceRateP100py"]), + color = names(ciOptions$irPlotCategoricalChoices[ciOptions$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), + caption = caption_text + ) + + ggplot2::guides(alpha = "none", size = "none") + # Remove the alpha and size legend + ggplot2::theme_bw() + + ggplot2::theme( + plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), + plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), + axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), + axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), + axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), + axis.text.y = ggplot2::element_text(size = 14), + legend.position = "bottom", + legend.box.spacing = ggplot2::unit(3, "pt"), + legend.text = ggplot2::element_text(size=10), + legend.title = ggplot2::element_text(size=16, face = "bold"), + legend.title.align = 0.5, + plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, + margin = ggplot2::margin(t = 20)), + panel.spacing = ggplot2::unit(2, "lines"), + strip.text = ggplot2::element_text(face="bold", size = 14), + strip.background = ggplot2::element_blank(), + strip.clip = "off" + ) + + ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), + color = ggplot2::guide_legend(override.aes = list(size = 6))) + + return(base_plot) + + }) + + output$incidencePlotStandardAggregate <- + shiny::renderPlot({ + renderIrPlotStandardAggregate() + }) + + + # Define a function to save the plot as an image + output$downloadPlotStandardAggregate <- shiny::downloadHandler( + filename = function() { + paste("standard-aggregate-ir-plot-", Sys.Date(), ".png", sep = "") + }, + content = function(file) { + cowplot::save_plot(file, plot = renderIrPlotStandardAggregate(), base_height = 12) + } ) - ) + - ggplot2::geom_point( - ggplot2::aes(size = 3) - ) + - #ggplot2::geom_jitter() + - #scale_size_continuous(range = c(5,15)) + - ggplot2::scale_colour_brewer(palette = "Dark2") + - ggplot2::facet_wrap( - Target~Outcome, - labeller = "label_both", - scales = "free_x", - nrow = 2, - ncol = 5 - #, - #strip.position = "right" - ) + - ggplot2::scale_y_continuous(trans=scales::pseudo_log_trans(base = 10), - n.breaks = 4) - - base_plot <- base_plot + ggplot2::labs( - title = paste("Incidence Rate for Time at Risk:", tar_value), - x = paste(names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "ageGroupName"]), "\n"), - y = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "incidenceRateP100py"]), - color = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "cdmSourceAbbreviation"]), - #size = names(options$irPlotNumericChoices[options$irPlotNumericChoices %in% "outcomes"]), - #shape = names(options$irPlotCategoricalChoices[options$irPlotCategoricalChoices %in% "genderName"]), - caption = caption_text - ) + - ggplot2::guides(alpha = "none", size = "none") + # Remove the alpha and size legend - ggplot2::theme_bw() + - ggplot2::theme( - plot.title = ggplot2::element_text(margin = ggplot2::margin(b = 10), hjust = 0.5, size = 25, face="bold"), - plot.subtitle = ggplot2::element_text(margin = ggplot2::margin(b = 20), hjust = 0.5, size = 16), - axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 25), size = 18), - axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 25), size = 18), - axis.text.x = ggplot2::element_text(size = 14, angle = 45, hjust = 0.5, vjust = 0.25), - axis.text.y = ggplot2::element_text(size = 14), - legend.position = "bottom", - legend.box.spacing = ggplot2::unit(3, "pt"), - legend.text = ggplot2::element_text(size=10), - legend.title = ggplot2::element_text(size=16, face = "bold"), - legend.title.align = 0.5, - plot.caption = ggplot2::element_text(hjust = 0, face = "italic", size = 12, - margin = ggplot2::margin(t = 20)), - #legend.spacing.x = ggplot2::unit(2.0, 'cm'), - # legend.box = "horizontal", - # legend.key.size = ggplot2::unit(3, 'points'), #change legend key size - # legend.title = ggplot2::element_text(size=30), #change legend title font size - # legend.text = ggplot2::element_text(size=20), - panel.spacing = ggplot2::unit(2, "lines"), - # strip.background = ggplot2::element_blank(), - strip.text = ggplot2::element_text(face="bold", size = 14), - strip.background = ggplot2::element_blank(), - strip.clip = "off" - ) + - ggplot2::guides(shape = ggplot2::guide_legend(override.aes = list(size = 6)), - color = ggplot2::guide_legend(override.aes = list(size = 6))) - - return(base_plot) - - } -) - -output$incidencePlotStandardAggregate <- - shiny::renderPlot({ - renderIrPlotStandardAggregate() - }) - - -# Define a function to save the plot as an image -output$downloadPlotStandardAggregate <- shiny::downloadHandler( - filename = function() { - paste("standard-aggregate-ir-plot-", Sys.Date(), ".png", sep = "") - }, - content = function(file) { - cowplot::save_plot(file, plot = renderIrPlotStandardAggregate(), base_height = 12) - } -) - - - + return(invisible(NULL)) ############# end of server }) } - - - - - - - - - - - - +#------------ #------------ Fetching data functions - +#------------ + getIncidenceData <- function( targetIds, outcomeIds, connectionHandler, resultDatabaseSettings ){ - if(!is.null(targetIds) & !is.null(outcomeIds)){ - #shiny::withProgress(message = 'Getting incidence data', value = 0, { + print(targetIds) + print(outcomeIds) + + shiny::withProgress(message = 'Getting incidence data', value = 0, { - sql <- 'select d.cdm_source_abbreviation, i.* - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY i - inner join @result_schema.@database_table_name d + sql <- 'select d.cdm_source_abbreviation, i.*, ct1.cohort_name as target_name, ct2.cohort_name as outcome_name +from ( + select od.outcome_cohort_definition_id, od.clean_window, agd.age_group_name, + tad.tar_start_with, tad.tar_start_offset, tad.tar_end_with, tad.tar_end_offset, + sd.subgroup_name, i.* + from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY i + join @result_schema.@incidence_table_prefixOUTCOME_DEF od on i.outcome_id = od.outcome_id + and i.ref_id = od.ref_id + join @result_schema.@incidence_table_prefixTAR_DEF tad on i.tar_id = tad.tar_id + and i.ref_id = tad.ref_id + join @result_schema.@incidence_table_prefixSUBGROUP_DEF sd on i.subgroup_id = sd.subgroup_id + and i.ref_id = sd.ref_id + left join @result_schema.@incidence_table_prefixAGE_GROUP_DEF agd on i.age_group_id = agd.age_group_id + and i.ref_id = agd.ref_id +) i +inner join @result_schema.@database_table_name d on d.database_id = i.database_id - where target_cohort_definition_id in (@target_ids) - and outcome_cohort_definition_id in (@outcome_ids) - ;' +inner join @result_schema.@cg_table_prefixcohort_definition ct1 + on ct1.cohort_definition_id = i.target_cohort_definition_id +inner join @result_schema.@cg_table_prefixcohort_definition ct2 + on ct2.cohort_definition_id = i.outcome_cohort_definition_id +where i.target_cohort_definition_id in (@target_ids) + and i.outcome_cohort_definition_id in (@outcome_ids);' - #shiny::incProgress(1/2, detail = paste("Created SQL - Extracting...")) + shiny::incProgress(1/2, detail = paste("Created SQL - Extracting...")) resultTable <- connectionHandler$queryDb( sql = sql, result_schema = resultDatabaseSettings$schema, incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, target_ids = paste(as.double(targetIds), collapse = ','), outcome_ids = paste(as.double(outcomeIds), collapse = ','), database_table_name = resultDatabaseSettings$databaseTable ) - #shiny::incProgress(2/2, detail = paste("Done...")) + shiny::incProgress(2/2, detail = paste("Extracted ", nrow(resultTable)," rows")) - #}) - - # format the tar - resultTable$tar <- paste0('(',resultTable$tarStartWith, " + ", resultTable$tarStartOffset, ') - (', resultTable$tarEndWith, " + ", resultTable$tarEndOffset, ')') - resultTable <- resultTable %>% - dplyr::select(-c("tarStartWith","tarStartOffset","tarEndWith","tarEndOffset", "tarId", "subgroupName")) - - resultTable[is.na(resultTable)] <- 'Any' - resultTable <- unique(resultTable) + }) + if(nrow(resultTable)>0){ + + # format the tar + ##Jenna edit resultTable$tar <- paste0('(',resultTable$tarStartWith, " + ", resultTable$tarStartOffset, ') - (', resultTable$tarEndWith, " + ", resultTable$tarEndOffset, ')') + resultTable$tar <- cohortIncidenceFormatTar(resultTable) + + resultTable <- resultTable %>% + dplyr::select(-c("tarStartWith","tarStartOffset","tarEndWith","tarEndOffset", "tarId", "subgroupName")) + + resultTable[is.na(resultTable)] <- 'Any' + resultTable <- unique(resultTable) + } return(resultTable) } else{ return(NULL) } } +# Jenna added +cohortIncidenceFormatTar <- function(x){ + result <- paste0('(',x$tarStartWith, " + ", x$tarStartOffset, ') - (', x$tarEndWith, " + ", x$tarEndOffset, ')') + return(result) +} -getIncidenceOptions <- function( - connectionHandler, - resultDatabaseSettings -){ - - # shiny::withProgress(message = 'Getting incidence inputs', value = 0, { - - sql <- 'select distinct target_cohort_definition_id, target_name - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY;' - - #shiny::incProgress(1/3, detail = paste("Created SQL - Extracting targets")) - - targets <- connectionHandler$queryDb( - sql = sql, - result_schema = resultDatabaseSettings$schema, - incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix - ) - targetIds <- targets$targetCohortDefinitionId - names(targetIds) <- targets$targetName - - sql <- 'select distinct outcome_cohort_definition_id, outcome_name - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY;' - - #shiny::incProgress(2/3, detail = paste("Created SQL - Extracting outcomes")) - - outcomes <- connectionHandler$queryDb( - sql = sql, - result_schema = resultDatabaseSettings$schema, - incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix - ) - - outcomeIds <- outcomes$outcomeCohortDefinitionId - names(outcomeIds) <- outcomes$outcomeName - - sql <- 'select distinct tar_id, tar_start_with, tar_start_offset, tar_end_with, tar_end_offset - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY;' - - #shiny::incProgress(1/3, detail = paste("Created SQL - Extracting targets")) - - tars <- connectionHandler$queryDb( - sql = sql, +getIncidenceOptions <- function(connectionHandler, + resultDatabaseSettings){ + + # database options + databaseDf <- connectionHandler$queryDb( + sql = 'select database_id, cdm_source_abbreviation from @result_schema.@database_table_name;', result_schema = resultDatabaseSettings$schema, - incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix + database_table_name = resultDatabaseSettings$databaseTable ) - tar <- paste0('(',tars$tarStartWith, " + ", tars$tarStartOffset, ') - (', tars$tarEndWith, " + ", tars$tarEndOffset, ')') - #tar <- tars$tarId - names(tar) <- paste0('(',tars$tarStartWith, " + ", tars$tarStartOffset, ') - (', tars$tarEndWith, " + ", tars$tarEndOffset, ')') - - sql <- 'select distinct age_group_name - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY;' - - result <- connectionHandler$queryDb( - sql = sql, + databases <- databaseDf$cdmSourceAbbreviation + + # Age Gruop Options + ageGroupDf <- connectionHandler$queryDb( + sql = 'select age_group_id, age_group_name from @result_schema.@incidence_table_prefixAGE_GROUP_DEF;', result_schema = resultDatabaseSettings$schema, incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix ) + ageGroupDf <- rbind(data.frame(ageGroupId = 'Any', ageGroupName = 'Any'), ageGroupDf) + ageGroup <- ageGroupDf$ageGroupId + names(ageGroup) <- ageGroupDf$ageGroupName - ageGroupName <- result$ageGroupName - ageGroupName[is.na(ageGroupName)] <- 'Any' - ageGroupName <- sort(ageGroupName) + sex <- c(8507, 8532 , 'Any') + names(sex) <- c('Male', 'Female', 'Any') - sql <- 'select distinct gender_name - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY;' + startYear <- c('Any', format(Sys.Date(), "%Y"):1990) + names(startYear) <- c('Any', format(Sys.Date(), "%Y"):1990) - result <- connectionHandler$queryDb( - sql = sql, - result_schema = resultDatabaseSettings$schema, - incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix - ) + # get tar and then call cohortIncidenceFormatTar() - genderName <- result$genderName - genderName[is.na(genderName)] <- 'Any' - genderName <- sort(genderName) + tarDf <- characterizationGetCiTars(connectionHandler,resultDatabaseSettings) - sql <- 'select distinct start_year - from @result_schema.@incidence_table_prefixINCIDENCE_SUMMARY;' + tar <- tarDf$tarId + names(tar) <- cohortIncidenceFormatTar(tarDf) - result <- connectionHandler$queryDb( + sql <- ' +select outcome_id, outcome_name +from @result_schema.@incidence_table_prefixOUTCOME_DEF +' + outcomeDf <- connectionHandler$queryDb( sql = sql, result_schema = resultDatabaseSettings$schema, incidence_table_prefix = resultDatabaseSettings$incidenceTablePrefix ) - - startYear <- result$startYear - startYear[is.na(startYear)] <- 'Any' - startYear <- sort(startYear) - - # shiny::incProgress(3/3, detail = paste("Done")) - # }) + outcomes <- outcomeDf$outcomeId + names(outcomes) <- outcomeDf$outcomeName irPlotCategoricalChoices <- list( "cdmSourceAbbreviation", @@ -2013,16 +1858,41 @@ getIncidenceOptions <- function( return( list( - targetIds = targetIds, - outcomeIds = outcomeIds, + databases = databases, + ageGroup = ageGroup, + sex = sex, + startYear = startYear, tar = tar, + outcomes = outcomes, irPlotNumericChoices = irPlotNumericChoices, - irPlotCategoricalChoices = irPlotCategoricalChoices, - ageGroupName = ageGroupName, - genderName = genderName, - startYear = startYear + irPlotCategoricalChoices = irPlotCategoricalChoices ) ) } +characterizationGetCiTars <- function(connectionHandler, + resultDatabaseSettings){ + sql <- "SELECT TAR_ID, TAR_START_WITH, TAR_START_OFFSET, + TAR_END_WITH, TAR_END_OFFSET + from @schema.@ci_table_prefixtar_def;" + tars <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + ci_table_prefix = resultDatabaseSettings$incidenceTablePrefix + ) + return(tars) +} + +.createCiColDefList <- function() { + colDefCsv <- readr::read_csv(system.file("components-columnInformation", + "characterization-incidence-colDefs.csv", + package = "OhdsiShinyModules"), + show_col_types = FALSE) + + createCustomColDefList( + rawColNames = colDefCsv$colName, + niceColNames = colDefCsv$niceName, + tooltipText = colDefCsv$toolTip + ) +} \ No newline at end of file diff --git a/R/characterization-main.R b/R/characterization-main.R index 1cf1b21a..9f84f52f 100644 --- a/R/characterization-main.R +++ b/R/characterization-main.R @@ -21,7 +21,7 @@ #' #' @details #' Returns the location of the characterization helper file -#' +#' @family {Characterization} #' @return #' string location of the characterization helper file #' @@ -37,7 +37,7 @@ characterizationHelperFile <- function(){ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {Characterization} #' @return #' The user interface to the characterization viewer module #' @@ -46,14 +46,28 @@ characterizationViewer <- function(id=1) { ns <- shiny::NS(id) shinydashboard::box( - status = 'info', width = 12, + status = 'info', width = '100%', title = shiny::span( shiny::icon("table"), "Characterization Viewer"), solidHeader = TRUE, - - shiny::tabsetPanel( - type = 'pills', - id = ns('mainPanel') - ) + + # pick a targetId of interest + shinydashboard::box( + title = 'Target Of Interest', + width = '100%', + status = "primary", + collapsible = T, + shiny::uiOutput(ns("targetSelection")) + ), + + shiny::conditionalPanel( + condition = 'input.targetSelect', + ns = ns, + inputSelectionDfViewer(id = ns('targetSelected'), title = 'Selected Target'), + shiny::tabsetPanel( + type = 'pills', + id = ns('mainPanel') + ) + ) ) } @@ -66,7 +80,7 @@ characterizationViewer <- function(id=1) { #' @param id the unique reference id for the module #' @param connectionHandler a connection to the database with the results #' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' +#' @family {Characterization} #' @return #' The server for the characterization module #' @@ -79,7 +93,8 @@ characterizationServer <- function( shiny::moduleServer( id, function(input, output, session) { - + + # this function checks tables exist for the tabs # and returns the tabs that should be displayed # as the tables exist @@ -88,107 +103,427 @@ characterizationServer <- function( resultDatabaseSettings = resultDatabaseSettings ) - # add the tabs based on results - types <- list( - c("Target Viewer","characterizationTableViewer", "descriptiveTableTab"), - c("Outcome Stratified", "characterizationAggregateFeaturesViewer", "aggregateFeaturesTab"), - c("Incidence Rate", "characterizationIncidenceViewer", "incidenceTab"), - c("Time To Event", "characterizationTimeToEventViewer", "timeToEventTab"), - c("Dechallenge Rechallenge", 'characterizationDechallengeRechallengeViewer', 'dechallengeRechallengeTab') + #================================================ + # GETTING OPTIONS FOR INPTUS + #================================================ + #TODO add time-to-event and dechal-rechal options + options <- characterizationGetOptions( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + includeAggregate = "Risk Factor" %in% charTypes$subPanel, + includeIncidence = "Incidence Results" %in% charTypes$subPanel + ) + + #================================================ + # PARENT TARGET SELECTION UI + #================================================ + parents <- characterizationGetParents(options) + parentIndex <- shiny::reactiveVal(1) + subTargets <- shiny::reactiveVal() + + # add an input for all char that lets you select cohort of interest + output$targetSelection <- shiny::renderUI({ + shiny::div( + shinyWidgets::pickerInput( + inputId = session$ns('targetId'), + label = 'Target Group: ', + choices = parents, + selected = parents[1], + multiple = FALSE, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + dropupAuto = F, + size = 10, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 500 + ) + ), + shiny::selectInput( + inputId = session$ns('subTargetId'), + label = 'Target: ', + choices = characterizationGetChildren(options,1), + selected = 1, + multiple = FALSE, + selectize = TRUE, + width = NULL, + size = NULL + ), + shiny::actionButton( + inputId = session$ns('targetSelect'), + label = 'Select', + icon = shiny::icon('redo') + ) + ) + }) + + #================================================ + # UPDATE TARGET BASED ON TARGET GROUP + #================================================ + shiny::observeEvent(input$targetId,{ + parentIndex(which(parents == input$targetId)) + subTargets(characterizationGetChildren(options,which(parents == input$targetId))) + shiny::updateSelectInput( + inputId = 'subTargetId', + label = 'Target: ', + choices = subTargets(), + selected = subTargets()[1] + ) + }) + + #================================================ + # PARENT TARGET SELECTION ACTION + #================================================ + # reactives updated when parent target is selected + outcomes <- shiny::reactiveVal() + targetSelected <- shiny::reactiveVal() + subTargetId <- shiny::reactiveVal() + # output the selected target + shiny::observeEvent(input$targetSelect, { + + # First create input dataframe and add to the inputServer to display + targetSelected( + data.frame( + `Target group` = names(parents)[parents == input$targetId], + `Target` = names(subTargets())[subTargets() == input$subTargetId] + ) + ) + inputSelectionDfServer( + id = 'targetSelected', + dataFrameRow = targetSelected, + ncol = 1 + ) + + subTargetId(input$subTargetId) + + # update the outcomes for the selected parent target id + outcomes(characterizationGetOutcomes(options, parentIndex())) + + # create the outcome selector for the case exposure tabs + output$outcomeSelection <- shiny::renderUI({ + shinydashboard::box( + collapsible = TRUE, + title = "Options", + width = "100%", + + shinyWidgets::pickerInput( + inputId = session$ns('outcomeId'), + label = 'Outcome: ', + choices = outcomes(), + selected = 1, + multiple = FALSE, + options = shinyWidgets::pickerOptions( + actionsBox = F, + dropupAuto = F, + size = 10, + liveSearch = TRUE, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search" + ) + ), + shiny::actionButton( + inputId = session$ns('outcomeSelect'), + label = 'Select', + icon = shiny::icon('redo') + ) + ) + }) + + }) + + #================================================ + # OUTCOME SELECTION ACTION + #================================================ + # used by the case exposure tabs + # show the selected outcome + outcomeSelected <- shiny::reactiveVal() + outcomeId <- shiny::reactiveVal() + #subTargetId <- shiny::reactiveVal() + + shiny::observeEvent(input$outcomeSelect, { + outcomeSelected( + data.frame( + #Target = names(subTargets())[subTargets() == input$subTargetId], + Outcome = names(outcomes())[outcomes() == input$outcomeId] + ) + ) + + # store the outcome and subTargetIds for the case exposure tabs + outcomeId(input$outcomeId) + #subTargetId(input$subTargetId) + + inputSelectionDfServer( + id = 'outcomeSelected', + dataFrameRow = outcomeSelected, + ncol = 1 + ) + }) + + + #================================================ + # CREATE TABS BASED ON RESULTS TABLES + #================================================ + + # MAIN PANELS + #first populate the mainPanel + typesMainPanel <- list( + list( + title = 'Cohort Summary', + shiny::tabsetPanel( + type = 'pills', + id = session$ns('cohortSummaryPanel') + ) + ), + list( + title = 'Exposed Cases Summary', + shiny::uiOutput(session$ns("outcomeSelection")), + shiny::conditionalPanel( + condition = 'input.outcomeSelect', + ns = session$ns, + inputSelectionDfViewer(id = session$ns('outcomeSelected'), title = 'Selected'), + shiny::tabsetPanel( + type = 'pills', + id = session$ns('exposedCasesPanel') + ) + ) + ), + list( + title = 'Cohort Incidence', + shiny::tabsetPanel( + type = 'pills', + id = session$ns('cohortIncidencePanel') + ) ) + ) + selectVal <- T - for( type in types){ - if(type[1] %in% charTypes){ + for( type in typesMainPanel){ + if(type$title %in% charTypes$mainPanel){ shiny::insertTab( - inputId = "mainPanel", - tab = shiny::tabPanel( - type[1], - do.call(what = type[2], args = list(id = session$ns(type[3]))) - ), + inputId = 'mainPanel', + tab = do.call( + what = shiny::tabPanel, + args = type + ), select = selectVal ) + selectVal = F } - selectVal = F } + + # SUB PANELS + # now populate the subpanel + # add the tabs based on results + types <- rbind( + c("Database Comparison","characterizationDatabaseComparisonViewer", "databaseComparisonTab", "cohortSummaryPanel"), + c("Cohort Comparison", "characterizationCohortComparisonViewer", "cohortComparisonTab", "cohortSummaryPanel"), - previouslyLoaded <- shiny::reactiveVal(c()) + c("Risk Factor", "characterizationRiskFactorViewer", "riskFactorTab", "exposedCasesPanel"), + c("Case Series", "characterizationCaseSeriesViewer", "caseSeriesTab", "exposedCasesPanel"), + c("Time-to-event", "characterizationTimeToEventViewer", "timeToEventTab", "exposedCasesPanel"), + c("Dechallenge Rechallenge", 'characterizationDechallengeRechallengeViewer', 'dechallengeRechallengeTab', "exposedCasesPanel"), + + c("Incidence Results", "characterizationIncidenceViewer", "cohortIncidenceTab", "cohortIncidencePanel") + ) + colnames(types) <- c('c1', 'c2', 'c3', 'c4') + types <- as.data.frame(types) - # only render the tab when selected + for(subPanel in c("cohortSummaryPanel", "exposedCasesPanel", "cohortIncidencePanel")){ + typesOfInterest <- types %>% dplyr::filter(.data$c4 == subPanel) + if(nrow(typesOfInterest)>0){ + selectVal <- T + for( i in 1:nrow(typesOfInterest)){ + if(typesOfInterest[i,1] %in% charTypes$subPanel){ + shiny::insertTab( + inputId = typesOfInterest[i,4], + tab = shiny::tabPanel( + typesOfInterest[i,1], + do.call(what = typesOfInterest[i,2], args = list(id = session$ns(typesOfInterest[i,3]))) + ), + select = selectVal + ) + selectVal = F + } + } + } + } + + + # ============================= + # TRACK CURRENT TAB + # ============================= + # set the current tab + mainPanel <- shiny::reactiveVal('None') shiny::observeEvent(input$mainPanel,{ + mainPanel(input$mainPanel) + }) + cohortSummaryPanel <- shiny::reactiveVal('None') + shiny::observeEvent(input$cohortSummaryPanel,{ + cohortSummaryPanel(input$cohortSummaryPanel) + }) + exposedCasesPanel <- shiny::reactiveVal('None') + shiny::observeEvent(input$exposedCasesPanel,{ + exposedCasesPanel(input$exposedCasesPanel) + }) + + currentTab <- shiny::reactive({ + if(mainPanel() == "Cohort Summary" & cohortSummaryPanel() == 'Cohort Comparison'){ + return('Cohort Comparison') + } + if(mainPanel() == "Cohort Summary" & cohortSummaryPanel() == 'Database Comparison'){ + return('Database Comparison') + } + if(mainPanel() == "Exposed Cases Summary" & exposedCasesPanel() == 'Risk Factor'){ + return('Risk Factor') + } + if(mainPanel() == "Exposed Cases Summary" & exposedCasesPanel() == 'Case Series'){ + return('Case Series') + } + if(mainPanel() == "Exposed Cases Summary" & exposedCasesPanel() == 'Time-to-event'){ + return('Time-to-event') + } + if(mainPanel() == "Exposed Cases Summary" & exposedCasesPanel() == 'Dechallenge Rechallenge'){ + return('Dechallenge Rechallenge') + } + if(mainPanel() == "Cohort Incidence"){ + return("Cohort Incidence") + } + + return('None') + }) # ============================= - # Table of cohorts + # MODULE SERVERS # ============================= - if(input$mainPanel == "Target Viewer"){ - if(!"Target Viewer" %in% previouslyLoaded()){ - characterizationTableServer( - id = 'descriptiveTableTab', + # store what servers have been loaded and only load them the first time + # when the corresponding tab is loaded + previouslyLoaded <- shiny::reactiveVal(c()) + + # only render the tab when selected + shiny::observeEvent(currentTab(), { + # ============================= + # Cohort Comparison + # ============================= + if(currentTab() == 'Cohort Comparison'){ + if(!"Cohort Comparison" %in% previouslyLoaded()){ + characterizationCohortComparisonServer( + id = 'cohortComparisonTab', connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings + resultDatabaseSettings = resultDatabaseSettings, + options = options, + parents = parents, + parentIndex = parentIndex, + subTargetId = subTargetId ) - previouslyLoaded(c(previouslyLoaded(), "Target Viewer")) + previouslyLoaded(c(previouslyLoaded(), "Cohort Comparison")) } } - - - # ============================= - # Aggregrate Features - # ============================= - if(input$mainPanel == "Outcome Stratified"){ - if(!"Outcome Stratified" %in% previouslyLoaded()){ - characterizationAggregateFeaturesServer( - id = 'aggregateFeaturesTab', + + # ============================= + # Database Comparison + # ============================= + if(currentTab() == "Database Comparison"){ + if(!"Database Comparison" %in% previouslyLoaded()){ + characterizationDatabaseComparisonServer( + id = 'databaseComparisonTab', connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings + resultDatabaseSettings = resultDatabaseSettings, + options = options, + parents = parents, + parentIndex = parentIndex, + subTargetId = subTargetId ) - previouslyLoaded(c(previouslyLoaded(), "Outcome Stratified")) + previouslyLoaded(c(previouslyLoaded(), "Database Comparison")) } } - + # ============================= - # Incidence + # Risk Factor # ============================= - if(input$mainPanel == "Incidence Rate"){ - if(!"Incidence Rate" %in% previouslyLoaded()){ - characterizationIncidenceServer( - id = 'incidenceTab', + if(currentTab() == "Risk Factor"){ + if(!"Risk Factor" %in% previouslyLoaded()){ + characterizationRiskFactorServer( + id = 'riskFactorTab', connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings + resultDatabaseSettings = resultDatabaseSettings, + targetId = subTargetId, + outcomeId = outcomeId ) - previouslyLoaded(c(previouslyLoaded(), "Incidence Rate")) + previouslyLoaded(c(previouslyLoaded(), "Risk Factor")) } } - - - # ============================= - # Time To Event - # ============================= - if(input$mainPanel == "Time To Event"){ - if(!"Time To Event" %in% previouslyLoaded()){ + + # ============================= + # Case Series + # ============================= + if(currentTab() == 'Case Series'){ + if(!"Case Series" %in% previouslyLoaded()){ + characterizationCaseSeriesServer( + id = 'caseSeriesTab', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = subTargetId, + outcomeId = outcomeId + ) + previouslyLoaded(c(previouslyLoaded(), "Case Series")) + } + } + + # ============================= + # Time-to-event + # ============================= + if(currentTab() == 'Time-to-event'){ + if(!"Time-to-event" %in% previouslyLoaded()){ characterizationTimeToEventServer( - id = 'timeToEventTab', + id = 'timeToEventTab', connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings + resultDatabaseSettings = resultDatabaseSettings, + targetId = subTargetId, + outcomeId = outcomeId ) - previouslyLoaded(c(previouslyLoaded(), "Time To Event")) + previouslyLoaded(c(previouslyLoaded(), "Time-to-event")) } } - - # ============================= - # Dechallenge Rechallenge - # ============================= - if(input$mainPanel == "Dechallenge Rechallenge"){ + + # ============================= + # Dechallenge Rechallenge + # ============================= + if(currentTab() == 'Dechallenge Rechallenge'){ if(!"Dechallenge Rechallenge" %in% previouslyLoaded()){ characterizationDechallengeRechallengeServer( - id = 'dechallengeRechallengeTab', + id = 'dechallengeRechallengeTab', connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings + resultDatabaseSettings = resultDatabaseSettings, + targetId = subTargetId, + outcomeId = outcomeId ) previouslyLoaded(c(previouslyLoaded(), "Dechallenge Rechallenge")) } } - }) # end observed input tab + + # ============================= + # Incidence + # ============================= + if(currentTab() == "Cohort Incidence"){ + if(!"Incidence Results" %in% previouslyLoaded()){ + characterizationIncidenceServer( + id = 'cohortIncidenceTab', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + #options = options, + parents = parents, + parentIndex = parentIndex, # reactive + outcomes = outcomes, # reactive + targetIds = subTargetId# reactive + ) + previouslyLoaded(c(previouslyLoaded(), "Incidence Results")) + } + } + }) + + } ) @@ -209,13 +544,21 @@ getCharacterizationTypes <- function( connection = conn, databaseSchema = resultDatabaseSettings$schema ) - + + #"Database Comparison" - TODO check multiple databases? + # check Targets if(sum(paste0( resultDatabaseSettings$cTablePrefix, c('covariates', 'covariate_ref', 'cohort_details', 'settings') ) %in% tbls) == 4){ - results <- c(results, "Target Viewer", "Outcome Stratified" ) + results <- rbind( + results, + c("Database Comparison",'Cohort Summary', 'cohortSummaryPanel'), + c("Cohort Comparison",'Cohort Summary', 'cohortSummaryPanel'), + c("Risk Factor",'Exposed Cases Summary', 'exposedCasesPanel'), + c("Case Series",'Exposed Cases Summary', 'exposedCasesPanel') + ) } # check dechallenge_rechallenge @@ -223,7 +566,10 @@ getCharacterizationTypes <- function( resultDatabaseSettings$cTablePrefix, 'dechallenge_rechallenge' ) %in% tbls){ - results <- c(results, "Dechallenge Rechallenge") + results <- rbind( + results, + c("Dechallenge Rechallenge",'Exposed Cases Summary', 'exposedCasesPanel') + ) } # check time_to_event @@ -231,7 +577,10 @@ getCharacterizationTypes <- function( resultDatabaseSettings$cTablePrefix, 'time_to_event' ) %in% tbls){ - results <- c(results, "Time To Event") + results <- rbind( + results, + c("Time-to-event",'Exposed Cases Summary', 'exposedCasesPanel') + ) } # check incidence @@ -239,8 +588,136 @@ getCharacterizationTypes <- function( resultDatabaseSettings$incidenceTablePrefix, 'incidence_summary' ) %in% tbls){ - results <- c(results, "Incidence Rate") + results <- rbind( + results, + c("Incidence Results",'Cohort Incidence', 'cohortIncidencePanel') + ) } + + + return(list( + mainPanel = unique(results[,2]), + subPanel = unique(results[,1]) + )) +} + +# TODO add tte and dechal as include options +characterizationGetOptions <- function( + connectionHandler, + resultDatabaseSettings, + includeAggregate, + includeIncidence + ){ + + # get cohorts + cg <- connectionHandler$queryDb( + sql = 'select * from @schema.@cg_table_prefixcohort_definition + ORDER BY cohort_name;', + schema = resultDatabaseSettings$schema, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix + ) + +# TODO: CohortIncidence does not caputre specific T-O pairs, will need to implement +# if this function requires it. + TnOsSql = " +select distinct temp.*, c.cohort_name +from ( +{@include_aggregate} ? { +select distinct +target_cohort_id, +outcome_cohort_id +from @schema.@c_table_prefixcohort_details +where cohort_type = 'Cases' + +{@include_incidence} ? { +union +} +} + +{@include_incidence} ? { +select target_cohort_definition_id as target_cohort_id, outcome_cohort_definition_id as outcome_cohort_id + from @schema.@ci_table_prefixtarget_def, @schema.@ci_table_prefixoutcome_def +} + +) temp +inner join @schema.@cg_table_prefixcohort_definition c on temp.outcome_cohort_id = c.cohort_definition_id +;" + TnOs <- connectionHandler$queryDb( + sql = TnOsSql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + ci_table_prefix = resultDatabaseSettings$incidenceTablePrefix, + include_incidence = includeIncidence, + include_aggregate = includeAggregate + ) + # fix backwards compatability + if(!'isSubset' %in% colnames(cg)){ + cg$isSubset <- NA + } + if(!'subsetParent' %in% colnames(cg)){ + cg$subsetParent <- cg$cohortDefinitionId + } + if(!'subsetDefinitionId' %in% colnames(cg)){ + cg$subsetDefinitionId <- cg$cohortDefinitionId + } + cg$subsetParent[is.na(cg$isSubset)] <- cg$cohortDefinitionId + cg$subsetDefinitionId[is.na(cg$isSubset)] <- cg$cohortDefinitionId + cg$isSubset[is.na(cg$isSubset)] <- 0 + + parents <- unique(cg$cohortDefinitionId[cg$isSubset == 0]) + results <- lapply(parents, function(id){ + list( + cohortName = cg$cohortName[cg$cohortDefinitionId == id], + cohortId = id, + children = lapply(cg$cohortDefinitionId[cg$subsetParent == id], function(sid){ + list( + subsetName = cg$cohortName[cg$cohortDefinitionId == sid], + subsetId = sid, + outcomeIds = unique(TnOs$outcomeCohortId[TnOs$targetCohortId == sid]), + outcomeNames = unique(TnOs$cohortName[TnOs$targetCohortId == sid]) + # add outcomes from case exposures + ) + } + ) + ) + }) + return(results) + +} + +characterizationGetParents <- function(options){ + parentTs <- unlist(lapply(options, function(x) x$cohortId)) + names(parentTs) <- unlist(lapply(options, function(x) x$cohortName)) + + return(parentTs) +} + +characterizationGetChildren <- function(options, index){ + children <- unlist(lapply(options[[index]]$children, function(x) x$subsetId)) + names(children) <- unlist(lapply(options[[index]]$children, function(x) x$subsetName)) + + return(children) } + +characterizationGetOutcomes <- function(options, index){ + result <- unique( + do.call( + 'rbind', + lapply( + X = options[[index]]$children, + FUN = function(x) data.frame(ids = x$outcomeIds, names = x$outcomeNames) + ) + ) + ) + + outcomes <- result$ids + names(outcomes) <- result$names + + # sort the outcomes alphabetically + outcomes <- outcomes[order(names(outcomes))] + return(outcomes) +} + diff --git a/R/characterization-riskFactors.R b/R/characterization-riskFactors.R new file mode 100644 index 00000000..7623c0e9 --- /dev/null +++ b/R/characterization-riskFactors.R @@ -0,0 +1,1004 @@ +# @file characterization-aggregateFeatures.R +# +# Copyright 2024 Observational Health Data Sciences and Informatics +# +# This file is part of OhdsiShinyModules +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + + +characterizationRiskFactorViewer <- function(id) { + ns <- shiny::NS(id) + + shiny::div( + + # module that does input selection for a single row DF + shiny::uiOutput(ns("inputs")), + + shiny::conditionalPanel( + condition = 'input.generate != 0', + ns = ns, + + inputSelectionDfViewer(id = ns('inputSelected'), title = 'Selected'), + + shinydashboard::box( + title = 'Counts', + width = "100%", + collapsible = T, + resultTableViewer(ns('countTable')) + ), + + shinydashboard::tabBox( + width = "100%", + # Title can include an icon + title = shiny::tagList(shiny::icon("gear"), "Risk Factors"), + + shiny::tabPanel("Binary Feature Table", + resultTableViewer(ns('binaryTable')) + ), + shiny::tabPanel("Continuous Feature Table", + resultTableViewer(ns('continuousTable')) + ) + ) + ) + ) + +} + + + +characterizationRiskFactorServer <- function( + id, + connectionHandler, + resultDatabaseSettings, + targetId, #reactive + outcomeId #reactive +) { + shiny::moduleServer( + id, + function(input, output, session) { + + # get databases + options <- shiny::reactive({ + characterizationGetCaseSeriesOptions( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId() + ) + }) + + output$inputs <- shiny::renderUI({ # need to make reactive? + + shiny::div( + shiny::selectInput( + inputId = session$ns('databaseId'), + label = 'Database: ', + choices = options()$databaseIds, + selected = options()$databaseIds[1], + multiple = F + ), + + shiny::selectInput( + inputId = session$ns('tarInd'), + label = 'Time-at-risk: ', + choices = options()$tarInds, + selected = options()$tarInds[1], + multiple = F + ), + + shiny::actionButton( + inputId = session$ns('generate'), + label = 'Generate' + ) + ) + + }) + + # save the selections + selected <- shiny::reactiveVal(value = NULL) + + shiny::observeEvent(input$generate, { + + selected( + data.frame( + database = names(options()$databaseIds)[which(input$databaseId == options()$databaseIds)], + time_at_risk = names(options()$tarInds)[which(input$tarInd == options()$tarInds)] + ) + ) + + inputSelectionDfServer( + id = 'inputSelected', + dataFrameRow = selected, + ncol = 1 + ) + + counts <- characterizationGetRiskFactorCounts( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId(), + databaseId = input$databaseId, + tar = options()$tarList[[which(options()$tarInds == input$tarInd)]] + ) + + countTableOutput <- resultTableServer( + id = "countTable", + df = counts, + details = data.frame( + target = options()$targetName, + outcome = options()$outcomeName, + Database = names(options()$databaseIds)[which(input$databaseId == options()$databaseIds)], + TimeAtRisk = options()$tarList[[which(options()$tarInds == input$tarInd)]], + Analysis = 'Counts - Risk Factor' + ), + downloadedFileName = 'risk_factor_counts', + colDefsInput = characteriationCountsColDefs( + elementId = session$ns('count-table-filter') + ), + addActions = NULL, + elementId = session$ns('count-table-filter') + ) + + allData <- characterizationGetRiskFactorData( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId(), + databaseId = input$databaseId, + tar = options()$tarList[[which(options()$tarInds == input$tarInd)]] + ) + + binTableOutputs <- resultTableServer( + id = "binaryTable", + df = allData$binary, + details = data.frame( + target = options()$targetName, + outcome = options()$outcomeName, + Database = names(options()$databaseIds)[which(input$databaseId == options()$databaseIds)], + TimeAtRisk = options()$tarList[[which(options()$tarInds == input$tarInd)]], + Analysis = 'Exposed Cases Summary - Risk Factor' + ), + downloadedFileName = 'risk_factor_binary', + colDefsInput = characteriationRiskFactorColDefs( + elementId = session$ns('binary-table-filter') + ), # function below + addActions = NULL, + elementId = session$ns('binary-table-filter') + ) + + conTableOutputs <- resultTableServer( + id = "continuousTable", + df = allData$continuous, + colDefsInput = characteriationRiskFactorContColDefs( + elementId = session$ns('continuous-table-filter') + ), # function below + addActions = NULL, + elementId = session$ns('continuous-table-filter') + ) + + }) + + return(invisible(NULL)) + } + ) +} + + +characterizationGetRiskFactorCounts <- function( + connectionHandler, + resultDatabaseSettings, + targetId, + outcomeId, + databaseId, + tar +){ + + sql <- "SELECT + cohort_type, + min_prior_observation, + outcome_washout_days, + row_count, + person_count + + from + @schema.@c_table_prefixcohort_counts + where database_id = '@database_id' + and target_cohort_id = @target_id + and outcome_cohort_id in (@outcome_id, 0) + and (risk_window_start = @risk_window_start OR risk_window_start is NULL) + and (risk_window_end = @risk_window_end OR risk_window_end is NULL) + and (start_anchor = '@start_anchor' OR start_anchor is NULL) + and (end_anchor = '@end_anchor' OR end_anchor is NULL) + and cohort_type in ('Cases','Exclude','Target') + ;" + + counts <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + database_id = databaseId, + target_id = targetId, + outcome_id = outcomeId, + risk_window_start = tar$riskWindowStart, + start_anchor = tar$startAnchor, + risk_window_end = tar$riskWindowEnd, + end_anchor = tar$endAnchor + ) + + return(counts) + +} + +characterizationGetRiskFactorData <- function( + connectionHandler, + resultDatabaseSettings, + targetId, + outcomeId, + databaseId, + tar +){ + + shiny::withProgress(message = 'Getting risk factor data', value = 0, { + shiny::incProgress(1/4, detail = paste("Extracting ids")) + + sql <- "SELECT distinct setting_id + from + @schema.@c_table_prefixsettings + where database_id = '@database_id' + and risk_window_start = @risk_window_start + and risk_window_end = @risk_window_end + and start_anchor = '@start_anchor' + and end_anchor = '@end_anchor' + + union + + SELECT distinct setting_id + from + @schema.@c_table_prefixsettings + where database_id = '@database_id' + and risk_window_start is NULL + ;" + + ids <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + database_id = databaseId, + risk_window_start = tar$riskWindowStart, + start_anchor = tar$startAnchor, + risk_window_end = tar$riskWindowEnd, + end_anchor = tar$endAnchor + ) + + shiny::incProgress(2/4, detail = paste("Extracting binary")) + + sql <- "SELECT distinct cov.cohort_type, cr.covariate_name, + s.min_prior_observation, s.outcome_washout_days, + cov.covariate_id, cov.sum_value, cov.average_value + from + @schema.@c_table_prefixcovariates cov + inner join @schema.@c_table_prefixcovariate_ref cr + on cov.setting_id = cr.setting_id and + cov.database_id = cr.database_id and + cov.covariate_id = cr.covariate_id + + inner join @schema.@c_table_prefixsettings s + on cov.setting_id = s.setting_id + and cov.database_id = s.database_id + + where + cov.target_cohort_id = @target_id + and cov.outcome_cohort_id in (0,@outcome_id) + and cov.cohort_type in ('Target','Cases', 'Exclude') + and cov.database_id = '@database_id' + and cov.setting_id in (@setting_ids) + and cr.analysis_id not in (109, 110, 217, 218, 305, 417, 418, 505, 605, 713, 805, 926, 927) + ;" + + binary <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + target_id = targetId, + outcome_id = outcomeId, + database_id = databaseId, + setting_ids = paste0(paste0("'",ids$settingId, "'"), collapse=',') + ) + message(paste0('Extracted ',nrow(binary),' binary RF rows')) + + # now process into table + binary <- riskFactorTable( + data = binary + ) + + shiny::incProgress(3/4, detail = paste("Extracting continuous")) + + sql <- "SELECT distinct cov.cohort_type, cr.covariate_name, + s.min_prior_observation, s.outcome_washout_days,cov.covariate_id, + cov.count_value, cov.min_value, cov.max_value, cov.average_value, + cov.standard_deviation, cov.median_value, cov.p_10_value, + cov.p_25_value, cov.p_75_value, cov.p_90_value + from + @schema.@c_table_prefixcovariates_continuous cov + inner join @schema.@c_table_prefixcovariate_ref cr + on cov.setting_id = cr.setting_id and + cov.database_id = cr.database_id and + cov.covariate_id = cr.covariate_id + + inner join @schema.@c_table_prefixsettings s + on cov.setting_id = s.setting_id + and cov.database_id = s.database_id + + where cov.target_cohort_id = @target_id + and cov.outcome_cohort_id in (0,@outcome_id) + and cov.cohort_type in ('Target','Cases', 'Exclude') + and cov.database_id = '@database_id' + and cov.setting_id in (@setting_ids) + and cr.analysis_id not in (109, 110, 217, 218, 305, 417, 418, 505, 605, 713, 805, 926, 927) + ;" + + # TODO - how to remove prior outcomes?? + continuous <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + target_id = targetId, + outcome_id = outcomeId, + database_id = databaseId, + setting_ids = paste0(paste0("'",ids$settingId, "'"), collapse=',') + ) + + message(paste0('Extracted ',nrow(binary),' continuous RF rows')) + + continuous <- riskFactorContinuousTable( + data = continuous + ) + + shiny::incProgress(4/4, detail = paste("Done")) + + }) + + return( + list( + binary = binary, + continuous = continuous + ) + ) +} + + +# now process into table +riskFactorTable <- function( + data +){ + + if(is.null(data)){ + return(data) + } + + data <- unique(data) + if(nrow(data) == 0){ + return(data) + } + + outcomeWashoutDays <- unique(data$outcomeWashoutDays) + outcomeWashoutDays <- outcomeWashoutDays[!is.na(outcomeWashoutDays)] + if(length(outcomeWashoutDays) == 0){ + shiny::showNotification('No cases') + data <- data %>% + dplyr::filter(.data$cohortType == 'Target') %>% + dplyr::select(-"cohortType", -"outcomeWashoutDays") %>% + dplyr::mutate( + nonCaseSumValue = .data$sumValue, + nonCaseAverageValue = .data$averageValue + ) %>% + dplyr::select( + "covariateId","covariateName", + 'minPriorObservation', + "nonCaseSumValue","nonCaseAverageValue" + ) + return(data) + } + + targetData <- data %>% + dplyr::filter(.data$cohortType == 'Target') %>% + dplyr::mutate( + sumValue_Target = .data$sumValue, + averageValue_Target = .data$averageValue + ) %>% + dplyr::select( + -"cohortType", + -"outcomeWashoutDays", + -"sumValue", + -"averageValue" + ) + + targetN <- targetData %>% + dplyr::mutate(N_Target = .data$sumValue_Target/.data$averageValue_Target) %>% + dplyr::select('minPriorObservation', 'N_Target') %>% + dplyr::group_by(.data$minPriorObservation) %>% + dplyr::summarise(N_Target = round(max(.data$N_Target, na.rm = T))) + + completeData <- c() + for(outcomeWashoutDay in outcomeWashoutDays){ + + # add dummy Cases and Exclude to data so columns always exist + data <- rbind(data, data.frame( + cohortType = c('Cases','Exclude'), + covariateName = rep('NA', 2), + minPriorObservation = rep(unique(data$minPriorObservation)[1], 2), + outcomeWashoutDays = rep(outcomeWashoutDay, 2), + covariateId = rep(-1, 2), + sumValue = rep(0,2), + averageValue = rep(0,2) + )[colnames(data)]) + + #filter data to outcomeWashoutDays + otherData <- data %>% + dplyr::filter( + .data$cohortType != 'Target' & + .data$outcomeWashoutDays == !!outcomeWashoutDay + ) %>% + tidyr::pivot_wider( + id_cols = c( + "minPriorObservation", + "covariateId", + "covariateName" + ), + names_from = "cohortType", + values_from = c("sumValue","averageValue") + ) + + otherN <- otherData %>% + dplyr::mutate( + N_Cases = .data$sumValue_Cases/.data$averageValue_Cases, + N_Exclude = .data$sumValue_Exclude/.data$averageValue_Exclude + ) %>% + dplyr::group_by(.data$minPriorObservation) %>% + dplyr::summarise( + N_Cases = max(.data$N_Cases, na.rm = T), + N_Exclude = max(.data$N_Exclude, na.rm = T) + ) + + if(length(is.infinite(otherN$N_Cases))>0){ + otherN$N_Cases[is.infinite(otherN$N_Cases)] <- 0 + } + if(length(is.infinite(otherN$N_Exclude))>0){ + otherN$N_Exclude[is.infinite(otherN$N_Exclude)] <- 0 + } + + # get all counts + counts <- targetN %>% + dplyr::left_join(otherN, by = c('minPriorObservation')) + + # get final data for minPriorObs + finalData <- targetData %>% + dplyr::left_join( + otherData, + by = c( + "minPriorObservation", + "covariateId", + "covariateName" + ) + ) %>% + dplyr::inner_join( + counts , + by = c( + "minPriorObservation" + ) + ) + if(length(is.na(finalData$sumValue_Cases))>0){ + finalData$sumValue_Cases[is.na(finalData$sumValue_Cases)] <- 0 + } + if(length(is.na(finalData$sumValue_Target))>0){ + finalData$sumValue_Target[is.na(finalData$sumValue_Target)] <- 0 + } + if(length(is.na(finalData$sumValue_Exclude))>0){ + finalData$sumValue_Exclude[is.na(finalData$sumValue_Exclude)] <- 0 + } + if(length(is.na(finalData$N_Target))>0){ + finalData$N_Target[is.na(finalData$N_Target)] <- 0 + } + if(length(is.na(finalData$N_Cases))>0){ + finalData$N_Cases[is.na(finalData$N_Cases)] <- 0 + } + if(length(is.na(finalData$N_Exclude))>0){ + finalData$N_Exclude[is.na(finalData$N_Exclude)] <- 0 + } + if(length(is.na(finalData$averageValue_Cases))>0){ + finalData$averageValue_Cases[is.na(finalData$averageValue_Cases)] <- 0 + } + + # removing censored counts as dont want to add due to negative + if(length(finalData$N_Exclude < 0) > 0 ){ + finalData$N_Exclude[finalData$N_Exclude < 0] <- 0 + } + finalData$N_Cases_exclude <- finalData$N_Cases + if(length(finalData$N_Cases_exclude < 0) > 0 ){ + finalData$N_Cases_exclude[finalData$N_Cases_exclude < 0] <- 0 + } + if(length(finalData$sumValue_Exclude < 0) > 0 ){ + finalData$sumValue_Exclude[finalData$sumValue_Exclude < 0] <- 0 + } + finalData$sumValue_Cases_exclude <- finalData$sumValue_Cases + if(length(finalData$sumValue_Cases_exclude < 0) > 0 ){ + finalData$sumValue_Cases_exclude[finalData$sumValue_Cases_exclude < 0] <- 0 + } + + finalData <- finalData %>% + dplyr::mutate( + nonCaseN = round(.data$N_Target-.data$N_Exclude-.data$N_Cases_exclude), + caseN = .data$N_Cases, + N = .data$N_Target, + nonCaseSumValue = .data$sumValue_Target-.data$sumValue_Exclude-.data$sumValue_Cases_exclude, + caseSumValue = .data$sumValue_Cases, + nonCaseAverageValue = (.data$sumValue_Target-.data$sumValue_Exclude-.data$sumValue_Cases_exclude)/(.data$N_Target-.data$N_Exclude-.data$N_Cases_exclude), + caseAverageValue = .data$averageValue_Cases + ) %>% + dplyr::select( + "covariateId", "covariateName", "minPriorObservation", + "caseSumValue","caseAverageValue", + "nonCaseSumValue","nonCaseAverageValue", + "nonCaseN", "caseN", "N" + ) %>% + dplyr::mutate( + meanDiff = .data$caseAverageValue - .data$nonCaseAverageValue, + std1 = ifelse(.data$caseN == 0, 0 ,sqrt(((1-.data$caseAverageValue)^2*.data$caseSumValue + (-.data$caseAverageValue)^2*(.data$caseN - .data$caseSumValue))/.data$caseN)), + std2 = ifelse(.data$nonCaseN == 0, 0, sqrt(((1-.data$nonCaseAverageValue)^2*.data$nonCaseSumValue + (-.data$nonCaseAverageValue)^2*(.data$nonCaseN - .data$nonCaseSumValue))/.data$nonCaseN)) + ) %>% + dplyr::mutate( + SMD = .data$meanDiff/sqrt((.data$std1^2 + .data$std2^2)/2), + absSMD = abs(.data$meanDiff/sqrt((.data$std1^2 + .data$std2^2)/2)) + ) %>% + dplyr::select(-"meanDiff",-"std1", -"std2", -"N",-"caseN", -"nonCaseN") + + + # add outcomewashout back here + finalData <- finalData %>% + dplyr::mutate( + outcomeWashoutDays = !!outcomeWashoutDay + ) %>% + dplyr::relocate("outcomeWashoutDays", + .after = "minPriorObservation") + + completeData <- rbind(finalData, completeData) + + } # end outcomeWashoutDays loop + + if(nrow(completeData) == 0){ + completeData <- data %>% + dplyr::filter(.data$cohortType == 'Target') %>% + dplyr::select(-"cohortType", -"outcomeWashoutDays") %>% + dplyr::mutate( + nonCaseSumValue = .data$sumValue, + nonCaseAverageValue = .data$averageValue + ) %>% + dplyr::select( + "covariateId","covariateName", + 'minPriorObservation', + "nonCaseSumValue","nonCaseAverageValue" + ) + } + + return(unique(completeData)) +} + + +riskFactorContinuousTable <- function( + data +){ + + + data <- unique(data) + + caseData <- data %>% + dplyr::filter(.data$cohortType == 'Cases') %>% + dplyr::select(-"cohortType") + + allData <- data %>% + dplyr::filter(.data$cohortType == 'Target') %>% + dplyr::select(-"cohortType", -"outcomeWashoutDays") + + if(nrow(caseData) > 0){ + + caseData <- caseData %>% + dplyr::mutate( + caseCountValue = .data$countValue, + caseAverageValue = .data$averageValue, + caseStandardDeviation = .data$standardDeviation, + caseMedianValue = .data$medianValue, + caseMinValue = .data$minValue, + caseMaxValue = .data$maxValue, + caseP10Value = .data$p10Value, + caseP25Value = .data$p25Value, + caseP75Value = .data$p75Value, + caseP90Value = .data$p90Value + ) %>% + dplyr::select("covariateId","covariateName", + 'minPriorObservation', 'outcomeWashoutDays', + "caseCountValue","caseAverageValue", + "caseStandardDeviation", "caseMedianValue", "caseP10Value", "caseP25Value", + "caseP75Value", "caseP90Value", "caseMaxValue", "caseMinValue") + + # join with cases + allData <- allData %>% + dplyr::full_join(caseData, by = c('covariateId', 'covariateName', 'minPriorObservation')) %>% + dplyr::mutate( + targetCountValue = .data$countValue, + targetAverageValue = .data$averageValue, + targetStandardDeviation = .data$standardDeviation, + targetMedianValue = .data$medianValue, + targetMinValue = .data$minValue, + targetMaxValue = .data$maxValue, + targetP10Value = .data$p10Value, + targetP25Value = .data$p25Value, + targetP75Value = .data$p75Value, + targetP90Value = .data$p90Value + ) %>% + dplyr::select("covariateId","covariateName", + 'minPriorObservation', 'outcomeWashoutDays', + "caseCountValue","caseAverageValue", + "caseStandardDeviation", "caseMedianValue", "caseP10Value", "caseP25Value", + "caseP75Value", "caseP90Value", "caseMaxValue", "caseMinValue", + + "targetCountValue","targetAverageValue", + "targetStandardDeviation", "targetMedianValue", "targetP10Value", "targetP25Value", + "targetP75Value", "targetP90Value","targetMaxValue", "targetMinValue",) + + # add abs smd + allData <- allData %>% + dplyr::mutate( + SMD = (.data$caseAverageValue - .data$targetAverageValue)/sqrt((.data$caseStandardDeviation^2 + .data$targetStandardDeviation^2)/2), + absSMD = abs((.data$caseAverageValue - .data$targetAverageValue)/sqrt((.data$caseStandardDeviation^2 + .data$targetStandardDeviation^2)/2)), + targetBoxPlot = 0, + caseBoxPlot = 0 + ) + + + } + + + return(unique(allData)) + +} + +characteriationCountsColDefs <- function( + elementId +){ + result <- list( + cohortType = reactable::colDef( + header = withTooltip("Cohort Type", + "The target popualtion, exclusions from target or cases"), + filterable = T + ), + + rowCount = reactable::colDef( + header = withTooltip("# rows", + "Number of exposures in the cohort (people can be in more than once)"), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('< ', abs(value)) + } + ), + personCount = reactable::colDef( + header = withTooltip("# persons", + "Number of distinct people in the cohort"), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('< ', abs(value)) + } + ) + ) + return(result) +} + +characteriationRiskFactorColDefs <- function( + elementId + ){ + result <- list( + covariateId = reactable::colDef( + show = F + ), + covariateName = reactable::colDef( + header = withTooltip("Covariate Name", + "Name of the covariate"), + filterable = T, + minWidth = 300 + ), + minPriorObservation = reactable::colDef( + header = withTooltip("Min Prior Observation", + "Minimum prior observation time (days)"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + outcomeWashoutDays = reactable::colDef( + header = withTooltip("Outcome Washout Days", + "Number of days for the outcome washout"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + nonCaseSumValue = reactable::colDef( + header = withTooltip("# Non-cases with Feature Before Exposure", + "Number of non-cases for the outcome with the feature before exposure"), + filterable = T, + format = reactable::colFormat( + percent = F, + separators = TRUE + ), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('< ', abs(value)) + } + ), + caseSumValue = reactable::colDef( + header = withTooltip("# Cases with Feature Before Exposure", + "Number of cases for the outcome with the feature before exposure"), + filterable = T, + format = reactable::colFormat( + separators = TRUE, + percent = F + ), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >= 0) value else paste0('< ', abs(value)) + } + ), + nonCaseAverageValue = reactable::colDef( + header = withTooltip("% Non-cases with Feature Before Exposure", + "Percent of non-cases for the outcome with the feature before exposure"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = T) + ), + caseAverageValue = reactable::colDef( + header = withTooltip("% Cases with Feature Before Exposure", + "Percent of Cases for the outcome with the feature before exposure"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = T) + ), + + SMD = reactable::colDef( + header = withTooltip("SMD", + "Standardized mean difference"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + + absSMD = reactable::colDef( + header = withTooltip("absSMD", + "Absolute value of standardized mean difference"), + format = reactable::colFormat(digits = 2, percent = F), + filterable = TRUE, + filterMethod = reactable::JS("function(rows, columnId, filterValue) { + return rows.filter(function(row) { + return row.values[columnId] >= filterValue + }) + }"), + filterInput = function(values, name) { + oninput <- sprintf("Reactable.setFilter('%s', '%s', this.value)", elementId, name) + shiny::tags$input( + type = "range", + min = floor(min(values, na.rm = T)), + max = ceiling(max(values, na.rm = T)), + value = floor(min(values, na.rm = T)), + oninput = oninput, + onchange = oninput, # For IE11 support + "aria-label" = sprintf("Filter by minimum %s", name) + ) + } + ) + ) + return(result) +} + + + +characteriationRiskFactorContColDefs <- function( + elementId + ){ + result <- list( + covariateName = reactable::colDef( + header = withTooltip("Covariate Name", + "Name of the covariate"), + filterable = T, + minWidth = 300 + ), + covariateId = reactable::colDef( + show = F + ), + minPriorObservation = reactable::colDef( + header = withTooltip("Min Prior Observation", + "Minimum prior observation time (days)"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + outcomeWashoutDays = reactable::colDef( + header = withTooltip("Outcome Washout Days", + "Number of days for the outcome washout"), + filterable = T, + filterInput = function(values, name) { + shiny::tags$select( + # Set to undefined to clear the filter + onchange = sprintf("Reactable.setFilter('%s', '%s', event.target.value || undefined)", elementId, name), + # "All" has an empty value to clear the filter, and is the default option + shiny::tags$option(value = "", "All"), + lapply(unique(values), shiny::tags$option), + "aria-label" = sprintf("Filter %s", name), + style = "width: 100%; height: 28px;" + ) + } + ), + countValue = reactable::colDef( + header = withTooltip("# with Feature", + "Number with feature"), + filterable = T + , + format = reactable::colFormat( + percent = F, + separators = TRUE + ), + cell = function(value) { + if(is.null(value)){return('< min threshold')} + if(is.na(value)){return('< min threshold')} + if (value >=0) value else paste0('< ', abs(value)) + } + ), + averageValue = reactable::colDef( + header = withTooltip("Mean Feature Value", + "Mean value of the feature in the population"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + standardDeviation = reactable::colDef( + header = withTooltip("SD Feature Value", + "Standard deviation of the feature value in the population"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + medianValue = reactable::colDef( + header = withTooltip("Median Feature Value", + "Median of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p10Value = reactable::colDef( + header = withTooltip("10th %ile Feature Value", + "10th percentile of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p25Value = reactable::colDef( + header = withTooltip("25th %tile Feature Value", + "25th percentile of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p75Value = reactable::colDef( + header = withTooltip("75th %tile Feature Value", + "75th percentile of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + p90Value = reactable::colDef( + header = withTooltip("90th %tile Feature Value", + "90th percentile of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + maxValue = reactable::colDef( + header = withTooltip("Max Feature Value", + "Maximum of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + minValue = reactable::colDef( + header = withTooltip("Min Feature Value", + "Minimum of the feature value"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + boxPlot = reactable::colDef( + show = F + ), + #targetBoxPlot = reactable::colDef(cell = function(value, index) { + # ggplot2::ggplot() + + # ggplot2::geom_boxplot( + # ggplot2::aes( + # x = 1, + # ymin = data$targetMinValue[index], + # lower = data$targetP10Value[index], + # middle = data$targetMedianValue[index], + # upper = data$targetP90Value[index], + # ymax = data$targetMaxValue[index] + # ), + # stat = "identity" + # ) + #}), + #caseBoxPlot = reactable::colDef(cell = function(value, index) { + # sparkline(vcs_boxp_data$em_red_per_th[[index]], type = "box") + # }), + #caseBoxPlot = reactable::colDef(cell = function(value, index) { + # sparkline::sparkline(vcs_boxp_data$em_red_per_th[[index]], type = "box") + # }), + + # low_outlier, low_whisker, q1, median, q3, high_whisker, high_outlier + #sparkline::spk_chr(c(data$targetMinValue[index], data$targetP10Value[index], data$targetP25Value[index], data$targetMedianValue[index], 3, 6, 6), type="box", raw = TRUE, width = 200) + + SMD = reactable::colDef( + header = withTooltip("SMD", + "Standardized mean difference"), + filterable = T, + format = reactable::colFormat(digits = 2, percent = F) + ), + absSMD = reactable::colDef( + header = withTooltip("absSMD", + "Absolute value of the standardized mean difference"), + format = reactable::colFormat(digits = 2, percent = F), + filterable = TRUE, + filterMethod = reactable::JS("function(rows, columnId, filterValue) { + return rows.filter(function(row) { + return row.values[columnId] >= filterValue + }) + }"), + filterInput = function(values, name) { + oninput <- sprintf("Reactable.setFilter('%s', '%s', this.value)", elementId, name) + shiny::tags$input( + type = "range", + min = floor(min(values, na.rm = T)), + max = ceiling(max(values, na.rm = T)), + value = floor(min(values, na.rm = T)), + oninput = oninput, + onchange = oninput, # For IE11 support + "aria-label" = sprintf("Filter by minimum %s", name) + ) + } + ) + ) + return(result) +} + diff --git a/R/characterization-timeToEvent.R b/R/characterization-timeToEvent.R index 8b0f6041..abfb322b 100644 --- a/R/characterization-timeToEvent.R +++ b/R/characterization-timeToEvent.R @@ -17,165 +17,207 @@ # limitations under the License. -#' The module viewer for exploring time to event results -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the characterization time to event module -#' -#' @export characterizationTimeToEventViewer <- function(id) { ns <- shiny::NS(id) shiny::div( - infoHelperViewer( - id = "helper", - helpLocation= system.file("characterization-www", "help-timeToEvent.html", package = utils::packageName()) - ), - - # input component module - inputSelectionViewer(id = ns('input-selection')), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection")), + shiny::tabsetPanel( + type = 'pills', + id = ns('tteMainPanel'), + shiny::tabPanel( + title = "Time-to-event Plots", + shinydashboard::box( width = "100%", - title = shiny::tagList(shiny::icon("gear"), "Results"), + title = "", - shiny::fluidRow( - shiny::column( - width = 2, - shiny::uiOutput(ns('timeToEventPlotInputs')) - ), - shiny::column( - width = 10, - shinycssloaders::withSpinner( - shiny::plotOutput(ns('timeToEvent')) - ) + shiny::uiOutput(ns('timeToEventPlotInputs')), + shinycssloaders::withSpinner( + shiny::plotOutput(ns('timeToEvent')) ) ) + ), + + shiny::tabPanel( + title = "Time-to-event Table", + + shinydashboard::box( + status = 'info', + width = '100%', + solidHeader = TRUE, + resultTableViewer(ns('tableResults')) + ) ) ) - - ) } -#' The module server for exploring time to event results -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler the connection to the prediction result database -#' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix -#' -#' @return -#' The server to the prediction time to event module -#' -#' @export characterizationTimeToEventServer <- function( id, connectionHandler, - resultDatabaseSettings + resultDatabaseSettings, + targetId, + outcomeId ) { shiny::moduleServer( id, function(input, output, session) { - # get the possible target ids - bothIds <- timeToEventGetIds( - connectionHandler, - resultDatabaseSettings - ) - - - # input selection component - inputSelected <- inputSelectionServer( - id = "input-selection", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'targetId', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Target: ', - choices = bothIds$targetIds, - #choicesOpt = list(style = rep_len("color: black;", 999)), - selected = bothIds$targetIds[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'outcomeId', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Outcome: ', - choices = bothIds$outcomeIds, - #choicesOpt = list(style = rep_len("color: black;", 999)), - selected = bothIds$outcomeIds[1], - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) + options <- shiny::reactive({ + characterizationGetCaseSeriesOptions( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetId = targetId(), + outcomeId = outcomeId() ) - ) + }) allData <- shiny::reactive({ getTimeToEventData( - targetId = inputSelected()$targetId, - outcomeId = inputSelected()$outcomeId, + targetId = targetId(), + outcomeId = outcomeId(), connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings - ) + ) %>% + dplyr::mutate(targetName = options()$targetName, + outcomeName = options()$outcomeName) %>% + dplyr::relocate("databaseName", .before = "databaseId") %>% + dplyr::relocate("targetName", .after = "databaseName") %>% + dplyr::relocate("outcomeName", .after = "targetName") }) + + + characterizationTimeToEventColDefs <- function(){ + result <- list( + databaseName = reactable::colDef( + header = withTooltip("Database", + "Name of the database"), + filterable = T + ), + databaseId = reactable::colDef( + header = withTooltip("Database ID", + "Unique ID of the database"), + filterable = T, + show = F + ), + targetCohortDefinitionId = reactable::colDef( + header = withTooltip("Target ID", + "Unique ID of the target cohort"), + filterable = T, + show = F + ), + targetName = reactable::colDef( + header = withTooltip("Target Name", + "Name of the target cohort"), + filterable = T + ), + outcomeCohortDefinitionId = reactable::colDef( + header = withTooltip("Outcome ID", + "Unique ID of the outcome cohort"), + filterable = T, + show = F + ), + outcomeName = reactable::colDef( + header = withTooltip("Outcome Name", + "Name of the outcome cohort"), + filterable = T + ), + outcomeType = reactable::colDef( + header = withTooltip("Outcome Type", + "Type of the outcome, either first or subsequent occurrence"), + filterable = T + ), + targetOutcomeType = reactable::colDef( + header = withTooltip("Target-Outcome Type", + "The timing of the event relative to the target era"), + filterable = T + ), + timeToEvent = reactable::colDef( + header = withTooltip("Time (in days) To Event", + "The time in days relative to target index until the event occurred"), + filterable = T + ), + numEvents = reactable::colDef( + header = withTooltip("# of Events", + "The number of events that occurred"), + filterable = T, + cell = function(value) { + # Add < if cencored + if (value < 0 ) paste("<", abs(value)) else value + } + ), + timeScale = reactable::colDef( + header = withTooltip("Time Scale", + "The time scale in which the events occurred"), + filterable = T + ) + ) + return(result) + } + + tableOutputs <- resultTableServer( + id = "tableResults", + df = allData, + details = data.frame( + target = options()$targetName, + outcome = options()$outcomeName, + Analysis = 'Exposed Cases Summary - Time-to-event' + ), + downloadedFileName = 'time_to_event', + colDefsInput = characterizationTimeToEventColDefs() + ) output$timeToEventPlotInputs <- shiny::renderUI({ shiny::fluidPage( shiny::fluidRow( - shiny::checkboxGroupInput( - inputId = session$ns("databases"), + shiny::selectInput( + inputId = session$ns("databases"), label = "Databases:", - choiceNames = unique(allData()$databaseName), - choiceValues = unique(allData()$databaseName), + multiple = T, + choices = unique(allData()$databaseName), selected = unique(allData()$databaseName) - ), - shiny::checkboxGroupInput( - inputId = session$ns("times"), - label = "Timespan:", - choiceNames = unique(allData()$timeScale), - choiceValues = unique(allData()$timeScale), - selected = unique(allData()$timeScale) + ), + + shiny::fluidRow( + shiny::column( + width = 3, + shiny::selectInput( + inputId = session$ns("times"), + label = "Timespan:", + multiple = T, + choices = unique(allData()$timeScale), + selected = unique(allData()$timeScale) + ) + ), + + shiny::column( + width = 3, + shiny::selectInput( + inputId = session$ns("outcomeTypes"), + label = "Outcome occurrence type:", + multiple = T, + choices = unique(allData()$outcomeType), + selected = unique(allData()$outcomeType) + ) + ), + + shiny::column( + width = 6, + shiny::selectInput( + inputId = session$ns("targetOutcomeTypes"), + label = "Timing of outcome:", + multiple = T, + choices = unique(allData()$targetOutcomeType), + selected = unique(allData()$targetOutcomeType) + ) + ) ) + ) ) } @@ -185,7 +227,9 @@ characterizationTimeToEventServer <- function( plotTimeToEvent( timeToEventData = allData, # reactive databases = input$databases, - times = input$times + times = input$times, + outcomeTypes = input$outcomeTypes, + targetOutcomeTypes = input$targetOutcomeTypes ) ) @@ -196,61 +240,6 @@ characterizationTimeToEventServer <- function( ) } -timeToEventGetIds <- function( - connectionHandler, - resultDatabaseSettings -){ - - shiny::withProgress(message = 'Getting time to event T and O ids', value = 0, { - - sql <- "SELECT DISTINCT - t.COHORT_NAME as target, TARGET_COHORT_DEFINITION_ID, - o.COHORT_NAME as outcome, OUTCOME_COHORT_DEFINITION_ID - FROM @schema.@c_table_prefixTIME_TO_EVENT tte - inner join @schema.@cg_table_prefixCOHORT_DEFINITION t - on tte.TARGET_COHORT_DEFINITION_ID = t.COHORT_DEFINITION_ID - inner join @schema.@cg_table_prefixCOHORT_DEFINITION o - on tte.OUTCOME_COHORT_DEFINITION_ID = o.COHORT_DEFINITION_ID - ;" - - - shiny::incProgress(1/4, detail = paste("Fetching ids")) - - bothIds <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - c_table_prefix = resultDatabaseSettings$cTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix - ) - - shiny::incProgress(3/4, detail = paste("Processing ids")) - - targetUnique <- bothIds %>% - dplyr::select(c("targetCohortDefinitionId", "target")) %>% - dplyr::distinct() - - targetIds <- targetUnique$targetCohortDefinitionId - names(targetIds) <- targetUnique$target - - outcomeUnique <- bothIds %>% - dplyr::select(c("outcomeCohortDefinitionId", "outcome")) %>% - dplyr::distinct() - - outcomeIds <- outcomeUnique$outcomeCohortDefinitionId - names(outcomeIds) <- outcomeUnique$outcome - - shiny::incProgress(4/4, detail = paste("Finished")) - - }) - - return( - list( - targetIds = targetIds, - outcomeIds = outcomeIds - ) - ) -} - # pulls all data for a target and outcome getTimeToEventData <- function( targetId, @@ -286,13 +275,17 @@ getTimeToEventData <- function( }) + #write.csv(data,'/Users/jreps/Documents/tte_data.csv') + return(data) } plotTimeToEvent <- function( timeToEventData, databases, - times + times, + outcomeTypes, + targetOutcomeTypes ){ if(is.null(timeToEventData())){ @@ -302,14 +295,31 @@ plotTimeToEvent <- function( timeToEventData <- timeToEventData() %>% dplyr::filter(.data$databaseName %in% databases) - if(is.null(timeToEventData)){ + if(nrow(timeToEventData) == 0){ + shiny::showNotification('No results for selected databases') return(NULL) } timeToEventData <- timeToEventData %>% dplyr::filter(.data$timeScale %in% times) - if(is.null(timeToEventData)){ + if(nrow(timeToEventData) == 0){ + shiny::showNotification('No results for selected databases and times') + return(NULL) + } + + # remove censored data + timeToEventData <- timeToEventData %>% + dplyr::filter( + .data$outcomeType %in% outcomeTypes & + .data$targetOutcomeType %in% targetOutcomeTypes & + .data$numEvents > 0 + ) + + # TODO plot censored as black? + + if(nrow(timeToEventData) == 0){ + shiny::showNotification('No results for selection') return(NULL) } @@ -320,7 +330,10 @@ plotTimeToEvent <- function( shiny::incProgress(1/2, detail = paste("Generating plot")) plot <- ggplot2::ggplot( - data = timeToEventData %>% dplyr::mutate(fillGroup = paste0(.data$outcomeType, '-', .data$targetOutcomeType)), + data = timeToEventData %>% + dplyr::mutate( + fillGroup = paste0(.data$outcomeType, '-', .data$targetOutcomeType) + ), ggplot2::aes( x = .data$timeToEvent, y = .data$numEvents, @@ -329,21 +342,14 @@ plotTimeToEvent <- function( ) ) + ggplot2::geom_bar( - #position="stacked", stat = "identity" ) + - #ggplot2::geom_text( - # ggplot2::aes( - # label = .data$numEvents - # ), - # vjust = 1.6, - # color = "white", - # size = 3.5 - # ) + ggplot2::facet_wrap(ncol = nDatabases , .data$timeScale ~ .data$databaseName , scales = 'free' ) + - ggplot2::theme_minimal() + ggplot2::theme_minimal() + + ggplot2::guides(fill=ggplot2::guide_legend(title="Outcome Type")) + + ggplot2::labs(y= "# of Events", x = "Time (days) to Event") shiny::incProgress(2/2, detail = paste("Finished")) diff --git a/R/cohort-diagnostics-characterization.R b/R/cohort-diagnostics-characterization.R index 02a88887..880eec4d 100644 --- a/R/cohort-diagnostics-characterization.R +++ b/R/cohort-diagnostics-characterization.R @@ -19,6 +19,7 @@ #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("characterization") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export cohortDiagCharacterizationView <- function(id) { ns <- shiny::NS(id) @@ -419,7 +420,7 @@ prepareTable1 <- function(covariates, "characteristic", "valueCount" ) %>% - dplyr::rename("count" = "valueCount") %>% + dplyr::rename(count = "valueCount") %>% dplyr::inner_join(cohort %>% dplyr::select( "cohortId", @@ -739,7 +740,7 @@ cohortDiagCharacterizationModule <- function( "covariateName", "mean" ) %>% - dplyr::rename("sumValue" = "mean") + dplyr::rename(sumValue = "mean") table <- data %>% diff --git a/R/cohort-diagnostics-cohort-overlap.R b/R/cohort-diagnostics-cohort-overlap.R index 016c5556..0d376642 100644 --- a/R/cohort-diagnostics-cohort-overlap.R +++ b/R/cohort-diagnostics-cohort-overlap.R @@ -172,6 +172,7 @@ plotCohortOverlap <- function(data, #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("cohortOverlap") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export cohortOverlapView <- function(id) { ns <- shiny::NS(id) @@ -358,7 +359,7 @@ getResultsCohortOverlap <- function(dataSource, dplyr::inner_join( cohortCounts %>% dplyr::select(-"cohortEntries") %>% - dplyr::rename("targetCohortSubjects" = "cohortSubjects"), + dplyr::rename(targetCohortSubjects = "cohortSubjects"), by = c("databaseId", "cohortId") ) %>% dplyr::mutate(tOnlySubjects = .data$targetCohortSubjects - .data$subjects) %>% @@ -366,8 +367,8 @@ getResultsCohortOverlap <- function(dataSource, cohortCounts %>% dplyr::select(-"cohortEntries") %>% dplyr::rename( - "comparatorCohortSubjects" = "cohortSubjects", - "comparatorCohortId" = "cohortId" + comparatorCohortSubjects = "cohortSubjects", + comparatorCohortId = "cohortId" ), by = c("databaseId", "comparatorCohortId") ) %>% diff --git a/R/cohort-diagnostics-compareCharacterization.R b/R/cohort-diagnostics-compareCharacterization.R index 58d5e177..6bcd45d3 100644 --- a/R/cohort-diagnostics-compareCharacterization.R +++ b/R/cohort-diagnostics-compareCharacterization.R @@ -246,6 +246,7 @@ plotTemporalCompareStandardizedDifference <- function(balance, #' #' @param id Namespace Id - use namespaced id ns("compareCohortCharacterization") inside diagnosticsExplorer module #' @param title Optional string title field +#' @family {CohortDiagnostics} #' @export compareCohortCharacterizationView <- function(id, title = "Compare cohort characterization") { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-conceptsInDataSource.R b/R/cohort-diagnostics-conceptsInDataSource.R index 825e58aa..33819cbe 100644 --- a/R/cohort-diagnostics-conceptsInDataSource.R +++ b/R/cohort-diagnostics-conceptsInDataSource.R @@ -19,6 +19,7 @@ #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("conceptsInDataSource") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export conceptsInDataSourceView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-counts.R b/R/cohort-diagnostics-counts.R index 262c41ea..e104d113 100644 --- a/R/cohort-diagnostics-counts.R +++ b/R/cohort-diagnostics-counts.R @@ -18,6 +18,7 @@ #' @description #' Shiny view for cohort counts module #' @param id Namespace id +#' @family {CohortDiagnostics} #' @export cohortCountsView <- function(id) { ns <- shiny::NS(id) @@ -191,6 +192,7 @@ getInclusionRulesTable <- function( #' @param selectedCohorts shiny::reactive - should return cohorts selected or NULL #' @param selectedDatabaseIds shiny::reactive - should return cohorts selected or NULL #' @param cohortIds shiny::reactive - should return cohorts selected integers or NULL +#' @family {CohortDiagnostics} cohortCountsModule <- function(id, dataSource, cohortTable = dataSource$cohortTable, diff --git a/R/cohort-diagnostics-databaseInformation.R b/R/cohort-diagnostics-databaseInformation.R index 74f4c671..6e1ac0d3 100644 --- a/R/cohort-diagnostics-databaseInformation.R +++ b/R/cohort-diagnostics-databaseInformation.R @@ -20,6 +20,7 @@ #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("databaseInformation") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export databaseInformationView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-definition.R b/R/cohort-diagnostics-definition.R index 27733ec4..ec887394 100644 --- a/R/cohort-diagnostics-definition.R +++ b/R/cohort-diagnostics-definition.R @@ -26,7 +26,7 @@ #' @param cohortName Name for the cohort definition #' #' @param includeConceptSets Do you want to inclued concept set in the documentation -#' +#' @family {CohortDiagnostics} #' @return list object #' getCirceRenderedExpression <- function(cohortDefinition, @@ -302,6 +302,7 @@ exportCohortDefinitionsZip <- function(cohortDefinitions, #' @description #' Outputs cohort definitions #' @param id Namespace id for module +#' @family {CohortDiagnostics} #' @export cohortDefinitionsView <- function(id) { ns <- shiny::NS(id) @@ -522,6 +523,7 @@ getCountForConceptIdInCohort <- #' @param databaseTable data.frame of databasese, databaseId, name #' @param cohortTable data.frame of cohorts, cohortId, cohortName #' @param cohortCountTable data.frame of cohortCounts, cohortId, subjects records +#' @family {CohortDiagnostics} cohortDefinitionsModule <- function( id, dataSource, diff --git a/R/cohort-diagnostics-incidenceRates.R b/R/cohort-diagnostics-incidenceRates.R index 1e331c95..d588ab20 100644 --- a/R/cohort-diagnostics-incidenceRates.R +++ b/R/cohort-diagnostics-incidenceRates.R @@ -500,6 +500,7 @@ plotIncidenceRate <- function(data, #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("incidenceRates") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export incidenceRatesView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-inclusionRules.R b/R/cohort-diagnostics-inclusionRules.R index 8122a1fa..2b71c6fc 100644 --- a/R/cohort-diagnostics-inclusionRules.R +++ b/R/cohort-diagnostics-inclusionRules.R @@ -19,6 +19,7 @@ #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("inclusionRules") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export inclusionRulesView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-indexEventBreakdown.R b/R/cohort-diagnostics-indexEventBreakdown.R index 07476663..25a3ea2f 100644 --- a/R/cohort-diagnostics-indexEventBreakdown.R +++ b/R/cohort-diagnostics-indexEventBreakdown.R @@ -19,6 +19,7 @@ #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("indexEvents") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export indexEventBreakdownView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-main-ui.R b/R/cohort-diagnostics-main-ui.R index 8552922f..b248e3f8 100644 --- a/R/cohort-diagnostics-main-ui.R +++ b/R/cohort-diagnostics-main-ui.R @@ -146,6 +146,7 @@ cdUiControls <- function(ns) { #' @return #' string location of the description helper file #' @family {CohortDiagnostics} +#' #' @export cohortDiagnosticsHelperFile <- function() { fileLoc <- system.file('cohort-diagnostics-www', "cohort-diagnostics.html", package = utils::packageName()) @@ -161,6 +162,7 @@ cohortDiagnosticsHelperFile <- function() { #' #' @return #' The user interface to the cohort diagnostics viewer module +#' @family {CohortDiagnostics} #' #' @export cohortDiagnosticsView <- function(id = "DiagnosticsExplorer") { diff --git a/R/cohort-diagnostics-main.R b/R/cohort-diagnostics-main.R index 5541d7de..ef59f164 100644 --- a/R/cohort-diagnostics-main.R +++ b/R/cohort-diagnostics-main.R @@ -23,7 +23,7 @@ } else if (connectionHandler$dbms() != "sqlite") { tables <- DatabaseConnector::getTableNames(connectionHandler$getConnection(), - databaseSchema = schema) |> + databaseSchema = schema) |> tolower() } else { tables <- DatabaseConnector::getTableNames(connectionHandler$getConnection()) |> @@ -39,18 +39,18 @@ loadResultsTable <- function(dataSource, tableName, required = FALSE, cdTablePre selectTableName <- paste0(cdTablePrefix, tableName) resultsTablesOnServer <- tolower(.availableTables(dataSource$connectionHandler, dataSource$schema)) - + if (required || selectTableName %in% resultsTablesOnServer) { if (tableIsEmpty(dataSource, selectTableName)) { return(data.frame()) } - + tryCatch( - { - table <- dataSource$connectionHandler$queryDb("SELECT * FROM @schema.@table", - schema = dataSource$schema, - table = selectTableName) - }, + { + table <- dataSource$connectionHandler$queryDb("SELECT * FROM @schema.@table", + schema = dataSource$schema, + table = selectTableName) + }, error = function(err) { stop( "Error reading from ", @@ -60,10 +60,10 @@ loadResultsTable <- function(dataSource, tableName, required = FALSE, cdTablePre ) } ) - + return(table) } - + return(data.frame()) } @@ -77,16 +77,16 @@ tableIsEmpty <- function(dataSource, tableName) { schema = dataSource$schema, table = tableName ) - + }, error = function(...) { message("Table not found: ", tableName) }) - + return(nrow(row) == 0) } postgresEnabledReports <- function(connectionHandler, schema, tbls) { - + sql <- " select c.relname as table_name from pg_class c @@ -96,15 +96,16 @@ postgresEnabledReports <- function(connectionHandler, schema, tbls) { and c.reltuples != 0 and n.nspname = '@schema' " - + return(connectionHandler$queryDb(sql, schema = schema) %>% dplyr::pull("tableName")) } #' Get enable cd reports from available data #' @param dataSource Cohort diagnostics data source +#' @family {CohortDiagnostics} #' @export getEnabledCdReports <- function(dataSource) { - + if (dataSource$connectionHandler$dbms() == "postgresql") { tbls <- dataSource$dataModelSpecifications$tableName %>% unique() possible <- paste0(dataSource$cdTablePrefix, tbls) @@ -114,10 +115,10 @@ getEnabledCdReports <- function(dataSource) { SqlRender::snakeCaseToCamelCase() return(enabledReports) } - + enabledReports <- c() resultsTables <- .availableTables(dataSource$connectionHandler, schema = dataSource$schema) - + for (table in dataSource$dataModelSpecifications$tableName %>% unique()) { if (dataSource$prefixTable(table) %in% resultsTables) { if (!tableIsEmpty(dataSource, dataSource$prefixTable(table))) { @@ -126,7 +127,7 @@ getEnabledCdReports <- function(dataSource) { } } enabledReports <- c(enabledReports, "cohort", "database") - + return(enabledReports) } @@ -142,7 +143,7 @@ getEnabledCdReports <- function(dataSource) { #' @param displayProgress display a progress messaage (can only be used inside a shiny reactive context) #' @param dataMigrationsRef The path to a file listing all migrations for the data model that should have been applied #' @return An object of class `CdDataSource`. -#' +#' @family {CohortDiagnostics} #' @export createCdDatabaseDataSource <- function( connectionHandler, @@ -155,7 +156,7 @@ createCdDatabaseDataSource <- function( package = utils::packageName()), displayProgress = FALSE ) { - + checkmate::assertR6(connectionHandler, "ConnectionHandler") checkmate::assertString(resultDatabaseSettings$schema) checkmate::assertString(resultDatabaseSettings$vocabularyDatabaseSchema, null.ok = TRUE) @@ -165,7 +166,7 @@ createCdDatabaseDataSource <- function( checkmate::assertString(resultDatabaseSettings$databaseTablePrefix, null.ok = TRUE) checkmate::assertFileExists(dataModelSpecificationsPath) checkmate::assertFileExists(dataMigrationsRef) - + if (is.null(resultDatabaseSettings$vocabularyDatabaseSchema)) { resultDatabaseSettings$vocabularyDatabaseSchema <- resultDatabaseSettings$schema } @@ -184,7 +185,7 @@ createCdDatabaseDataSource <- function( if (is.null(resultDatabaseSettings$databaseTablePrefix)) { resultDatabaseSettings$databaseTablePrefix <- resultDatabaseSettings$cdTablePrefix } - + if (displayProgress) { shiny::setProgress(value = 0.05, message = "Getting settings") } @@ -196,13 +197,13 @@ createCdDatabaseDataSource <- function( schema = resultDatabaseSettings$schema, cd_table_prefix = resultDatabaseSettings$cdTablePrefix) }, error = function(...) { - warning("CohortDiagnotics schema does not contain migrations table. Schema was likely created incorrectly") + warning("CohortDiagnostics schema does not contain migrations table. Schema was likely created incorrectly") if (displayProgress) { shiny::showNotification(paste("CohortDiagnostics data model does not have migrations table. Schema was likely created incorrectly"), type = "error") } }) - + dataMigrationsExpected <- utils::read.csv(dataMigrationsRef) for (m in dataMigrationsExpected$migrationFile) { if (!m %in% migrations$migrationFile) { @@ -212,10 +213,10 @@ createCdDatabaseDataSource <- function( } } } - + modelSpec <- utils::read.csv(dataModelSpecificationsPath) colnames(modelSpec) <- SqlRender::snakeCaseToCamelCase(colnames(modelSpec)) - + dataSource <- list( connectionHandler = connectionHandler, schema = resultDatabaseSettings$schema, @@ -228,7 +229,7 @@ createCdDatabaseDataSource <- function( # don't prexfix table if we us a dedicated vocabulary schema if (resultDatabaseSettings$vocabularyDatabaseSchema == resultDatabaseSettings$schema) return(paste0(resultDatabaseSettings$cdTablePrefix, tableName)) - + return(tableName) }, cgTable = resultDatabaseSettings$cgTable, @@ -238,53 +239,53 @@ createCdDatabaseDataSource <- function( databaseTablePrefix = "cd_", dataModelSpecifications = modelSpec ) - + if (displayProgress) shiny::setProgress(value = 0.05, message = "Getting enabled reports") - + dataSource$enabledReports <- getEnabledCdReports(dataSource) - + if (displayProgress) shiny::setProgress(value = 0.1, message = "Getting database information") dataSource$dbTable <- getDatabaseTable(dataSource) - + if (displayProgress) shiny::setProgress(value = 0.2, message = "Getting cohorts") - - + + dataSource$cohortTableName <- paste0(dataSource$cdTablePrefix, "cohort") - + dataSource$cohortTable <- getCohortTable(dataSource) - + if (displayProgress) shiny::setProgress(value = 0.6, message = "Getting concept sets") - + dataSource$conceptSets <- loadResultsTable(dataSource, "concept_sets", cdTablePrefix = dataSource$cdTablePrefix) - + if (displayProgress) shiny::setProgress(value = 0.7, message = "Getting counts") - + dataSource$cohortCountTable <- loadResultsTable(dataSource, "cohort_count", required = TRUE, cdTablePrefix = dataSource$cdTablePrefix) - + dataSource$enabledReports <- dataSource$enabledReports - + if (displayProgress) shiny::setProgress(value = 0.7, message = "Getting Temporal References") - + dataSource$temporalAnalysisRef <- loadResultsTable(dataSource, "temporal_analysis_ref", cdTablePrefix = dataSource$cdTablePrefix) - + dataSource$temporalChoices <- getResultsTemporalTimeRef(dataSource = dataSource) - + if (hasData(dataSource$temporalChoices)) { dataSource$temporalCharacterizationTimeIdChoices <- dataSource$temporalChoices %>% dplyr::arrange(.data$sequence) - + dataSource$characterizationTimeIdChoices <- dataSource$temporalChoices %>% dplyr::filter(.data$isTemporal == 0) %>% dplyr::filter(.data$primaryTimeId == 1) %>% dplyr::arrange(.data$sequence) } - + if (!is.null(dataSource$temporalAnalysisRef)) { dataSource$temporalAnalysisRef <- dplyr::bind_rows( dataSource$temporalAnalysisRef, @@ -296,20 +297,20 @@ createCdDatabaseDataSource <- function( missingMeansZero = "Y" ) ) - + dataSource$domainIdOptions <- dataSource$temporalAnalysisRef %>% dplyr::select("domainId") %>% dplyr::pull("domainId") %>% unique() %>% sort() - + dataSource$analysisNameOptions <- dataSource$temporalAnalysisRef %>% dplyr::select("analysisName") %>% dplyr::pull("analysisName") %>% unique() %>% sort() } - + class(dataSource) <- "CdDataSource" return(dataSource) } @@ -317,13 +318,13 @@ createCdDatabaseDataSource <- function( getDatabaseTable <- function(dataSource) { databaseTable <- loadResultsTable(dataSource, dataSource$prefixTable(dataSource$databaseTable), required = TRUE) if (nrow(databaseTable) > 0 & - "vocabularyVersion" %in% colnames(databaseTable)) { + "vocabularyVersion" %in% colnames(databaseTable)) { databaseTable <- databaseTable %>% dplyr::mutate( databaseIdWithVocabularyVersion = paste0(.data$databaseId, " (", .data$vocabularyVersion, ")") ) } - + databaseTable } @@ -334,12 +335,12 @@ getCohortTable <- function(dataSource) { schema = dataSource$schema, cd_table_prefix = dataSource$cdTablePrefix ) - + cohortTable <- cohortTable %>% dplyr::arrange(.data$cohortId) %>% dplyr::mutate(shortName = paste0("C", .data$cohortId)) %>% dplyr::mutate(compoundName = paste0(.data$shortName, ": ", .data$cohortName)) - + cohortTable } @@ -352,11 +353,11 @@ getResultsTemporalTimeRef <- function(dataSource) { schema = dataSource$schema, table_name = dataSource$prefixTable("temporal_time_ref") ) - + if (nrow(temporalTimeRef) == 0) { return(NULL) } - + temporalChoices <- temporalTimeRef %>% dplyr::mutate(temporalChoices = paste0("T (", .data$startDay, "d to ", .data$endDay, "d)")) %>% dplyr::arrange(.data$startDay, .data$endDay) %>% @@ -390,7 +391,7 @@ getResultsTemporalTimeRef <- function(dataSource) { false = 1 )) %>% dplyr::arrange(.data$startDay, .data$timeId, .data$endDay) - + temporalChoices <- dplyr::bind_rows( temporalChoices %>% dplyr::slice(0), dplyr::tibble( @@ -402,7 +403,7 @@ getResultsTemporalTimeRef <- function(dataSource) { temporalChoices ) %>% dplyr::mutate(sequence = dplyr::row_number()) - + return(temporalChoices) } @@ -420,7 +421,7 @@ cohortDiagnosticsServer <- function(id, resultDatabaseSettings, dataSource = NULL) { ns <- shiny::NS(id) - + checkmate::assertClass(dataSource, "CdDataSource", null.ok = TRUE) if (is.null(dataSource)) { checkmate::assertR6(connectionHandler, "ConnectionHandler", null.ok = FALSE) @@ -431,7 +432,7 @@ cohortDiagnosticsServer <- function(id, displayProgress = TRUE ) } - + shiny::moduleServer(id, function(input, output, session) { databaseTable <- dataSource$dbTable cohortTable <- dataSource$cohortTable @@ -440,46 +441,46 @@ cohortDiagnosticsServer <- function(id, enabledReports <- dataSource$enabledReports temporalChoices <- dataSource$temporalChoices temporalCharacterizationTimeIdChoices <- dataSource$temporalCharacterizationTimeIdChoices - + shiny::observe({ - + selection <- c( "Cohort Definitions" = "cohortDefinitions", "Database Information" = "databaseInformation" ) if ("cohortCount" %in% dataSource$enabledReports) selection["Cohort Counts"] <- "cohortCounts" - + if ("indexEvents" %in% dataSource$enabledReports) selection["Index Events"] <- "indexEvents" - + if ("temporalCovariateValue" %in% dataSource$enabledReports) { selection["Cohort Characterization"] <- "characterization" selection["Compare Cohort Characterization"] <- "compareCohortCharacterization" selection["Time Distributions"] <- "timeDistribution" } - + if ("relationship" %in% dataSource$enabledReports) selection["Cohort Overlap"] <- "cohortOverlap" - + if ("cohortInclusion" %in% dataSource$enabledReports) selection["Inclusion Rule Statistics"] <- "inclusionRules" - + if ("incidenceRate" %in% dataSource$enabledReports) selection["Incidence"] <- "incidenceRates" - + if ("visitContext" %in% dataSource$enabledReports) selection["Visit Context"] <- "visitContext" - + if ("includedSourceConcept" %in% dataSource$enabledReports) selection["Concepts In Data Source"] <- "conceptsInDataSource" - + if ("orphanConcepts" %in% dataSource$enabledReports) selection["Orphan Concepts"] <- "orphanConcepts" - + if ("indexEventBreakdown" %in% dataSource$enabledReports) selection["Index Event Breakdown"] <- "indexEvents" - + shiny::updateSelectInput( inputId = "tabs", label = "Select Report", @@ -487,7 +488,7 @@ cohortDiagnosticsServer <- function(id, selected = c("cohortDefinitions") ) }) - + # Reacive: targetCohortId targetCohortId <- shiny::reactive({ return(cohortTable$cohortId[cohortTable$compoundName == input$targetCohort]) @@ -499,11 +500,11 @@ cohortDiagnosticsServer <- function(id, dplyr::select("cohortId") %>% dplyr::pull() }) - + selectedConceptSets <- shiny::reactive({ input$conceptSetsSelected }) - + # conceptSetIds ---- conceptSetIds <- shiny::reactive(x = { conceptSetsFiltered <- conceptSets %>% @@ -514,10 +515,10 @@ cohortDiagnosticsServer <- function(id, unique() return(conceptSetsFiltered) }) - + databaseChoices <- databaseTable$databaseId names(databaseChoices) <- databaseTable$databaseName - + ## ReactiveValue: selectedDatabaseIds ---- selectedDatabaseIds <- shiny::reactive({ if (!is.null(input$tabs)) { @@ -533,8 +534,8 @@ cohortDiagnosticsServer <- function(id, } } }) - - + + shiny::observe({ shinyWidgets::updatePickerInput(session = session, inputId = "database", @@ -547,7 +548,7 @@ cohortDiagnosticsServer <- function(id, selected = databaseChoices[[1]], ) }) - + ## ReactiveValue: selectedTemporalTimeIds ---- selectedTemporalTimeIds <- shiny::reactiveVal(NULL) shiny::observeEvent(eventExpr = { @@ -558,7 +559,7 @@ cohortDiagnosticsServer <- function(id, ) }, handlerExpr = { if (isFALSE(input$timeIdChoices_open) || - !is.null(input$tabs) & !is.null(temporalCharacterizationTimeIdChoices)) { + !is.null(input$tabs) & !is.null(temporalCharacterizationTimeIdChoices)) { selectedTemporalTimeIds( temporalCharacterizationTimeIdChoices %>% dplyr::filter(.data$temporalChoices %in% input$timeIdChoices) %>% @@ -568,12 +569,12 @@ cohortDiagnosticsServer <- function(id, ) } }) - + cohortSubset <- shiny::reactive({ return(cohortTable %>% dplyr::arrange(.data$cohortId)) }) - + shiny::observe({ subset <- cohortSubset()$compoundName shinyWidgets::updatePickerInput( @@ -583,7 +584,7 @@ cohortDiagnosticsServer <- function(id, choices = subset ) }) - + shiny::observe({ subset <- cohortSubset()$compoundName shinyWidgets::updatePickerInput( @@ -594,7 +595,7 @@ cohortDiagnosticsServer <- function(id, selected = c(subset[1], subset[2]) ) }) - + # Characterization (Shared across) ------------------------------------------------- ## Reactive objects ---- ### getConceptSetNameForFilter ---- @@ -606,9 +607,9 @@ cohortDiagnosticsServer <- function(id, dplyr::filter(.data$cohortId == targetCohortId()) %>% dplyr::mutate(name = .data$conceptSetName) %>% dplyr::select("name") - + }) - + shiny::observe({ subset <- getConceptSetNameForFilter()$name %>% sort() %>% @@ -620,7 +621,7 @@ cohortDiagnosticsServer <- function(id, choices = subset ) }) - + selectedCohorts <- shiny::reactive({ cohorts <- cohortSubset() %>% dplyr::filter(.data$cohortId %in% cohortIds()) %>% @@ -630,17 +631,17 @@ cohortDiagnosticsServer <- function(id, shiny::tags$tr(lapply(x, shiny::tags$td)) })) }) - + selectedCohort <- shiny::reactive({ return(input$targetCohort) }) - + if ("cohort" %in% enabledReports) { cohortDefinitionsModule(id = "cohortDefinitions", dataSource = dataSource, cohortDefinitions = cohortSubset) } - + if ("includedSourceConcept" %in% enabledReports) { conceptsInDataSourceModule(id = "conceptsInDataSource", dataSource = dataSource, @@ -650,7 +651,7 @@ cohortDiagnosticsServer <- function(id, selectedConceptSets = selectedConceptSets, databaseTable = databaseTable) } - + if ("orphanConcept" %in% enabledReports) { orphanConceptsModule("orphanConcepts", dataSource = dataSource, @@ -661,7 +662,7 @@ cohortDiagnosticsServer <- function(id, selectedConceptSets = selectedConceptSets, conceptSetIds = conceptSetIds) } - + if ("cohortCount" %in% enabledReports) { cohortCountsModule(id = "cohortCounts", dataSource = dataSource, @@ -671,7 +672,7 @@ cohortDiagnosticsServer <- function(id, selectedDatabaseIds = selectedDatabaseIds, cohortIds = cohortIds) } - + if ("indexEventBreakdown" %in% enabledReports) { indexEventBreakdownModule(id = "indexEvents", dataSource = dataSource, @@ -680,7 +681,7 @@ cohortDiagnosticsServer <- function(id, cohortCountTable = cohortCountTable, selectedDatabaseIds = selectedDatabaseIds) } - + if ("visitContext" %in% enabledReports) { visitContextModule(id = "visitContext", dataSource = dataSource, @@ -690,7 +691,7 @@ cohortDiagnosticsServer <- function(id, cohortCountTable = cohortCountTable, databaseTable = databaseTable) } - + if ("relationship" %in% enabledReports) { cohortOverlapModule(id = "cohortOverlap", dataSource = dataSource, @@ -700,21 +701,21 @@ cohortDiagnosticsServer <- function(id, cohortIds = cohortIds, cohortTable = cohortTable) } - + if ("temporalCovariateValue" %in% enabledReports) { timeDistributionsModule(id = "timeDistributions", dataSource = dataSource, selectedCohorts = selectedCohorts, cohortIds = cohortIds, selectedDatabaseIds = selectedDatabaseIds) - + cohortDiagCharacterizationModule(id = "characterization", dataSource = dataSource) - + compareCohortCharacterizationModule(id = "compareCohortCharacterization", dataSource = dataSource) } - + if ("incidenceRate" %in% enabledReports) { incidenceRatesModule(id = "incidenceRates", dataSource = dataSource, @@ -724,7 +725,7 @@ cohortDiagnosticsServer <- function(id, databaseTable = databaseTable, cohortTable = cohortTable) } - + if ("cohortInclusion" %in% enabledReports) { inclusionRulesModule(id = "inclusionRules", dataSource = dataSource, @@ -732,15 +733,15 @@ cohortDiagnosticsServer <- function(id, selectedCohort = selectedCohort, targetCohortId = targetCohortId, selectedDatabaseIds = selectedDatabaseIds) - + } databaseInformationModule(id = "databaseInformation", dataSource = dataSource, selectedDatabaseIds = selectedDatabaseIds, databaseTable = databaseTable) - + } - + ) - -} + +} \ No newline at end of file diff --git a/R/cohort-diagnostics-orphanConcepts.R b/R/cohort-diagnostics-orphanConcepts.R index a50bf0db..51d6564d 100644 --- a/R/cohort-diagnostics-orphanConcepts.R +++ b/R/cohort-diagnostics-orphanConcepts.R @@ -19,6 +19,7 @@ #' Use for customizing UI #' @family {CohortDiagnostics} #' @param id Namespace Id - use namespaced id ns("orphanConcepts") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export orpahanConceptsView <- function(id) { ns <- shiny::NS(id) @@ -122,8 +123,8 @@ orphanConceptsModule <- function(id, }) databaseSubGrp <- ", - MAX(CASE WHEN oc.database_id = '@db_id_i' THEN oc.concept_count END) AS concept_count_@db_id_i, - MAX(CASE WHEN oc.database_id = '@db_id_i' THEN oc.concept_subjects END) AS subject_count_@db_id_i" + MAX(CASE WHEN oc.database_id = '@db_id_i' THEN oc.concept_count END) AS concept_count_@db_id_id, + MAX(CASE WHEN oc.database_id = '@db_id_i' THEN oc.concept_subjects END) AS subject_count_@db_id_id" sql <- " SELECT @@ -170,11 +171,11 @@ orphanConceptsModule <- function(id, "Vocabulary Id" = "c.vocabulary_id", "Concept Code" = "c.concept_code") for (dbid in databaseIds) { - dbCols <- SqlRender::render(databaseSubGrp, db_id_i = dbid) + dbCols <- SqlRender::render(databaseSubGrp, db_id_i = dbid, db_id_id = gsub("-", "", dbid)) dbSelectCols <- paste(dbSelectCols, dbCols) - columnIdCount <- SqlRender::snakeCaseToCamelCase(paste0("concept_count_", dbid)) - columnIdSubject <- SqlRender::snakeCaseToCamelCase(paste0("subject_count_", dbid)) + columnIdCount <- SqlRender::snakeCaseToCamelCase(paste0("concept_count_", gsub("-", "", dbid))) + columnIdSubject <- SqlRender::snakeCaseToCamelCase(paste0("subject_count_", gsub("-", "", dbid))) columnDefinitions[[columnIdCount]] <- reactable::colDef(name = "Records", cell = formatDataCellValueInDisplayTable(), @@ -195,7 +196,7 @@ orphanConceptsModule <- function(id, ) cNames <- names(sortByColumns) - sortByColumns <- c(sortByColumns, paste0("concept_count_", dbid), paste0("subject_count_", dbid)) + sortByColumns <- c(sortByColumns, paste0("concept_count_", gsub("-", "", dbid)), paste0("subject_count_", gsub("-", "", dbid))) names(sortByColumns) <- c(cNames, paste(databaseName, "Records"), paste(databaseName, "Subjects")) } diff --git a/R/cohort-diagnostics-timeDistributions.R b/R/cohort-diagnostics-timeDistributions.R index 436c7b80..764809f9 100644 --- a/R/cohort-diagnostics-timeDistributions.R +++ b/R/cohort-diagnostics-timeDistributions.R @@ -219,6 +219,7 @@ plotTimeDistribution <- function(data, shortNameRef = NULL, showMax = FALSE) { #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("imeDistributions") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export timeDistributionsView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-diagnostics-visitContext.R b/R/cohort-diagnostics-visitContext.R index 3b4b1771..dcc5c704 100644 --- a/R/cohort-diagnostics-visitContext.R +++ b/R/cohort-diagnostics-visitContext.R @@ -19,6 +19,7 @@ #' Use for customizing UI #' #' @param id Namespace Id - use namespaced id ns("vistConext") inside diagnosticsExplorer module +#' @family {CohortDiagnostics} #' @export visitContextView <- function(id) { ns <- shiny::NS(id) diff --git a/R/cohort-generator-main.R b/R/cohort-generator-main.R index 2237168a..2e2f7b88 100644 --- a/R/cohort-generator-main.R +++ b/R/cohort-generator-main.R @@ -21,7 +21,7 @@ #' #' @details #' Returns the location of the cohort-generator helper file -#' +#' @family {CohortGenerator} #' @return #' string location of the cohort-generator helper file #' @@ -34,7 +34,7 @@ cohortGeneratorHelperFile <- function(){ #' The viewer of the main cohort generator module #' #' @param id the unique reference id for the module -#' +#' @family {CohortGenerator} #' @return #' The user interface to the cohort generator results viewer #' @@ -50,14 +50,7 @@ cohortGeneratorViewer <- function(id) { width = '100%', title = shiny::span( shiny::icon("user-gear"),'Cohorts'), solidHeader = TRUE, - - shinydashboard::box( - collapsible = TRUE, - collapsed = TRUE, - title = shiny::span( shiny::icon("circle-question"), "Help & Information"), - width = "100%", - shiny::htmlTemplate(system.file("cohort-generator-www", "cohort-generator.html", package = utils::packageName())) - ), + shiny::tabsetPanel( id = ns("cohortGeneratorTabs"), @@ -126,6 +119,9 @@ cohortGeneratorViewer <- function(id) { title = shiny::span( shiny::icon("table"), 'Generation Table'), #solidHeader = TRUE, + shiny::uiOutput(ns("selectColsCohortGeneration") + ), + reactable::reactableOutput( outputId = ns("cohortGeneration") ) @@ -174,7 +170,10 @@ cohortGeneratorViewer <- function(id) { title = shiny::span( shiny::icon("table"), 'Attrition Table'), #solidHeader = TRUE, - reactable::reactableOutput(ns('attritionTable')) + # shiny::uiOutput(ns("selectColsCohortAttrition") + # ), + + resultTableViewer(ns('attritionTable')) ), shinydashboard::box( @@ -200,7 +199,7 @@ cohortGeneratorViewer <- function(id) { #' @param id the unique reference id for the module #' @param connectionHandler a connection to the database with the results #' @param resultDatabaseSettings a named list containing the cohort generator results database details (schema, table prefix) -#' +#' @family {CohortGenerator} #' @return #' the cohort generator results viewer main module server #' @@ -366,19 +365,65 @@ cohortGeneratorServer <- function( } ) - output$cohortGeneration <- reactable::renderReactable({ - data <- getCohortGeneratorCohortMeta( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) %>% - dplyr::select("cdmSourceName", - "cohortId", - "cohortName", - "generationStatus", - "startTime", - "endTime", - "generationDuration") - reactable::reactable(data, + inputColsCohortGeneration <- colnames(getCohortGeneratorCohortMeta( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings + ) %>% + dplyr::select("cdmSourceName", + "cohortId", + "cohortName", + "generationStatus", + "startTime", + "endTime", + "generationDuration") + ) + + names(inputColsCohortGeneration) <- c("Database Name", + "Cohort ID", + "Cohort Name", + "Is the Cohort Generated?", + "Generation Start Time", + "Generation End Time", + "Generation Duration (mins)") + + output$selectColsCohortGeneration <- shiny::renderUI({ + + shinyWidgets::pickerInput( + inputId = session$ns('cohortGenerationCols'), + label = 'Select Columns to Display: ', + choices = inputColsCohortGeneration, + selected = inputColsCohortGeneration, + choicesOpt = list(style = rep_len("color: black;", 999)), + multiple = T, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + size = 10, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 50 + ), + width = "50%" + ) + + }) + + dataGen <- getCohortGeneratorCohortMeta( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings + ) %>% + dplyr::select("cdmSourceName", + "cohortId", + "cohortName", + "generationStatus", + "startTime", + "endTime", + "generationDuration") + + cgTable <- shiny::reactive({ + + reactable::reactable(dataGen %>% + dplyr::select(input$cohortGenerationCols), columns = list( # Render a "show details" button in the last column of the table. # This button won't do anything by itself, but will trigger the custom @@ -437,6 +482,24 @@ cohortGeneratorServer <- function( ) }) + output$cohortGeneration <- reactable::renderReactable({ + + tryCatch({ + cgTable() + }, + + error = function(e){ + shiny::showNotification( + paste0( + "Loading..." + ) + ); + return(NULL) + } + + ) + }) + # download button - generation output$downloadCohortGeneration <- shiny::downloadHandler( filename = function() { @@ -586,97 +649,98 @@ cohortGeneratorServer <- function( data <- inputValsClean %>% - dplyr::filter(.data$cdmSourceName %in% input$selectedDatabaseId & - .data$cohortName %in% input$selectedCohortName & - .data$modeId %in% input$selectedModeId - ) + dplyr::filter(.data$cdmSourceName %in% input$selectedDatabaseId & + .data$cohortName %in% input$selectedCohortName & + .data$modeId %in% input$selectedModeId + ) reactiveData <- shiny::reactive(data) if(!is.null(data)){ - - output$attritionTable <- reactable::renderReactable( - reactable::reactable( - data = reactiveData() %>% - dplyr::select(c("cdmSourceName", "cohortName", "ruleName", - "personCount", "dropCount", - "dropPerc", "retainPerc") + + resultTableServer( + id = 'attritionTable', + df = reactiveData() %>% + dplyr::select(c("cdmSourceName", "cohortName", "ruleName", + "personCount", "dropCount", + "dropPerc", "retainPerc") + ) + + , + # rownames = FALSE, + # defaultPageSize = 5, + # showPageSizeOptions = T, + # striped = T, + colDefsInput = list( + cdmSourceName = reactable::colDef( + filterable = TRUE, + header = withTooltip( + "Database Name", + "The name of the database" + )), + cohortName = reactable::colDef( + filterable = TRUE, + header = withTooltip( + "Cohort Name", + "The name of the cohort" + )), + ruleName = reactable::colDef( + header = withTooltip( + "Inclusion Rule Name", + "The name of the inclusion rule" + )), + personCount = reactable::colDef( + format = reactable::colFormat(separators = TRUE), + header = withTooltip( + "Subject/Record Count", + "The number of subjects or records (depending on your selection) remaining after the inclusion rule was applied" + )), + dropCount = reactable::colDef( + format = reactable::colFormat(separators = TRUE), + header = withTooltip( + "Number Lost", + "The number of subjects or records (depending on your selection) removed/lost after the inclusion rule was applied" + )), + dropPerc = reactable::colDef( + format = reactable::colFormat(separators = TRUE), + header = withTooltip( + "Percentage Lost", + "The percentage of subjects or records (depending on your selection) removed/lost after the inclusion rule was applied compared to the previous rule count" + )), + retainPerc = reactable::colDef( + format = reactable::colFormat(separators = TRUE), + header = withTooltip( + "Percentage Retained", + "The percentage of subjects or records (depending on your selection) retained after the inclusion rule was applied compared to the previous rule count" + )) ) - - , - rownames = FALSE, - defaultPageSize = 5, - showPageSizeOptions = T, - striped = T, - columns = list( - cdmSourceName = reactable::colDef( - filterable = TRUE, - header = withTooltip( - "Database Name", - "The name of the database" - )), - cohortName = reactable::colDef( - filterable = TRUE, - header = withTooltip( - "Cohort Name", - "The name of the cohort" - )), - ruleName = reactable::colDef( - header = withTooltip( - "Inclusion Rule Name", - "The name of the inclusion rule" - )), - personCount = reactable::colDef( - format = reactable::colFormat(separators = TRUE), - header = withTooltip( - "Subject/Record Count", - "The number of subjects or records (depending on your selection) remaining after the inclusion rule was applied" - )), - dropCount = reactable::colDef( - format = reactable::colFormat(separators = TRUE), - header = withTooltip( - "Number Lost", - "The number of subjects or records (depending on your selection) removed/lost after the inclusion rule was applied" - )), - dropPerc = reactable::colDef( - format = reactable::colFormat(separators = TRUE), - header = withTooltip( - "Percentage Lost", - "The percentage of subjects or records (depending on your selection) removed/lost after the inclusion rule was applied compared to the previous rule count" - )), - retainPerc = reactable::colDef( - format = reactable::colFormat(separators = TRUE), - header = withTooltip( - "Number Retained", - "The number of subjects or records (depending on your selection) retained after the inclusion rule was applied compared to the previous rule count" - )) - ), - - filterable = TRUE, - sortable = TRUE, - defaultColDef = reactable::colDef( - align = "left" + #, + + # filterable = TRUE, + # sortable = TRUE, + # defaultColDef = reactable::colDef( + # align = "left" + # ) + ) + #) + + #attrition plot + output$attritionPlot <- plotly::renderPlotly( + getCohortAttritionPlot( + data ) ) - ) - - #attrition plot - output$attritionPlot <- plotly::renderPlotly( - getCohortAttritionPlot( - data + + # download button + output$downloadAttritionTable <- shiny::downloadHandler( + filename = function() { + paste('cohort-attrition-data-', Sys.Date(), '.csv', sep='') + }, + content = function(con) { + utils::write.csv(data() + , con) + } ) - ) - - # download button - output$downloadAttritionTable <- shiny::downloadHandler( - filename = function() { - paste('cohort-attrition-data-', Sys.Date(), '.csv', sep='') - }, - content = function(con) { - utils::write.csv(data() - , con) - } - ) } else{ @@ -684,20 +748,20 @@ cohortGeneratorServer <- function( } } - ) - - }, + ) - error = function(e){ - shiny::showNotification( - paste0( - "No cohort inclusion result data present." - ) - ); - return(NULL) - } - - ) + }, + + error = function(e){ + shiny::showNotification( + paste0( + "No cohort inclusion result data present." + ) + ); + return(NULL) + } + + ) # end of server diff --git a/R/cohort-method-diagnosticsSummary.R b/R/cohort-method-diagnosticsSummary.R deleted file mode 100644 index 72f0a66b..00000000 --- a/R/cohort-method-diagnosticsSummary.R +++ /dev/null @@ -1,389 +0,0 @@ -# @file cohort-method-diagnosticsSummary -# -# Copyright 2024 Observational Health Data Sciences and Informatics -# -# This file is part of OhdsiShinyModules -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -#' The module viewer for rendering the PLE diagnostics results -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the cohort method diagnostics viewer -#' -#' @export -cohortMethodDiagnosticsSummaryViewer <- function(id) { - ns <- shiny::NS(id) - - shiny::div( - - shiny::tabsetPanel( - type = 'pills', - id = ns('diagnosticsTablePanel'), - shiny::tabPanel( - title = 'Summary', - resultTableViewer(ns("diagnosticsSummaryTable")) - ), - shiny::tabPanel( - title = 'Full', - resultTableViewer(ns("diagnosticsTable")) - ) - ) - #) - ) -} - - -#' The module server for rendering the PLE diagnostics summary -#' -#' @param id the unique reference id for the module -#' @param connectionHandler the connection to the PLE results database -#' @param resultDatabaseSettings a list containing the result schema and prefixes -#' @param inputSelected The target id, comparator id, outcome id and analysis id selected by the user -#' -#' @return -#' the PLE diagnostics summary results -#' -#' @export -cohortMethodDiagnosticsSummaryServer <- function( - id, - connectionHandler, - resultDatabaseSettings, - inputSelected -) { - - shiny::moduleServer( - id, - function(input, output, session) { - - data <- shiny::reactive({ - getCmDiagnosticsData( - connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected - ) - }) - - data2 <- shiny::reactive({ - diagnosticSummaryFormat(data) - }) - - customColDefs <- list( - databaseName = reactable::colDef( - header = withTooltip( - "Database", - "The database name" - ) - ), - target = reactable::colDef( - header = withTooltip( - "Target", - "The target cohort of interest" - ), - minWidth = 300 - ), - comparator = reactable::colDef( - header = withTooltip( - "Comparator", - "The comparator cohort of interest" - ), - minWidth = 300 - ), - outcome = reactable::colDef( - header = withTooltip( - "Outcome", - "The outcome of interest" - ) - ), - analysis = reactable::colDef( - header = withTooltip( - "Analysis", - "The analysis name" - ) - ), - - mdrr = reactable::colDef( - header = withTooltip( - "MDRR", - "The minimum detectible relative risk" - ), - format = reactable::colFormat(digits = 4) - ), - ease = reactable::colDef( - header = withTooltip( - "EASE", - "The expected absolute systematic error" - ), - format = reactable::colFormat(digits = 4) - ), - maxSdm = reactable::colDef( - header = withTooltip( - "Max SDM", - "The maximum absolute standardized difference of mean" - ), - format = reactable::colFormat(digits = 4) - ), - sharedMaxSdm = reactable::colDef( - header = withTooltip( - "Shared Max SDM", - "The maximum absolute standardized difference of mean of the shared balance (shared across outcomes)" - ), - format = reactable::colFormat(digits = 4) - ), - equipoise = reactable::colDef( - header = withTooltip( - "Equipoise", - "The fraction of the study population with a preference score between 0.3 and 0.7" - ), - format = reactable::colFormat(digits = 4) - ), - balanceDiagnostic = reactable::colDef( - header = withTooltip( - "Balance Diagnostic", - "Pass / warning / fail classification of the balance diagnostic (Max SDM)" - ) - ), - mdrrDiagnostic = reactable::colDef( - header = withTooltip( - "MDRR Diagnostic", - "Pass / warning / fail classification of the MDRR diagnostic" - ) - ), - sharedBalanceDiagnostic = reactable::colDef( - header = withTooltip( - "Shared Balance Diagnostic", - "Pass / warning / fail classification of the shared balance diagnostic (Shared Max SDM)" - ) - ), - easeDiagnostic = reactable::colDef( - header = withTooltip( - "Ease Diagnostic", - "Pass / warning / fail classification of the EASE diagnostic" - ) - ), - equipoiseDiagnostic = reactable::colDef( - header = withTooltip( - "Equipoise Diagnostic", - "Pass / warning / fail classification of the equipoise diagnostic" - ) - ), - - unblind = reactable::colDef( - header = withTooltip( - "Unblind", - "If the value is 1 then the diagnostics passed and results can be unblinded" - ) - ), - - summaryValue = reactable::colDef(show = F) - - ) - - resultTableServer( - id = "diagnosticsTable", - df = data, - colDefsInput = customColDefs - ) - - resultTableServer( - id = "diagnosticsSummaryTable", - df = data2, - colDefsInput = getColDefsCmDiag( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - ) - - } - ) -} - -getColDefsCmDiag <- function( - connectionHandler, - resultDatabaseSettings -){ - - fixedColumns = list( - databaseName = reactable::colDef( - header = withTooltip( - "Database", - "The database name" - ), - sticky = "left" - ), - target = reactable::colDef( - header = withTooltip( - "Target", - "The target cohort of interest" - ), - sticky = "left" - ), - comparator = reactable::colDef( - header = withTooltip( - "Comparator", - "The comparator cohort of interest" - ), - sticky = "left" - ) - ) - - outcomes <- getCmCohorts( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - type = 'outcome' - ) - analyses <- getCmAnalyses( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - colnameFormat <- merge(unique(names(outcomes)), unique(names(analyses))) - colnameFormat <- apply(colnameFormat, 1, function(x){paste(x, collapse = '_', sep = '_')}) - - styleList <- lapply( - colnameFormat, - FUN = function(x){ - reactable::colDef( - header = withTooltip( - paste0(substring(x,1,35), "...", sep=""), - x - ), - style = function(value) { - color <- 'orange' - if(is.na(value)){ - color <- 'black' - }else if(value == 'Pass'){ - color <- '#AFE1AF' - }else if(value == 'Fail'){ - color <- '#E97451' - } - list(background = color) - } - ) - } - ) - names(styleList) <- colnameFormat - result <- append(fixedColumns, styleList) - - return(result) -} - -diagnosticSummaryFormat <- function( - data, - idCols = c('databaseName','target', 'comparator'), - namesFrom = c('outcome','analysis') - ){ - - if(is.null(data())){ - return(NULL) - } - - data2 <- tidyr::pivot_wider( - data = data(), - id_cols = idCols, - names_from = namesFrom, - values_from = c('summaryValue') - ) - - return(data2) -} - - - -getCmDiagnosticsData <- function( - connectionHandler, - resultDatabaseSettings, - inputSelected -) { - - targetIds = inputSelected()$targetIds - outcomeIds = inputSelected()$outcomeIds - comparatorIds = inputSelected()$comparatorIds - analysisIds = inputSelected()$analysisIds - - if(is.null(targetIds) || is.null(outcomeIds)){ - return(NULL) - } - - sql <- " - SELECT DISTINCT - dmd.cdm_source_abbreviation database_name, - cma.description analysis, - cgcd1.cohort_name target, - cgcd2.cohort_name comparator, - cgcd3.cohort_name outcome, - cmds.max_sdm, - cmds.shared_max_sdm, - cmds.equipoise, - cmds.mdrr, - cmds.ease, - cmds.balance_diagnostic, - cmds.shared_balance_diagnostic, -- added back - cmds.equipoise_diagnostic, - cmds.mdrr_diagnostic, - cmds.ease_diagnostic, - cmds.unblind - FROM - @schema.@cm_table_prefixdiagnostics_summary cmds - INNER JOIN @schema.@cm_table_prefixanalysis cma ON cmds.analysis_id = cma.analysis_id - INNER JOIN @schema.@database_table dmd ON dmd.database_id = cmds.database_id - INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd1 ON cmds.target_id = cgcd1.cohort_definition_id - INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd2 ON cmds.comparator_id = cgcd2.cohort_definition_id - INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd3 ON cmds.outcome_id = cgcd3.cohort_definition_id - - where cgcd1.cohort_definition_id in (@targets) - {@use_comparators}?{and cgcd2.cohort_definition_id in (@comparators)} - and cgcd3.cohort_definition_id in (@outcomes) - {@use_analyses}?{and cma.analysis_id in (@analyses)} - ; - " - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - database_table = resultDatabaseSettings$databaseTable, - - targets = paste0(targetIds, collapse = ','), - comparators = paste0(comparatorIds, collapse = ','), - outcomes = paste0(outcomeIds, collapse = ','), - analyses = paste0(analysisIds, collapse = ','), - - use_comparators = !is.null(comparatorIds), - use_analyses = !is.null(analysisIds) - ) - - # adding percent fail for summary - result$summaryValue <- apply( - X = result[, grep('Diagnostic', colnames(result))], - MARGIN = 1, - FUN = function(x){ - - if(sum(x %in% c('FAIL'))>0){ - return('Fail') - } else if(sum(x %in% c('WARNING')) >0){ - return(sum(x %in% c('WARNING'))) - } else{ - return('Pass') - } - } - ) - - return( - result - ) -} diff --git a/R/cohort-method-main.R b/R/cohort-method-main.R deleted file mode 100644 index ba8c9181..00000000 --- a/R/cohort-method-main.R +++ /dev/null @@ -1,293 +0,0 @@ -# @file cohort-method-main.R -# -# Copyright 2024 Observational Health Data Sciences and Informatics -# -# This file is part of PatientLevelPrediction -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -#' The location of the cohort method module helper file -#' -#' @details -#' Returns the location of the cohort method helper file -#' -#' @return -#' string location of the cohort method helper file -#' -#' @export -cohortMethodHelperFile <- function(){ - fileLoc <- system.file('cohort-method-www', "cohort-method.html", package = "OhdsiShinyModules") - return(fileLoc) -} - -#' The viewer of the main cohort method module -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the cohort method results viewer -#' -#' @export -cohortMethodViewer <- function(id) { - ns <- shiny::NS(id) - - shinydashboard::box( - status = 'info', - width = 12, - title = shiny::span( shiny::icon("chart-column"), 'Cohort Method'), - solidHeader = TRUE, - - infoHelperViewer( - id = "helper", - helpLocation= system.file("cohort-method-www", "cohort-method.html", package = utils::packageName()) - ), - - # Input selection of T, C and Os - inputSelectionViewer(ns("input-selection")), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection")), - - shiny::tabsetPanel( - type = 'pills', - id = ns('mainPanel'), - - shiny::tabPanel( - title = "Diagnostics", - cohortMethodDiagnosticsSummaryViewer(ns("cmDiganostics")) - ), - - shiny::tabPanel( - title = "Results", - cohortMethodResultSummaryViewer(ns("cmResults")) - ) - ) - ) - - ) -} - - -#' The module server for the main cohort method module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler a connection to the database with the results -#' @param resultDatabaseSettings a named list containing the PLE results database connection details -#' -#' @return -#' the PLE results viewer main module server -#' -#' @export -cohortMethodServer <- function( - id, - connectionHandler, - resultDatabaseSettings - ) { - - shiny::moduleServer( - id, - function(input, output, session) { - - dataFolder <- NULL - - targetIds <- getCmCohorts( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - type = 'target' - ) - outcomeIds <- getCmCohorts( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - type = 'outcome' - ) - comparatorIds <- getCmCohorts( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - type = 'comparator' - ) - analysisIds <- getCmAnalyses( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - inputSelected <- inputSelectionServer( - id = "input-selection", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'targetIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Target: ', - choices = targetIds, - selected = targetIds[1], - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'outcomeIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Outcome: ', - choices = outcomeIds, - selected = outcomeIds[1], - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'comparatorIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Comparator: ', - choices = comparatorIds, - selected = comparatorIds[1], - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'analysisIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Analysis: ', - choices = analysisIds, - selected = analysisIds[1], - multiple = T, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) - ) - ) - - cohortMethodDiagnosticsSummaryServer( - id = "cmDiganostics", - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected - ) - - cohortMethodResultSummaryServer( - id = "cmResults", - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected - ) - - } - ) -} - -getCmCohorts <- function( - connectionHandler, - resultDatabaseSettings, - type = 'target' -){ - - sql <- " - SELECT DISTINCT - cgcd1.cohort_name as names, - cgcd1.cohort_definition_id - FROM - @schema.@cm_table_prefixresult cmds - INNER JOIN - @schema.@cg_table_prefixcohort_definition cgcd1 - ON cmds.@type_id = cgcd1.cohort_definition_id; - " - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - type = type - ) - - res <- result$cohortDefinitionId - names(res) <- result$names - - return( - res - ) -} - -getCmAnalyses <- function( - connectionHandler, - resultDatabaseSettings -){ - - sql <- " - SELECT DISTINCT - cma.analysis_id, - cma.description as names - FROM - @schema.@cm_table_prefixresult cmds - INNER JOIN - @schema.@cm_table_prefixanalysis cma - ON cmds.analysis_id = cma.analysis_id - ; - " - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix - ) - - res <- result$analysisId - names(res) <- result$names - - return( - res - ) - -} diff --git a/R/components-data-viewer.R b/R/components-data-viewer.R index 8ad40662..6f544539 100644 --- a/R/components-data-viewer.R +++ b/R/components-data-viewer.R @@ -9,18 +9,20 @@ #' #' @param id string #' @param downloadedFileName string, desired name of downloaded data file. can use the name from the module that is being used -#' +#' @param boxTitle the title added to the box +#' @family {Utils} #' @return shiny module UI #' @family {Utils} resultTableViewer <- function( id = "result-table", - downloadedFileName = NULL + downloadedFileName = NULL, + boxTitle = 'Table' ) { ns <- shiny::NS(id) shiny::div(# UI shinydashboard::box( width = "100%", - title = shiny::span(shiny::icon("table"), "Table"), + title = shiny::span(shiny::icon("table"), boxTitle), shiny::fluidPage( shiny::fluidRow( shiny::column( @@ -148,6 +150,7 @@ ohdsiReactableTheme <- reactable::reactableTheme( #' @param id string, table id must match resultsTableViewer function #' @param df reactive that returns a data frame #' @param colDefsInput named list of reactable::colDefs +#' @param details The details of the results such as cohort names and database names #' @param selectedCols string vector of columns the reactable should display to start by default. Defaults to ALL if not specified. #' @param sortedCols string vector of columns the reactable should sort by by default. Defaults to no sort if not specified. #' @param elementId optional string vector of element Id name for custom dropdown filtering if present in the customColDef list. Defaults to NULL. @@ -156,13 +159,14 @@ ohdsiReactableTheme <- reactable::reactableTheme( #' actions must be a column in df #' @param downloadedFileName string, desired name of downloaded data file. can use the name from the module that is being used #' @param groupBy The columns to group by -#' +#' @family {Utils} #' @return shiny module server #' @family {Utils} resultTableServer <- function( id, #string df, #data.frame colDefsInput, + details = data.frame(), # details about the data.frame such as target and database name selectedCols = NULL, sortedCols = NULL, elementId = NULL, @@ -174,6 +178,13 @@ resultTableServer <- function( id, function(input, output, session) { + + # find the columns that are set to show=F + colNames <- names(colDefsInput) + hideCol <- unlist(lapply(colDefsInput, function(x) ifelse(is.null(x$show), F, !x$show))) + hideColNames <- colNames[hideCol] + + # convert a data.frame to a reactive if(!inherits(df, 'reactive')){ df <- shiny::reactiveVal(df) @@ -199,8 +210,8 @@ resultTableServer <- function( if(!is.null(selectedCols)){ intersect(colnames(newdf()), selectedCols) } - else{ - colnames(newdf()) + else{ # edited to restrict to colDef - show = T columns + setdiff(colnames(newdf()), hideColNames) } }) @@ -245,12 +256,13 @@ resultTableServer <- function( onClick <- NULL } + output$columnSelector <- shiny::renderUI({ shinyWidgets::pickerInput( inputId = session$ns('dataCols'), label = 'Select Columns to Display: ', - choices = colnames(newdf()), + choices = setdiff(colnames(newdf()), hideColNames), # edited to only show columns show = T selected = selectedColumns(), choicesOpt = list(style = rep_len("color: black;", 999)), multiple = T, @@ -266,6 +278,7 @@ resultTableServer <- function( ) }) + #need to try adding browser() to all reactives to see why selected cols isnt working @@ -323,7 +336,19 @@ function filterMinValue(rows, columnId, filterValue) { }); } " - +#use fuzzy text matching for global table search +fuzzySearch<- reactable::JS('function(rows, columnIds, filterValue) { + + // Create a case-insensitive RegEx pattern that performs a fuzzy search. + const pattern = new RegExp(filterValue, "i"); + + return rows.filter(function(row) { + return columnIds.some(function(columnId) { + return pattern.test(row.values[columnId]); + }); + }); +}') + output$resultData <- reactable::renderReactable({ if (is.null(input$dataCols)) { data = newdf() @@ -339,45 +364,50 @@ function filterMinValue(rows, columnId, filterValue) { } else{ height <- NULL } - - reactable::reactable( - data, - columns = colDefs(), - onClick = onClick, - groupBy = groupBy, - #these can be turned on/off and will overwrite colDef args - sortable = TRUE, - resizable = TRUE, - filterable = TRUE, - searchable = TRUE, - showPageSizeOptions = TRUE, - outlined = TRUE, - showSortIcon = TRUE, - striped = TRUE, - highlight = TRUE, - defaultColDef = reactable::colDef(align = "left"), - defaultSorted = sortedColumns(), - rowStyle = list( - height = height - ), - elementId = elementIdName() - #, experimental - #theme = ohdsiReactableTheme - ) + # htmltools::browsable( + # tagList( + # matchSorterDep, + reactable::reactable( + data, + columns = colDefs(), + onClick = onClick, + groupBy = groupBy, + #these can be turned on/off and will overwrite colDef args + sortable = TRUE, + resizable = TRUE, + filterable = TRUE, + searchable = TRUE, + searchMethod = fuzzySearch, + showPageSizeOptions = TRUE, + outlined = TRUE, + showSortIcon = TRUE, + striped = TRUE, + highlight = TRUE, + #defaultColDef = reactable::colDef(align = "left"), + defaultSorted = sortedColumns(), + rowStyle = list( + height = height + ), + elementId = elementIdName() + #, experimental + #theme = ohdsiReactableTheme + ) + # ) + # ) }) # download full data button output$downloadDataFull <- shiny::downloadHandler( filename = function() { - paste('result-data-full-', downloadedFileName, Sys.Date(), '.csv', sep = '') + paste('result-data-full-', downloadedFileName, Sys.Date(), '.xlsx', sep = '') }, content = function(con) { - utils::write.csv( - x = df(), - file = con, - row.names = F - ) + wb <- openxlsx::buildWorkbook(x = list( + details = details, + results = df() + )) + openxlsx::saveWorkbook(wb = wb, file = con) } ) diff --git a/R/components-helpInfo.R b/R/components-helpInfo.R index eae6f807..77f46a3c 100644 --- a/R/components-helpInfo.R +++ b/R/components-helpInfo.R @@ -6,7 +6,7 @@ infoHelperViewer <- function( shinydashboard::box( collapsible = TRUE, - collapsed = FALSE, + collapsed = TRUE, title = shiny::span( shiny::icon("circle-question"), "Help & Information"), width = "100%", shiny::htmlTemplate(helpLocation) diff --git a/R/components-largeTableViewer.R b/R/components-largeTableViewer.R index 0e1c8220..67f42a95 100644 --- a/R/components-largeTableViewer.R +++ b/R/components-largeTableViewer.R @@ -103,7 +103,7 @@ LargeDataTable <- R6::R6Class( #' @param baseQuery base sql query #' @param countQuery count query string (should match query). Can be auto generated with sub query #' (default) but this will likely result in slow results -#' @family {LargeTables} +#' @family {LargeTables} createLargeSqlQueryDt <- function(connectionHandler = NULL, connectionDetails = NULL, baseQuery, diff --git a/R/data-diagnostic-drill.R b/R/data-diagnostic-drill.R index 2da1c2a5..39b62774 100644 --- a/R/data-diagnostic-drill.R +++ b/R/data-diagnostic-drill.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {DataDiagnostics} #' @return #' The user interface to the summary module #' @@ -53,7 +53,7 @@ dataDiagnosticDrillViewer <- function(id) { #' @param id the unique reference id for the module #' @param connectionHandler the connection to the prediction result database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {DataDiagnostics} #' @return #' The server to the summary module #' diff --git a/R/data-diagnostic-main.R b/R/data-diagnostic-main.R index 8a460c12..30fd6a0f 100644 --- a/R/data-diagnostic-main.R +++ b/R/data-diagnostic-main.R @@ -21,7 +21,7 @@ #' #' @details #' Returns the location of the data-diagnostic helper file -#' +#' @family {DataDiagnostics} #' @return #' string location of the data-diagnostic helper file #' @@ -37,7 +37,7 @@ dataDiagnosticHelperFile <- function(){ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {DataDiagnostics} #' @return #' The user interface to the data-diagnostic viewer module #' @@ -72,7 +72,7 @@ dataDiagnosticViewer <- function(id = 'dataDiag') { #' @param id the unique reference id for the module #' @param connectionHandler a connection to the database with the results #' @param resultDatabaseSettings a list containing the data-diagnostic result schema -#' +#' @family {DataDiagnostics} #' @return #' The server for the data-diagnostic module #' diff --git a/R/data-diagnostic-summary.R b/R/data-diagnostic-summary.R index b9b72614..9486a591 100644 --- a/R/data-diagnostic-summary.R +++ b/R/data-diagnostic-summary.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {DataDiagnostics} #' @return #' The user interface to the summary module #' @@ -47,7 +47,7 @@ dataDiagnosticSummaryViewer <- function(id) { #' @param id the unique reference id for the module #' @param connectionHandler the connection to the prediction result database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {DataDiagnostics} #' @return #' The server to the summary module #' diff --git a/R/datasources-main.R b/R/datasources-main.R index 16ee7743..23ab5d7e 100644 --- a/R/datasources-main.R +++ b/R/datasources-main.R @@ -22,6 +22,7 @@ #' Define the helper file for the module #' #' @return The helper html file for the datasources module +#' @family {Utils} #' @export #' @family {Utils} datasourcesHelperFile <- function() { @@ -37,6 +38,7 @@ datasourcesHelperFile <- function() { #' @param id The unique id for the datasources viewer namespace #' #' @return The UI for the datasources module +#' @family {Utils} #' @export #' @family {Utils} datasourcesViewer <- function(id) { @@ -47,15 +49,7 @@ datasourcesViewer <- function(id) { width = "100%", title = shiny::span(shiny::icon("database"), "Data Sources"), solidHeader = TRUE, - - shinydashboard::box( - collapsible = TRUE, - collapsed = FALSE, - title = shiny::span( shiny::icon("circle-question"), "Help & Information"), - width = "100%", - shiny::htmlTemplate(system.file("datasources-www", "datasources.html", package = utils::packageName())) - ), - + shiny::tabsetPanel( type = 'pills', id = ns('mainPanel'), @@ -79,6 +73,7 @@ datasourcesViewer <- function(id) { #' @param resultDatabaseSettings A named list containing the cohort generator results database details (schema, table prefix) #' #' @return The server for the datasources module +#' @family {Utils} #' @export #' @family {Utils} datasourcesServer <- function( @@ -175,6 +170,9 @@ datasourcesServer <- function( resultTableServer(id = "datasourcesTable", df = datasourcesData, colDefsInput = datasourcesColList, + selectedCols = c("cdmSourceName", "cdmSourceAbbreviation", "cdmHolder", + "sourceReleaseDate", "cdmReleaseDate", "cdmVersion", + "vocabularyVersion", "maxObsPeriodEndDate"), downloadedFileName = "datasourcesTable-") return(invisible(NULL)) diff --git a/R/cohort-method-attrition.R b/R/estimation-cohort-method-attrition.R similarity index 99% rename from R/cohort-method-attrition.R rename to R/estimation-cohort-method-attrition.R index 31ed7da5..649b5b06 100644 --- a/R/cohort-method-attrition.R +++ b/R/estimation-cohort-method-attrition.R @@ -19,7 +19,7 @@ #' The module viewer for rendering the PLE attrition results #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method attrition #' @@ -44,7 +44,7 @@ cohortMethodAttritionViewer <- function(id) { #' @param selectedRow the selected row from the main results table #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {Estimation} #' @return #' the PLE attrition results content server #' diff --git a/R/cohort-method-covariateBalance.R b/R/estimation-cohort-method-covariateBalance.R similarity index 81% rename from R/cohort-method-covariateBalance.R rename to R/estimation-cohort-method-covariateBalance.R index 52f56bee..70410569 100644 --- a/R/cohort-method-covariateBalance.R +++ b/R/estimation-cohort-method-covariateBalance.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the PLE covariate balance analysis #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method covariate balance results #' @@ -30,6 +30,22 @@ cohortMethodCovariateBalanceViewer <- function(id) { ns <- shiny::NS(id) shiny::div( + + shiny::tabsetPanel( + type = 'pills', + id = ns('covariateBalance'), + + shiny::tabPanel( + title = "Covariate Balance Table", + resultTableViewer( + ns("balanceTable"), + downloadedFileName = "covariateBalanceTable-" + ) + ), + + shiny::tabPanel( + title = "Covariate Balance Plot", + shiny::uiOutput(outputId = ns("hoverInfoBalanceScatter")), plotly::plotlyOutput(ns("balancePlot")), @@ -42,8 +58,12 @@ cohortMethodCovariateBalanceViewer <- function(id) { shiny::textInput(ns("covariateHighlight"), "Highlight covariates containing:", ), shiny::actionButton(ns("covariateHighlightButton"), "Highlight") + ) + ) - ) + ) + + #) } @@ -55,7 +75,7 @@ cohortMethodCovariateBalanceViewer <- function(id) { #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes #' @param metaAnalysisDbIds metaAnalysisDbIds -#' +#' @family {Estimation} #' @return #' the PLE covariate balance content server #' @@ -65,12 +85,17 @@ cohortMethodCovariateBalanceServer <- function( selectedRow, connectionHandler, resultDatabaseSettings, - metaAnalysisDbIds = NULL) { + metaAnalysisDbIds = NULL + ) { shiny::moduleServer( id, function(input, output, session) { + options <- getCmOptions( + connectionHandler, + resultDatabaseSettings + ) balance <- shiny::reactive({ row <- selectedRow() @@ -85,7 +110,7 @@ cohortMethodCovariateBalanceServer <- function( comparatorId = row$comparatorId, databaseId = row$databaseId, analysisId = row$analysisId)}, - error = function(e){return(NULL)} + error = function(e){return(data.frame())} ) return(balance) }) @@ -233,28 +258,91 @@ cohortMethodCovariateBalanceServer <- function( ggplot2::ggsave(file = file, plot = balanceSummaryPlot(), width = 12, height = 5.5) }) + #covariate balance table + + #first join to nice database names + + balanceNice <- shiny::reactive( + { + balance <- balance() + dbNames <- getDatabaseName(connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings) + comb <- dplyr::inner_join(balance, dbNames) %>% + dplyr::relocate("cdmSourceAbbreviation", .after = "databaseId") %>% + dplyr::select(-c("databaseId")) + } + ) + + #load custom colDefs + cmBalanceColList <- ParallelLogger::loadSettingsFromJson( + system.file("components-columnInformation", + "cohortMethod-covariate-balance-colDefs.json", + package = "OhdsiShinyModules" + ) + ) + + #then render the balance table + renderBalanceTable <- shiny::reactive( + { + balanceNice() + } + ) + + resultTableServer( + id = "balanceTable", + df = renderBalanceTable, + colDefsInput = cmBalanceColList, + downloadedFileName = "covariateBalanceTable-" + ) + + + + } ) } +#fetching data functions + +getDatabaseName <- function( + connectionHandler, + resultDatabaseSettings +){ + + sql <- 'select distinct d.cdm_source_abbreviation, i.database_id + from @result_schema.@cm_table_prefixCOVARIATE_BALANCE i + inner join @result_schema.@database_table_name d + on d.database_id = i.database_id + ;' + + resultTable <- connectionHandler$queryDb( + sql = sql, + result_schema = resultDatabaseSettings$schema, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix, + database_table_name = resultDatabaseSettings$databaseTable + ) + + return(resultTable) +} + getCohortMethodCovariateBalanceShared <- function( connectionHandler, resultDatabaseSettings, targetId, comparatorId, analysisId, + #covariateAnalysisId, databaseId = NULL ) { - shiny::withProgress(message = 'Extracting covariate balance', value = 0, { + #shiny::withProgress(message = 'Extracting covariate balance', value = 0, { - shiny::incProgress(1/6, detail = paste("Writing sql")) + #shiny::incProgress(1/6, detail = paste("Writing sql")) sql <- " SELECT cmscb.database_id, - cmscb.covariate_id, cmc.covariate_name, - -- cmc.covariate_analysis_id analysis_id, #TODO: once @table_prefixanalysis_id bug fixed + --cmc.analysis_id analysis_id, cmscb.target_mean_before before_matching_mean_treated, cmscb.comparator_mean_before before_matching_mean_comparator, abs(cmscb.std_diff_before) abs_before_matching_std_diff, --absBeforeMatchingStdDiff @@ -269,10 +357,11 @@ getCohortMethodCovariateBalanceShared <- function( cmscb.target_id = @target_id AND cmscb.comparator_id = @comparator_id AND cmscb.analysis_id = @analysis_id + --AND cmc.covariate_analysis_id = @covariate_analysis_id AND cmscb.database_id = '@database_id' " - shiny::incProgress(1/3, detail = paste("Extracting")) + #shiny::incProgress(1/3, detail = paste("Extracting")) result <- connectionHandler$queryDb( sql = sql, results_schema = resultDatabaseSettings$schema, @@ -280,11 +369,12 @@ getCohortMethodCovariateBalanceShared <- function( target_id = targetId, comparator_id = comparatorId, analysis_id = analysisId, + #covariate_analysis_id = covariateAnalysisId, database_id = databaseId ) - shiny::incProgress(3/3, detail = paste("Done - nrows: ", nrow(result))) - }) + #shiny::incProgress(3/3, detail = paste("Done - nrows: ", nrow(result))) + # }) return( result @@ -320,7 +410,7 @@ getCohortMethodCovariateBalanceSummary <- function( balanceAfter <- balance %>% dplyr::group_by(.data$databaseId) %>% dplyr::summarise(covariateCount = dplyr::n(), - qs = stats::quantile(.data$afterMatchingStdDiff, c(0, 0.25, 0.5, 0.75, 1)), prob = c("ymin", "lower", "median", "upper", "ymax")) %>% + qs = stats::quantile(.data$absAfterMatchingStdDiff, c(0, 0.25, 0.5, 0.75, 1)), prob = c("ymin", "lower", "median", "upper", "ymax")) %>% tidyr::spread(key = "prob", value = "qs") balanceAfter[, "type"] <- afterLabel @@ -364,7 +454,7 @@ plotCohortMethodCovariateBalanceScatterPlotNew <- function( x1 = limits[2], xref = "paper", y0 = 0, - y1 = limits[2], + y1 = limits[2], line = list(color = color, dash = 'dash') ) } @@ -378,7 +468,17 @@ plotCohortMethodCovariateBalanceScatterPlotNew <- function( colors = colors ) %>% plotly::layout( - shapes = list(xyline(limits)), + #shapes = list(xyline(limits)), + shapes = list(list( + type = "line", + x0 = 0, + x1 = ~max(absBeforeMatchingStdDiff, absAfterMatchingStdDiff), + xref = "x", + y0 = 0, + y1 = ~max(absBeforeMatchingStdDiff, absAfterMatchingStdDiff), + yref = "y", + line = list(color = "grey", dash = "dash") + )), plot_bgcolor = "#e5ecf6", xaxis = list(title = beforeLabel, range = limits), yaxis = list(title = afterLabel, range = limits) @@ -407,8 +507,8 @@ plotCohortMethodCovariateBalanceSummary <- function(balanceSummary, upper = .data$upper, ymax = .data$ymax, group = .data$databaseId)) + - ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$ymin, ymax = .data$ymin), size = 1) + - ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$ymax, ymax = .data$ymax), size = 1) + + ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$ymin, ymax = .data$ymin), linewidth = 1) + + ggplot2::geom_errorbar(ggplot2::aes(ymin = .data$ymax, ymax = .data$ymax), linewidth = 1) + ggplot2::geom_boxplot(stat = "identity", fill = grDevices::rgb(0, 0, 0.8, alpha = 0.25), size = 1) + ggplot2::geom_hline(yintercept = 0) + ggplot2::scale_x_continuous(limits = c(0.5, max(vizData$x) + 1.75)) + @@ -464,3 +564,34 @@ plotCohortMethodCovariateBalanceSummary <- function(balanceSummary, plot <- gridExtra::grid.arrange(data_table, plot, ncol = 2) return(plot) } + +getCmOptions <- function(connectionHandler, + resultDatabaseSettings){ + + sql <- 'select distinct covariate_analysis_id, covariate_analysis_name + from @result_schema.@cm_table_prefixCOVARIATE_ANALYSIS;' + + #shiny::incProgress(1/3, detail = paste("Created SQL - Extracting targets")) + + covariateAnalyses <- connectionHandler$queryDb( + sql = sql, + result_schema = resultDatabaseSettings$schema, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix + ) + covariateAnalysisIds <- covariateAnalyses$covariateAnalysisId + names(covariateAnalysisIds) <- covariateAnalyses$covariateAnalysisName + + return( + list( + covariateAnalysisIds = covariateAnalysisIds + ) + ) + +} + + + + + + + diff --git a/R/estimation-cohort-method-diagnostics.R b/R/estimation-cohort-method-diagnostics.R new file mode 100644 index 00000000..56430cf2 --- /dev/null +++ b/R/estimation-cohort-method-diagnostics.R @@ -0,0 +1,264 @@ +estimationCmDiagnosticViewer <- function(id=1) { + ns <- shiny::NS(id) + + resultTableViewer(ns("cmDiagnosticsTable")) + +} + + +estimationCmDiagnosticServer <- function( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1), + targetIds, + comparatorIds, + outcomeId +) { + shiny::moduleServer( + id, + function(input, output, session) { + + + + cmDiagnostics <- shiny::reactive({ + estimationGetCmDiagnostics( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + comparatorIds = comparatorIds, + outcomeId = outcomeId + ) + }) + + resultTableServer( + id = "cmDiagnosticsTable", + df = cmDiagnostics, + colDefsInput = estimationGetCmDiagnosticColDefs(), + selectedCols = c( + 'databaseName', + 'analysis', + 'target', + 'comparator', + 'summaryValue' + ) + ) + + + } + ) +} + + +estimationGetCmDiagnostics <- function( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + comparatorIds = comparatorIds, + outcomeId = outcomeId +){ + targetIds <- targetIds() + comparatorIds <- comparatorIds() + outcomeId <- outcomeId() + + sql <- " + SELECT DISTINCT + dmd.cdm_source_abbreviation database_name, + cma.description analysis, + cgcd1.cohort_name target, + cgcd2.cohort_name comparator, + cgcd3.cohort_name outcome, + cmds.max_sdm, + cmds.shared_max_sdm, + cmds.equipoise, + cmds.mdrr, + cmds.ease, + cmds.balance_diagnostic, + cmds.shared_balance_diagnostic, -- added back + cmds.equipoise_diagnostic, + cmds.mdrr_diagnostic, + cmds.ease_diagnostic, + cmds.unblind + FROM + @schema.@cm_table_prefixdiagnostics_summary cmds + INNER JOIN @schema.@cm_table_prefixanalysis cma ON cmds.analysis_id = cma.analysis_id + INNER JOIN @schema.@database_table dmd ON dmd.database_id = cmds.database_id + INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd1 ON cmds.target_id = cgcd1.cohort_definition_id + INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd2 ON cmds.comparator_id = cgcd2.cohort_definition_id + INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd3 ON cmds.outcome_id = cgcd3.cohort_definition_id + + where cgcd1.cohort_definition_id in (@targets) + {@use_comparators}?{and cgcd2.cohort_definition_id in (@comparators)} + and cgcd3.cohort_definition_id in (@outcomes) + {@use_analyses}?{and cma.analysis_id in (@analyses)} + ; + " + print(comparatorIds) + + result <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + database_table = resultDatabaseSettings$databaseTable, + + targets = paste0(targetIds, collapse = ','), + comparators = paste0(comparatorIds, collapse = ','), + outcomes = paste0(outcomeId, collapse = ','), + + use_comparators = ifelse(is.null(comparatorIds), F, T), + use_analyses = F + ) + + # adding percent fail for summary + result$summaryValue <- apply( + X = result[, grep('Diagnostic', colnames(result))], + MARGIN = 1, + FUN = function(x){ + + if(sum(x %in% c('FAIL'))>0){ + return('Fail') + } else if(sum(x %in% c('WARNING')) >0){ + return(sum(x %in% c('WARNING'))) + } else{ + return('Pass') + } + } + ) + + # add summaryValue after outcome + result <- result %>% + dplyr::relocate("summaryValue", .after = "outcome") + + return( + result + ) + +} + + +estimationGetCmDiagnosticColDefs <- function(){ + result <- list( + databaseName = reactable::colDef( + header = withTooltip( + "Database", + "The database name" + ), + sticky = "left" + ), + target = reactable::colDef( + header = withTooltip( + "Target", + "The target cohort of interest" + ), + sticky = "left" + ), + comparator = reactable::colDef( + header = withTooltip( + "Comparator", + "The comparator cohort of interest" + ), + sticky = "left" + ), + outcome = reactable::colDef( + show = F + ), + summaryValue = reactable::colDef( + header = withTooltip( + "Diagnostic", + "The overall result of the diagostics" + ), + style = function(value) { + color <- 'orange' + if(is.na(value)){ + color <- 'black' + }else if(value == 'Pass'){ + color <- '#AFE1AF' + }else if(value == 'Fail'){ + color <- '#E97451' + } + list(background = color) + } + ), + analysis = reactable::colDef( + header = withTooltip( + "Analysis", + "The analysis name" + ) + ), + + mdrr = reactable::colDef( + header = withTooltip( + "MDRR", + "The minimum detectible relative risk" + ), + format = reactable::colFormat(digits = 4) + ), + ease = reactable::colDef( + header = withTooltip( + "EASE", + "The expected absolute systematic error" + ), + format = reactable::colFormat(digits = 4) + ), + maxSdm = reactable::colDef( + header = withTooltip( + "Max SDM", + "The maximum absolute standardized difference of mean" + ), + format = reactable::colFormat(digits = 4) + ), + sharedMaxSdm = reactable::colDef( + header = withTooltip( + "Shared Max SDM", + "The maximum absolute standardized difference of mean of the shared balance (shared across outcomes)" + ), + format = reactable::colFormat(digits = 4) + ), + equipoise = reactable::colDef( + header = withTooltip( + "Equipoise", + "The fraction of the study population with a preference score between 0.3 and 0.7" + ), + format = reactable::colFormat(digits = 4) + ), + balanceDiagnostic = reactable::colDef( + header = withTooltip( + "Balance Diagnostic", + "Pass / warning / fail classification of the balance diagnostic (Max SDM)" + ) + ), + mdrrDiagnostic = reactable::colDef( + header = withTooltip( + "MDRR Diagnostic", + "Pass / warning / fail classification of the MDRR diagnostic" + ) + ), + sharedBalanceDiagnostic = reactable::colDef( + header = withTooltip( + "Shared Balance Diagnostic", + "Pass / warning / fail classification of the shared balance diagnostic (Shared Max SDM)" + ) + ), + easeDiagnostic = reactable::colDef( + header = withTooltip( + "Ease Diagnostic", + "Pass / warning / fail classification of the EASE diagnostic" + ) + ), + equipoiseDiagnostic = reactable::colDef( + header = withTooltip( + "Equipoise Diagnostic", + "Pass / warning / fail classification of the equipoise diagnostic" + ) + ), + + unblind = reactable::colDef( + header = withTooltip( + "Unblind", + "If the value is 1 then the diagnostics passed and results can be unblinded" + ) + ) + ) + + return(result) +} \ No newline at end of file diff --git a/R/cohort-method-full-result.R b/R/estimation-cohort-method-full-result.R similarity index 93% rename from R/cohort-method-full-result.R rename to R/estimation-cohort-method-full-result.R index 2c05c501..7f4631cd 100644 --- a/R/cohort-method-full-result.R +++ b/R/estimation-cohort-method-full-result.R @@ -1,4 +1,4 @@ -cohortMethodFullResultViewer <- function(id) { +estimationCmFullResultViewer <- function(id) { ns <- shiny::NS(id) shiny::div( @@ -49,7 +49,7 @@ cohortMethodFullResultViewer <- function(id) { } -cohortMethodFullResultServer <- function( +estimationCmFullResultServer <- function( id, connectionHandler, resultDatabaseSettings, @@ -76,11 +76,11 @@ cohortMethodFullResultServer <- function( "cdmSourceAbbreviation" ) %>% dplyr::rename( - 'Target' = .data$target, - 'Comparator' = .data$comparator, - 'Outcome' = .data$outcome, - 'Analysis' = .data$description, - 'Database' = .data$cdmSourceAbbreviation + Target = "target", + Comparator = "comparator", + Outcome = "outcome", + Analysis = "description", + Database = "cdmSourceAbbreviation" ) }) diff --git a/R/cohort-method-kaplainMeier.R b/R/estimation-cohort-method-kaplainMeier.R similarity index 99% rename from R/cohort-method-kaplainMeier.R rename to R/estimation-cohort-method-kaplainMeier.R index 87906c13..9f8bbf0d 100644 --- a/R/cohort-method-kaplainMeier.R +++ b/R/estimation-cohort-method-kaplainMeier.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the PLE Kaplan Meier curve #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The module viewer for Kaplan Meier objects #' @@ -45,7 +45,7 @@ cohortMethodKaplanMeierViewer <- function(id) { #' @param selectedRow the selected row from the main results table #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {Estimation} #' @return #' the PLE Kaplain Meier content server #' diff --git a/R/estimation-cohort-method-plots.R b/R/estimation-cohort-method-plots.R new file mode 100644 index 00000000..314a9c93 --- /dev/null +++ b/R/estimation-cohort-method-plots.R @@ -0,0 +1,156 @@ +estimationCmPlotsViewer <- function(id=1) { + ns <- shiny::NS(id) + shinyWidgets::addSpinner( + shiny::plotOutput(ns('esCohortMethodPlot')), + spin = 'rotating-plane' + ) +} + + +estimationCmPlotsServer <- function( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1), + cmData +) { + shiny::moduleServer( + id, + function(input, output, session) { + + height <- shiny::reactive({ + if(is.null(cmData()$target)){ + return(100) + } + length(unique(cmData()$target))*250 + 250 + }) + + output$esCohortMethodPlot <- shiny::renderPlot( + estimationCreateCmPlot( + data = cmData + ), + height = height + ) + + } + ) +} + +estimationCreateCmPlot <- function(data) { + data <- data() + if(nrow(data) == 0){ + shiny::showNotification('No results to plot') + return(NULL) + } + data <- data[!is.na(data$calibratedRr),] + if(nrow(data) == 0){ + shiny::showNotification('No results to plot') + return(NULL) + } + data$database <- data$cdmSourceAbbreviation + + if(is.null(data$comparator)){ + shiny::showNotification('No results to plot') + return(NULL) + } + + + renameDf <- data.frame( + shortName = paste0( + 1:length(unique(data$comparator)), + ') ', + substring(sort(unique(data$comparator)), 1,50), + '...' + ), + comparator = sort(unique(data$comparator)) + ) + + + data <- merge( + data, + renameDf, + by = "comparator" + ) + + # make sure bayesian is at top + db <- unique(data$database) + bInd <- grep('bayesian', tolower(db)) + withoutb <- db[-bInd] + b <- db[bInd] + data$database <- factor( + x = data$database, + levels = c(b, sort(withoutb)) + ) + metadata <- data[data$database == b,] + + breaks <- c(0.1, 0.25, 0.5, 1, 2, 4, 6, 8) + + ### Add table above the graph + renameDf$comparator <- sapply( + strwrap(renameDf$comparator, width = 150, simplify = FALSE), + paste, + collapse = "\n" + ) + + tt <- gridExtra::ttheme_default( + base_size = 8, + colhead=list(fg_params = list(parse=TRUE)) + ) + tbl <- gridExtra::tableGrob( + renameDf, + rows=NULL, + theme=tt + ) + plotList <- list(tbl) # adding table first + + for(target in unique(data$target)){ # per targets + + title <- sprintf("%s", target) + plotList[[length(plotList) + 1]] <- ggplot2::ggplot( + data = data %>% dplyr::filter(.data$target == !!target), + ggplot2::aes(x = .data$calibratedRr, y = .data$shortName)) + + ggplot2::geom_vline(xintercept = 1, size = 0.5) + + ggplot2::geom_point(color = "#000088", alpha = 0.8) + + ggplot2::geom_errorbarh( + ggplot2::aes( + xmin = .data$calibratedCi95Lb, + xmax = .data$calibratedCi95Ub + ), + height = 0.5, + color = "#000088", + alpha = 0.8 + ) + + ggplot2::scale_x_log10( + "Effect size (Hazard Ratio)", + breaks = breaks, + labels = breaks + ) + + + # shade the bayesian + ggplot2::geom_rect( + data = metadata %>% dplyr::filter(.data$target == !!target), + ggplot2::aes(fill = .data$database), + xmin = -Inf, + xmax = Inf, + ymin = -Inf, + ymax = Inf, + alpha = 0.2 + ) + + + ggplot2::coord_cartesian(xlim = c(0.1, 10)) + + ggplot2::facet_grid(.data$database ~ .data$description) + + ggplot2::ggtitle(title) + + ggplot2::theme( + axis.title.y = ggplot2::element_blank(), + panel.grid.minor = ggplot2::element_blank(), + strip.text.y.right = ggplot2::element_text(angle = 0), + legend.position = "none" + ) + } + + plot <- do.call( + gridExtra::grid.arrange, + list(grobs = plotList, ncol =1) + ) + + return(plot) +} diff --git a/R/cohort-method-populationCharacteristics.R b/R/estimation-cohort-method-populationCharacteristics.R similarity index 98% rename from R/cohort-method-populationCharacteristics.R rename to R/estimation-cohort-method-populationCharacteristics.R index c37cde83..c87a934f 100644 --- a/R/cohort-method-populationCharacteristics.R +++ b/R/estimation-cohort-method-populationCharacteristics.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the PLE population characteristics #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method population characteristics objects #' @@ -41,7 +41,7 @@ cohortMethodPopulationCharacteristicsViewer <- function(id) { #' @param selectedRow the selected row from the main results table #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {Estimation} #' @return #' the PLE population characteristics content server #' @@ -149,7 +149,8 @@ cohortMethodPopulationCharacteristicsServer <- function( digits = 2 ), sortable = F - ) + ), + label = reactable::colDef(show = T) ) ) @@ -251,7 +252,7 @@ getCohortMethodPopChar <- function( .data$covariateName ) - # remove text before covariateNames + # remove text before covariateNames - TODO generalize this? txtRms <- c( 'age group: ', 'condition_era group during day -365 through 0 days relative to index: ', @@ -260,7 +261,7 @@ getCohortMethodPopChar <- function( for(txtRm in txtRms){ result$covariateName <- gsub(txtRm,'', result$covariateName) } - + return( result ) diff --git a/R/cohort-method-power.R b/R/estimation-cohort-method-power.R similarity index 98% rename from R/cohort-method-power.R rename to R/estimation-cohort-method-power.R index aa57bf91..2acec47c 100644 --- a/R/cohort-method-power.R +++ b/R/estimation-cohort-method-power.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the PLE power analysis #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method power calculation results #' @@ -44,7 +44,7 @@ cohortMethodPowerViewer <- function(id) { #' @param selectedRow the selected row from the main results table #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {Estimation} #' @return #' the PLE systematic error power server #' @@ -177,11 +177,7 @@ prepareCohortMethodPowerTable <- function( connectionHandler , resultDatabaseSettings ) { - #analyses <- getCohortMethodAnalyses( - # connectionHandler = connectionHandler, - # resultDatabaseSettings = resultDatabaseSettings - #) - #table <- merge(mainResults, analyses) + table <- mainResults alpha <- 0.05 power <- 0.8 diff --git a/R/cohort-method-propensityModel.R b/R/estimation-cohort-method-propensityModel.R similarity index 98% rename from R/cohort-method-propensityModel.R rename to R/estimation-cohort-method-propensityModel.R index 53877b20..9cc201bc 100644 --- a/R/cohort-method-propensityModel.R +++ b/R/estimation-cohort-method-propensityModel.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the PLE propensity score model covariates/coefficients #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method propensity score model covariates/coefficients #' @@ -42,7 +42,7 @@ cohortMethodPropensityModelViewer <- function(id) { #' @param selectedRow the selected row from the main results table #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {Estimation} #' @return #' the PLE propensity score model #' diff --git a/R/cohort-method-propensityScoreDistribution.R b/R/estimation-cohort-method-propensityScoreDistribution.R similarity index 99% rename from R/cohort-method-propensityScoreDistribution.R rename to R/estimation-cohort-method-propensityScoreDistribution.R index 08ae4384..7a5eb204 100644 --- a/R/cohort-method-propensityScoreDistribution.R +++ b/R/estimation-cohort-method-propensityScoreDistribution.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the propensity score distribution #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method propensity score distribution #' @@ -49,7 +49,7 @@ cohortMethodPropensityScoreDistViewer <- function(id) { #' @param connectionHandler the connection to the PLE results database #' @param resultDatabaseSettings a list containing the result schema and prefixes #' @param metaAnalysisDbIds metaAnalysisDbIds -#' +#' @family {Estimation} #' @return #' the PLE propensity score distribution content server #' diff --git a/R/cohort-method-resultSummary.R b/R/estimation-cohort-method-results.R similarity index 62% rename from R/cohort-method-resultSummary.R rename to R/estimation-cohort-method-results.R index 4e8ea8df..499a9a73 100644 --- a/R/cohort-method-resultSummary.R +++ b/R/estimation-cohort-method-results.R @@ -17,15 +17,7 @@ # limitations under the License. -#' The module viewer for rendering the cohort method results -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the cohort method diagnostics viewer -#' -#' @export -cohortMethodResultSummaryViewer <- function(id) { +estimationCmResultsViewer <- function(id) { ns <- shiny::NS(id) shiny::tabsetPanel( @@ -34,13 +26,7 @@ cohortMethodResultSummaryViewer <- function(id) { shiny::tabPanel( title = "Table", - #shinydashboard::box( - # status = 'info', - # width = '100%', - # title = shiny::span('Result Summary'), - # solidHeader = TRUE, - resultTableViewer(ns("resultSummaryTable")) - # ) + resultTableViewer(ns("resultSummaryTable")) ), shiny::tabPanel( @@ -51,7 +37,7 @@ cohortMethodResultSummaryViewer <- function(id) { shiny::icon("arrow-left"), style="color: #fff; background-color: #337ab7; border-color: #2e6da4" ), - cohortMethodFullResultViewer(ns("cmFullResults")) + estimationCmFullResultViewer(ns("cmFullResults")) ) ) @@ -60,22 +46,13 @@ cohortMethodResultSummaryViewer <- function(id) { } -#' The module server for rendering the PLE diagnostics summary -#' -#' @param id the unique reference id for the module -#' @param connectionHandler the connection to the PLE results database -#' @param resultDatabaseSettings a list containing the result schema and prefixes -#' @param inputSelected The target id, comparator id, outcome id and analysis id selected by the user -#' -#' @return -#' the PLE diagnostics summary results -#' -#' @export -cohortMethodResultSummaryServer <- function( +estimationCmResultsServer <- function( id, connectionHandler, resultDatabaseSettings, - inputSelected + targetIds, + comparatorIds, + outcomeId ) { shiny::moduleServer( @@ -88,43 +65,67 @@ cohortMethodResultSummaryServer <- function( shiny::updateTabsetPanel(session, "resultPanel", selected = "Table") }) - data <- shiny::reactive({ - getCmResultData( - connectionHandler, + # extract results from CM tables + cmData <- shiny::reactive({ + estimationGetCmResultData( + connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected + targetIds = targetIds, + comparatorIds = comparatorIds, + outcomeId = outcomeId + ) + }) + + # extract results from ES tables if tables exist + esData <- shiny::reactive({ + tryCatch( + { + estimationGetCMMetaEstimation( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + outcomeId = outcomeId + ) + }, error = function(e){print('CM ES error');return(NULL)} ) }) + + data <- shiny::reactive({ + rbind(cmData(), esData()) + }) resultTableOutputs <- resultTableServer( id = "resultSummaryTable", df = data, - colDefsInput = getCmResultSummaryTableColDef(), - addActions = c('results') + colDefsInput = estimationGetCmResultSummaryTableColDef(), + addActions = c('results') # TODO wont work for esData ) selectedRow <- shiny::reactiveVal(value = NULL) shiny::observeEvent(resultTableOutputs$actionCount(), { - if(resultTableOutputs$actionType() == 'results'){ + if(resultTableOutputs$actionType() == 'results'){ # add an and here to only work for cmData selectedRow(data()[resultTableOutputs$actionIndex()$index,]) shiny::updateTabsetPanel(session, "resultPanel", selected = "Results") } }) - cohortMethodFullResultServer( + estimationCmFullResultServer( id = "cmFullResults", connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, selectedRow = selectedRow, actionCount = resultTableOutputs$actionCount ) + + + return(data) } ) } -getCmResultSummaryTableColDef <- function(){ +estimationGetCmResultSummaryTableColDef <- function(){ result <- list( analysisId = reactable::colDef(show = F), @@ -144,7 +145,12 @@ getCmResultSummaryTableColDef <- function(){ ) ), - targetId = reactable::colDef(show = F), + targetId = reactable::colDef(header = withTooltip( + "Target ID", + "The ID of the target cohort of interest" + ) + ), + target = reactable::colDef( header = withTooltip( "Target", @@ -153,7 +159,12 @@ getCmResultSummaryTableColDef <- function(){ minWidth = 300 ), - comparatorId = reactable::colDef(show = F), + comparatorId = reactable::colDef(header = withTooltip( + "Comparator ID", + "The ID of the comparator cohort of interest" + ) + ), + comparator = reactable::colDef( header = withTooltip( "Comparator", @@ -162,7 +173,12 @@ getCmResultSummaryTableColDef <- function(){ minWidth = 300 ), - outcomeId = reactable::colDef(show = F), + outcomeId = reactable::colDef(header = withTooltip( + "Outcome ID", + "The ID of the outcome of interest" + ) + ), + outcome = reactable::colDef( header = withTooltip( "Outcome", @@ -260,21 +276,24 @@ getCmResultSummaryTableColDef <- function(){ return(result) } -getCmResultData <- function( +estimationGetCmResultData <- function( connectionHandler, resultDatabaseSettings, - inputSelected + targetIds, + comparatorIds, + outcomeId, + runEvidenceSynthesis = F ) { - targetIds = inputSelected()$targetIds - outcomeIds = inputSelected()$outcomeIds - comparatorIds = inputSelected()$comparatorIds - analysisIds = inputSelected()$analysisIds + targetIds = targetIds() + comparatorIds = comparatorIds() + outcomeId = outcomeId() - if(is.null(comparatorIds) || is.null(targetIds) || is.null(outcomeIds) || is.null(analysisIds)){ + if(is.null(comparatorIds) || is.null(targetIds) || is.null(outcomeId) ){ return(NULL) } + sql <- " SELECT cma.analysis_id, @@ -333,7 +352,6 @@ FROM where cmr.target_id in (@targets) {@use_comparators}?{and cmr.comparator_id in (@comparators)} and cmr.outcome_id in (@outcomes) - {@use_analyses}?{and cmr.analysis_id in (@analyses)} ; " @@ -346,14 +364,148 @@ FROM targets = paste0(targetIds, collapse = ','), comparators = paste0(comparatorIds, collapse = ','), - outcomes = paste0(outcomeIds, collapse = ','), - analyses = paste0(analysisIds, collapse = ','), - + outcomes = paste0(outcomeId, collapse = ','), use_comparators = !is.null(comparatorIds), - use_analyses = !is.null(analysisIds) ) return( result ) } + + +estimationGetCMMetaEstimation <- function( + connectionHandler, + resultDatabaseSettings, + targetIds, + outcomeId +){ + targetIds <- targetIds() + outcomeId <- outcomeId() + + sql <- "select + r.analysis_id, + a.description, + 0 as database_id, + ev.evidence_synthesis_description as cdm_source_abbreviation, + r.target_id, + c1.cohort_name as target, + r.outcome_id, + c3.cohort_name as outcome, + r.comparator_id, + c2.cohort_name as comparator, + NULL as rr, + NULL as ci_95_lb, + NULL as ci_95_ub, + NULL as p, + NULL as log_rr, + NULL as se_log_rr, + 0 as target_subjects, + 0 as comparator_subjects, + 0 as target_days, + 0 as comparator_days, + 0 as target_outcomes, + 0 as comparator_outcomes, + r.calibrated_rr, + r.calibrated_ci_95_lb, + r.calibrated_ci_95_ub, + r.calibrated_p, + r.calibrated_log_rr, + r.calibrated_se_log_rr, + 1 unblind + + from + @schema.@es_table_prefixcm_result as r + inner join + @schema.@cm_table_prefixtarget_comparator_outcome as tco + on + r.target_id = tco.target_id and + r.comparator_id = tco.comparator_id and + r.outcome_id = tco.outcome_id + + inner join + + @schema.@es_table_prefixcm_diagnostics_summary as unblind + on + r.analysis_id = unblind.analysis_id and + r.target_id = unblind.target_id and + r.comparator_id = unblind.comparator_id and + r.outcome_id = unblind.outcome_id + + inner join + @schema.@cg_table_prefixcohort_definition as c1 + on c1.cohort_definition_id = r.target_id + + inner join + @schema.@cg_table_prefixcohort_definition as c2 + on c2.cohort_definition_id = r.comparator_id + + inner join + @schema.@cg_table_prefixcohort_definition as c3 + on c3.cohort_definition_id = r.outcome_id + + inner join + @schema.@cm_table_prefixanalysis as a + on a.analysis_id = r.analysis_id + + inner join + @schema.@es_table_prefixanalysis as ev + on ev.evidence_synthesis_analysis_id = r.evidence_synthesis_analysis_id + + where + r.calibrated_rr != 0 and + tco.outcome_of_interest = 1 and + unblind.unblind = 1 and + r.target_id in (@target_ids) and + r.outcome_id = @outcome_id + ;" + + result <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + es_table_prefix = resultDatabaseSettings$esTablePrefix, + outcome_id = outcomeId, + target_ids = paste0(targetIds, collapse = ',') + ) %>% + dplyr::mutate( + calibratedP = ifelse( + .data$calibratedRr < 1, + computeTraditionalP( + logRr = .data$calibratedLogRr, + seLogRr = .data$calibratedSeLogRr, + twoSided = FALSE, + upper = TRUE + ), + .data$calibratedP / 2) + ) + + return(unique(result)) +} + + +# Function to format results +# used by both cm and sccs +computeTraditionalP <- function( + logRr, + seLogRr, + twoSided = TRUE, + upper = TRUE +) +{ + z <- logRr/seLogRr + + pUpperBound <- 1 - stats::pnorm(z) + pLowerBound <- stats::pnorm(z) + + if (twoSided) { + return(2 * pmin(pUpperBound, pLowerBound)) + } + else if (upper) { + return(pUpperBound) + } + else { + return(pLowerBound) + } +} diff --git a/R/cohort-method-systematicError.R b/R/estimation-cohort-method-systematicError.R similarity index 99% rename from R/cohort-method-systematicError.R rename to R/estimation-cohort-method-systematicError.R index cc89cafb..fa1ce54d 100644 --- a/R/cohort-method-systematicError.R +++ b/R/estimation-cohort-method-systematicError.R @@ -20,7 +20,7 @@ #' The module viewer for rendering the PLE systematic error objects #' #' @param id the unique reference id for the module -#' +#' @family {Estimation} #' @return #' The user interface to the cohort method systematic error module #' @@ -52,7 +52,7 @@ cohortMethodSystematicErrorViewer <- function(id) { #' @param selectedRow the selected row from the main results table #' @param connectionHandler the connection handler to the result databases #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {Estimation} #' @return #' the PLE systematic error content server #' diff --git a/R/estimation-main.R b/R/estimation-main.R new file mode 100644 index 00000000..21bb7bd4 --- /dev/null +++ b/R/estimation-main.R @@ -0,0 +1,414 @@ +# @file Estimation-main.R +# +# Copyright 2024 Observational Health Data Sciences and Informatics +# +# This file is part of OhdsiShinyModules +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +#' The location of the estimation module helper file +#' +#' @details +#' Returns the location of the characterization helper file +#' @family {Estimation} +#' @return +#' string location of the characterization helper file +#' +#' @export +estimationHelperFile <- function(){ + fileLoc <- system.file('estimation-www', "estimation.html", package = "OhdsiShinyModules") + return(fileLoc) +} + +#' The module viewer for exploring characterization studies +#' +#' @details +#' The user specifies the id for the module +#' +#' @param id the unique reference id for the module +#' @family {Estimation} +#' @return +#' The user interface to the characterization viewer module +#' +#' @export +estimationViewer <- function(id=1) { + ns <- shiny::NS(id) + + shinydashboard::box( + status = 'info', + width = '100%', + title = shiny::span( shiny::icon("table"), "Estimation Viewer"), + solidHeader = TRUE, + + # pick a targetId of interest + shiny::uiOutput(ns("targetSelection")), + + inputSelectionDfViewer(id = ns('targetSelected'), title = 'Selected'), + + + # first show diagnostics with: + # database, analysis, pass/fail, viewResult/viewDiagnostic + # extracts from SCCS/CM/Evidence Synthesis + + shiny::conditionalPanel( + condition = 'input.targetSelect', + ns = ns, + + shiny::tabsetPanel( + type = 'pills', + id = ns('mainPanel'), + + shiny::tabPanel( + title = 'Diagnostics', + shiny::tabsetPanel( + type = 'pills', + id = ns('diagnosticsPanel') + ) + ), + + shiny::tabPanel( + title = 'Results', + shiny::tabsetPanel( + type = 'pills', + id = ns('resultsPanel') + ) + ), + ) + ) # end conditional panel + + ) + +} + + +#' The module server for exploring estimation studies +#' +#' @details +#' The user specifies the id for the module +#' +#' @param id the unique reference id for the module +#' @param connectionHandler a connection to the database with the results +#' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix +#' @family {Estimation} +#' @return +#' The server for the estimation module +#' +#' @export +estimationServer <- function( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1) +) { + shiny::moduleServer( + id, + function(input, output, session) { + + # this function checks tables exist for the tabs + # and returns the tabs that should be displayed + # as the tables exist + estimationTypes <- getEstimationTypes( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings + ) + + # add the tabs based on results + types <- list( + c("Cohort Method","estimationCmDiagnosticViewer", "estimationCmDiagnostic", "diagnosticsPanel", "Cohort Method"), + c("SCCS", "estimationSccsDiagnosticViewer", "estimationSccsDiagnostic", "diagnosticsPanel", "SCCS"), + c("Cohort Method", "estimationCmResultsViewer", "estimationCmResults", "resultsPanel", "Cohort Method Table"), + c("Cohort Method", "estimationCmPlotsViewer", "estimationCmPlots", "resultsPanel", "Cohort Method Plot"), + c("SCCS", "estimationSccsResultsViewer", "estimationSccsResults", "resultsPanel", "SCCS Table"), + c("SCCS", "estimationSccsPlotsViewer", "estimationSccsPlots", "resultsPanel", "SCCS Plot") + ) + selectValD <- T + selectValR <- T + for( type in types){ + if(type[1] %in% estimationTypes){ + shiny::insertTab( + inputId = type[4], + tab = shiny::tabPanel( + title = type[5], + do.call(what = type[2], args = list(id = session$ns(type[3]))) + ), + select = ifelse(type[4] == "diagnosticsPanel", selectValD, selectValR) + ) + if(type[4] == "diagnosticsPanel"){ + selectValD = F + } else{ + selectValR = F + } + } + + } + + + + # use the function in report-main to get parent Ts with all children Ts, the outcomes for the Ts and the Cs + options <- getTandOs( + connectionHandler, + resultDatabaseSettings, + includeCharacterization = F, + includeCohortIncidence = F, + includeCohortMethod = "Cohort Method" %in% estimationTypes, + includePrediction = F, + includeSccs = "SCCS" %in% estimationTypes # slow so turning off + ) + + # Targets + targets <- lapply(options$groupedTs, function(x) x$cohortId) + targets <- unlist(targets) + + # initial outcomes for first T + outcomeDf <- options$tos[[1]] + outcomes <- shiny::reactiveVal(outcomeDf) + initialOutcomes <- outcomeDf$outcomeId + names(initialOutcomes ) <- outcomeDf$outcomeName + + shiny::observeEvent(input$targetId,{ + + outcomes(unique( + do.call( + 'rbind', + lapply( + options$groupedTs[[which(targets == input$targetId)]]$subsets$targetId, + function(id){ + if(id %in% names(options$tos)){ + return(options$tos[[which(id == names(options$tos))]]) + } else{ + return(NULL) + } + } + ) + ) + )) + + + if(length(outcomes()$outcomeId)>0){ + outcomesVector <- outcomes()$outcomeId + names(outcomesVector) <- outcomes()$outcomeName + + shinyWidgets::updatePickerInput( + session = session, + inputId = 'outcomeId', + label = 'Outcome: ', + choices = outcomesVector, + selected = outcomesVector[1] + ) + } + }) + # end observed targetId + + output$targetSelection <- shiny::renderUI({ + shiny::fluidRow( + shiny::div( + shinyWidgets::pickerInput( + inputId = session$ns('targetId'), + label = 'Target: ', + choices = targets, + selected = targets[1], + multiple = FALSE, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + dropupAuto = F, + size = 10, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 500 + ) + ), + shinyWidgets::pickerInput( + inputId = session$ns('outcomeId'), + label = 'Outcome: ', + choices = initialOutcomes, + selected = initialOutcomes[1], + multiple = FALSE, + options = shinyWidgets::pickerOptions( + actionsBox = TRUE, + liveSearch = TRUE, + dropupAuto = F, + size = 10, + liveSearchStyle = "contains", + liveSearchPlaceholder = "Type here to search", + virtualScroll = 500 + ) + ), + style = 'margin-left: 2%; width: 78%; display: inline-block; vertical-align: middle;' + ), + shiny::div( + shiny::actionButton( + inputId = session$ns('targetSelect'), + label = 'Select', + icon = shiny::icon('redo') + ), + style = 'display: inline-block; vertical-align: bottom; margin-bottom: 20px' + ) + ) + }) + + + targetSelected <- shiny::reactiveVal(NULL) + comparatorIds <- shiny::reactiveVal(NULL) + targetIds <- shiny::reactiveVal(NULL) + outcomeId <- shiny::reactiveVal(NULL) + + shiny::observeEvent(input$targetSelect, { + + targetSelected( + data.frame( + Target = names(targets)[targets == input$targetId], + Outcome = outcomes()$outcomeName[outcomes()$outcomeId == input$outcomeId] + ) + ) + inputSelectionDfServer( + id = 'targetSelected', + dataFrameRow = targetSelected, + ncol = 1 + ) + + #======================================== + # code to update diagnostics database + #======================================== + # get all the ids that are children of the id selected + targetIdsTemp <- options$groupedTs[[which(targets == input$targetId)]]$subsets$targetId + + comparators <- do.call( + 'rbind', + lapply( + options$groupedTs[[which(targets == input$targetId)]]$subsets$targetId, + function(id){ + if(id %in% names(options$cs)){ + return(options$cs[[which(id == names(options$cs))]]) + } else{ + return(NULL) + } + } + ) + ) + targetIds(targetIdsTemp) + comparatorIds(comparators$comparatorId) + outcomeId(input$outcomeId) + }) + + #======================================= + # SERVERS + #======================================= + if('Cohort Method' %in% estimationTypes){ + estimationCmDiagnosticServer( + id = 'estimationCmDiagnostic', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + comparatorIds = comparatorIds, + outcomeId = outcomeId + ) + + cmData <- estimationCmResultsServer( + id = 'estimationCmResults', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + comparatorIds = comparatorIds, + outcomeId = outcomeId + ) + + estimationCmPlotsServer( + id = 'estimationCmPlots', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + cmData = cmData + ) + } + + if('SCCS' %in% estimationTypes){ + estimationSccsDiagnosticServer( + id = 'estimationSccsDiagnostic', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + outcomeId = outcomeId + ) + + sccsData <- estimationSccsResultsServer( + id = 'estimationSccsResults', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + outcomeId = outcomeId + ) + + estimationSccsPlotsServer( + id = 'estimationSccsPlots', + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + sccsData = sccsData + ) + } + + } + ) +} + + + + +getEstimationTypes <- function( + connectionHandler, + resultDatabaseSettings +){ + + results <- c() + + conn <- DatabaseConnector::connect( + connectionDetails = connectionHandler$connectionDetails + ) + on.exit(DatabaseConnector::disconnect(conn)) + tbls <- DatabaseConnector::getTableNames( + connection = conn, + databaseSchema = resultDatabaseSettings$schema + ) + + # Cohort Method + if(paste0( + resultDatabaseSettings$cmTablePrefix, + c('result') + ) %in% tbls){ + results <- c(results, "Cohort Method") + } + + # SCCS + if(paste0( + resultDatabaseSettings$sccsTablePrefix, + 'result' + ) %in% tbls){ + results <- c(results, "SCCS") + } + + # Evidence Synthesis + if( + paste0( + resultDatabaseSettings$esTablePrefix, + 'cm_result' + ) %in% tbls || + paste0( + resultDatabaseSettings$esTablePrefix, + 'sccs_result' + ) %in% tbls + + ){ + results <- c(results, "Evidence Synthesis") + } + + return(results) +} diff --git a/R/estimation-sccs-diagnostics.R b/R/estimation-sccs-diagnostics.R new file mode 100644 index 00000000..81a5fe06 --- /dev/null +++ b/R/estimation-sccs-diagnostics.R @@ -0,0 +1,261 @@ +estimationSccsDiagnosticViewer <- function(id=1) { + ns <- shiny::NS(id) + resultTableViewer(ns("sccsDiagnosticsTable")) +} + + +estimationSccsDiagnosticServer <- function( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1), + targetIds, + outcomeId +) { + shiny::moduleServer( + id, + function(input, output, session) { + + + + sccsDiagnostics <- shiny::reactive({ + estimationGetSccsDiagnostics( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + outcomeId = outcomeId + ) + }) + + resultTableServer( + id = "sccsDiagnosticsTable", + df = sccsDiagnostics, + colDefsInput = estimationGetSccsDiagnosticColDefs(), + selectedCols = c( + 'databaseName', + 'analysis', + 'target', + 'indication', + 'summaryValue' + ) + ) + + + } + ) +} + + +estimationGetSccsDiagnostics <- function( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + targetIds = targetIds, + outcomeId = outcomeId +){ + targetIds <- targetIds() + outcomeId <- outcomeId() + + sql <- " + SELECT + d.cdm_source_abbreviation as database_name, + a.description as analysis, + c2.cohort_name as target, + c3.cohort_name as indication, + c.cohort_name as outcome, + cov.covariate_name, + ds.* + FROM @schema.@sccs_table_prefixdiagnostics_summary ds + inner join + @schema.@sccs_table_prefixexposures_outcome_set eos + on ds.exposures_outcome_set_id = eos.exposures_outcome_set_id + inner join + @schema.@cg_table_prefixcohort_definition as c + on c.cohort_definition_id = eos.outcome_id + + INNER JOIN + @schema.@database_table_prefix@database_table d + on d.database_id = ds.database_id + + INNER JOIN + @schema.@sccs_table_prefixanalysis a + on a.analysis_id = ds.analysis_id + + INNER JOIN + @schema.@sccs_table_prefixcovariate cov + on cov.covariate_id = ds.covariate_id and + cov.exposures_outcome_set_id = ds.exposures_outcome_set_id and + cov.analysis_id = ds.analysis_id and + cov.database_id = ds.database_id + + inner join + @schema.@cg_table_prefixcohort_definition as c2 + on cov.era_id = c2.cohort_definition_id + + left join + @schema.@cg_table_prefixcohort_definition as c3 + on eos.nesting_cohort_id = c3.cohort_definition_id + + where + + cov.era_id in (@target_ids) + and eos.outcome_id in (@outcome_ids) + ; + " + result <- connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_table_prefix = resultDatabaseSettings$databaseTablePrefix, + database_table = resultDatabaseSettings$databaseTable, + + target_ids = paste0(targetIds, collapse = ','), + outcome_ids = paste0(outcomeId, collapse = ','), + snakeCaseToCamelCase = TRUE + ) + + result <- result %>% + dplyr::select(-c("analysisId","exposuresOutcomeSetId","databaseId","covariateId")) + + result$summaryValue <- apply( + X = result[, grep('Diagnostic', colnames(result))], + MARGIN = 1, + FUN = function(x){ + + if(sum(x %in% c('FAIL'))>0){ + return('Fail') + } else if(sum(x %in% c('WARNING')) >0){ + return(sum(x %in% c('WARNING'), na.rm = T)) + } else{ + return('Pass') + } + } + ) + + # add summaryValue after outcome + result <- result %>% + dplyr::relocate("summaryValue", .after = "outcome") + + return( + result + ) + +} + + + + + +estimationGetSccsDiagnosticColDefs <- function(){ + result <- list( + databaseName = reactable::colDef( + header = withTooltip( + "Database", + "The database name" + ) + ), + target = reactable::colDef( + header = withTooltip( + "Target", + "The target cohort of interest " + ) + ), + outcome = reactable::colDef( + header = withTooltip( + "Outcome", + "The outcome of interest " + ) + ), + indication = reactable::colDef( + header = withTooltip( + "Indication", + "The indication of interest " + ) + ), + summaryValue = reactable::colDef( + header = withTooltip( + "Diagnostic", + "The overall result of the diagostics" + ), + style = function(value) { + color <- 'orange' + if(is.na(value)){ + color <- 'black' + }else if(value == 'Pass'){ + color <- '#AFE1AF' + }else if(value == 'Fail'){ + color <- '#E97451' + } + list(background = color) + } + ), + analysis = reactable::colDef( + header = withTooltip( + "Analysis", + "The analysis name " + ) + ), + covariateName = reactable::colDef( + header = withTooltip( + "Time Period", + "The time period of interest" + ) + ), + mdrr = reactable::colDef( + header = withTooltip( + "mdrr", + "The minimum detectible relative risk" + ) + ), + ease = reactable::colDef( + header = withTooltip( + "ease", + "The ..." + ) + ), + timeTrendP = reactable::colDef( + header = withTooltip( + "timeTrendP", + "The ..." + ) + ), + preExposureP = reactable::colDef( + header = withTooltip( + "preExposureP", + "The ..." + ) + ), + mdrrDiagnostic = reactable::colDef( + header = withTooltip( + "mdrrDiagnostic", + "The ..." + ) + ), + easeDiagnostic = reactable::colDef( + header = withTooltip( + "easeDiagnostic", + "The ..." + ) + ), + timeTrendDiagnostic = reactable::colDef( + header = withTooltip( + "timeTrendDiagnostic", + "The ..." + ) + ), + preExposureDiagnostic = reactable::colDef( + header = withTooltip( + "preExposureDiagnostic", + "The ..." + ) + ), + + unblind = reactable::colDef( + header = withTooltip( + "unblind", + "If the value is 1 then the diagnostics passed and results can be unblinded" + ) + ) + ) + + return(result) +} \ No newline at end of file diff --git a/R/estimation-sccs-plots.R b/R/estimation-sccs-plots.R new file mode 100644 index 00000000..aad17c61 --- /dev/null +++ b/R/estimation-sccs-plots.R @@ -0,0 +1,163 @@ +estimationSccsPlotsViewer <- function(id=1) { + ns <- shiny::NS(id) + shinyWidgets::addSpinner( + output = shiny::plotOutput(ns('esSccsPlot')), + spin = 'rotating-plane' + ) +} + + +estimationSccsPlotsServer <- function( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1), + sccsData +) { + shiny::moduleServer( + id, + function(input, output, session) { + + height <- shiny::reactive({ + if(is.null(sccsData()$indication)){ + return(100) + } + length(unique(sccsData()$indication))*200 + 200 + }) + + output$esSccsPlot <- shiny::renderPlot( + estimationCreateSccsPlot( + data = sccsData + ), + height = height + ) + + } + ) +} + +estimationCreateSccsPlot <- function(data) { + data <- data() + if(nrow(data) == 0){ + shiny::showNotification('No results to plot') + return(NULL) + } + data <- data[!is.na(data$calibratedRr),] + if(nrow(data) == 0){ + shiny::showNotification('No results to plot') + return(NULL) + } + data$database <- data$databaseName + data$type <- data$covariateName + data$indication[is.null(data$indication)] <- 'no indication' + data$indication[is.na(data$indication)] <- 'no indication' + + if(is.null(data)){ + shiny::showNotification('No results to plot') + return(NULL) + } + if(nrow(data) == 0){ + shiny::showNotification('No results to plot') + return(NULL) + } + + # change the description to add at bottom + renameDf <- data.frame( + shortName = paste0( + 1:length(unique(data$description)), + ') ', + substring(sort(unique(data$description)), 1, 15), + '...' + ), + description = sort(unique(data$description)) + ) + + data <- merge( + x = data, + y = renameDf, + by = 'description' + ) + + # make sure bayesian is at top + db <- unique(data$database) + bInd <- grep('bayesian', tolower(db)) + withoutb <- db[-bInd] + b <- db[bInd] + data$database <- factor( + x = data$database, + levels = c(b, sort(withoutb)) + ) + metadata <- data[data$database == b,] + + breaks <- c(0.1, 0.25, 0.5, 1, 2, 4, 6, 8) + + # TODO loop over target-indications pairs + + ### Add table above the graph + renameDf$description <- sapply( + strwrap(renameDf$description, width = 50, simplify = FALSE), + paste, + collapse = "\n" + ) + + tt <- gridExtra::ttheme_default( + base_size = 8, + colhead=list(fg_params = list(parse=TRUE)) + ) + tbl <- gridExtra::tableGrob( + renameDf, + rows=NULL, + theme=tt + ) + plotList <- list(tbl) # adding table first + + for(indication in unique(data$indication)){ # TODO do indication + target combo? + plotList[[length(plotList)+1]] <- ggplot2::ggplot( + data = data %>% dplyr::filter(.data$indication == !!indication), #restrict to indication + ggplot2::aes(x = .data$calibratedRr, y = .data$type) + ) + + ggplot2::geom_vline(xintercept = 1, size = 0.5) + + ggplot2::geom_point(color = "#000088", alpha = 0.8) + + ggplot2::geom_errorbarh( + ggplot2::aes( + xmin = .data$calibratedCi95Lb, + xmax = .data$calibratedCi95Ub + ), + height = 0.5, + color = "#000088", + alpha = 0.8 + ) + + ggplot2::scale_x_log10( + "Effect size (Incidence Rate Ratio)", + breaks = breaks, + labels = breaks + ) + + + # shade the bayesian + ggplot2::geom_rect( + data = metadata %>% dplyr::filter(.data$indication == !!indication), + ggplot2::aes(fill = .data$database), + xmin = -Inf, + xmax = Inf, + ymin = -Inf, + ymax = Inf, + alpha = 0.2 + ) + + + ggplot2::coord_cartesian(xlim = c(0.1, 10)) + + ggplot2::facet_grid(.data$database ~ .data$shortName) + + ggplot2::ggtitle(indication) + + ggplot2::theme( + axis.title.y = ggplot2::element_blank(), + panel.grid.minor = ggplot2::element_blank(), + strip.text.y.right = ggplot2::element_text(angle = 0), + legend.position = "none" + ) +} + + plot <- do.call( + gridExtra::grid.arrange, + list(grobs = plotList, ncol =1) + ) + + return(plot) +} diff --git a/R/sccs-results-full.R b/R/estimation-sccs-results-full.R similarity index 51% rename from R/sccs-results-full.R rename to R/estimation-sccs-results-full.R index 279349d8..f7977f29 100644 --- a/R/sccs-results-full.R +++ b/R/estimation-sccs-results-full.R @@ -1,4 +1,4 @@ -sccsFullResultViewer <- function(id) { +estimationSccsFullResultViewer <- function(id) { ns <- shiny::NS(id) shiny::div( @@ -16,11 +16,15 @@ sccsFullResultViewer <- function(id) { shiny::tabPanel( "Power", shiny::div(shiny::strong("Table 1."), "For each variable of interest: the number of cases (people with at least one outcome), the number of years those people were observed, the number of outcomes, the number of subjects with at least one exposure, the number of patient-years exposed, the number of outcomes while exposed, and the minimum detectable relative risk (MDRR)."), - resultTableViewer(ns('powerTable')) + shinyWidgets::addSpinner( + resultTableViewer(ns('powerTable')) + ) ), shiny::tabPanel( "Attrition", - shiny::plotOutput(ns("attritionPlot"), width = 600, height = 500), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("attritionPlot"), width = 600, height = 500) + ), shiny::div( shiny::strong("Figure 1."), "Attrition, showing the number of cases (number of subjects with at least one outcome), and number of outcomes (number of ocurrences of the outcome) after each step in the study.") @@ -39,17 +43,23 @@ sccsFullResultViewer <- function(id) { ), shiny::tabPanel( "Age spline", - shiny::plotOutput(ns("ageSplinePlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("ageSplinePlot")) + ), shiny::div(shiny::strong("Figure 2a."), "Spline fitted for age.") ), shiny::tabPanel( "Season spline", - shiny::plotOutput(ns("seasonSplinePlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("seasonSplinePlot")) + ), shiny::div(shiny::strong("Figure 2b."), "Spline fitted for season") ), shiny::tabPanel( "Calendar time spline", - shiny::plotOutput(ns("calendarTimeSplinePlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("calendarTimeSplinePlot")) + ), shiny::div(shiny::strong("Figure 2c."), "Spline fitted for calendar time") ) ) @@ -57,12 +67,16 @@ sccsFullResultViewer <- function(id) { shiny::tabPanel( "Spanning", shiny::radioButtons(ns("spanningType"), label = "Type:", choices = c("Age", "Calendar time")), - shiny::plotOutput(ns("spanningPlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("spanningPlot")) + ), shiny::div(shiny::strong("Figure 3."), "Number of subjects observed for 3 consecutive months, centered on the indicated month.") ), shiny::tabPanel( "Time trend", - shiny::plotOutput(ns("timeTrendPlot"), height = 600), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("timeTrendPlot"), height = 600) + ), shiny::div( shiny::strong("Figure 4."), "The ratio of observed to expected outcomes per month. The expected count is computing either assuming a constant rate (bottom plot) or adjusting for calendar time, seasonality, and / or age, as specified in the model (top plot)." @@ -70,7 +84,9 @@ sccsFullResultViewer <- function(id) { ), shiny::tabPanel( "Time to event", - shiny::plotOutput(ns("timeToEventPlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("timeToEventPlot")) + ), shiny::div( shiny::strong("Figure 5."), "The number of events and subjects observed per week relative to the start of the first exposure (indicated by the thick vertical line)." @@ -78,13 +94,17 @@ sccsFullResultViewer <- function(id) { ), shiny::tabPanel( "Event dep. observation", - shiny::plotOutput(ns("eventDepObservationPlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("eventDepObservationPlot")) + ), shiny::div(shiny::strong("Figure 6."), "Histograms for the number of months between the first occurrence of the outcome and the end of observation, stratified by whether the end of observation was censored (inferred as not being equal to the end of database time), or uncensored (inferred as having the subject still be observed at the end of database time)." ) ), shiny::tabPanel( "Systematic error", - shiny::plotOutput(ns("controlEstimatesPlot")), + shinyWidgets::addSpinner( + shiny::plotOutput(ns("controlEstimatesPlot")) + ), shiny::div(shiny::strong("Figure 7."), "Systematic error. Effect size estimates for the negative controls (true incidence rate ratio = 1) and positive controls (true incidence rate ratio > 1), before and after calibration. Estimates below the diagonal dashed lines are statistically significant (alpha = 0.05) different from the true effect size. A well-calibrated @@ -97,7 +117,7 @@ sccsFullResultViewer <- function(id) { } -sccsFullResultServer <- function( +estimationSccsFullResultServer <- function( id, connectionHandler, resultDatabaseSettings, @@ -114,18 +134,21 @@ sccsFullResultServer <- function( shiny::updateTabsetPanel(session, "fullTabsetPanel", selected = "Power") }) + # show what was selected modifiedRow <- shiny::reactive({ selectedRow() %>% dplyr::select( "covariateName", + 'indication', "outcome", "description", "databaseName" ) %>% dplyr::rename( - 'Outcome' = .data$outcome, - 'Analysis' = .data$description, - 'Database' = .data$databaseName + Indication = "indication", + Outcome = "outcome", + Analysis = "description", + Database = "databaseName" ) }) @@ -218,13 +241,13 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - attrition <- getSccsAttrition( + attrition <- estimationGetSccsAttrition( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, databaseId = row$databaseId, analysisId = row$analysisId, - covariateId = row$covariateId + covariateId = row$covariateId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId ) drawAttritionDiagram(attrition) } @@ -235,11 +258,11 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - resTargetTable <- getSccsModel( + resTargetTable <- estimationGetSccsModel( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, exposureId = row$eraId, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId ) @@ -261,11 +284,11 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - timeTrend <- getSccsTimeTrend( + timeTrend <- estimationGetSccsTimeTrend( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, exposureId = row$eraId, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId ) @@ -283,10 +306,10 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - timeToEvent <- getSccsTimeToEvent( + timeToEvent <- estimationGetSccsTimeToEvent( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, exposureId = row$eraId, covariateId = row$covariateId, databaseId = row$databaseId, @@ -301,10 +324,10 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - eventDepObservation <- getSccsEventDepObservation( + eventDepObservation <- estimationGetSccsEventDepObservation( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId ) @@ -318,19 +341,19 @@ sccsFullResultServer <- function( return(NULL) } else { if (input$spanningType == "Age") { - ageSpanning <- getSccsAgeSpanning( + ageSpanning <- estimationGetSccsAgeSpanning( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId ) plotSpanning(ageSpanning, type = "age") } else { - calendarTimeSpanning <- getSccsCalendarTimeSpanning( + calendarTimeSpanning <- estimationGetSccsCalendarTimeSpanning( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId ) @@ -345,10 +368,10 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - ageSpline <- getSccsSpline( + ageSpline <- estimationGetSccsSpline( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId, splineType = "age" @@ -365,10 +388,10 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - seasonSpline <- getSccsSpline( + seasonSpline <- estimationGetSccsSpline( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId, splineType = "season" @@ -385,10 +408,10 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - calendarTimeSpline <- getSccsSpline( + calendarTimeSpline <- estimationGetSccsSpline( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - outcomeId = row$outcomeId, + exposuresOutcomeSetId = row$exposuresOutcomeSetId, databaseId = row$databaseId, analysisId = row$analysisId, splineType = "calendar time" @@ -405,14 +428,18 @@ sccsFullResultServer <- function( if (is.null(row)) { return(NULL) } else { - controlEstimates <- getSccsControlEstimates( + controlEstimates <- estimationGetSccsControlEstimates( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, covariateId = row$covariateId, databaseId = row$databaseId, - analysisId = row$analysisId + analysisId = row$analysisId, + eraId = row$eraId ) - plotControlEstimates(controlEstimates) + plotControlEstimates( + controlEstimates = controlEstimates$plotResult, + ease = controlEstimates$ease + ) } }) @@ -421,7 +448,354 @@ sccsFullResultServer <- function( } +estimationGetSccsAttrition <- function( + connectionHandler, + resultDatabaseSettings, + databaseId, + analysisId, + covariateId, + exposuresOutcomeSetId +) { + sql <- " + SELECT * + FROM @schema.@sccs_table_prefixattrition + + WHERE database_id = '@database_id' + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id + AND covariate_id = @covariate_id + " + connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + covariate_id = covariateId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE + ) +} + + +estimationGetSccsModel <- function( + connectionHandler, + resultDatabaseSettings, + exposuresOutcomeSetId, + databaseId, + analysisId, + exposureId +) { + sql <- " + SELECT + CASE + WHEN era.era_name IS NULL THEN sc.covariate_name + ELSE CONCAT(sc.covariate_name, ' : ', era.era_name) + END as covariate_name, + scr.covariate_id, scr.rr, scr.ci_95_lb, scr.ci_95_ub + FROM @schema.@sccs_table_prefixcovariate_result scr + INNER JOIN @schema.@sccs_table_prefixcovariate sc ON ( + sc.exposures_outcome_set_id = scr.exposures_outcome_set_id AND + sc.database_id = scr.database_id AND + sc.analysis_id = scr.analysis_id AND + sc.covariate_id = scr.covariate_id + ) + LEFT JOIN @schema.@cg_table_prefixcohort_definition cd + ON cd.cohort_definition_id = sc.era_id + LEFT JOIN @schema.@sccs_table_prefixera era ON ( + era.exposures_outcome_set_id = scr.exposures_outcome_set_id AND + era.database_id = scr.database_id AND + era.analysis_id = scr.analysis_id AND + era.era_id = sc.era_id + ) + + WHERE scr.database_id = '@database_id' + AND scr.analysis_id = @analysis_id + --AND sc.era_id = @exposure_id + --AND scr.rr IS NOT NULL + AND scr.exposures_outcome_set_id = @exposures_outcome_set_id + " + + connectionHandler$queryDb(sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposure_id = exposureId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE) +} + + +estimationGetSccsTimeTrend <- function( + connectionHandler, + resultDatabaseSettings, + exposureId, + exposuresOutcomeSetId, + databaseId, + analysisId +) { + sql <- " + SELECT * + FROM @schema.@sccs_table_prefixtime_trend + WHERE database_id = '@database_id' + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id + " + connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE + ) +} + +estimationGetSccsTimeToEvent <- function( + connectionHandler, + resultDatabaseSettings, + exposureId, + exposuresOutcomeSetId, + covariateId, + databaseId, + analysisId +) { + + sql <- " + SELECT pre_exposure_p + FROM @schema.@sccs_table_prefixdiagnostics_summary + + WHERE database_id = '@database_id' + AND covariate_id = @covariate_id + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id + " + + p <- connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + covariate_id = covariateId, + snakeCaseToCamelCase = TRUE + ) + + # if NULL set to NA so code below works + if(is.null(p$preExposureP)){ + p$preExposureP <- NA + } + + sql <- " + SELECT * , @p as p + FROM @schema.@sccs_table_prefixtime_to_event + + WHERE database_id = '@database_id' + AND era_id = @exposure_id + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id; + " + + timeToEvent <- connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + exposure_id = exposureId, + p = ifelse(is.na(p$preExposureP), -1, p$preExposureP), + snakeCaseToCamelCase = TRUE + ) + + + return(timeToEvent) +} + + +estimationGetSccsEventDepObservation <- function( + connectionHandler, + resultDatabaseSettings, + exposuresOutcomeSetId, + databaseId, + analysisId +) { + sql <- " + SELECT * + FROM @schema.@sccs_table_prefixevent_dep_observation + + WHERE database_id = '@database_id' + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id; + " + connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE + ) +} +estimationGetSccsAgeSpanning <- function( + connectionHandler, + resultDatabaseSettings, + exposuresOutcomeSetId, + databaseId, + analysisId +) { + sql <- " + SELECT * + FROM @schema.@sccs_table_prefixage_spanning + + WHERE database_id = '@database_id' + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id + " + connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE + ) +} +estimationGetSccsCalendarTimeSpanning <- function( + connectionHandler, + resultDatabaseSettings, + exposuresOutcomeSetId, + databaseId, + analysisId +) { + sql <- " + SELECT * + FROM @schema.@sccs_table_prefixcalendar_time_spanning + + WHERE database_id = '@database_id' + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id + " + connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE + ) +} +estimationGetSccsSpline <- function( + connectionHandler, + resultDatabaseSettings, + exposuresOutcomeSetId, + databaseId, + analysisId, + splineType = "age" +) { + + sql <- " + SELECT * + FROM @schema.@sccs_table_prefixspline + + WHERE database_id = '@database_id' + AND analysis_id = @analysis_id + AND exposures_outcome_set_id = @exposures_outcome_set_id + AND spline_type = '@spline_type'; + " + connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + spline_type = splineType, + analysis_id = analysisId, + exposures_outcome_set_id = exposuresOutcomeSetId, + snakeCaseToCamelCase = TRUE + ) +} + + + +estimationGetSccsControlEstimates <- function( + connectionHandler, + resultDatabaseSettings, + databaseId, + analysisId, + covariateId, + eraId +) { + + sql <- " + SELECT r.ci_95_lb, r.ci_95_ub, r.log_rr, r.se_log_rr, + r.calibrated_ci_95_lb, r.calibrated_ci_95_ub, r.calibrated_log_rr, + r.calibrated_se_log_rr, r.exposures_outcome_set_id, + e.true_effect_size, c.exposures_outcome_set_id + + FROM + @schema.@sccs_table_prefixresult r + INNER JOIN + @schema.@sccs_table_prefixexposure e + on r.exposures_outcome_set_id = e.exposures_outcome_set_id + + INNER JOIN + @schema.@sccs_table_prefixcovariate c + on e.era_id = c.era_id + and e.exposures_outcome_set_id = c.exposures_outcome_set_id + and c.database_id = r.database_id + and c.analysis_id = r.analysis_id + and c.covariate_id = r.covariate_id + + WHERE r.database_id = '@database_id' + AND r.analysis_id = @analysis_id + AND r.covariate_id = @covariate_id + AND e.true_effect_size is not NULL + -- AND e.era_id = @era_id + ; + " + + res <- connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + covariate_id = covariateId, + analysis_id = analysisId, + era_id = eraId, + snakeCaseToCamelCase = TRUE + ) + + # get ease for the plot + sql <- "SELECT top 1 ds.ease + FROM @schema.@sccs_table_prefixdiagnostics_summary ds + WHERE ds.database_id = '@database_id' + AND ds.analysis_id = @analysis_id + AND ds.covariate_id = @covariate_id;" + + ease <- connectionHandler$queryDb( + sql, + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + database_id = databaseId, + covariate_id = covariateId, + analysis_id = analysisId, + snakeCaseToCamelCase = TRUE + ) + + return(list( + plotResult = res, + ease = ease$ease + ) + ) +} diff --git a/R/sccs-results.R b/R/estimation-sccs-results.R similarity index 61% rename from R/sccs-results.R rename to R/estimation-sccs-results.R index 0f5b7e54..75fad592 100644 --- a/R/sccs-results.R +++ b/R/estimation-sccs-results.R @@ -1,4 +1,4 @@ -sccsResultsViewer <- function(id = "sccs-results") { +estimationSccsResultsViewer <- function(id = "sccs-results") { ns <- shiny::NS(id) shiny::tabsetPanel( @@ -8,18 +8,17 @@ sccsResultsViewer <- function(id = "sccs-results") { shiny::tabPanel( title = "Table", resultTableViewer(ns("resultSummaryTable")) - #) ), shiny::tabPanel( title = "Results", shiny::actionButton( - inputId = ns('goBackCmResults'), + inputId = ns('goBackSccsResults'), label = "Back To Result Summary", shiny::icon("arrow-left"), style="color: #fff; background-color: #337ab7; border-color: #2e6da4" ), - sccsFullResultViewer(ns("sccsFullResults")) + estimationSccsFullResultViewer(ns("sccsFullResults")) ) ) @@ -29,62 +28,67 @@ sccsResultsViewer <- function(id = "sccs-results") { } -sccsResultsServer <- function( +estimationSccsResultsServer <- function( id, connectionHandler, resultDatabaseSettings = list(port = 1), - inputSelected + targetIds, + outcomeId ) { ns <- shiny::NS(id) shiny::moduleServer(id, function(input, output, session) { shiny::observeEvent( - eventExpr = input$goBackCmResults, + eventExpr = input$goBackSccsResults, { shiny::updateTabsetPanel(session, "resultPanel", selected = "Table") } ) - data <- shiny::reactive({ - - exposure <- inputSelected()$exposure - if (is.character(exposure)) { - exposureGroup <- strsplit(exposure, " ")[[1]] - targetId <- exposureGroup[[1]] - indidcationId <- exposureGroup[[2]] - } else { - targetId <- -1 - indidcationId <- -1 - } - - getSccsResults( + sccsData <- shiny::reactive({ + estimationGetSccsResults( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, - exposureIds = targetId, - outcomeIds = inputSelected()$outcome, - #databaseIds = inputSelected()$database, - analysisIds = inputSelected()$analysis, - indicationIds = indidcationId + exposureIds = targetIds, + outcomeIds = outcomeId ) }) + # add evidence synth if existsesData <- shiny::reactive({ + esData <- shiny::reactive({ + tryCatch( + { + estimationGetSccsEsResults( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + exposureIds = targetIds, + outcomeIds = outcomeId + ) + }, error = function(e){print('SCCS ES error');return(NULL)} + ) + }) + + data <- shiny::reactive({ + rbind(sccsData(), esData()) + }) + resultTableOutputs <- resultTableServer( id = "resultSummaryTable", df = data, - colDefsInput = getSccsResultSummaryTableColDef(), + colDefsInput = estimationGetSccsResultSummaryTableColDef(), addActions = c('results') ) selectedRow <- shiny::reactiveVal(value = NULL) shiny::observeEvent(resultTableOutputs$actionCount(), { - if(resultTableOutputs$actionType() == 'results'){ + if(resultTableOutputs$actionType() == 'results'){ # TODO only work if non meta selectedRow(data()[resultTableOutputs$actionIndex()$index,]) shiny::updateTabsetPanel(session, "resultPanel", selected = "Results") } }) - sccsFullResultServer( + estimationSccsFullResultServer( id = "sccsFullResults", connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, @@ -92,13 +96,14 @@ sccsResultsServer <- function( actionCount = resultTableOutputs$actionCount ) - + # return data for plot server + return(data) } ) } -getSccsResultSummaryTableColDef <- function(){ +estimationGetSccsResultSummaryTableColDef <- function(){ results <- list( @@ -108,6 +113,7 @@ getSccsResultSummaryTableColDef <- function(){ covariateAnalysisId = reactable::colDef(show = F), analysisId = reactable::colDef(show = F), outcomeId = reactable::colDef(show = F), + indicationId = reactable::colDef(show = F), outcomeSubjects = reactable::colDef(show = F), outcomeEvents = reactable::colDef(show = F), outcomeObservationPeriods = reactable::colDef(show = F), @@ -118,6 +124,7 @@ getSccsResultSummaryTableColDef <- function(){ observedDays = reactable::colDef(show = F), mdrr = reactable::colDef(show = F), unblind = reactable::colDef(show = F), + exposuresOutcomeSetId = reactable::colDef(show = F), logRr = reactable::colDef(show = F), seLogRr = reactable::colDef(show = F), @@ -139,6 +146,22 @@ getSccsResultSummaryTableColDef <- function(){ "Data source", "Data source" )), + target = reactable::colDef( + filterable = TRUE, + header = withTooltip( + "Target", + "Target Cohort" + ), + minWidth = 300 + ), + indication = reactable::colDef( + filterable = TRUE, + header = withTooltip( + "Indication", + "Target cohort is nested in this indication" + ), + minWidth = 300 + ), outcome = reactable::colDef( filterable = TRUE, header = withTooltip( @@ -216,18 +239,14 @@ getSccsResultSummaryTableColDef <- function(){ return(results) } -getSccsResults <- function(connectionHandler, +estimationGetSccsResults <- function(connectionHandler, resultDatabaseSettings, exposureIds, - outcomeIds, - #databaseIds, - analysisIds, - indicationIds = NULL) { - - if (any(indicationIds == -1)) { - indicationIds <- NULL - } - + outcomeIds + ) { + exposureIds <- exposureIds() + outcomeIds <- outcomeIds() + sql <- " SELECT @@ -241,7 +260,11 @@ getSccsResults <- function(connectionHandler, a.description, eos.outcome_id, cg1.cohort_name as outcome, - + cg2.cohort_name as target, + cg3.cohort_name as indication, + eos.nesting_cohort_id as indication_id, + eos.exposures_outcome_set_id, + sr.outcome_subjects, sr.outcome_events, sr.outcome_observation_periods, @@ -305,12 +328,19 @@ getSccsResults <- function(connectionHandler, inner join @schema.@cg_table_prefixcohort_definition cg1 on cg1.cohort_definition_id = eos.outcome_id + + inner join + @schema.@cg_table_prefixcohort_definition as cg2 + on cg2.cohort_definition_id = sc.era_id - WHERE sr.analysis_id IN (@analysis_ids) - -- AND sr.database_id IN (@database_ids) - AND eos.outcome_id IN (@outcome_ids) + left join + @schema.@cg_table_prefixcohort_definition as cg3 + on eos.nesting_cohort_id = cg3.cohort_definition_id + + WHERE + eos.outcome_id IN (@outcome_ids) AND sc.era_id IN (@exposure_ids) - {@use_indications} ? {and eos.nesting_cohort_id IN (@indication_ids)} : {and eos.nesting_cohort_id IS NULL} + ; " results <- connectionHandler$queryDb( @@ -320,12 +350,8 @@ getSccsResults <- function(connectionHandler, database_table = resultDatabaseSettings$databaseTable, sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - #database_ids = paste(quoteLiterals(databaseIds), collapse = ','), - analysis_ids = paste(analysisIds, collapse = ','), outcome_ids = paste(outcomeIds, collapse = ','), exposure_ids = paste(exposureIds, collapse = ','), - use_indications = !is.null(indicationIds), - indication_ids = indicationIds, snakeCaseToCamelCase = TRUE ) @@ -333,3 +359,114 @@ getSccsResults <- function(connectionHandler, } +estimationGetSccsEsResults <- function( + connectionHandler, + resultDatabaseSettings, + exposureIds, + outcomeIds +) { + + exposureIds <- exposureIds() + outcomeIds <- outcomeIds() + +sql <- "select distinct + ev.evidence_synthesis_description as database_name, + 0 as database_id, + cov.covariate_id, -- exists? + cov.covariate_name, + cov.era_id, + 0 as covariate_analysis_id, + esr.analysis_id, + a.description, + eos.outcome_id, + c3.cohort_name as outcome, + c1.cohort_name as target, + c4.cohort_name as indication, + eos.nesting_cohort_id as indication_id, + eos.exposures_outcome_set_id, + esr.outcome_subjects, + esr.outcome_events, + esr.outcome_observation_periods, + esr.covariate_subjects, + esr.covariate_days, + esr.covariate_eras, + esr.covariate_outcomes, + esr.observed_days, + esr.rr, + esr.ci_95_lb, + esr.ci_95_ub, + esr.p, + esr.log_rr, + esr.se_log_rr, + esr.calibrated_rr, + esr.calibrated_ci_95_lb, + esr.calibrated_ci_95_ub, + esr.calibrated_p, + esr.calibrated_log_rr, + esr.calibrated_se_log_rr, + NULL as llr, + esd.mdrr, + esd.unblind as unblind + + from + @schema.@es_table_prefixsccs_result as esr + inner join + @schema.@sccs_table_prefixexposures_outcome_set as eos + on + esr.exposures_outcome_set_id = eos.exposures_outcome_set_id + + inner join + @schema.@sccs_table_prefixcovariate as cov + on + esr.covariate_id = cov.covariate_id and + esr.analysis_id = cov.analysis_id and + esr.exposures_outcome_set_id = cov.exposures_outcome_set_id + + inner join + + @schema.@es_table_prefixsccs_diagnostics_summary as esd + on + esr.analysis_id = esd.analysis_id and + esr.exposures_outcome_set_id = esd.exposures_outcome_set_id and + esr.covariate_id = esd.covariate_id and + esr.evidence_synthesis_analysis_id = esd.evidence_synthesis_analysis_id + + inner join + @schema.@cg_table_prefixcohort_definition as c1 + on c1.cohort_definition_id = cov.era_id + + inner join + @schema.@cg_table_prefixcohort_definition as c3 + on c3.cohort_definition_id = eos.outcome_id + + inner join + @schema.@sccs_table_prefixanalysis as a + on a.analysis_id = esr.analysis_id + + inner join + @schema.@es_table_prefixanalysis as ev + on ev.evidence_synthesis_analysis_id = esr.evidence_synthesis_analysis_id + + left join + @schema.@cg_table_prefixcohort_definition as c4 + on eos.nesting_cohort_id = c4.cohort_definition_id + + where + esr.calibrated_rr != 0 and + esd.unblind = 1 and + cov.era_id in (@target_ids) and + eos.outcome_id in (@outcome_id) + ;" + +result <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + es_table_prefix = resultDatabaseSettings$esTablePrefix, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix, + outcome_id = paste0(outcomeIds, collapse = ','), + target_ids = paste0(exposureIds, collapse = ',') +) + +return(result) +} diff --git a/R/evidence-synth-cm.R b/R/evidence-synth-cm.R deleted file mode 100644 index e87e7d97..00000000 --- a/R/evidence-synth-cm.R +++ /dev/null @@ -1,549 +0,0 @@ -evidenceSynthesisCmViewer <- function(id=1) { - ns <- shiny::NS(id) - - shiny::div( - - inputSelectionViewer(ns("input-selection-cm")), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection-cm")), - - shiny::tabsetPanel( - type = 'pills', - id = ns('esCohortMethodTabs'), - - # diagnostic view - shiny::tabPanel( - title = 'Diagnostics', - resultTableViewer(ns("diagnosticsCmSummaryTable")) - ), - - shiny::tabPanel( - "Plot", - shiny::plotOutput(ns('esCohortMethodPlot')) - ), - shiny::tabPanel( - "Table", - resultTableViewer(ns("esCohortMethodTable")) - ) - ) - ) - ) -} - - -evidenceSynthesisCmServer <- function( - id, - connectionHandler, - resultDatabaseSettings = list(port = 1) -) { - shiny::moduleServer( - id, - function(input, output, session) { - - targetIds <- getEsCmTargetIds( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - outcomeIds <- getEsOutcomeIds( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - inputSelected <- inputSelectionServer( - id = "input-selection-cm", - inputSettingList = list( - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'targetIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Target: ', - choices = targetIds, - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ), - createInputSetting( - rowNumber = 1, - columnWidth = 6, - varName = 'outcomeIds', - uiFunction = 'shinyWidgets::pickerInput', - uiInputs = list( - label = 'Outcome: ', - choices = outcomeIds, - multiple = F, - options = shinyWidgets::pickerOptions( - actionsBox = TRUE, - liveSearch = TRUE, - size = 10, - liveSearchStyle = "contains", - liveSearchPlaceholder = "Type here to search", - virtualScroll = 50 - ) - ) - ) - ) - ) - - # plots and tables - cmdata <- shiny::reactive({ - unique( - rbind( - getCMEstimation( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - targetId = inputSelected()$targetIds, - outcomeId = inputSelected()$outcomeIds - ), - getMetaEstimation( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - targetId = inputSelected()$targetIds, - outcomeId = inputSelected()$outcomeIds - ) - ) - ) - }) - - - diagSumData <- shiny::reactive({ - getEvidenceSynthCmDiagnostics( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected, - targetIds = inputSelected()$targetIds, - outcomeIds = inputSelected()$outcomeIds - ) - }) - - - resultTableServer( - id = "diagnosticsCmSummaryTable", - df = diagSumData, - colDefsInput = getColDefsESDiag( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - ) - - output$esCohortMethodPlot <- shiny::renderPlot( - createPlotForAnalysis( - cmdata() - ) - ) - - - resultTableServer( - id = "esCohortMethodTable", - df = cmdata, - colDefsInput = list( - targetId = reactable::colDef(show = F), - outcomeId = reactable::colDef(show = F), - comparatorId = reactable::colDef(show = F), - analysisId = reactable::colDef(show = F), - description = reactable::colDef( - filterable = TRUE, - header = withTooltip( - "Analysis", - "Analysis" - )), - database = reactable::colDef( - filterable = TRUE, - header = withTooltip( - "Data source", - "Data source" - )), - calibratedRr = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.HR", - "Hazard ratio (calibrated)" - )), - calibratedCi95Lb = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.LB", - "Lower bound of the 95 percent confidence interval (calibrated)" - )), - calibratedCi95Ub = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.UB", - "Upper bound of the 95 percent confidence interval (calibrated)" - )), - calibratedP = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.P", - "Two-sided p-value (calibrated)" - )), - calibratedLogRr = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.Log.HR", - "Log of Hazard ratio (calibrated)" - )), - calibratedSeLogRr = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.Se.Log.HR", - "Log Standard Error of Hazard ratio (calibrated)" - )), - target = reactable::colDef( - minWidth = 300 - ), - outcome = reactable::colDef( - minWidth = 300 - ), - comparator = reactable::colDef( - minWidth = 300 - ) - ) - ) - - } - ) - -} - - -getEsCmTargetIds <- function( - connectionHandler, - resultDatabaseSettings -){ - - sql <- "select distinct - c1.cohort_name as target, - r.target_id - - from - @schema.@cm_table_prefixresult as r - inner join - @schema.@cg_table_prefixcohort_definition as c1 - on c1.cohort_definition_id = r.target_id - ;" - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix - ) - - output <- as.list(result$targetId) - names(output) <- result$target - - return(output) - -} - -getCMEstimation <- function( - connectionHandler, - resultDatabaseSettings, - targetId, - outcomeId -){ - - if(is.null(targetId)){ - return(NULL) - } - - sql <- "select - c1.cohort_name as target, - c2.cohort_name as comparator, - c3.cohort_name as outcome, - r.target_id, r.comparator_id, r.outcome_id, r.analysis_id, - a.description, - db.cdm_source_abbreviation as database, r.calibrated_rr, - r.calibrated_ci_95_lb, r.calibrated_ci_95_ub, r.calibrated_p, - r.calibrated_log_rr, r.calibrated_se_log_rr - - from - @schema.@cm_table_prefixresult as r - inner join - @schema.@cm_table_prefixtarget_comparator_outcome as tco - on - r.target_id = tco.target_id and - r.comparator_id = tco.comparator_id and - r.outcome_id = tco.outcome_id - - inner join - - @schema.@cm_table_prefixdiagnostics_summary as unblind - on - r.analysis_id = unblind.analysis_id and - r.target_id = unblind.target_id and - r.comparator_id = unblind.comparator_id and - r.outcome_id = unblind.outcome_id and - r.database_id = unblind.database_id - - inner join - @schema.@database_table as db - on db.database_id = r.database_id - - inner join - @schema.@cg_table_prefixcohort_definition as c1 - on c1.cohort_definition_id = r.target_id - - inner join - @schema.@cg_table_prefixcohort_definition as c2 - on c2.cohort_definition_id = r.comparator_id - - inner join - @schema.@cg_table_prefixcohort_definition as c3 - on c3.cohort_definition_id = r.outcome_id - - inner join - @schema.@cm_table_prefixanalysis as a - on a.analysis_id = r.analysis_id - - where - r.calibrated_rr != 0 and - tco.outcome_of_interest = 1 and - unblind.unblind = 1 and - r.target_id = @target_id and - r.outcome_id = @outcome_id - ;" - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - database_table = resultDatabaseSettings$databaseTable, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - outcome_id = outcomeId, - target_id = targetId - ) %>% - dplyr::mutate( - calibratedP = ifelse( - .data$calibratedRr < 1, - computeTraditionalP( - logRr = .data$calibratedLogRr, - seLogRr = .data$calibratedSeLogRr, - twoSided = FALSE, - upper = TRUE - ), - .data$calibratedP / 2) - ) - - return(result) -} - -getMetaEstimation <- function( - connectionHandler, - resultDatabaseSettings, - targetId, - outcomeId -){ - - if(is.null(targetId)){ - return(NULL) - } - - sql <- "select - c1.cohort_name as target, - c2.cohort_name as comparator, - c3.cohort_name as outcome, - r.target_id, r.comparator_id, r.outcome_id, r.analysis_id, - a.description, - ev.evidence_synthesis_description as database, - r.calibrated_rr, - r.calibrated_ci_95_lb, r.calibrated_ci_95_ub, r.calibrated_p, - r.calibrated_log_rr, r.calibrated_se_log_rr - - from - @schema.@es_table_prefixcm_result as r - inner join - @schema.@cm_table_prefixtarget_comparator_outcome as tco - on - r.target_id = tco.target_id and - r.comparator_id = tco.comparator_id and - r.outcome_id = tco.outcome_id - - inner join - - @schema.@es_table_prefixcm_diagnostics_summary as unblind - on - r.analysis_id = unblind.analysis_id and - r.target_id = unblind.target_id and - r.comparator_id = unblind.comparator_id and - r.outcome_id = unblind.outcome_id - - inner join - @schema.@cg_table_prefixcohort_definition as c1 - on c1.cohort_definition_id = r.target_id - - inner join - @schema.@cg_table_prefixcohort_definition as c2 - on c2.cohort_definition_id = r.comparator_id - - inner join - @schema.@cg_table_prefixcohort_definition as c3 - on c3.cohort_definition_id = r.outcome_id - - inner join - @schema.@cm_table_prefixanalysis as a - on a.analysis_id = r.analysis_id - - inner join - @schema.@es_table_prefixanalysis as ev - on ev.evidence_synthesis_analysis_id = r.evidence_synthesis_analysis_id - - where - r.calibrated_rr != 0 and - tco.outcome_of_interest = 1 and - unblind.unblind = 1 and - r.target_id = @target_id and - r.outcome_id = @outcome_id - ;" - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - es_table_prefix = resultDatabaseSettings$esTablePrefix, - outcome_id = outcomeId, - target_id = targetId - ) %>% - dplyr::mutate( - calibratedP = ifelse( - .data$calibratedRr < 1, - computeTraditionalP( - logRr = .data$calibratedLogRr, - seLogRr = .data$calibratedSeLogRr, - twoSided = FALSE, - upper = TRUE - ), - .data$calibratedP / 2) - ) - - return(unique(result)) -} - -getEvidenceSynthCmDiagnostics <- function( - connectionHandler, - resultDatabaseSettings, - inputSelected, - targetIds, - outcomeIds -){ - - if(is.null(targetIds)){ - return(NULL) - } - - cmDiagTemp <- getCmDiagnosticsData( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected - ) - - if(is.null(cmDiagTemp)){ - return(NULL) - } - - # select columns of interest and rename for consistency - cmDiagTemp <- diagnosticSummaryFormat( - data = shiny::reactive({cmDiagTemp}), - idCols = c('databaseName','target'), - namesFrom = c('analysis','comparator','outcome') - ) - - # return - return(cmDiagTemp) -} - - -createPlotForAnalysis <- function(data) { - - if(is.null(data$comparator)){ - return(NULL) - } - - compText <- data.frame( - comparatorText = paste0('Comp', 1:length(unique(data$comparator))), - comparator = unique(data$comparator) - ) - - data <- merge( - data, - compText, - by = "comparator" - ) - - # make sure bayesian is at bottom - db <- unique(data$database) - bInd <- grep('bayesian', tolower(db)) - withoutb <- db[-bInd] - b <- db[bInd] - data$database <- factor( - x = data$database, - levels = c(sort(withoutb), b) - ) - metadata <- data[data$database == b,] - - breaks <- c(0.1, 0.25, 0.5, 1, 2, 4, 6, 8) - title <- sprintf("%s", data$outcome[1]) - plot <- ggplot2::ggplot( - data = data, - ggplot2::aes(x = .data$calibratedRr, y = .data$comparatorText)) + - ggplot2::geom_vline(xintercept = 1, size = 0.5) + - ggplot2::geom_point(color = "#000088", alpha = 0.8) + - ggplot2::geom_errorbarh( - ggplot2::aes( - xmin = .data$calibratedCi95Lb, - xmax = .data$calibratedCi95Ub - ), - height = 0.5, - color = "#000088", - alpha = 0.8 - ) + - ggplot2::scale_x_log10( - "Effect size (Hazard Ratio)", - breaks = breaks, - labels = breaks - ) + - - # shade the bayesian - ggplot2::geom_rect( - data = metadata, - ggplot2::aes(fill = .data$database), - xmin = -Inf, - xmax = Inf, - ymin = -Inf, - ymax = Inf, - alpha = 0.2 - ) + - - ggplot2::coord_cartesian(xlim = c(0.1, 10)) + - ggplot2::facet_grid(.data$database ~ .data$description) + - ggplot2::ggtitle(title) + - ggplot2::theme( - axis.title.y = ggplot2::element_blank(), - panel.grid.minor = ggplot2::element_blank(), - strip.text.y.right = ggplot2::element_text(angle = 0), - legend.position = "none" - ) + - ggplot2::labs( - caption = paste( - apply( - X = compText, - MARGIN = 1, - FUN = function(x){paste0(paste(substring(x, 1, 50),collapse = ': ', sep=':'), '...')} - ), - collapse = '\n ') - ) - - return(plot) -} diff --git a/R/evidence-synth-main.R b/R/evidence-synth-main.R deleted file mode 100644 index f270ab2c..00000000 --- a/R/evidence-synth-main.R +++ /dev/null @@ -1,275 +0,0 @@ -#' The location of the evidence synthesis module helper file -#' -#' @details -#' Returns the location of the evidence synthesis helper file -#' -#' @return -#' string location of the evidence synthesis helper file -#' -#' @export -evidenceSynthesisHelperFile <- function(){ - fileLoc <- system.file('evidence-synthesis-www', "evidence-synthesis.html", package = "OhdsiShinyModules") - return(fileLoc) -} - -#' The module viewer for exploring evidence-synthesis -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' -#' @return -#' The user interface to the evidence-synthesis viewer module -#' -#' @export -evidenceSynthesisViewer <- function(id=1) { - ns <- shiny::NS(id) - - shinydashboard::box( - status = 'info', - width = 12, - title = shiny::span( shiny::icon("sliders"), 'Evidence Synthesis'), - solidHeader = TRUE, - - infoHelperViewer( - id = "helper", - helpLocation= system.file("evidence-synthesis-www", "evidence-synthesis.html", package = utils::packageName()) - ), - - # add two buttons - CM or SCCs - shiny::tabsetPanel( - id = ns('typeTab'), - type = 'pills', - - shiny::tabPanel( - title = 'Cohort Method', - evidenceSynthesisCmViewer(ns('cohortMethodTab')) - ), - shiny::tabPanel( - title = 'Self Controlled Case Series', - evidenceSynthesisSccsViewer(ns('sccsTab')) - ) - - ) - - ) - -} - -#' The module server for exploring PatientLevelPrediction -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler a connection to the database with the results -#' @param resultDatabaseSettings a list containing the result schema and prefixes -#' -#' @return -#' The server for the PatientLevelPrediction module -#' -#' @export -evidenceSynthesisServer <- function( - id, - connectionHandler, - resultDatabaseSettings = list(port = 1) -) { - shiny::moduleServer( - id, - function(input, output, session) { - - evidenceSynthesisCmServer( - id = 'cohortMethodTab', - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - evidenceSynthesisSccsServer( - id = 'sccsTab', - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - } - ) -} - -# Function to get outcome ids -# used by both cm and sccs -getEsOutcomeIds <- function( - connectionHandler, - resultDatabaseSettings -) { - sql <- "select distinct - c1.cohort_name as outcome, - r.outcome_id - - from - @schema.@cm_table_prefixresult as r - inner join - @schema.@cm_table_prefixtarget_comparator_outcome as tco - on - r.target_id = tco.target_id and - r.comparator_id = tco.comparator_id and - r.outcome_id = tco.outcome_id - - inner join - @schema.@cg_table_prefixcohort_definition as c1 - on c1.cohort_definition_id = r.outcome_id - - where - tco.outcome_of_interest = 1 - ;" - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix - ) - - output <- as.list(result$outcomeId) - names(output) <- result$outcome - - return(output) - -} - -# Function to format results -# used by both cm and sccs -computeTraditionalP <- function( - logRr, - seLogRr, - twoSided = TRUE, - upper = TRUE -) -{ - z <- logRr/seLogRr - - pUpperBound <- 1 - stats::pnorm(z) - pLowerBound <- stats::pnorm(z) - - if (twoSided) { - return(2 * pmin(pUpperBound, pLowerBound)) - } - else if (upper) { - return(pUpperBound) - } - else { - return(pLowerBound) - } -} - - - -# Functions to get column formatting and names -# used by both cm and sccs -getOACcombinations <- function( - connectionHandler, - resultDatabaseSettings -){ - - sql <- "SELECT DISTINCT - CONCAT(cma.description, '_', cgcd2.cohort_name) as col_names - FROM - @schema.@cm_table_prefixdiagnostics_summary cmds - INNER JOIN @schema.@cm_table_prefixanalysis cma - ON cmds.analysis_id = cma.analysis_id - INNER JOIN @schema.@cg_table_prefixcohort_definition cgcd2 - ON cmds.comparator_id = cgcd2.cohort_definition_id - - union - - SELECT - CONCAT(a.description, '_', cov.covariate_name) as col_names - - FROM @schema.@sccs_table_prefixdiagnostics_summary ds - - INNER JOIN - @schema.@sccs_table_prefixanalysis a - on a.analysis_id = ds.analysis_id - - INNER JOIN - @schema.@sccs_table_prefixcovariate cov - on cov.covariate_id = ds.covariate_id and - cov.exposures_outcome_set_id = ds.exposures_outcome_set_id and - cov.analysis_id = ds.analysis_id - ;" - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - cm_table_prefix = resultDatabaseSettings$cmTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - database_table = resultDatabaseSettings$databaseTable - ) - - res <- result$colNames - names(res) <- result$colNames - - return(res) -} - -getColDefsESDiag <- function( - connectionHandler, - resultDatabaseSettings -){ - - fixedColumns = list( - databaseName = reactable::colDef( - header = withTooltip( - "Database", - "The database name" - ), - sticky = "left" - ), - target = reactable::colDef( - header = withTooltip( - "Target", - "The target cohort of interest " - ), - sticky = "left" - ) - ) - - outcomes <- getEsOutcomeIds( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - analyses <- getOACcombinations( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - colnameFormat <- merge(unique(names(analyses)), unique(names(outcomes))) - colnameFormat <- apply(colnameFormat, 1, function(x){paste(x, collapse = '_', sep = '_')}) - - styleList <- lapply( - colnameFormat, - FUN = function(x){ - reactable::colDef( - header = withTooltip( - substring(x,1,40), - x - ), - style = function(value) { - color <- 'orange' - if(is.na(value)){ - color <- 'black' - }else if(value == 'Pass'){ - color <- '#AFE1AF' - }else if(value == 'Fail'){ - color <- '#E97451' - } - list(background = color) - } - ) - } - ) - names(styleList) <- colnameFormat - result <- append(fixedColumns, styleList) - - return(result) -} diff --git a/R/evidence-synth-sccs.R b/R/evidence-synth-sccs.R deleted file mode 100644 index 839242dc..00000000 --- a/R/evidence-synth-sccs.R +++ /dev/null @@ -1,536 +0,0 @@ -evidenceSynthesisSccsViewer <- function(id=1) { - ns <- shiny::NS(id) - - shiny::div( - - inputSelectionViewer(ns("input-selection-sccs")), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection-sccs")), - - shiny::tabsetPanel( - type = 'pills', - id = ns('esSccsTabs'), - - # diagnostic view - shiny::tabPanel( - title = 'Diagnostics', - resultTableViewer(ns("diagnosticsSccsSummaryTable")) - ), - - shiny::tabPanel( - "Plot", - shiny::plotOutput(ns('esSccsPlot')) - ), - shiny::tabPanel( - "Table", - resultTableViewer(ns("esSccsTable")) - ) - ) - ) - ) -} - -evidenceSynthesisSccsServer <- function( - id, - connectionHandler, - resultDatabaseSettings = list(port = 1) -) { - shiny::moduleServer( - id, - function(input, output, session) { - - outcomeIds <- getEsOutcomeIds( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - exposureIndicationInput <- .getSccsExposureIndicationSelection(connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings) - - inputSelected <- inputSelectionServer( - id = "input-selection-sccs", - inputSettingList = list( - exposureIndicationInput, - createInputSetting( - rowNumber = 2, - columnWidth = 12, - varName = 'outcomeIds', - uiFunction = 'shinyWidgets::virtualSelectInput', - uiInputs = list( - label = 'Outcome: ', - choices = outcomeIds, - multiple = F, - search = TRUE - ) - ) - ) - ) - - - - diagSumData <- shiny::reactive({ - getEvidenceSynthSccsDiagnostics( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected, - exposure = inputSelected()$exposure, - outcomeIds = inputSelected()$outcomeIds - ) - }) - - # SCCS plots and tables - resultTableServer( - id = "diagnosticsSccsSummaryTable", - df = diagSumData, - colDefsInput = getColDefsESDiag( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - ) - - sccsData <- shiny::reactive({ - unique( - getSccsEstimation( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - exposure = inputSelected()$exposure, - outcomeId = inputSelected()$outcomeIds - ) - ) - }) - - output$esSccsPlot <- shiny::renderPlot({ - sccsRes <- sccsData() - shiny::validate(shiny::need(hasData(sccsRes), "No valid data for selected target")) - createPlotForSccsAnalysis(sccsRes) - }) - - - resultTableServer( - id = "esSccsTable", - df = sccsData, - colDefsInput = list( - targetId = reactable::colDef(show = F), - outcomeId = reactable::colDef(show = F), - analysisId = reactable::colDef(show = F), - description = reactable::colDef( - filterable = TRUE, - header = withTooltip( - "Analysis", - "Analysis" - ), - minWidth = 300 - ), - database = reactable::colDef( - filterable = TRUE, - header = withTooltip( - "Data source", - "Data source" - )), - calibratedRr = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.IRR", - "Incidence rate ratio (calibrated)" - )), - calibratedCi95Lb = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.LB", - "Lower bound of the 95 percent confidence interval (calibrated)" - )), - calibratedCi95Ub = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.UB", - "Upper bound of the 95 percent confidence interval (calibrated)" - )), - calibratedP = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.P", - "Two-sided p-value (calibrated)" - )), - calibratedLogRr = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.Log.IRR", - "Log of Incidence rate ratio (calibrated)" - )), - calibratedSeLogRr = reactable::colDef( - format = reactable::colFormat(digits = 3), - header = withTooltip( - "Cal.Se.Log.IRR", - "Log Standard Error of Incidence rate ratio (calibrated)" - )), - target = reactable::colDef( - minWidth = 300 - ), - outcome = reactable::colDef( - minWidth = 300 - ) - ) - ) - - } - ) - -} - -getSccsTargets <- function( - connectionHandler, - resultDatabaseSettings -){ - - output <- sccsGetExposureIndications( - connectionHandler, - resultDatabaseSettings - ) - return(output) - -} - -getSccsEstimation <- function( - connectionHandler, - resultDatabaseSettings, - exposure, - outcomeId -){ - - if (is.null(outcomeId)) { - return(NULL) - } - - if (is.character(exposure)) { - exposureGroup <- strsplit(exposure, " ")[[1]] - targetId <- exposureGroup[[1]] - indicationIds <- exposureGroup[[2]] - } else { - targetId <- -1 - indicationIds <- -1 - } - - if (any(indicationIds == -1)) { - indicationIds <- NULL - } - - sql <- "select - c1.cohort_name as target, - c3.cohort_name as outcome, - cov.era_id as target_id, eos.outcome_id, r.analysis_id, - a.description, - cov.covariate_name as type, - db.cdm_source_abbreviation as database, - r.calibrated_rr, - r.calibrated_ci_95_lb, - r.calibrated_ci_95_ub, - r.calibrated_p, - r.calibrated_log_rr, - r.calibrated_se_log_rr - - from - @schema.@sccs_table_prefixresult as r - inner join - @schema.@sccs_table_prefixexposures_outcome_set as eos - on - r.exposures_outcome_set_id = eos.exposures_outcome_set_id - - inner join - @schema.@sccs_table_prefixcovariate as cov - on - r.covariate_id = cov.covariate_id and - r.database_id = cov.database_id and - r.analysis_id = cov.analysis_id and - r.exposures_outcome_set_id = cov.exposures_outcome_set_id - - inner join - @schema.@sccs_table_prefixexposure as ex - on - ex.era_id = cov.era_id and - ex.exposures_outcome_set_id = cov.exposures_outcome_set_id - - inner join - - @schema.@sccs_table_prefixdiagnostics_summary as unblind - on - r.analysis_id = unblind.analysis_id and - r.exposures_outcome_set_id = unblind.exposures_outcome_set_id and - r.covariate_id = unblind.covariate_id and - r.database_id = unblind.database_id - - inner join - @schema.@database_table as db - on db.database_id = r.database_id - - inner join - @schema.@cg_table_prefixcohort_definition as c1 - on c1.cohort_definition_id = cov.era_id - - inner join - @schema.@cg_table_prefixcohort_definition as c3 - on c3.cohort_definition_id = eos.outcome_id - - inner join - @schema.@sccs_table_prefixanalysis as a - on a.analysis_id = r.analysis_id - - where - r.calibrated_rr != 0 and - --ex.true_effect_size != 1 and - cov.covariate_name in ('Main', 'Second dose') and - unblind.unblind = 1 and - cov.era_id = @target_id and - eos.outcome_id = @outcome_id - {@use_indications} ? {and eos.nesting_cohort_id IN (@indication_ids)} : {and eos.nesting_cohort_id IS NULL} - ;" - - result <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - database_table = resultDatabaseSettings$databaseTable, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - outcome_id = outcomeId, - target_id = targetId, - indication_ids = indicationIds, - use_indications = !is.null(indicationIds) - ) - - sql <- "select distinct - c1.cohort_name as target, - c3.cohort_name as outcome, - cov.era_id as target_id, eos.outcome_id, r.analysis_id, - a.description, - cov.covariate_name as type, - ev.evidence_synthesis_description as database, - r.calibrated_rr, - r.calibrated_ci_95_lb, - r.calibrated_ci_95_ub, - r.calibrated_p, - r.calibrated_log_rr, - r.calibrated_se_log_rr - - from - @schema.@es_table_prefixsccs_result as r - inner join - @schema.@sccs_table_prefixexposures_outcome_set as eos - on - r.exposures_outcome_set_id = eos.exposures_outcome_set_id - - inner join - @schema.@sccs_table_prefixcovariate as cov - on - r.covariate_id = cov.covariate_id and - r.analysis_id = cov.analysis_id and - r.exposures_outcome_set_id = cov.exposures_outcome_set_id - - inner join - @schema.@sccs_table_prefixexposure as ex - on - ex.era_id = cov.era_id and - ex.exposures_outcome_set_id = cov.exposures_outcome_set_id - - inner join - - @schema.@es_table_prefixsccs_diagnostics_summary as unblind - on - r.analysis_id = unblind.analysis_id and - r.exposures_outcome_set_id = unblind.exposures_outcome_set_id and - r.covariate_id = unblind.covariate_id and - r.evidence_synthesis_analysis_id = unblind.evidence_synthesis_analysis_id - - inner join - @schema.@cg_table_prefixcohort_definition as c1 - on c1.cohort_definition_id = cov.era_id - - inner join - @schema.@cg_table_prefixcohort_definition as c3 - on c3.cohort_definition_id = eos.outcome_id - - inner join - @schema.@sccs_table_prefixanalysis as a - on a.analysis_id = r.analysis_id - - inner join - @schema.@es_table_prefixanalysis as ev - on ev.evidence_synthesis_analysis_id = r.evidence_synthesis_analysis_id - - where - r.calibrated_rr != 0 and - --ex.true_effect_size != 1 and - cov.covariate_name in ('Main', 'Second dose') and - unblind.unblind = 1 and - cov.era_id = @target_id and - eos.outcome_id = @outcome_id - {@use_indications} ? {and eos.nesting_cohort_id IN (@indication_ids)} : {and eos.nesting_cohort_id IS NULL} - ;" - - result2 <- connectionHandler$queryDb( - sql = sql, - schema = resultDatabaseSettings$schema, - es_table_prefix = resultDatabaseSettings$esTablePrefix, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - outcome_id = outcomeId, - target_id = targetId, - indication_ids = indicationIds, - use_indications = !is.null(indicationIds) - ) - - return(rbind(result,result2)) - -} - -createPlotForSccsAnalysis <- function( - data -){ - - if(is.null(data)){ - return(NULL) - } - - # change the description to add at bottom - renameDf <- data.frame( - shortName = paste0( - 1:length(unique(data$description)), - ') ', - substring(sort(unique(data$description)), 1, 15), - '...' - ), - description = sort(unique(data$description)) - ) - data <- merge( - x = data, - y = renameDf, - by = 'description' - ) - - # make sure bayesian is at bottom - db <- unique(data$database) - bInd <- grep('bayesian', tolower(db)) - withoutb <- db[-bInd] - b <- db[bInd] - data$database <- factor( - x = data$database, - levels = c(sort(withoutb), b) - ) - metadata <- data[data$database == b,] - - breaks <- c(0.1, 0.25, 0.5, 1, 2, 4, 6, 8) - plot <- ggplot2::ggplot( - data = data, - ggplot2::aes(x = .data$calibratedRr, y = .data$type) - ) + - ggplot2::geom_vline(xintercept = 1, size = 0.5) + - ggplot2::geom_point(color = "#000088", alpha = 0.8) + - ggplot2::geom_errorbarh( - ggplot2::aes( - xmin = .data$calibratedCi95Lb, - xmax = .data$calibratedCi95Ub - ), - height = 0.5, - color = "#000088", - alpha = 0.8 - ) + - ggplot2::scale_x_log10( - "Effect size (Incidence Rate Ratio)", - breaks = breaks, - labels = breaks - ) + - - # shade the bayesian - ggplot2::geom_rect( - data = metadata, - ggplot2::aes(fill = .data$database), - xmin = -Inf, - xmax = Inf, - ymin = -Inf, - ymax = Inf, - alpha = 0.2 - ) + - - ggplot2::coord_cartesian(xlim = c(0.1, 10)) + - ggplot2::facet_grid(.data$database ~ .data$shortName) + - ggplot2::ggtitle(data$outcome[1]) + - ggplot2::theme( - axis.title.y = ggplot2::element_blank(), - panel.grid.minor = ggplot2::element_blank(), - strip.text.y.right = ggplot2::element_text(angle = 0), - legend.position = "none" - ) - - ### Add table below the graph - renameDf$description <- sapply( - strwrap(renameDf$description, width = 50, simplify = FALSE), - paste, - collapse = "\n" - ) - - tt <- gridExtra::ttheme_default( - base_size = 8, - colhead=list(fg_params = list(parse=TRUE)) - ) - tbl <- gridExtra::tableGrob( - renameDf, - rows=NULL, - theme=tt - ) - plot <- gridExtra::grid.arrange( - plot, - tbl, - nrow = 2, - as.table = TRUE - ) - - return(plot) -} - -getEvidenceSynthSccsDiagnostics <- function( - connectionHandler, - resultDatabaseSettings, - inputSelected, - exposure, - outcomeIds -){ - - if(is.null(exposure)){ - return(NULL) - } - - if (is.character(exposure)) { - exposureGroup <- strsplit(exposure, " ")[[1]] - targetId <- exposureGroup[[1]] - indicationIds <- exposureGroup[[2]] - } else { - targetId <- -1 - indicationIds <- -1 - } - - if (any(indicationIds == -1)) { - indicationIds <- NULL - } - - sccsDiagTemp <- getSccsAllDiagnosticsSummary( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - targetIds = targetId, - indicationIds = indicationIds, - outcomeIds = outcomeIds - ) - - if(is.null(sccsDiagTemp)){ - return(NULL) - } - - # select columns of interest and rename for consistency - sccsDiagTemp <- diagnosticSummaryFormat( - data = shiny::reactive({sccsDiagTemp}), - idCols = c('databaseName','target'), - namesFrom = c('analysis','covariateName','outcome') - ) - - # return - return(sccsDiagTemp) -} diff --git a/R/helper-getPredictionProtocol.R b/R/helper-getPredictionProtocol.R index 54eed021..ed0d6a24 100644 --- a/R/helper-getPredictionProtocol.R +++ b/R/helper-getPredictionProtocol.R @@ -1,15 +1,15 @@ createPredictionProtocol <- function( connectionHandler, resultDatabaseSettings, - modelDesignId, - output, - intermediatesDir = file.path(tempdir(), 'plp-prot') + modelDesignId, + output, + intermediatesDir = file.path(tempdir(), 'plp-prot') ){ #require('CirceR') # get the data #protocolLoc <- 'modules/prediction/documents/main.Rmd' - protocolLoc <- system.file('prediction-document', "main.Rmd", package = "OhdsiShinyModules") + protocolLoc <- system.file('patient-level-prediction-document', "main.Rmd", package = "OhdsiShinyModules") if(!dir.exists(intermediatesDir)){ dir.create(intermediatesDir) diff --git a/R/helpers-componentsCreateCustomColDefList.R b/R/helpers-componentsCreateCustomColDefList.R index d629cf46..a6403d80 100644 --- a/R/helpers-componentsCreateCustomColDefList.R +++ b/R/helpers-componentsCreateCustomColDefList.R @@ -10,7 +10,7 @@ #' whatever raw column names are passed in #' @param customColDefOptions A list of lists, where the inner lists are any custom options from #' reactable::colDef for each column -#' +#' @family {Utils} #' @return A named list of reactable::colDef objects #' @export #' @family {Utils} @@ -55,7 +55,7 @@ createCustomColDefList <- function(rawColNames, niceColNames = NULL, result[[i]] <- do.call(reactable::colDef, colDefOptions) } - + names(result) <- rawColNames return(result) @@ -65,13 +65,32 @@ createCustomColDefList <- function(rawColNames, niceColNames = NULL, # examples # Define custom column definitions # customColDefs <- createCustomColDefList( -# rawColNames = mydf$raw, -# niceColNames = c("Name", "Age", "Country"), -# tooltipText = c("Person's Name", "Person's Age", "Country"), +# rawColNames = colnames(comb), +# niceColNames = c("Database Name", +# "Covariate Name", +# "Mean Target Before Matching", +# "Mean Comparator Before Matching", +# "Abs Val StdDiff Before Matching", +# "Mean Target After Matching", +# "Mean Comparator After Matching", +# "Abs Val StdDiff After Matching"), +# tooltipText = c("The name of the database", +# "The name of the covariate", +# "Mean (Proportion) in Target Before Matching", +# "Mean (Proportion) in Comparator Before Matching", +# "Absolute Value of the Standardized Mean Difference Before Matching", +# "Mean (Proportion) in Target After Matching", +# "Mean (Proportion) in Comparator Before Matching", +# "Absolute Value of the Standardized Mean Difference After Matching"), # customColDefOptions = list( # list(NULL), # No aggregation for "Name" column -# list(aggregate = "mean"), # Aggregate "Age" column using mean -# list(NULL) # No aggregation for "Country" column +# list(NULL), # Aggregate "Age" column using mean +# list(NULL), +# list(NULL), +# list(NULL), # No aggregation for "Name" column +# list(NULL), # Aggregate "Age" column using mean +# list(NULL), +# list(NULL)# No aggregation for "Country" column # ) # ) @@ -83,7 +102,7 @@ createCustomColDefList <- function(rawColNames, niceColNames = NULL, #' Make a label for an html button #' #' @param label The desired label for hte button -#' +#' @family {Utils} #' @return html code to make a button label #' @export #' @family {Utils} diff --git a/R/helpers-example.R b/R/helpers-example.R new file mode 100644 index 00000000..a5949a97 --- /dev/null +++ b/R/helpers-example.R @@ -0,0 +1,20 @@ +#' A connection details to an example result database +#' +#' @details +#' Finds the location within the package of an sqlite database with example results for 1) CohortGenerator, +#' 2) Characterization, 3) PatientLevelPrediction, 4) CohortMethod, 5) SelfControlledCaseSeries and 6) CohortIncidence +#' @family {Example} +#' @return +#' The connection details to an example result database +#' +#' @export +getExampleConnectionDetails <- function(){ + server <- system.file("extdata", "results.sqlite", package = "OhdsiShinyModules") + + cd <- DatabaseConnector::createConnectionDetails( + dbms = 'sqlite', + server = server + ) + + return(cd) +} \ No newline at end of file diff --git a/R/helpers-migrations.R b/R/helpers-migrations.R index b67f4ec2..e77e7cd5 100644 --- a/R/helpers-migrations.R +++ b/R/helpers-migrations.R @@ -3,7 +3,7 @@ #' Get Migrations #' @description #' Checks to see if migrations are present in the database for a given table prefix -#' +#' @family {Utils} #' @noRd getMigrations <- function(connectionHandler, resultDatabaseSettings, tablePrefix) { migrations <- data.frame() @@ -23,7 +23,7 @@ getMigrations <- function(connectionHandler, resultDatabaseSettings, tablePrefix #' Migration present #' @description #' Given a data.frame of migrations check if a migration number is present -#' +#' @family {Utils} #' @noRd migrationPresent <- function(migrations, migrationId) { if (nrow(migrations) == 0) { diff --git a/R/helpers-sccsPlots.R b/R/helpers-sccsPlots.R index e2b7f066..947557f5 100644 --- a/R/helpers-sccsPlots.R +++ b/R/helpers-sccsPlots.R @@ -120,7 +120,9 @@ plotTimeTrend <- function(timeTrend) { plotTimeToEventSccs <- function(timeToEvent) { - + if(nrow(timeToEvent) == 0){ + shiny::validate('No Rows') + } events <- timeToEvent %>% dplyr::transmute(.data$week, type = "Events", @@ -173,24 +175,21 @@ plotTimeToEventSccs <- function(timeToEvent) { drawAttritionDiagram <- function(attrition) { - formatNumber <- function(x) { - return(formatC(x, big.mark = ",")) - } - + addStep <- function(data, attrition, row) { data$leftBoxText[length(data$leftBoxText) + 1] <- paste(attrition$description[row], "\n", "Cases: ", - formatNumber(attrition$outcomeSubjects[row]), + format(attrition$outcomeSubjects[row], scientific = FALSE), "\n", "Outcomes: ", - formatNumber(attrition$outcomeEvents[row]), + format(attrition$outcomeEvents[row], scientific = FALSE), sep = "") data$rightBoxText[length(data$rightBoxText) + 1] <- paste("Cases: ", - formatNumber(data$currentCases - attrition$outcomeSubjects[row]), + format(data$currentCases - attrition$outcomeSubjects[row], scientific = FALSE), "\n", "Outcomes: ", - formatNumber(data$currentOutcomes - attrition$outcomeEvents[row]), + format(data$currentOutcomes - attrition$outcomeEvents[row], scientific = FALSE), sep = "") data$currentCases <- attrition$outcomeSubjects[row] data$currentOutcomes <- attrition$outcomeEvents[row] @@ -199,10 +198,10 @@ drawAttritionDiagram <- function(attrition) { data <- list(leftBoxText = c(paste("All outcomes occurrences:\n", "Cases: ", - formatNumber(attrition$outcomeSubjects[1]), + format(attrition$outcomeSubjects[1], scientific = FALSE), "\n", "Outcomes: ", - formatNumber(attrition$outcomeEvents[1]), + format(attrition$outcomeEvents[1], scientific = FALSE), sep = "")), rightBoxText = c(""), currentCases = attrition$outcomeSubjects[1], @@ -300,12 +299,23 @@ drawAttritionDiagram <- function(attrition) { } plotEventDepObservation <- function(eventDepObservation, maxMonths = 12) { + if(nrow(eventDepObservation) == 0){ + shiny::validate('No Rows') + } + eventDepObservation <- eventDepObservation %>% dplyr::filter(.data$monthsToEnd <= maxMonths) %>% dplyr::mutate( outcomes = pmax(0, .data$outcomes), censoring = ifelse(.data$censored == 1, "Censored", "Uncensored") ) + if(nrow(eventDepObservation) == 0){ + shiny::validate('No Rows after filtering') + } + if(is.infinite(max(eventDepObservation$monthsToEnd))){ + shiny::validate('Infinite max') + } + timeBreaks <- 0:ceiling(max(eventDepObservation$monthsToEnd)) timeLabels <- timeBreaks * 30.5 @@ -335,7 +345,20 @@ plotEventDepObservation <- function(eventDepObservation, maxMonths = 12) { } plotSpanning <- function(spanning, type = "age") { + + if(nrow(spanning) == 0){ + shiny::validate('No rows') + } + if (type == "age") { + + if(is.infinite(min(spanning$ageMonth))){ + shiny::validate('infinte min age month') + } + if(is.infinite(max(spanning$ageMonth))){ + shiny::validate('infinte max age month') + } + spanning <- spanning %>% dplyr::mutate(x = .data$ageMonth) labels <- seq(ceiling(min(spanning$ageMonth) / 12), floor(max(spanning$ageMonth) / 12)) @@ -537,7 +560,16 @@ cyclicSplineDesign <- function(x, knots, ord = 4) { X1 } -plotControlEstimates <- function(controlEstimates) { +plotControlEstimates <- function( + controlEstimates, + ease = NULL + ) { + if(nrow(controlEstimates) == 0){ + shiny::validate('No rows') + } + + titleText <- paste('Ease: ', ease) + size <- 2 labelY <- 0.7 d <- rbind(data.frame(yGroup = "Uncalibrated", @@ -556,7 +588,10 @@ plotControlEstimates <- function(controlEstimates) { d <- d[!is.na(d$ci95Lb),] d <- d[!is.na(d$ci95Ub),] if (nrow(d) == 0) { - return(NULL) + shiny::validate('No rows') + } + if (nrow(d) == 1) { + shiny::validate('Only one row so cannot aggregate') } d$Group <- as.factor(d$trueRr) d$Significant <- d$ci95Lb > d$trueRr | d$ci95Ub < d$trueRr @@ -630,7 +665,8 @@ plotControlEstimates <- function(controlEstimates) { strip.text.x = theme, strip.text.y = theme, strip.background = ggplot2::element_blank(), - legend.position = "none") + legend.position = "none") + + ggplot2::ggtitle(label = titleText) return(plot) } diff --git a/R/home-main.R b/R/home-main.R new file mode 100644 index 00000000..e566173f --- /dev/null +++ b/R/home-main.R @@ -0,0 +1,101 @@ +#' The location of the home module helper file +#' +#' @details +#' Returns the location of the home helper file +#' @family {Home} +#' @return +#' string location of the home helper file +#' +#' @export +homeHelperFile <- function(){ + fileLoc <- system.file('home-www', "home.html", package = "OhdsiShinyModules") + return(fileLoc) +} + +#' The module viewer for exploring home +#' +#' @details +#' The user specifies the id for the module +#' @family {Home} +#' @param id the unique reference id for the module +#' +#' @return +#' The user interface to the home viewer module +#' +#' @export +homeViewer <- function(id=1) { + ns <- shiny::NS(id) + + screens <- list( + shinyglide::screen( + shiny::p("Assure Executive Summary"), + shiny::p("Study Name"), + shiny::p("The study question was..."), + shiny::p(""), + next_label="Estimation Results" + ), + shinyglide::screen( + shiny::p("Estimation Results"), + shiny::p("User Inputs are possible"), + shiny::numericInput( + inputId = ns("n"), + label = "n", + value = 10, + min = 10 + ), + next_label="Prediction Results" + ), + shinyglide::screen( + shiny::p("Cool plot here"), + shiny::plotOutput(ns("cool_plot")) + ) + ) + + shinydashboard::box( + status = 'info', width = 12, + title = shiny::span( shiny::icon("house"), "Executive Summary"), + solidHeader = TRUE, + + shinyglide::glide( + height = "350px", + screens + ) + + ) + +} + + +#' The module server for exploring home +#' +#' @details +#' The user specifies the id for the module +#' +#' @param id the unique reference id for the module +#' @param connectionHandler a connection to the database with the results +#' @param resultDatabaseSettings a list containing the prediction result schema and connection details +#' @family {Home} +#' @return +#' The server for the home module +#' +#' @export +homeServer <- function( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1) +) { + shiny::moduleServer( + id, + function(input, output, session) { + + output$cool_plot <- shiny::renderPlot({ + graphics::hist( + stats::rnorm(input$n), + main = paste("n =", input$n), + xlab = "" + ) + }) + + } + ) +} \ No newline at end of file diff --git a/R/patient-level-prediction-calibration.R b/R/patient-level-prediction-calibration.R index 5f1ba549..ba241700 100644 --- a/R/patient-level-prediction-calibration.R +++ b/R/patient-level-prediction-calibration.R @@ -26,7 +26,7 @@ #' #' @return #' The user interface to the prediction model calibration module -#' +#' @family {PatientLevelPrediction} #' @export patientLevelPredictionCalibrationViewer <- function(id) { ns <- shiny::NS(id) @@ -79,7 +79,7 @@ patientLevelPredictionCalibrationViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the prediction calibration module #' diff --git a/R/patient-level-prediction-covariateSummary.R b/R/patient-level-prediction-covariateSummary.R index e9f6d237..0b854253 100644 --- a/R/patient-level-prediction-covariateSummary.R +++ b/R/patient-level-prediction-covariateSummary.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the covariate summary module #' @@ -85,7 +85,7 @@ patientLevelPredictionCovariateSummaryViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the covariate summary module #' diff --git a/R/patient-level-prediction-cutoff.R b/R/patient-level-prediction-cutoff.R index b0ede12f..776cf77f 100644 --- a/R/patient-level-prediction-cutoff.R +++ b/R/patient-level-prediction-cutoff.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the prediction cut-off module #' @@ -96,7 +96,7 @@ patientLevelPredictionCutoffViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the prediction cut-off module #' diff --git a/R/patient-level-prediction-designSummary.R b/R/patient-level-prediction-designSummary.R index 2f34649d..1e9d86c3 100644 --- a/R/patient-level-prediction-designSummary.R +++ b/R/patient-level-prediction-designSummary.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the prediction design module #' @@ -48,7 +48,7 @@ patientLevelPredictionDesignSummaryViewer <- function(id) { #' @param id the unique reference id for the module #' @param connectionHandler the connection to the prediction result database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the prediction design module #' diff --git a/R/patient-level-prediction-diagnostics.R b/R/patient-level-prediction-diagnostics.R index 85121fe1..2732c176 100644 --- a/R/patient-level-prediction-diagnostics.R +++ b/R/patient-level-prediction-diagnostics.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the prediction diagnostic module #' @@ -62,7 +62,7 @@ patientLevelPredictionDiagnosticsViewer <- function(id) { #' @param modelDesignId the unique id for the model design #' @param connectionHandler the connection to the prediction result database #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the prediction diagnostic module #' diff --git a/R/patient-level-prediction-discrimination.R b/R/patient-level-prediction-discrimination.R index 0fcca0af..d30dc0ab 100644 --- a/R/patient-level-prediction-discrimination.R +++ b/R/patient-level-prediction-discrimination.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the model discrimination results module #' @@ -149,7 +149,7 @@ patientLevelPredictionDiscriminationViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the model discrimination module #' diff --git a/R/patient-level-prediction-main.R b/R/patient-level-prediction-main.R index 943b63e8..400f0a48 100644 --- a/R/patient-level-prediction-main.R +++ b/R/patient-level-prediction-main.R @@ -21,7 +21,7 @@ #' #' @details #' Returns the location of the prediction helper file -#' +#' @family {PatientLevelPrediction} #' @return #' string location of the prediction helper file #' @@ -37,7 +37,7 @@ patientLevelPredictionHelperFile <- function(){ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the PatientLevelPrediction viewer module #' @@ -117,7 +117,7 @@ patientLevelPredictionViewer <- function(id=1) { #' @param id the unique reference id for the module #' @param connectionHandler a connection to the database with the results #' @param resultDatabaseSettings a list containing the prediction result schema and connection details -#' +#' @family {PatientLevelPrediction} #' @return #' The server for the PatientLevelPrediction module #' @@ -264,7 +264,13 @@ patientLevelPredictionServer <- function( file.remove(file.path(protocolOutputLoc, 'main.html')) } tryCatch( - {createPredictionProtocol( + { + shiny::showNotification( + ui = 'Generating protocol - takes some time', + type = 'message' + ) + + createPredictionProtocol( connectionHandler = connectionHandler, resultDatabaseSettings = resultDatabaseSettings, modelDesignId = designSummary$reportId(), diff --git a/R/patient-level-prediction-modelSummary.R b/R/patient-level-prediction-modelSummary.R index 1c2a7faf..8b0a7348 100644 --- a/R/patient-level-prediction-modelSummary.R +++ b/R/patient-level-prediction-modelSummary.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the summary module #' @@ -59,7 +59,7 @@ patientLevelPredictionModelSummaryViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param resultDatabaseSettings a list containing the result schema and prefixes #' @param modelDesignId a reactable id specifying the prediction model design identifier -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the summary module #' @@ -276,12 +276,7 @@ getModelDesignPerformanceSummary <- function( inner join @schema.@plp_table_prefixmodel_designs as model_designs on model_designs.model_design_id = results.model_design_id - -- and results.target_id = model_designs.target_id - -- and results.outcome_id = model_designs.outcome_id and - -- results.tar_id = model_designs.tar_id and - -- results.population_setting_id = model_designs.population_setting_id - -- and results.plp_data_setting_id = model_designs.plp_data_setting_id - + LEFT JOIN (SELECT c.cohort_id, cd.cohort_name FROM @schema.@plp_table_prefixcohorts c inner join @schema.@cg_table_prefixcohort_definition cd @@ -293,11 +288,11 @@ getModelDesignPerformanceSummary <- function( on c.cohort_definition_id = cd.cohort_definition_id ) AS outcomes ON results.outcome_id = outcomes.cohort_id LEFT JOIN (select dd.database_id, md.cdm_source_abbreviation database_acronym - from @schema.@database_table_prefixdatabase_meta_data md inner join + from @schema.@database_table_prefix@database_table md inner join @schema.@plp_table_prefixdatabase_details dd on md.database_id = dd.database_meta_data_id) AS d ON results.development_database_id = d.database_id LEFT JOIN (select dd.database_id, md.cdm_source_abbreviation database_acronym - from @schema.@database_table_prefixdatabase_meta_data md inner join + from @schema.@database_table_prefix@database_table md inner join @schema.@plp_table_prefixdatabase_details dd on md.database_id = dd.database_meta_data_id) AS v ON results.validation_database_id = v.database_id LEFT JOIN @schema.@plp_table_prefixtars AS tars ON results.tar_id = tars.tar_id @@ -314,6 +309,7 @@ getModelDesignPerformanceSummary <- function( plp_table_prefix = resultDatabaseSettings$plpTablePrefix, model_design_id = modelDesignId(), database_table_prefix = resultDatabaseSettings$databaseTablePrefix, + database_table = resultDatabaseSettings$databaseTable, cg_table_prefix = resultDatabaseSettings$cgTablePrefix ) diff --git a/R/patient-level-prediction-netbenefit.R b/R/patient-level-prediction-netbenefit.R index 9508bc3e..e3f276c1 100644 --- a/R/patient-level-prediction-netbenefit.R +++ b/R/patient-level-prediction-netbenefit.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the net-benefit module #' @@ -71,7 +71,7 @@ patientLevelPredictionNbViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the net-benefit module #' diff --git a/R/patient-level-prediction-settings.R b/R/patient-level-prediction-settings.R index 34093503..80731ea6 100644 --- a/R/patient-level-prediction-settings.R +++ b/R/patient-level-prediction-settings.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the settings module #' @@ -64,7 +64,7 @@ patientLevelPredictionSettingsViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the settings module #' diff --git a/R/patient-level-prediction-validation.R b/R/patient-level-prediction-validation.R index 0cdff2f7..11d55455 100644 --- a/R/patient-level-prediction-validation.R +++ b/R/patient-level-prediction-validation.R @@ -23,7 +23,7 @@ #' The user specifies the id for the module #' #' @param id the unique reference id for the module -#' +#' @family {PatientLevelPrediction} #' @return #' The user interface to the validation module #' @@ -64,7 +64,7 @@ patientLevelPredictionValidationViewer <- function(id) { #' @param connectionHandler the connection to the prediction result database #' @param inputSingleView the current tab #' @param resultDatabaseSettings a list containing the result schema and prefixes -#' +#' @family {PatientLevelPrediction} #' @return #' The server to the validation module #' diff --git a/R/phevaluator-main.R b/R/phevaluator-main.R index 17ecfd82..6e5b3026 100644 --- a/R/phevaluator-main.R +++ b/R/phevaluator-main.R @@ -21,7 +21,7 @@ #' The location of the phevaluator module helper file #' #' @details Returns the location of the cohort-generator helper file -#' +#' @family {PheValuator} #' @return String location of the phevaluator helper file #' #' @export @@ -36,7 +36,7 @@ phevaluatorHelperFile <- function() { #' The viewer of the phevaluator module #' #' @param id The unique reference id for the module -#' +#' @family {PheValuator} #' @return The user interface to the phevaluator results viewer #' #' @export @@ -49,14 +49,7 @@ phevaluatorViewer <- function(id) { width = "100%", title = shiny::span(shiny::icon("gauge"), "PheValuator"), solidHeader = TRUE, - - shinydashboard::box( - collapsible = TRUE, - collapsed = FALSE, - title = shiny::span( shiny::icon("circle-question"), "Help & Information"), - width = "100%", - shiny::htmlTemplate(system.file("phevaluator-www", "phevaluator.html", package = utils::packageName())) - ), + shinydashboard::box( collapsible = TRUE, @@ -137,7 +130,7 @@ phevaluatorViewer <- function(id) { #' @param id The unique reference id for the module #' @param connectionHandler A connection to the database with the results #' @param resultDatabaseSettings A named list containing the cohort generator results database details (schema, table prefix) -#' +#' @family {PheValuator} #' @return The phevaluator main module server #' #' @export diff --git a/R/report-main.R b/R/report-main.R new file mode 100644 index 00000000..99529e92 --- /dev/null +++ b/R/report-main.R @@ -0,0 +1,1050 @@ +# @file report-main.R +# +# Copyright 2024 Observational Health Data Sciences and Informatics +# +# This file is part of PatientLevelPrediction +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +#' The location of the report module helper file +#' +#' @details +#' Returns the location of the report helper file +#' @family {Report} +#' @return +#' string location of the report helper file +#' +#' @export +reportHelperFile <- function(){ + fileLoc <- system.file('report-www', "report.html", package = "OhdsiShinyModules") + return(fileLoc) +} + +#' The module viewer for the shiny app report module +#' +#' @details +#' The user specifies the id for the module +#' +#' @param id the unique reference id for the module +#' @family {Report} +#' @return +#' The user interface to the home page module +#' +#' @export +reportViewer <- function( + id = 'reportModule' + ) { + ns <- shiny::NS(id) + + shinydashboard::box( + status = 'info', + width = 12, + title = shiny::span( shiny::icon('book'), "Report Generator"), + solidHeader = TRUE, + + + shiny::tabsetPanel( + type = 'hidden',#'pills', + id = ns('mainTab'), + + shiny::tabPanel( + title = 'Select Target', + shiny::uiOutput(ns("targetSelection")) + ), + + shiny::tabPanel( + title = 'Select Cohort Method Target', + shiny::uiOutput(ns("cmTargetSelection")) + ), + + shiny::tabPanel( + title = 'Select Comparator', + shiny::uiOutput(ns("comparatorSelection")) + ), + + shiny::tabPanel( + title = 'Select Outcome', + shiny::uiOutput(ns("outcomeSelection")) + ), + + shiny::tabPanel( + title = 'Generate', + shiny::uiOutput(ns("generateSelection")) + ) + + + ) + + + + + ) +} + +#' The module server for the shiny app report module +#' +#' @details +#' The user specifies the id for the module +#' +#' @param id the unique reference id for the module +#' @param connectionHandler a connection to the database with the results +#' @param resultDatabaseSettings a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix +#' @param server server for the connection to the results for quarto +#' @param username username for the connection to the results for quarto +#' @param password password for the connection to the results for quarto +#' @param dbms dbms for the connection to the results for quarto +#' @family {Report} +#' @return +#' The server for the shiny app home +#' +#' @export +reportServer <- function( + id = 'reportModule', + connectionHandler = NULL, + resultDatabaseSettings = NULL, + server = Sys.getenv("RESULTS_SERVER"), + username = Sys.getenv("RESULTS_USER"), + password = Sys.getenv("RESULTS_PASSWORD"), + dbms = Sys.getenv("RESULTS_DBMS") + ) { + shiny::moduleServer( + id, + function(input, output, session) { + + # get input options + tnos <- getTandOs( + connectionHandler = connectionHandler, + resultDatabaseSettings = resultDatabaseSettings, + includeCohortIncidence = F, # turning off for speed + includeSccs = F # turning off for speed + ) + + ## update input selectors + #============================ + + # Targets + targets <- lapply(tnos$groupedTs, function(x) x$cohortId) + targets <- unlist(targets) + + + # show download button + showDownload <- shiny::reactiveVal(F) + # outcome and comparator data.frames + emptyRow <- data.frame( + id = 0, + name = 'Add', + friendlyName = 'Add' + ) + outcomeDf <- shiny::reactiveVal(emptyRow) + comparatorDf <- shiny::reactiveVal(emptyRow) + + + + output$targetSelection <- shiny::renderUI({ + + shiny::div( + + shiny::fluidRow( + + shiny::column( + width = 12, + shiny::p('First pick a target cohort') + ) + ), + + shiny::fluidRow( + + shiny::column( + width = 6, + shiny::selectInput( + inputId = session$ns('targetId'), + label = 'Target: ', + choices = targets, + selected = 1, + multiple = FALSE, + selectize = TRUE, + width = NULL, + size = NULL + ) + + ), + + shiny::column( + width = 6, + shiny::textInput( + inputId = session$ns('targetName'), + label = 'Friendly target name:', + value = 'Target' + ) + ) + ), + + + shiny::fluidRow( + shiny::column( + width = 10, + shiny::p('') + ), + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('targetNext'), + label = 'Next', + shiny::icon("arrow-right"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ) + ) + ) + }) + + + cmTargets <- shiny::reactiveVal() + shiny::observeEvent( + input$targetNext, + { + + # change tab to 'Select cmTarget' + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Cohort Method Target' + ) + + # get indications for target + if(is.null(input$targetId)){ + return(NULL) + } + subsetTargets <- tnos$groupedTs[[which(unlist(lapply(tnos$groupedTs, function(x) ifelse(is.null(x$cohortId), F, x$cohortId == input$targetId))))]]$subsets + ind <- !is.na(subsetTargets$subsetId) + if(sum(ind)>0){ + cts <- subsetTargets$subsetId[ind] + names(cts) <- subsetTargets$targetName[ind] + } else{ + cts <- '' + names(cts) <- 'No indication' + } + cmTargets(cts) + } + ) + + + output$cmTargetSelection <- shiny::renderUI({ + + shiny::div( + + shiny::fluidRow( + shiny::column( + width = 12, + shiny::p('Now pick the subset used by cohort method (indication and extra inclusions)') + ) + ), + + shiny::fluidRow( + shiny::column( + width = 6, + shiny::selectInput( + inputId = session$ns('cmSubsetId'), + label = 'Pick cohort method target: ', + choices = cmTargets(), + selected = 1, + multiple = FALSE, + selectize = TRUE, + width = NULL, + size = NULL + ) + ), + + shiny::column( + width = 6, + shiny::textInput( + inputId = session$ns('cmTargetName'), + label = 'Friendly indication name: ', + value = 'indication' + ) + ) + ), + + + shiny::fluidRow( + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('cmTargetPrevious'), + label = 'Previous', + shiny::icon("arrow-left"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ), + shiny::column( + width = 8, + shiny::p('') + ), + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('cmTargetNext'), + label = 'Next', + shiny::icon("arrow-right"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ) + ) + ) + }) + + comparators <- shiny::reactiveVal() + shiny::observeEvent( + input$cmTargetNext, + { + + # change tab + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Comparator' + ) + + if(!is.null(input$cmSubsetId) & !is.null(input$targetId)){ + if(input$cmSubsetId != ''){ + multipler <- ifelse(input$cmSubsetId == 0, 1, 1000) + if(length(which(names(tnos$cs) == as.double(input$targetId)*multipler + as.double(input$cmSubsetId)))>0){ + temp <- tnos$cs[[which(names(tnos$cs) == as.double(input$targetId)*multipler + as.double(input$cmSubsetId))]] + comps <- temp$comparatorId + names(comps) <- temp$comparatorName + comparators(comps) + } else{ + comps <- '' + names(comps) <- 'No Comparator' + comparators(comps) + } + } else{ + shiny::showNotification('No indication available') + } + } + + } + ) + + + shiny::observeEvent( + input$cmTargetPrevious, + { + # change tab + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Target' + ) + } + ) + + + output$comparatorSelection <- shiny::renderUI({ + + shiny::div( + + shiny::fluidRow( + shiny::column( + width = 12, + shiny::p('Now pick one or more comparators') + ) + ), + + shiny::fluidRow( + shiny::column( + width = 6, + shiny::selectInput( + inputId = session$ns('comparatorId'), + label = 'Pick comparator: ', + choices = comparators(), + selected = 1, + multiple = FALSE, + selectize = TRUE, + width = NULL, + size = NULL + ) + ), + + shiny::column( + width = 6, + shiny::textInput( + inputId = session$ns('comparatorName'), + label = 'Friendly comparator name: ', + value = 'comparator' + ) + ) + ), + + + shiny::fluidRow( + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('comparatorPrevious'), + label = 'Previous', + shiny::icon("arrow-left"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ), + shiny::column( + width = 8, + shiny::p('') + ), + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('comparatorNext'), + label = 'Next', + shiny::icon("arrow-right"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ) + ) + ) + }) + + outcomes <- shiny::reactiveVal() + shiny::observeEvent( + input$comparatorNext, + { + + # change tab to 'Select Outcome' + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Outcome' + ) + + if(is.null(input$targetId)){ + return(NULL) + } + + multipler <- ifelse(input$cmSubsetId == 0, 1, 1000) + cmTargetId <- as.double(input$targetId)*multipler + as.double(input$cmSubsetId) + + if(length(which(names(tnos$tos) %in% c(input$targetId, cmTargetId) ))>0){ + temp <- tnos$tos[[which(names(tnos$tos) %in% c(input$targetId, cmTargetId))[1] ]] + os <- temp$outcomeId + names(os) <- temp$outcomeName + outcomes(os) + } else{ + os <- '' + names(os) <- 'None' + outcomes(os) + shiny::showNotification('No Outcomes') + } + } + ) + + shiny::observeEvent( + input$comparatorPrevious, + { + # change tab + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Cohort Method Target' + ) + } + ) + + + + output$outcomeSelection <- shiny::renderUI({ + + shiny::div( + + shiny::fluidRow( + shiny::column( + width = 12, + shiny::p('Now pick one or more outcomes') + ) + ), + + shiny::fluidRow( + shiny::column( + width = 6, + shiny::selectInput( + inputId = session$ns('outcomeId'), + label = 'Pick outcome: ', + choices = outcomes(), + selected = 1, + multiple = FALSE, + selectize = TRUE, + width = NULL, + size = NULL + ) + ), + + shiny::column( + width = 6, + shiny::textInput( + inputId = session$ns('outcomeName'), + label = 'Friendly outcome name: ', + value = 'outcome' + ) + ) + ), + + #shiny::fluidRow( + #shiny::column( + # width = 2, + # shiny::actionButton( + # inputId = session$ns('addOutcome'), + # label = 'Add Outcome', + # icon = shiny::icon('plus') + # ) + #), + #shiny::column( + # width = 10, + # reactable::reactable(outcomeDf()) + #) + #), + + shiny::fluidRow( + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('outcomePrevious'), + label = 'Previous', + shiny::icon("arrow-left"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ), + shiny::column( + width = 8, + shiny::p('') + ), + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('outcomeNext'), + label = 'Next', + shiny::icon("arrow-right"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ) + ) + + ) + }) + + shiny::observeEvent( + input$outcomeNext, + { + + # change tab to 'Select Outcome' + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Generate' + ) + + output$inputTable <- shiny::renderTable( + + + data.frame( + Input = c('Target','Comparator','Outcome','Indication'), + Id = c(input$targetId, input$comparatorId, input$outcomeId, input$cmSubsetId), + Name = c(input$targetName, input$comparatorName, input$outcomeName, input$cmTargetName), + FullName = c(unlist(lapply( + c(input$targetId, input$comparatorId, input$outcomeId), + function(id){tnos$cg$cohortName[tnos$cg$cohortDefinitionId == id]} + )), 'NA') + ) + ) + + } + ) + + shiny::observeEvent( + input$outcomePrevious, + { + # change tab + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Comparator' + ) + } + ) + + + # GENERATE + output$generateSelection <- shiny::renderUI({ + + shiny::div( + + shiny::fluidRow( + shiny::column( + width = 12, + shiny::p('First generate the protocol and then download') + ) + ), + + shiny::fluidRow( + shiny::column( + width = 12, + shiny::p('Selected input review: '), + shiny::tableOutput(outputId = session$ns('inputTable')) + ) + ), + + shiny::fluidRow( + shiny::column( + width = 12, + shiny::p('Add study restriction details: ') + ), + shiny::column( + width = 6, + shiny::dateRangeInput( + inputId = session$ns('dateRestriction'), + label = 'Study date restriction', + start = '1990-01-01' + ) + ), + shiny::column( + width = 6, + shiny::sliderInput( + inputId = session$ns('ageRange'), + label = 'Study age range:', + min = 0, + max = 120, + step = 1, + value = c(18,120), + round = T + ) + ) + ), + + shiny::fluidRow( + shiny::column( + width = 2, + shiny::actionButton( + inputId = session$ns('generatePrevious'), + label = 'Previous', + shiny::icon("arrow-left"), + style="color: #fff; background-color: #337ab7; border-color: #2e6da4" + ) + ), + shiny::column( + width = 5, + shiny::actionButton( + inputId = session$ns("generate"), + label = "Generate", + shiny::icon('circle-plus') + ) + ), + shiny::column( + width = 5, + shiny::uiOutput(session$ns('downloadButton')) + ) + ) + + ) # end div + }) + + shiny::observeEvent( + input$generatePrevious, + { + # change tab + shiny::updateTabsetPanel( + session = session, + inputId = 'mainTab', + selected = 'Select Outcome' + ) + } + ) + + output$downloadButton <- shiny::renderUI( + expr = if(showDownload()) { + shiny::downloadButton( + outputId = session$ns("download"), + label = "Download" + ) + } else { + NULL + }) + + # Modals for outcome and comparator + # model pops up with id and name inputs + # add the outcomeDf() or comparatorDf() + # also add remove button + + # remove outcome/comparator button + + + # Downloadable presentation ---- + shiny::observeEvent( + eventExpr = input$generate, + handlerExpr = { + + shiny::withProgress( + message = 'Cleaning files', value = 0, { + # remove file is exists + if(file.exists(file.path(tempdir(), 'presentation.html'))){ + file.remove(file.path(tempdir(), 'presentation.html')) + showDownload(F) + }; + + shiny::incProgress(0.2, detail = "Generating report") + + ReportGenerator::generatePresentationMultiple( + server = server, + username = username, + password = password, + dbms = dbms, + targetId = as.double(input$targetId), + resultsSchema = resultDatabaseSettings$schema, + subsetId = as.double(input$cmSubsetId), + outcomeIds = as.double(input$outcomeId), + comparatorIds = floor(as.double(input$comparatorId)/1000), # (remove subset), + covariateIds = c( # TODO add this as input? + 316139,320128210,443454210, + 4282096210,441542210 + ), + friendlyNames = list( + targetName = input$targetName, + comparatorNames = input$comparatorName, + indicationName = input$cmTargetName, + outcomeNames = input$outcomeName + ), + details = list( + studyPeriod = paste0(input$dateRestriction, collapse = '-'), + restrictions = paste0("Age - ", paste0(input$ageRange,collapse = '-')) + ), + title = 'Executive Summary Report', # TODO: add title for shiny app here? + lead = 'Shiny App', + date = as.character(Sys.Date()), + outputLocation = tempdir(), + outputName = 'presentation.html' + ) + showDownload(T) + shiny::incProgress(1, detail = "Done") + }) + }) + + output$download <- shiny::downloadHandler( + filename = function() { + paste("presentation-", Sys.Date(), ".html", sep="") + }, + content = function(file){ + if(file.exists(file.path(tempdir(), 'presentation.html'))){ + file.copy( + from = file.path(tempdir(), 'presentation.html'), + to = file + ) + } + } + ) + + + + } + ) +} + + + +getTandOs <- function( + connectionHandler, + resultDatabaseSettings, + includeCharacterization = T, + includeCohortIncidence = T, + includeCohortMethod = T, + includePrediction = T, + includeSccs = T +){ + + # get cohorts + sql <- 'select distinct * from @schema.@cg_table_prefixcohort_definition order by cohort_name;' + cg <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + cg_table_prefix = resultDatabaseSettings$cgTablePrefix + ) + + if(includeCharacterization){ + characterization <- tryCatch( + {nrow(connectionHandler$queryDb( + 'select * from @schema.@c_table_prefixcohort_details limit 1;', + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix + ))>=0}, + error = function(e){return(F)} + ) + } else{ + characterization <- F + } + + if(includeCohortIncidence){ + cohortIncidence <- tryCatch( + {nrow(connectionHandler$queryDb( + 'select * from @schema.@ci_table_prefixincidence_summary limit 1;', + schema = resultDatabaseSettings$schema, + ci_table_prefix = resultDatabaseSettings$incidenceTablePrefix + ))>=0}, + error = function(e){return(F)} + ) + } else{ + cohortIncidence <- F + } + + if(includeCohortMethod){ + cohortMethod <- tryCatch( + {nrow(connectionHandler$queryDb( + 'select * from @schema.@cm_table_prefixtarget_comparator_outcome limit 1;', + schema = resultDatabaseSettings$schema, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix + ))>=0}, + error = function(e){return(F)} + ) + } else{ + cohortMethod <- F + } + + if(includePrediction){ + prediction <- tryCatch( + {nrow(connectionHandler$queryDb( + 'select * from @schema.@plp_table_prefixmodel_designs limit 1;', + schema = resultDatabaseSettings$schema, + plp_table_prefix = resultDatabaseSettings$plpTablePrefix + ))>=0}, + error = function(e){return(F)} + )} else{ + prediction <- F + } + + if(includeSccs){ + sccs <- tryCatch( + {nrow(connectionHandler$queryDb( + 'select * from @schema.@sccs_table_prefixexposures_outcome_set limit 1;', + schema = resultDatabaseSettings$schema, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix + ))>=0}, + error = function(e){return(F)} + )} else{ + sccs <- F + } + + # get T and O pairs + sql <- "select distinct tid, oid from + + ( + + {@characterization} ? { + select distinct TARGET_COHORT_ID as tid, OUTCOME_COHORT_ID as oid + from @schema.@c_table_prefixcohort_details where + TARGET_COHORT_ID != 0 and OUTCOME_COHORT_ID != 0 + + } + + {@cohort_incidence} ? { + {@characterization}?{union} + select distinct TARGET_COHORT_DEFINITION_ID as tid, OUTCOME_COHORT_DEFINITION_ID as oid + from @schema.@ci_table_prefixincidence_summary + + } + + {@cohort_method} ? { + {@cohort_incidence | @characterization}?{union} + select distinct TARGET_ID as tid, OUTCOME_ID as oid + from @schema.@cm_table_prefixtarget_comparator_outcome + where OUTCOME_OF_INTEREST = 1 + + } + + {@prediction} ? { + {@cohort_method | @cohort_incidence | @characterization}?{union} + + select distinct c1.cohort_definition_id as tid, c2.cohort_definition_id as oid + from @schema.@plp_table_prefixmodel_designs md + inner join @schema.@plp_table_prefixcohorts c1 + on c1.cohort_id = md.target_id + inner join @schema.@plp_table_prefixcohorts c2 + on c2.cohort_id = md.outcome_id + } + + {@sccs} ? { + {@cohort_method | @cohort_incidence | @characterization | @prediction}?{union} + + SELECT distinct + cov.era_id as tid, + eos.outcome_id as oid + + FROM @schema.@sccs_table_prefixdiagnostics_summary ds + + inner join + @schema.@sccs_table_prefixexposures_outcome_set eos + on ds.exposures_outcome_set_id = eos.exposures_outcome_set_id + + INNER JOIN + @schema.@sccs_table_prefixcovariate cov + on cov.covariate_id = ds.covariate_id and + cov.exposures_outcome_set_id = ds.exposures_outcome_set_id and + cov.analysis_id = ds.analysis_id and + cov.database_id = ds.database_id + + -- adding code to remove the negative controls + INNER JOIN + @schema.@sccs_table_prefixexposure e + ON e.exposures_outcome_set_id = ds.exposures_outcome_set_id + AND e.era_id = cov.era_id + where e.true_effect_size is NULL + + } + + ) temp_t_o + + ;" + res <- connectionHandler$queryDb( + sql = sql, + schema = resultDatabaseSettings$schema, + c_table_prefix = resultDatabaseSettings$cTablePrefix, + ci_table_prefix = resultDatabaseSettings$incidenceTablePrefix, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix, + plp_table_prefix = resultDatabaseSettings$plpTablePrefix, + sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, + characterization = characterization, + cohort_incidence = cohortIncidence, + cohort_method = cohortMethod, + prediction = prediction, + sccs = sccs + ) + + # add cohort names + res <- merge( + x = res, + y = cg[,c('cohortDefinitionId','cohortName')], + by.x = 'tid', + by.y = 'cohortDefinitionId' + ) %>% + dplyr::rename( + targetName = "cohortName" + ) + + res <- merge( + x = res, + y = cg[,c('cohortDefinitionId','cohortName')], + by.x = 'oid', + by.y = 'cohortDefinitionId' + ) %>% + dplyr::rename( + outcomeName = "cohortName" + ) %>% + dplyr::arrange( + .data$targetName, + .data$outcomeName + ) + + tos <- lapply(unique(res$tid), function(tid){ + data.frame( + outcomeId = res$oid[res$tid == tid], + outcomeName = res$outcomeName[res$tid == tid] + ) + }) + names(tos) <- unique(res$tid) + + # get target heirarchy + groupedCohorts <- lapply(unique(res$tid), function(tid){ + list( + cohortId = tid, + cohortName = unique(res$targetName[res$tid == tid]), + subsets = data.frame( + targetId = tid, + targetName = unique(res$targetName[res$tid == tid]), + subsetId = 0 + ) + ) + }) + names(groupedCohorts) <- unique(res$targetName) + + # if using subsets then do this using the isSubset + if('isSubset' %in% colnames(cg)){ + cg$isSubset[is.na(cg$isSubset)] <- 0 + cg$subsetParent[is.na(cg$subsetParent)] <- cg$cohortDefinitionId + cg$subsetDefinitionId[is.na(cg$subsetDefinitionId)] <- 0 + + if(sum(cg$isSubset == 0) > 0 ){ + # + parentChild <- unique( + merge( + x = cg[, c('cohortDefinitionId','subsetParent')], + y = res, + by.x = 'cohortDefinitionId', + by.y = 'tid' + ) + ) %>% dplyr::arrange( # adding order to make options orders + .data$targetName + ) + parents <- unique(parentChild$subsetParent) + groupedCohorts <- lapply(1:length(parents), function(i){ + x <- parents[i]; + list( + cohortId = x, + cohortName = cg$cohortName[cg$cohortDefinitionId == x], + subsets = data.frame( + targetId = cg$cohortDefinitionId[cg$subsetParent == x], + targetName = cg$cohortName[cg$subsetParent == x], + subsetId = cg$subsetDefinitionId[cg$subsetParent == x] + ) + ); + }) + names(groupedCohorts) <- unlist(lapply(groupedCohorts, function(x){x$cohortName})) + }} + + # get comparators + cs <- NULL + if(cohortMethod){ + comps <- connectionHandler$queryDb( + 'select distinct target_id, comparator_id from + @schema.@cm_table_prefixtarget_comparator_outcome + where outcome_of_interest = 1;', + schema = resultDatabaseSettings$schema, + cm_table_prefix = resultDatabaseSettings$cmTablePrefix + ) + + comps <- merge( + comps,cg[,c('cohortDefinitionId','cohortName')], + by.x = 'comparatorId', + by.y = 'cohortDefinitionId' + ) %>% + dplyr::rename(comparatorName = "cohortName") + + cs <- lapply(unique(comps$targetId), function(tid){ + data.frame( + comparatorName = unique(comps$comparatorName[comps$targetId == tid]), + comparatorId = unique(comps$comparatorId[comps$targetId == tid]) + ) + } + ) + names(cs) <- unique(comps$targetId) + } + + return( + list( + cg = cg, + groupedTs = groupedCohorts, + tos = tos, + cs = cs, + characterization = characterization, + cohortIncidence = cohortIncidence, + cohortMethod = cohortMethod, + prediction = prediction, + sccs = sccs + ) + ) + +} diff --git a/R/sccs-diagnosticsSummary.R b/R/sccs-diagnosticsSummary.R deleted file mode 100644 index ccfe77a3..00000000 --- a/R/sccs-diagnosticsSummary.R +++ /dev/null @@ -1,465 +0,0 @@ -# @file sccs-diagnosticsSummary -# -# Copyright 2024 Observational Health Data Sciences and Informatics -# -# This file is part of OhdsiShinyModules -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -sccsDiagnosticsSummaryViewer <- function(id) { - ns <- shiny::NS(id) - - #shinydashboard::box( - # status = 'info', - # width = '100%', - # title = shiny::span('Diagnostic Results'), - # solidHeader = TRUE, - shiny::div( - shiny::tabsetPanel( - type = 'pills', - id = ns('diagnosticsTablePanel'), - shiny::tabPanel( - title = 'Summary', - resultTableViewer(ns("diagnosticsSummaryTable")) - ), - shiny::tabPanel( - title = 'Full', - resultTableViewer(ns("diagnosticsTable")) - ) - ) - ) - -} - -sccsDiagnosticsSummaryServer <- function( - id, - connectionHandler, - resultDatabaseSettings, - inputSelected -) { - - shiny::moduleServer( - id, - function(input, output, session) { - - - data <- shiny::reactive({ - exposure <- inputSelected()$exposure - - if (is.character(exposure)) { - exposureGroup <- strsplit(exposure, " ")[[1]] - targetId <- exposureGroup[[1]] - indidcationId <- exposureGroup[[2]] - } else { - targetId <- -1 - indidcationId <- -1 - } - - getSccsAllDiagnosticsSummary( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - targetIds = targetId, - outcomeIds = inputSelected()$outcome, - analysisIds = inputSelected()$analysis, - indicationIds = indidcationId - ) - }) - - data2 <- shiny::reactive({ # use CM diag function - diagnosticSummaryFormat( - data = data, - idCols = c('databaseName','target','covariateName'), - namesFrom = c('outcome','analysis') - ) - }) - - customColDefs <- list( - databaseName = reactable::colDef( - header = withTooltip( - "Database", - "The database name" - ) - ), - target = reactable::colDef( - header = withTooltip( - "Target", - "The target cohort of interest " - ) - ), - outcome = reactable::colDef( - header = withTooltip( - "Outcome", - "The outcome of interest " - ) - ), - analysis = reactable::colDef( - header = withTooltip( - "Analysis", - "The analysis name " - ) - ), - covariateName = reactable::colDef( - header = withTooltip( - "Time Period", - "The time period of interest" - ) - ), - mdrr = reactable::colDef( - header = withTooltip( - "mdrr", - "The minimum detectible relative risk" - ) - ), - ease = reactable::colDef( - header = withTooltip( - "ease", - "The ..." - ) - ), - timeTrendP = reactable::colDef( - header = withTooltip( - "timeTrendP", - "The ..." - ) - ), - preExposureP = reactable::colDef( - header = withTooltip( - "preExposureP", - "The ..." - ) - ), - mdrrDiagnostic = reactable::colDef( - header = withTooltip( - "mdrrDiagnostic", - "The ..." - ) - ), - easeDiagnostic = reactable::colDef( - header = withTooltip( - "easeDiagnostic", - "The ..." - ) - ), - timeTrendDiagnostic = reactable::colDef( - header = withTooltip( - "timeTrendDiagnostic", - "The ..." - ) - ), - preExposureDiagnostic = reactable::colDef( - header = withTooltip( - "preExposureDiagnostic", - "The ..." - ) - ), - - unblind = reactable::colDef( - header = withTooltip( - "unblind", - "If the value is 1 then the diagnostics passed and results can be unblinded" - ) - ) - - ) - - resultTableServer( - id = "diagnosticsTable", - df = data, - colDefsInput = customColDefs - ) - - - resultTableServer( - id = "diagnosticsSummaryTable", - df = data2, - colDefsInput = getColDefsSccsDiag( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - ) - - } - ) -} - - - -getSccsDiagAnalyses <- function( - connectionHandler, - resultDatabaseSettings -){ - - sql <- " - SELECT distinct - a.analysis_id, - a.description as analysis - - FROM - @schema.@sccs_table_prefixanalysis a - ; - " - result <- connectionHandler$queryDb( - sql, - schema = resultDatabaseSettings$schema, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - snakeCaseToCamelCase = TRUE - ) - - res <- result$analysisId - names(res) <- result$analysis - - return(res) -} - - -getSccsDiagOutcomes <- function( - connectionHandler, - resultDatabaseSettings -){ - - sql <- " - SELECT distinct - c.cohort_name as outcome, - c.cohort_definition_id - - FROM @schema.@sccs_table_prefixdiagnostics_summary ds - inner join - @schema.@sccs_table_prefixexposures_outcome_set eos - on ds.exposures_outcome_set_id = eos.exposures_outcome_set_id - inner join - @schema.@cg_table_prefixcohort_definition as c - on c.cohort_definition_id = eos.outcome_id - ; - " - result <- connectionHandler$queryDb( - sql, - schema = resultDatabaseSettings$schema, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - snakeCaseToCamelCase = TRUE - ) - - res <- result$cohortDefinitionId - names(res) <- result$outcome - - return(res) -} - -getSccsDiagTargets <- function( - connectionHandler, - resultDatabaseSettings -){ - - sql <- " - SELECT distinct - c2.cohort_name as target, - c2.cohort_definition_id - - FROM @schema.@sccs_table_prefixdiagnostics_summary ds - - INNER JOIN - @schema.@sccs_table_prefixcovariate cov - on cov.covariate_id = ds.covariate_id and - cov.exposures_outcome_set_id = ds.exposures_outcome_set_id and - cov.analysis_id = ds.analysis_id and - cov.database_id = ds.database_id - - inner join - @schema.@cg_table_prefixcohort_definition as c2 - on cov.era_id = c2.cohort_definition_id - ; - " - result <- connectionHandler$queryDb( - sql, - schema = resultDatabaseSettings$schema, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - snakeCaseToCamelCase = TRUE - ) - - res <- result$cohortDefinitionId - names(res) <- result$target - - return(res) -} - - -getSccsAllDiagnosticsSummary <- function( - connectionHandler, - resultDatabaseSettings, - targetIds, - outcomeIds, - analysisIds = NULL, - indicationIds = NULL -) { - - if(is.null(targetIds) || is.null(outcomeIds)){ - return(NULL) - } - - if (any(indicationIds == -1)) { - indicationIds <- NULL - } - - sql <- " - SELECT - d.cdm_source_abbreviation as database_name, - c.cohort_name as outcome, - c2.cohort_name as target, - a.description as analysis, - cov.covariate_name, - ds.* - FROM @schema.@sccs_table_prefixdiagnostics_summary ds - inner join - @schema.@sccs_table_prefixexposures_outcome_set eos - on ds.exposures_outcome_set_id = eos.exposures_outcome_set_id - inner join - @schema.@cg_table_prefixcohort_definition as c - on c.cohort_definition_id = eos.outcome_id - - INNER JOIN - @schema.@database_table_prefix@database_table d - on d.database_id = ds.database_id - - INNER JOIN - @schema.@sccs_table_prefixanalysis a - on a.analysis_id = ds.analysis_id - - INNER JOIN - @schema.@sccs_table_prefixcovariate cov - on cov.covariate_id = ds.covariate_id and - cov.exposures_outcome_set_id = ds.exposures_outcome_set_id and - cov.analysis_id = ds.analysis_id and - cov.database_id = ds.database_id - - inner join - @schema.@cg_table_prefixcohort_definition as c2 - on cov.era_id = c2.cohort_definition_id - - - where - - c2.cohort_definition_id in (@target_ids) - and c.cohort_definition_id in (@outcome_ids) - {@use_analysis}?{and a.analysis_id in (@analysis_ids)} - {@use_indications} ? {and eos.nesting_cohort_id IN (@indication_ids)} : {and eos.nesting_cohort_id IS NULL} - ; - " - result <- connectionHandler$queryDb( - sql, - schema = resultDatabaseSettings$schema, - cg_table_prefix = resultDatabaseSettings$cgTablePrefix, - sccs_table_prefix = resultDatabaseSettings$sccsTablePrefix, - database_table_prefix = resultDatabaseSettings$databaseTablePrefix, - database_table = resultDatabaseSettings$databaseTable, - - target_ids = paste0(targetIds, collapse = ','), - outcome_ids = paste0(outcomeIds, collapse = ','), - analysis_ids = paste0(analysisIds, collapse = ','), - indication_ids = paste0(indicationIds, collapse = ','), - use_analysis = !is.null(analysisIds), - use_indications = !is.null(indicationIds), - snakeCaseToCamelCase = TRUE - ) - - result <- result %>% - dplyr::select(-c("analysisId","exposuresOutcomeSetId","databaseId","covariateId")) - - result$summaryValue <- apply( - X = result[, grep('Diagnostic', colnames(result))], - MARGIN = 1, - FUN = function(x){ - - if(sum(x %in% c('FAIL'))>0){ - return('Fail') - } else if(sum(x %in% c('WARNING')) >0){ - return(sum(x %in% c('WARNING'), na.rm = T)) - } else{ - return('Pass') - } - } - ) - return(result) - -} - - -getColDefsSccsDiag <- function( - connectionHandler, - resultDatabaseSettings -){ - - fixedColumns = list( - databaseName = reactable::colDef( - header = withTooltip( - "Database", - "The database name" - ), - sticky = "left" - ), - target = reactable::colDef( - header = withTooltip( - "Target", - "The target cohort of interest " - ), - sticky = "left" - ), - covariateName = reactable::colDef( - header = withTooltip( - "Time Period", - "The time period of interest" - ), - sticky = "left" - ) - ) - - outcomes <- getSccsDiagOutcomes( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - analyses <- getSccsDiagAnalyses( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - colnameFormat <- merge(unique(names(outcomes)), unique(names(analyses))) - colnameFormat <- apply(colnameFormat, 1, function(x){paste(x, collapse = '_', sep = '_')}) - - styleList <- lapply( - colnameFormat, - FUN = function(x){ - reactable::colDef( - header = withTooltip( - substring(x,1,40), - x - ), - style = function(value) { - color <- 'orange' - if(is.na(value)){ - color <- 'black' - }else if(value == 'Pass'){ - color <- '#AFE1AF' - }else if(value == 'Fail'){ - color <- '#E97451' - } - list(background = color) - } - ) - } - ) - names(styleList) <- colnameFormat - result <- append(fixedColumns, styleList) - - return(result) -} diff --git a/R/sccs-main.R b/R/sccs-main.R deleted file mode 100644 index 8aab8110..00000000 --- a/R/sccs-main.R +++ /dev/null @@ -1,216 +0,0 @@ -#' SCCS shiny module UI code -#' @description -#' Load the ui for the sccs module -#' @param id id for module -#' @export -sccsView <- function(id = "sccs-module") { - ns <- shiny::NS(id) - tags <- shiny::tags - - shinydashboard::box( - status = 'info', - width = 12, - title = shiny::span( shiny::icon("people-arrows"), 'Self Controlled Case Series'), - solidHeader = TRUE, - - infoHelperViewer( - id = "helper", - helpLocation= system.file("sccs-www", "sccs.html", package = utils::packageName()) - ), - - inputSelectionViewer(ns("input-selection-sccs")), - - shiny::conditionalPanel( - condition = 'input.generate != 0', - ns = shiny::NS(ns("input-selection-sccs")), - - shiny::tabsetPanel( - type = 'pills', - id = ns("mainTabsetPanel"), - - shiny::tabPanel( - title = "Diagnostics", - sccsDiagnosticsSummaryViewer(ns("sccsDiganostics")) - ), - shiny::tabPanel( - title = 'Results', - sccsResultsViewer(ns("sccsResults")), - ) - ) - - ) # end condition - ) -} - -#' Gets input selection box for use with SCCS exposure indication selection -#' @noRd -.getSccsExposureIndicationSelection <- function(connectionHandler, - resultDatabaseSettings) { - migrations <- getMigrations(connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - tablePrefix = resultDatabaseSettings$sccsTablePrefix) - - # Migration_2-v5_1_0.sql - useNestingIndications <- migrations %>% migrationPresent(2) - - if (useNestingIndications) { - # Requires migration in 5.1.0 of cohort generator - expIndicationsTbl <- sccsGetExposureIndications( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - } else { - # Backwards compatability - expIndicationsTbl <- sccsGetExposures( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - } - - expIndicationsTbl <- expIndicationsTbl %>% - dplyr::mutate(exposureIndicationId = paste(.data$exposureId, - .data$indicationId)) - - exposureChoices <- expIndicationsTbl %>% - shinyWidgets::prepare_choices(label = .data$indicationName, - value = .data$exposureIndicationId, - group_by = .data$exposureName, - alias = .data$exposureName) - - namesCallback <- function(inputSelected) { - if (is.null(inputSelected)) - return("") - - vars <- strsplit(inputSelected, " ")[[1]] - - res <- expIndicationsTbl %>% - dplyr::filter(.data$exposureId == vars[[1]], - .data$indicationId == vars[[2]]) %>% - dplyr::select("exposureName", - "indicationName") - - paste(res$exposureName, "\n\t-", res$indicationName) - } - - return( - createInputSetting( - rowNumber = 1, - columnWidth = 12, - varName = 'exposure', - uiFunction = 'shinyWidgets::virtualSelectInput', - updateFunction = "shinyWidgets::updateVirtualSelectInput", - uiInputs = list( - label = 'Target/Indication: ', - choices = exposureChoices, - multiple = FALSE, - search = TRUE, - searchGroup = TRUE, - hasOptionDescription = TRUE, - keepAlwaysOpen = FALSE - ), - namesCallback = namesCallback - ) - ) -} - - -#' The module server for exploring SCCS -#' -#' @details -#' The user specifies the id for the module -#' -#' @param id the unique reference id for the module -#' @param connectionHandler a connection to the database with the results -#' @param resultDatabaseSettings a list containing the prediction result schema and connection details -#' -#' @return -#' The server for the PatientLevelPrediction module -#' -#' @export -sccsServer <- function( - id, - connectionHandler, - resultDatabaseSettings = list(port = 1) -) { - ns <- shiny::NS(id) - - # create functions to result list - outcomes <- sccsGetOutcomes( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - analyses <- sccsGetAnalyses( - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings - ) - - shiny::moduleServer(id, function(input, output, session) { - - inputSettings <- list( - .getSccsExposureIndicationSelection(connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings), - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'outcome', - uiFunction = 'shinyWidgets::virtualSelectInput', - updateFunction = "shinyWidgets::updateVirtualSelectInput", - uiInputs = list( - label = 'Outcome: ', - choices = outcomes, - selected = outcomes[1], - multiple = F, - search = TRUE - ) - ), - createInputSetting( - rowNumber = 2, - columnWidth = 6, - varName = 'analysis', - uiFunction = 'shinyWidgets::virtualSelectInput', - updateFunction = "shinyWidgets::updateVirtualSelectInput", - uiInputs = list( - label = 'Analysis: ', - choices = analyses, - selected = analyses, - multiple = T - ) - ) - ) - - inputSelected <- inputSelectionServer( - id = "input-selection-sccs", - inputSettingList = inputSettings - ) - - sccsDiagnosticsSummaryServer( - id = "sccsDiganostics", - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected - ) - - sccsResultsServer( - id = "sccsResults", - connectionHandler = connectionHandler, - resultDatabaseSettings = resultDatabaseSettings, - inputSelected = inputSelected - ) - }) -} - -#' The location of the description module helper file -#' -#' @details -#' Returns the location of the description helper file -#' -#' @return -#' string location of the description helper file -#' -#' @export -sccsHelperFile <- function() { - fileLoc <- system.file('sccs-www', "sccs.html", package = utils::packageName()) - return(fileLoc) -} diff --git a/README.md b/README.md index 44958a89..62c2dbf2 100644 --- a/README.md +++ b/README.md @@ -12,8 +12,12 @@ The OHDSI tools often provide shiny interfaces for viewing and exploring results Current Modules ======== -- about module: this contains information about the shiny viewer and the types of OHDSI analyses -- prediction module: a module for exploring patient-level prediction results that were developed usign the OHDSI PatientLevelPrediction package +- about module: this contains information about the shiny viewer and the types of OHDSI analyses. +- cohort diagnostics module: a module for exploring CohortDiagnostics results. +- characterization module: a module for exploring Characterization and CohortIncidence results. +- estimation module: a module for exploring CohortMethod, SelfControlledCaseSeries and EvidenceSynthesis results. +- prediction module: a module for exploring patient-level prediction results that were developed usign the OHDSI PatientLevelPrediction package. +- report module: a module that uses ReportGenerator to create a report based on user specified inputs. Technology @@ -40,10 +44,6 @@ User Documentation ================== Documentation can be found on the [package website](https://ohdsi.github.io/OhdsiShinyModules/). -PDF versions of the documentation are also available: -Vignette: [AddingShinyModules.pdf](https://github.com/OHDSI/OhdsiShinyModules/blob/main/inst/doc/AddingShinyModules.pdf) -* Package manual: [OhdsiShinyModules manual](https://raw.githubusercontent.com/OHDSI/OhdsiShinyModules/main/extras/OhdsiShinyModules.pdf) - Support ======= * Developer questions/comments/feedback: OHDSI Forum diff --git a/_pkgdown.yml b/_pkgdown.yml index 67d66644..0521de2f 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -46,133 +46,37 @@ reference: - title: "Prediction module" desc: > Modules for prediction results. - contents: - - patientLevelPredictionHelperFile - - patientLevelPredictionViewer - - patientLevelPredictionServer - - patientLevelPredictionDiagnosticsServer - - patientLevelPredictionDiagnosticsViewer - - patientLevelPredictionDesignSummaryViewer - - patientLevelPredictionDesignSummaryServer - - patientLevelPredictionModelSummaryViewer - - patientLevelPredictionModelSummaryServer - - patientLevelPredictionSettingsViewer - - patientLevelPredictionSettingsServer - - patientLevelPredictionCovariateSummaryViewer - - patientLevelPredictionCovariateSummaryServer - - patientLevelPredictionCutoffViewer - - patientLevelPredictionCutoffServer - - patientLevelPredictionDiscriminationViewer - - patientLevelPredictionDiscriminationServer - - patientLevelPredictionCalibrationViewer - - patientLevelPredictionCalibrationServer - - patientLevelPredictionNbViewer - - patientLevelPredictionNbServer - - patientLevelPredictionValidationViewer - - patientLevelPredictionValidationServer - - title: "Decription module" + contents: has_concept("PatientLevelPrediction") + - title: "Characterization module" desc: > - Modules for the description analyses. - contents: - - characterizationHelperFile - - characterizationViewer - - characterizationServer - - characterizationAggregateFeaturesViewer - - characterizationAggregateFeaturesServer - - characterizationDechallengeRechallengeViewer - - characterizationDechallengeRechallengeServer - - characterizationIncidenceViewer - - characterizationIncidenceServer - - characterizationTableViewer - - characterizationTableServer - - characterizationTimeToEventViewer - - characterizationTimeToEventServer + Modules for the characterization analyses. + contents: has_concept("Characterization") - title: "About module" desc: > Modules for the information page. - contents: - - aboutHelperFile - - aboutViewer - - aboutServer + contents: has_concept("About") - title: "Cohort Generator module" desc: > Modules for the cohort generator package. - contents: - - cohortGeneratorHelperFile - - cohortGeneratorViewer - - cohortGeneratorServer + contents: has_concept("CohortGenerator") - title: "Estimator module" desc: > - Modules for the CohortMethod package. - contents: - - cohortMethodHelperFile - - cohortMethodViewer - - cohortMethodServer - - cohortMethodAttritionViewer - - cohortMethodAttritionServer - - cohortMethodResultSummaryViewer - - cohortMethodResultSummaryServer - - cohortMethodCovariateBalanceViewer - - cohortMethodCovariateBalanceServer - - cohortMethodDiagnosticsSummaryViewer - - cohortMethodDiagnosticsSummaryServer - - cohortMethodKaplanMeierViewer - - cohortMethodKaplanMeierServer - - cohortMethodPopulationCharacteristicsViewer - - cohortMethodPopulationCharacteristicsServer - - cohortMethodPowerViewer - - cohortMethodPowerServer - - cohortMethodPropensityModelViewer - - cohortMethodPropensityModelServer - - cohortMethodPropensityScoreDistViewer - - cohortMethodPropensityScoreDistServer - - cohortMethodSystematicErrorViewer - - cohortMethodSystematicErrorServer - - evidenceSynthesisHelperFile - - evidenceSynthesisServer - - evidenceSynthesisViewer - - sccsHelperFile - - sccsServer - - sccsView + Modules for the CohortMethod, SCCS and Evidence Synthesis packages. + contents: has_concept("Estimation") - title: "Data diagnostics module" desc: > Modules for the DataDiagnostics package. - contents: - - dataDiagnosticDrillServer - - dataDiagnosticDrillViewer - - dataDiagnosticHelperFile - - dataDiagnosticServer - - dataDiagnosticSummaryServer - - dataDiagnosticSummaryViewer - - dataDiagnosticViewer + contents: has_concept("DataDiagnostics") - title: "Cohort Diagnostic module" desc: > Modules for the CohortDiagnostics package. - contents: - - cohortDiagnosticsServer - - cohortDiagnosticsView - - cohortDiagnosticsHelperFile - - cohortDiagCharacterizationView - - cohortCountsModule - - cohortCountsView - - cohortDefinitionsModule - - cohortDefinitionsView - - cohortOverlapView - - compareCohortCharacterizationView - - conceptsInDataSourceView - - createCdDatabaseDataSource - - databaseInformationView - - getCirceRenderedExpression - - getEnabledCdReports - - incidenceRatesView - - indexEventBreakdownView - - orpahanConceptsView - - timeDistributionsView - - visitContextView - - inclusionRulesView + contents: has_concept("CohortDiagnostics") - title: Cohort Diagnostics desc: "Run cohort diagnostics, deploy shiny" contents: has_concept("CohortDiagnostics") + - title: "Report module" + desc: "Report generating module" + contents: has_concept("Report") - title: "PheValuator module" desc: "PheValuator module" contents: has_concept("PheValuator") @@ -181,4 +85,10 @@ reference: contents: has_concept("LargeTables") - title: Utils desc: "Shared usable utility functions" - contents: has_concept("Utils") \ No newline at end of file + contents: has_concept("Utils") + - title: Example + desc: "Connection to example results database" + contents: has_concept("Example") + - title: Home + desc: "Home module functions" + contents: has_concept("Home") \ No newline at end of file diff --git a/docs/404.html b/docs/404.html index 52ada86d..8fa38016 100644 --- a/docs/404.html +++ b/docs/404.html @@ -6,7 +6,7 @@ Page not found (404) • OhdsiShinyModules - + @@ -32,7 +32,7 @@ OhdsiShinyModules - 2.1.5 + 3.0.0 @@ -60,6 +60,30 @@
  • Adding Shiny Modules
  • +
  • + Characterization +
  • +
  • + Cohort Diagnostics +
  • +
  • + Cohort Method (Estimation) +
  • +
  • + Cohorts +
  • +
  • + Data Sources +
  • +
  • + Evidence Synthesis (Meta, Meta Analysis) +
  • +
  • + Prediction +
  • +
  • + Self-Controlled Case Series +
  • @@ -68,7 +92,7 @@
  • @@ -69,7 +93,7 @@
  • @@ -69,7 +93,7 @@ \ No newline at end of file + + +

    For more information, please visit https://github.com/OHDSI/CohortGenerator

    \ No newline at end of file diff --git a/inst/cohort-method-www/cohort-method.html b/inst/cohort-method-www/cohort-method.html deleted file mode 100644 index 72e455ca..00000000 --- a/inst/cohort-method-www/cohort-method.html +++ /dev/null @@ -1,3 +0,0 @@ -

    Description

    -

    Information about the study and links to the code used to run the study

    - \ No newline at end of file diff --git a/inst/components-columnInformation/characterization-incidence-colDefs.csv b/inst/components-columnInformation/characterization-incidence-colDefs.csv new file mode 100644 index 00000000..32ec0c29 --- /dev/null +++ b/inst/components-columnInformation/characterization-incidence-colDefs.csv @@ -0,0 +1,30 @@ +colName,niceName,toolTip +cdmSourceAbbreviation,CDM Source,The CDM source +refId,Ref ID,Reference Id +databaseId,Database ID,The database ID +sourceName,Source Name,The source name +targetCohortDefinitionId,Target ID,The cohort definition ID of the target +targetName,Target Name,The name of the target cohort +subgroupId,Subgroup ID,The ID of the subgroup +outcomeId,Outcome ID,The outcome ID +outcomeCohortDefinitionId,Outcome Cohort ID,The cohort definition ID of the outcome +outcomeName,Outcome Name,The name of the outcome cohort +cleanWindow,Clean Window,The clean window (in days) +ageGroupId,Age ID,The age group ID +ageGroupName,Age Group,The age group category +genderId,Gender ID,The gender ID +genderName,Gender,The gender category +startYear,Start Year,The year of Time At Risk start +personsAtRiskPe,Persons At Risk PE,The distinct persons at risk before removing excluded time +personsAtRisk,Persons At Risk,The distinct persons at risk +personDaysPe,Person Days PE,The total time at risk before removing excluded time (days) +personDays,Person Days,The total time at risk (days) +personOutcomesPe,Person Outcomes PE,The distinct persons with outcomes before removing excluded time +personOutcomes,Person Outcomes,The distinct persons with outcomes +outcomesPe,Outcomes PE,The number of outcomes before removing excluded time +outcomes,Outcomes,The number of ouctomes +incidenceProportionP100p,IP per 100P,The incidence proportion (per 100 people) = 100 * personOutcomes/personsAtRisk +incidenceRateP100py,IR per 100P,The incidence rate (per 100 person years) = 100 * outcomes/personDays/365.25 +tar,Time-At-Risk,The time-at-risk window (in days) +targetNameShort,Target Short Name,The short name of the target +outcomeNameShort,Outcome Short Name,The short name of the outcome diff --git a/inst/components-columnInformation/characterization-incidence-colDefs.json b/inst/components-columnInformation/characterization-incidence-colDefs.json deleted file mode 100644 index a47fde20..00000000 --- a/inst/components-columnInformation/characterization-incidence-colDefs.json +++ /dev/null @@ -1,1649 +0,0 @@ -{ - "cdmSourceAbbreviation": { - "name": "cdmSourceAbbreviation", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The name of the database" - }, - "text": "Database" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "3b", "00", "00", "00", "1c", "00", "00", "00", "45", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "3b", "00", "00", "00", "45", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "3b", "00", "00", "00", "33", "00", "00", "00", "3b", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "3b", "00", "00", "00", "3b", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "3c", "00", "00", "00", "0d", "00", "00", "00", "44", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "3c", "00", "00", "00", "44", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "45", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "45", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "refId": { - "name": "refId", - "show": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The reference ID" - }, - "text": "Ref ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "databaseId": { - "name": "databaseId", - "show": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The database ID" - }, - "text": "Database ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "sourceName": { - "name": "sourceName", - "show": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The source ID" - }, - "text": "Source ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "targetCohortDefinitionId": { - "name": "targetCohortDefinitionId", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The cohort definition ID of the target" - }, - "text": "Target ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "49", "00", "00", "00", "1c", "00", "00", "00", "53", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "49", "00", "00", "00", "53", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "49", "00", "00", "00", "33", "00", "00", "00", "49", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "49", "00", "00", "00", "49", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "4a", "00", "00", "00", "0d", "00", "00", "00", "52", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "4a", "00", "00", "00", "52", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "53", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "53", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "targetName": { - "name": "targetName", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The name of the target cohort" - }, - "text": "Target Name" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "54", "00", "00", "00", "1c", "00", "00", "00", "5e", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "54", "00", "00", "00", "5e", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "54", "00", "00", "00", "33", "00", "00", "00", "54", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "54", "00", "00", "00", "54", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "55", "00", "00", "00", "0d", "00", "00", "00", "5d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "55", "00", "00", "00", "5d", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "5e", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "5e", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "subgroupId": { - "name": "subgroupId", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The name of the subgroup" - }, - "text": "Subgroup ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "5f", "00", "00", "00", "1c", "00", "00", "00", "69", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "5f", "00", "00", "00", "69", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "5f", "00", "00", "00", "33", "00", "00", "00", "5f", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "5f", "00", "00", "00", "5f", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "60", "00", "00", "00", "0d", "00", "00", "00", "68", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "60", "00", "00", "00", "68", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "69", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "69", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "outcomeId": { - "name": "outcomeId", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The cohort definition ID of the outcome" - }, - "text": "Outcome ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "6a", "00", "00", "00", "1c", "00", "00", "00", "74", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "6a", "00", "00", "00", "74", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "6a", "00", "00", "00", "33", "00", "00", "00", "6a", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "6a", "00", "00", "00", "6a", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "6b", "00", "00", "00", "0d", "00", "00", "00", "73", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "6b", "00", "00", "00", "73", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "74", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "74", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "outcomeCohortDefinitionId": { - "name": "outcomeCohortDefinitionId", - "show": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The cohort definition ID of the outcome (duplicated)" - }, - "text": "Outcome Def ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "outcomeName": { - "name": "outcomeName", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The name of the outcome cohort" - }, - "text": "Outcome Name" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "76", "00", "00", "00", "1c", "00", "00", "00", "80", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "76", "00", "00", "00", "80", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "76", "00", "00", "00", "33", "00", "00", "00", "76", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "76", "00", "00", "00", "76", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "77", "00", "00", "00", "0d", "00", "00", "00", "7f", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "77", "00", "00", "00", "7f", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "80", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "80", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "cleanWindow": { - "name": "cleanWindow", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The clean window (in days)" - }, - "text": "Clean Window" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "81", "00", "00", "00", "1c", "00", "00", "00", "8b", "00", "00", "00", "09", "00", "00", "00", "1c", "00", "00", "00", "09", "00", "00", "00", "81", "00", "00", "00", "8b", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "81", "00", "00", "00", "33", "00", "00", "00", "81", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "81", "00", "00", "00", "81", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "82", "00", "00", "00", "0d", "00", "00", "00", "8a", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "82", "00", "00", "00", "8a", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "8b", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "8b", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "ageId": { - "name": "ageId", - "show": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The age ID" - }, - "text": "Age ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "ageGroupName": { - "name": "ageGroupName", - "defaultSortDesc": true, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The age group category (in years)" - }, - "text": "Age Group" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "8e", "00", "00", "00", "1c", "00", "00", "00", "98", "00", "00", "00", "0e", "00", "00", "00", "1c", "00", "00", "00", "0e", "00", "00", "00", "8e", "00", "00", "00", "98", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "8e", "00", "00", "00", "33", "00", "00", "00", "8e", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "8e", "00", "00", "00", "8e", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "8f", "00", "00", "00", "12", "00", "00", "00", "97", "00", "00", "00", "12", "00", "00", "00", "12", "00", "00", "00", "12", "00", "00", "00", "8f", "00", "00", "00", "97", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "98", "00", "00", "00", "0e", "00", "00", "00", "00", "00", "00", "00", "0e", "00", "00", "00", "01", "00", "00", "00", "98", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "genderId": { - "name": "genderId", - "show": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The gender ID" - }, - "text": "Gender ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "genderName": { - "name": "genderName", - "filterMethod": "function(rows, columnId, filterValue) {\nreturn rows.filter(function(row) {\nreturn row.values[columnId] == filterValue\n})\n}", - "defaultSortDesc": false, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The gender category" - }, - "text": "Gender" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "9c", "00", "00", "00", "1c", "00", "00", "00", "a6", "00", "00", "00", "0e", "00", "00", "00", "1c", "00", "00", "00", "0e", "00", "00", "00", "9c", "00", "00", "00", "a6", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "9c", "00", "00", "00", "33", "00", "00", "00", "9c", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "33", "00", "00", "00", "9c", "00", "00", "00", "9c", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "9d", "00", "00", "00", "12", "00", "00", "00", "a5", "00", "00", "00", "12", "00", "00", "00", "12", "00", "00", "00", "12", "00", "00", "00", "9d", "00", "00", "00", "a5", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "a6", "00", "00", "00", "0e", "00", "00", "00", "00", "00", "00", "00", "0e", "00", "00", "00", "01", "00", "00", "00", "a6", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "startYear": { - "name": "startYear", - "defaultSortDesc": true, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The start year of the analysis period" - }, - "text": "Year" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "ae", "00", "00", "00", "14", "00", "00", "00", "b8", "00", "00", "00", "06", "00", "00", "00", "14", "00", "00", "00", "06", "00", "00", "00", "ae", "00", "00", "00", "b8", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "ae", "00", "00", "00", "2b", "00", "00", "00", "ae", "00", "00", "00", "2b", "00", "00", "00", "2b", "00", "00", "00", "2b", "00", "00", "00", "ae", "00", "00", "00", "ae", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "af", "00", "00", "00", "0a", "00", "00", "00", "b7", "00", "00", "00", "0a", "00", "00", "00", "0a", "00", "00", "00", "0a", "00", "00", "00", "af", "00", "00", "00", "b7", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "b8", "00", "00", "00", "06", "00", "00", "00", "00", "00", "00", "00", "06", "00", "00", "00", "01", "00", "00", "00", "b8", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "personsAtRiskPe": { - "name": "personsAtRiskPe", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The distinct persons at risk before removing excluded time (pre-exclude) from TAR" - }, - "text": "Persons At Risk PE" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "personsAtRisk": { - "name": "personsAtRisk", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The distinct persons at risk after removing excluded time from TAR" - }, - "text": "Persons At Risk" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "personDaysPe": { - "name": "personDaysPe", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "Total TAR (in days) before excluded time was removed (pre-exclude)" - }, - "text": "Person Days PE" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "personDays": { - "name": "personDays", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "Total TAR (in days) after excluded time was removed" - }, - "text": "Person Days" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "personOutcomesPe": { - "name": "personOutcomesPe", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The distinct persons with the outcome before removing excluded time (pre-exclude) from TAR" - }, - "text": "Person Outcomes PE" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "personOutcomes": { - "name": "personOutcomes", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The distinct persons with the outcome after removing excluded time from TAR" - }, - "text": "Person Outcomes" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "outcomesPe": { - "name": "outcomesPe", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "Total outcomes before removing excluded time (pre-exclude) from TAR" - }, - "text": "Total Outcomes PE" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "outcomes": { - "name": "outcomes", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "Total outcomes after removing excluded time from TAR" - }, - "text": "Total Outcomes" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "incidenceProportionP100p": { - "name": "incidenceProportionP100p", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The incidence proportion (per 100 people), calculated by personOutcomes/personsAtRisk*100" - }, - "text": "Inc. Proportion Per 100P" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "attr_class": "colDef" - }, - "incidenceRateP100py": { - "name": "incidenceRateP100py", - "filterMethod": "filterMinValue", - "defaultSortDesc": true, - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The incidence rate (per 100 person years), calculated by outcomes/personDays/365.25*100" - }, - "text": "Inc. Rate Per 100PY" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": "rangeFilter", - "attr_class": "colDef" - }, - "tar": { - "name": "tar", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "The TAR window (in days)" - }, - "text": "Time At Risk" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "c5", "00", "00", "00", "14", "00", "00", "00", "cf", "00", "00", "00", "01", "00", "00", "00", "14", "00", "00", "00", "01", "00", "00", "00", "c5", "00", "00", "00", "cf", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0d", "66", "69", "78", "65", "64", "4e", "65", "77", "6c", "69", "6e", "65", "73", "00", "00", "00", "0a", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "d2", "00", "04", "00", "09", "00", "00", "00", "28", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "73", "20", "3c", "2d", "20", "63", "72", "65", "61", "74", "65", "43", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "72", "61", "77", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "6f", "6c", "6e", "61", "6d", "65", "73", "28", "61", "6c", "6c", "44", "61", "74", "61", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "20", "20", "20", "20", "20", "6e", "69", "63", "65", "43", "6f", "6c", "4e", "61", "6d", "65", "73", "20", "3d", "20", "63", "28", "22", "44", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "52", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "44", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "61", "72", "67", "65", "74", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "53", "75", "62", "67", "72", "6f", "75", "70", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "22", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "44", "65", "66", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "4f", "75", "74", "63", "6f", "6d", "65", "20", "4e", "61", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "43", "6c", "65", "61", "6e", "20", "57", "69", "6e", "64", "6f", "77", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "41", "67", "65", "20", "47", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "47", "65", "6e", "64", "65", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "1c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "59", "65", "61", "72", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "73", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "23", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "44", "61", "79", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "50", "65", "72", "73", "6f", "6e", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "29", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "20", "50", "45", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "4f", "75", "74", "63", "6f", "6d", "65", "73", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "30", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "50", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "50", "65", "72", "20", "31", "30", "30", "50", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "49", "6e", "63", "2e", "20", "52", "61", "74", "65", "20", "50", "65", "72", "20", "31", "30", "30", "50", "59", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "25", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "69", "6d", "65", "20", "41", "74", "20", "52", "69", "73", "6b", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "74", "6f", "6f", "6c", "74", "69", "70", "54", "65", "78", "74", "20", "3d", "20", "63", "28", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "72", "65", "66", "65", "72", "65", "6e", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "61", "74", "61", "62", "61", "73", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "6f", "75", "72", "63", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "74", "61", "72", "67", "65", "74", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "73", "75", "62", "67", "72", "6f", "75", "70", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6f", "68", "6f", "72", "74", "20", "64", "65", "66", "69", "6e", "69", "74", "69", "6f", "6e", "20", "49", "44", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "28", "64", "75", "70", "6c", "69", "63", "61", "74", "65", "64", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "35", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "6e", "61", "6d", "65", "20", "6f", "66", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "63", "6f", "68", "6f", "72", "74", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "63", "6c", "65", "61", "6e", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "21", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "38", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "61", "67", "65", "20", "67", "72", "6f", "75", "70", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "20", "28", "69", "6e", "20", "79", "65", "61", "72", "73", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "24", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "49", "44", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "67", "65", "6e", "64", "65", "72", "20", "63", "61", "74", "65", "67", "6f", "72", "79", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "3c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "73", "74", "61", "72", "74", "20", "79", "65", "61", "72", "20", "6f", "66", "20", "74", "68", "65", "20", "61", "6e", "61", "6c", "79", "73", "69", "73", "20", "70", "65", "72", "69", "6f", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "68", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "61", "74", "20", "72", "69", "73", "6b", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "62", "65", "66", "6f", "72", "65", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "54", "41", "52", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "20", "61", "66", "74", "65", "72", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "77", "61", "73", "20", "72", "65", "6d", "6f", "76", "65", "64", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "71", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "62", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "64", "69", "73", "74", "69", "6e", "63", "74", "20", "70", "65", "72", "73", "6f", "6e", "73", "20", "77", "69", "74", "68", "20", "74", "68", "65", "20", "6f", "75", "74", "63", "6f", "6d", "65", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "5a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "62", "65", "66", "6f", "72", "65", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "28", "70", "72", "65", "2d", "65", "78", "63", "6c", "75", "64", "65", "29", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "4b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "6f", "74", "61", "6c", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "20", "61", "66", "74", "65", "72", "20", "72", "65", "6d", "6f", "76", "69", "6e", "67", "20", "65", "78", "63", "6c", "75", "64", "65", "64", "20", "74", "69", "6d", "65", "20", "66", "72", "6f", "6d", "20", "54", "41", "52", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "70", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "70", "72", "6f", "70", "6f", "72", "74", "69", "6f", "6e", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "6f", "70", "6c", "65", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "70", "65", "72", "73", "6f", "6e", "4f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "73", "41", "74", "52", "69", "73", "6b", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "6e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "20", "72", "61", "74", "65", "20", "28", "70", "65", "72", "20", "31", "30", "30", "20", "70", "65", "72", "73", "6f", "6e", "20", "79", "65", "61", "72", "73", "29", "2c", "20", "63", "61", "6c", "63", "75", "6c", "61", "74", "65", "64", "20", "62", "79", "20", "6f", "75", "74", "63", "6f", "6d", "65", "73", "2f", "70", "65", "72", "73", "6f", "6e", "44", "61", "79", "73", "2f", "33", "36", "35", "2e", "32", "35", "2a", "31", "30", "30", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "54", "68", "65", "20", "54", "41", "52", "20", "77", "69", "6e", "64", "6f", "77", "20", "28", "69", "6e", "20", "64", "61", "79", "73", "29", "22", "00", "04", "00", "09", "00", "00", "00", "06", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "20", "20", "20", "20", "63", "75", "73", "74", "6f", "6d", "43", "6f", "6c", "44", "65", "66", "4f", "70", "74", "69", "6f", "6e", "73", "20", "3d", "20", "6c", "69", "73", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "18", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "7b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "59", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0b", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "17", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "73", "68", "6f", "77", "20", "3d", "20", "46", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "26", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "61", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "1d", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "3b", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "80", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "5e", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "34", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "3f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "39", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "12", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "0f", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "2c", "00", "04", "00", "09", "00", "00", "00", "54", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "22", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "73", "2c", "20", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "2c", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "22", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "73", "2e", "66", "69", "6c", "74", "65", "72", "28", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "72", "6f", "77", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "2a", "72", "65", "74", "75", "72", "6e", "20", "72", "6f", "77", "2e", "76", "61", "6c", "75", "65", "73", "5b", "63", "6f", "6c", "75", "6d", "6e", "49", "64", "5d", "20", "3d", "3d", "20", "66", "69", "6c", "74", "65", "72", "56", "61", "6c", "75", "65", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "03", "7d", "22", "29", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "15", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "78", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "56", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "37", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "31", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "08", "20", "20", "20", "20", "20", "7d", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "0b", "6c", "69", "73", "74", "28", "4e", "55", "4c", "4c", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "1f", "6c", "69", "73", "74", "28", "64", "65", "66", "61", "75", "6c", "74", "53", "6f", "72", "74", "4f", "72", "64", "65", "72", "20", "3d", "20", "22", "64", "65", "73", "63", "22", "2c", "00", "04", "00", "09", "00", "00", "00", "36", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "4d", "65", "74", "68", "6f", "64", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "66", "69", "6c", "74", "65", "72", "4d", "69", "6e", "56", "61", "6c", "75", "65", "27", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "33", "20", "20", "20", "20", "20", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "68", "74", "6d", "6c", "77", "69", "64", "67", "65", "74", "73", "3a", "3a", "4a", "53", "28", "27", "72", "61", "6e", "67", "65", "46", "69", "6c", "74", "65", "72", "27", "29", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2b", "6c", "69", "73", "74", "28", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "20", "3d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "00", "04", "00", "09", "00", "00", "00", "10", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "00", "04", "00", "09", "00", "00", "00", "2e", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "53", "65", "74", "20", "74", "6f", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "00", "04", "00", "09", "00", "00", "00", "73", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "51", "20", "20", "20", "20", "20", "20", "20", "20", "23", "20", "22", "41", "6c", "6c", "22", "20", "68", "61", "73", "20", "61", "6e", "20", "65", "6d", "70", "74", "79", "20", "76", "61", "6c", "75", "65", "20", "74", "6f", "20", "63", "6c", "65", "61", "72", "20", "74", "68", "65", "20", "66", "69", "6c", "74", "65", "72", "2c", "20", "61", "6e", "64", "20", "69", "73", "20", "74", "68", "65", "20", "64", "65", "66", "61", "75", "6c", "74", "20", "6f", "70", "74", "69", "6f", "6e", "00", "04", "00", "09", "00", "00", "00", "27", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "32", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "00", "04", "00", "09", "00", "00", "00", "2c", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "02", "7d", "29", "00", "04", "00", "09", "00", "00", "00", "05", "20", "20", "20", "20", "29", "00", "04", "00", "09", "00", "00", "00", "01", "29", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "c5", "00", "00", "00", "2b", "00", "00", "00", "c5", "00", "00", "00", "2b", "00", "00", "00", "2b", "00", "00", "00", "2b", "00", "00", "00", "c5", "00", "00", "00", "c5", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "c6", "00", "00", "00", "05", "00", "00", "00", "ce", "00", "00", "00", "05", "00", "00", "00", "05", "00", "00", "00", "05", "00", "00", "00", "c6", "00", "00", "00", "ce", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "cf", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "00", "cf", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "07", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "0d", "ff", "00", "00", "00", "02", "00", "00", "11", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "10", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "09", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "targetIdShort": { - "name": "targetIdShort", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "Shorthand Target ID" - }, - "text": "Target ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "31", "00", "00", "00", "0b", "00", "00", "00", "09", "00", "00", "00", "31", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "0b", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "01", "ed", "6c", "6f", "61", "64", "54", "65", "73", "74", "5b", "5b", "22", "74", "61", "72", "67", "65", "74", "49", "64", "53", "68", "6f", "72", "74", "22", "5d", "5d", "5b", "5b", "22", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "22", "5d", "5d", "20", "3c", "2d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "0a", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "48", "00", "00", "00", "01", "00", "00", "00", "48", "00", "00", "00", "48", "00", "00", "00", "48", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "02", "00", "00", "00", "0d", "00", "00", "00", "0a", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "02", "00", "00", "00", "0a", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "0b", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "0b", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0b", "ff", "00", "00", "00", "02", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "07", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0b", "ff", "00", "00", "00", "02", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "10", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "0f", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - }, - "outcomeIdShort": { - "name": "outcomeIdShort", - "header": { - "name": "div", - "attribs": { - "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" - }, - "children": [ - { - "x": { - "opts": { - "content": "Shorthand Outcome ID" - }, - "text": "Outcome ID" - }, - "width": null, - "height": null, - "sizingPolicy": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": null, - "viewer": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": true, - "suppress": false, - "paneHeight": null - }, - "browser": { - "defaultWidth": null, - "defaultHeight": null, - "padding": null, - "fill": false, - "external": false - }, - "knitr": { - "defaultWidth": null, - "defaultHeight": null, - "figure": true - } - }, - "dependencies": null, - "elementId": null, - "preRenderHook": null, - "jsHooks": [], - "attr_class": ["tippy", "htmlwidget"], - "attr_package": "tippy" - } - ], - "attr_class": "shiny.tag" - }, - "filterInput": { - "serialized_code": ["58", "0a", "00", "00", "00", "03", "00", "04", "02", "03", "00", "03", "05", "00", "00", "00", "00", "06", "43", "50", "31", "32", "35", "32", "00", "00", "06", "03", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "32", "00", "00", "00", "0b", "00", "00", "00", "09", "00", "00", "00", "32", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "0b", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "04", "00", "00", "00", "00", "00", "00", "00", "f2", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "6c", "69", "6e", "65", "73", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "01", "ee", "6c", "6f", "61", "64", "54", "65", "73", "74", "5b", "5b", "22", "6f", "75", "74", "63", "6f", "6d", "65", "49", "64", "53", "68", "6f", "72", "74", "22", "5d", "5d", "5b", "5b", "22", "66", "69", "6c", "74", "65", "72", "49", "6e", "70", "75", "74", "22", "5d", "5d", "20", "3c", "2d", "20", "66", "75", "6e", "63", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "73", "2c", "20", "6e", "61", "6d", "65", "29", "20", "7b", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "73", "65", "6c", "65", "63", "74", "28", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6f", "6e", "63", "68", "61", "6e", "67", "65", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "28", "76", "61", "6c", "75", "65", "20", "3d", "20", "22", "22", "2c", "20", "22", "41", "6c", "6c", "22", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "6c", "61", "70", "70", "6c", "79", "28", "75", "6e", "69", "71", "75", "65", "28", "76", "61", "6c", "75", "65", "73", "29", "2c", "20", "74", "61", "67", "73", "24", "6f", "70", "74", "69", "6f", "6e", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "22", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "22", "20", "3d", "20", "73", "70", "72", "69", "6e", "74", "66", "28", "22", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "22", "2c", "20", "6e", "61", "6d", "65", "29", "2c", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "73", "74", "79", "6c", "65", "20", "3d", "20", "22", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "22", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "20", "29", "0a", "20", "20", "20", "20", "20", "20", "20", "20", "7d", "0a", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "66", "69", "6c", "65", "6e", "61", "6d", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "63", "6c", "61", "73", "73", "00", "00", "00", "10", "00", "00", "00", "02", "00", "04", "00", "09", "00", "00", "00", "0b", "73", "72", "63", "66", "69", "6c", "65", "63", "6f", "70", "79", "00", "04", "00", "09", "00", "00", "00", "07", "73", "72", "63", "66", "69", "6c", "65", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "fd", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "76", "61", "6c", "75", "65", "73", "00", "00", "00", "fb", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "6e", "61", "6d", "65", "00", "00", "00", "fb", "00", "00", "00", "fe", "00", "00", "02", "06", "00", "00", "04", "02", "00", "00", "01", "ff", "00", "00", "00", "13", "00", "00", "00", "02", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "49", "00", "00", "00", "01", "00", "00", "00", "49", "00", "00", "00", "49", "00", "00", "00", "49", "00", "00", "00", "01", "00", "00", "00", "01", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "02", "00", "00", "00", "0d", "00", "00", "00", "0a", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "0d", "00", "00", "00", "02", "00", "00", "00", "0a", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0b", "77", "68", "6f", "6c", "65", "53", "72", "63", "72", "65", "66", "00", "00", "03", "0d", "00", "00", "00", "08", "00", "00", "00", "01", "00", "00", "00", "00", "00", "00", "00", "0b", "00", "00", "00", "09", "00", "00", "00", "00", "00", "00", "00", "09", "00", "00", "00", "01", "00", "00", "00", "0b", "00", "00", "04", "02", "00", "00", "02", "ff", "00", "00", "03", "ff", "00", "00", "04", "02", "00", "00", "06", "ff", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "72", "63", "72", "65", "66", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "7b", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "01", "24", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "04", "74", "61", "67", "73", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "73", "65", "6c", "65", "63", "74", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "08", "6f", "6e", "63", "68", "61", "6e", "67", "65", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "07", "73", "70", "72", "69", "6e", "74", "66", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "4e", "52", "65", "61", "63", "74", "61", "62", "6c", "65", "2e", "73", "65", "74", "46", "69", "6c", "74", "65", "72", "28", "27", "69", "6e", "63", "69", "64", "65", "6e", "63", "65", "2d", "73", "65", "6c", "65", "63", "74", "27", "2c", "20", "27", "25", "73", "27", "2c", "20", "65", "76", "65", "6e", "74", "2e", "74", "61", "72", "67", "65", "74", "2e", "76", "61", "6c", "75", "65", "20", "7c", "7c", "20", "75", "6e", "64", "65", "66", "69", "6e", "65", "64", "29", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "06", "00", "00", "0b", "ff", "00", "00", "00", "02", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6f", "70", "74", "69", "6f", "6e", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "76", "61", "6c", "75", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "00", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "03", "41", "6c", "6c", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "6c", "61", "70", "70", "6c", "79", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "06", "75", "6e", "69", "71", "75", "65", "00", "00", "00", "02", "00", "00", "07", "ff", "00", "00", "00", "fe", "00", "00", "00", "02", "00", "00", "00", "06", "00", "00", "0b", "ff", "00", "00", "00", "02", "00", "00", "0c", "ff", "00", "00", "00", "02", "00", "00", "10", "ff", "00", "00", "00", "fe", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "0a", "61", "72", "69", "61", "2d", "6c", "61", "62", "65", "6c", "00", "00", "00", "06", "00", "00", "0f", "ff", "00", "00", "00", "02", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "09", "46", "69", "6c", "74", "65", "72", "20", "25", "73", "00", "00", "00", "02", "00", "00", "08", "ff", "00", "00", "00", "fe", "00", "00", "04", "02", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "05", "73", "74", "79", "6c", "65", "00", "00", "00", "10", "00", "00", "00", "01", "00", "04", "00", "09", "00", "00", "00", "1a", "77", "69", "64", "74", "68", "3a", "20", "31", "30", "30", "25", "3b", "20", "68", "65", "69", "67", "68", "74", "3a", "20", "32", "38", "70", "78", "3b", "00", "00", "00", "fe", "00", "00", "00", "fe"] - }, - "attr_class": "colDef" - } -} diff --git a/inst/components-columnInformation/cohortMethod-covariate-balance-colDefs.json b/inst/components-columnInformation/cohortMethod-covariate-balance-colDefs.json new file mode 100644 index 00000000..f3d3bc04 --- /dev/null +++ b/inst/components-columnInformation/cohortMethod-covariate-balance-colDefs.json @@ -0,0 +1,442 @@ +{ + "cdmSourceAbbreviation": { + "name": "cdmSourceAbbreviation", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "The name of the database" + }, + "text": "Database Name" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "covariateName": { + "name": "covariateName", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "The name of the covariate" + }, + "text": "Covariate Name" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "beforeMatchingMeanTreated": { + "name": "beforeMatchingMeanTreated", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "Mean (Proportion) in Target Before Matching" + }, + "text": "Mean Target Before Matching" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "beforeMatchingMeanComparator": { + "name": "beforeMatchingMeanComparator", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "Mean (Proportion) in Comparator Before Matching" + }, + "text": "Mean Comparator Before Matching" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "absBeforeMatchingStdDiff": { + "name": "absBeforeMatchingStdDiff", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "Absolute Value of the Standardized Mean Difference Before Matching" + }, + "text": "Abs Val StdDiff Before Matching" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "afterMatchingMeanTreated": { + "name": "afterMatchingMeanTreated", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "Mean (Proportion) in Target After Matching" + }, + "text": "Mean Target After Matching" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "afterMatchingMeanComparator": { + "name": "afterMatchingMeanComparator", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "Mean (Proportion) in Comparator Before Matching" + }, + "text": "Mean Comparator After Matching" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + }, + "absAfterMatchingStdDiff": { + "name": "absAfterMatchingStdDiff", + "header": { + "name": "div", + "attribs": { + "style": "text-decoration: underline; text-decoration-style: dotted; cursor: help" + }, + "children": [ + { + "x": { + "opts": { + "content": "Absolute Value of the Standardized Mean Difference After Matching" + }, + "text": "Abs Val StdDiff After Matching" + }, + "width": null, + "height": null, + "sizingPolicy": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": null, + "viewer": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": true, + "suppress": false, + "paneHeight": null + }, + "browser": { + "defaultWidth": null, + "defaultHeight": null, + "padding": null, + "fill": false, + "external": false + }, + "knitr": { + "defaultWidth": null, + "defaultHeight": null, + "figure": true + } + }, + "dependencies": null, + "elementId": null, + "preRenderHook": null, + "jsHooks": [], + "attr_class": ["tippy", "htmlwidget"], + "attr_package": "tippy" + } + ], + "attr_class": "shiny.tag" + }, + "attr_class": "colDef" + } +} diff --git a/inst/datasources-www/datasources.html b/inst/datasources-www/datasources.html index 9dcb6d6d..a3e63a73 100644 --- a/inst/datasources-www/datasources.html +++ b/inst/datasources-www/datasources.html @@ -1,15 +1 @@ -

    Below are the descriptions of each column in the Data Sources Module:

    -
      -
    • cdmSourceName
    • -
    • cdmSourceAbbreviation
    • -
    • cdmHolder
    • -
    • sourceDescription
    • -
    • sourceDocumentationReference
    • -
    • cdmEtlReference
    • -
    • sourceReleaseDate
    • -
    • cdmReleaseDate
    • -
    • cdmVersion
    • -
    • vocabularyVersion
    • -
    • databaseId
    • -
    • maxObsPeriodEndDate
    • -
    \ No newline at end of file +

    This module gives an overview of the data sources used in this study.

    diff --git a/inst/estimation-www/estimation.html b/inst/estimation-www/estimation.html new file mode 100644 index 00000000..819bfae2 --- /dev/null +++ b/inst/estimation-www/estimation.html @@ -0,0 +1,28 @@ +

    Description

    +

    CohortMethod is an R package for performing new-user cohort studies in an observational database in the OMOP Common Data Model. This module: + +

      +
    • Uses a large set of covariates for both the propensity and outcome model, including for example all drugs, diagnoses, procedures, as well as age, comorbidity indexes, etc.
    • +
    • Performs large scale regularized regression to fit the propensity and outcome models.
    • +
    • Includes function for trimming, stratifying, matching, and weighting on propensity scores.
    • +
    • Includes diagnostic functions, including propensity score distribution plots and plots showing covariate balance before and after matching and/or trimming.
    • +
    • Supports the following outcome models: (conditional) logistic regression, (conditional) Poisson regression, and (conditional) Cox regression.
    • +
    + +

    For more information, please visit https://github.com/OHDSI/CohortMethod

    + + +

    Self Controlled Case Series

    +

    SelfControlledCaseSeries is an R package for performing Self-Controlled Case Series (SCCS) analyses in an observational database in the OMOP Common Data Model. This module:

    + +
      +
    • Extracts the necessary data from a database in OMOP Common Data Model format.
    • +
    • Optionally adds seasonality, age, and/or calendar time using spline functions.
    • +
    • Optionally corrects for event-dependent censoring of the observation period.
    • +
    • Optionally add many covariates in one analysis (e.g. all drugs).
    • +
    • Has options for constructing different types of covariates and risk windows, including pre-exposure windows (to capture contra-indications).
    • +
    • Optionally uses regularization on all covariates except the outcome of interest.
    • +
    • Provides the self-controlled risk interval design as a special case of the SCCS.
    • +
    + +

    For more information, please visit https://github.com/OHDSI/SelfControlledCaseSeries

    \ No newline at end of file diff --git a/inst/evidence-synthesis-www/evidence-synthesis.html b/inst/evidence-synthesis-www/evidence-synthesis.html index db8e9289..15a91285 100644 --- a/inst/evidence-synthesis-www/evidence-synthesis.html +++ b/inst/evidence-synthesis-www/evidence-synthesis.html @@ -1,4 +1,6 @@

    Evidence Synthesis

    - Shows all the estimates and meta analysis results -

    \ No newline at end of file + This R package contains routines for combining causal effect estimates and study diagnostics across multiple data sites in a distributed study. This includes functions for performing meta-analysis and forest plots. +

    + +

    For more information, please visit https://github.com/OHDSI/EvidenceSynthesis

    \ No newline at end of file diff --git a/inst/extdata/results.sqlite b/inst/extdata/results.sqlite new file mode 100755 index 0000000000000000000000000000000000000000..e46ca8bd41344c003539cf0f34cc2751b7d62b4c GIT binary patch literal 3100672 zcmeEv31Az=)&E|)rQKYPayecn7~Am?A90*JacmO|J`&prgfytKw6>Mlk|W7U%Rn7-RX<_yZV#_JMqn3-`-f)*(i6`t!!?T6X|l1Q^ub}k}njLS2nF`YVDL;+u+~Y z=H^nT!{G=-6@Od_`nrbX&c@R-Fe718-Tp{0)ExrlK7TCk(}i%pL8VVY`6j0(>@g{A zb$e4wUHf|Z)W-Ei2|+Nt*jZfdwt83Pj{!>qj2>teJ8GHXTBprhQo`;iz(@vsfkPN{c0w;2*+xvzG8#~#G3XB1ER^Of9`-wI-m)@w$6&JMK_%`F^(9PKX{WjED)$pL zUaeSsXh1Pk8rM1QkM<}CT?}%fzLCLrAkwcSGoX$UJL%`eY8_)rJRS=7K<%_|j+A<7 z=^vv;Tm8`xba*Xm-zGp@s{m@SXehSXw+)6UG)@d^64x5X$WX$1<6{{Z%mJvZmQPV- z4F&?lOgPTsofB;~@8ZSmuBCdbs%FIioG?^=Ffxc6*Cg4Vf<+)=BBTN{QqN58!>0X| z%on5^Yq%wv6L(YJR)621qG8k@3abexHMiB_!O`#Eo|@#}szm)gN@_A784miRL0?eW z3QYtPqnyY^35NV>c@Ow1D^hbA@Kx2Mr`4LIElkpdet5Fg<}D~-cXXt+3YrBplx-RD z|71W{Cl$TG#KesnA~x8s)=rf(0TZgyW+4;a+SID}qDr@+Hi)!lst{s+j5-;5idhE= z`}_471J%eM_V*3NLNUXH3S%Ik48#*PcNXvP2sUqVF}qW%k*E|ge<&7%Nzm61 zjz8u*ONmAd0?y)Hi+G!N`EvFWUTxu^66p2!^(kQ(Skc7y0E{M6hLD0%2C*>!X4H(u zBLlurIIcutUeIc66j0E7K~_CvlGTKgokp_1Omw3Z7m`UV45LKZJ`jlwMin1SHZiRf z#2{WaMg$anB1fzMcyV3UXtqBdSNaEZUtnZ)gCo|mH>Sr10|6zb=VoXVUrKI9mN7SD zdP;5s0q9ePhShS^C(Kj05H)cMuxFB=v^QBbe9q}>z%p? zS--$SLGeYpyJ2B9qBNPjMwHctXy&ptiHt=X8&NkjIX_d8>@v(y7h}$vrJ2jtButA2 zw>6)|j`+gaYEO@cU;!MD_>`?mI3DmNkz7h&PGXLs^M0aJs8+F*1wPr;ppsx;b$AB{ z*XM@ga6L4<8LsyauY~IlhAZHD%kT+sy>2)Uu9pvc;ks+s2G{LFaOn@jWrH6st6Jew zy%a7d6vJga5+64O?ac-0W!THJ<6&?9j`Xthx;P}R6kVPtJlA*vo)Y(4?t9%k-KV-I zy8h_8!L`{{?L6xIne!{o4(D{oUmdqP;*KQ_!Tu}z74|RKPq4je`;qM&Tcgcm{k`?u zR>fLodB^e-%PvccB}e#^aHG&K)bJnj5AnPCb^J{3MecTP8@HUZvAT9?WSO**485<}3S(QYEQ8g+{KhQw zPPHWT8nVzkMM&t?XQ6kpL2qRidaG=S^6IkCJIPSL62RxP;z60gWyVK zD@zntm_>1=hU%S|gH+eq4{QHp(h)<%k(Vt@)FgXKP?NrnTF<@ znuT7jp?*`c(3@dsK5rI!(+zr)v(TGnz$GUOy{U%sCS{>F#emDiEcCpF;V>Z!y~&3D zGCm8v90M-nve27kC{M~lZ=#`oVitN640@g{^u`;!iaQIvafb3-S?EayT%1|xi3vMv z9ID<}rX`O)E!EhwP;={Q^KDsJ=`!?cYZiJ=!zi+3q31}nLXD6`^%7vt=d&ozW~d&Q zg`U-*$Bv>08+_Yv8C)k1x54iE&9hu^eSIkkEbvkz4}ad39+Y-Ujp9Ax1!9vp!ShGY z9#6k#zWbQ_7w-RZpW&YEdewEe>pa&g*Er`NoYy-yJLfq*bo|`$HOJ|WeETc*yX@!K z8||X)Dcg5#AzPL8sP#eXZtFU0p5=cmcUsP})LY!b?}hIOJwgTl9)FPk3g5}+LImIr zZaY`UIoT)JZ?Otn&is>k0IV6~N85?yv7^TUTJ+AhDjT(CUG1c7)K1ma8naP5MOSOc zM(t!>tv(yIRl3^BY}8KD)#|cQYt+?NWTV!gt1Zt)tzK7KmW|pTJ|%b+xK&)aL7ImD#A(=xP<&sLj*W=4PW-t*e!1qgJJ>m1Uz=sjHP{qgJ7-m1Ltf zS67>pjas>`R-BDmB1BM>jasQ*T46S7CA!*)*{IFY)e5pvE7sLc$VRP5SDT%UTA{8s zD;u>Fb+!C#)CzPpIUBXvx>{Z~YO{2;nc1l2>uR~#sL8t8jBM2MbhYW(sLj;Xre&j+ ztE)}TMs0?!HYFRi>AIRX8?|Y=+T?81rs`@r*{Ds?)h1=5=GE0EW}`M)SDTQHT8^$Z zJ{z@3y4tvG)F$d`QZ{N6bTu&>weh-|CmXeKx|%y1HAz=Wt0Hfo6| zfIS;Emu{pj8@0r-oYhQC+R4-{apbe;G&!GJP&0pCRaHezc?CDZi85Z)?1YBd<4bi>vZ{dOCE z^iMw&0g3=cfFeK0Te+bJRx0g3=cfFeKkC5SjDmqmgDT?L-Nvot6yGm0-FQ(4`dXWIg_`|v&}2ukrbOLo0&5O-gy!F zuYemxkmLDw^dCC^=cW4v>3(?f-=Y6q4XHLofFeK%te_5ue8{R6$BK&-AuF_Nw8Th}j{gmi0=Zff~U zc%v}rVk3-c>tpK|OhoqAgBl!mMZyCPSIlx>XnhC_i+e8`vx8LX60t)cl$ zYCYCgJGOq2h;msBZ$(RMw-Wx^b)i@&4(*KIf?AJWQr$2Zg_nWiWYlsCJxF`*Y?GEN z;S1Wj;LV9!@k=&|o*`jO|mW@YY?7R8U=n%NJprz6USg!S?DwJxMwGu5nQZes(y zxi_FRs&C#T`Xp_=vVOS}sV;~2yQOuv6862-(MUiELdk7`z+g10K;4PH&VVec9Vm;+ z9MdeWN4-lMENa=1vc6~iQae&xY+5q&j6R-{b@gO`Y=I3jFdtL}wu*L;+f7>9)UDC1DUrlYK6Ors2)|L1s~DwcjN1*P+( zyQCLIo3u*$hUYb@R2nb7EB;Y@!1I)tCoUAj;>F^PV#g;tL(|+S0u%v?07ZZzKoOt_ zPy{Ff6ak6=MIc)Q3LW~9Z+XRJ3+yR%S`BtB89xP*xzywm_IigGG4xa9L~snHCytV} ze7GDg$DG4Y;wPCF0)eWDU!Q2MBuo${m~$-SEaR*kYn~%>NIE2$vLLb}UMpr`6?h6f z<}B_J_ap8Mtc|XXE^`+9p7TAYIg5G5{*2win%1p^vvD?a4sYeH<{7eIw|w1Vt|Y+6 zwAD-a65d?J!oh#g&79INP-pu{Ix4*@9g$v@ej&Xm{Y834`knNcz0!7r^_cZc%R$RH zVSs;xFXeW#ud?fz1KIY^f0O)h&Q#}gn`Jn{!8;7qcL3`BmpL~0?ZW{r!0S_@ez^xl zdF3KK>ZApuw9sj>48bvo0m|@h2f3_zevKUO1(lv&xvUbU#pI~c2Qj~`iX4x~A&7i# zUnH-N^bHNjk#0E<>5GJ!Lv_ld!{er4yA*S~PP0679PH`{g$E(R8H#~P8{Zk8=|v{( zU`94ZbG|#AI}u}ezPXueZo2+BnAsWi5B7s` z0l6#c4~5mP2=<8whv!bfFwQo$@0~B)`si`6uQ3+rRidFlZ^(~kl#q;OBtIG~2wyO_ zTM5KNXrfv6xNCUoc#P;abBhZvYCjGZCl8ule>e!X9UK^*IS!*~KI6QT`^8(1gKc$z z!MGxC4MqKZ@<1=Z815lc;)`-uFcyOb)h0!lcyP~T z4lNZI47)_IQ5g1_*f?$ew*AM!!n&~1AM!JYtam>@T;@U6>@XW3lfU%TqT^tV0k3VL zc&{9e$bFGmjQHPhED(we#==SroSx;u{~8|e#^`M}L2q*9s^c+bx5ZI^llzq*!q9Si z?{JO_+Y~dgNgD1w9#ae%6kSp1dc9;c@c$|q&UNCpg&&5dt)-;C+p3O3+cx$O^bW-o zn4O^!VGtPXd-K`h$qtO$pqYJZ?tJq&*jEpWK{&3KV~Ld&|M$0tC)%-LW{XhQK~o(^@<1v0m|!Zey!`*mU>IE>n@ALKgHkR`lj%X>wMvlE=4%t zI#u`{|7BODu-oMoVtmB;p|IZhS7EvH5uw0&hu~sYv(@5|{SNkdZaTlv{g&lD_CfZ0 z)@%7(_fyul#EtgL#X9>ovB188XGMp7x#u7D+18!h3!dNFZJxVre|O(&eTuz=dxX1< z`x^U^=bN_QSbMmr?Jm!`wyQjT+u7V&_qEo0t*2V&dKzs$Zh@!RR`1@)_9JMLJ~J$^ ziRMyz7sLGUxe3F}?o7--{q(%{)>HUn6H>KnSaf_={@F>49p|{_**6O6%r0{#%Ram4dFDcMCUfi`tNy_3%)tEM zrH@`_c4T0__slg1nBh#!tG@CGbHQ}fDr{P-{Og))?mRyO@1I+4FFr2=@10lIHJzJ* z_x4j<o*f%9@ZKK(Kh85U z@Q%HA_515H@cw!4<=p8RcyGV`+ry`s)_n5*zO&Yua-=nPzQ5KyKS$rQXTI5K&SRMu z9+=i)&O;&VSK2f2PO}_dlY#e9`)NB?XW&6>_i$SV9)wjlwPxa7{P47v3_J)aKGU3u zx8|l>PR+oB7}}vzGVuy8I-@BQFZYW-JUIgo0yS5!GHoFUkQ_Y8lmo$vm5rtx*n%Hw zFz58$wy55e1G~H*t~BS|JaAT>DF^mEr>rpLz@DRPxjE;_hBud)a~_Vpzto&_%erTl zm~voEd~mTj=e9YE7J0#sajAZce`TR*`s|Vgrs;Y0wWjIQH_SIp_r_{WEdn3)*gR7X z_^9q`Qx5p3bycPu@KHamH06Mg`f7zK2YgibTvHDCs3*%!IpCw7EHmfWd{35|a==Hu zSYpZnAJsa?lmkBMqGEH-;P<~?WXb_g^qoRePVM(Dc=tq84tS!O1*RPEMBOKta+nG^_ptb(yKD*Nw z_jmOv33lR}yS}}#uCr0@tXtXK2#>)eR>Sj}i*`6&wvVmsl<_B#pDz@YS2nF`YVDL; z+u+~Y=H^nT!{G?PL+Im5(APC2cQ&4$feGfA>Gns0q3#eU!&CR;K3xds8&vufly7os z!XA^-R<}2`)U~gdPiZ_R#X%to?22+=?;bA;i=HJ3B71! z8!h(uF_6(+g0u-YP?#p_|Sl2s5GuK zyz#e3LFi(T6ZMS@#siUlC7FThD7=chYOz|!m=ce}n=YVs+BZi^y|na?QKPN?XbAeO zmbGsaAg)yaH5j}RV6$%N4FcngP8L4L`_hHk1N`@`z#u{#k=EU99 zx7FV_sAypHhr(*YNzH9_cyRRlx2Gogx5A4odX&^;Kr$TkM}xi~yhWJ2q9KtBdPaF# z-UGhMiqu>Nd{s5+X|*P43zKwFt8hVYK>@o1URe$Etr33XcUwmMKN--~Nkwl~G+`tf zA~x8s)=rf(0TWfleh^Q1Yg4P@iz?lQ+91-JsX~bPG3sRKDG9q1)d~Ci^%(_ zkkzUeK-DAj1A1u>YOqyPtlkYZnU)=apguQ-1Au;PurKbbG)tYn<0P-mTT{bcIG41r ziKdy}v}9~dv;ZOG*!8*F%yk>5m2|%kjvc$gG)=Oq2!#WE@bVw|I!$)!ezTq>*Pl)^hK(h7#PLE~hrcYXDkT0}KFxj{(c)E(1uY~Jc> zcISrl_8=lj%|Vi;WNr;2@V{>ijB!laGKgNNj=G>>0Y^Z_y*Q;62`8w;0@2U_TD9N> z7j);bL7r47V7zqFNQ>-u-X;@E+C?OiC+?Ug z*}S#2>`vm_Om$5YCnUjXDuU-!)ME@>-Dm0DO>SsBscvm^r(A)%(TF<-Lq>@@n5_A= zO!RGnURqjLHDnnImdcuD*AVKSW7-R<+p;8t(Z)^Mk?SGda|`aChLR9Fg%mU4iDW+( zlCUu92}j^{76I%+Q$}*4x287<25Id5)KC)yVRE?uspc}0=3juf+HLi&${#~FHtc{s z9`4tSjhWAg7jYNC&i`&^zB_8|bw}Ns+?&wu`ofl6n|JP97DRxPntE|l%1jY~C1;<1 zATd{{335_%q_eRzRN!SkO4K*vaPNx5dq`{P8;*$0BsiIF#jg{5Ue*yVy;-rUqcsbqx-y37i*u`@>#64ucON~9I`5f zXcnx)wKXD4*q_jnSgf_a`Ke#FU24m-p-{|KYG_d35s|m4M#3?8FK8?=sFRXsW$+$J zLS)T3@=T@s&J4@V^qI<3FtOJ(n^jRX3hhJ9cq4ieVESNjp}L(6>)j{{n2aW*<^)Tr zk#or`pyuH3j)O-YIg=4(QtG6bqLNZ4b0I^W%mvh3P@T*LlIvtHqh_Mk$y`RwM-5)a zN2=0@GB_Va3xbZ2&nPk}_L%RJ)QV{anG2=lWM2K0oXmw%>SkUX&M8qjbD@-+%!^CO z$y^BM1aQMkbD@u9Znlv{0%&lLHULwE%W zm|l~1BIb)ceV#0p)kzV&UfoQqcP(rv%ufUp9zfkW7*~2~Qhv(}tJlAH^eiBV+Yj%1 zOq#>*Ag>D$)b+}kR@=~_ zO#&ZDE4GxV9_;u>X_S$}s-#(ZP$WA;s}Kn_mpB}h_nB6~I6n2trnFpAMT`we@Bi0+ zLqPvh1SkR&0g3=cfFeK|X~@E`i&G+x_7lWtO~1p0#XgO?gFm#jH{! zusRw-zjv*V!c%tO=^ID@DLQ6pDb1l+9HnkRsSeBoZbNjir!krk2iB~5xVapj{?Qaf z;uTojaW4LYuNzT$j#+J8F(tYcKSSa){3s8-NNh|b+5kV5#yMblNQ4_G^)!^lxg?_$ z%bP>}A#5lyaaJch{RCw*>!eT=YJe5tf|bEk{1k%@C60^2byM|1#C)}IbO$!hC4no( z4Jx8+AArXIAZQacaLfW2`xAL45CaAE(Fq1=j9Oc3edFp*UsD5OR905atFEXZr2`vK zRr#%TEsfZcpx(l&C0MMZv#zzFuD!vh%45-vktBTeb*np@+FFUE`hX9kLR0Iyy5^<^ zA3VpXLls+>nV*#1I)5MFXi|&%wgys*>gt*rqd-GjOI=f|iURIlM((<{`nr{Co8cis znne5d)=0G9D5C*Y-(1(xp@}txd!q1s61Za=_W%SH={^{=P^@t~Ja{0e;5P5}_r(<5 z=2`HYV8m*GJMH0@=ze$_5kksbsKq}pV8{e@HdGS%yAl7v1iIjHFl)^qK!l#Ll-zGk zx-IFkje2hzqe7GRNQHK|g^ct_QgUNB*Z~toNPaXB}V5dN2d#DQy1Uhki zQWJ*`tJ+upUGqlef{F$6^xkVSZv?dVH4d83+O$zQucBr_t+57l;=qpU-#Kx>Y|$>j zrGypNzahN>U+IS;KoOt_Py{Ff6ak6=MSvne5ugZA1SkR&fzKcU z7M^7-7IYN^bme(;nX*^Ej+2`2j^fV5q zaYo(oti=KO8CA*o|2>TKmh?C2_tMX$dyZ!XX;~BjiU37`B0v$K2v7tl0u%v?07ZZz zKoOt_jDUbBu(_;7+v{5}DQKjCNnRs)OmZ5@xdlhAL!;37KPUZ)kzRxg{ZIrb0u%v? z07ZZzKoOt_Py{Ff6ak6=MSvpksYhT6XJvEkd5j(xsOwSWWlQDiiYYAN=ph1~gU3K#v0vGzB2v7tl0u%v?07ZZzKoOt_Py{Ff6ak6=Mc}iEfMkJ~K;owYoQP3fYW@3gVWFX z`DNpIbikjSgnkVGQu9TGiNk#XCDNy+s5|39Z6(V9{OC;}7#iU37`B0v$K2v7tl0u%v?z-JVJ)Z>0~{%^S3 zAD{oj4+8WpKRN$TyZ`?-M*6$-q;x>K?K6r5HJc(p5ugZA1SkR&0g3=cfFeK(r={$pBu1f zMJNIk0g3=cfFeKao?TEge_mBpMGbFx`beR4PKHmxQ^Gl`i*TOy?DEWz;W-oj z{=hlyg(ydOfFiOHS($DiPT>+(3Wv8GJ=))o{%uMBc<$KJaU#xB%WZ6V9vd;!Wm`f8 zr0N`klT)u;`iIx=A>oB%&1@jM|CslWv4PMD*%$TE<=GVk(nl|01Dj^!qS$O|_0i?e zGjC@1AG_ps=FQEsa9J951jlp$IU|CoLuOmCzRnK;!~EL{80BDdw$0<zWRLIeh z)$}*o?AJa8XPM3HcX+hPuh)z6gva5MK|7YA`!VOf-pN^)^f9NtP!29Bo2l>P&U~9D z;i9sc`9Ai<*E=z506*ru*F6DBf;j~`MWSXV^LgS1N)F#viEgdT=D(its2sQvbCk|! zEaz}G1t8hr4t`l^94aWAUd~yLHD_BAcgmAcl$3o@A6=epQNs0m_+@<}E-KMPsJTo& zg1&I!@H#Nt!k7vW@{STw_Z~?M?#!X!#|4CC88EhZIK<{4hD2k%w*RgFL@TQ@KL&aq?9Qm2)n?jP}S+->pJGNFaSpRW6F>Lv3iqZN13g<7;^Z%Zf zekR=^eN);cZIRBDnxz^kUvi1>iqDCUig%0GiC-1Z5`$u!xL7O{CyI>c@1Eaze(L#e zh!>pi+3Z>8S?($JOmZJ{zv6xp;s>|5uW+C5-sE2Eu5*{Uy>8z1y6aijqprJL*Sfy! zin}(tPIgth@?36+Fgy1afR-r>&h7SP+k>4_g*UV@?E zjOq~6oReB@9tVJm({p(GNKu+m!r{U+qlCl9PE6B=J$pfV;zyUCkY0*vF4fSi632_n`RW8U_3t~%_!XMrl;rd^pR<)eS|+e z6}Pgn^$s7Kg3}EBhCkNqO-uXe^2w+Shq39vo}ARqg!}8HH1(&COiUetoMi$MgHfsX zCC+kqd}>WlgmYYa;zyTDsZfxpp_nfF^brpR6C!n5uf>5lH!j~We?TD3m6j{6krPHB z3V7)m2o9(ZiV7rB4%;C=6h%rTL69gd?W4=BU=7G6tic`2k|z1|5dkU#g(M`=#KGf| z4QBH*IV{I<4y}IJXb)e@IN5(N)`x@-tQYfV33rR%5!*Z^+`rg=us1W;p?}OKrW*d! zKEmDns>VE)35A2o_SlxbP+al(2jdY;`vO5-dvuXB7YW}#t z%O6vSqDoZk5K3&`*|XW5ZNTkQP@XEw@O5r|dt+T^qug1yvbj+eJ=(<(3WhJ|Fv4&-e1R$4^QkIHr3ZDS1B?7)Hn^rZorXZ}bHQRKc zlN+MXAMP3S_b9pz8L~5?q-7lnmde_9V=<+&Nv?qB(ju#OP03jBRN}E@Fd?DT`V*#p z?c5R7dn3`fF9Kbl&p)7MU`)#2v0%2%TV2gw=uK@5KeS{l9*G)SLrW^m)Et@sX%CGW z4ap$%aU~q|hvTD3_QQbgQ?@F7F<+$H7gGlOQ9m9UX^q|Q-#$i3V>_ByTq>KI2aVTw zg4MgedPMZeV9;|#bCK3Pw8WyFj(nRpKcC&TF{K3(!UY-d&Z^sI=&l_Nni-z5*jt^U4H&BF5i z)*Bko26Z}PHp5uG-o=aAs|phRB3%r3lJw+R={+W0Xe@3i5W#vG=DDLI)7rPR&5xRlD73#H^_UR+8}=0Z3pfIHp` zj(3D+8(Aa(^YhSXqclax+#Xd(GYIEv+L=_r5eHhbjCp~`_Y9e%Ow>(FH~JUD0vfFi z)kzY4O`keTWqqD3mDNcRyb|~pkG{;?kzZ)@mXxqNhZ1fM201ZQAF835LIIOekIxA8*xp7Qm+&k34pbn zII1Tm8b()~w7fPl=Irnl*pMf_aBV8&Mll2Q#^mBmO<)w#nu1sb>z+!}ex(5g0#&90 z#yri}W5<74<*Q8WiICx?a*CDEU>@k=HqXx)=}Kvy_zUrC;#x5eNcy1&Py{Ff6ak6= zMSvne5ugZA1SkR&flnm@r`cS5ecseEDc5dcxHqm{<&VXqa3C9pbEFU)Rm#0eeCL4+_A?&+wVH?MYHMFkx9zP-zG!91&rEAe{0 z(s;;t_K~LW00hvLa9my&iiP4SmyV{@L~DV?#pmTr&6lQv)_Cc{fC2}%k?o_ARYNGy7wJ~Q{(z}!b#+Y*QQXA4 zgjmkR0%o=V2;BZeJfSIfM1rBgez~?rZdoNaz!|`h5|rD)COB-C+oDkUPIR;!M@6(Y z)K^xP1w%cdxD4MbDry&0R@N?9SW&s4zy1PJmXC7@8}+ijfA$K!esWbs1u6t*TJIl- z4fZMWhI%NfE2?bYXj(u;RZV40RZX>_fDj7>KiI6>RaZO1$zBaxhvEM&D;Z#ub^`3!m9GB#&5JiKSm9Ve*bTi9%iK9NDoU- zN`IFACA}`a_^IsV)F_GoMSvne5ugZA1SkR&0g3=cfFeKFGitzXgL@YQPFE~(S0X_eZmtKP_yHt8#dRux;x<&ey^i}Bs zDJpeIozh9t0%?vkLlPxMd{aCu{!aY4xL3SI{1!Y9-~urUPXt&eHo-Fi%EUZzyvTdr z@x0{ugXdT9WPm$8H+Zh}e91EePY2lOY4g;1syzjs$sW7=efO*GKf51yA9Vl7eUtke z?n~U~xWn!*y4Set-8Jq)_f)sb^&vbj;Ca^*u7_Orxc=L9jcd2-eAgCNz_r%3%C*o{ z;>vYNF4p;$^9AQq&PSa0I=}Dyw)1PwVQ0*#I8SpnITt(2oO#aiPTuj3<0Z!*9KUq@ z#Bqn?I>+UXU5;&zkYj_R#j)H`>6q=vaoFttvcGJ9#{NtDe*3NVZ`pU-&$CDDU$n2W zudr9zXW1v(1=~Be7i~}3er~(Rc9ZQY+r_pa+a}uvTeEGct=yJp8)sv!N34gfPgozc z-fg|fdX@EJ>yUMmb%XU3>tbuEb-LAU`Oxy3$ea<6iK;vVDf=YGIl$6dzlydt>ad43%Fu#8s}m^ z&<2Zpc&kO=;R!9fr*}YaaSsm?^1xN&F&QW1{$EdnNSu2(rjox~gUP6>TV8;Lw-B;$ z-&ZhqKqJ45$p|6${BAuK4y)wvH)C!;A@`pDASU|=xx4H=EWDYJ2fqG8%-y7MpT%T| zkozXh!NR>NciL)9_7HOK@KG$>O~?aR9>QEj6)t-bxSrvl1%?e<_rQZNk~q#i98i^C zT!fXo2)XCwASV5UEZloOCcmf(UyAZ_5BoIIhsiSuxo_fbOl~CP{)gsaJH9~3`#K9T zcLO1JpKt-@o}rOn0IoQ^9!R(&s%g)2K=QnM_;gi!%>gWa8X*r{yA+e_H0^1aTuaEk zU)h9<>Qu=Y2wQQu14xwjOwHQN_>Qj>*+3`OgBtET%7 zCR+%3;A{WD!p*AgksX*km5}?ddjSidqUr9!+$KWqx%ffMJz3*kh`Fm&?i{V{!!{_gq2BT~5fty=1s7 zQ@K}OfQ6S5a_%Dp0t$%UFQYI67R0zw{avtzQBkO#g| zhK1)7a`%jHVQvi}3$G7h?mR;7dF=_zt=5D|udPyrZ+IDVD+zh9?XN(J!xcb6cQ|>% zeL$iSF_-WUT=iR=cR3;VTqy%74wq@-cd6o~gunlggmW(;ZZZ+;OjY=TN!F2T8vC*|l z?{3842QJE?a=*I_lXjK7x&#Z`Fv+eMB7@bca(_4- zb1j72U6c=`I4l5(OTG$7R5Gve%W&SDM%G|$mXQ1JcocIPm0Nf}BF`t(p1o%w+4Bfh zc;f)#ovTV#oP?-zH0n%5olU5chZiHgvk0~S$3I5AAwunarw>uv3AJbM-AHnqO5KTb zQT_0qd-fup>W26K_*|r?df`2LMZ{B`@SY#w;jH@L!W;caQgy+5>mEUr>Vfy)`z1uF z4tW26{{T^%|Gnp0M5*q#@W$H^rF!2zzj+dsr#j!#OYtC8eea&fPeYQb>pighJS3@l z-hFKih^IQ<-81GPO7**id+=aZ-R`~(Rfrc~99(VV&w-Kc}+`>IKBTDnPkNgNxn!9aTh$zk5&RmZu)!FV__Z>tb zUkmG_!aZL{HB=q#KKCCGPxZ6+wVaH2s+--rZ!V%#FS}2~{YQ1OdtUz<(nCHLt+@&w zLXxV3y>H#6h*JG)?ypLbr0QOG7vNk}?|QHsk3!YC?!Dn0B&qt=-35b)QeEr*Kfi?X zR6XmysdzF}9qU2meZ*7!>fVQbf%H_jdfz$=;;CNspmHnXsZMqOE%Onj`qaJOIT2B+ zOTBL`n)f~RczRv_=oK(g34&YosC&PSrU$p`Q1|{EFHSUn`r3zxr@GUFL2Rh%O%GgB zgLtYl-SZE;U{ZbQ-ft~JhH9?#mIX*s^`wP&#}H3-qOA)zxDn-od?(yG-gG1Glf-edE8=K!cdLGL{{zVPx#oarcH}Y; zOLdz2e{>yU6%m$nAu3z-n0vm7Cqv>e*^_gxL~5$P+`k{MYczNHst4(*-g56RPe+oo zNN+89bQYpiSGnf}47KVh@9VrA^jvwk@F{sSk)Y}(_nm4*lU%Yjt3-MI9xaY5rBcAFN_pQZC5Y;K}f8>0`Q+?w8 zoj*r<$R&a`d-E;>N<{t;t)gar8z_s#tvSRky+~8_hx;FCL7J*N+*`K=QN$Z^dkb?A zr8>iXeil)xFWi6eI7A^=2qo_OBKEneAKd@DFyg6haQ|gjjE7zR;$59^U9eMuYwhq> z4)6aTMf?9{u=jsfdenWb?G{1u{K7HYv&!>DPnlNmW!=tSgp1TY@BtLXtN)1KFIN#(4`JGZF+~IJgFo%1^{i?Osdb@R*`ytms%O2?j z$tnI-cui6yulR;^lf6dzrn8Cbvpj2=!v7clf^8A(%sYjXERVV0bKmOTx9{YJab_ElkqXUJOx#Qu~)(Uv=Frbn%b4 zYh5Q==Gmh5v+XY16ZZGSv&HM3KNX*pmWlVd;?5VOUrTq{r`jIkR!Zkfr%Mk=FYy*j zpEKaz?&)`I<1Y5R=FD;Yj(beZcdirf@cf=Tk((zBNS8{dx?1?Twwe4==^5^a_Imdm z*BP#BgdYp%iCyl?+-JI;bwB64)3Ta>i~l~KZ++W(q41z}tMzHiE0zar-?DvZd)PQpa;uPv^-%2jrs=k zbe1QQdrwEsoaG3$=htYf!Lo$ff7f9|F)D8#8o$gjLKW^uYklS;Rr1MUM1837PD0cN zDi3eSn4^T+J?)o>_dcQayz&~N-g65)&n^Ag4KNck|5DYid>OI+sjA_a2=gwXNJxZv zN0r185$0``!T}NHEmaT4Lzp)SMZzJ>5smsXD&Y-6kzfe(x=P_#2=f}DNGOE)2cbwL zgn5-vBoM;wJt?1TA>Mxl9P$cld{E1K`?!i1uC=&Ky z{-{x3K)F1FDK+T9{6W>j5fA2RLXm(6^OUBC;vLMBgd*V%=JzUvqaDoeFr@}Nm?t#7 z#i+bPsw56{FuzqP9OqyjClm>DFu&3CP?Uptj8G)V!Teg)!!Zu#SA-%V4(6Ad9*S@< zj}nRmIG9H?-i3(w3zdh%8_dHh4@WncpA(7%H<*VAMPeJwgDQnX8_dr%$rDhX2MI+2 z8_WShk+=r)0HH`&gSlVj;iv}lQ$mrT2J;h@hhrMdeJT%!G?;r;9*$@*`!z}2n)?Vv z;u*|dLXmI=a}S|NG=upup-3=;xtmZVmcjf;lRO{QNS(0?aU_HJA>olg26HE-)Hnw7 z1HvOg4CW3(kr)PZyC#X2vds4hkHjyS+XzL%7tF1MBGC)x7DAEW1@qs8BC!kRW{ro( z!}kb9A{Wd}sw56vFgFs4#4VUTgd$-J<_0n}anypjUKPY43+6gPk%$HJU6sNC3+7rv zk$4639YT?C1@moq;7p$KMJ<>5#KbAcOND9e#Z#QB6Efr#@6u^Y!B z&eaGMKsbjGBnojhAxIG7EJBbN#1J7!2x7ZR;0VMvmB0art%M-)he1sTg&*Q7fuj#G zLXhA?ln^BLu!RsL^e~_jIPwr7#2y@Y2or+D9r{%c4m;Nf+UeNQ0jcB+&3hm4o99 zK0=T%!QyNmNLZ;7 zIF3+9h&?!ru!0aIim;pzB#5v~6~i%vrGy|Mge5A0BM6HLK>`SiR1S_GEX0HwK3Jd< zIC@a4aZvDJJ~o=f4r&sN!e7n91V`cq)r25ngDOIhs6izmNYJ1{BT&p>t}2E@2IZJg zBL-!JAOV9?B1Yl`CD{9$}CW!AwGs2tlr@j{^iVG%*w(m`(^19+;+b zaCBfQA@<_nz!a5(V*_47kkG(nRSZW4axeh{9t8#_X<{fUFi{o5L4gSx2gL-&6M}>U z#u0)<1SCR`fPknHI3D031PKSYF`-5ST!ga^hXS0c4vqvkR2>`$u&V@)1K3m@90ste zIuHeb9sCm2t-SmYbVHtnltm;(TMP&m?^u8j z%mH}#L3cFLpSb^@lb&Ft|A7nrPy{Ff6ak6=MSvne5ugZA1SkR&0g3=cfFkf&K>*$F zFr7_~25?>r!~q=XQ2_M(e+xf_@!a5Qw7+EiGJK^Uiokz70vClXcGiATDEFexd`Dw* zV|}MwA^T(a5t`(cEbwlP^2BRFyaD!7m+bPddahkOVQ!0kO zrUpnz{}2>QowGE#*1DEPkeoHb16XH)ct>YlYeQXogHP2%DjjAFUwz%`PG}%3puV6F z$u+gEt7~p*@WE?LI|z4Oda_Y@9ePP0645NJZ)?DoYR~UQyoR=xx~5iA*;(}w^})Z0 zv#zbaZspo$c-N@PB~JrR%CNbvqeIh8c}nms*?BJH5{fl$5A+QNl_1oo+us*cP+}M- zHR!LFi~%zq9W?Mr6k5}PykzIb3pWTb;C7swe^Hs`Gcn*QtL9Z#RKSQ!biKqghd)N= zt0Wl$f?AVmoiC_A1R1r@r>L)?$1kV#GxU&S(=J9H{G6$aB_0T!b>~XydFH)~*LoL6 zdlzyeKH9s+Hg%1ucX7CPcaV%OkMhu(LZG~ z7kTFVXJqa=gS9)rGeYm8oy$0L(atr>s%s2W7kd7`MS6~rj!OT4djQ_1&;I|9-}+Jj zC;}7#iU37`B0v$K2v7tl0u%v?07c-lhk#XJ?JRG>e=Gw2!}0i!zzKrG?m*}N6FfbP z^dh_g@D}M@sYhyuC;kiKpTxVxo#H03Ud-{l<$2h1H3-oUMSvne5ugZA1SkR&0g3=c zfFeKv3L}I;u%-auT}kh`U7FTMX@Oj<~T2g#rs~{!QUB?EZPU%YU|7A>;O+gJvk^(cS-Wb8PbdAD#cR z;`W_w$_>dgwmb)X-et$exUa_^Nyh5&APH z`#JY7+}FByxRiQns0+ivSU((hb%f%IE}xWoV*ZJOcQM-zhh+-B$Zg$nU9dkChJ&&wK4Oz{ z3lJLZ%2p*jhyV#H#_zLpPate^AQ$Tm4YVtX?|Git2-LhEKzp8qy&Tc(o0=Zye4P{VFnGIXM0k z2d4DXJDU_A5P*w-f`{spOx2vo0f?L- z5!XDGX8!JFQJ>J$^)D0A`G1*bAtSvd{aN~@v{$-G`l_@`+Aj4=8>Lohp;RGFmqhWX z_&P)co)jMz?-0KwUMg;fxWJiWv$#a85_82#o@1UPo@YG2g$ThNo*O-1^=$QoJR3dD zo_ffdekcMI0g3=cfFeKB{Up3DA{} zEtiKx~I$Ql&SnvL>Gk6q33@P^1$ z{v;m9d6J@4GRgvlp7K;~QWR(=G6sixawR?~ZZl&%Uzi-KnT{&0#bTymLXE&ooyeCM zLnoG!A=n4SaZd6mugE?vs*Y>WHh z2?c?mFRt_tM56vapC2AIITQ=Ud{L!4Q+jVxw!y!(&CR7r%&@;-kvkhtPvHk6{r*tc2de2jFtG~)v(X_FUVkVSgRrKrUx84$ z?<^%6!9uvq)$L6!@MdlK)W-Ei2IER)y|7|u@eZNH=7q3T0wC=s6R55Bb#5vQ8iUka zqs-0Mxq8*Hb?8;>(a-=s3qWG@l98W5-B1$~yo`0$%_x&DpL|x>^N_c&0A8!?y628n~+bDUY?F;LY6?8RGR5{ zNs`bzUGjK@j@AnSdVe&~8w$YrQ~Ib2DsU#H#Goq%;JLJ>gD(mvK2d-vsld@q(xA`K zoW=%A$r;_DWm+U+B!JSoENQ>Gg;wv{xg)e+Bs$RR59>;(1(TDO?O3Nrp zhRFhH8cS2#FGd*fN-E9B44M zYHF?Crr9I34Vn#+Iv!UVv1B+hpG?{XT6<_LXbJ7>;?y?K7-N~VV{t#sS8+ILCEzwR zo>aHCxl=BzSOotS;>jA_&B4gFFh*x4{e6-m= zb6<>+J_sW;b8j8VzZhUP87k^(AX6i%Y>bkLcJdI=DvG+fYEhCq(bpchG@ZhkLo2VU zwt6?zWNPJ5IM6qU9KJ6)2)z#aOFZVQG)rBub4nF<=es&^)@CwhX|+kMY9^ujAY8t( zWe^VTke5tf?_mow_?~_R{Jh$x=JQGqS__US5s$=S2|J<)oG6c)jowP8)7!}X#@OAd+n=Tz9db#?46Ut%gQO!r&W&7&vn>_!jbS$KQ28bt-P|_>TS#$Arp0W#wFt|WYutWnavA_ z>^o|-p+IDiZCIi*wWE_{wO^004^_*`FsrFttp*voWm13A%7Q+De*e#m`)r5esPz;9 ziU37`B0v$K2v7tl0u%v?07ZZzKoOt_jEn%<|68QZjPzIOA?bV4m*Fe@Py{Ff6ak6= zMSvne5ugZA1SkR&0g3=cfFkhm5tw1I=dyNQ;5hB!dlq;pAb0x{aef)UY=)4^72rjJ z-1pC3VYA!pGx$_44{!71rY`w2`yBh+3@(++8FHQu?>TTJm21ct-T!Zqb}`b+(&N%S z(s$r1{ZIrb0u%v?07ZZzKoOt_Py{Ff6ak6=MSvpk??7OR4F?9;)VP2pm7#?Mgj9wW z4d7E5S|EU%Y{NkS{lWig41oUr|KHJ|G*5~EMSvne5ugZA1SkR&0g3=cfFeK!Ta>O)^S6x8E#>xtwl1sjdF(fDE-QhbIhhoCCo_ zYO9%^K^~p|TgAs2sb6|h{6M-zd|WE}ziwh$K1F~cKoOt_Py{Ff6ak6=MSvne5ugZA z1V%%k#Kxo801Lr^(E(;_E14r4^bHz3ug#a870~kdVo&Qg^)iBb}q%TSBlIR)l{+auH_X<~si*Y{S z{ED;H>2&4hKUpHw&R;lhUQJEqq8!MgI%ni8qDmkV z4JPT=RL`qkG-(XFr1&)5#)+W2G=JoBBV92iy48;kI#w&uP$bym-wst!swyfMmQ~c2 zRa7@l_*mJ55E4q|!ioiD6${I%sv5^bHZ{c~TeCG1@OKUN`J+SY08+52KG?stro2L~ zTu^pOU29q8!r|~ZYwp6@9ot6E2)!bjv_gXt3q(T$sDd3s;drm&?`)AnG1)H@G9C)Z ztD*i%I4-Y_3_#&XRPG4%qpy)@x!l>S$UPB%AJU3P0k#4y= z67BcLW997<;8xr=*6OzU`xUjG2@|!lkQrV6n6grYJm+TH7Re2<*n{jErFR8_{q0Jh z0!5AcoSyfH78j$A2FR(k=ITwPwd%!RBTr9{%`riHF?f_~vBNJ60ZMB~Lf&$2-4 zt-WZ=$Ts<-J%jx)J;dsarZk1&bQsSSr@-8Qw$m{yIv8#W2l@ulywwp07B+d7yhx5m z2bEHTL{JHmPF5d*qvL^iEJdg-I?(G6XJB@QV1&a|tzfNge_u??dtE3Nii1{M*&a{H zaV5-An}d;UU|~?%-nbQ2Cq)Eo4+YUtb~_B!6key&KM;xf`$&V-_xhv$Kpbp13j<&j z?hl3Ql|B$03}YK=P`y!NicX8-4^XID&ur)be_9XfUdM^{K!o|K)P{*GN1r% z;lNNw*gw$G8;RpKKew8PJPJnh?1N#{WNV?n#9~Sywul3z>187q41EbH)l`(%RxX$i zPPDeFa$(iH#VqRoqv*y#@r+1Vsq2Rp3i#)?D%*VPBhk(1{C~1*4I{qlY4^P1*(F{o zw!80ezwG+Jy-=!gt#Li*x>UMZ+9uvF&hY$5`kiNnd+UGVl8@GzB0v$K2v7tl0u%v? z07ZZzV2Z#ZSd1^!pX8lQXmD~Zs8)}nY7!F68H=7tIB?PuC~xT~dMB-UPmh zs%;;hnPjpx$p8gPfzp9e+EUUsT`5~y(o!mPp)E^gsc910NScHs1?qwp+1wBn5%&#o zVUtC11BwWW;*N+bqPQ!H`y)L1-RI1j&{llE?|r`i|9z)FICJMd*SXI**IDMwJu_z@ zqrrcZk>vO?o=>^Xae2j9A(NE9&qQ)`8O}c+nLky3K25|uARpxr(w!G`5w0Zd2&h!T z-&9I){b(ivcNHF015>N=6Aa3;E z`4lAh1JM0{HFF!me8IfJ>;OUeQy5SfP#91cP#91cP#91cP#91cP#91cP#91c_|GxW zPpu_&39u1?_!ajK92?HSs zy8o|cwh+vB%rSTeV9S55f=W&b0}2BQ0}2BQ0}2BQ0}2BQ0}2BQ0}2BQ0}2D3GtgUu zd;(;IOF+#lBfJ4BUK!yCpn7SL6F_`20QmrD$Vkr|hLC)bIm7(Q{J?z8oMb)%Z@`<( zVdJ;PJB$@ZBIePUSuvzxyJ3l8s-c&DuYQR>LHCsILhV`Y{o09|lbS0vqv?Oq>**?* zP;XODSL;xxK4J-e{3CR>|1g*WJg_w8Kpas<5K#~Fkj z8Q=wyR6O!CQfzup1kc|2oHt7#VwPe3mx3lwne! zmO(bu+87GUlB1svcq0c?=i1=V)W#EAsxq~fDu&6#HUdGvGpZO!<#x3O-GaUoV`4He zxZj?kO)e7()#8V@k)%T5pMI~u3BRQn&3TZ;@nB?Yu|=C=W0*8tDwlhK2iJq=N&MYO zQMfoT@z}T#nB8P`375PTwRvM(JQ{!%IlGxm)2y z9H>rp&>ccA7U8!&Lt)s&vkBhDgqM7xfinBJUqvBw$J6Ev*QSMle=Zw%iPPJPn(Xg$ z5Rjc`!5PvWPp?eF?Q2ontLt)E3(NI$);%A7TXNAmsiLOU12&;rY-&|SRW%F+KE}f0 zwC?#pYj|?1HXZs)x?pc|Re7bIGl#7Sza?Yh$l{_TYrDr?I3q=y?qL`Uh2Qx?T@^Kg zf3Elwy>W`v@XDBHfg8mJ-7fsT?K$1riC!DyO)P%8Vwl!ajs`6MCLFua5o&Niean5k zEl$DzkosaIes0j;LT&t{cSW++3g&=D?yWoC9EvXHipH6Pe!~6i%3#i85WzLO;9*a?9VVBscgde%g6FSSW1=<>@{stG19<+r$fFxN1tXZw*cpSgnKR{d!h77P zkg|3MjXMa_4fOYJi_fRzOW$Kgf;I;%XNnCai{}d;Wx1O|^J#IJd(IlDO^2Bf4N{+z z^|iL3$psHmIKBA7!Ki5v0I;1hIyrVRMLA_=7C$z7fY#!Na!c0vNf!5w?#%PJs0mQC zj-nSo(b!*`*$R!yna5Lf_r;gb;@wq1G_`oUGhS0+ zO)fy^Rl6VFr}d$E8qJfEd=3wM6wKP&ro?HjupWX@?DhCy>EdN!whZE_6`hxy=V+si zMFPO&>&1PwDTTPw(%ZQ(E69JyjFdwrvM4n6W8Y2hqm55zm_)VR0cYnB7s?W01)fHp zPJ1S!w>HtrF!3B1PaY^05~7oYsHfAOu87rI?YPPS!=s6Xm&!TT&e6y$U_K%NP~GkI zy|h+5aK}4Bu$Kdz^u-kyr-Ad4xDvo?vCbD?a6*$Ohjrkz$vwG}s*oXP#JcocO;kyd zIaw0j@w&PmT5Bzu#ft0fFs-oDidnlCwvK>v^tl>go@7%iOD0%q>fod=;vp?c0H^(@ z(~eAHwCQkeNf)dFyrxbvDg5lj9v3Ayc673tUqc}KvLy*$zD^b-HH#`?OAGmuL@e4T zRVHmF6fIL-4EtlS3q7zBn~T=rz9yvLH_VW$WfV@}fOu;SoD`b6d4f@!3&ZbH0VVXzWg~Ukq&$X6Ru>1LQVu6t z%FD#4L=GMV{pCQRR+|n(+d>ulLJQsKI*CoKt}aiD`pI2xIXDakEPlqS(I#dx%wV;M z6$LgGuOa!XG)@h zX=-h{6H2QpcEL)YZE=U2{VqV4h!>6y6akwu@FzPF5lw+Cz3%voQk6CZu7#inh|5>R zp!lQ9wX8#gK#Oh6rts7Uj5uN86~ZQXAv%8yfHe11ko#bUx5ApK4dmCL(Qj| z)l3s(W%TAR%nzEcFwZn+m=>EV_3QL4ra>mP@oVEgvfBCb-D~4p?y=kQM*E0ulY-JLbFeErzWha z(PYs7rjOG*=@s;JIz|1P`UUkZ>LzumI$rgSYOm@6RaiAqm8_zvcd1>}Dry#$OVQ+8 zpi0{sv^58c;1Bqlf{s8lzKAckmsFuL$h1hMJDxv1g-%O{3}8nIn1cey z!@(C<(m+9;oW>V~-gaNU+lqG-KG0nLsLjuG1ZN z)C~q6pdH=LW}jz1zOd#{{O{OTYtv~0X7iu zdhncvjD`50#J{Etp;MBOE#!#d#~SBV!0Q1p@oIHCv?4OmcroGwHfe&jzL=j}x%h=D zj&8IY488=81V?Ih$1kcJKqn+Z?qOKv2o{kH^W)wMzLwAkz`YO13cy}exbL8b5p__+ zXD3^rh+s$16b~uG0#GQgp=Yk z6RmV!j?5m~fhO$1J77g5;NEcq`%jl;LJ#Ir2$zMNzd^vuw9wx(N0sg58I}34`WNVd4ZJ)}sZ!$LoTN_5L<)`hf(V0Pm~eEb_mB+Qs9z z&QJ<2G~OSGA^cCscK29r{wNK2LVk227aP_sX`r5)#|)*@pj(yt+(GawMvOZ*)&c01 z(TQ|COc^DuL1=K4lM}9-yvT_Q)2Qxv)+mmF5||@ksmk?C7ybdM_Y`K)InZxP;LAZ4 z^no0p0F7H{U1SPrWNJw8$w-)?VD2laDFdP_YAr}`&*udT%l!o4?*&|smlhiQ)gZPj zu0D_wNV_nfBUVE51r>l`u_JF7OuJB1aAEtwqb!{zkW-u2=#Edz@h1}8JX`I*IM`umD!TTO)tp5jb|3#MK0h( z9boroO7`UQh6~aPQ^wYeWI81c+68o+r&lVNAJ(W(&FqKjWc-@3j+0YibIdGAUB@t4h;e zq}w!Q1Z{z_ZjbPChW(Mhd6!e~VIycO%rNIhMrt^hXL1&8g}GFSlDv%38s55jC^zkN z79FkQT$M={+5)3gh!h-?QNOW20o;;9EOd^n@LfA4vHx*!Wa%ZRo?up3?^pKnX=N09ykFlbLYVv+hb4$odc(WPGX}}oDVNSX#WTg9_oG02yfiLG*}Oz ze!}Bq(~$_o{-`Gga7!7CgcGk{@Cu4HMdjk{{Vj0b<*jn+XuFbj@y>W|Aj^GQoKcxW zs~>mfJTG?^Ob)NdrP3*=1Tr5~s8gR*-*`G6mQgZ~l;D8s6Hh0`^D(0P3A>tl^M#4@ z8u2rMGg1qM*&fT`k#i@~lZ2{?JUTKh%%{_OaVx=dok0RV(gV~J;4p@HZ;I&8anBb; zxi{uW4{i?O;escp6SoZ`0cB1baaxi*GG=a>a?YycoOKJ3(QM*c8-r!5N4&P-SB}pa zxoI0??D{|e-ru3;7A45V0T;Rl z{^0@~k~{}RNLN$U{#rQi<1H0gSYn6*C?N_;@NaTGpr84t%Rjh)P04^;@#J&;=m7~7 zRpa*xYyBXIi(e+ELgZfbADuW=R5`3uVDmwjaPt<`6|G%Fo$mOBq#5wf4x$GqswouD zEoUnP9|)AzM(jcF|I^I<1apdcpLvma97N?$VL)L(VL)L(VL)L(VL)L(VL)L(VL)L( zVL)NvKh8i;nkIFs1QmQVPp>;cp!ff2 z=5BQTe~`JGd5_utAFrU2p~8T|fWm;nfWm;nfWm;nfWm;nfWm;nfWpB4at31IeScK~ zDZlood7b>?U(M^}SN|$rC%^osdcp<(ssz34`XAl@k2j7bnB&Z2%r#6iQ_l1<|I7TU zd6W4{bDcTQ+{5&lX^&~0>2gzD;16zr4zv_p_XvjjyPAj*J$vc<0;RX#g7Ug$XG!OaV z205pZSv~XxMAsUgE;$UdmZsw>syQcT)NFEPeVkT9^+A1id5JUR5i_r>&(mng3TR55 z99|vt_=DZHWdg0C1|xebxv??rzYh~4Lkv}ENDHtA`}Pf{OUxC_hW||y zol;kY0fhmD0fhmD0fhmD0fhmD0fhmD0fm7G270KeL=v1qf*U9vD`YO9e!bLG5*gv_ ziNhF~d#7(NHJMCCICA=6RfN~3H&#WsXJWA`!UNMQMosl0IrmCWMolJ?l0T(KPqjW7 zwt0~*wi#?7!bxK0N+&r(OeQrIPYR9?BTf+R|f2}&|`drcS48ps^ubS zT8xSCK4>`1N)bbIie;igjT1$<4pdkb;U}Pa0{!|3UjW+wzXx+4gycuC|Nk${_smz! zr?3y;JIou*%gh00FY^?$19k;`h`BFjYRo{xQN#U)nXtp(2l@?qr{1djQ@2YO(v8#p zs@<=>Pur|b*1V&+NmE0gp%2oR)5FyNQtwi)g5CTEs2)~TQD0KGQd#7m zd=VG5ZEaLkz9!zrMQz>^6_uxnAIC*Kaxf|?R}(*$i+b>*sHhxG{1`6kZgW(WRg*EA zrt0DGjUW7yXOj(sr-n^+Iod*Lu<;T2l+dnJIH@jn6ip4LblQM@VsS}r_O#+!r)p(- zAx%vIWsBf7;=r)qM2)}2;e$=EU5)^^U%hHs)<~L~4LSZO&!y2FUg(Cc;hfkz1Y6mH zhmm!_zG2`dG-MUf^dw4681}#IY-y1^M5EYR_ad~_ray@G`NCdVYB#lSaiu$7L$~KZ z68&P`HLpY@sdfj^w$W&tI!Dm$U>$Sk!d`f=M+I!;>vmq^ZgH@a{b^}cXi%B&1Rz8;lgcG>2^kz|Bm_DU>G%({_^)1MwY)AzTwd3Z-o{H zuQ*3{vm165YKFc7EA@CNwaMV6g?A|(@LsUnD9-A!X74Allau%D+p9BiX@+hSiY%An~M1U$X$(_bQh z6;dxodBF!AASK$hyp5gP>Vxf9{XS~<*dw8I3r*XRh3~)k^ScNObOK_D!=~b;^R67_H>;eyLaTa1L z9YM6y>;f>Gu_~@Cou)6vRyzv8Gb=i1N3kU{irE^6%hL*b+(27R_4*v_%sNZR=?}VR zv*Tf#aM;$&2PT1zj1`4B!)dw}8@l?(4R@nFw2CSPcZz_f6V`olJ7AOyF99WC2 zgV|}`aj7)zL1o$b%iWP9px8SP$bq5MLFT{AS-|vD#6gVaigSx4(l}m?TA7Q1;>u+p@Vw{^C*8%lP z=&;cGe80@drHYej+K-L-KYcsG*mM{|;lF3anpiNDre|Ukjdw*hbqyM_sNk&A?e(&$ zHRJ7RFqYw)7f=(+Q*07VTX4eiJ&|-)*rx#^Wu|oqO;=$=*|6k@(iM9fThYG9Q5+B3 zHeoOtu&9mlPDT!GJ5*X87g^ zGjNMC>^_&exM^7fX}SXCyyK6p-$f*;h21RAt#9n0;sJc`+41}3EfFau!>Mo4-&eQS zs@(oGJr!sA+I7D~n6Sf{7QRu0MpYEiy4aENG(8)q+Ve%^Y-)D|8(~^-dHjoDbJggS zs@LuP_%XQSiFval@~ic?HM(J9_}exj*O$ieZM0+S&^{4HN}HP4h0W(PpIH8SA-gY4 zPr7KP(YuCc?Tc>~{uXqte}$Z#9z`m{>_%u2}~o%T?Fh27@N( z51_fV^AiNDC)sNL3}pFwTa6ivG1yq`O`9XK#l{w)Zk<|}n+AK*!hk+!zUL-vxy>)9 zrJMNk`i}91r4c3}C?Ts3mUI%=JEdaw4W<*$WHacK= z@b}et@AXs-O^?Mz=wm(*QG_yYs}t>q>vc3jPdql&PV;lr_MZ<#cEr+PTNu`GsCUB@ z2YdT_8e8#xxeGlmSQXE#L1%Wj(6GGTvqa5L6x+Y(6IBEMLRj*6&x8BJt0$?1L9zYQ zrne(X4VzuIz)V}?Xo9OS*WWYn@;xaOKNPng@73Dkh70o#uW>>6{xwMuzISy6gzv8O zLHN!}cy59`x*`k0x0g?W@U3NNf5SJI#X|VT(p(5%zp4hpSFY*>;o&8dA$)lWoV>`F z+VdbhG@gRXY&CNbLh=LVNBHvJQRbjJTRmJoMBN{p3I;W$`a|`j>TA=LrbVWJso8Xq zX@;rVG|^OK8fnThrJ7h%KT{8r&O{i0H~wJ!()h9QnDKSvi^dM)lg7u455wC6>x`?7 zD~(qg7a0S_X5&Th?m)G1qOr(0(wJpTHL}Kj#vVo;d}HwUm>*)kjQKd`Sj_7&FUEAl zJQ?#?%)>GF#;l839kVj#%9uqlftco)hL~wF6)`0-qv4AKX)$a}T#Q-uv38y6sCJd= zuy(2HIqfB?C$$097VTWsdhIOL?b;gcMAd5TIMs4(uIe)Fa8*#ts+zTZRdcjPRh^bn zU7-10Rirtk%GaD!jnKTO8lrh!)lYL!W!5~aQfszTe`p@2e$d=aeXdzUeW1C9dQ)>H z^`d40wMXOCG-_sODr3}!KMX$@J~w<|c+>ErVUJ;_;Zbde_6ftihP8(4;G2ny3_gR) zaG{~vFu^d!kZnlSZZZrq^fnj_g#K6kxB5@?$Mmo2pVvRFe+;}Tcj|A_uhcKrhxHfh zFVaubPu7pukJM-AhwA(5d+0T~v$`L3Uuy5yeWW|0dr8-!dqTHKcfW3(Zk2AS?h;)< zH&-`HSEHM#8>h?F4Tmo}e#3msyv@7>o}8V`Be2KA&CE*XawZ60c$mdZVJ0x6nJgxm z>CZ5X8s7XkW&YHB%>0V^IrA=f2jo8UTJyE=CP=IKVsit$4^nO(XU;LFniDkR&Al}F zn&Fy3nqC?W{Re%@tffDpkJ2yEd+6=-2Ksh-6}^OBU^+`*OwXZf=n3>FI)ffU_oWT$ zKh-~~KUcq}epUUP`U&-;>buo9sh6uS(GAk|(rL7RXisTB(H_;lWIC<(sT<{GAzAbb{{zbOOJ2WlciXCIN%{muypBnCrCSzbd6VT zBgbP&HM@{3Mw0r(ty9P%EFCR5LE5nNhVe8x4oin;KShqk(hH%l$T3)YblM?uG?K`- zi?@-Zu(WA-8d<1SQB=kkSk|{#PVXesIobQcoRj2m zUVgRkFqwvBlImT!o=oLr; zNt%}}_F1HwmwVb>q>7VIU2*MoB!zlg|Dv6TNfJw=GoB?0EaflUN&JN*7_DC7Pb_U3 zIE(lxn*zS1fI; z-bws|Bp9u0h@Y|4-uyiA6PCQ2Mi4(@Y09>5iPKoJeQzXwKoX4BF!4Q>UN2iuoWj!M zTaCnbSb8|%CBDVdrQe+-zCjX<)}6%HSW?X%LwtoK?H|b>5MLq*#%&$(1(uGMoFqQS z(i_H~iO;Zfc=ofzNi4k(`j+?^t&+i#W!~ zEtlOmi+G2Z2mWx9ILgW1r>f5qZ}aj)_LIaBl#}P|?I(%1u;jbqEb%6inm_B|BHqAK z?5!^1btE;tFwaH2hNXL+8AH5^rT9P{@d}pcYt|5lku-PKv=PM1SW3KTC-D-J8WMi< z5{Hm9XZLrP5icTX)|+v4#0yvoeQqQUVyWT7p~L|!C5P3-^GKSx&vzZMA4wN(DIP;S zhoyDSHN-wF%{cKq(SfD3H7;T=lIqtT>`m;!(vrcs#BMCjYd%aoi=^6u36qIukTm70 zOAixIV`+HL5yVqSs;*uzlz0+L{jUxayO2~hFV00gfhE(6n~2AeRQc+uBg9TD#Z4MW z?7&j*;dR7zERp+N#5N>V{Os`(k74Q1oi1W4lFH(ysEI8|nvn7B5n?lzv<*jyO-L$v z<;1tdMl2nQn?*c|rM=(mBp$)ix;ZjOKiZ>6*I!bgGjQ!QZt5F zkEOa@V~7W^)a$3o#Qj(@UG@QSACksD-LRCn7fb8!$|df>QtRe5#NAk`i~E+i3rm?x z*AsVQNjGdMaR-u$ca7de+>WHt4@~b(+=ir4iKFi%)*-2I>+2(kTai@o(3L+EYmt=y z-s*wGEm*o@!zN-4k}~en8;P5dWJ$fmNZf>^5#O{7C2qu0;?BdwYAos7T*M7XO7B-S zkXVJJ;hT#-Ag;$!!NK*!by$jhzmB*TNolXtttYP0sZ`XUSN9NCW8tNv#7Zn2JVmU) z!hQ|091D8~5zDafOg^y`3%e?btFW+RF0lj)TNe}USlGChxKgW9k%J!Eas@sX4ob8xO!Y0K3+F%5k9W;EyTyA%NO9|m3Oz|<7H2T@o~|s zA$$yf9>mAMpY!ptrEdTqJsEy{bWiZ%qhn4BKF(g?#mD+p^YC%%hKuoW${r6sRvc}{ z$MRE6_&7l`7azwDa^vH;d>1~Bs&wLG{@g}<%wFuk$BeZX;p6Zv4fr_h;2eA$^3iO3 z9Q5lfd>mk&iH~u^F2u*!arOAfOq+p^F}~^es9in{A60ixMaP7{o~XmeGq2X-<8PnW z;Nwq!PQk|?`c~uPw;5IV_~nF3d^|a)0v|tKFc}{|STzYBk8QXBACK%Q$H&)?PQ=H< zr^@j0kY)lt9vD=LkNfgV@Nsvg9Uq^XJ02e&UtElj+twE0Mx%o^FbW@93bFFXkp|e?jk`rxfJJ=kEng59mgWhfb9b&FR_En#BD!6a z&5Lj!$BIRKqb3WB_*P3MC!(7v8JvjjidZ-i-SQa0i*TPJofqLw!*E`N+Xrc!h+0NHM$!-XH@nf=5Tsi{O~i z@gn$Kw7dvc@7(#EI9-!DmfQlr@%fs&s)1klTpaUd$5pC(;TJw1$Lve`RDBA)|KF4R zn4m7E;^FFVgQ?i~HC(sa^b7SFn$z^tbesA*)$^)r$&bmoJ4VL$%e;B+Q^y&^OE6;Rcr*?lI!Gk09AOx?G&Nl&vcsKe?3c z48f)vSon)h3Dw*?-P%nJ0}kgrxaZvfH(x_=uMO8RN;hp$l{U_5CEEuGWsU+sd7?B^ zqsto=&zDxn6u!;e2)AtNN@vuu)ivc6#WnTpq|$mrT0x~IZc=hL#c%PzH~)}#tRWjp zA^xhXvT5R+W4lR+yn%jj3pP05OPp|*H`EYx&&9RxG^S+9pmEx`v17@rsss``#X%uD z)!U;9=@bRD==FNBL>}xCYnJJ#djvu{aJ8&3LRpu2fjiQ-K9pb77KEz`kMG}UBL&I;3hlV z;|{@1en^05#Um-&oIi-~D$3e}g|7v{*Bg0sTKmP5v~ejZK>FQzJIdm_=mjzabZdC70zQc@wWlnWAAz05!L;Xe2g0Zfq^G?iry@ii zEFLP*DTL3vfqPty8$7rcLdJg=BN@iY1bc|i&a8E#mn<35%E~lxGxN^pq=>u9IVVIx zThU%RL5o*07GbIrPiF!K2Jkt$$|uJIQ%WCX>b_F$qi@)02r|X!Bp-RrtyLo%sv%3G@5rx6QAa51IFycf;M~ zZRU-dqna(6<(k==JdKGyNk2=kq36+dy1)9g`jGlw^&)kZdYI}@)!VAgs->!#svMPp z`h$zYtoc)d`Z!2NUQC@md~xf-@Dp&42qYr?Rg>RVY6fg4-rRg zdjg}*EWVMj9ocndZVOZ^FF!XsJ1Z|`rre;r8-o|h47$59ST7nx_pQiU+l&44Klx^$ z-S)0#=!cp8?-g<$HbXGjJuYRsV35W)!XCFh)$z@Df7t)Dy)|xQ{w2(fg29w&0+737 z)+KP*R0JfU^;F1Ws%`Bv>t6U|NwMv@kBB#R#np=j>jZ-az-{lQDz&nzbc0K&5e%ZL zY$v)bVagN%h^o>Ja9FjxD%-oRN|j&`Rb^W@RjHI!r5jvIgWm`8@nJfVD^9Nl6 zhfR`KWn0%(xj-<8s#4KSRmx>m=?0fFQ80+AQqgq@Q_2J&s!BJ&VH4z4spz^YrGh~N z33qm>v$prs=G;9%cf0NQ{dX?BeclwICk`tStAcPTwzqB_8m?XSlkLMR8lTv5`7{w{ z7c$l(gK@TN@X)i^p541`=JatJ1zgH_dB(%L$+%dS@$hakE|Oypnhe|Re2;lP`=#j*Eq_jgDY~$LlYnma! z9@>&+y935e{v|zZ&)@wm8bo5I776yi!LF^1kYM+G)U~yA33kV?R@)u#O^JV1+hBYC ztqYf}xcMV7)8P_qojKcvCW-3DezYCXzBp<2VV4L?lVEFx71{0|mG(m0hR1C$?7Tnc zPV-(7mMXzkk4v$wMQfd(Pure*fUX@DCpCSF1iNlpq3vE+NUZ+rR@*_(=JERveJ@%Y zCc#$vM%wNI@Sbqstzlycp#CN2QFCR+y z{PrUvEM9_5-O$f=?O5C&ZM$dvvFY6}$BD3h5^TzzuFDoD!77dpu&sJ>3Yr#ddk5n> zh}QZ_u<}z~)7wXaP0%FTZoKp3)?fcU#MXgpFhaD}TY`-r)b*qqE5Sxpc3sn65-fji ztZf;ZahvY5Jss7NdP=a2wOwc017PrIB~17kUl4cNo;(psM!&o$h+up>pTtI{wB$%CAV|!TB6 z0#CeCg%9ULIP#&{5avImhA?+SI)ph7!n5v_b^Rg;GuID*Fynzy5RSMXA%~+c+f%9c z^@lL!UK@nT_cTG6bPuvQU&!T zgnib*^Y&EitthXawv2sJkig;0ItI0#j% zXF*8ba0P_K4a4BJ{GY4Pv;AkU4?}q7dMH2nuj|G``1`d`PV(1lVXr>&=WEg+{OM}+ zB>(A^b0PeGr4GVVE1*>5x69%FIQjLmOCbDe84KYTOQBTc=U2^x@Z?oS2tQqdEPUL4 z0ffgJDbpAtDdrh?41gMCOlLlWuK>(p)-sncCFWyHs(GIILGw!UkH*(b2h3IGc+*3s zKTRi0*T9X54A~+Ei=2%-Cq05c7<&N6arV$4v1MbK3Z!@sROx<9){KjcrD^ zaf)%QG0oV=NXC2@^KQ%mc(VVFm|#q<;a9_xhHCwn`YZMQbl>X^>h98ob(6HOYNu%S z(#Pn{w3kj-A5mWpUVztB>s4*4N>vi|JM{{AyP?g{Q~!v*SeLJTN;^jLsQNGU!|Exj zKMbo3!}NRf({zKi>$NGGTXaV44ccCsD-ACFS^XOQ2=!O+todlwN$qdiOEmx1%+q|S znMU15HBbrU`!UO7CdL>Hhv{~@h`N?4r?ljOnAtIjh7*Pd45RgL>F4QHy7zS3bSrfY z@PxWs^OmMqGeQGfn9|?T&(XKi)960xJ?bWP57kquRVt@yq{;;Tid|GIl|!B;w~|Y_ zHDGkuM*|nA36vq`;ea@06FYiqz-y5}MJTt6&`ZBNDGU%|8?V*J$hD90T3v*8tIUEp zmk?WI79{OvnFUF^NoL`MScZ)<3zGIxnFUGvh|I#}qJ@WL79{OMG7FM+gJ3}i58sLw z9^@&DP_CCjM~Tn}B&ejkUj{7{q4!BpNqMgXo%OZ|y+?$~ly?hI^mwocy^DuNDDRX( z-xHyCNKi?6y8uOx8jH}|cxZ%j9S@}=w72qF{H(HQV6Dt-ji|jvGAk+9$jnOGn`LGt z?M*VX;$<#zqhwZ6u9lgVv^U7iO4?PD*|p-;264S;R;Ij8GAq+wE18vPuMy3{!`mVW zR|{t4%9T7+ua;|9$P7pWXSrlRQZADjkhDu>2BdLwm1ICtE|Ec{0n#o(CFPZ%go%bU zsNn&0p=CBl5$-u4>W-CYoSD8UWrO1Dnq;yl}JE)Fub5S{uSE9^C<;A=bWiBc`Qs$zrnFpfGmkF6S z@k*4rsGQ3yQRbr3%_~vnqSD1HQRbr3DP=C|8hIdgunUHq5;7fwCK>~`p zIWpiO0XSO%in>`cpj!aWlz^h{LIDU~zMTTFo(IZxGk73&Obfv2yb?R11?4nei5<>@ za;hw!?SisS%16}I%JLDFHL`p}WMzY0tC ztbQ7jq!TE3^NxTw+U5(e*jFI3K!}9vhF{>7GBL6UBJ=t}N?2af2K4ra5Y-FpP}xG1 z-VQH;2vI%%fa`@5kUd(I+D(_eD@2fi9v?$0OPq$(qoTm(J>Ty#39+$rATAwt=SRut z{-ZO*b4Lz?r6 zIH~*uyq?#BA|c68xmunE@f*jpq3*lloovCHX(7b)=98%m1W6^fz9K{#Qy|hPMCu}` zGM2)d+!W0lRl&0 zm^i=aE^BKtcM$PHhR}b+b+H~&X?eQfEpvFWvcF(4<{{`mzwsqOFZiQ3Foj4hy5#*g zpB-hG0(UcfL!KfWYXJ-oLi#6XfCW%@&co_-Nx{t}7- zgrJu*g-Fex%wZy)FF!QZzZV?X%*R2hU!;h$U;O!*kVrcd;(majbVNB)^ z&0FEE?$Ro}O@oY|7#}juGiJdx{?qU_erZe(!~2E}hM-}r!K^}!^ zGs>UBfWm;nfWm;nfWm;n!2d=DEJ+NhqbMERCexw61hv+$)t#|jTiL$z%K@Wp&mXMQGa3u~|uLl}Joyj!$oaFlUc>sO6CV_TbN{JCt^<+hhrT=>iC(oY5B7B&h_bq`OB zf~&NC^7t9s17jBq{J@%Jd&7N#-ko?vu%0sr!%3(qiT)DQs;{-W#LOal%?-0sf7xGT zxbe#*ZPSUAAw$#Bg+$p2xV}=N^GK63Fe)Qj^|fkTVn&g@{D!B$vd~3_I&;M&@}NHr7)gL1UGFd^anhg z*6Iwthl_Tv@BQU~%4J16zjV^h5Bv1*O^-AM({3v~Ca^KGAIFB6^t@9R#zkdHt4^!N z#d%H^?fKx~eRr??x#;njX>-=yI(xu8&3yCs>3v3jD`Z;OH!3N0{z>~pB~__TLl3$5 ziK1se-C;<%?#80W=V-5d(0^6@MzzAjvtpLwb@DXNl3gO`0qAe!TI5$7huw5EVAs-)bzj$fGy*6mgvEzH35{z4nQE;kzcuW*r zr467dD=X_XDM+w#~S`iP-0PQs3Q_tAm-Pe2O zq~qV)j`k^>yYu0lB3u&%r@Dm?q&YYy9iJCeKT1!d4^VS86JzC(165H;Y1orbe9~qh z6%|WG#FA05D%FqVaiI?2dLWWae!}#z`A+jV<_TtoX^Hs{Gi}~yb~5iXt4$9viROOh zBjyFnDdu9+(@eJM74y~Rbmjr3)Z{mRVfxX$#as>F4ZPg6hJnWmls|<5g#m>Dg#m>D zg#m>Dg#m>Dg#m>Dg#pY!FAcZ`6G-p~3Kw8WJvHF|OCTl95FP}cJpnYBSAq9VP_euU zJamF8QLwK1T2Kw*txK8&!MdaxC|H+N0|e`ms=sLcv|v46ur6x)iPl9`oM>HC^%bp) zsy?Fi9|Y^Y1?!?FRbMNxNf1=9zdF}vR6hzTT3|-hs0C9J zNF|t(R8&uFN)H|Y!4$gxZ(trGnBU>cf1fiSF-PF5f6p_|GTT9^{3#453@8jJ3@8jJ z3@8jJ3@8jJ3@8jJ3@8jJ4E!e<&>PgSCxqeH=@i)ZK@IP>=o85njZRJKN!=h?t0r|i ztyTjOq~?>qbToiT`p=tBXw;z6sXx)GK%-OrH5ops4g&S(%^Fgzr*y|oqx=5``2HVr z7QPhs1M@X}0q`T{81p7`7=IM-KUqg5FNFbx0fhmD0fhmD0fhmD0fhmD0fhmD0fhmD zfo>U~RU~OJpb*~vhft?Op;n7R_&Pg;G>t;F8igtq3gN5WD!m@v|0jBMYg~y`7*H5c z7*H5c7*H5c7*H5c7*H5c7*H5c7*H7aznlSd{jXyz1oI{H8uK`FC)37U1mE(r{9j%z zrT7X13IhrQ3IhrQ3IhrQ3IhrQ3IhrQ3IhrQ|8)lX=`!fW(# zT8N3mF~xJk?qG%(q2VIbNvCl{NQf9rLqr;tph`MjRyx1dKK zMMQeR4It<>Ea=k`$aA~^0)XZd3O)cqujWf2x&VX-6`w%x00?>tz8VN6(DM!eK@Fel zBvj042&p3G4D11L+W4d~BgPkFHJml6CKYL9xP>V4G}sygc5)U{L*c?0p<|F4~+eQdHe#o0b(ta@T;En6FKJ3S6>xNV|8 z6!3%{UbZyg3He=awl?etdqQE4GbDl7)XIsqY0cqqU{q%2!i5VnT#m5A<#C2RexD=Q zmf>p-Wwg%AMA`;Po#_aNgPz9Lusf95lG)<$_!>e&whd0mtHI^YaD)Q3P_uub&#_=^ zR(6(kq$MlglAX^+6q4Hb$)Wa)q1w24?P*o&iS}xH?L;?}zS-#rx>>uwrN!@KtAl>0 z+trE{E|0H?t!)d1-7RdYy&|IQK5t8g&(oaIQCuw4<($lE2nwm1NzY!>|anE%J-9D!qq<|mXTK-@gn_3RVga2$G=nn)vZg6z9 zK@t}7D70i*E!KkAU4bFm*mk-+L0wi|Ug36mEVTiLk1cciaJEo!SF1D3mb;+Pp1B@( zkWHQL_kyo2#7^?IE`;A4TWL~S7c?<$8)!i`;Bd}!G`Ybz%C!IrfB)3Mn%GI@$*Qul z8bmJ`cDvY;U~3aw;t9H)T*=4VCzQ*3MWb`BC!^7w>GNi~phdlYhYQjpnn}{yBxX*@187Ug8T16gqQIusxI>u*Db05gT9+R=svMrN@Srnqun0GbDWR#(?@ z8jGm1peZ4Q)0Xh#LYPKid_%v?hSEOWu8Y&gPH!KaLX}jP;OYqjy9DOdM(AB^DmRW< zyTj*jIRs|?0k<#1iB)jGvv8){hmRq5IJ0qXUY!RkSn7(~4z{{-GFwCLV5Xxr z+>B;4==W|{CT^|FtV}dnWm+>st&Ld9&V@-FkG&8o06Pt4Jv4apGqN(WxTz;UE0_2( zr?)1_f_f1yh16l9f6FWPnl)B4I2|W)gq!7QB7Vw~?5*wvQ%iadRZ`qAA&ACui3d(G z(00(_y=|AkT+FFEo%h8=c)GGe=O`o&x5xC<#!hYTQ>d~}n_(}pv(p?-C$P#EyINq@ zf^%FDIy1xpv-a|u65K5iw{W7)c4RnRnA^++T&hr}$AkaF9TlI;5p;#b7V z3l<@B=oHOD4`Oqy&@(1O&(Iz3x1fh6VfN*H)b`dOI+eAR!pFK3=OJ~z7yoKsl^q=^1S~)I{C}y`#UXWJl|7xe<&>V zk;q?S7m0mvs7cc&F^y0m03KPQAcAzqr<52qY30!K?0%oigU?3d6ep>woIGD$On|!z zVl*jM&Wh6=2yRFT=SZ&}4U$ z!`a5-+$L6)v;H7k0tY9yh_$lBpX_KKtJC#qk7*x0T5T^coox4eTU#1E4mPrXx%mlj zvZK)tD+RoM5}{Ll9^CNZHfacW=6N#E{MZr<;XVf^@qpLS2I~`N2$l!oFf0_)VIZVW z4Iv38ob-xm)fQBQbRZgWlrBwbRh%W(nqjqavrAr9c6I^v?81z8tyUXb0sT{DFR2r{ zX9-MSQC%~&xa7aHL+Xx?tI=p;3uX_d>?IX^Q{&|^I*C-ki1wmoJenSwJmKcn#tf&w zC9`T`No{#1w~iKZke*$Dr_sfqwa3ufK27bhY1H_V>Wb>tMp!Dd;%P~k>hUZ96MU^7 zU0Yac9WXZtgAbj*EH1y#=Y}(302!Fy>dt7vCs}kBMJL_X1sQXLnPHgDov@~8awC04 zpgDl@WUU4KBt(4cQEOsb?3rpE+z#d3ke*9sRCmSPuN7`R$nEX7cxXWMB?8#}wbPYP9B zQCHjwmjMp12d*ZhleK&%O|2}QSjTl({*;p8b2o<__;l@P&GfVcyttik+r!d|zf6Kw z6sKbgoO#@#5M;-~^-OJPHCkhwY9Ba@VBLHglz2hrscT3&?E z2^TK(ZLJWDtAk){GJ5`B%}gPf51DPu6(A^o3IhrQ3IhrQ3IhrQ3IhrQ3IhrQ3IhrQ z3IhrQf6u@OwQ4q5;b{WL9e9fyaxDvT8nPR#;Oj;H!UmtC#oYjRFTJje(0s2tOQmwl z&^a7Bt0B}HKxjS@x}bN1^9WL?hEu9~S&D3w!rGA4;0ZPaz#$A-w!zI_jHL#Xs&c(l z7OQ{_d!P^=Tmtm`znYm!z^?y0m?a=6e+mN%0}2BQ0}2BQ0}2BQ0}2BQ0}2BQ0}2BQ z1Lw!Uh=1k+_@^F#f8YQ(&+GrM#qa-}Uj-GE!hphn!hphn!hphn!hphn!hphn!hphn z!hpiS|CtPQ{rx|Z`Hg^o%Adl3!hphn!hphn!hphn!hphn!hphn!hphn!odG52DGpn zVNOPNMjm?pU%CGOpVhcZZ4?F+1{4Mq1{4Mq1{4Mq1{4Mq1{4Mq1{4N(26U=8J-+@& z`~SC@(jg?Dg#G`2VZLX+Vm^i40N-KWU|wbpFni&vfIFDY%tP>Pz&n^*m>Za@nX8z~ znT5=JW**~a8kl;fmZ@OMm||u$lgDH-X-pE6z{D{&+|7?dD6(t!BU3V|JQno2Q$nm?xP_%{FtP zImc`2k zxE@7IAIcoE^o>=3%Ptz3cW=j(adSjmK*aScx+ul=^P!Xuz*&o$3QX#0FWe>I;{AG( z1pX*}LhKm;WU0OsqK5fI6FrNj{QRpb#rvkUu%NK0<(3`PWq-XQ;1XLn6VL>`!9>Bx zj{5R9=dIY)Qv`TLfB^vtI*K!PkK4C-nh2OD0?Y`I-*LgVM|yAlgAxH3i+~se$m_^k zb@vaOk|&A)Pb46>BYiwsJ^0vu5zs6Ga27coX+M-_4ZKYxHnB+r=uj5f9lfr(`po{~ zNuq_hA^?}c+L3Va8%o|$G|Bkzt(Tmi-1`o0GGkK_b1);&;09yVIp8=Bp_?=C!Y;yN?h130xlE*D2u$p z4l~s{<@=ULL_oa=&?3Odj@}Dr?CEDN6#+9ufF1z~I+9LYR6F3wXGOqt5rDJE@96PJ z^YLCpwFsCd0#GgT@;XT01FJtVe<%W`Mgnp>=!rjkckc$D2&fYQxR5y=Nq_$J)bf!7 zML?|xKy8ti-O+Q#(&rZ4{JjXM5dpXi*1eyv`}M^>6FnkeiU`12WOekuV(*n#?Mo8@ z)gk~{$Sv$(ayH&rV3HcEDiScVW8nI-zgovNixw&)0R2aYWI{MJ`RKt&`Vzk_r< z9LQ-tD*`5q094J~ypH}2o}~JntO%GS0&pR7J2abrbN%w@<09aKNI*_UtZ(=Gm%jiL za(-@hc2-{Ba=i{sb2@zj${}0OCr*q^XzkEEu)h6d(=P&`Z&^gbEKxr}uFsJ&Dvi*O z6!9ey`T|jJkI?6f`tcF^JW*d9p%*8gzC{uG91(Ae(2EuCJ1#GA0@Y%E!Dm-LNC>RWQ1O-eL;j? zs(pThUaEawgkGwBZiHT{eNKd4tbN~XxgJiFLbtL;=*9XbWJz=s&YFH_TQOrTv`W>^ zj7TO{J0U|#mV35_G!3nRWK!)d5y_<5kBHDqwNH=GOSK;!p_gi(7NM7FpDNd9NwrUj z(2KPnG7PHGCyqdUWm@~AL;I~bTjB7!3$rYRV%j0e66WIjdv6}}$kzxnGRrbj!VHx# zOXgkk(+#OZ5vCx^QXpZHB+Qx{`VZLZ{uE*Ivn=@%W{8A&fG(?k!L$-#^0F*>B4)&3 zJ%!2)ix|>fw6RBH;-|lUhETa#mfXUk`u&$U_H7*`wEGBFL{srakBw2aC*61kp>wh< zIfX?R4SQx}#TxOO<3kdq{2$w*dhfm3=MXkK%OVY+p@R@+0Ol<3`xU`?YeyiAH7m ziD;Uk{Uy}GYmb{xzLUkFA{u9Cyo6dgE{#}z(@+i-(L6)@NvO34U&{UZa2bb+XrQ5S z5^DYM*a`Og_i?C*Cd%jwq(kXZ6D=&-JUIK`4at=pj&G!)&pf!|{sXXcI=Smz3c@Fj zSs;A;of#1BdhZ(2=6;I5W;(3 z91h_vJf_wflxacuU7* z2-oZlLU{Auz7XED2bJx{-P0jl{p>;rZ+I5zS3QI3d;Qa85MKAx#SmWm6w+VwWIlvf z@2Y}u1&_>!u=SA`2*VF2Ll}Cf62jny zFog3rpu7SP4u#Oa9rPaD=bb38#yc`0bli@tU38lt!iL*=K{#h!0fe(}t%h*cTEx%HwI&EJyam;_ ze$6xpXWSfsaQaP`LOAUv)GkwR%!ROS^=t@hS8E`wxdGXqvI_BEeLX5$)%8Olth}xm z!isBA-swK6{vO-mQR4NblHUvmMlfF_NBcc9Dfz+ zOT|l2OBJ=F^4k`o`~L(KNBL72P#91cP#91cP#91cP#91cP#91cP#91cP#E~1%K!~k zQ!%F@By-{Z|F2m5pIcp}W(ore0}2BQ0}2EG$1%{pGKn&hgNgRDNoyD=9R=Uy_WI|# zeGaF+rnI=Ol&vcsKe?1mvcngy(FcLpRFi?lU$BQ?@IfEe;|sHuRdsCT)X9@aaB=wS z-YBlo(&k2E%I&pMjd8q5sGfTPe3l#6o&Ty5q9GJ^z(<*&B<>L`d~BMR{DB5}1pJiZ z7I;FQaD(3|e8L_qBEk{V^IPGQ)bJ%JR|C!~WHMmVfD#!a0e6PHBpI^8K$JXNgcOSe zKcY&-X(U9@zp%jvAD?#zQ`1;Kd{LfF4M62Q=%ZC^V;c*2F)#S4J^E%frBO=>Jt8)zxzZ{FdzZ z>Az;zq4ImLURC|-y{hW!>FR-yGefJ9p5lRWmJAxG)r#8;9qOAbfwTJN#=`Z`_r7w} z89ScCw1$gKvLy;F< z9j>AS$B!I1ipTiJjHCkx9_Q%5aWdolPiNqO(PEetz6PV;k_=+d{ePSA1wQ{DlJr9v zpbSt3CVcKLGZF1F^p9@Veo5Bs%((3q% zNH`${f=!92{C6N!8wf?~qOgY)iZ;PEdV>T&A{Gf0XOk=kgYb}y$+SKPQdQm|L(ChN z!iGQWVj69w{8?w%-wZ+C{(-S4Q7x$<9*v=G`$XJODFUx;SyaV($Bs3xpO#t?LW`&m zfz}wSr8j}l@ePD+Uk>hE$V633HQ@$%_Z{7NCS2RR3AC^(z-ju>ISNJ?oK+@w)B(OZQf<4$r01+_hRyA_(TsI; zxb=m)A*EE3WulpdnVM8+sDB|@-$K1|8ZOtQP%RdEs61fzE*WuRKgPX7Ixz-A>lZI$ zy(J~)jq@{fbWDmjMH0r2RIqchcrP-nXq@7{2E&o2INW&($gI@|kV3US zm+4gNSf?yh>l#L?bv(<=n1%Js&gnZBMiJkF^2G~e@>fJ)M5(V2HdO0aQx*C(1>6mX zo6hR&fONz0KwK7~_>eOzika#M;tXA3&_q3P#>w>rk&oyJ9nC9VX!n*EWF3sEp^fq) zqd24`&s^Vo0qZR&FmKFNI!_Z|jU~oz(&TdApx>Ox1~Y{Lx|2RcOene1)z6w{P4w~O)2UV*MK~@7% zoL0HTg2U7kO~mUh8r!7Ktf1W+9G|uO@ai$%1fB{%g-Khs8U)h%x#zIn@#D=KN2kQ4 zK}`=$16*zF_RM9g0ZNQ3nFb@x3o>;Q(Vd)6{#j4fi5=F(K@_EMA<kH?x-eJSc8(Gce zV3G`1qt$c(=0OSSYXr_nt*lXO4E!wJfr3e0s5MK$SR8(cHmkg{qD-kZ%pK@=M9Scc zRD-orpf(n5Y9z1_oEy81N2D4ua zmd&+$+sIfA6G><}YAF21N?zik5h4X!w0aKfEiN{uaIbKlFhPLhjOd3lKpCJ6PzERilmW^BWq>k38K4YM1}FnR zI|jztSaWH<)tYb9pSD9A6TT6Cc(BPAjlh;g*_>H(XO=H0uNm?FZRkJk;LEXA)-0mD zR{Xq88(D89vljUWT3B;F%50fd;e%ThQZ-S`Euf1JQ!nxlW>|ACq)R>$s8p9yaW&kK+J?0T3sh%!JKpbSt3Ck38K4YM1}FoR0m=YnfHFWCpbSt35CZ~ZGdl`Qwo>>#!^8>j zlLo;o16B;6`~QsasY%!kU-Uy6pbSt3C#Eupja%jK#2M9pMsApvztfQmZs40W!{=Zdt2wnfbCu|cQ z`g!q1TSFP33{VCr1C#;E0A+wOKpCJ6PzERil!2cd1G%hx?QbTo^sNf!AThZ9Pt}Ag zea6A$$oU<3^FY4-SMLAcW*7b~>=2$3Zu`lxLMu!epbSt3CRu& z=AS%ev;mX>$^d16GC&!i3{VCr1C#;E0A+wOKpFUHG2rFYYk%Y2eXEA2-u0ho(Igzs zAz$Ug{y}HeR?6Lf)}h@0zt=8&ExaxKPPq4{MG>tnWq>k38K4YM1}FoR0m=YnfHFWC zpbSt3eohSJqUZjZlwSelq9^|uCiOP}x#-z{LRY=fpNpRUC$tUs|L;QA|8EJu74G^u zu}0fM8K4YM1}FoR0m=YnfHFWCpbSt3C;E53 z8_hr&pbSt3Ck38K4YM1}FoR0m=YnfHFWCpbSt3+KYi)&X&(GjP^P{%W?BQ^Nw7H5je8O zGVn@3_+Lk}EuYivvJUh=bpM|dMxg8ecZKJKdxa~7RYFjx5Jt2YZPYGhfHFWCpbSt3 zCpk38Th}?K;p!j%gusF>|Cw0~ z{3rk}|MA^_i+cT!?*B8wwI<u}_9=6nWflZSpUVRpzL?IDOFzn&_SB2p;2I$RY` z1Y-%Qp}I5@u}rJ*RYfGJdVtVt{H)TM(e{R(&rjmCj)?N`8)M~_;qfv)XWz!P@( z1iG|e0gs~=oaN0{0LT5OGup3@9u0KPX8u2)Fn@LQD8rnUm#u*Ry#9|t{X1nd|DV_Y zQB?mxZu=GR@X@0dOCYEH3V29%(T?p`z=Lv-b!fi=9+3M$XuksPlMCS6uYh}HiahOC zz&)sw&vIug;6D$uyCKY6+06gvVRon71J3p<;10P5xb`dHcDV(P_AB5vc_v`974V;T z@vYFs_H5?=^De$wCdk%)1>7hXU~RtwZa@WuEJ^`zNqNcTv*G*V%M0QAqRZi)H?wie zx$wPVO9gzd-!c%sTeh(9ec|Rh_`YECRQO)Exj%fb-E4>N^DnD`?=_bp{JhKh!FTgz zX82xx=~DP!b?F%RUU_LJ_-@+N2;YfKGvPbFX)t`pHd)|%#U(-bZoFgyd`BUB~|A`vaO05BG@4&8#pn`b>0n>r23_Wwf`Tz`VI45rpgdP<amX|Il_bn)$JhR+~Vc$R}T%t9=!-7x-q+f&UiHoLT7Pe6VRy zDSYqNgz^{iZl^Oqb`g#NP&2` zTB;5ZpjyRvQ`NarC=o|ZkWK6LOBJa(s)Nm$v`JXiR9lltJ5>~k)&|HH#-%_i6p4@w z1S8=ppb^?cW(z5BNrT;6(Z_5GH&jcj<0~TJgcJxiC8F}*0q98Fcg4gX@zX>T8f8a;YQRN-=fmWvgxIj$TRge5-3@9tr|c9RI@Z< z_bwckwKMAjHPJ{Ux+>7r7^n^dImi=?(29$@FK4~OhM6}@T1$-zX*n8GTW!==+uja? z1JU$sV^Mv$At1*n9!1o8GzNToctz0p~6H3r6JDXBiVI;9|DoJ_Ad zAgL1Zwz@a}yac*b@th!ot;s`ZQEXcvc}{83JtdxpwdA{n`kyU?LGy#w2-^ z)&7cZ=pJUh{rZ_NYSzLEYoZZE(`!f#CM;3oC@!sNk{Uu%prNV0N{Xd9ewJ}0by|~F zH%8-4v5b>0CMeCgfv_|w!CIP3CpS$*5PYJpOKE%|(TYM`>y&OKYDIQ2Q7UvRtcuoo zOG?a_cU5{P90)grVDW&6jyKiU2V>2!{7Azh#@@=Hq4ru#s!^9W@}QpXtOJLalng?$ zc(f^odN)`vX>4Gb+Qdw=l{&!@p_R>oK3A&BXiA6qeN{M7hf6H>%as9vDvj3E#3gMS z)iS~zqO94FEG-jwVQnl5lMkM+vwkD{vx z`hvAuP@sa)UrLoT+NgzQO4_0p>8n6SWrgQvDJVxR(r%Pu@n}OF!aooT$Cn2hC88oJ z!Ze9IcVx<$i+Y6ExbObn)MDDV&1Sc6Wu8+*R@6N&xlhG8#VQ1M~@TU zhx_@{g^v8c`1SlEzNcre=W@?Eo&oNo?(5xQx8H4Z-Qj9-O>o(rA3K|z)13nM0rwy` zh3m|YhEoonbj)@1Wxr*Wy@Gbz8K8zK1C#;E0A+wO@W0BysGd%9x%@jdbG~(YaHZr6 zCVa3`k0*S^K6xt#{zi*s)?u~U7>l;u4war-rsV5on-xri>ZEEP?4_Y4DePQ^6V1MO zC>oP26K!O+B0prDq88Z8TGH2PR;}d!2rHxdoMfd_N*~Cz&9RgZRPb6P2b zx@T{7n)1kQa=SUWBXj}}fggop?=13{bd_C1&ex`2TP7Ma4(cK^CTGmxBSz(*S0PN+ zK6OrFEM#D3nJ>AFbT2XLj>toFak6gP0cBuoWGBRylC4d)Scf6sz+6O@k}r*{6y0-j zWUdtDQ^i$E83Q^Zs+1y9sY+2T>7b4w@MGOJn=A(+;aP(OHKZV8TANdqgS-||=r_Tq zaugwIG|;046qJ$L>eLFAxKFa#awHOk405&6>{R8TvmKh9TF5{yd$Ut@M>^Eu;KaRc zbZ}N34KjDOLH8WHHW-}JzBZIGz^0A`8N1q`I>M^P^og1bfkE{10E-&ZnObaA4KP|n zpTY(ki|B7w13E){jhaq(ovE*T&N$&4eu;3I=WjxP&zbx-_jkhE{3Kz8=S9Ko5&3)E z9}Ca&1BAt%`}w_|zWiqQ3&Nc|FNmHi_z&H4_!aK^J^MWgkIQ}K|LUrY7ET$U3{VCr z1C#;E0A+wOKpCJ6{5Kisg0@i5rjyxf*ih>Ul^B2oz09_hoz1==>ZgdTHa)*lt*#BE}%<;qRdrV~}+BclQEG z@>Y}CMs7oO^LNuFR#MW{-&L1bNJ$re7hM7Z{gTw{_jZPcD&>%Z&i>Aw0ml`<7qNN% zJY4|gV?if>CtU!=V?nMzR~L|F5f0s6724*m|h1ob4A z2!27ApsvIc-p`{ZD%MDW$M4azAVF_&r0ZAC^XLSKdnB8v&!cwj~wpk+}8COZg7HJX-P|K|&L47l;aWtZ(VX+PmBwP>3@gc;ce zlWOAC;?1UIkFPeRnke#@GN>Z*R)}sztBA24*^Nvxqnczg!dOn$hI0P@Lw4a?VLLnn z@KF2kPOVY~CfYmg#f36PoG=Ao?-N?; ztz?6vA*WQ8$!C(xk`i^%>M3vvQfaI<4o2j{ptyLVsk(VSI*tg060)vj){iMXbq(PVJX_tSRs}kcatR!JbYiVp(S}4_np#=3p;|suO|Eiz zEI2dTP`f~i)t^{%J~{&@qw17cQ|$@ukxD0LYR*b276~>sLg%K{Zf-0ZlB(gwOwK>J0mfhSec-$UpSq}#WWwk}?M+wyZ7~i@?EJvg4)o!jw=voCZRc>iF<1@SgVS!&2b+@)!zs|2g7r@#TA5VygGM0`QCLNN}8$Z-d3Nvlt`)Krt@ zO3t))#I*=f$K7UB{h=eYAq&bxCq_2aqaZS<6ptZvpypHHh+N1@fDtuJ4cSJFD$%Jy zryB-BkzgFRgH_nic z%ac14^5NFR(VSh{5CUHU7&;O;l}|?XsTF63X&kh$i}eQQNy`fu&Z!(dT$-3ItwI%6 z>HroD{n2(`*Mt))C$rG%CZ)6G70-g^MtNlcZ@|JOLl?t%R1=ocmHEHa73C6=cg&-#n9nJBmBch75bEawc$hQPROk;k)V&{ z4%R9QQ%wZT(t4oC3k(>EAdl9q`nUmLLsKN8Ys*W9G_(O#yDA#1i^^*sV;0o%STr7A z1jkNS%cC{qCp-{JtBJxHmK6;N3I1tJfS6=zXgDs-lvYZJq~0r&xrvWF2Bi^J>O5N~<`Fqla& zlu9)5Rvmrq&5o2@YbOfV((B04<*@r59V&! z&3@GUk>bVmrRv%Ez2TDoGBdjW&j<%h!ZG-wAIbn_fHFWCpbSt3C^xWvF@(gx==l;FB%+(AfJ708eb}n${bN}KV<5qK}oYV1+;}(bHC}Iz?+u2Lmj`ol3ciAKM65IE- zmu*{ZOKiQZJFQPz*IK7qUbkFt30MX)dzfdL4a`g?&-{t`K69gateG*rYEs`ZSW?yl zo@!uZzTuDr2EF`H`{edw82ACiM9akLVD%c<+t7aB0B6@uK0!8X=4_=W$Y#l$ZPE#{ zF`2W8C&*^boNeL>vY9exo6vSP%MY2eopyq3-)GJ?{sh^MGoLY^EpaXBYV5ahC&+dz zb7^BwknL#ZY-3K4?MUWqqfe0SaOP~IPLSS=$aXMewpAnLY%Kbqz(KDAg%^s- z9~3y21LD`${MEi;bVU5D<-I2o$8Q$Dd-TFrAAEAF_|CDS=08urLfmQE7rcDehsb=@ zZB=}~qHV7|{KRMHOWnlR&bi^6=#hVmpKX0$ZQbbaja@k61ohpYvA!k4Pmpb2=4{0$ z$o8G3$Wm0*P_@}uN&gA5?af@;uoGn4lQ~<_39{|ZoNed{vL!QTD?CBA*38+4oFLn- z%-IH?AltW@vkf{yww;!4mTu?R&M7eV+rSfK`zCW~15S|b>x|h}_D9)J;ADxR_6nhX zJ>UQ!ZPK%(PI^{1>#$6Om-(VePa-D0zHMi7Wy#j3?QG60*?PB~jmwg)SKHa(O~o18 z=4(3}n$((Xlsw;15%yH;P~X+gZ1~be4Gd zh2`di=^OErhZaA*V#RTB2l_WA$mZXDtBPMyByRh|ikD`;^|JV<*kj)pytht#vue%8 zueUSCF67&;@BYm7E%CISZC~bWquj=9X5&?f&)3!no%}w*^wSZr! zhZ6uE6s{H433WoHaGKCx=)fQ0zu;r~`*HhM?l0VLxSw_3A7P=<6hPXPr%+7C}AHeR!BhFtqH#i%dOPo`j z!<^lmHg3259s6_k`|MZQ*VrZd9Q#;%AG^nP(Do18tG1_XzqDOyi`kairr3tsI$M9R zer0{j`mFUX>lSO1^=#`jIBK!0m9gx!ylZ*Ra<8@zLH}(Z2H<%XSOvrLELNMg$c3|G z&5W6mH-4;c4TV=?!FG`uM2f&g2(E#;eXj|egy3or9Mc3GA-DK(h5Nrj(Ax*#% z0`#Vf1De222(AFZK23ld0oA=61ba1smB_IL1iLi>KH?K{Yz9Fq5_Cq-^Dy~n>q}?A zbS(+v_M5IDVcdGt)g+ADZn}zuam!6xNf@`=bR`MnR-3LMVccfZW)t@No=ZM8d}~ype>DVt4}yAHnc? z5q(GO@KI1LOQ62NfiO&APEv64v}*R5C=$r0C9MnO@KH!<h@8p{X}2gXtY#9?tJ z0ph4wLV!3Z784+ji8BZghr}WR#1XNO0C7MpAV3@s^9c}#LnQ&?XqZQUI2h&j%5N2x6h7xgbIs}I@zcTtnGJ^nd98?e>j)Un0h~r=y0pd8AN`N>H z$_Wt1!4v|-aZpBpI1VNgAdZ7l0>p7Ji2!jNhy;k^V4@D{aWH`ZaU7gRfH)4u6CjR* zaRi9tU@QURI2c2KI1WY=AdZ7k1c>9HgaC0Ij3huD2O|g&$H8y{#BoqefH)5P1c>8c z7y;rqC?Y@{2SW)E$3Y80f8II0Sm>7>)p+j^O|(&@t@l@M-}a#l8-270^-a?C?eb z9mU=bZxhf_?C$U;0gUSY4sQ|AQS9*W1_2$#9uKb%&{6F2@a_N|#Xb)&4$x8T^zhaI z9mQS`uME&p?Dp`&03F4C4=)SQQSA8eq5vJmo)0ex&{6FA@P+^##l8=32hdUM{4T#s zN3r+ATLE+wyFa`VKu59v!}|bq6bAsj3_wS51i+gBbQFgGyazx>aSXtvsgB|xke~lo zuc9nC3Y6#nQ5>Y5|8MF5*BSIf8K4YM1}FoR0m=YnfHFWCpbSt3Ck38K4YM1}FoR0m=YnfHFWCpbSt3WClF&?J^xTc}(utxd*tj9rGMr z*k1Pct;{Q8j%?^xZOmKLkv^u^b5>7|~bPl8ZcOX4I|Kg3`$|%YB)3 zd;{T>U(TnUO&Oz!r7tGSSBeP>JAE0 zCJ`KU8mtP&W!a+A%ChODm4+hWG|E7{y52W+=A6<6s19*Bg<7f(q~UOcd$L*g(7)4xE?b;kc?bx3XeZY2^~%>E%lX5)M{~9jegaK!v))6cP?H$T?`*YP)x7 zi8*^j;lr*28ucii($IAmxmK~>k`nW!W3^yP)5(-?ZE7H;2EWEFPYW^w z6KPVNnKThWY?@53CWQ6mifLIQyIu-51ga$HOTyWS3T2dM1mlTn@YtG~G;6YUum(;V z*2769BaN(Rr?z%|)jTT@YeTd%w($TYHN&}sEy13U0 z*$?4N6Lqzct^@?9gDX>+PFMNgS*nor(EBCBGKpMugu;QbC4op4F#^d*6M;19LT%hq zU#Fw>G&v%rh}0a_@Zy0C+9a%MsxwF??Nm`DS{oo61M7lRCfzl8n?O;0z4t zc@!Z@29cBCg+SY=L5BLNjfS^MgyGFh(U=w}KQexZ=sTIAKAWqggj;c=-CJJJ#-K%n zn38O|Xl<1B78IB_S7>3S2q2V{L?ShO6!?E9WDG9x<02v20Lw^NPF4p9H~7hgM4b_!n#p9&ud z?+C98FAFaSzZ0Gk9upoA?hnzLrmb00i%qsIS^Mz)+{Iv3a zvQg07o3*u^4v#yVOb6#S^?=u4D6i8BzzpfDMXv$#!CR@|(Wcru zpC2J{UrdU?+cs88zC_d~ZwZX^RW>yy;2lxEXpOHC2GvL;81p6Ir7h70#`LcCaA=W# zbuUyj_g^ZSEcrYilspSHnyVkW=l7?i(eT1Isi7epjG))^z?($EAzut$p$8Z1aYL({ z3sBjp)&G^U$!5oTLeUfCzW#w-y5N*Fdn#H;shy3kxPq~ILvvT;qcY`AZqG8wX0GhP zT3afhndXNFk31!foS%rnyK17LXb6TKUmRUnq9_O^3{7q7j>?6mwtu-~bDO&X!%77I z(Ess2oSFv1_DK|8S#knjUfmTHt#oet7fm+0u?v(8=a=?^!zgk-ee#qvdMbKbq_0}4 zjY*QPswrk1t)gC3B5G?pmPj@+))@*^qV?dWmph%3CeDQSK`AdsLW6Un4qoMCaN!ks zs7$#-+p|ovnegbpt))aBiz9zK``c5}%tc|?2ZdLcHZ;Z4#^3r}R32&~*Iwn3&8y3S z;sz;W?isefos#Cw&)Bfqj;JIh7*BagWRvPUz&JM=nk2N;y>?0(R2phZK*+`5Es1q$ z9TpK#anP=IE6&h39#|Zq^jFiZU!0QW&5cHy8&SZ8qVU>7L%>Bms5qt5+NU_OaV@MH zimR1dw}06~r>67D*tjk^FNWJ|+FFxbsSR5Nd=wJmb>w{y9M<~ne5k4D#@ zn&Ie-x-h(GFkS~;eQp!#_o%Ny3N1JEcN2@7+ur4p&5hfkSW)iX?<>zZ|CIFZ6u8)l z!OhMlbXijk_v+wIlcB9K8!A-p+IB6JZ0K?;43cQrvc4SOcS@Q$C!Ua^@aE1sbidJf z33ILm6$TA#r^3jFg&8Po7&NSN@w8L32AYH3l^FM-H`fLY{ZK6FDKXa7?Ut7!I>&o8fz+tO!9fI!^{w=%;SNhjEPjmK%>;8vax4SNL z9dUi(^196Kzq?=NAL6fb);i~*vjX9)z4zT4-1W|@o#!)~nS^zob)4m(q^%nTY3m>O6Bj zFM1y2*YP#{hx~T;uiU@z?D2fW{hGVc@@LCq{2YF?XRHUhDbuI3&1&w&Oj$o*96q%J zj(58|&t~NmSl@~;-K8quuTWUzdj zqKsfd`Bp`FDjWEiw0w)Aj9^0fW<|O5H{%~Cm2Xm%5lkrGs3;e5&F7NJzfhDBOeo)= zC{KPia2ct5y`qd@Liswi&PCrE>U^zQXMhRiYZT?#J6a9OS1Za0CX}yIl;;iZIGn7; zRz(@Xgz}Y&a=76_hE%>nQARMKe7T}Lu3-F~B)mmYMlhkgxr@yPj%2dd_t-o=GZStSBRxP`*e}9`*6o-lXzIMH#__ z@&-kDa?>L>k;>~8Wdsw-EsAp8mmLiLabYJEEoKDk$`^nIb1!pE!8y+ohSw>o2-Q{B zDyn5U-&GQ-=PRlR)m7Ihs*@LZ_Y$h-DXIw7Rhxl$r~sS=Db-FQlvj5~9irm8`YKI5 z`S0&{6Y489b%g8cO`7_ii#|U@s3$aagzM^YP5p`B5kH|G)6@~JtFO@1AOAFGHKE?9 zsUuuhk80{qT+lj@P;b!G5w5G(V|D+B9SHRZRtH>HUyjwUv^5gy=VEohb@i~O{$!`g zZxZTtnmWRD^;%8+@xMQRJE2~qsUuuhm$3ThwI34d)mR;HT|I==|D8uVK^0a9Tvrcj z>Q6>LC#|2OsUuuh4`}L7^xQ^TKU-5rxUPN{RzI|sByt&62V7TQiq)T9eh$&pGqF10 zy805V{#f5Gg!*Ev4!Ev<238;b#vwv|5mpCWS6_(LNB1J@z5uHOuB*@2)SoQ*!cSPQ z)YK8KtIyNapECb~bb`5>I>L4JIhy*Dt}TlR>$5d=gzM_Fa%~KZ1T0zanK?EFMgf+n z^XaNuJz;T%s#dRCt56Gv9lp)lR->Lf)Kp}MN5sCFB*>i2}|L`4;$ zy6Ob2zPm5k@-U%%npR(g>+0hb%blw$Nab;gWrXUgV-;1`{f!C2?ifWCp}Oj5trEws zUelLQ9;HroLx}|20B=q^6E=U44X75$jv-V}$Z>r6LH`Rf{#t2O`a6hxj$i z2-nqzDV80Uv!)Q1ixkTU)m4XL%k%ENn@}#qmI2q*hiK}p7i_+kP#>(RBV1P>q;|_C zADl)g4^+DaP+fI^X8DK1H|-;o`)igFuB-P`EDQ5~O)B?QEF)A`?W0*n_ZSJwy*0}S z*VTKe>hc{jLfxmT%ebyypjk(EmiJ5&(Onusxrb73gzBo@v1PcuK`3{_ zmI2q*yQ=E)9RfnVi>fZ;y1G}hj`rFK_0F1ggzM^gs=B;yO{jNL)n!~)&(*B|0K372 zdX8ot;ktT9wKri;mr(AY_9mdZs(>xSmL;LgW6OZ+>K;uUZS)c9ZcQEGy1EOi!@d}y z?!@YV>*}1Qj`o!Zb%&;oa7|tKx2anmyoawB)AQQ?gtGZ*bOFi0MVSqbtb}zX8RLGC z+}sIPmPqmhu^J}^WR4nug$SpxO`NaRt57@=6dw|f4}n& zCgBsf&;Ltdy-+Qb3q?X_!OZXEKjQzyKgeIsx9|ymF+Uzo{x^BP^!&y1h-a%O?pX*Y z{^z(4xIc2g;J)8|sXOeR?H=wHTsvKFx}J1h=?c4MxCXoI&VM-Hfdc4D zxQ#a8>|OhSjLRtN*&ETvESmxkHHM_})s0a^gWd)Cy%2p_jo&o(4bTm10ci z0uXTNg6=)7=Fw&wDJW0WHH1U(I4aXEAB0?Hp|6LP5zVHz%e3DgYn_c-S=4hy@5xNxpeB`kqA0p7^J!@t5`#cvWm5O(nU`EP}J!gS#} zVGI8R>=t~%|5f-3o*(#)@Tjm+Si@h)uM+MRZaqaqJvBoapbSt3CuuNB&aa&3JMG-nTz|*oj*0AU_O+juo6*`*1}FoR0m=Yn;OEak?@l@S zutqV%a)xuD|KOwj)(_qR&%iU1duQaTIxKul4mMQ>exjYTt?rt{@6TO#WZP=vzv3q2 z-|LPv<|x(}WKI4!@T;y-iQc&Q+^}xHe17F$#OGK3`N^@1JBZIcK9pZ%?YixXXXfp^ zsOK}<-{S9gT~!zRRWD6%n_Sf4zlx1jv)N*4VM_G7HMY56+j3iSK{Z z`H~@wTl`>r^_e{$c8J%t*!%u{Sa`RV0zK851MPrhFL?(y%Q-ge8wj^h4bH;Wpc@~+I#q~ zje@Z(Hl-}KQT(h6V&?+!vp?K?&*$?GiJ!?-R&KjTZQo~`%b=F<;=;4%bJX%0HX{7@x5VA zRl;GbJ2WW$m{A~Yl+akYP>a~8Ln$oNC;^3?%pmdI)8%)(@&X<#)WKw%TGX~iwYw9F zyL4I;W!o(BB*usjoD&-F`oJlE0KEaD1s+SZaZ4Q=#q+foirU*O@??exG*bTgN%0eP zXjF%aZ79gWMYJJMBYfSFsIAQ+PiCZ0Ms)Erg+M$~{6Zb+Rgd4cRqM+YR;9>HBL(#3 z$qf`gw$P}h&32y5IME=-i+DE-$>n#viX;6&WnkH+I*zFJ>bfHbFv+a9whyGD~T?wdHUO@N% zJ9+l^hkN!H3ME3VFk5(1xRL(>&i?Dhf5|uVL-+t+&OgRqw+$^d16 zGC&!i3{VCr1C#;E0A+wO@H1kdt3%l*HmB|mcgiS1yFs}*xn3m~W60%==fra|N(#z4 zmUYZ1>AtkX(heCVY@^U9WUK?)Sm1l{8FTd+;u+$}mRnwN%3c|6 zle$CZ-0RFFLQHTuTxTVh&V;;+<%l~n2@1;CGB%T-`%?Q-dnN(fXlt}(Djtzw?PblB zr_T_}5KE>!hyvzJCQq$0r*%10nXPB*(fR*YVJCbu4{7KByPt8Fx?XY3cmBe%gQhST*nvz_d>+WXrcvyHL7V4Y!k$FdAg@@p_3gwy{y)77UcKAL)UhM!}=p~%W- zz<>dH@SlTYtax*{$dBHlSH7rp=0bQ2-<0fsOf9XLnO$m-H2Ja>i+60>rPzXO#oD!= zYL{YrW-Hd#uEpkOE7sbs#rDWntfgIx?Vhbz;=B)o6K4P8$9QtLY{lYHu3cQJYqnxd z?MiZ&EX7)WXxC!B*^2$XU5o9Ut=Qx3T5MjnVvn_Jv7NFNd$e7P&COOUaav~fP&G(? zOx)&VEB0`^wzgxoVu^$K3~kE($B$`khit_jY|qxN6>zaEEHKp71;;U#1A4LI;T?DW zX5-t>WN)ZJGPiX8d;^gEk0u@$kCr$3;>NOHFFt#AgXG7M?a5XwaWb00c=kVjM6qk# zxLAU0Sjt(x(_1^~yyEdQub(nEdx-|gk0`#$g^N!in>fJLU_ARDKc-k`wqp0_tKy z>-n4KPo7_SZt`qowt5;p%RJNJG(exn?LOrG!u^K(S@%8et?o7M8uvW+X>hiFj_bJV zE7v=&=UorDu614DI@h((HOV!^)!Ai+Hwk>;e9`%c^B2wy&Iaca=M?8KXE&#f+s*xr zdzpKjyOrC-#ksS&3OL)pfO9(bJ3e!~>Ui35hhvLlm7~fr%Q42$$HB9Q*)P~P*k{>$ z*sbguwuYU@p2iMfbL_|AO#<)OpR?a*zskPGF4^bU$J+bYJ+_0kf7o8NJ!Si)?NVFJ zw$wJoHWc1j@PqX$>s!`mt#?_sSevY8Tc=t5)~;5@veWXe7+>L< zHj*&D0yS+QVSI&XT2I3G3eMC*!uSfybYY&-#mMn3_zLI(62%uN>qrz|H>@R5ysST; zMDeP74T<8#@OdPP*Q(7VikFhBNffX2R*@)Ph^-`1yiRH&QM`;vkSJbd#7Pt{0%9bJ z=jauk5R-6rE@D!P{YC(lafQ)`kSGD-@PU^AVoe-8^#q7RCqjTYaF!Dw4x4ic5C=_| z0CC9F5g-njS^~r^sv$reED{0YP^l(B94H|j)Wf8T0CA862@r?KIRuCUBtU>TJkBOS z92{p6AP$XX1c(D;DFNcJIFkTzR4gGt92AQQ5XZzB1c*ao5dq?eSV(|4AQliHj)(aK zh{K_h0C68cI051~C?-H02Yv#?aWISkaU2v8AdZ8f1c>9HkN|NU3?V=q2ZIR^$H5>1 z#Bnf?0C5})fHkE&ArSLHe|?>aSCsv93`ap<9m7G;N5^ms^wu#P0=;w$M}SYqZ~zqO z7}Xp`+N@yZgKADE9Vl{%$&o-My>7D@JvH@8a*GquAlSey@&VkMHd7 ztfScF^Za=_ihaJ5zmtw)r_c50>L~X59Dk0EVz=+;@2I2L?>qQA=qPr4!7u12_I%#Y z>nL`8kKd!C*!SIjw~k`xcllj9ioM_Icj_p1f6mY8DE5Dc-=U*809Ze(qc{TWe!Gt1 z5U}}eI*MZeE=_e52Z6$DSSV{=BC>4|;C%TE_`*47^R?8}}#fx7~k&9fZfAYV<=HpbSt3Cf!gg`IK0^^DaG>FH|P1?g#O+6n2YYMO&|xtexBdWxE6Azh}X?U0_V zrfrZeRnt~TPg2vUTv1KK{<3qTnuh%}=L9uvg7j%h+VTUW$E)e@Aw5n_ABXf5*#sAf!jA=>w1+uBP`xx>!x`gS1~we+TJdYI-lE zi`4WUNDo!hyCGeurjw8!qNZCRJy=ceg7hFY{Vk*is_C7O9-yYbfpmX0{k7HR=!d!v z4xwYXz6j-@=NPV!nshN-Z#C(JSEi~-j^TW2(!p>AYLaERo@&z0aQSKy-n807O~TQ3 z-PI(N)=f<^4A)gnni;N(nlv$-S4moaV7Sg|@_UBMQyE|&Y~uFG905Ozk!ng)#TROLYI&ToJbwN+o__ozo^JeI9)Z8nWBvbkn4>MH3{VCr1C#;E0A+wOKpCJ6 zPzFvd1Dp;0ObjmQXE<$e7`?oYP@yJa8)3Sdgk6MbY7#aPrm9KULnv31u!S&1O~MXB znVN(Rgvn|W_76(cB$PHuO~UShs3u|aV4|9Yy@Lr#5^WuvrY2$MV7!`yje~J&67~(o zs!7;37^5a(*I=}ogiV7{Y7+JgO4KB58H`kuuwyVnO~Qu3a5V}01;uI-whR1f5_SuQ zsY%!@C{mNKS1?pf!d5|{nuMK#A!-sf3I?l5*e4jICSjXkpqhkTf&pq0HVOJWZ0I*j z7N#Eu*Yl`Tn7(St#q?2APNuh-;@}m3ik^e;4nmWvMR8xnT z4r=NkBdDnZ46mm4Gafayk8!K1?--Yw+RHfA6zl`2sok)HqLh|oST)tk*wxf7#-^se zWvpsyCu31l-!O~=<>f42GwAt$MmT`JA4Sjq!%2TZKG*X{&nnL#_g~$YyG7R?*In>y zeb)I~=W=I0_XgL(jc|PFxWQ4u9%VmbuVznYt?=vm277_+OFSg!0bJ&J8GsMQ5 zY^a#@F8*g%sZeYkH|XW&d!G__{chN|i{5)vY<>3S4zCUhz{v*M&pwO%vqq$t>mj!O zcK?zm-droTqJxEx{##5AK>6Q4Idj8P%yk!AU%zd`7yTX+TdQ9@H2TRq#pIa$wcDm& zD7G%2`>VZco)CAbXP34r2e=w*SDa$5TXu8n4*#|Hn_r5p+`HFx8GNJIy8p#1mkm5% zH0Mt-*Hvu&Al~KJ-05O#it}=(zJJ=J)R+w))W7whP3h{lK+T zdH)bw*F66HAM4K&lhZGF_3CkhvvF!PSCnGTE4G4>Wk((nTW{;` zxQS^Jlfhi5-vcLSZfJ_R&SDZ7={HqueGv7jJ=oy25+bR_gX+`~!rwB}ZD<{|IAl**~m z+~5>*xndHvZS6L(RXq|pdBcGr=l=UW%`wDQ^_0~l3YH=78qEz#F_$AI)pLfE-16UU zSvOEj-gohf{V%*#OrjpS{{^x2=||TtitH1UE1It8b^Uy!xq&I>Izmr=aZozGSxn|V z760amIx+d^zlsmtzEw>6pZDwn)mKdR z`k`q0SNDlYbRO{b4cSOAn(LopP7sr*4VBM{Nn|V^hJfep>3GX$E3=VcG}kZ1952eJ zi7&EZ_f390uj>vrkc|YRxxOjpJUaCd8xMc7BTrp zYfID=Ha50biaDsw4*8IFF?m-*(Xan7LQEoSSG^@BuW>=MFBOyM=;O|ph{<q z!Cbiynd4x(Q0EFxO#XBIq~BaPQcP~&iRyK7W(rcwIMU5zZnUvBJyXoEViJur5AG0? zZ_OV6dddA7Ct^}LiC#?ZyX4q!``l$Tlb>S7E+*y3uGMSx;Uf?Ia^cNlQaR6EOv*vg z(_qHeLqP8UfDhdFK=Y_&qGh5%V`g_$5cK$zwSdn@}yOIYigVhvUS@(J%3h`YAQbB@@G zPIkZf-jlM{CB+&n0>)enlffQwm+CLAFqy)PdQ#TBDb`>Ou()}`M;C;|R_ix2w&cwc zTOn*GPF|XQ4M4QCbBZ-s0@TPKu{HOB!TyEAVK(e@=Pj#l5?iw^0SIe(Db`>GfEv2{ zL%e!w1&@6FwvE|W0ED$pDb`>Cpz(yFto~18>nEnSe&bz|ea0rN<)&DJ`TrhyOcGns z>lum%h^>3&b;U_p%So{Y)B6hx{&LZ7@LDv^aqo#qmw=Xb*{6S^ZXHvs<%z9tl zATGA5r*|jicS*o1G~4V?SnH5tt&`Y_9AoA$@LD#hz7`|v?+%59>+)^E}MS%Ih+cXu3ELCf#gPKVi+2Vhv{g(?)e1Y5hh_ zGO}xk$&~>#TxFm632W{YYfy*z{k<3rS^elwx)k|mx>Bsc zypQIX;jid*ynR6Bf^#0sKJOECbEa5>X)+5f zG5?D1#H2hs!=Mk%hDFIqS#zXVgGv7u{`pVuo+Kt?)5^yrOJL@CA4a^>Ps$pbVh!ee zRFkHIViK-wV8JgYUkmLi^)1Uj=Mycpr&xn2Us)OGR?$-NvcKwlrcU{UHCu``nDPIL zCQ(=#qU)jkFKKh?Nm;X|Sc8fGGf#I|;fl#WpMDlJQcTLLk0IGsJqCZXq*#Ob|7+ne zbby$AuLedFh+B1j#SEmb1N4?oVURVvwt=5Sh)FaabvY&`<<~)Y#bmZ+fNrJ0Y*+=UI!@T>S?4-~vkC8dYFwp`R^d5&SJx272g1Fcxvo6N zcHv6TIOh+J2ZYt0zRs^5SHt~&-uaGWjWEM~$oZV3S{UK}r}I9?ETM<{HRn}=&Hc1< zjbjww>b~76ISTj>+?P4$I2`BVHU*gxehjRznhxuxE z5AGlAb^I*1oqLsC$B%OD=AL3}`2yF++%MU=yudz*nuDFc)N$^c~`3j=u$v=I+a53|HYBOJwHdK6tu znhVhD-Sl}T41$McLB3H?2Z9G>K@XzQ{WkENiKmx(tvY@L`0LR&w z?vw>xjDpS%Kv5eEwGCs~P}e#P8){mMVM9G@Fl?x$gkeJ+t1)b-VF<%svf@=3?o7f# z4Cj&XIT-Fl!T}8DlJMCW&LQEmFx-)ZmtnXA2`|O4K*DEY*h9igFbu!c)tzQBhT(3T z4xfQxxbvpNi!cm#;dFQ*hT)E!4llqk+?~_m`51;fbvj&`=a3x*Jr%E`^B@A?!ztdQ zx%ym;_5@`Oor6*2QW`oNqsXH)bQVUDLuu$tj3R&1(9aXUyQm5 zv=2sI1lk*;P6F+PQFxvj&xAgVIta7?qjmy?XZ*oU6ptWac*wt#>?mmD(XTJzDSr&Z zPOs)^@R&b_!GSawp7X~rc#sCegZ>x>7t&yO(jUX%LmCW^`ePWJNQ2>7e++{cX)rwO zk6~~l4Th)vF${jB!SJ|0hQX0E7@qgXFnE#%!vp^q23OKxc;X+!;7b||kNjg8oJoV> znSTs}H)$|D^p9b1Ck=+D{xJ;xq`~mmKZe1fG#H-y$1r%52E&8@7zUTpV0iK$!{AdI z43GX}n0QDZp8dx#c$KCN5C3Br)@T|GPyb^WyiJ4Q@&6pz*|_xQ|9SJBCgE|ug&*Kb zy6$lf=e~5D?Qq$DYj3pdvHSvrEvBKuL0Du7kK4C+hYVqsB!X2DDZU~SPDp{cw4zCB z2&MjMx~il*nRH zb9@WR7eg*Jr*qJh7Khz?MloXwH&jcjRRV%diKzT{pgIWc4aTKFy_5*be+7!uG1HYB zVl6D|EiPs*@yG!c&5D-3j{EBFRN?Kxklx;_w(HpN0xKyJaJ(#o>wrIm$FgD6;4 z6_ZwmgNPtsib`EHQZ2pu;B8vXvkF#9v3Q1Ns4#dQ)S@w=x)HLrG8zh2HARB4=0JwLm|5@) zl^N^-D0h8ubs$<54>U@#aI`ugHB=kwO1S7i!qgz=phYcqyEj~x&3Qu5Z*{?#R1Gy= z8H_>SNP((gBnY(+6t^KXUA}Qmi;eY`l`)&v$nMmJavLJk7K4Mep{aTr(YlO8C4#Y9 zN#or>VJKSP7>orI(U{sR25GP%7-^1&&95LQEG^X6U~A8XtflP{W%ph zZC*dS#lm_=j9@mFYJQxm1YVg6nJ!E9+f)tJUvbmWbYk!tLsQeFMAOq`CyD`*s!aYG zib^##;ZPXHP29I+*Wfz0(H%q`QoCku3uE_&CbZc#+CUwMhahUe+2aYde=Fnmq{K(|m^DJCj$C-KR7qYtQKwFpQc+0nmTb*V(;GOWNqZ<-tan`(Y&+mSTEP zrlF>d8%x%*-jWh#lS}KoG$rV}G|aRiwd>MUv~e>GY*q)G(+J6(Q-7a)Uinr>IZAX)G1yQ zMQZ|ZF$k9?@r33AiCB{qfN59?B?9sAdFczs4CV+@(xv2Bp_L0uD7E&GGUSHAVCH#t zZ(wX2T~Qql);2`riEt<$h&R>Oqe~am2^nzHh3NPHHsN#lW_}C5|KBepg|FfH|2O#u z`HgUr-xxl}^DUh8e>;ZrdxiyKQT2i)_Pe4(mVQ9R6#p5o@`%zvTzZhn8PkF0+Izr&;ot zR_0~qcBYxBWQH(S^WV)+o3Aw2nM=*xOy5CM+Wz#D9Pq;mI0B;Aw%vgj&S~uP%=R(9 zo|5CHV}_Ri^{d8ed!*-9uIksiecX}04d%pAqgn{7?NxrHynVv4zr6eRw_Y@=RbjR7 zRy=j*MT5`WKIxhrpIu0tUZrwh40zZ4g4VM_z&cSN?*FLi2nxa2# zFFX8UB=W@PMzsJ|JFww_FK+T5+g|>ckNYLZ|J|r|HdZ@$={-m87!lY$?crzc?*ET! zquN|6`+H*?#&1YyWuL&0~#f zOR?IKn{PVp>2ap*vtGRX@Dqn&r;)UFCRRIo2mECFv{BpVeEY_lhjwi+sx854$L_nj z?hg|q+vnwe8N0B{*+#X+Snc>DSFC$=(w*BY$F9HW{#~U;wKK5V_fK4Q?c0+-+&;h7 zRJtwi6QkN9toFliFMjZ&a(?@QTY4^d|FyM7wS}76c9ZOHcWz(!;m!M_t=o-i3v{)A zZd)F|`1uKCrZK0{wHs#WT0U;VD-y!*KAOMdgxKi@K+ zWmKDo)fm-#mkPy~Rc>iGLuv_!z-Nn&C#rgD*M}RZSEmnumE;Q@!_iA z8MCpP>fGC&82NI?ho8RCs5T3$eI@(Z`fV@%`;U(IhQbe*NNY2(+M7xkZ+r8S`}SRN z$GJwe(>1kin%c+jK0f7^@N}cv46LRV`bA6O9W!6H7}YAUn%0C}4>m5|-3YtVWZkA? zHI0ycp-)#HHwBGq(=@g1Dy`d&y!6WTKlIpQQ0qHYRx|7DZ=Z2#^U%VpVTjT8cZ>Xe z%dwW`7}Ik~KMqV-W6+v{wKQiee{jdj&u(uqXq9PNq80#U3)#gzw28MI2VmKNv}c1+#H*FhtR+E2n-+Nd%9$&IdY^G6x9M69I^L1XXxea$THv0a%TEjM@tqE958yri1v;XZs6pS?3It^=SBkhRy6B{dBe>7-~$6DI3J>2^B zJ@e{d*e2RI4r^(1fPYHA-4h?O8MMY?Ep0*>I+*b}gj)<+W3ZMsI}O_X_&cwZz`@Q$xclH-{ z*?FF6&-|y)o|(}8bOdXV!1{`9?mphq>-$0Xb;*=GI3DaPOJIG8o7jYbTh6SwO&Jl^ zK!J4zHS5_wZi&mUedgwmBg4uRSh%)r>Du(iu2+MRVPy!c&rtW3ZrjqS{rH%G>yL;S z(*@S2Y?pb@mUh;Pp0t{JhMf0?V7KCt$;pX zqH3zZ`jAzkvE}D(zgMq#`hWI$%eMG`j7nJXb3|Bu zcvj18@63AtlHJ~xL#sY||Ea5Bpe0eWx4?S#XwgSQjs;pyOus4lG6l4}5>}GHdPTc= z=lgqBwtO|)lAk{&B5z5(1lIPuI=-8G$+VUqEM3|!x#~gVY}MW<%@zF3noOSD^6hXHriuxr=!}}BirU40*klzgsQ?DZaWkiR(FBL*PW!d zeM#%q!yrtOu2_M^*TcTIg->rE>W*M_6IgtmcCKErXJ~3$a_t zY^Fl3h!I#^Thq8D<5XGguFoUuVHbhLwOePlWcfQC(wbpBAxV8_fyK9h!f;>0>LjrE z_EZ?{OIRHR7T-1tgMA6BgTUh3d10(CVYL@ne4il<^(Cx!0*mi|gpt04Wfxd{UnUIn zB`ll3;`>EmoG)Qn1s31O3d4K}%ObG&{#qF2OIT)s#rOTfAYZ~V2`t$dU&1m9EPk{h z4Dlr_gTRuF@Fgt0z~aX@!T?{w(g`ft_+G-&@+|rAUc%Cdtk$D@2}>=o_%WO?xRE@V1OPhxsPuZ)U&pn0bP- z#hj^p$lO`kZ2D2(QCV$zPnmCeNttANK&drdWpbJFO}$Ne-S@`R#y5;l8J8Jn8!L=i z@QBAlhMx={7+x`~Ff;aB8+?1 z2-qvaxJ!+IXNfTGOC#W!B8)rH2-qXSxc7{JXNWNFHY4DA5yt&x1Y9S=xTB1K-6D*8 z$OyPrgmKpx0oRBy?h_;6Y7xerVFc_FVcZKwz?X?I?*1a+DiOy0UIcup2;&Yf0-i3y zxTlMNr-?A`;v(QnL>TvN5%5$I#+_OOe6a}Q-Yf#1BEq;Ei-0GKFz&x1;7J0^cU%$h zLCj7hRMQzF7b z9h1Q0MObKhByh0+^Xo|wagP&WQs84nn3S|45f;or689JZ=GTiN;vNk%12|4P)s5^OhkpYOhku@sL&9KXtsz7t*D3&5mBKD7SX{X ziq~nRr7%cD@%oGu%@R?(E+a(;il|_hbN-xA}aKjBAO$l5hd7jtcVioLN^f=Mqr{=T}4zFfQe{~hzjE`5$z(P zgu35ZL<#LiClMvIIUPlm&|Y;AQ9@hSUPKA)WIGWhw6S&(CA7~r5hb+kRuLui3ldko2(52Q%sC zVDSx2DC3kZLZuL9Z2=&xgLOC5Qv*Q=j89<)n2RSvWa!6d5E-sF@H--DWP5>xrt!~1 za@ilLNr`+&ifzEy$Yu!AB2BlzxSo6d-#Ik@f0f<;&#-H3hi%WoZGN@3Tw7P`8S8fI zD(gaPxitxH=i6nu*W$J0TH2XEF+Xp<#yrKGVYZk)Gi^3q5BvV9CWY~U@loR(;}~PC z;Y-7-hFc8PhJgm1{$2eO`YZG$u;2f!ZoBSI-3;AOoke?0`>b}6wo=byc2GzO1}id6_apX;B=5Cbb29oRO#(dP zNF`B^`Qptn_5Spv+#NH1e~vUCs(JyLs$yGquUgtS7?lbt{sFf9Gau_FuloSx#oB-mvoX7gLyPXVvETQr6`z z9Ch}ym$WM91S0$N2S|)G<{{e~?am%pk$ZM&O#czr|LQCwvyl`@1DWS0EUW+Wig>1I z`$d}zj{fc}C9?;OzrFUo!OUwrCJrC}$79TmrE~jD9Mr{GLS%n_;^rYIZXU+$eenG= zQ=4vNHf&fr^Wu?noa4#tTlOBS&d+7uEe`MaZrB6Nu9S|yu6lNhvzW}zwJ$z?ekAir z(!y)Me0x5#YwA5yOMctn97klI`l2kk>ZwBJv@P*7=XH-U`yXmQbDMvxb1a#CH%baT zYGsW7?jcuy!F>Akk;QRGZ*~@u*@gSV(_`|Pvv0gr)$#bV%$MVrC*AbeAm#?li3fIw@hsw%bc5>b?I1lf9Ck?9euKk&NxSr z*{E;^l`uc9@BCfL=2GUQ`R!$^<5xHfiR_a zNoK3=fV50wemJ+R-N(I}nRmyhU8?-U<;)|pKZSIZw^T7d_%~+F?0O^f_WPS=EPnZ* za|D?^JqF5WD)ZwD)l0yzz8e7W3IAOYu!BMmTfG zY-A>5W-#Y^T-#-`FPS;8y>iOqH{9+VMr412tmL;@%=Z@`n_9agli54`lfh4&T;Uu_ zW_$00w$0C+JH7j(2~VtMKAN??*Ef4BoY`bHN=SW>`SIL}8AA@%GH3iZ##Z!>aSkD} zKi=76_Rb!2n4e;Irk)?GV7|y@Mlb8^at^K+QbPqrI)<=o$$ zgUIZJ2VUNOO_=$udf!DSmbsbJ&9Uca?C$BzBC?O8=49C15vu9KpLZX8k@+g+tsl1R z+~FKZW?vDnf9;#gM;P1-A3NLW5cA{4&0fzRuQ@ZxY-mkJJa**>`@NOJ?l=%X!nEYp zTh0d#I5UXsj}Ui*dPIji?^oM84js|GOOd%}{|B7uWHzMZig?qAjyFtD4o{mlqUU=@ zgKt+4bEXm5D347`+mGnD_Q_Ol@#`Zx?tJ)~PG=jP1BmRSpx>PDx{m1lVA*fpRf|XH z?kO1;zhJF1mCQy}XL|gI*n92C=}%^l=oDMf<@mB}X9|)1A(Z>7_3u`73t zNNt~T=uvmQ(@A8rom6`F5ssqOc|Y%ebi}}~7j~O|aF4S;na%dai6deUYzlrmyw`}n z`nO7lEZX7hM`XXx^{yk@*B8G1p;tY^^m(86=YBHCnM`EA$Mu&Zl&_8b`ChQU9H+XU$J+WcP;gc~i94C$J*kM)j z^xTI}ZnXq2(&lU~jWeBm`SqlD%#Iw{y~DM!xz%TnYs1O8Nj-_I16*sF8+WefXT7hr z!(5t+IWnvRT)Q{?oxpC*!`+{C_8_JY_5IL-4R3z)sSgS!U6J$H%6rQ5AN|eQoygwD zwn+UPe<+4n7Z>5nZrtLkq!G3tAV6CS@o7>&Qd)z+Nl{mYWc%gXnWvN5VRoc7ZDTESPR^^7-fH@Kawm9}E32F#lC_n! zxyzDl#4xt7*5k|B{PEdsS1uXjv=Y3!c16yCUUvZyP zM`W+Txmfe&!3?cRlQVtjC;I1lCONf4_MOOw=?9htl3IP8{Zd%yeRWs{sLVwg)XYuBVh4SUMp%DH{+ zlW_w#9qgfG*>LDfnAO5$|E1;>cz`aAU@^(OT_>dV#B)r>kptyZ0c z-wmu$-Johvm8#NJ9hK*lN0cup?^9l(oUY7O#>*BJdZN{p1h68wU?XeLz>JKvtkg6H z_Zy1EWEgiCibYXiuBT8mlVRLNC>F+XaVsO^#(lz7QBbZAxRQ+GHh%#b#cli*WE8jQ zmy=Q4hR-LXxXo@NqqvQpM@Dg*JeQ2(Hh2yh#cggQ8O3dEn2h4KHAF^n+ZrUJxJ{i+ zMsXV&AfveL^pjECX8On|ZYvweC~hOYWE8iJv&blJ3uls1-1d3MC~oU!kWt*W)ss=& zrqy+3>w+P&F1S1CQC|Qnt&+vP+8(T2(L9`x~Yq^vN{(~KD*{74incDv6R(G662H81SmrID?muNQEA$BSmWPA3w zi^*U-QXydq5yY#hlgS{rcshv;a%-j&i6CAgtt5looUMWkatom4MDR4%t4|<<-124_ z8RX`2r9==fUY3wSZWKD640218#Y7OVM2;ha+`{8nGRTgu@{5QdURE4K2Dw$l(PWTY zG#o_)@fu+v8RV7(3&$*xdp$GMDSB~)Kis52D#h#8Eps|B6yIkpOX^E zAXfz)L=ca%@+C&8LSlUPg@le`81o22(PXzHmT1N!&I9f{t@i1CL1o0?Z-5P`m zEvk9!yjJyc2Q)N}la7~bt>%XniRP<@+E3WG+aI%EW3RW5u_xP2wlgsMUt_z@=C+Nr z#an;1zGr>OdY|=j>m}A<*6x;H;BLSdE%#XFS|*yWvSeD?!;=HwlFgo}166=3Koy`0 zPz9(0Q~|00Re&lWRlvdS0mW(IN&#UFTcJ1?2Y1rF^X=$w>z7OewiC9XA{eP@3ZwVK zOV6~d9(UKWQ@M@6>4!LuM6^uaDzpfuBZ0tB{L%QpC(OapzC(gvKj?6f7{8ZKzJhtO z>c`7M^ImYoM`6roK586xOV#vGd$No9aT;l^l!x+OWOnYo`^RIJ6_yof-VP~^U?`gR zHZg%o+0UpFgNebo?kqzs4Ws8Rxh=1aJhgn!nd&puaj^u#!UtQPH9mW5asJW#qdmH@ z1eG*|)KkpU=|#u)UHRmdPxk04$9oN6c8q*v&$=%^`tqY5F>*Y9bj$4vws$_ZVETgT zJ-QI^d}iSii{;T}8<%bD!ERc_MZ|A^oOx!^eUBC`-?V&F57@o{4I*%Tpk-m*BTL#p z*YaFTkB$VqfjK#$Q+V3s9g}y&!gLP&8>IPTj*oux0nOC3scG@;(Ft>~1#xo(8_mPt zz43d89dGP-Bfg!Sf^9)#Ed6qP?)cnzJAuL)!xN#`e@+>CcIer78<_&uQ2y3VZASl$ z{_$1<*>A2qyMK0Pz9(0Q~|00Re&l$ z6`%@G1*iglRsnAAu7&#(Tdj+rD`=BotwW0N>miANB_fREn_UMd?a#C)Kx|pG`=lKSLWNhZ<}u;L1>-9`h>L$n+%O48K|US6I%|T zf-*OmJF`C25+6`brd$)jec^+~2aTOrzDmMRJ!Lp$kURGppdX-@JI9aKjn)yI^R@X} zxwHLoIO;BU)(6x9HNm+7j=Xa#LI$I_f{~hre*fRj{s_FQ4#MyMf3Tmme_=mq|H%HH z{T=&T_MP_E>@V3j*q^blu|J}JQ166W0Y_^OXs2tw(9DBp65OVaQ$4B5R_;{JSLzkZ zA(+46HM>`PIMl1uz|Z!%mq9NczE`P6rGEK7bK_b=dY{ux%yqYiU!Hm8&&+MUyKXA| zXjseIzUQ_so0cr#*Ie6QWhr`5z@HgbJGIAJ1GBJt{DHG;er>se3uks>n^AU2AKj^C z9*!!2z4G62lsw-0lX-sr$D^O_ba~6&od1>?+~>FiHcBnZq5^)M0WWDT6^io%R{bCZ zhCK=2pBfOm;?+63`R@S-8<-jkribTSN&}1gGL>iY(F@;Og(SG+?6s`vf+QR(_``|^ z;@ga|=lH|StuunpI=0`>+`M_h7gzV(%&;X?JGJF${2iAWb3No_*Ynu|{v219d>OW2 z!2>Nk;O*oVuBtQ7;!hkBvz#kBhR0Xp z^5E_6zQ;~f{J8hMP**lawu%$&=LdIvF2grbe4*k%Tb_kH3=cfYR|BD`<8fS=Ee~_m ztc8y><^qwfzv`<#e|MyTE^TYu&_!qs_?DY*4ft&Gb&=PU$Dd5xhpe?_39c@}{q3Uq2alM5dd8X%l_hA*3SYkoQ9 zy`g})A9q`=aV$bh8SYzflNjjOW{hz^ekK?{ZheF*k7ML<{!_%cCQtZ|wF-1-Gsd3X zZ4BSI@YRj~9wkO0=CwHQeC4^D>jwkv+m3ORjxQI%g!uA$?kp>-V9b0+!sDykAvvF5 z_+}3``~G%pjH)P|CG5Pc-&pwYo-K=+4a^n)xOGN|fo=?HS0%F^Dm8S6LVNHmZbx~X z@9Fp!>TxtCsht|Kvk^vb2hLq|O*yZV(9vRDTX3WT&b#xUI1z$BoQT;rHqvMn1co#n z_#g!%z(Ml)E7+K3o7>Ez=5WCoq20l0 z=evm(KFZeJ_ANM1n^@~o@%GL)c_9-UWpwjdpZ2az%qJ%#gBvks6K8|W8a(z{rRj=_ zi^p5|vC(Tw2akLG@o$)oTpt)PvXMsZEpN$XaEBxGnk%{L*s}THZ{KY!T*)_nLiOWu zJo;$i4Rt@zkp!u-t)RXr{^8~?R#cD znnA!Ik#8+tfy6(&=QV~G>JeP&G2Zf6vo7iAfbPszG{)?DJA<=3TgOHkt-fhKzH2JO z+Z5j*@g2|>)Vx%j=M6xWvGsmf-x_b_{4l`cnHWNl{}t?`ooO^>Y#dx@uXpuHQ)NZZL_7?Qe?SZovThVoYkJw z+^_x6Xfm%eOw~(k-c0l(;uTT)f~ zbaO2oRnJ@ds_xc3p}N9etp3Kf#MIe*-nvTHM|GL1K(oQJL)BMh(d|%vqdaJT+y1r$vjB8S$V&5p;@i0RgQ_aywP2cmMp}@%G5NKN@05Z*o!L_%ZZq=;kv34#qC5) z)6nCaGm6`Ym{R%S(Bq0*qhPP>?5DVeh$()Xv*TICGBWmyf6<4Eo5|Qucipf{aZ?m* z&e*n-|v54v6PIRJyL#HaUB`^<_Y6Biff}_Df!ik zYslDo*UxE+tI61NA9a|gSkjFxTaB;~jmowxcIkY@ViHo)sozw^A`&v_s#VV^nn{Q= z{`rH7gzDk6|tP1M#RA$I9z)<$&Y=) zy6@-5uzu7LetK@xH4)t(d3_$yeebJtiS92AnnQF?y|a;&pb7ojXNAd`_;K}~>JZ5f zDDp&*6iM8^!?Q{5J@5M=Knlpb8ZO7~!m6Q)P^0@LK4LhJKixodpSRab&I9zGpUxtB znYd~u(S2x%hv@FQbOtF4b@7+ISWf~#*nxG#kovstCMOnZ@qt=01eGeah73WSno~`N zzPa|sCtRd7#I1S#GP0NNkEqhB$k0#k-}maJWN3r(?gyunq38W44o`~$Wqq1@NffBl z$h}jeK;|1KT}+17pI_jc5(U~g>(a?lpl6c0Oo{?6)A}Yxfd(h|Dx*LdZ~ssc1?t(7 zTTX_aJJmUNLKNsk{o%4G(9u^PEG5~W=7~uMN=Rkjvt#afl82F%G2a%GBl%;p_Wg0B zda6G%mJ}4&ent@qsP7h-I)(%&*Y?X8O-gOt!BD2+O>*wle+bFBd(~iK;IDr*h(y=>vq}pOZoKqEvJ^ac?@w zOV55!rxD$k_ZdKRZ|RvzbkDdlg;bU^PPUurB;~r_AN@(r@uT|@bD;QP!m3A;$$|dad%K@~$2>bj9h#a2v8ek#u(OR9E964H1GZC|KORkaR4y#iJa!_ck zNl%O(R)lm2Ky%7o@K5zttUeBY(jm?w;q;3_fhIP}^8oLTVPWwi0DyaXQdKd^*8tto zO%Ffqmw1K=sDhh>0lK{li)sX8RH@h=zzXpyZA%sKM_*I{ssL4hDnJ#W3Qz^80#pI2 z09Al0Ko$7cE3hc6w3l}8zi6&&qDIqAogAmBX!3<;xLuAA`x*AsIN+N%Ji}4z3cIRZ zAvY$Jjwz@pa^(9P8XA3`a1(Z|9PjXi94-g<75Of6g*|Rx*iq&WGd3i}=Y#&Do9EXM701R-)y2nE!)8W5j9%sM4I9RVCLN|(dst97_S zA%Bg>6?WJ1Ne;Se{K49g!{dV_&2a@i?r@XCU+1Xv2OC`BQ0k0uI1m~-V1STUE~}~a zp74yu>Qs*(Bd!5F6C*YLh5@Vq0}3mPQ*hp=eSY;q^lwg9YG!JB`$a#%f6^T3LsG`( zm87I+^ZSd_yMLoFLCGrZ-z(sczNi9J0jdC1fGR*0pbAh0r~*_0ssL4hDnJ$ZFH*p) zjx+LW0BHYTZQrke-~E3AAM`~PpbAh0r~*_0ssL4hDnJ#W3Qz^80#pI2z<+`QcC|*K zOi&egYP|kBx6f5$Re?jCdUTPa+Us`LT9q1wF+Shzg%b($Jk?g)a|*kyL2dsI=KrtT zpS0a;pKqUNA8zkqTV&VT4%^Pzw%8i}6EaTINEM(8Pz9(0Q~|00Re&l$6`%@G1*ii5 zHVSmKtNSa8xWY;Pr&7Lhf+baCxPx{6PBwK4>zn-shv|Ja?vN_RqRwJD{7(g{YTaR%#~ZRQSLlpoHmf>;^~44p zQgt?~2Z-N+8}iiqLaKP9x{wVe?5S<4s_~<9`*5f~B&4N_L7mAGLav5@*DbjB(yPa_ z?saZgxH0Iia{KB%KDRpv852ldb?U(^Dc}uMp>zrelvgJfk;nv!bknG_S!W?7f{$3W zdKed$@Y@Cfv#Zp-*v!@VXZVBRklL(-{eL82*cA-1`~Ql?3e%U`d*I`L<8^&UwO*N^ zSZ-HHRxK{Knv97xwGETp!4UjXquk}IcPBcAIudh-!*3Z<(-NJCP!{wwxPndjK~EUO zbs+-sXiVf?is2U<$n_HBYGg4$3xbXHg+Y-HP+~q<8Q5M?EuyEfbmIc{gMFWl;xi_e zR)^fdIqZ)|CVPCf{<%VwY-0Su0#{Rr4T0r@BUriMhJskY1=K3##hwNan@}!^iIq(O zF1w>VLC68?5#CtOkW?`8K)AvkW}{;BhW&ZCbnU==I4lt;S@shmpg@}<@E38Z5 zl(4jl%Dj?-yz+u7%x9?;Z856y^U5lVN=rCq7=Cr*3f4+J6qQWMD=sRiDlg2dz_dxx z@rd9i!4G{R!s2t0Us}NBA~Q29OBz@~>G-^&608DiUQ%>YX@1_wiN$&47xRqrc_r|} zA1OzOqByUjf~OVv>VxiD^rI!#0+3Xk`LLpSLWT2cyp6SPw#@5X-jG{RKGEZ2p#pcP z#tqu|I8z~$#=8OmNg&ABP)ywCboPV&g5KDAkT{_cB&zecYa{KJV78pa77Et(Cp{FQ z}S6dMdLMvR~go>Uu`^5alP}tuPQKQ*Hh^*7NQjB&5_zIbcO*OH! zt`6!x3XrY&D5G4$^WDCXA2r*2gMv7ha7oGcd%dmz{0t5ESd#Q$M5x7u<#}9TCqg32 zTtXWojYQI(K>Q1?FH`B2af&;v3SsFMW%ggzCPJf9>p?$?E3K(%3->A zd@v4yaT5GqafZ9W9}LcLLH{W6_n+3H4jwpg@W8aROlck>TUEi*q!fA6T2WFuzOX>b zAvUe~UXRaH1M-c6ZXD|O-_*c{gN^b=_&>gVEr9k`Y$EYc138ZJxV>y+mRJFUNf_va zc_aL{Y*O39P1x~hpebyB{Y#tF|8v7kK~`M-{zYwMdis#GAp<3i9bdzRQDzOly(w)6 z{?nSo^nqzvLk3H85ZNFi^OBa6hzZjvZsbLWnO4(jMLR{R!nD%3%NRB+ z(LbvBRX0<^DRxRodk6`e+*=3m4%NImP z#r^p(6RRwAROXE=E_4t%eH|$&4xf9j$pNp{t0GmNT1QbyW#Q<;az|Nt(Ri3mImQ)U z?8uu~Sz1&AfsZdNsdN&(hN@tnLBRg1(N$QQOyF66F?dt^D0lepZ--2Xz3 zWPT+XaFmo*I!Y!M7lTEOYi_5H88%F{sJ~Da0r@%{Yw~hu#oe;J5Il34kpq7rH*(KW zvQyV=*T=-gsTRix*+DCXDE;VDahEK?$l1Xq5&ruZ(uCL{cniY1>>v6lol62ONmgYgRR#Ur4!5Z3#$qWEAq>W*tIhbjQ~sYC!%&V4=t_1 z(%GoO@SY81+k)&TTNRor&^QKglj;yFED=aT6EvPCiDG>9( z_Dz2-3(3XJHeF0rwn_nWOZPl3qgAfPFihLwdllKDs?y2siaVR9HCyyCSy`$@7YlYO z*c9H_Kz>`hDVED@v^B-S_FQtyWs5-||M{+0@X`SLE!?gKZ}eaSJX%!ifJF?jh5E*j z0~%0ovzZ%JGz$64FC9}_UJ2GZs;Hz0StH7z%u#WhEQc}M(ds1Z7}Nwk0ihmp)lV2~a9^SLp$lt(ohh#No02Cqn{+Y# z`>VLp#O4ul&u&DEZmqs5ZjH!cE3_|4nG?JwH&1Fd>SKEKQZ1S-Xoxp_kaGCHid!N= zlOSLS(j5P(5=VkbJzYRsc$k;N752g?2}1v~LYtBcnhm;`$?4H56K_*hqQ#}l-4x5< z8Q52{Bc^MutUz*(+(mJ7gj{k0Ygkc|3 zuDCmpniv7~*EBZ3_5j-zR0Z92Zg$~T8V*W;JM1NcIFcYtmr?%&8FV{PtIel8DlmuJ zmTMgmb_R1}cc}140EITkU*oEVXRQUBstA4sWx+CVE+yT((b3?VSLLq`p)FsJzZUoR zVp=8hfxeQUl1<5znsvGuPkuDxsex{Hh70ysB!kRqmltg!SEaWBDsEbGd9zj@lb^4; z?sC?g$Yfn}R~@^h+MLxKqmRkVR4uX#)w9*6F{+HMoD?e}?2o{Rm@-BB{tLsfNRN_X zA+*ia&0X{{g@vj`g+jukZHJ@uMZ**i%CZuT8j+_cq`#24C?Q1Va!zw+ea!grszuX< zT(-4$k8;`;u6RI}+qUQtIc|ga7joT3C=oelpZ{J-M_ zs@~k=U*MrT@Te_igY+Bw`+wUs1^m$$Re&l$6`%@G1*ig40jdC1fGR*0pbAh0{wW0( zC%|3v*Nna#o)MZ@4R_T9n-Yh@6Vl;^6y$<$sDi6`N*lxQfK<5VNrKj)d(Yt7D1Qj< z&nxwLkyq~aD&!X)wLZh&7%pQU2MI_T8)6V{!kOc)Xsn*;t_g=Gd%`o|mNkD62QLjh zAaO7D`)5_VYGwhRjb1pY*^Qo{yVBF(&I^}&LI@R7-r(^?0O_0;U~zXiv3H?>2hN?H zbmy_puLd``M-AP=$4$i(TX}@bt$>m_D2sK62UoZ04K4r*dTPRzu3)7Z*H%EKl-8yPz9(0Q~|00Re&l$6`%_I-&0_z7bY#Y zPrn4F8EE1HlMT2NIp7bvyfB6qhSn123Vd-xE4TnABlSU7UAUdPm1=q1g^A8M7jXEHk3hfo8$`BM7ra3fZBZj92eZ-9(IEvq3g|y zYSF9}?po$*p^VlFch%NPF1xPuvse4oqDmvJv~GN3_5~tq9TuwSB|;(>n5LuozsmTs!g37W=!+^q6`%@G1*ig40jdC1 z;NMz-YvNT}Mcj?)UVlB@p6RJ!H`?kv;Zcpg8gwTi8vnu9{H7YOKM)%4uXTI59jAaR z=t8qMJi%pm!^)5w8gX-uFxq6D*_*Q=9GGBv(HxW;Vgg#{hucbvd|@|y1j67?GRy{; z9m~Tw9)PseGZUSJtq9iy{h`n#m)8Tg(Lq5J`8e;=*(qqmUXIL%z!#zz2uwnx`ig4@;I%P?rb*$T zAFWD6AR)IKZ6XfI8Zt05J2O)#FLW^>xF;6FZlK>$j7`Q-?ye8ILm^}>0yR7XvdqrD zQpAD_`@QZUx)=`v$#AEn4HD=zbIRQTcbL6Y6KN{?fouDUz(80H5R#de7Fp_SaYV>~ z_la?#bH(MFxSs_0>ik~zcs^m>DHQN}!os?fNWh!$ux?iC zZ>T^dSPn}xEoj!mA)`ed|5`eRWMy*+`#V#@p8vO3D&UX4r~*_0ssL4hDnJ#W3Qz^8 z0#pI209Al0Ko$543N$C9+5Kd8b{`5i);8he{9*P04tvffk#&dP>%&oeiR(Y})Ps<# zA>egac;=&U_@hp(&c(nHANE-RW!?Zf`!B3i;NSn-A638~eNhFd0#pI209Al0Koy`0 zPz9(0Q~|00Re&n+zo@`eSWalpz65^mf|e9yKYFQy-zUMNBno}?9-kYYi0G>q=J(Q{ z(crTPuw3A7_4|LNeW?Qe=!+^q6`%@G1*ig40jdC1fGR*0pbAh0r~*`hf3*UQXp-+| z&kVr*0;7U1{z)Y8R1@y`DTzLRumPSa!fy2Q&-_T_Ep_cbLt%f3-zT{g5kI0Z5ufzu9`MOKvX96V?)c*=_yMPXZvS6pKdP{Q z18?+26`%@G1*ig40jdC1fGR*0pbAh0r~*_0s=$Aq0_{~+g;HrW8sQ)OsZ}bKO=(r2 z|Kk@B6bgf)x5Bv1P^rIE`-|qNdX4HuaOlBi*T}wK-M%?qACr)vS~@H2s`k3eip#3l zt2RR7{}ik9%M0@=3muhtBZ~_iBG8xp%>qlW^3*ztN-7IS7nVE9%8SP5m0#=_S9q}_ zZ(?O>Q3?1TUszJfty#EyE^kxF6GC1p3#VXLE|gk#$W!k_h{qS^=y1=9tJ)QEV@F3x zX{DoNVsSBta^AvC0kj0vPX_glBj{jvBb71sEZR%j*Rf2n%^A;P@y2 z@l*!6|j>q2^ z@;0ILqEJ9j?miy}lqHA<8&z0dSdw2@A(l9(fyyT&V{?TO z5ul{pWPu47R=2O<;HgbEB{$D%?x~N-&Q>k*3r1P%an<|$=q@Ba5y%eZu8PNH#wsVV zhAVOA>`k;0WY=(@2FxxTVWo3i-bP-0phV_ZOdw>UwR~b^p}yk(A#ljO|@?D`wSHU0)STOlQ0d1u9{wld7K{!EVNaoOW*9`;%VmowGCUAEY6Alt5bxLBy3 zttVooBgy6Q1scOuk(KlB(k!;Qhdw4hU$r=!q#0a;1(xCoxP0N(x=A6$V{K_CW&Roc zxXK|)(%?oQps%*T*o7YRNdFI?%Fs&>dGYZ3IB^Xq(CiyuPTl zso`2cXcK3_18e+YRDC3tN~&G8uBK2`*k9$IgG{Tn$+^I4P%|gESBKm|Xr-$F2!)|+ ztNeA)8a6qqJ@CsouA}(>Y=F(d=2)(cT0oLG)Y#DA3O2QBqp+*uk+#Ieq(5VEq&&j| zf#5>ms((>aHLJOsKBj+v)zxM~u3MQ?NU^ewe1-@a{Bt9SR$Y}~C6Z1AxkWbT(R z4SB2JWlgyhkJ1xHR%3AhBMVDNGPxtXF}t~|K4!oG)!p%e+!4_WV==x{R6Hb;Ji>#6 zRh=8{U_Ypb`*XrWUFQNr_h~uu$K;jw%}Ps-)Y$>m6KbDUyV-&k_GKMEslID!2Hf z-#_Cm?5S<45)vJ{pck3kRH(E{t-@$jp!t6XyH;WU&VI`Nfqk$2HTydI zqxQS(*V>!xUVD{&f<51!VNbGm0TO*t1*ig40jdC1fGR*0pbAh0r~*_0ssL5sKUo2L z2aU30ch$hu^ohP%KL1>wr9C)wR%NCRDszQGmUj5tK=jRSXUQ3 z*v(o5;>gV!?h6~HNv$!)*tw`pD*pc&>1HJ&;fT?sUS&Ur-cQ?qv7fU~wrANp+P<~z zw>@LK$u`SYWV^_wwVtrPW?f-jV70_7Rnt|YRG(45qkdWanEGb*T=iw@B6WtkyIQ0Ahw8AZMYURWt7^WgMpdjD zq>5J=lxLOiE4L}vD(_HUsjOE{P!3i0Qd&6U?R=Hqs8p&tc2CplDnZfow3H^dE7^#7rnAR(-q)sgg{bsmx->OFUMr3R_B&D&&SUFb-Gy+=O*mjPo-;+ zIM2h*$r{~kiSu0S+*hp&OPuFm=ZiGDc@pPF?A%AITOe@`W9Qy_-4cm&2s`&u>#h}@ zI|acRWinBBo#@(mHYO*ibk|Fq1K8Q2)7>I*_G9OGwQjk@*@vBbYIJu?oExxnoJx1E z#Mz6Td+2o!OPpt6=k9vlYKikq>>R7st(7=?uyZ%PZoR~L26pbM(ru79*JI}xt?osM za~*c>qSI}WIJ>cPXSHsd#JLtbchc#0OPp)4b4RUiuf(|;J9p6P-jO)FuycEZ?gNSQ zW!Sl$R(D+DT!o$OI^Aay=S#7(&7k{QbnY}AoKXo|b!R26)3B>W_pRvK`4Sw2S*814 z;ye{QoAkP0B+eIOXQNiH5S=?s!9g4JO3}6RWK7np^lFLoB9rE)iP%}I)*D3U z9+i5d!eHo_4o>2cz6$P~Xvk5)c}l-nqg_d6lw-yet@d#;V*+MO)@qSq$zzEx0|w}s zK1ur&k>DuBK}^(XkrB#+aFk$1rAE7n%ovXu6>2RqO+pyOm{G3NA}b{@#$m<;qZU~v zfiV^{%JkZOWJVEYl&ZDJUI}50!Hg1>_7Isd8Z*YLweOM{qcEdbr#(hy6k^6Wt@cwg zqX09;YP6q|8TptoMx*@)nK2SGM(ef6{0X_u!;Dc{?N4OJ2+Sxn>QrO~gBb-{ou0^u z&jkiDv3#A8NN^0tL5$SuY-C0bX5?vf9mtGfm@&en>p^7155>t~ba6z2BO3>itJ1}j z8AC8*xJK8D%ovOrIVxRmGGh>C4AbfQlNnifk$ZsMgnHw0ULqgzzjTgBQWAI0}tcmjQF0wK$3DJ zIyu1+hl9X_I|8EzX5euifzcf^@Q{zdh{X&%`Xey9VFn%u5*S@E1CI#_j2O(o!$Sh2 z3ufSvB7xBvGw`61!03b-c>G9Ubi@oilq4`ZUjCPoT$C?C&9W(H- zlfbZH1|ESD7*@={gHZy*f*E*RN?@2V0}oLN3=?MH(W;ygZv+N1WNzR}AQ&)#8^g*8 z4n2+o4`&Gs9cJK>ErFrM3_Qq{GvYNk8QgeRPH?Dk5P0ZIV5l$ykAevdC1&6OF=oJI z|Fh<+;Qi!PX#anR_PoM=-2Rk(seQVAkiCQL6WdnXGMM`_wyxIit=p{+SZl09tXj(v z%UVmLWvs)&FkF%2_yF`hJTH{N2LWz02pF`PAQG2CsKZb;Yv zrr)bysh_FOh1vbvy1R6>x`7ZOeNhFd0#pI2!2gN@Lx<>;`MvZpszA`==bt=V?Dx;A zcGb)p>c~bfxNOE<#y!_z#OOC}`JrX#z3ggo>R|BOO?d&o^YZH5sod)GAmGPefbWK9 z0rOepPS9rZ+^mNY`9;fKJe^|Tk~Z*9B+Y~3iD&u4Gl8Gnc0Bk;tGp5^ zANTFL_Jww=_kJ1R-L7ggnI-C6E=%b;<*?|Ar$tk{UmEy}t~U4+l};G|+~`WDHAJeM zkqY$aDg#}vaKDrbBuAodwiCF~)lF+d**^WjYjkDPcvT1V(sEqhH@Iw%Zx1@~h9y%jx5&vX^IOfnq^kS=aN_X%IHr1wAWL*PT zdRi>dLAbW)5q35(s~h+L3ET96Ev|gow7%!Iap~%M;dF_z4$O%GI>_2aEUm0CbMuLt zhn%>XjV!qf_y&R7@Li(kTIsCLIwNWd$8QUf&v9lvkqe|S$LIPkZ8{^W-mR;@vwA5=~K}6}8GpHv$K=Y8_s5yUXZl052d? zYcE)xj8r|~a&@9vSw^Ccm`tg8W%SkpN3KpQyUOUN0h(MLl0ju8s-r|JRYwIJxjJo_ zP)1KBc#*5a+fD}B|5w|;hIiE$?Ee4P_8fbx?Y!-#QTKJuN?54qKkH+-#X?8D;5bv6;`9_nMzDUt_K|=feK~@1{>oubS>PU1_Q|<(d+W zzZ>5-ZZzIz^cl;IsYa9GGs9NHgNFHrNrnvA|NjSJ|3=nm+f)?Kfw z(~Z>i)c&kJtbI;y;nz5Qb8kPE(`bG7f>Y%zr-A}DkeFA&^ z_o?QpDpUhhX5}f^<6oh?Tsc{psf<(n5p{^&18qX2mTu1A%8Q#m$(3vi1wus$INW6|7607rK1QO zv`LLPCT8y?Ctrm>0tf9_BaV^T^8|XWC2-L8HR2eUz5DKZzV|Iw-N(+I5Hp3A|#cY2pd2IRe$K;#@*cmq>4zoMh^T?@+(Q-;6?2@bWogwQd zm`{q5Zi7E`sw1+vV9T82e8RkU4|?4z=fM6s$N8Aq-=2NRIk1_|agH;ukKA>!IiXh0 zft_`Z^AWR;GfX)L_SrekG3GU7mY3ft=fJKz$2l539N2>AI3F@^bX+&A*&BbDrb8&+L1y3(A?C16%bR=RIaiw0yz7J;!;M*$v`2ufA0t4s7Cc zoFlx=%Q>*4&v6bjI~U#ma;K9Y%Q>*G&v6bhyQ7sU?Cf)#gVECrd;1*c9p=TnM`Phn z9vAHHbDRUruJx;&r*9zW3>*9$XFs!>HN&y;aA1p{+w(a&+-V)kyH@Ws_VH_O9;t$vR4Ci7Zx_q9KD+A8P3W<)2_;Z}y%=53k`1Y;E1UnqXb9O~9Q`q$9!r94e zt9@_K_}ks`xM16#_#bDSN_=4kc|TmKwqdvsfc&3}%wjoBZb9#gnK zERPGe|2fXq=yebd0C1ewnEg_}l)=6uVoCC)IIL=GV>vy8pU2+Z_ z1mHL?GTSoQmz)Df0XWVJ%nQ-#IUEMyIGdTR(fR;54#06XF-M?~rpJty#{~xhIL^kX zoLD##!0Ed|?jH^VaQ>fX-i@X&90%Yy>zPf_(g6noIL>p?+buW}z;V_w$D_pshXOdx zv&@Mo`o_Ys04_hz$nygS0yzIqN3D;sa3nxwME3TS%zrE#2H?V8E5j1u7yuXclgv9& z(v}DZ0XWVR%#J9w7z<|sxH#6x;)w0TW2_j*Lz;RYF2cp>(oB`lC zk1-!cYm4C&0LOVWdR%Z0fa5&E9Ez4#I0?Yzb)`H%a0Y<$|8Ueg5DTXOIR6jH{Kvup z01hLx-LUn~h5caEuoGePpW{3bHT{XO{m*gkk8ZPY0D$A%7k%6VM*uj^z0t#gLjWA- zo~X8)2*&_8&fU?&fr9`X=dP&viiM*9oOXA}bWMUo04jaAjtL2s%&r%v#Z{l2UGMhQ zx+6!ZNpKK=V+~_=@3^Ds*IOzGtgh%V08CgC25=J=aYEuihX7!rlaR`1R>nYw01zXE z+0)^NC9gaz4+9+nKny3}sLR4YhX4?xKlA#jmWri5Je`uH104cDjDCEFDGLJ~0ziyp zX6NZE?}9%W104cDjK0i{Uq3j0=Z;Th40H$pF)m`>tWrJl&~MXa40H+rG5RpO) zJws&-bPND7dh)`#AAMO7u+Hv91 zcd7tYfGR*0pbAh0r~*_0ssL4hDnJ#W3Qz_9I~8D`|8JR~u=R#F`l1R@1*ig40jdC1 zfGR*0pbAh0r~-dQfyEQxPVoe#F|O(AOlv~6K99f1J45C5*L%?2%mqUSgl2erO;zrB zF1QNTJs<>^Vu#)JjiCW$-m>xjTDLbefW0v+3_vafRz@16hW*Ef z683xDK|ZPscS_nIU`RfAo+}&y) zRHlX2gu!B&rvDF$H2wcqkq#O%WFRW5LGY7C_A_g6Hm~6Sg|f{^O;1nD9tgS5OwY{B z8psyy7DeY~UDDA3bpQXaG;Wkj6`%@G1*ig40jdC1fGR*0pbAh0r~*`h|4ap}rY99z zMQ4T4s<}>GX&s^HY#pq)W>|BQK4$P>)r}p)u4;G)RB>5VjeibW{|dXSLX8a#u3!_< zQSo$sd0}22*rlXEh$yToPp!k_3p+*^mK2tQ*8)dg@#MUVD;#+h zj-rCXlFFjWiybAUm5!2$#l?=Y@}lv13#HM05K|DHPEL^!#a~R3oE|+na&GjrzyhDI z))lPv%y-vTp&+YjJ#}@hbwsHiRa#zHG`a*?mZNW^VI>29RAG5xNq%7kYts@q)S7Eb zUX<3HsE@hmBGr;Oq57buSWnpF_n|5wd{L~GRTlws^fehB4oOUM8w8x!f~!POB^-`g zcc>=l382VWi)J0eu3)`84EBMI(CJ7?ad<+G@CS)#zRxX)p>U70jgWbQ}2_Dj>3hi==S;p4Q?M)OIUWVc7>ueK+rIF zfB|K30U|CS+!#hSLXm~ss)YfMpojD<|VRa@(>Wev?AX!LRkjmAeb zUK=6*ku91SB$CNJ&t22V=iOZuhUc?ki$o|&-yC-^gzU6thAY@NJuR6lfQYKd$B0Wq zRu{RAB3xXdzOCtm5TlfyEM%c%Yu#a&#~bP^ICyGFDJ7Tn|2SB|GGrlfPpJv@*_X^OIEVUTjG!^W_+&w}=0H;_H`!#irSiGwBI}DV4DsiU5(}3{BC~6V zM&^dJGbJyMZFcBm($iH}PZt`Ypt}aDa5ZdDf}OI>P^61ujjSPxB;ckf!Vy))KhYRL zj{QM2XmNR~IJ=fL4?qz^MqM1*J(bmTq@74ZjZqjjQpMgO5}O&4_8bwK%aSA0o2!nv z8nPDIy4=LbBQ2>FUI}r5O zxI-b>=x!?jwKbpBF@Aa>!hz=Sd-bpod3t8<#+*>d^$s-+7Aql6sQdTO|S4-Py8 zJ=JU{$PQu1km4zs*+vNjw|2NpY=>EU8_8Z~$zb@?Uf8Kw~%+f?r1*ig40jdC1fGR*0pbAh0r~*_0 zs=$AQ0+j}XQrR4%QYlsHa(9D&4mxY%^ZQcp5j97sv3jPvCLCf9DZ{CPP-9)4r^W-P zEFJ9GL08xjgxg&meLZz>G^Z(9ovY5hqNiT3RHm?jmiXZ`30!B)pNeJi3?1MTS-i*x zM{r$Ubn>tOj(j+{b8~RU$|0Tzm0XKUC!+J=5WU75({(4vg(E5 z^?jL-dI!Gx^wRCj@gBP`y6T}jr>h}&Nz&QiQR21DKVbhv zaXa(k$M1gj$jV2AXj+udH2)S~B1ZH2vx-{P+{oMjc}|K2=h4b-uNerN+FPJ@|Slx?xVfeUBCoWpUywhp)+x;d_Yk4;R zqob#d&wCBh$k2o`A;~<>3|0L-p;A+U7hp&K!zQ zq4>Rg@_hJZe=Yl5p(^-|HJ4RKZDSDatk$}k94VQDvfu~*pg{c$M;dYp!4n10b6)1K z4;1jgMf3B9Itt)x5T48rPk;$J;FslYc%DsO_iX0Vx(P3w7(Yo_&g?SA_RkrADf8~{ zOHMpDuaDvYv-RGDHEEkiFo$o>-8%B{AjLxFNXK~%_g`UTj=iLO@UyP>F~_Hda~GX> zpgC2C65pRsJSrK5;*ZJN_y3;6S9pAlAhs)K$Ib7-8wuC1+PZhzI^VtuE$ zRtsgD%o-A;l{KWftWfae1z&i^|6}hv0Hdh3{VY?%oONoeUn2noq1p@nu6LV(aq zK&f$)ED#9UkWEm~_jDoH&}Vyg1$!4!6ctp0bZjU{@hK`rKm-elg{S_{oxOK+cPG0^ z-t+&y@A=(`GqdOZ&OK*-_e{BU1|;^~wDGTx-|~Liqnex1i%UNrv8Mgy=>3_8yRW%> z?Nap8{av5Q-B^g;e+vz`H|s(SdTztEJ6`U&621HJvhL*rwrpA-+jxD^RfoJ8dQ3~2 zLJP5@(X4YElwg@EPkpTmuP*d2l;!wZ=;5w&ErfaB&N|4Z*Qd4U`Jrda${o`*x1bkS z7k|IH_y_d<{4-b0UcT0YUMzj;e8CL|(fgAo&K-7ZRXlp>q5Lo2d~qat|DDvc_f4LT zZk;V`ed5eQZ%&k5AC@nX3fW`+iK9d1NW9DfAJK0KhAXH_D4=cq9=biarp%6_2}*B$N_!y z1)E-z7H_)rM)y(yN^l~*72vDIw6GAC7^=c6oA`>dSK=f$EF9;C6_A`Yb;{}n=!dw( zk{$P2b&sQ?PhR6HO#B@kJ9%04RKrzp^?vrx5w{*rt4GIr-Zu8S$}6=|=1{>+Mdd!XZ<4h`!z&i1B5vz$_{zCy+EqlEj%Erz?J6_;v2v@cIcytt}oWHP$# zqI*BtPrX8A+d3ZKXqlW+SPkGG@`vW{%@a(|n9RlsL!+UK{xaP@okO@m zdr~`0^T2=VLEug5&`FGjs}Kf_z<-#`ra#=yg7)S=sb6~8L+IGTg4EkK*e}*r!oMVK zPQQNWpwCNmGR+2~`AKd9g{!_2cAtffA-ZDzmErs-mjY#I|3b>6^oD1o4fa1@m{-)==9jppS?Zs z7Id(K@`sL|!++nS(@MkeK(yugf%qt2x97I&Cq8ovI&rvrbdQ`J`Iehc9GbD+>`jVp z$;Zc2rXL=bijF<<^=ap<-X+?FijRGIgO7Vk3;tp_hfa>Y{)V9`(~-)@8tcW6teAvO zm;ai!|L`;Dp!4bu&Z|43qwftm_ue4zF}7Pq*7LP!%fk!C7Yyi^ug^)$E1qLPCw7;f zJ7;|+-`X?hVfg1wYTuHNueVQL_vtKO+;V5cgvX0&-{$GZr%V#UGfF}&AFZT>(Qxs(_>aVI4|G${7n4Mn-tNKkDpBW zzV4yd(edHm%wI5V_c*Ob@v&bH_;_d1nZMTe@$(q$V--(VbAK82P$Uf-Hz1`0JeMU6ex^7P$T#(W za%|Vk1>PjN1s`d%{qfl!xTf{JzDRoo_}Ec9I0K=5&JXW7as561Yvuzb471P|5S1$* zI)ygnZmoV`SQPrI<2AMEKmHXRa15N;c*cW{%{?-4^>xG1m(PDRJR&_FZR>x>iA|HQ z%NHKKvGJO@&!8`3-YhsXeL%kP(}X#buej2iB(>yYuM1tgD>Kn?cf)%7FNHbUo506N zZE@mowC9DGp*yEp(aDX%p|_vA5A7yCo+9zM{`q3d!<`1BGjQj5`o34t0n6Z;hYwib zao~G*{IcxbyVgC{3vI94c7OKVG5JD04wB*M^x2G?@3`jKd_#97ZoNtNmVBJ`M6Zd{ zCZprm^xu7KV%zjfuoXD1Y8Xm1A}BeY|?j70C5Hh*(Pf(4!Y^s14+9G;1Gkmt;o zgwJ*VP#)CiOv8P`{Aq!_P$eeQYG}5?_)1+VNFa zK04rIbmn{{e&V2gFXF$K(D6s{-(%>@2=VaRs$0>HO$S#D8M^`fUXiil<`-hnnG;*) ztr%O7uX*d5)JE4PMw}SZc(T1Xy>FCwhz2> z9{Qyq?O5chq3G<}5uL|8azDBNHJ+uP7kiV$mV8|3>73Q+a`c78T~OkQ?WBEN@$sTa z@bO3eUp6Pypi{bEUxC*%6zt=Z_;UWs3UqevwV&i)n}+r(?+)$J7pY~7;U7Bn-E+(0 zhu(^I_9^)B>L1plU(Sz4- z3)-o?4#nnc=HYwRm*{NGijGAv)4uLKROeA|MLAJ=Ufu(SSMbn=?RuV3-lzF6&3 zijUJ}@X<5j6>n;9bZWq>htEzPqVn-k{7P~1ZgduIJeMq5jP~O@RZ;~ycKF`COWotp zsbBAUxbAi{RPgVw?e+Ah`P!?t-({=xqO;SJ9=!SD{CuI#{&@aJ9&eJd1s^}DK013x z&USS2vkfmlnb|c)`?TWY3<-Q(r34T84uj{jgujgh=5%YEX;tKY~6?&5lE&2HHKOcTc_ynCi*X_-dp8oB% z&niC7vVo818(x1fYaTkaXt814-K8oYAJm`U@yp~j=N@9b&X2GE^)UMAyQ^P& z@VOr7h_b6fUs_LQJ@CeIw8QtVoNw~If1|V7lG@n|Udb1g=T*HoN!OB(=f5Z&|EUw5 za`hW_@Va*+w9kW&Ms2BO5_2k?=v~%zkoBno14}YEO>{DlN`g~AwzJBE==GXV!=uHw@@R1GyI8|5GcKPsqb@7&fT*I?aXq_zT~ydq^v(fXaD}d zTb;d9zVX<%)#GE1dy}*+`RME7N2l(|E5CW)Fj4yo_^8vC8>gV>o?iJ`NnO0(#|H_I zXO;J!ljs%_k6&MUu(+{TdBD8~D)S$Ehr;$B-kz}i$QudULrY)gukQcroghgly#JK#64FfrCSu$8+0Wnlv|0c&KvSj}t8V!aMi?7)G- z@bEVSlQu<&k9X1cnM=jV?N2ygRzp)tZi6j*_-aoRF=nI=KH#Ya&}ZP z;D_c_H4PNlij!v-!e>sU!ZoK7PXvOdz$R&klK^*Dqwk7R z*JYEvsis(jgodWiC^VIDDSQnB`bnUpM_I_c*#ylCs(@`4=U<38D3wOpzp@r_*kBc# z4Edwd_t9taQ^d;@yO{Na|F~6hS0Hb9Tf9?(qE zzrpFheh*+4poR`amuDV)JDVZ*PkZVAkqbVz=Hhpkd0e%ytUEkb%PT9CmEQ4pgnTQ? z|8XIF%|LHA<(p1_YYJh1xv~MQ5^A1Pg|7-jgIAUCzcO_FYwDN!{beKDjeC<9yMmW7 zuXfE<`ptvob+z!RoTd-!C`+EtaaO?>VSua6m0gJD@s+H3YT#`K~Yv@sCvk7u5DAiNrDzC)zw*wY=_n!p4zW~v}H*R0P zFb)A;AziggN`o@?pJ|I(xEEH!7Y$%V`k);APE=Jca8*^#bGs`rq|(iVf!|6POhu)0 zZnYafP)pqv6&_U{f86B@6)+pEPYm#88Dqz$hOMm7*W^-P6@~uPY#8qCWsIGc8%kOE zNP)9_0e%A{ALl8}Zbqni6_PT!xG<|S{jH_can8Sk$U_>%(- zy{I}{KaiX!em=ujmHeJIeFcQ6k>F3@;O|JlpdR0)g1^?`^1%2IPokoLYir7VCpbHI zZ3VE$)(XkDy$CuD_x}s>dA$7$_y0?!Ql$Mw`&@fF+eVw)7HNISda>n#|_4Syv*Fkbjq~S)XVsuagnjJ;dR4YLp%Ley<6W-w@x=pCkw9%<$_)NoOXg%&^-Ka zHyzCC1(P>mJqFtEuT0)R8~-k3K3wufw1775yyCHK?i%FqnCd!RUyL?B*mKt2v>s^V zdzM*uU7i|p|B9~%cuac>7%-FUuXt(VyO$n?+LvDVP> zx*MjVLH(Y7d}I5Y(Z-%z9-6mlI@;*77joa|>tdSOQ^{To4Y|Rh(AZP@eOS1pJ|ulmf>eMvW%x`QK^o;e<`@@db+_KAg`i#j?5 zr`3DXy)d&Y$(00wG75&Y8k->3_}w2l7p0(ycaHePeEl|bn6%Z>_Rvs!rSE6`KW3&h zllw;*d%wOVd#Oo4pZxfICpb`M$Q$l>WSucT5J4i;-zRm={{2J@65HGU#CU;eO))BlSrn%Y|RQGANsoR z1e$wm_a%ws{Mj=5(AQ^a)FF~>tM{MzZhs{S&E@Lrt+f~s$-mWmlIzTPk}DetA9j7r za_;uO8wF?*e(Co^&WF(C#V=g$9Iy<1NP4h8B)!BT_rC6{lDKAk-sc-l5M}aDSEGIR zE$t8dz0Yy`lERr?n(=wBZ#;@skM_N!*>%^IC(z<0(Fqy#_oBUI6bP}4LhTRux;STc zZZ3D<=qrN`?OpemB_|IbMwNek@s^*r8_`}e=4me(SG1Rm-68%Ux+k4HGdnet`v)h# zzU2m&-5{X7McH?L^vW%$#P++pxPK?KH)CnpPw%Zqd-E>aao|&%f27)8G8&BTNmtU$ zj?Lu0=chhXw|^&q@9#fi+kD-bhtRcebRC)0c@cWQ-7?p}cTP9$yRAv~+%OA$koCxw z%Vt~A2OCe$7#4S$c2JG#fO8i`lST;^QMpLoo|~3*u(Jid_tamVQquC)?nlQeo;E!) z@m2iR_6KkLG%vw`Xr`^)&x~p2w8?x<2;#RkEE7CmT#3fM&~bb6=G)O*e>qk>qj)wo z7jjQ-mXo8E+{J)fFqv_g;GfS)r;oO@f1n}BJT#)Aq&;z&y+`a$yZ__ibHDE=`zLhL ziJdL&eLZ7!GozXzV(0a*Y&zBNDR^4!`f~2hrxyzix7(C!F# z%%i!bA@}sD5!qbsY0e{W-SDtZKs#rYT`2izB^vFx+Z2D~1ll?9*W2dAcR)KQU-#g& z^lG$oLG*KD`fpS1NmuvGcFp9z;~#5gPsy1ASH{jR!ylV=$IEE!xa;yR`uQ%j*tU&Xg_^$ijDdW-hU-ZkTeme>67&T|>k(bV+9rx@qRxgE9d8E_CRpxlKt6Rv>$GU)LiD-n^A;qvH@+c_;k5u)etoLsXYx>zWXxTp6e_h|HwnsddU4Q+~<7v zJu~dhWd7#D1*;NIj4+^WBftFap1GsY<=tzlGj1A+widj2^M?O;LSgc{{(IKd4*`^wq`Ql^v1*kv+w!FjvA+Tuit#^ZZvi4q@<_DyHTTM z#Eb`|o~W_5%bhukHiX=h_p4D>oVjQwcOl=Snod#PwElxG-=6yzwQ^r#Q5+3?yCTz` z^Nh%!E1A39((etv&hiqmnOtB0T6gtNKg^zB^3MpT)2mzBulEg?8f{i`4ZLHLiQobv z*|&B-(?nckAN#N6ls!1(+7~xeS4+n9W=39%x@jCCG^@27t5&+PxQ|_r}NK) z_gj6V(MH1(0`Srr=qjm8nGrG5+WibzGXOFRyv9gf2gagr`{d>W^S7Yh4N*(9=BQTJ z+(@KOhD8GuPklW2f{9dZAoHq;J14*DL_;SvZoQ+huC+C-$*@#_;xT(~Cv_BaixsKh zidCcU^=~v@ARw4iQYA68y5>W?7_BS_z|>LTzGX$Pe6;1|Z(n>8RqcDoh?e&AuLtnT zhn>z9Pc;Tsh@iIr>BX=)+zZ$Lwekhn3P+&+f1A8Wo+b~3uK@fmosvF~?w96E10~6R z#Qv1sV;^tNwRf~@Y@gUR*dDYkv(2;(v-Pq?TR*ivZN1z&)|zNJVR_DSy=9SQx@DN9 zt3@xK6+aN46YmkP78i*_L_4$|ykuT!o?=ck{bo91+GSd6y3sV>G|`k}vKjwrJY)RC z__)zyEHp+NzA?OPxW-UsC^Do&>%tlRF8y=*oAmSa7wJdn`|5tz?bh9`o39(Dvj~TT zb;8}kGGT!*N=OqTwLfUz*KX84roCA^Q`=MXPhSZ%x6N2+(6%eWi<>ZgF2&Vj@Tb!8 zH!Xc1A$?=7_|@(EzRPe_0eWl*G;PFJ)~6(kcf6Xj05m3s&`>^aPa81Z)u403q24bY zYCj)zqOnd9bRM7)cfK|(ZozL+l^~5$qpL}Ru-}RXZ-=?m}odyaJpP>|*4beUqgA#;jC?$22;Ml`jG{Sd>Ij!+|PI z1wj-QOiEC9l@TL}mtEENrPWWIJ*xj=>Z$pC}M42D5)PFX+eoqIY=f^-N@C7r~l zvTV?+$rB+3;!{Zp4$;qimw)nvAPgI&1k+)BfCU_=G-Vv5K%goX0%EoESV)0bRZ@b( zHD!!J8;!#iZqw>$edFubcJ?h#%Nz|L9IXHf7ke~V`;7uT4%Qa%{;)z@(ntPy(YxN1 zVo=1f3W};Aq`7B|1P~6@=0N@|H(l7d_8)szKAAZJ&^S^79WGE&^-qoQR}9wV3rX(l{l z2eH{R(HT1s5^!`v_H1w_bQ%B&I5;68Fg7*sCFU8#c3CF4)vIo!`|{E&r|Qac`vYPM zAX*cZ=-X=-o_v1vOTGJn(nT#OHO0~2KRCU3czQ#RzMzFbD`Z@v?}nwXJ9hWwX?*}$ z&>YgADcbQx&z~E#kEQnpXc0ieM&^uO{a&tVaAxHKcx?0Fz_8pk`k#IFJg_M{2NWhY zuMixQy9z(LW$|+_M`eRbG^i-g_YEia32SwAkq!_>VIe%;AKiQ7JI4i9%!H#~N3c-MzI^#VvrAOyX6?x(Y_jm&MI0co+2=8Md|-yf*i zyF5NV9i-_X4GzmMzC1X(%j1XRdot;4Odh-EzPBTG4{e|3&lLyc@i#ZDyyMk~=pG>L z7W7!xT4Pf|oThrL8%CsbH;C|9_ubi5;kbX^tb~b|x%+kl&=eo2RT25!jbkp%9(rlN zuAp~O%XwLmch|mpAR#>k6p>FcOkCc5RrH;69?3`sa6t&LKWnu6A0zL{{OaAz zBtRGW(BY!pcU=YQo{5F z;g^MFA1;WF19=pYL!>_T!0exEA6gjGg@G%<+W6z_u^G0mok5=MgEtee>%Qvue%w@N zTqi)Ks8Hz5mm7zUH1vz@2+6U&WM9HrDpzJ%bwJ+XI-_Xprpj^t9^gDY47|~?JXdN z*u`Q9-4}Y^d+|%3pNkfoz&LUrEcs!AW!=>&W)MT<0=SvLT^s%0%9IDL>0$y91a2S* zz4`W=s|Ka-jWI$h#4V(fo9%BSR{y-plxP4sge}NbQM>i!i%KdNCh7waY|tJ(HB$G` z;A>-aOy0^ZcmMCtUOstgi~#a(TAVlg3UF~pEyy8aLC(AZK$ZXVg-rebn0!I1lOpVE z?4xX_Yz?*~>qhHEmTxULT6&1v#Bxz*e!z@OADb>Wbu_+eoM{vcj~Yfn&HPrVkAJND zt1emCBFquY+Gn)mG~a1%^1X7maqCQjg-3gJ^mq2dbE2SW371?)uiW0lT??Tu+tmcM zuRh;OpFW1VpY8d6$JJxh%aJy}4C(Y9uuf>NXn(J)??Ps*^zPHEcivdA0o|Q#T$6NW zD$X0b?`u73K5yR{Saog9eR}tnJa_c!-5Yy8$J*AsXLf7JbDX!&^S?&7HTM}^70-o` zyyW)jm8)>BxhJNrna@g5TyG(BpX>iZ_S2JFU|oqy%zBcct**~ZYJv6Oh;P$MwihSD z8nY1TwDU{30W=rrZI8qRoO8$UIr|uIGbhvHeO@=k3ciIl-2{5mAWty2mF^jFKDWbW z?Q^@Ev8|a;>k{5?e~9;KyWgF|`>kZ{^V`v8zAx_N^P4vK2S zk}e+BE;9x&FwVTV3d_Io`{T>`0}HDm$U?8%`mN0pBTTzRp5B z8!Lb7dUYmRe@dG%X+jcNBl>1yVm8{oW?`f8HVc@DOj}&}3p!j|GG)$=vQp>?4|xv$ zh}VuCf_5d0Nq=pZ2EB6p)TxNNxv*~WsH5+mO!t$tttPVWvu~ay3q&9Cp96G?hdc)+ z?zQM8q~gZu49Oa{nW&4=ot?gN&e_Bu%exFtXC9e zw?nTE+H=$0YdWJ>CMK*M-uZTN3M2eneK6>iCm$X36fNgVpl>{6Br!MmDK@lY+22bC z|N0hsv2p6>0}IajSJU>L!5HKtX^o#G601(=ANRe|_#(+yhh}b>^o<5Chqs@4?S*#M zHE7eQXTJNTWUZ=0a~C=?bz&L}?@2rnGqijiT|v7XI?H`;HepOOT@gnvyZtZuW6*}7 zL*IJz>{NfZ8SO2lBO>USAu=Yd3_8u>Jp2KxIuG`u*sVPvTyFRlZHOw9FBy0TdU^Q5 zmo^Q)+TZU>$49&^{@r!%#9MTfT?O==!-<5q!CV*rxboTw!yiVk+;rgcA*D4cE8Azi zj?S+c;vY#uRs=7DPV{hR5_oC!+@kw_+9tH&y2RbXGiv=^ca$wUzJZLep^KYWKwo;e zGYP&r3LPD0&pC-+{rGJC%0nI0R>%MbYK1JF?u1_UaIqC|f!ws>_QtBUXrr<5`cHO$ zgkFh{e^@)>K2^^%9il`A2bM#Zd$`yNx<;nGQF-v`E742KHas@$XIOEbtl3Vxv*}n0 zIxdD7DaAeT%F7T5;Gnk(dWjg(+wY}z+TL(6+FHKg_DD~bpQzU|?tOOonF_RZLs4}5 z#SXOhoq>t&jW^TcD8s$-Ow~oH`2}5rzPN%n|J_FhouBfM3B7pb#zIuk*^*!`+Kp2FAaJ_p*IrTi68nbm@A_q z7VS9x=FzgB%;@DG``3L{do_CHzV|;oGi{E)Oy2xfK0hW)?=KT#;}YDbALcCZ%MGp- z#GBBr!kiK3&y7Z}oR>a2^7{bQ^|1X!bnj2)Rp|YwOHaO&^&%o6TZTLO!<r*EK z+P!edyPLql`)$2Bygusg!xPZHMF|nn&;Ao^K>hz{8eacjD<9Ut zKmNxV;0$mEI0Kvk&H!hCGr$?(3~&ZG1DpZQz<(tJiCWzVajbuFfoxbs02TtF3p-@O z8hI8tFRlEk2LACs&H!hCGr$?(3~&ZG1DpZQ0B3+Rz!~5Sa0dQ68Axnh{r{gDIm|ry z|ISnAUULRG1DpZQ0B3+Rz!~5Sa0WO7oB_@NXMi(+8PMrO(Kr78M~(a==Y%uB8Q=_X z1~>zp0nPwtfHS}u;0$mEI0Kx4KN$litq|KcGdHuZZ~Q;6|NqI#m!A%2fHS}u;0$mE zI0Kvk&H!hCGr$?(3~&Z817=;UsMP3mh7dvY!opmmpI>%Y%aVg3^$T(PKx3YR} zp?jXYwhq$kYU};U)odE$7-&|ws$6xhrkp1)bXHX<--U!c95jDVU46xp$#u@!I`Gd0 zDak&+Ap<3;sJcRx0AGPCbb4H#39j1l^>yX$g;+1!q5RQ&U6<9kJ@vJ&;tG69$xT1~ z*_Q{NIRW~Uopp7!rR7ylkD?Es6ZIrx#{c4DwY=5^?oP(ePjJ`NS2=MB1hG4(ver{a z92{R=wFLYKptjmsx!48gQ0c}6n%lPz^?hMwHGC@ppHqJ-YK=F=_-m(&omI^gG<;vv zUl5aBb+|b3Y0bcAg#SoD;KSs~>hh}k3Rh9BGbDEkuF6^Fs)9_C;j^8+D8H0G1>vcy z1zzSX8M;J?4EE$nIutwP&?}dQLzB3mx*Wm{XAiz7dT@XQz-3tsif7e%DMB(+_mJM7^s5ZI%?e> z&r}HD3VO1Ep*P1}OTw+(RinON2C-4Tq`b;qe8Ut~tJj)l=SGt%7ZF1c_c+pW_p%}kBE?3hlsB%}Vb$MKMg>KiJIhE!3 zJKWet;F&8=aCq&Qir+JR%EQ z<**_iEs(M$6Dpa91ia3`Sv#wS!UxH*(>YCN4q>23={sq_?QyQVwz6*CLeNMqFK6=$ zywj1;BhPN-4UxVhg4g8zK(T@;nb9jJGuM&RHzU!v_utS1GY!7F15@#ZUO=h>VDK+? zi?9Em&;S2#uJ&=?IRl&l&H!hCGr$?(3~&ZG1DpZQ0B3+R5RL&l|6hzp0nPwtfHS}u`0r%EA{az%v?$=wcK^M3~&ZG1DpZQ0B3+Rz!~5Sa0WO7oB__jpN0XWUesy@L9Z8m>;G#a{xqk? zPlPkT8Q=_X1~>zp0nPwtfHS}u;0$mEI0Kx4W*ETz|GfU+3^8298Q=_X1~>zp0nPwt zfHS}u;0$mEI0Kx4KM@0X{r^bKERArfv`Q+qcekCh8LVq8A6f1fCySj-+e}yK%k@2l zokC9l&C%?@r!E|5B>~Hey+cj0X=%dMqwAbyRj}T8xu+DbNa$NkGT@iy-NH#l1tmp^ zB?Uvr6eR{i6MMj7(_*5>wWuC1pjld7zp%_zn^-)qByrq$_URqh9QlV?|dP?2C<-ki}HOl6I<#d_z<`Q8kQfC<~D~{8M;Q+_{dDoZC zhZQG1*bVF%l`BiRs-*6wC0$Evl(oK_AWD*}qO`)f#FIF*c!V#*36qM)7EGF!IJ#(B zk07!#7#1=@oplC#mKn@hrCHKOc?*oOv-$}dSZ338nP(BKAnYo|>y;|MOO*m^QioMN z>#OQYvzrxb-Wli3HpV&!wlXun>%rO41kG#9W_$BZvHki94bz%JE!dsroq1awc)^M! z{;0X;LLd~Ss)%D)Z8lb#Y&R3GwY7=E$BZvff~UN)G_Ox-Ravm4zDdHy1LJ(?@@Je2 zhy^JBzFuUEElvqrWC5k_`=NR3>WYN0OUZ z)5N^H+Ewa-m98sFSs}fn{83kZllPvWESpl48v?n#G)ZAqV*kCPNlI=%{uJL0M|D?8 zta8sSWg`!6bitykDmF4=cyBN=jH)nK`9DsCorgA=A{4?pn?lMWu zoD6dnG{MTEtim68&9%U0VvV!bxez}0QQO>YwJ8z4PEqe_y5f9n)WK5Z zw20t=+UAmBe9LGuRav3j?*_Jbzw^{oRl=3;do1~WXm%_c?j4}q?;0jHm4+`-DF=ev zt}X#z%72o3pT$y^#()=>1+e@-1YULBJRkD`iOjYAZxPQpk~ zy!^p)Vrf$xv&4lmlHtn~2r2RQGsey>XcZxWuKGf>Sqqvi-ud3Xrr3gl=BZ-ej01QJ zu%LM}G>HMgwlYfJk$rDN_^p|IIHw#>EK@1DRNYXDY73Kl&-_KdIE63Q3Vt0D7>rb@#x5b`n&5p`Hx z4fj^&4w=Z@@u--+s9P0}jGszuV!ud`20h*ed2@}i%8PQ(`djO=W~*xCzIQNvnlzC?iHY^jm$CG1dDA zuK!2a>*M8*zp0nPwt zfHS}u;0$mEI0KvkmVq7-CaoAHD@Ct2#lXK5o@4#Zjhs`4=>yUBctm1H?E ze3llHWlSrw6iJpbVY5sz6Ik!?FcX2vVPQRt#KCOr;5pSfXS3&QAX#RI&r(maw6!8j z9m&!bHp>)&z`BQpC2LKh5;|c~c>I5abZfl)71a3;%8$#9a+w?__m%fcw@OdSm&v!t zW2CdPi49+V%o*Sea0WO7oB_@NXMi)n8Q=_X1~>zpfq$QY7^T7-r}eds&_;%cD5cU1 z;@ZooOm@f=>}&U+36eviaA@S9QoF-W;l4HvnqYI-C>$CvsMPAPQn;_Zf+koT77B;P z2`UvGB9%g01eKZ{W-5iI2P!o=Of+j>O9M?XI*b$!%?ea%a2P1u*NQ+B^bS3RLz4lO z>Kr;Mg%$!T6&yl4r9mK0Y!YTVaR2`(d!oAs?1Ml;4)O$Q$J6Mf=b_+W%yG!4fG!}VrU5k4r=n@q#-!7#niREQ4>^#;>Wd@xk6Hx=N60=>?Z zj}P+of(hXR*qDakgCTm2X)rz*toz+G2p7-o-33#B ze9&L_i>V(z=%@SH)E6K0)%|4ZgAe-Xel+#Q2fcOYO}Y3WSNDS{2Os3@IjXDTT>=J$kcsf>V*$_>Ap5);DZd^SyMVbNY|Y)^~47~bzhm%@IjjH zw5bO^=%M@4l!^~hb*GHo^;)f_yUx@N3%UW9UGYIz;4%dtqyU%6_#hd$Ou`3Az-1yn zNCYku@IeA_8IKR*fy+325C>d#!3SM{%g*?qGjQ1nAHc@c5g&8}E<50Z4!~tBK8OV_ zWAH%?a2bscqJhiy_@F&-8HEp`fXhgH5D8qi!w2nv%LsfB0bI)XKn5-)d>{drc6?w5 zE^YY023%V4ffcy4-~$VADdGbWxHRJfGjM6b2PWXsh!2dwr2!upfJ;3-&;yq`e4qm^ z1$-drP8qcD6#$J6_y3QQhHK=1%IBd4;7j=!v;iEHKY&(%?JyQ#gZ!er23i6hlJA4I zfScv(p*7&IFe;!{u9D|Ki@2K1t(lY4^X|Yrz&6g^q+0w<*Bxwvd z#s4@1oB_@NXMi)n8Q=_X1~>zp0nPwt;C~qd2Ax(rY82iU7vt^7k$5{|1l|rGj<-cc zcspzu-WC?(?a-lkTTp z;B9Iu-gfVfx81toZP%`No05XJ$;o(|l!Uj5iFlikfVc7ScpDdow_Up6ZRgH-+o==Y zcI=3^9XjA`Y%Jc!#NcgoG~TvvkGD}#cpDjsx9!^DZA1j#$}-+c65iVFcx$uat<{RR z77N~rBHo(Kcxy7@tokA3uXaaFE5v`kn81Yc`nrZr^%D#(ef~PFx2|9j^u>!meN*Iy;w0X6-rrN2Twzgn6Dwfw2lIBB>vMCvPL!l;0F zDMpecqy0DgdHY%W7ceeh|NpWe=k9O@I0Kvk&H!hCGr$?(3~&ZG1Dt{Xg$x*Buz^+_ zB^Y6>fmSRQj4;$dD~=S5Fw#IPju4D6&_F8=7mP5@Kr0prMi^$G6^98%7-gUp3k4$# zGSG@c1tW|x(250u5r!CO#eBgCgA24G5{xjwKr0Rrj4-}HD-ITnFuXu34ibzox|`{19Jg}$o-(# zKTS@SJIn25JIn|8UHVb_S~?+pDjksCgBbyvq?e`Vq{pSz(w)*x(lyeRFekt*&6P@} zi=^?=2nk93U{*k?lpw`QvShOVZvWB#HOve66rAFJoB_@NXMi)n8Q=_X1~>zp0nPwt zfHTk%15gWu9(iGuvM&~jmHkLzq_Q6&j8OK&h2hG+NGMYF!-QeVzECJs_CtlC%DzA- zQ1?W#3=uuk8B?{gi!Qp|7&< zBlJ=By@lS&K3B+9_Ble1vdmAyl7DEllSOW9`%naaMG&`a582pP&gT}W5(D{j#l|YTm>6Xj9j)xzw^w#iQOYhdQrWd@r|cpklpRd4 z#|}cjINsUq%Fbp}c2=vhvsjcJRQ55%Y*uzAJQYBMu771`P+9|^^I!R;(upDD zjkZ;`23wge-xhDvTaQ>9t*fjJ)-r3pHQuVX9I-T7R#_S>WtMzPyhSe_5gWx-VuM&F z=8N&7-h9N|XkKM*FqfJ0&GBZv>4>S(w93?ADl_Gq;!S$v5o4oqm9fECX3RGN-G(EE zM#CyYgQ3ijZ-|EmjU)O-{VIKfzD%F5kJsyUM|6$4Rk{XUnJ!-!uhR=hghpYN&>)lv z`9eH2b{x?*YFB9+v}M|SZM;^`UO*i#Gl|-yj?e-`7fZ-=cwA18yE^ewCB>vsrR1mh za!6bp648ku>O&%IK17E)Vn0P?-$Qg&DSrF4AraL6qL2t`zlPXPR@rwGT~&(TesxF$ zwZAYVg4(Yl_LEfh7Z6=lir@bHkO*qOG9-f9pGWK`s_f4tx~dev{W&2K)V?bug4(Yj z_7hb0%ZaWk#c#hXB!b#^hD1>Nmk|5$D*L5GSC!(oKRYCX+Mg8?LG8~Z_H`=zGl;G# z#czLlNCdS%EhK{4znIvMQ`x_W=&Dlu_NRtKQ2SFtBB=cmV!w;Z{$!%7O7YvD6cR!0 zPYj8m_9qbgomKY76J1q`-~PCe2x@<9NCdS%hS=|@!KCB5<%@3g+x&M!-)M3D*J^*SC!(oKQttQ+Aj!+p!V~L{aBTKM08at ze)~g0BB=erAraL6AYwm8Wq%;iRi*gt4+x2%_VYp_sQv!LezeMdKccHj@!Rhk5<%_v z35lTgdlUQZRrYgK! z*-t0BsuaKdo*@y`ep*Nbwcmr-k5t)DCAz8nrB!b%SLhQ>b`<;odD#dTVQ%D50-!UYD z+V4Q@ODg-ZL|2vKw;vM{LG4F}L{R(fiG91ueiYGFrTFbfhD1>N?Ls1`{Rm>;rm`;+ zT~&(Tz7!Hc?b|~lsC^r;Z&lg15?xh_-@YXzg4!2DBB*^cv2Rh?HxXS`ir>C5B!b#E zghUYgv3gjT57$3~%_r!T1d}E>fm%-xLIH^J1pEjzxfNcwBFB4#=l|RNm&d49j zt1Jdfxuw98pkJXss^6?%EgR%=xj;^kR!B#s&CrW)kjh~tzXbaV`%(L5Sg+4uFSi%i z6KpGNM{S#Jt8E5bxvjvKU|nH7YTayIZ8ccStp(Nu%L>a;%Vx`JafNtP+$^pZ4Pv=i zASResn2(w_n^&6+=5lj^Il;8TbkwxjwAy4am75Ao3C0!1qsGm~)kcG{+*n{tFsv{f zHEcGlhWQNTh5{IsVbGWB3-k%P6}qFk&AQbvwV_;Bpi2-|2uFp@!fL@FlnVtyf_8=W zsCKhI<0OscC&q4sBlMiBecLnDa&Y1F=|mVYtTRi#k-7llR; z`%^Z9~T-y?2o1P zRki#vR9BTk?T-$PAofRvMiBeO)V`{gKa%RIQmFkAp%KLX@X!cizlhpb)$)f?T~!LT zUl<Z(&n`!@=WAohoZMiBdhseM%~e-PDGrO@*q7#czB4+xDQ z_VcKHRV}|i)m5cX`~5;Ai2c5y5yXBUYF|~$?@e`8Db#*$XaupJ6BZ($x{e;j6Vn04Kg4mCv z_Eoj~E>u^QLhW}BjUe_rg+>tj9jSd)Ex!ZRRi#k-v7r&feoSZtu^&zCt7`e}sje!8 z+K&p2Aoe3eBZ&QW)V`{gA3=3hDb&6k8bRz!p%KKso!VE`@@-UCl|t=XLnDZNOK1eK zFH-xeTE3a;s#2(ZQ)mRSZw!qf_6^YfgzNv>;A*}e8s>2AU6nws>p}v2#)YqN10Gyo zTK@yo*Rf4A7>L*Z*F*%=hWQW90B3+Rz!~5Sa0WO7oB_@NXMi)n8Q=_X2L5CW;Q9Z& z{{JT{RDL>~0nPwtfHS}u;0$mEI0Kvk&H!hCGr$=LV!*DuO*2Y2e}KGSep%-Q|tYfXoy7`u$ zEqg4FTmEX9V#%=R#E-=1#cRb-)gReIsUPxv!-pP`%E6wC{vR0C*ym@ z$Bch5mKf8Gg5i*1t>GHOY(pPd;P9w^gZ>u%JU!CK1i8w8at8j38Ay%qBEqLP@t>Le zHJwddyzUeo{R7hFA%RJwnt+)OfOIq<3Q@ja6ra< z>WFZ_5lw!k4i5($&H#(T0gD*muyDX(46ra9u#f=`4F?>`01Lta3m9O2IAA^lMB#vl z0S*ZV9KrwxhXW2~fP=yT2Qk2b;eZ1f;DB(z0SquN959ao_74Z_&j9;{1NLKpeZv9! zGQd9JfPENX?{L803@|qwFqZ-5gahU@k8r>q3@|ku5I&MkA0w&V!vVW9z;5Ay-56lk zaKNq%FeMx?g#jjq112-Tq;S9_2ACKQn8*MV!T}Q)U|cw0ToW+Uk=i93v`YZAb2w<{ z0BEOh&`tr+j^Usk1E3wkK|2IMW5YpX1E4YCpfLf^=y1^J0BHMg(Dnh)sBqAz0BB@5 zXk-AiT{vjF0BA%wXhZ;14hNM3pi(%f6ack{gW3b2ws25e0Mr@|Y7Kx|!a*$oP%#`- z41k)$LCpbBQ#hz80BQ^eH3mQp;h=^9s6HH29{|;bgX#jHLO7_vLc43bzzY9L^`e=& z28*$w~?|?P^jncQ$$FPe33)214wUP(E+E*;~ zhPC=F_8;t@+269Sw?8O;V*i`{a{D~{6#Gznmc5Hzw4H~w0QT5kw>@RM6IKXZWSeap zZR>CAW{b4`ZvD!7$hzIS&ia7$M(a}RTx$ue4v=Z>Y&BbcfHec(v%F?`(sGAoxuwQ3 ztEqa#k2nLI0nPwtfHS}u;0$mETE#%55n7z%v`pJ_Jm@VHlC(?{Zl+@t2p52mX|Bz5 z6oar5giOk%QiG9Y{C?aA^6%!F-Xe1FaW=0SZ zV`MlHF)g@7M8ve!4kIF_Rko0bnD*D9M8veT77!8BrkYPgOzSBkBBq^m2oW(YqJxQu zY5N>RL`*B^Kq6w=GY1e6({h~ZBmIu#I!yo z5E0YP6z7N|LZ(Hji=zt>GHpkl9i54gX(j69=tP7}dr(J5M&S@iFCk{_{#l@Xp&!WZEE14igbFtqn$pkqDV~1%tytgiH&9-k~Q#rmaBd&=DciDj+z72qUx##4&DW zI{5s5cu?^_&H!hCGr$?(3~&ZG1DpZQ0B3+Rz!~5S{K*;M^Z)e%*UA@QD|{cDH>9jOTyX zcE4?&t(WyX>+9BK)``|Gmd`C~EtgyJEi%mZUoBRPdFJ2D@0jm0&oXD2el)#iT4|bU z>TLYX__VRch>RA)dxlkpN<*gpSN%@?jry7TRNYs)jk>FKqjjBx9gZATHC9JHo0hpsK?7`nq!WLYD`yiPZqb`INioxoZQJvW8p5fmErWsw&a#(@S)h zm)FhOdExeOl*WfKpcPmK_XG$jfbugUnDma4@HJ4hAS? zWw-2LfI^<5EeS8z1rd+GsF-a%xIm10ZMu4#6dw2^dWB4 z0Sel8wcl&s)jT_YWnRy=xXKKC1Xt5q=W2jbR*#ms3{c2RZHt4l_SF%1UV2!2pH4__jF6 zjGhGt<67rnfKpbMmK_XG$m`q|2bqz);9#fLIT)an)v;v<0~GQ)w8cSYR53Uh+d2mW zl(J%4b}&F8FS;!bG9#S9!S=0lFhD6UiZ~eNju@bz{S^PFx&Oz^yvVk=%8a`PSKGDD z)c~ceh?cnwP{@ZJh3fqG9%={O>^tq3{c84wajCHLY}cL4l<+l!9hdo91Kv((zonj zfI@#Ac2I0(g_NCuKw=R<||Va?bLS zB~QE{zAj!V7Kl3YHuE*|e!I<5X6|h|Z+gYF)HKNWn|zx*Ubez20?Q?2zhHma?y--8 zHiesQlWgs+`>l6br$dXvVao%SuHqNs6XJX^!+h4f)?6z$+J3Z*H7A%pH$7}}nNp3X z%B^3&ca30lWWOFG{$4n5MLxln( zbWv?aRzZO}W+q`d6$*^7jA}D7Ck5)5DTkL(p}+`BsWu~@O)np_s8C>pGpRNs zn?ZrPu1(t0sZd~q)2KEhyO;uXDNWiJQK7&Hr&4W3HiZIp$xYfNR46dQ$yA$>O`<>@ zGu?M06$*@S0@Y?@<0(+b%nTk!g#sfSOSKu<7z)%elZZ!Cp}+`7QEf(6Oo2M4^I{|w z3XE_B)n;VFDNx7sEEG|pzzBy?ZAMl|fjXwye<&3SjIe-eGqQXN)G=-HhzbQpID~35 zvcVLnV;al{QK7&H2U2ZDHh=qdb(ra7=H6$*?ng=#ahWD3+VZFNahC@{iAs?Ep} z{6OZp3Um4?l##-uehStxjao3RpNa)W3={il9*h)b_EWHqX?KFT{ZuS4Vwl}e^I)Vf zy`O@0Ow$ld@TX#d5yKRJng=6=IsO!^W7=$BmOm8>j2Pzm(>xd{O!TK<9n-7=Q~jw} zV8k%lpXR|xVYWX7>zI}gnD0-;0wabQ|1=Lq3RC_mSjRL=z@&dF78o&1`=@y@QkeHo z!8)ep0A~JEvA~F7?mx|gk;3HvD0oSOIsIDZMhdh4sgwy?nEu}mUTpaMe|Q(2d}*1DpZQ0B3+Rz!~5Sa0WO7 zoB__j|49b$`u`CyyGPy(bN)598e0~8gYR0gNYt1rO%aBB4a0OA;aTmcLWNMFc@F-& zo1w`tGS*$J)l^njxGwW7s;aDWl{)L|+{*9L^3qyY`8;P;m8*KLt8|XDvZ}P)>2Z~M zT(y-hPic1ebXb=_|D|GTFw9e!Wr|Ht*IrXtCp@Bk$rPKGCM+9U=Pavom6z64E(EJ} zrL~ow1%bab-xf|PDkv#REGZZ|rYJEmv4^F$zPhxsBC&W}Nrt7u3AthCKu}V2F-X{K z{V;5!^inuI_obztI%jR2Pn#9Hs!5hgda1Lz9M%pXc|sa1u%ro(XimgV$r3^`SmP{T z-~{#-yJ|g^?rKb0kVx|lkaRjWD@*WpB#f{K?dfEq7IW+_f&HI0F*MW$`bUAmdiXLe_;0Y7)wFs&}k0wz4p6S(ZEDnO5Pf^*wt$ zHO}g4SSE(tWtvaae6&2uJH`}SSSYMWZz|2^!Afy9pQJgYF3;wX|H%UNd$7diti=~t zK)Lx-71GtoZg{$tmbu_^g$MZ@SfK~*+hy}z<#m5ZN&Bs1-!lBa6knjchk8dF!#skO zqQFn!pi*W$SV9NOAp)qA1NBYVJL@T-eP0yMcHAm zJKr+{?i$Ly)b~&ikZJZWo9P{Cip|az8t@xkl}jN$0Hc;@K2(=QfXaWeFkH3H<{s;p zx?BrXSB~#V;;IO~Ug%;}f5`RYb0`Bl0L3)KJHi+{F})SVq`XG3WrPKqeamg$;rL}< zSmAqtXNm&@f_`fDhAJ8i{!f;R|HkpJ+~PtOR4slDXnNIhR?M&W)Ios;%G>;|!anH& z99Q4}#(9g3vCe^E3$&_ofvc)=p4$!Yg|+TEl~peCtWzgw-d|Sb9cGFhI8bO<*mMP| zfl5KE#hN|p0#~C*!B@HGmeRM`fF}-4Xwqupmwks*T}`3h{8T{Zby1bZFyGv(4_lHx z?*rc}L-~-w*bI949ONxD#*R-5TY%2Gy4p(Sh136A^B({HAJd+}4><#z0nPwtfHS}u z;0$mEI0Kvk&H!hCGw>&6fRF$GlNKyLEzSUEfHS}u;0$mEI0Kvk&H!hCGr$?(3@{Av z{(puHe#jZ%3~&ZG1DpZQ0B3+Rz!~5Sa0WO7oPj?n1HAwLPg=12v^WEt0nPwtfHS}u z;0$mEI0Kvk&H!hCGr%yw`~Mj-_#tP2Gr$?(3~&ZG1DpZQ0B3+Rz!~5Sa0dRQ4DkN{ zKWV}8)8Y(p1~>zp0nPwtfHS}u;0$mEI0Kvk&H%#z@Be4W;D?+6&H!hCGr$?(3~&ZG z1DpZQ0B3+Rz!~_HGQj))|D*-WPm43a8Q=_X1~>zp0nPwtfHS}u;0$mEI0Fm=y#Jpe zgCBARI0Kvk&H!hCGr$?(3~&ZG1DpZQ0B7J&$^h^G|C1IhKP}DxXMi)n8Q=_X1~>zp z0nPwtfHS}u;0!Pf*o~Vt-Hgiz$eU%aTp(+u&5~CtkhJ#AcCWp_uC;Bpd2IzYt#z~2 zYb~&9Et@S~OMyizZWg^_fv7caHZC_WHy4>rrd_6$rm-fO$($c@1~>zp0nPwtAT$Gm z;$=}Q#A!65COS1b)hu?^o$BAGZ||HON1x#Z#bd^eFG(z#S})WKA5TxC$P1Ozf+KYVjJ~42I(iXQNKfw zetaACV}tZ{ZPbqm(vNGSesqw2mp1CR57O`4M*XND{Z4Jvj||f9*hc+!LHZrqs2>re zAKONKIY>XIjrvlMesml4?LqqO+o*2~(ihsOZw=CqYNNg-NI$ZT`eKlNyEf{ZgY+ZX zsBa3=m)ods4APg{sBZ|;x3^JWAEa+1DpZQ0B3+Rz!~5Sa0WO7oB__j|9=J| zjktwb%QP&yBBrr6g@~9I*kmGNnpKmC zh-oWLBqF8(G=YeiR?Rp^91${2m0cWNh>&T2?Cj`FgiNDiCr2kDWLgS4Iyw>|)BM-L z(SZn=HoaI!EDM9X34N8(jB0{E>$nLNcA=C6@bJ&QGY0t4btVGB((pVf8B4k=# zM2AR(Omm9aVJ1SRjl|?I5h2s?VRRUYkZH{@I1EI{G*RdsdLm@n9dr&I5i*Slf2;U=(uBZ|<3M+d1c+dv9+VdHt21HKCP0 zZ`f1rst*Uaf0w(<-GNoEpw|`lgv#^8{{q<&)5M8BimlhB&B&&bzoR_psfv3I{(-r% zo(=2Mva_iRGQ+M4pGQ;-rZ@YischyrSf+B!E-9Tn&e4qM=x1`kuSyrZ$QAOGdn+9v zzPrX1?3b6D+uwoLwWiLQJb56;7V?C{UVk;_nmT97xS12nnlZ#a9v7B;Hy;X!E5zk@`5Hpr5PpRe-tYF*g@yO?lC5(2>Y*M&p#B&gz&z0%@cFzUZ@?eI zFXVqVedfd|B{LT|CXHL*=qLL8fezs#2Rg*x)8Ev81RK(&P3tdTaWUB=^(Owe@jRLh z>eKr7r!H_ts!dFGmy7>pXjW-rS}WIC?A4O`j#1^Rt1?jQ^7?UoL>tb~-2Rc~5_Sc{ z<&~}mLG2!YW&97Io-4e5SFj-l&x@dIy`d0pY_%SjKUBWf6AZLqQC5kuPw-Yk9nN4^ z>e4(;`8urhK=b$cJpO7A^d{l&(3@pQ`b}kQoj%R!q^?Mf)T|7r>??H5>RSd+R`ueS zgu;Qka%laYAaoUpekJDh;NIj4Lx(9}4Z~VswFEy@ZM7#1-K{2o>)2D}^?NylT*nX8 zhuwi%4*|koUt8{3Qx^!;2R-GUpo{Ch%?1n1Q|AeWpl|cM9;rbCbGc!76ZL=b_qxJi zPiaZ1jNvq{0)F_=vcVj*eBK$h-%ZVW6rC>a8YI@vWZ($ zaurB&|KVbit3X^{^s8i5AjPaiwm&jF#kGazQ|M`qP6Hi6TW&TEMq3@PgLq=Re)tA1 zR!Otk9q14fKFOz`1Axo4HfAI5%5+z*)ZvsfSJw`|%F83E(y&DiN? zV_Y0BnIY5$Lrqj!;f6X-%uXHB!h?!PBFUZKl3T1#i9rOaoY%FKX~gL(kjLB>v(HBOOxd;i{CQLLYrSVUu#}$?q&MQ^q6VAX@V)m_>pm|aiwv%kukh( zxX!TD&{zMp{waN-%o%)n|fC^J1C>rhl13`zP38r*?8b#@~l-^VC57c^HW#3#ee~N2)b{V!t zHH`E8wFf6W*l`^)`aWEGbhz``Q>(kQ?_n+)uNa6<)!*{TO6QwHMjq+Nb}AZ20Gy|7 zDseu)^oD&s>J}7@RSx{V`?75r&WATIy=?2)#)7g4P?PK%Yd&jNWpV!H-m~bRnZFg3 zDuq>dshg{JUViLf3znwl7nCT4Rb?!DLMUyFQrP%GU%e}o=2QwROZj$cx^w%7d7bw@ z+P+}4QdsHE@(Z=j3zj{-{hE^_3Pve~72SL84}y>*mBI>}uIeGcMks|1G&WQTLJn67 zv$Hj?wRhf;{dVc5r@k#HRtnP`ynbOv=iSTxPOr^*sbH95*t=to>YNwfd)9+5uiafx zq!dQIQ?j$v`TU*K9VHhXEGSeA+dg1OOp}ELQ5c=9mpA5SqLa>#2Ry&lu;BT^e8o8S z%?5PLd0^WH^NGnDhYpS4=wv-ED?8PBPq4g9cje*yAyH5=Av4O*L(cuKH(tJJz^ME@ zrKt2p=&18R*@17r{#`RPH;PIoU|J~8xih!RozDE-MS~+CnX!^?HdeNGK7X0p{?bdS zMS~Or(W#$rJjpn3cqMOZ=O>pIzrG8)fDto3d5sw zOrr&TmBR4oER@zqDGZO!LTSB~!tm&9ay}MONiU@^Jc0>AW+{bfU?>uV?5Pxnhav%% zsTc-BkpOcjg&`P<%A5z!o_X!$4Lb@l6vJR7Dt3OfV&VR3&CNr5L|`%lk25hA1?lQ)#`T(yJC=0)?{lo3iWqB zbJfYYJ;v@V?4lIM8Eng)Z+FXhdeeaH!p_QZFqGstpDTX&?zeV)P?)9|_rr{P?$9_l zb!cF2|G`w)Nihx&Bwd|5{;~J)HE(PvOjV3KzVXtlW98*{jNoJjpqM`S@n`eY8+~t& z{5`*eLKGf;gtAf;qWIA#T2_07C_MNGWwld?!edW+=hpKd+PB5ND&MXUg$+ZYESo|U zZx>#hXRMgL*gA08 zt@quz@4W)8QW!P|A9H?O{P6vQI$b+N6M@N$!m-k_vTe@0__i^WiDHsS2*x1m++T9r z;(IfW4y6@>z!rSOdEkq$E}HejPeZ6ED9#oH*S-VW2mYJZm;(Q`vJ2q9#?^ZGFB(mQ ztIgQM8u*9S{-!-_ztdi1?+AJRZ`$sM9Dk3k6m|vt2H62mSg*0xS*KY0SsBZ}El*jl zwFI=swJ&RL)`qlaYcn-JY2MP@quHRDt;yEV%=^s4%qC_rlgH@j59o*K3+RRPU|K`H zPd!MTN6n{lz{}rnnPSPd7|n;xFPd*NuQSgx4>j9OUz&EA?lf&QEix6r&X^;{7mc?V zR~zRThZ@@(P8j}axED?vC^w8Sr0Kuazooxlze(@bJN4 zl`z5#yl|EhMwoQ3o~elOu3JiHC}AwRm!+pGVT3t&z%(U{Fzp7XDq)0~cHa~wj4-)Y zOjg9WEA-1GMU30#Hl3}65$4(#CMsgwK4AD+y`eo)R9cJiQ^OCSdi9-o{G zjO}qrxv+^mHj9_5ML&tig$>)XBs|!RElt9Mjn~Bs|!-D@euzmRx=& z-+t)k<7}k;WMvOc!jVxnBne0QqP!#=X`x)X)=rE2*WhGaT#Ri{axMs{zWC*{I@b%0!bM7|OC)&5C%a9{10ga`N4zDam+U+t5G2lv(9NqBJI=#_*AhorKS z@ZfgeGZ_!G`^+RfxZOLF@j$!JkZX~Vy2#4zk%S|ota}oU^hMp0aHNIOdvSJ7%XvlI z?7Jpm;%1dDNtvKIcTUEH!!>Eim~dn6l#B@nVp4nZU)N%G;=c|z_>PHLaC`5Nm<2cY zl*BB!wYN{qf*X6g#4LDTvL|N2(~>PQ3!as%iCOTZWJ%1zg)$Pe;3>(Jgav{W#>6bR zV;YjMK)=+-SnO{ica9+woXt!v9X+*ZP;PYTnXmbhDo6$8Y^IZT0D!N}3@~&D11nP# z!$c90nTUg6YZ~nbc1`Y~OAW;;L|>zCfR)b1tl0I9N)vrEFH6Mt#cSXv zg9jH_O`VX9xdd4Tn--cf^aaM3wH2%rFy?{inmx>d zv^j(2bMot4?iDUb=UoMvqByG+GE+X*oc$@K{c_rpf5Fhs8cv&hu)MOQA#A^!yTyiheLQX0hj;F z{}UZ)rkpq`(N2R1GA^4YFPc{#pPIs_t@A34CYeOwVp7l>S`kTSF6T19a6U~WBT7Vq z{4;^TXNtM}ZurPpQcqq%Btadgs>#u6Atk;p=nVwR0~L@Tx{7N@!i%GFu6BiL;O{sk zUYti9SPhB=1xuv-MAE?I$hh2CQWwsu5z54Q^s+S9nwBI}|He{wy*@1`hd#d`zWOUY zVaP}o>Ob;tbXd9pM95@GTf#mJ+07QzxX$4s71~21YA0*60R` zS})`?jbS(F(q`qzciRYiL`(dBpGaCgr)KoUdDZM%eOhKFy(ukH5fSO23Zj2QpEXl{ zln_z7@I5m66n&)7*jsJ_686MI-?$vo@3}FK?@l<=9@=kY8&p)j@@8D8*F!`-_RM!? z?t|)J6GEiwE9?1rLFijNM<5g~k2Z#uJW3iDw3d8!oi1%crhIFORx55N(Z8e5FR-v{ z^l2kT&==>#x@v4A8f=P!eOvW`dalPx{1_c-)^=jm$L*+!fdA|JZ%k?-sk>RyH#csU zbGyYP23OoBd0O1Qh*}sOC4TGzbAq!f@ZPg%pW?d!v`K%ZD+qg?JgZpGg-xgctrm_vX zG}j3EW*n<4aSP+eKB)%!sU-l1apGUY*wwl}xC8UN8SE;3TJPTUh3*!eM6@w7gg%z- z4*&Ii0JmYhf79g#1K+!r-^PXK{`eLcQ@?Ci2|;qPTt|^?`pvppTeY;)-A#)fh*gcW zK5g(|n(Y#47tP#*mj1%AW-X){Aks{t4o75vLUTXB^e33~YzDjWzueC`ZykG%>UI2o z>viD$|5nSxoh=XBciKbtQFgs;kL@bkber9}+uCRyVfhYE1L`kT1F8m84X7GWHK1xh z)qtu2RRgL9R1KU74S4XD5SoUays$tDzoN^S{Gw_p)xNt7Lv)>!OYvoxqmezr8jHf$U|9}0;5GH{owqZ8>=@J3$BwYW)?!%(_8(YgR`?p4Im(RA zfKQru<;xm2Fvc|7wy@yc^$}@GP53p&J3JN(P)h7KTf@+p73gq$FE_~WnMkC$$7NLDerrxb+6atN0ON&TuU|hzgHc#m1t?xrH{~v400leM<(pr0$2!+;pu(%>-#K{f<}s## z&2;{=V{lbLyD6n3uYo?&tgFOT6%EaAJ?;sCb>DpPxnYcX=$tn;AKw;viwU~0)%rtc zTNnGKcAfnLd%5jB`xEw|wr#cxZROSaIs2Wf;plU$X zfT{si1FfTh@syzp-7InfC!vjGW^?J{Oi!GBE@p|wJ)#UpEeM1g-OX1aB@=R@BRlWXwlG5;!1X)Ei~F zBRgJ1+y=b?XX6{C-W|=E=b|0>)$pr7CrGBOAbhqz@aptBS>A{kFN@@6RNnGE+A5Ll&@qdrbyY$QTiy2*Z*n#5Aer2q;=Y!`W96KZKVOzDt+c9 ztG zG$W7o)COQ{N?ncD9hv~U5IjL(2nXwud3g;~4UWZj^>#1_p`@*pg9t&F?dP3{mU|Mq84Yfr>7+W8ND;=P0 zaf5G@?5w<1hmAphBCZ4M~bOMCH-G+K4s0ajE4{B8x&W^QtgSVT}ajPS>q1KkPpIz z5V(W#f4`)dvg^Ai8aYq9If}Ha^lvE*Z*nz+wjN!1=pI@|EL;JHK1xh z)qtu2RRgL9R1K&aP&J@xK-GY%0aXM4jT-1@j9>QbsL^+C_M_Z_RQMs)JW@sHa_j$T zmJbG7DfaIs2Wf;plU$XfT{si1F8o8Kh{7mvyR)#9$lA@dP&^*0FnG}n(0OX7o0dC z$;E`2^faKSQif)9I3d92)A%%+^iJ}0#>b?m%9Cjy-L)eo8ztZF^L6h4R5+-hW!XW< z{?dds-BS`VFkz;9`$P_AT!PGN{DF|vrQVKhvJEg=id&`b|2 zW@)M9$Xnnd_+A#^fP)8`eJZ~bK6cuGhRHHvzLswiS1RLYwECV#V1$DJBwrZW{jY%> z`D9#J{7gOOk|~sX7ZYT%bikA)Qy_opKGs&2HYpn}vZn^K$rQ=I4Ybys0WLU7K=LDT zY2E1r47eP;{-0)fDcAC)J;Q#T?Oxj=`@d~J*=sE?*^2Ccx9zo$vz=q>V6C;DguDOt zSaYloTFutW{y!d7)K6D6plU$XfT{si1F8m84X7GWHK1zXPt`ylJ*;g~y`#&U*->vO zeyg{+JFpq4v=&RF{Pt>32-7J;YV^@(b4=yc~CL^XWfjNm&o}u^ zTB;W(eWrx;T!?`4){Q}<9GiGwz9DGH;>vCLHqn-ReNd03qo^#oGI@7h=h4aW#TqKU zmR{@8V&UKlzZUO{el2Fxcr;vHQ)w;OBHDxCl^jQ;Ksv;&|C_D9cC`KqtN&~5GwuED z$hP11i0u-a+cxq~?bd4Hss>aIs2Wf;plU$XfT{si1F8m84X7GWHK0fX9!P57PQ`+Q z<_(5e4gp-F09OWw7^>Duwd*d;6Xg&e86*BXK3m33xwFjexaI zs2Wf;plU$XfT{si1F8m84g7CupfAPDF;4Nq!R29Zz+ax1vnscIXnAgVC=96s<*Piw z5d3&hXr&M5|5Nt&5d2YpsTxo5G8c;Q$YCzS1ssU94ss>aIs2Wf;phyD@V>I&l|34!8 zkBT5Fld1t#1F8m84X7GWHK1xh)qtu2RRgL9R1K&aP&M$sqX9idr{xYBIw+UV|5yG0 z|DCE+B~>+`YCzS1ssU94ss>aIs2Wf;plU$XfT{si1Bx|ZVA717|8HeRpiz_tF*LoK zzKWhtXHcJ04^Z_K{7~0Tdq}%YyHYz$b4v4y=5oz!O*-=lb01S@-(|nTKF8k8cF4BP z7PJ-Hkad^!3hNweH_IW*Hp@y&u?3lTnXfRO4V5UQVT}0iZ)kpf*EYk;#ZJ1`(H*pez7H%PKTRfX0}Z z34m4sXCT2@Vz?qbiJ)d$0P0A9CcOaEk^qg`7_d-7@`-{b%%_Kn47z{_s z3?u0or9zniEhK@KXkz^lp!p=wF(xr|2nQ7g@`PR4DMsd!6gpbyCLr&icxcfm5`~Mj zRy2|XDAHNc2oj)3V}-*bKtW>(ranPmMa3iqinLWUj08AJXck39B*2kE{S+0F07r<% zh5{1caG~)R<&yx5MZ?%o65ucqa0m&oNTi%R5@4aI#9R_!fv6q_lK}HY)iHL3C37FmZGB)}};8w-0x zfQlMUPod#-Cn+#fRE^z8fDTc^Nhbkj2%lKgl?2#BRE=FofZavk*qH>_O{hk^{y!c) zfb6^No9zqinYJTv_g{mp#AdYawf@EGvi7%pV|mKLS|(cBo8LFzZuXk@-?bZE7=hF4pexrR#%W5ZT+iTv} z+^+Fz@|d5|1I+Wx#mo$*3w@Bjk6uX^(-gIv+Dt8=GG(I}QQIMtjz$F%*c>Bq%Nd%B zV*=<4B4iH{@^I98$egzr9`;#Fky9E-Qx1Ai@dOZx13|W~{vKL^wwb*Nq65 z5yPbu;W$f+n^(FL;kw7l>q3O<7Q=NW!llP>X+*fLFL^#18XNYh@tb&dPt22xW{8Sgclz(*PB-o2ymqp4a6R_^7&u$8(U z^8c%c(IL$uO;6?s^DwiT8O>r`bE&-nZRqbKCk^k6RzLuCb1?QkIu3 zmsqA+Qq2FNDf12H#b$@;Q`1(H&y;8U!MKyEHlAx7Z?qWp8UA8eX6U0oM!l+k6mkNb zdadrCy3M-zx*pn3VP`>|wovmMJ(0Fk?@%{U6;wZT0zIKjoy;5Q6i(SUW_arTfm*MN zPLK*PJr>R>WKBi_;ItU9h&4ull#&vs3aJ@|tihN*tP(0Eev3gOfx8HB`hL_m@}%tY|C=@N7|{PZXf2VhBXi&iv{_Htsz1V6Cqa< zAw{{m!&VU?3q)ns6CsBR$f9rrDRlBg8rpl?M8%3We*$(k5mp-~@+=YyXF(ivCJA)DFknCroIwJeCx#YI zk3a<-CosL|#>P}AbQ(#aa|GKOpi@bpv*WZhg#nbVlR#(22|S4eIzzB{;akrp zfle1U;-ZNp&}nhsdKL*(R#MoA;UjVqRwMYdUUv+_c_QW-=M~8gDR`8~YfJQI{JYGpsX| z8jSiq`s?*e^}Tgp=^oXs)s^TB+PAb@v`e(TG+%0VXd0-QnlTzZ^Coj0vzX~ge?dP; zhpE|ASM)LG|ASONVs|+smg%3!dYlw%sOUmKK7)~wJpz#U&$$E2UKI8BBfBE$tXT00 zx(QW_iyvB8z-=}78a769B?_Aq5{WL}rSK&gRJ={$C{fzTI}63Sx8jby;m z81Ni2ps?Fv0~t`*?y#N=DC}EUM+Ou&1gs?k3OfQC$biC@fHh=5VNbwnGN6#$zlsbf zWa-zF0R^u+Oa>J4^h0DoAyGd_1{5;&SCRpRRQ)D6RFA?dq{3@BuMd&q!7+IJ-xP{{js zlK}>Gc@vsGaUXgd7czH42!T)BYF|(P2pBOIoeZL|F$HfOo!Eq6SQASuj zhjXH^?4nOkdxTZ(vdlzC!FNN?k|71>4Lw7K6udX|cQT~lzM-edkb?h)c9J0l2M#?& zh7>$F^duQ_fG|G&jSML`f9MG^q_FE6Jx+$~D@gko8B*{#(W7KY!R16d$dH21i5?+C z_7uMJVKSt!0~FAVUhCJ-VF? zDY*9NuVhHUw@0^;AqD3i-AaZOynA#D8B%cX(amH?t1yDyM255o$Q#L!LQDbug$yYK z70?Z2NMR8cT~CG-;t^;I8Bz#HpzFwxLPP>xONJCe66l(i$V5i95R^bylOct$1lml7 z6ao|IDl()HVnA1tA%!3Vx`GTTgc;D~WJn=kfG#6L3Lyh@DH&1-8lX$akV4o1T^wTDTiknJT7=D z;BmuK36BS!DtM~lse#7}&vJNHz~h6b79Kx50eI@*SqV=No)A1?c~dTwIJU*rL=7#;~42*;)+#tJsha#E;Zi=6GV3eFL6LI4s+nl5oJiuON^E(#v~d_1($0j zDOB)(>PVr20~8>I3LcQ36e_qQwWLtNAMuew1ruTkDO9i_7L!5+Q(zG(RImjWl0pSz zU;!yqumAyTkkrV%2Ag_5a+NWt=%LWmSBpUH$s!Sb0zh!iZJvk8$x zTzMiPQiv;`MTivQ$`c5YLR@(~A@Z!4*Efz3IU$A|ONbmFLzWRD$HkDPgvhZmWC<*MG11dd6d3V$L!hF+F6e zH;ph+#$9lW-z;Mn!vVwHh82c9{g3)*^yld(>g~FBbT`3y|9!Q`w5zqlH65D&X1$h^$SB)kB69Ty^vr8B%c7(Whic!Bt0x z$dH1ojy@qn3a&ajNQM-TA7n_uRYwQNkb!tPlgm+b@Uz?QgGGLelp}lVa$G)3@JGI=p8bo;N+u!ks$>qAH7Y66r6mt zj|?d|`Dia0QgHIo9x|lh_9eDgZG)`WT7I-FH19GG zGF@#vVVrGv#$eJn==SLbX|L2YX^NQ3>0|UH>Rzfnf|dBw`NekXV(PBfvH_YwC>o6_ z`{s)IQ(Vil5js_W%O~!DztS7_2K?oopvzGm4Aj>-`jth0I065AT+lT+;IE$T3D)*^ zRMrQ*{%Qx@_vgrg-T01h4X{+#ICApv&q9u%$L9)rS9u)afWzyr^sE`~m>%#o)HwoG z4tKy8@S}Ytp4Zs+ojJigGJ?(1Hno9Zv%LQL5PW@E4!T_psBd|FumLO5?{Tj{`^GFyU7E^v@5E_tgS3o4Zhfty4Kz2|<%Z^hn+>kl zszA`=3f7{1&Z--$Ze-I_ISCtNB)n)>N}EdeJ&sU)g|B{1OqZ*J-cT4MP5o=?U)dfVI8APpk#xpAceH_|vxBbsT9D7} zs0g~e{z$U~5p6HnUSM-mIAvx@i}?NG`(JAV5yyqxHJ+f?UE_7(LB{LAgOm&R9js-L zxXR2zY@fIq3(q`HlrPcgu7#_2wtGMPT;uQu9KJv(#Lv+FklP!m5BWVIm=(1zZGLGpn_}T~xI#*Yo$@BM z#b`b)jN6{0)>DZ!seQ2K!5X%cnG-7{C6=A7X^U}(?;{mKXofX>=U{%y{wbU7Vd5&8 zkrd6heMlQr^0?Z%nud@E25zWL=o2ClPkwmvLpIIGX|G;V#2JsAYy%O?z;yJ(v=S1` zFy_nezWk2uXy9a%v|7!3CbY%qH@(3FwyLMDCK#z#U6HPcwdpy*+)_$2Z>A zTwg%@=-)KIY1qy>P9({x%)l%uZ3~eC{xF_qE5ShkJAt#OX=@*AAGWhrUO3Ic>le0x zaC3aTr3xMiwhTDoDCcL+&)8HAC)`S@%GA6&_GlXjH>-}bs9@4^`B(TnXdgB5)W}n8 zDw9C6ZFBdvsbmp@l*)T9?>V*|%}M5^;Q+Yi{v`EINn1>(<3a&2M?E~95>qFKo z%VzWUW*408muv%m$&ftee&d zty>TZ8GRovRX8vHF_q2bjBQ~$Y@)r7I1ysI&VmN6WhKXWM4``~>v|@YRRV^8pt2!^ zgA(9h!C(~%2WnmJ8q`$sl7Y3) zWMrDBRT%dAV=@V0r6xYClscUgr&d~=-)GKiJd^b|7NT)MaNoIJSm_OUTpCz+%TjSvL9&Zwf~B3(^DbD_mT1Ix?_Tgtzf3o49CWZ_DSW7wCB&{|Gv7FHk+AOxx#Bi|{eF-Pg z9I18>v6Z!FQd?!wph^=TRB1nklSOi1g`mpWXH=G!(Uc}Wn$q4WFBL>nD$b--5@D1k zK8#`;%}FI06N50y$ulWc^Y}>)lqfC2aoCe75Ow<8k9W!`p^Q`WN)Wbx-LEwcEA5 zHMdi{sPS-;UMVWIuh8gWR+xZ$N8~QP=ulGgS-W6mu)bQnfIk-g9bLQsW41_{&$S9X z2EQxpq3-C~RKcR4DIFx3C?P?0m%579mteXFg2P^)50)I~f(VsQZd}PpAfF1@t|RAjpI@z%zLI8u~O^ADc2CT6VMdN87<^ zzddP4XS~bph47Xyw)l^loGZL+hk2Y(lA|R;-+j0DlhgR*q(a4;p;dtZM3_cDUeBh@ z=_@YG6syEPC&;vM1*fcWQj_o4>ldFq1APm|$y)E)fDeY3_E!#p zKPVMON$O#E>+=OLvxE-TGpT^{fd8 z1GSzogi|55jU`F#l-lW>8cvWhDSedQbxUdM3*z?pJZ>2CDnJ7J`S52$H77!eqzLs7 z+|l|XOm)=-18cb2V9sUEWtl2Yf++3^X>J0gGg8U`>M$_g1JA^LQHmuqhRs5Rzdy`!(zxXL8<| zUhk_7a7jj<=u$gsVt#w$w>Q|XE>5g)UDTxcJmvEg zw!>1aPFC9dp-{@9GujMi!GH}bZ(y+#MVw@k zo-72WPyDU%j4CV`NeG305%gAoXOehY zCpL{DQ@feRL*Wj9|JXjU?XqpRZMLnlErJ^X zd)rLb6V`uOpR(R+JV zt~O6L=b1a1el>k;dfBwibfqb5T3{M&$}$;@$Bg@oe>2`}WQ|qENyc1bD%>7$!0?jc zKEoA;kYT=Il%c0Vum4KFSO0|mCjGgZ8JeM*ROUxGtKezo7G@*kV#=7_jGjJ1|C4@z zzLH)^&!P*cXY_9Uczr)QO>fd2)9ukcO8rcYqH}?eEz%s)yrQ{JbD1VUT}!Q|;DkfiIP)_)PaE6E9IY#uiH?1mhc51}h0#@t zx_{>T=pw*QfZJ3H3iF2y$t{RsjkP)7?9A+jp%O&Ajz2q&m=2tpmW5pA)ua361bF-d z%kAhMO#qFQ67L63^+a^Lb~x%GMg8W2Pbu_Qxi_CU{QJ-7HaY6!)D8EcTji*a1r8lV zx5!cpJ}pK!%Tha*zK?E_rJ65up&R9>kN&iw0sTdm`osz^xLWkfk0-VbSHX)Q_IM4_yZP;BJy=_jt*?qElSE7kUi0XgwtXF(p-&xbngN=g1N9 zw7E!@2`B4L|6|!D**N~l*O$+9p$p`wC-gTzk2cA@7_Zq*NI<;W-W3n;EhYjSI1kB^s)kCFaIiZl zOPV`GnuG(?D`iPf`m{pDS(j**I^vaSh>@P!t2w;s22_kdVvZO8jWJt5qepxF`!hyCbS<oRhMt|_eRK;GAS-*AG$Es`NSctos8E`a7AlY?Fh`5=VfTLKA!I)U zr~hrWUt;&!r`d6fx7*IQRol+C<=EO;zqP(&ebRc9^&G3qI@a3PYO)-& z?6Ev*xz4f%{Qi-a9u~^{DV!Z}pZPL#z&z7jVD4=C#q^QsIn$k{3r$|rWYZv1JL9*; zca2XOZ!&H$mK#fqSw^kluwggzkS2}!4|9mwZFs=2*-&p-0KR{wL90Kae?$L>{yKew zeu=(B-&=14kAAQ2aot~Z8{nkDak~CGtM(g>SNo1;iuNh(Em~IV(N5InXxnSP*SxQJ zMsvI70!${>i zBdmDocgk$7q)v6+DtA^okty+dyyt zdRdP8&B^u)(E(ZNKOHxsmt?8nc%T>Ms9$foY#Vw(mYP#mfu0vr@z_H*j|Pooj#6Eu zDOuT6XK6}C8I>kYNnb>DlBT4Es8q>#)JRzLEu=a~)4ZzCQ=$E9f_?wr>N9h0VknRzSvN}5*u(4Il)OKDos zz32Xbj!M(Ooa}*)$j~<4^C0>{nl|VbqYWLFrVaeEwh#JThGuN2LZ3;~1{A$=5BgM^ zhBu?5e@N57J`AFN%g|uYIC@rwRylDSdPar@b|Ct@Gz|>Fp6F?5TFSA1rJ$YCG_VqH zL?6k}U`IB3N`?koqS2EwG}w!b{w7T`zrSTIdP0T<`-IWsGPK7ZNCvCnkD8h6WZC+AdAQ zHWWG}LjxlUeIgzuMd5bSi|@D_(0wvg<2i;)-bZ)KQ&-PGcga)TyV0HU)afPY4ms+E z4_5C+TV<*4$aZIcm+ z+Xgr*0WqbkED@Hdm&y|l>|7#4=sa0y{VhjlCLn&&MV1JA z`(`8{Hg%RG;%#`-<;4B%@b5=ZqZ|}3S}&F(;!SkZ5)hlx%mTbUI4Ji0x#4(`dD8t*k5bdZQ1*%01r zHvmG9!rEgkZ1RP}#cE-{ee}e>5ZpKc8DUCy@B3Vpflyr_=&i4X6tZB2D+qs?SUt{B zQsG!M$L|e?2Cu?7Tb?D5pyin50W!Tir)dvsVeOo7T*gWZ;qcPu=?fQF?WpzoRwS3_ z^{dzv*2c-h)q{;I_InkAXrg>yuXcSdkEstmjHD<+=SaxIz?FVvWa%AZWZ* zHXX4jB>$PMQbNm9Nt$nKqJo?V+_t9Xnr@?gO)Od|uZFhS*~Fqcc@g-%O|8AbY?ikc z&V~uYfl-iBp0;7q#sDXQWI{P!wr>3Eb`0i055^Jz65Sxpw3$v zfE-yLbw|g6ubxxONg%o71FxC4z6291>S3I%;`UqocoEC6_<$!Zzss+AcR&ccLE>TA zT@RViez)h3*%&ijm0tLE7aUZFPnF>gnxcLl^X#f;SFu_aAL^uKCHH+Ggq@$(6Ql%^ zT!YmOj*uI2sQuVR!rAlG&(0ref2d^O^{nO&*?~RDp4t#d z@mc9-r7XRX6C!Rnj!sJmVTZ2ugeZkcz~Kd(ro!vKslC$zBRe zC6Ec$dSc9~s}FwR z-|b_K>p3ALH>`t;0~uDWDMSSv$LjKX@L`TnGxh#J7_4$vT?0t-z}pYJ%^KEm(#(?1 z6UVt%ttU-s(CevkRD1j&fiJ#(M%|o!bN2eRAd7}|O36|RSthMNjFrHK5jgUfx})7M zhkrTDq6SU?$0*r-CC3s48xnUb+-`C-fNneUa>xvAfBZm78S3=hPJi`b> zhJi74HczvEYJb(f-F}rmpbP5eSoc^Tv)*7`Z(Rnf|NV4DR*U6p{VdDB^q=W>>F?8D zY8+zvr|AL6?_X(}W!763Sw>khAS2+A`DOFH=8MfMOa=O0dY$eI-D|q-x+{#o7(X<2 zH2h%w%CO7$oN+q;+tQ#f)t4F$TV_OlUtqZa@&gXX#~9RqsTxop$ z;O-}cD+X^}XuS-g*xESckKwxz&~wr<@p);|w6VL>mZG0zXxA_P9Q`OmYwTNyevqb> zy)kn%`d)^X^6gagoea&o{@>_Z8QpQK;pjv3p>aC03;A_}WY{&e-M;>uvdK|>Pfh=w zvdU1=H(VN+xi`8@NYE0x4Nk-Y+H5HrPQ?P+Few^N#sXS5DH@-Sl_^RH6UxIWVKS29 z_4pLjBuh;>bR&9STGx$p?WPkC`bMNPtD$w{va^3S5Y0QcCs>a`G}SV zG$5{v^Y>JZ!1Jq_hi=tY~Ef5+m zUn4*rB}L`)41t;MYC2qBMVX{&)wex8nli}Hy4203^fEN< zC0i(+G!4S)Pf%KE+TzgXHcBH+gIM?#6eCSr_+ZIsik4|&T;dP<0QNIpD5X@0N~}Vs zfO@_Z72@Aj=y#wtN>L#;{Vw_sP|ua5b{sGl{RY%?q^NwS0qQa-DnAkdwNx~$M^BK4 zsf{0v!9My#hR#i@Kz~7+&L`#q{SFyAmzoRoMrk@fwF13DL&vWnj^tZ7kS4SsmCB?q z@^v6xw|osq(|G;M&^Ybm^Zz>O?;fDP+rHVJX?w(03j6yjE#F%PSErHgnWN-%=4ofnJ#SJrzQ z`3s@qxFbufBb)J(-+>$SRQmY?1-GPa`?X(V7bEO3>P;D1T$%#=jNq&`oK)8Um#T*7 z5S`oD88a71F=u6CX71YF;SNWBfg=b0Tg((Qxs7SEpp3FOP%a0`XYv8mNfwm8NDLav zl{AzuDODDf7K#ILB@M+Tc^mO1tj($>s%&h#i7JLz*`fuQEwK91_w|}ae37b#O%peS zXldBnIi1pkLo>I)iJA8Es~ho^s2Vm^sxTa&I-SDGJXJ1OT?$fLy8dVLe>T@N;+srm zJ`4xEPNyuFFYLjW{&=V@9j{z_-~)IPAHf zPI1sOp|~~PTKK;7%#)cXmpAekbf!x+7aR*XtGDSY zPE1K<;sD9%l!i}MbwdNi$qQS$ZtAkB%Zf(+rb|g>LR#e9(uzTf`D;oK0 zETzkXI8G~-Hvzt{{IBJIUEavwOev{O92+{F^2Eo+Z-Haudp*XT|BoIYWcS(j+eX2; zew1a2`FV3UQ={>yvDk2d{#*Sd-2*zkcD&|#<|H!{&e^k4^U&je$mCHD($HKAHidgk zv+xPLgzdp{w;{1omq|hJ2X?Y3JlS+|z+XKZE(h%&%@eG2H8^sH78Y=qB-U5gICAnF z@UxHu5+Nbc3-0QKOYgn@O3#|%4w(y^@b%-6M9$rSBzc=MNci7+`#8(rk0f=1CYJh7 zzkZzMu1IR++C{S@P%Phn#r@-5S$t2D^reU(BtD2h*}f-WS;il!F2j&#GEgdeJpRsGkF1A05uT7G^?+lcP!@F%Dw5c}EzZg$n~fl_w(ZsLyjg&tXTf_(mmdW3ki}58^_!xedgf4i}sH{rK!z zL9aDl*bxO6lyi4g;Tsm=WN@Ejl?#rj<@G)4g^@O$9;;ZfJjyJjBSnZ;KzX<4cJ+n`l^4MF)fkaCvCyA~(j!i|-1 z3b-c-(ybr9emL8c#g{W_8}-sU#7hEgAYGaKJ#PE>d)zE6e_d0#l$`jqhc=Kha-Z8i z{yw)sEO%9t^lS+ix(#mwi9~u!e6QO+{$96imb=TTQPME%1m|1)2{MBt$MqQ~I^_03 zMz-G*3ZZ@4r&m9{8nzpbgyyMXrS2pc*$EEaXaj+#ahI?||Ay1*L9PdD9;{(IvLiUT z0#eNpANbJ*ay2_Ye;I0Z`1Dsa)@kTy`D?0tj#`1=Oa z*dk7UQr9t!gk#xHwtb>VQswipAO-PyR0zq8TK=5vyHBozmz?6iU6CV&+N7n1wIe4$U( zoT_1M>`+c9x1>;TyiXel6}wP!A9taoRdX&HO?5g{W_eGx0LQn zeN8<@HBytPj`}M7VBJr;=XDq9rs+CqKhoZ%U7;<|oYL&pTm!oVuCmX!J8WOr9=5H4 zdjbrwSKtQgQfn{EQOm=YRd6<-&it1726KhEzv*k!lcsY`XTeE;?-~DUtTE;qe$sxb zeL%ZP>(uHrZ)mR7EYd8}%|z$u(~J}xjjWHld9l@z>@o=ah8XAhYY$F%u;V(M38Has z>d?U4{(}jChG!hJ^R}HY zf7*KiD!_qHMKF9wRY&Lc_vYU4%x`N8aQspk49=Pogv5bJMKF8}mDBmk-v(T9>yf7m za6nNR3{I$ul~#!3f*g#FwNdF-!W~}qkn_N0x88T>zV`}od`}q;A8hrQ^W)-&?;q6Z z+M#$25aVc}Pe_-Sm2Gq0#kZ1tCJIU>WJVcco%>5}TYPWE(R{qsmMbb5Dt!@p#ChP0 zuP&PP!%su;zF0*9riHScPmP+i^GN+#{Vk{i2hzsAD!&JQ4<-Mhbgb`ZW$T^W4;Mdv z-oljp?utl8(ulml_JuB&s$KlUEJ=8X+Ssmg)ak&cyEfLCj=Rz*{V zbhp3@J38m)sW(I$tWpj-EmsoH?m;UVQIa55By1cOiDZl;J3t zv`d}O-$~t3a?!y;>=!A-!K|%!MjB}mc33!^%+w~-J2!2gbbdVG`L%`x&lh2TLLm^( z+sB*-wrwz3?+KQd>8?CnFeHjfDksd`4>|X{-gx<@0iz1? z6vJTZKI%MBcHrBuf7j&aMq#m8IDTppWK0X?Id|rExzm}yd)VLzN^U|ECTf00Ywvvi zGPnJumr{ofQjX-dcQMWzUdh|q`N^fja!8Oc8O98RVFO8!FdKGszI1p0vAaHS49g}! z;+u?U=T+xB4zBvop!TQlr#7Ly-imS9$uc<~i|D17VjLdVbk3-pS&DHQ7@q_=dn(3JFg^*mOyxKj zp9GvkF%FMUWzK_V&%Ac>h8=|&%5g9}#Y|Z%gd)07>+Slz_Mq)ETc-7T%kP#Twch-U zImfiqlx4iy@ST3XZnv&T`;vB+<|WM#<_<#@(~f49FXsQZa5DYSRi;c>KAI?51g1sl_okAM`P}YVfpGaTde`8yppID{iv$2nVGF;Mhv+#%WpZc*JNl zOi<9HaDm}zOEfFcP~ma;lgmTh1scNMp{#};g)0+JTb^;%)sEFQ-f(ga<(%3DO$fW4 zvQ6kwxTf*6C7KTEf$N`>RanlCSNK`%%W5T)QK1Dr3fDrOwlw3%&CMG;er_2Yp!w}1 zbu9LQwQQES|B4z2+%$RG1;Uw~u5iE|^oF6xuXNA|umdgM2;lz8(=Kx!*8rxu6r84d z&<2eF`{weE0Pf5@eTiH?MUCLVx2ss}@@v__GIauXbe^^})9@Kra1t9%0L3SPLCqWp zvQ`$y{Iu*6>5}pB=B+oWO!P136Jc=HM%V-AfI-rR%MYu(kZ>!XVE;HYAd2l8fG=ILjn7H1Wo-l3Qi{UHyW(+$T- zLtn3eR9JsF=ylioAY}^-J0J9VSB1~xaJzzVc;+f#^#mQ2o+@ue5R%hj@(5Bt)83CJ zusRkm?`YX+(gPGe4ZZaSDBkMj>|HFj89uz1Z#wrPI@H+i?7 zEM+b@84+s*^u#6Kaf7Be6sm_q9IN0gb4c+3!H!HmGMUw|cvVUpf2_1HVB%|MTTig5 zt`N*5+Ue>_kl{_sgeIO=x z(@N_JGX*lO+nwA$Uud7zZr0zb59`m?J9IywH;l`S z`9_1`L&L*{^9}P211;Hb0^ol01LpJ03(SMfTGI!nM@*ZjDO47HFTH`D1sMjvQg2ar zQmZvu=6&V?hGph3{ptVEd*L3xVy#tkQ1iIvV$Bjw9{N%Df^Lg$xo)&B#Z+l3G4(M1 z3O5NpV!RA)3hbmmp?_6(T-)E!U2mi^h4Uh!9fsl7*Gj6O^Fg#Mi2jkyab~r=Mw;g= z^;89d9&RJSwp#wJSuJmA7V|=I>yz1vIPv|xvlN#9D42wjmZO<%Q{e zfl^+W0Ou>x0jt$ z#~t*H5>7lzpua2O#Ipo?S_vmylX(Z)X}k^LR@A@P9K=}lCZ(b*Fb4D zUelSvfkzV4E4R>h675pNi%vmhqgRyia+g=Vtc(|rKIkQ7ym&-GFDm23BMN#!8843W zq30Fy!aR?jgGkA*P&q9PjYu8hE2cAh@ii#Rgja54cZEn~nmMVyd`5uB=s z6A$E56mdebMa5)goN!h8BxRg%bNbneIALk?g^9{IVGcQ~H)mZ-3`UW$h)Zwlnv9DZ zvAQJZf&r^@QZAgOmX?$YFTr<8%7ydKQnUDPY}pU_Z^Vo89h30j1^5n0c<^F-N)jHt zu--li4_-uXmxKprklB;);G`y75+0nuWKF_@la(wl4f#^iLMF`v zXdcBN&3Yp=L1}kjyoICNRLT1jNctasG4hEvvWxKR^wBmf%e=1_-9L?7hv2w%DZbhuz znDS~;&2qV&gA}kqBIoJ(uHx>5Q#4_jm%^id%N8OYn>jr;T@B0%W)m(9@IG#N6qP0W zUOu#p&3SZ{LS7uexl$o782{)BWxUv^M||6p=qQoqBH_cBw*cJof&AE>X-4FsOGMGTovF+J*BDUSW1x zx59mZQ*BFaxi;EfZ=Ya%+_=educg5<$lHToJ` zZwc6NZ$l^0i6m^ezoFykcoH_;nb0wGED0O#Dd;QoRWdf{E9gt~B{uos6NEdxA`7XJ zFNNN66dg^%1iLoE*^>0$Se-*yu@I(z0g0FAk(eG2pY!SlyXD7*9`pJ#^Loo2mJ2Lrl|5hf^|HFsjf zCzZZg`s30sm43`pU+OJgT{;8&03LUI-m%{?;5f};EBSAWqvXMot4em2w3o~+{u3bl zeWm!KVt;XKak=?-_BZYSX}`^WzJ0rWrQKnB#rBBp)3z~NxA`GkmCac6tD<{~E-CUA ztuC5weck$m^){<$zQ%f%wcc7*_=m#p7v5aBr*Ly&RiUxqR|WT&cNJWstnK+9Tmm0D z3FKJ!;SrAE%_V3n6wOxkmAvY+&;>5NqHA;-op=L{>=mW1gyodD=d!}MB5OKnqYIC- zjEjwnbEU(JrN)zt^cC zGyEw>B0Nbm9EN`J9gTz)P1zz#j-2Hi*Fwr~=SYdO%yY&zaI7?ZBUe(qU1)5Dl=tUK ziD#8YfT}m#my$AP?~pjpnNH$6cRI>+?sSyp-0ARIq_H_`Uz1vZ^r1DmQeo#XuFjQ; zY~(iON`-yH*qAF7?i(2!a-|~MwDq}CkuBI&xl)ns)s=Wx5V}J8Sd!!gf#d6PrGWtQ zwYkzjAo#eNWZSiosRVD z%G~Klzh08HH6^)_etl}LRHR>@k}DPI*NbwcBK^7|XDWt$x@NAOYW0T znu;6`WgT@=i7>*+ZSss-KuQB6oZKd#EDelsa+`dzG%&(X$lBwj*;^Xn({rYyBYavO z>2QRXrz0b`Bx}Er>PxI7d#+Su5mJ~d z6&WD~Ia867!(6H8(P7S1m_j09yqmF;%N&_byf5+=& zaQ2dJg-b>_F|!Qs=1NBTzTt1VlR?)v{55AX?D>YjL@b>AVmo6fu7>eiJjK z6rNxjI~Kx9#Db%MoEP;YjtvBig9xGkX5&j34vpL-&Jht?*aEQ_)5EPVGh7<7j)&r* zgcpd%Vi4QUkG%nYk0#*Xu?Tcsj7vC#5lZ33Fo5C+@dTg#Eo-ZPNae?T{(ASn3jK+r^Umo27m{8*cP)6p3Fn~<$piUNA#(abm z!YMGdM%WmF2sr?igV;<69Od&vpsN^Ql$sa2-W`|_5eB(HT$vHy%KrUd_@|CC*caS8 z1}zhfVbw`ZOi!2|IoKtx771&u}oZ?QCE^QY`Ei5zn~* zz|k@SgB|d{aTFjSJzKE1CC1`V=E(nkT%0E&7<7SnAY*?q-2Z&Z=cg<%roU{2sO12y z6b|hptrlO_J(iGrFc~&+p$qyFd>jX8#G1>?#pNQRP8THSW|qpqqEGy4$_yfc6?UYd zAavxQPw)+5s8HIpLH|C0(G)tPd!QkMdqFddgc1;M7|_%J5DfHvm~F)qzbuxE2zOl| zMzb-zXY;XOxIZ=)*`;CaHjpJEYEL3d|I|lE9F{3jMiGxKw zu45s~jX_@k=FNc674&Om`sq;-LBny-riU8@LmICoO_{^K(GVc11rxCe(-Y1aKM`#r z0*)7m1DVUjv(qV;xe21q0z4@Mbxok=0__e=ARyp`FgO+=adb^jwEjGv5D~<@Km^A} z)dH5LYp6fo#h5ZL{bcSH0Je}Krnc@p2zm=64rSL{aOZQ%dTf%^ziouPtqNn0D(&;6fL#>(fWY(JgduUE&Q*- zD+{+3&MSDi;P!%%f)$p(SRS^_E&D;)MP+A{m6aYUy%vxGPj}ruUwb=`86pMA0)T5NtDB5*Vb}N)kqD`VS<|URccGwi@Ds&T5s8v^?oob;? zVxcb5Gg#6BU8JY8z1X6wsvf1PjiOl>`^RT(v% zuZyysp**OIa-CYyrUSYtT`Fbcc@m{MG_w!PNMNlZA(+hD>7Z5zOik@%`fGuzfq~ey z(AXp{Ph&gJ44TAhU8M6>9o{4^(?vQ@6;_j2rHgcKi6SoFM3Y#li+GMIE+k%}i+Hw8 zQ}U_0h)+@{b}V_ZF5+@6+o$LvK2e?Gu;fL$h-ay7jKmeXh-VgQ1h!BY@eD27f-d3{ zv?b5iMLdlyxo|EFsd>8S%d~}`tc$pm?PQJOT!~oKB$Ewh2P5xBagHup?Xa4yi|Jx* z|2#<-v7N1PlUS~c*rqM{L|w#1TH;x{h^^`zgCk?6F5*J%u$rNZxPa}Sjp7LsvD!r@ zn{2i-U8G5zo>uT=wAI}cuYEOwOE`}`p|5(xX~QE)V3 zIONB8&7ce*A=E z&R}9VG&BtCoii*}h?_|Nvu0thXKc* zVQMOKCD6WGCuv`T+gstBm(gz4y^$z*!%dED(z@qlR&9zIOAq4%4HC)uvL5=@XXA zEn6(}&HvAQr#WVBGQDToRQ5<&()6P;cUe*Cf0kZey18_&;|1{l4>*>Tyjt?rl1RyE z#eXcm$5dJzD_#i*{`cF*?Txm-*uG`kXKOC{d(lHh2aB9V2J0i%q_y2@F8o2^#|qaM z78N{MaCO0!f|KCn|83&~#&KhV;cdeMF!k#CG5^n8>msAkT41zlZ>29Iq5dddoXPCG zaNkQCzBY5e!GP#C#m)!r|LXXt=ew;C(^4lrqK=xJpSn96K*G_1>;4!!8C&dXl^`Sx>Wt!i-PO^1GUYI$q(rbACVr94m_ zy+j=_^~*RqRE>aeDTU5E9;>_Kq;H-B^gUYomOa1;Di|im3|%=(el6oVsS%IG?7W_G zvuaGCo~$pcWn*VPuO*>SW$w$VIuV>Q9#zV0iR-0?v8zzG#*kX8oia#E8GU3h9ja67V$V?KAdn{l&q*v<~Yf2hYeG zRpy8Ek|X@9+Hiw<$?>ADN*>fr4mWF6@_=q~z;si|{kq8kjU9dD;4i9@9!$#GvqA31=AspPmLppP7Y+f;H~ zwCf^ABsY~Dm(%*l0oqL^$Mvp0azM&c$eVFRisX||%8I51TP9ZMyrS#I@XuP_YsQtL z4r0X8Q&dGW9wg`>2CL>#wPaig>L3Qw=4G{HJSxyZ47Tx^)17x*c-Nt8%f_2=H&_QT z!uu*Eufk(mLY$vT4HzQpjQ(akIn_}l0{<%WK{K9g>L5mtX_XjH9d!^R>a@y>AdsVE!RKv_kGQ$>m-J#oeJA;+nYW5$kFO^ zIv@MS(#t>dhX?=gAo~BC%C0q(eFuK=A1(nd0WJY90WJY90WJY90WJY90WJY90WJY9 zfnz9vQ%on?=Gx!~%Pf+942HSVQMdHZIwMI{L{gbd5QGkXtX4Udwa8jz_|?tuzuoY& zcJ|4;ABX>~?fuv_)+gS3Tgn61|HiV{4Ddhx!zI8az$L&Xz$L&Xz$L&Xz$L&Xz$L&X zz$L&XaQsVPhS6fPEu&!$WKiZhy8eI3Q1;UCUqN02E&(n9E&(n9E&(n9E&(n9E&(n9 zE&(n9E`fhr3CuHEZ8l@QvB(VJar_uZXl1pqvNj;Jhl9Sze23{S!%EX=bJ6s&hsySq zHJ1Ll^q$g4=`zRf9k)4lI2M#VUvhoPK*8G4}Hrl7*;N{0-7}I0+!DdI8X+YV>Q;h=hSb^c9Z1uwj`Y+o-R8Xa>f72*_{92Ff>f%9 zp7d6R9-ZNI(ZBVPuN-1vLeL*hA3ZpC+nry(t*Ybk=Y>`R#HouO-LqA#Gu88E1ciF@UDMcvb=eX z*ea1vDmF#OYMfQuNaR2XS|=kW3WYOJ6)c4K1>bIE(1D_NfyUEn_)IEVDL+NWw}^<4 zl9EBX!e+=3TSsvNJ^S4j5rIwmX+6zgs4 zPufV(XPsGqN}KPzyXdm=fx7y-`Zf|FPhS>@^itsb*trkhdDY?O!_93Zh@HMHP%qk@ z*PQ#EZRdtML!E6TNVL8zP&3YO-r7C8{O8sxYgHSG>8vjcgl*BZ2nJo&mjyz%XtKc2 z$U3tC_!dnT7~5E9769R*$pRx3>&yaRT$n5zg=T}*aHFC4HS?|J64P8`pW()`QT9J( z>3Rk8_XqeV@nyyYc_FB-cL*cDdjrA2)Mw+|_FlKE-!1gJ z)^)mtb5p;cD^%JA;oM&LdatMBTmjN{R^toT2Df)ZZ}&h?w%1**P407re)qP1l75q? z%L_D24x3!t)Hn7ju_NiQmM>grN^X`JhxmjN%hF%QIcdyFU$U{;@9Nbuh%fr!SHE|w zr+*{Ep!%VE{rWz4Kf@`0a(8uPqQKW|dZ@=pvcy_mRb{$hhFp&*-9nP;!aNyIN~;g^ zHCvs!2m0H)H@UU-l3%uWZ|sK3b-34ix;*`!?yk(qQd+0I)9vbl`gL`5Z)Ga(-qzkZ z(BbazX3rHWJTqBrEnl+4BnIUQL!&@oNww{y2ji@?>Z&QT)fR-m!QDRz2c&yRsnlxO zt1dh%X}6Zw*BdY1F7p+N5Ugc?&>J5c8S%v?ptq;J3#T!emLwamecc1S?QXBi1i70~`p)q7 zu%kESV;Y&a!?nFH6AAf{o?NO|W)k@$Lngn{79qc75_-DYJss{YXqKMd?j9H$I3{}P zYHNEkCh7%UNI!39z6X5Jg#gCh8wyaBVXrEwE%-ed=i(WpdxfA+?NHRL_Q^O?+o!Z& zv-YNp9YE<8(1eA_vO+SWh%1ss*79Y`Ov%|2Ga99zG6xu^rLv<*osFNPuku|vv&q%FT{y$N-Cos@G!~Y77G>vtBs3HwL4dp~{9fh3@V^a7L%xJi zVU_ST2vl~ywS3VcQ_@TZBlD5@)9`9a{gfP}nhE4bdFvevg@bAJL&Hh_QIkev0g#2K zt6%8qhW`(Ab_!#W(C)FIl)CDI{o+9~TVAwGV$mNRj>ZyRe{?L8i2LDR=F#wn6jn7~ zadjjJjC~-C`(plKU#t>Lj4Fi#%Be(|m>3N*$*Sl_NkK|!LIDV|mY`qcX(GcXh)KW8 zy9c^rbdNUrxdcf^CSaT+}; zjn6$0AP#u;LNxifT5JqhBm%})DT0B}dH}ee_49~Wk}M-FCT^lFrnR8JjAxCnRC6ok zb5^aM)83L6wDu}`|Njj`8H{ZH!zI8az$L&Xz$L&Xz$L&Xz$L&Xz$L&Xz$L&X@UI|& zY3K}4UNplc;E9CBP-XCBP-XCBP-XCBP-XCBP-XCBP-XCBP++ zO#+UhX@*7Cvzx8IDEofd$ICorC8bZ7URAoKbhhKyj?V%Dz~YkMmwcrpQc_p^=i+Y^ z@3Y=m+*)j~f8YLb`$oIn_FuNkZQZtM*0YNa6cES@011wz;tPYCq7qyW3|XBxf&_Xh!;XE|IrY!U+!v2j5@ z#9IrIwvLka=pt>mD5TIjZh$Q)Z#0<}$)(oRPR6ux#P}lNx}hG+h78(U#277~$wWsM z&Ejr}+^FzinnY~Ik@FY^n#EDuJe#%#lM);K4D}i@B8e`)CTlU=K&VNR`6kwgBf7}v z8$QjFuNK1+xl!pblhyppC0goTx~N-HsCVk3o?oLaJ4B_LT7J=%eu>zYSIJu#T1%6-Ls!WI zR))Gs^ywn*S2YXP`CMJZeX4FjVy`aZUTw+e=px>1*VOrJUBo?XQ#FYn(M8;?t@ByB zh`Y4JXX+x}q$S?2i?~x;=WV)(&(QX;t-6R$XNeodEfR5l1H+?f<^f#=Z`2OweqF>H zY?_k$bP=!DcI{qW#O@MJ$(wZ%cd&JK7#}lK7`Lw}d%EnVveQZ*DIIXU;@I!7m0Vl0 zsQ8}Zb@rdzhi(6`U16J7ba#={`cvzU!ao;YTsXVn&Vm-pQx>oJP2+ZR(mdPrWm9Xa zWoLYTuGJ#WHJJ?tDcYcf;?r{0BazDkv9TdV?EGxcCnZ z3(M>9U0jF-!{DAV9uyK$aJT?hr8PodXk;8rCwLt(UR!?P42WSE#j+M;DC^9xx!R^u zR#!9@ObkQ8v1lX+r8WEtN{eA>GcuI6`GWmVkrg$eve$T?x!W7J<4?x_8F)VIp(wx1HN4t%~NfRlIv~j9HkA5Q$CXJ*x z(#WaBDXn~j{dYJx>Vw9EwtHblIBCdUugy!R*G#3ObcGVJ=umjVAEd=Sep*O8NQ#?{ zoj0{!-Mh*Mr&642BpeNduyaDy`XB9obf zEV$Q~0AbGf!^?kod05;>$}7)Q9w1;%Ntm7;W23R?U=TXx^mi_P=i;5>MD~_jZ}m>8 zu#FR-P5sdT(Wuj3AAWs!NZd<`o0X|<9Z!^>GnJNGAB-e?kqPJ}(?9+Cr(X|=dq`Os zhd{@5ANhY%Da#d41V=*qqG4#Y>7QKj$rU@r@$7=^NG@rZN@;`Pu|&x41D8WA?vfu| z@`I2#mc4TAKkl8P?A|+}bjqb?FFiXd#zDrI#<_fCXy z3c{MLH?21fivdzv#_4Bi<6~1(W1#@_ODNBHt^KJdpL((ecL=SPWj0f~rEW;pE*yd* z1K5mg71p~qxjNko`xo|CU|Bl=SjEW+3IhVH!HI7M3}Ic=8VKQL01(zi zt-%j&2J~QE)Ee;MW`GXXMXf;&ZU)?7UDO)b;AU~HPHGl2cr_pf)3O0EICqO_0E1Tp zT(AyW4O;MOfV!8)(3$F%r;S^dJ#N7*1 zfk2i0A39#rVY~1B?;#b_6tXChvuG2GK+EOE6=i_)3Gn?1&PT7lt@8SJ1FLW`hx8Vs zEoIfuGNaPBo5z#q6@AK3u&_r?l|e2=d|EPmL6(UiAvpDaAQgjHC2jo*|^Q5hZ@zQS~l(*>7ho& zsD!M5nZH?9LsnUJH!jMVzaX z90$J=a;Qa|qmvv*KU4Z_o#Z(DnbJ?vNsi-xuJg`c*PZm!`=+;u<$B4{ba4LUigT_D z7XPV5JW(e(Y~x+2fZVr=vt;r-Lk6t7_2zX(zw?!E^n88OzQPu9rc7^Cw3jAyNvaBJ zyj?UgvYVlk95yDFGUO-dB!~4e1nrOz{#(T9I>|9^#Wd&VX^^QFahgtY%S+eoPy%hW zh-G@o*+5bCVyR4Sn#|->hn(f{_}`2#wulayF3%P-{=)U>I_D!_Fy7+2_@x%HL@zl6 z`cYb}O)QqkC!exZBY{S!Dsw*k&O@&(`_VmZqFrwWhWGz^{@-hp5I zhf9D0hG$n7;Mck}P3+uc=7x5akk&$@4F5=ZJf>o2~)R@$kHc!ielHeJMZ+J>zSZmQme3};juUQvy zjaFc5bP+Gt3T(A5;%ZfQ;>c*yMZ8Qa?M7Y1OSRgdK^JkAR$%qIh%2=MTcwM5iFQn` z)J1%%R@y6c5iiyf*Xbf&#IoHe)=I?rO*a)9y?vUlf)}#Q>@e>ztTx?cfHnU>=`6=D z9M?Do9J9<7CBG=SrsV9B#l`q?a$gjYag`N*xt51Z2P#a%XVVX3q@Zv z{k~{dQJwW|>x0&hT0Pe3g}*AirEs{grr@oD?-X26aC*UX%d?ixn(nd;T9%jnulFCKZW8u<`jGFl%DaY z$V8v&P+@c4d-ZK?CwyYPQ{1dO2jct8sZ;Def*inoSMj2Bie371 z(D?5<#ZCF-0LT%e3$3$_MHw5cg>E*PoEPqUX~WlM?guxuEjH)J>r2jC(^LC(|hzBnq`h8Vu;nUF5ui`bCxg)G(jc)1-PBDSdKP5`DI?Ld;h!Ukb)WdA!E? z&1-HusrNVYnv&?Ng=FbWrAnQ+487`iK78?;&)jt3Sxrgw)5??7@c!7%FRyjp_t3dd zoOIdRh9tTxgf$h^!m?_5Io<` zR0cvr621NNBz&ghRfqFawimuQ$s_rpj_rj2|zW*|8TxAwrZ#Ie;!{&fK-t( z>j+U4%%Wv;oS&n@sV6v>ge)hk3)+p9&Swt2^ZvkpRMZp1%KYf&o@Knj`Qjy?d|>VW ztz1Q*C-Y;oJg$yLf+0!tQZ_baMMTH3;X&uOuOHtA?te`L4l+MdGLDUn&d26mGu`v0 za1#M{%$Ia)!E=V^oZmGrTKoCu?`N+B7DbUZ5!l5%3k5WaFB>j#-glnm z;_g2#uP2~}NSf|YE%iHDN~m{Eab8U)oO%LJm=_(+7R#L1kN3Mzz3rZQf-;yF9crB! z&X0X&$%fa@AFC&TfqBuP(mCL~=kb%zxjS%aJpuj8iwG@td|!Zs<{$`Ii$u-#{?(2wkpTj*7}~zw=uUo3?-c z<9}@+Xm@!LA|jUg6VBhx?K=O}$6jb4pmq5Xg1RvubiVk6->@{+v64W~Az@Z^BX_k$ z%QiZ1r5$Y*L60L;xhlAz-E_6{mwWc?FaFlyRRjVqFS5C3na^>)@Wpx8w*KF~RRql~ zFS7Eu;VI`soz3N@p6Lw)mTfUw*I9j}6MKTeh-%9e?|=QU@x^+Au|^29;`tCl)vQLs z^Xds&+G1PI0u>X7l;>|1{m?!2m|V8-ug^KW%=y5(wU-TkY_wI}p_87N@XMXwEcw|j z??3T$t9Y(ndPL7z=)8w|g|~`cz4T~&+nv{(`<-p)hB{ltbM(?9^v!hVEz5qk?xJt~ zsZ~5%FFiuvC?;#G_z~UofB~|^`SoAEdfAdW$x|g) zm24}SSNwAE?Zx5Z)9i=s_uKc_*FaRj@4-EQ&VrL{vx=TC`h3w)QH}L2xCfAgdjQi4 ze*qB$&MB-Y_U@qMfG^GS%koG_=@-YTIS2WIdKKRVHFWol0 z2f|zK&zF>*EADYVy0*cKzp9%79dqNK>Onq%my3jnlc# zj}?Z$a_b9+f%3w<3nk}@cRTM{_|>QHx!}`4dQs*=>yx$8mZ~Y+fsP`;1?}eVIDgrG z*~PEUe;sAEJ@cQqBf%{**|JC|rP2QB{abunHp}TAD ziFAIl^OH@<(+&Ig~oyk^;@35%RJ}T-rv(89io9mJ?vn35Zk7@z`=>9Xn;g>BR= z%6aV8pEM*fG(~=-c!5qi4&C=eLlT2hM~cd6 zw)4y1e69Us!RLd|HzY9xMV_SQ@o@$GzxYp$Nen(gNON{8K<;l)k^A=*HY73bM1I9$ z2trL|G2%piq!>z2LyEB`@*_o6T;}{-(PiZWb@g@i4M~hLksm24V~6w8PhR${yXWv815`#z}ZPwXCkK0`qbGZ2Em8F6qWJM#dCohR0G9xl0G9xlz;PmhgJQVIw$LK>naoY~4N|C_ zo;jE73&h5Tyup}Hpc8pz2Rv`UIo%!ebw(pY{lVBsl@J(jz&9Z*U)fMEB!(f$ z(6CU8ui`>181^MX<3S-26+)3faPJzyJsOGxM~8tdXuNTzcqho|EZaN{1K=F|?W0lr zL2-Y2-Huk~nd;^miS7;gL*Z~JV!UzADPKPz?jsCrW`+Ba`2U+ZS?&6Uqp?H=>DJ~U z+@4r45DCSjAlsYDzx?h2aUx^+CrnoUR2r8l|3)Z(ueg_#zk#j)S&u|+oUHr~(xs{d za&r_r*Nz~8e3v6hllOuz5|CfO?b0T(EJI~)j=6T}+!Ce!F$;}(^C4z#hue};x1jmDsgf|qZ z5~8s{DB=rOJM4n|)7?`O-4PGQ#zC(~BVLF_7>WkGWCoy__~JrzlzCAtWF~<*f+dh2 zs|7zy8kO#v@lZUJ@J9Xqu~;k^@dtq+0rK7v8VW@cRrqIy6v*iM-tJ8T{!xj)mM<69 z1%X890BcDAOG#*tg%ZHE&tZ=T!$E&SXs>}$|$07-QJ>(k&nNP&kBrzY;RD=`s4j~OwEy#I;&FPgZi)oa<6>+ci2S$*{w*&gM zH|`$}j`(UidIvUm-Mucz$6?R(~y#djQnri=x62a=ufHruz7H};lG4eL6C&A zS(yr|h0SW$#|Je#e3Au$f2Sya@#*@@d2u--WExN(hT~kNLu(!I07l!e;ul)4jf5ASxieM|p6pd(;|2muBiq zRyH0*7UZMckTmZNz1;&n!n*A!3Tg5@N)p5TtAtG(a2^}+CH!E^57G5MjFkPg!a~r4 z2b}vc8Kg)I2UAiBdqRm}!50og?*}ysx>TqXsN7dnFA}1Ipnv6Ih=VC!B`g=}po+?C zFBxO9l}F>t+-< zm>AuzPIq6syHcA(R>wff%m^K>?S0<9fu5eu?bX`!>J$Kjh$X4Zo{-2Ab5pmN1H=4QvZV%Fu5{)hBtTRwsWyn3NI0AFt8Q|71dwZ4}0KXr)PI zTLRnFHqZr=q~Pl8Bu{eZ;O%hK+aVqui-EB|S#uC;Ofv~57_}Kps9gb8BfYM^nr!x` zJl15*fDsJ7up8k|g-YW^T!Qda-=9(Oe=BKXj`Xak`LNE1=HQkxKKBsGi;+EZ#AG&IN{AnD`P zV7qq>(B~hf8QS{jdRu9V>~kN=mK91Znul!DAAyiHGZQn_to+mKjWCEAQwYnrKInCGopkq%e^EslRF^!S3ECdf0Z=Fzal$qMU0CN0*w zVdpf^T2wmlQk_SXBNb)BW4@7!r%r@q0`2b|=xT@B3jMBioo?3ZgwGwlu!)iB19oHR zuR}pl6sVE?Q9R(1`dA!He_YHC;?5t;nkuwGeLLWh%=(l%vMQdeZSU{u774=iu(u%Rh!HRfJ8r{p6q=G0|0 zlN-?+${HH@%4~OdfO$dK8O41r6oMoh;0a`-JPX0SA*y`o+jSFQnGO12odg@Aw0TGh zUqaQ@OK_)EQ62Jbrp&WuM}yg{z>zKsBs0r)MY}26YS>Hqr1h75vb~IyoHdpi^g7fI zuxCd`y4rp)&QY$?%2`@&D-BA&s*gAtm}Wpdz_vJuyGmFOzv(DjuU%KdCpT+)D%n;G zX!)rfhqSKx$oBC}3UOz?+I@T=VupP@;aE=u1JgD#+SRWjMj!h{r5 z2{YqL@WWeT$I)JuYP-p$Q+=#dlQw}MXzf;F$bs=nn*c4MDuL}MluEVL6r)jFilDBt z<#MnjHP`gFXmPP`aes)W$1fS}C#5dAEV;=|H)usX#R#J@pBRG%qmoi9$=Jq%kXq4< zRmIAxT?TEKOjXBJAaLcYRs?Acjmny`CP+q|w2D<<=gk~z4%Al5-HWasBps>dihSx} zlQNlN6;ugQ^U~3nB6JwqWcG(t0RilEW}LvMU_c!$G^AzZ|x5j{gtt@HhpWU;B*>9bDgQsha&>oDy5g2rWJ{XKJ79I8g ztQBC=A$oOfEJ$_?(@vNq{``cR3}p4BC|x+vrP69iS{wKPdoG;|*sYY<6;6fwQ_5be z!`|NOW~?slUMU<7zMox$NRn9yMfhiiZ(JA&~9-M(Fd zT~q3wHF$UelxazTjC3%N8cgYA6+u>TB+ob;&&FXFoPHRILe2`80@>(=MFZxFNpNKt zkA}zTTF^fnjmDLQiJB$ZewH!}`eI?AOwAP5fwX!NSoYBrP>j;YcB|vLTG*{j_zpXr zQL+BY(FrxCGHvElQwnB3s`i9lHrHMy*J@P%lP<&=LUk(Xts#v^j!a>F0Vm?UHDDRg zU2qr`${1)o)m)XiWX==FiHT(FFq^#Xu*1+_+2QHy_jJKw zs3&!Y9S-F23c}Hu>oZsBWfhVVs53 zHX)i@ZEW(9PK%)cma3@jtP)~Rn}7ml7+h?jxS_+sa*H8^-06F!eC(3yxr~}ZWrEI4 z5~13RkQ5F!WeqWcXU}+GA}yQXsBMiJen&TN6^})G^3s!LxanKdZWdg|5?+g23X_0nVM0!1xqDT2EYQ;-ytQ^(nr+|sZ zkSh-60Ejz8PJ-z&G?(g6D?Q7!$fUy~V?3==7D)7Z1ZftK{t-=y8M7z(df{lgaw##f zq+j%;a36{m}2?Z!0It5XyP-ZPo%IVva-<|a)B_R$W^u7d?(a)kh+GP^>+0hv`H zFncapB!GiI%Ymq3*=4MdJd$be$0hBM4_4*0)59ctWW63tAm)C`G4AxV@GN~^V}+#l zcC5N|F-W$96VU|R^_to^h|%d&wtdjxln(p*WtA-V{|sY7N!+K*&1!0vV>eEp{m5^P z#C7^`VsDNRi$@5>9QJTw4*JQKHDPiaBqqX;E-Zgq;Z{VppZ3s`jvxF`pm^_ zJ`t^`nY2_6ut2q=r}K^DqaSk*r8EZ2XZ@LyxA%7U_0cn-N@+DfYA&fQB4A?w#M%8K zytzZ)!h{Sum9z$0#+frCVw9&`B1DpJ799h7sY(kw?5eKOJstG*q9mX@F;fh&NZ?hb z)eXofZH++EXT7YV)SdQ3StQG|UWG_)7INdF3JM06GUzSbGn6lEU^k|{5{Wc#!l>bY=>l;vb73}ZaZm)pWYGE(+>A^ckN2D+W$zTL-*)fVn0=&w5j7sS<4WR6|k}{9ogq=g9j!x5Q;jJbg4Bb4xsJoNyytUCU%O!WpT3koGs6DS;ybx4%D>_P1UI zc>LPmS~aEH{?-hZe72T?L?N&G}j_y(OKxU$`4shTkIgs?gAsp^1?=Xu4G@}&GJ3}KO!YF02q95+p zU^W%&@m5|1A%tIq7+59V6Mf)%iD^jPB)Sk~Un)ETXI~_jcD&mQSQ|Tt*q|QZeF_Ic zC|Ue2%LQC-N7O8#>e2@wkX#0s)bP2Yy}PU3-O~@AGWemcuCA%JX%#ITKC9omT$|j4 z5q}CJBo*8X?dov#c6g=iNXkBm)r={;?XDiYJ5Ez3KqvZQ0hYkiwZ+xx>F~l$0Py4? z$+l$wuE}l-c&KUek}KKX-9al+x2m?jsgcdDqkEIfgAPNaBor7aR^>)Lxf9-AL)xSis9ZcZR`qQvd2dUX-XlC zK7sNN!1@0oxL~dLp3}Px>P1X&E#?0I(iJ`m4FHRL#W|k){|DjBRB|$!#1)YH|1<7l z#J1L;25|p>?*Gqd75Nh7WN-ty-58|vD7Z=l8l3z8gOpchn^p_l{~x*rU@vk1e?Tu@#GLWt zXm!$|IY$~;QeCm|Ic_G9XaR)_d1fj zj2(EUW?Q-t$g)Glq=Q-c!vMvlbp=G*K?@F)1&9i;_l_|X7vs0a{r}U}pVS!EhrpTw zKXc@Lo?GIwC7wQ-xc@)IM3m8BKfEAZjCSGv{|Jyp=B9ry{4Ko-ko*59AY>l*{|Bh9 z40au?wzCBUJZjKe-2Xo%226^RKZ|>i@+sYGUTs6}|4-a$x&J?LN5&&S>ZxCm#s9w} zcA$)!C{=@6<1R>^o<%%h5NBe(Us)@ z5+sHLaXC=uT4k+4Z~9FJyUzVskIy*PB=TvLV1Pi32sMzkgtskY@+m0oh&O?~0fM6k z@kRv%Mq~o7)>f-X6jeeShNhRtFvgyUXkG*XwPg}&Ak>EXqVcO`CMS!jOD@k56k8rj z5WMUwN8vUV3HO8nJs5X#3`r=ru_*1S8@eBM?bS)+H6@+(?c7~-d5V)2H@PpY_T3Yh} zekn1|({A%g(PVi5KN3Nh2k?`FmCD<8Jb+(xM9^(r@c@1hkU+>98=D94qmZxs0)ISF zxdP9{q$t^Vgp+b$3!%a>uqT1#%Qu!bbH(;3T;QLg8!g8F`&SF4t@r+_+NS&hKfk~) zhqNX}`tcV5&phF{jKK<;vN`~73FSP@>VZFGoEi z;m$~uuYW?wKUX+B<$!-1Ji?A}5Q4f%0nR>{cz>%`G&I)9(#>?+e}fNhDn{X`3C`X_ z5not<$t@a-4f`ONBSUw*UH@-fwW@JdZS6|74q6ugrKhn;(&GU3b#-rYcd%(P#sO>( zhaw?Ah;Kc_oP!pU`$KedkHu` zNl5~irHF@<xK)DqrWu@lZUJ@J5y8BiU4@l1^Ph zOCFZm`(vX)#c2pRk?+%>XBa%O{9wvRfOsj8Z{QA=@|kfE%O`rMT9)drq$v|aMYB#z z&`n?+Rtae`)S5X)!#^{m!0t-B4TKC^7aW3il%m%QZs|I))J=M7BsVF{No}YemE&rm zMWNA9)F=Vn=AL;hAn%x$H)u;$WFEV{=V85`LVj8#?%-CNS) zhA|lm-Mt;~ecg7r!doF;ywF%;TcD_p_Fy>ZkM0fa;EE%4&pU_WsB5ZiTE!KI65+g^@=B3eNuv3j_j1vXsfqJp9*aw_ ztE=7J*WcX>D;oi>jQW{U!Ry)YtAX=BKiKg;xYMsLUa<%~PKWP4SeC{U(HQd;7U{4+ zm8&JCgnNbKzHlhujRk#iC@B;dB4gn&U%w_aD_UjAByclS5{$+;KQ7m=uoMQjaoW(h zr$E-mxZ;P+k}6z6;E^ub&5{<$-LL_$BOZ*6`x1Cr50)FDXn@)6Ks!5Sm7keJ?oJYc z{3vZ?xQ}!nK-$MZH9$7#l>Ll$`C@>eUMLXSW1$4pz^80IwW|v#Ko>`qLvIskw~>%% zb?>8Hv)$3I-CJnSR1wTt-5|o;lt$3*L`nO7{wTv1JY-?3TJuTOiTFOlrjIsx3O{&! zD)sXAZda$fuiXufp-jnYgR#I!b=fk7YuYF@X_t&_JdzEkwf?{emZP~E2ipW4o_?5f zyxr~X1HHX&m>>yHh2!wF;Ob zJul6O1BNwJEv+yFGZD$+NB(JqaJKDgtD&gwb+9451$Jmb_&x4kPj`oxhGxfdAn^)UlLxuNqeVr^5fMC0$F0{iGY13L7X6GIr8#f?<~w;4q;J_9n4s;uFz=0^Y%; z`??))J!dH98yyb$)72k2Sbz&C!M!jxfOoZT;)BeAq@ywxpM5|;Z|VapvInsadTQvC z*V6$b(5*f>?6hBQce{Ek*-l+0EC;HIpfBc)4tjTlVu@iK9V-F-WMG1C)JX}0?iBm%z6EYZ*M6K2s%e2QRvK=+kT zTG9rB=Ey~+w$nosH8J@Rx06mNA2g|7r7@K;E4o-%t z9O_dXh8%uVo#&xHD~DK{apRd)W8{VU9m9kxzUJ8=#wT&v0$U)Z!;JXiyKsz1>&bNG z0%1_`Yo~jCzhnidInWLXI4Uqm7~DS?1gS%q0RqI2au=t0D`QywP|fCm4_cw95}90L zn15DRul;qxLa;*)IQL^RP*w!W#Fy|7!$m-WdaCaUfx`2J!!QW}U<_P*6)GiY_Z8KP zgy^6uPJ(R%nE1#CO5fxQHmXBmY;Gn4d- zaz0438ks7gM*cBaiH``um`{VgNooave?7q%ti0oJeu@8*wFmSNn7VAz_*Rawl@yXD zA@x)5IRjseR!|aG3xU|!kQc7VM&n~K2nNEKx7sgqgE}OohhO`Bv7ul>n)O(wg6hOo zEp+q_Z1B3b^>p_Q^tu_N35X@fXQD8=W zr5#YUz%b^=GOQ4(8iGz$s7@s#TkVgm=8<}KM&+}~(^VO)k%wf)GGt?4)kH!EvGb+H zFqW@yfYS#BP{q5?VC>;HW#?8gy0z6^UMDOCOS;;<#og6UR%L_{nJb);#v-G>0GXGd z`U0%ig9x#U);BGHo}$vfQA5IyBn+lZHGhyVDXV{bj~j88G5sdjwo0nv;Btkh%hj3j z5{8nUas@-$i9w#A*OB#90(?KJ@uE?0zgNmk=ix==IbCCILTH)4JV{Pyj}uY47sBdK5RP2g3IaklQXX2ru2$~!|+~SoA5fV`$=<^TLY;1jaxg{Yem4}{`W!{7BM5&c=t^!Ye+yG*m z{Rjk{tt`@CHBy$?r67px&><5Cwy$<7!8afqUqIW-;{q{J@J=7Hk1|t511lUzj{+mI zmj(tv7U0N0xq-a~a`b@-=ko_)xrTeC1Wg9-ZiIcX{$D;iiu5sGWGEP~k(f>&IqYl? z163;qd7Oe(KtjK@eU@Xtr(J|%)`0(9?DusO&`Ae<-~f&nd57VsMF{Q3Unv0Y(U7>PuUiWXFtY2>MkWPBT5?Jmxh%QKO*iyBh119|8uN)U#o|pdNU>7*lUmV?RYiPxwacI#L#v{# zI!B>bgbqWStOPg;Jx8Jcu%pm3d#%KJYNuy~J|Pht8I_I<)3#I5=#LZ29j`B;#SRyV z(CAmTSIMrc5E>cv!Rp8dmnJ6SAy7uj0R_1oLbhO)K*X?~0Ods{D9s0XW>WGdp{pP> zG8dDr2I*b^34bn~*=5WK4p(}~G)bz8uH~xP0e^uN0_#q!#}W>mA5VCRnwJHg@dScH z=YKe$^ZzAa^I`p8BP}9f17KG$P=o(?!I&8f!juY!!es1%@s7Cmuu2$|*LraEYK>5d z12^s)kuEyGsSsRtga_QC2*wd}ifAl+4ul2=VV?**6iH6iLMQ+ap+OFvA5dZjfDHrU z4v||VsF=%bDbQ+gdp4gwsnn$-&(Ryz+(% zZ#huLR60E^JWHR~STxGkf`moS0?|v$z(h0w7fofp;1E~Z1kJ!cx;~S-XsQZ2Emo6K zs&Yf2U*7Xm!SKQQl8TnzDTz6BK6DWE1_aDRA!Sns*Z68jPrW>VQR|LB)Xr2L1KY;9 zh1HKe(qUKco8&(%IdneQ9ONd+U^FIh=zLJV1TCLK=i`WyJ%%JBHSPAdJX5LDD6wV* z4xP`T^YiX3SRdwXDDXj1^Eg@kHrY|?quc9*Bb?9Eu@?@Pr`ybt?C$1{pTjAaq+4R>$F-cvc zl55)N0Rk*B{L7OE-VLK=uc*egE!{6r3y|K*M+)@Px3r~y{Mp}n6(EPs=g|4MnH7&^ z96Q;)7%~sr<-`kXJ$Qo3n{{wIYz^aPm>#u?nsRu|mwJPX2?YYVu~)dXU(zYHY9O9M zo&FVkG14>9T-edNP^EmzL@g;tJoHQ{Ui&4zTzQ3y`*SIzDWB45)vD2RxD@&fpVRY5 z-OEYIBg5zPJV-&ROG!!=>0i@xU|6K6dfp7b# z0^zR@#o~!6L*XlkdotMf2ZM!QNAT&Ysqojk5_gpJY8E{ot_RaAd`YmElIY8%~1PYlie1C zI$_hwm1ytopp~dwRa@WG$R^PO-(&Y;zoui}_wMbA#zxpQN+F%DzCQ5!B`kX)LvV*Z z1beMV3GJQ)c~IJ?LK>>a2i!gOD%1+lx)C_jB?58{1*wy>B+81+{Tf4E(Da?1vd}AJ zXp2q&fW?nz(O4Gdn&Xrwl9nXIUnEHd+*FnCs47KQv=awHjaI9`jwtC=O&E}h4ZhJ1-vlW_ zX7a;||8Fcj-2ngNKU@M_0$c)I0$c(|AOZ2J`IZu+(~!I@etkL6TNH~}fH+L(jRxni z(J=T5atK7Y#h(f`)$Z=;S8mayfZ20QYAp~5$E22l{!04`*esVdjK26Aa%ZSb*d@p!Pgi z;{mHUz!DCt8Z) zV>}6-NUsarAsu#lVKJRs^s1;-Fb@?)Or*eo{>k?pSr8F8u1^K=%h1TkBXMu$zfb9?L7-{a*(E zuTyxY4vWOQN21OGBnOv;Wk`_J?QD+!C*wzfw<^<|Qh#JNz8J+%bppr#gZoM}w2=hC zB|H3v0v!Jjf(ucMA8B$@Z(%WGnw>4>8Is@&vL7^7A{?-(5r;CybCKFY4d$Zeg%%pQ zPbR_EU_Zv068|M?M1lQbZ;ho~CsVT{m&-W*A4L*9>Jp<$X43||&@rMx_5*iAj{n!g z@&7pfA6aXuOBc8lr2+58iwY^AO_HGm3yD1Ns5lNIMLh@iDFT{4ISwPo|Ks?75=1-4 z|I3J9qo^DezlP)gF}SxJ|1S^xzZD$+kK_NPUm!$Nh@wt6YcG##KA=Se>j{qk$MOGQ z-7nBUC+fvjj{gTR3mpFskF6BUL&U&Sq4A_`qI6h1WmgOLE$END9jFDtlizauKd)8< zD2ERM?Yu^l@BXq#-wOTCEQtCe2Kt$jq! z%E};T(Jo;?%h0d%%xn?sw*jFnB=4C0wQ9@~utCkOaD0^u4kgEF0pj5R# z`KXLXu+No15zN?TVOQ{$S(Z~=6&6jN>(u5}U5YvWA4Edn_=?hhEgcEx}TE8$-`ylbRIsP98n*EU4-+Cwg!R7dWY4C$7Ab%_hUCJk1IHZCXGS?PT?w@JDq*Jno#VMpIpVDbngNklbrO;>i zoSsMOesM}389t}yK?+i@QKe*&{xv-Z2I!BKJo9=#_%d+(KcV92;Qw`m{Nd98y z4A5{=m*Dt+aI}d&Uf2|BOLF|b2%uvsN)xuCp(Cr0xN8mInGkAO5*|1;V~QN3BbBP9 z6^2VDB6&byPo^GNS{E=Vs(T$cAZ>x!sJqJx&;*|D4#pRs;Q6rtf8-jPHV^hQ$N!`L zd#O_^%v;z5M+g6}790Q!Rfh8oWmlKEOP?v-<#^9=wPR_?BPC~+6c#^Fe6Ia1`$hJX zZTHwV7X7wpyvT0-thK)IKMVI1o>FkA;9x%?HfWOt+d=8=o>x7#ACU z23h9w(_2+J&uBE6j79Kclzto2f6T_F`i502R@By;3!Z&*N!fW>eir}Ia$Zj*$+Jjb zo>?+H?}XRBcV6!j%+ZKBB5U+_I+I3|%BAJy-S56TGJ^l#o&MvvYj@wNBu_cF{PKK% z(oEZShZfVSn^2r4>9;BU$81u>X?efX=-2n3;cxF7{h?Fz7xms%`U-;7?|#DQ-?@ks zWzfRaF`K&Mb^mO-DJlo`=fU~bd@-_Ud{$C$J8vE{t1 zx0pcE+!mUK1?lPKrh@l7^_FBh{TV2#On*`DU8T1u%PqH>+rp)!D7A^Oxib7%m}bJ> zr?)V}KQ^Ka9r`Qw?3;SaI(XY}&29Z9SQJ=>)WFNb%rlu67)Sm;d*1;jMX|L#T|Ief zX2`g}!m@-VE$*@`?2;UioROS!&PbHxL=jjJ5HWy>AxKby;Ovlg2LwToWClSI6Do*V zLH(;vo$Bu8yNUaU=lP#U@BQxQyXURy?$hC|Q|DAo=UcZrcI5x}543~nMrRlA)o~X} zMAVA^LVO=^3itmz@zu4GsQ*rfMmlOFGtsz$^RY`Pa?tNY=YP(x0pD_DD|m6q|j#1&(wVubr9S_Pae6sn(7; zaIE=1yDa@3X9v66Ln$RTKWwv4RQaJ;T*==z`M>|*bD}>K{G~H}f9sa%hUtd*-~TLl zfS{oh;fK4M*HNwbKZ8Q?7k9I%anCsSU+$Ie z8uTFT>ALRnyE2`H&R&i$9rGO}>@V4y+rG7}WAwlO`P&13d*E*m{Oy6iJ@B^&Or{>b zyB+3R{*z(;eRn&|xBTm2ezUtB=3D;lFn?52-sjy6^DX3VBPq@w-2^;*7Xh|~{C5F% zV{p>HJ&->7vXK8az;1N+hx%^=>|8k1U5xZCFw=Oqw+aL7oV&lU|1!Xy)Q}%a8{~@t z|GymSoBy}Q`kfo_Rp+ydFQ$|C5+J^RAEd-^Sz_aHP9-_0=@GEkO( znSn}&{_bK9OtoD3ml>!!yhCzVC-|>3P__TF4)s|z)$(sLP_>}PySnCooq^)<|If;8 zllMFC74O^Lqu!Wzi+8PenfGDuH19BP4{vL4j<=S#g4g3UdA|2t@x1Lh>WO)_c-DHB zc^>vm^NjHH^0f0b_N03%d5U{f_fPIG+#k44x(~W{y4Sl`yB~4SagTQoba!z#cW1e) zxy!ii^mqCVy+qH@1bvlmq)*btbRL~VhtO{Hewt0wXcBd~{&3xJed0RrdfoM!>m}DS zt~}R5*HqVVS5H?PSFWqJE7|3BDb639pE=)i9(V3@Zg;M8E_eE!4?0IWdpp}X8#~jT zm7K+$s^cfe7mg1cZ#oV*UU9tOSmg*iW;w<>`a3!~?sH^1syIqJZ1!L6U)evjziE%# zx7yd*^Xv=klkG$7-RwSlrajeO(r&i>Wc%Fqp6#gZHQPqp8rve<9NRcse_KaeQ(IkI zC0j9@V!dg-Vm)s?V%=liXkBAnWSwIjXYFroZ*6R?V=Zr`mOm`lEtf54EQOX`mi3m$ zEn&+{%V`6ea-F7jm>q;$!4nl zp60Q)76n`FSU)Dqt;Z*sZMf>d_z7WZ;?Y}2YG?4BtbHrj3m8C z8KNA?lwYVBwnL0H+HWKUJ=H+DYnv5aHY108YcU zb*lk+s(@+vOTaos!bbs47BKpDUm#CH_|AB+P82Y<@Cd*O0_LUv2ITPq7Cx~HtmCBh zBEYc%=9j7k9f{=h&zaTjA7N2dMQL7egnaiLA=Ez{ z8-Lyi8V?gN`qc=4Lj_EWEd)3O$xC@()IV6l!2kydm|rpv;6MT6uh)n37$D&O9%*3h zFJNBPhr!xU!U4?c@%LqreMj3xFEgmB)ZYhNcPj*XZvhLRYYMQJY+VjuPXS{~#=)U_ zAgsWB>+yGIkoUcD03-9hACRpZ1HBv4=g$V%72y|gfL#R4uQU!0)mgUv31BAy3zvTj z}q_ zj6KyI;Qa{ag@N2clB&1G%Yyv76#RP0)J% z2e39q>v!+LaT}ra@ks!4C7IuH>dz4{(Zvq1p@4-?rUSWwfO!?xf;C&fv=_&MwZ4GS z>*v9mCCTEct%v0GUx77Kz(ki%8T9xw7-Ww_+YH`5=Y`&D3z%}K_8_@p|v7l{FM`6HK8@_ z5Qhr|ipCz|+yw%qZJ5Gs^O2d+nxlCV4dQ67K(&uG=ItI5D86?ux6KhK_R|E8W(yRJ z?cvN>h;~9RsKe3MV%&x@9N#;iw?h?<#ys4HA{^ZTuQO_J+J>Q=i4q)Zew-sz;P}2r zI6?uAzqErRslTs1#}UeJ+JZvkhb^5%DG z$!#dSc@^q&gu0s+g_jv+H@|;9ZX1D~I6sFYskz(dGUVZs3wQVkL+lQt=H^xE$GIrE z`Q_Vjgo>M2?njPLaMPljIg)yN{8f&m+;+<4NUCkcz8s<0=J$G*Bd)b)YwrNoJc*r{s*_AoF+!ViK3boF3#pQ6w~OpFknJ0jje6OPgF|jmK@GRB~9D& zAh)5A#@>Qanb1+i_fQ9J6Edp!=6=uH2^D2F{vx}x;UcUDzT;n88xko1tFD<1ns~ za`}y$w?nmzz1fE|Q^nI-`$Q^7D3#IAz}2Xf`+KZn?Oc`M;P+Ij$cZSE`5mkrp-RSn zdzvE@$>Wa^LghAXMjcgBb+^*t(^^>HJnLKr{k968^=eEw;YEYJ6OEG z(h+n_cZ_uOa9UQYnjU%;{8MaB;I$B-^thHA~{74l2^#{WCaP3 z2gwN1le8ucNez-joXRbBd*L4%6w0f#O@;4v5T&pP0!W^i0T|&IR~JW=XeT0sn18mB}#!VgeW|S3LQNx?lDSqV#g9_iyECs zz}Gs6BAwV#0<5Ug@lW7e7L+o*bp}|4PLueRmEZs&)FgVi4OoRzll=B7z-)0v`S<%7 zbO*UqvogJu3lH+~2MwZFCpujRHmY^(7|2u*<$8bn+i)bV*UUSKjt~|FxnOf=ZGZt$ z5EVPWW&0HPr3c)1#qn4Lok=nE<79 zKQ|1Z&~6ev+6}rw@y@Ti8my?^(NDztf%2UgY62_j_x|n|0iuBK?;Zh&3Z57OvK6c( zP9v`-s9z98e1H4Tfs87ifA2B|-N6blL~6dH6dxiH8bl$_O9LSbqLSyQi~EmKo|nc) zE;NW*UijigxFi(w*qNGOMKwDpP9whlHgqLbJ@;LJ zDC^Pf!qKSf(JvwR3!<<`w?RY@L}ib?HwM~DXK%OpO{sX%J zJ}6);^&ucnL+hju0Zs)7XT=XR1+BfrX-pO{F9U}Bfk^_!BmJQ5M1+SM1Dt?ur=5i3 zju$ZbG{{9@9FiA9NE;Z70iK_rd3z!JNV;C5PZ9{vZXQ9I+nt%s9fI1vq z`UJE^9gaV`65udstN3Pv4hK+&Tvwit^iSo>kJFPS)mTc^Y?)j zbvRbt0T6XKdi+~}T!+~M96b&~59)~w6fGQkc`T_KeDja=}%bzE}RhUha)ha)U zf0b-BfI6JE73N91t_@Ud*VeJvLyD-ECw=Qp1KjawkQ*(P>To&c9&KH2yB zF!;850$hk;_U{J#fd){D3!mcOVj4gxj$MXXv;azR>=Jy|0w~4#V|jc|11QC@pLsk$ z11QC@OE5DSKq-zsQHEJP0WQUScoDtCARAr;P>kat;Ug5|{SS!m35szn7v|UkT#UIF zn)HT4p%zD1AB1}+wYVLqegL&N`c!iuqZSt~7hRzi=RYXU8nrm~`a~e37DvCY2oSY6 z(fuuesKv2m;x$Jtj-L|W6RE{{@Ldm}7RQ!NhPG0R*Nud8MlDWEZ_BK%Ks9z>9S-X@ zAG9KSLWj*ChhyA1=?04j0(N*=UDCC=|N3CO6#X_-^=~`ca9a z`Qy3Ok4l^t7a0vy;`qCKR7?G+#A$JOviw4cNgOjzsKj~Y-UKo#arD}C2HpPI;@fk0 zJ#z;eFZj6>vzIcy`YUF3+B%y4AjOI8S96B<2k#g5bkdfj+ZWo~dM|iSdk?E?tiOBr zdSCLcQ@eQ|vsLj1y)(UIy#3T`>aX5TACH>?)jKZCFiXzJ?G8)NuKAJ{j%!vT9SHr=TElwAKGojHUWq(IKR3Tj-?x54 z-(;&CcG4(aBPtMV&8+imrR}QiqU|l)HM7;c(mc~V#`>gMz-kk^n@^aZH-~5|+K|?y z<<%tWcKxN^Z%tTVRWF*G*=&}WZ5Nxp_|)~T>$q#5>t*XD+e4N=ZBgq3)*&n&zhTQz z-!hkSJ?~oS3cF^x#<>Q#I=g(XELSyGS(np!+q&4g(RtnSw&gqfa9daMnr)HuW9K>N z5$9g#X6Mt+rOpM;scfdB*Z-_-F!yu3Ng9z#=2Wf5A>x?r81ERU?oy-bM0KwHTSpg1 zb4M2W#4^G%&C<*KBda;6=%{ADdPe9%R<3)865n>pHyJ(lC?X+`wNCS7?fN2sv1 z+rTAN`Bfm_`qLc!B6>-CAv^b9{NO6IZ&sJych*vOu5Am}m1eyD| zAd*+X5x(T&T&V4D31+*EW4X;Ln9)Z+=6!BJv^b61qJr7B++mK^LoeliEXBcdvYC^k zb%+-6$cd~KDDBl<-1f9Uc}e`9sAbT$e-2}+#Q-V32iJ1u5{dY%09lO8ojg_}uL+b_ zt{Ly8ETY<6@JK$K7{505X)Qk=+a0iS<~@Lvw$(3i=3H!7V?DR^Mdq#t`C0FiXewvM z5xthn(Nt-x$wOoip1@ zRDq**vK>!Rk~TVGw$=i*+X#=u0nsk`+@ri*Q-Nw;{g_{0L&0oYk_#NEBW!t4_7(mqW-r%LlZiifqTFjg%881cuZKXxrVAAK^`DTf%LX(6*mP zrQ{8X;2s?lDCGiAxR9d)HQi_8=oe&0`H-Ca1W$5P7Ywm)qUk^(H+_d_`z(I&FM!y5 z<8j`{=faeC5BTUaByQWon_Xq!Pcz!9RAzrsdjL|}mP+LapP#m+%5sFyPtzm0tY1|; zKP0aTTzyw;SCXfO)GngWrYGLy%#H%p{I(xQ;@MK#mgDn^YFlAT+nLFcc$!Gsj!!re zPZLSo*_&OI+QMmOHPTgXR$;4}vC$3(H#7poPMJTfs(7$S+H<`)$^cKe-*}FLn%HdJ zR*q_bsn}b5JgSO^3~CWrk5vURFO^Sjs`yx?t>eRZHC1cIh$&2cx)UPG3{1;JGZ76a znUu+rLPRnPA7U{(m69I z5ig@Kg%Lp=gy~_4Ix(j5j6{6)Oj#ije>Rk-5J4r3=~=u4$ZCrxou#<<^TVx>rWp)% zl3)r0;yEXIRe$0qBE*uRFmH7NyRRDJ2;Xv15@)&~Z3DRNLy7ocz$CvTRm<@{-$fhL zf|>ApAWDo(FQF}k&u*JG;fXDaUxe{$9!B3TS!)(d#_M zRGboVF;SWeB&H3O@uCw^9#9Vf)OUz)KE{%Y8B7cvVb?NDf&>FXQ8CC=ROp={Ui4%N zNyIhHv{WKK>1cXfBL0>r;=N$)cwlcjFKzv~?I<1&iVxD!6urzl5dx0$KT3|UiQJO% zIwHs>D&lK|Nj>GF=u#xTT}WgZaCWDIXo6CN>S%)WlyU?SOe!jUB!bV#4vF|ImPy1I z?90vvzREQhyHhO51xanuy(sIzk&&42R0fJJ#N?%hAhfX$#bBu4`NNvW>` zZ>Rxw0R?KNM-ai(tb%tt?69x_N>v-Iii2VKZBQwpOrutR~C%maCR`EpJ%jmTi`2Est3O zmgy{?-N(}2(!^5Nl44==J?5XyU$PwmPnr*s?^#YeYJS4JNUdOg$oswbs`owb3GV^# z4)1#JYF1w`$2;CTP~EKVRi~&=tHacD-Y(we-Yjo5Z&|OybIbFsy1;Xp)f*i4?D1^! zJmp#9neUnG8S3foY2|6?sY&XPwdQ-wE!5kd@*cPQFY>Vad-rGV_uR+b``jk5Tbd7QKXK{OTjN2W~TdW@8W9ND2QD@A##d^@W*162-H+SXh z5UgJsS0bn;Z7sq{R-3TXvEH%T@rYv%kJGIm^7!0((vhVuRdXEG9A(K>hr@o0)hS%I zpEVD%A2!!lKeq2-nf~7m%wwtz3 z)gx*T+dH;nwtU-GwqwI`o8R^zt6=DDYiDb0oo}6N9ct}vZDnm}twpYox5-fwBU{)& zN`(I;`urjlFmcr&z;Jx}B}L?@;(q!L6Q&SXp#+r=i-0PxG+M2+)TSQ|dHun;@wZtR5s&a&1^_ZW>E~*dPJ#dqw`w%_clb>m0M33-! zJ~bD6ImipbRPg~N(F1&nLlqwrme?N6ZP~KV!5r1cb_cF;BnGmq-DHmHNgKomnb=s_OJsCCgcoDcleTG;LhKJ}~ojOdiY`>ZBy+Zj{&0ny19dAlS;Ynm`baJ&^8 z%BMfn5|a5YN5ut-)o93(m?$B!!E-qB$X>cIL_S8emq!z10wO5%HAN7?oV0Qee1Az4 zN@Zsufcn=5kp~%BMW`PUDOcrDv_Xnh5g%$2g-oV`qi<21p`1b{R9`4K?iA$}$}zOP zWa4Kj+iiM0Sw>Oe`Bh(~cs1&MglL8*iY zD)3F4*~j5=g@^*zUcw}59h7Z|cJujn5|fCRw-G$C*e?FSlZ$BExrp2Lh -

    add info here

    \ No newline at end of file +

    PatientLevelPrediction is an R package for building and validating patient-level predictive models using data in the OMOP Common Data Model format.

    +

    For more information, please visit https://github.com/OHDSI/PatientLevelPrediction

    \ No newline at end of file diff --git a/inst/phevaluator-www/phevaluator.html b/inst/phevaluator-www/phevaluator.html index e1425a92..42b07a4f 100644 --- a/inst/phevaluator-www/phevaluator.html +++ b/inst/phevaluator-www/phevaluator.html @@ -1,4 +1,6 @@ -

    Below are the descriptions of each tab in the PheValuator Module, which will appear after clicking the "Generate Results" button below:

    +

    The goal of PheValuator is to produce a large cohort of subjects each with a predicted probability for a specified health outcome of interest (HOI). This is achieved by developing a diagnostic predictive model for the HOI using the PatientLevelPrediction (PLP) R package and applying the model to a large, randomly selected population. These subjects can be used to test one or more phenotype algorithms.

    + +

    Below are the descriptions of relevant fields in the PheValuator Module.

    • Phenotypes – phenotypes, with SQL and JSON code, examined using PheValuator.
    • Phenotype Performance Characteristics – estimates for sensitivity, specificity, and positive and negative predictive value for phenotype algorithms tested by PheValuator.
    • @@ -10,4 +12,6 @@
    • Evaluation Cohort Parameters - R function parameters used in PheValuator to develop the evaluation cohort used to determine phenotype algorithm performance.
    • Test Subjects – examples of test subjects evaluated to be false positive or negative and true positive or negative.
    • Test Subjects Covariates – examples of the associated covariates included in the diagnostic predictive model for test subjects evaluated to be false positive or negative and true positive or negative.
    • -
    \ No newline at end of file + + +

    For more information, please visit https://github.com/OHDSI/PheValuator

    \ No newline at end of file diff --git a/inst/report-www/report.html b/inst/report-www/report.html new file mode 100644 index 00000000..c2f5883a --- /dev/null +++ b/inst/report-www/report.html @@ -0,0 +1 @@ +

    Use this module to create an anlysis summary presentation for one target cohort, multiple comparators and multiple outcomes.

    \ No newline at end of file diff --git a/inst/sccs-www/sccs.html b/inst/sccs-www/sccs.html deleted file mode 100644 index 44373c91..00000000 --- a/inst/sccs-www/sccs.html +++ /dev/null @@ -1,2 +0,0 @@ -

    Self Controlled Case Series

    -

    Information

    diff --git a/man/OhdsiShinyModules.Rd b/man/OhdsiShinyModules.Rd index fe505b2c..21722b2a 100644 --- a/man/OhdsiShinyModules.Rd +++ b/man/OhdsiShinyModules.Rd @@ -8,3 +8,14 @@ \description{ A selection of shiny modules for exploring standardized OHDSI results } +\author{ +\strong{Maintainer}: Jenna Reps \email{jreps@its.jnj.com} + +Authors: +\itemize{ + \item Nathan Hall + \item Jamie Gibert +} + +} +\keyword{internal} diff --git a/man/aboutHelperFile.Rd b/man/aboutHelperFile.Rd index 38ef9865..8d4af628 100644 --- a/man/aboutHelperFile.Rd +++ b/man/aboutHelperFile.Rd @@ -15,3 +15,9 @@ The location of the about module helper file \details{ Returns the location of the about helper file } +\seealso{ +Other {About}: +\code{\link{aboutServer}()}, +\code{\link{aboutViewer}()} +} +\concept{{About}} diff --git a/man/aboutServer.Rd b/man/aboutServer.Rd index 6f767497..b891648b 100644 --- a/man/aboutServer.Rd +++ b/man/aboutServer.Rd @@ -7,7 +7,8 @@ aboutServer( id = "homepage", connectionHandler = NULL, - resultDatabaseSettings = NULL + resultDatabaseSettings = NULL, + config ) } \arguments{ @@ -16,6 +17,8 @@ aboutServer( \item{connectionHandler}{a connection to the database with the results} \item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} + +\item{config}{the config from the app.R file that contains a list of which modules to include} } \value{ The server for the shiny app home @@ -26,3 +29,9 @@ The module server for the shiny app home \details{ The user specifies the id for the module } +\seealso{ +Other {About}: +\code{\link{aboutHelperFile}()}, +\code{\link{aboutViewer}()} +} +\concept{{About}} diff --git a/man/aboutViewer.Rd b/man/aboutViewer.Rd index 7fd25085..7a1cd8eb 100644 --- a/man/aboutViewer.Rd +++ b/man/aboutViewer.Rd @@ -18,3 +18,9 @@ The module viewer for the shiny app home \details{ The user specifies the id for the module } +\seealso{ +Other {About}: +\code{\link{aboutHelperFile}()}, +\code{\link{aboutServer}()} +} +\concept{{About}} diff --git a/man/characterizationAggregateFeaturesServer.Rd b/man/characterizationAggregateFeaturesServer.Rd deleted file mode 100644 index 37c27cbd..00000000 --- a/man/characterizationAggregateFeaturesServer.Rd +++ /dev/null @@ -1,28 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-aggregateFeatures.R -\name{characterizationAggregateFeaturesServer} -\alias{characterizationAggregateFeaturesServer} -\title{The module server for exploring aggregate features results} -\usage{ -characterizationAggregateFeaturesServer( - id, - connectionHandler, - resultDatabaseSettings -) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{the connection to the prediction result database} - -\item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} -} -\value{ -The server to the description aggregate features module -} -\description{ -The module server for exploring aggregate features results -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationAggregateFeaturesViewer.Rd b/man/characterizationAggregateFeaturesViewer.Rd deleted file mode 100644 index 75b82348..00000000 --- a/man/characterizationAggregateFeaturesViewer.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-aggregateFeatures.R -\name{characterizationAggregateFeaturesViewer} -\alias{characterizationAggregateFeaturesViewer} -\title{The module viewer for exploring aggregate feature results} -\usage{ -characterizationAggregateFeaturesViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the description aggregate feature module -} -\description{ -The module viewer for exploring aggregate feature results -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationDechallengeRechallengeServer.Rd b/man/characterizationDechallengeRechallengeServer.Rd deleted file mode 100644 index 0dc4a02f..00000000 --- a/man/characterizationDechallengeRechallengeServer.Rd +++ /dev/null @@ -1,28 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-dechallengeRechallenge.R -\name{characterizationDechallengeRechallengeServer} -\alias{characterizationDechallengeRechallengeServer} -\title{The module server for exploring Dechallenge Rechallenge results} -\usage{ -characterizationDechallengeRechallengeServer( - id, - connectionHandler, - resultDatabaseSettings -) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{the connection to the prediction result database} - -\item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} -} -\value{ -The server to the Dechallenge Rechallenge module -} -\description{ -The module server for exploring Dechallenge Rechallenge results -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationDechallengeRechallengeViewer.Rd b/man/characterizationDechallengeRechallengeViewer.Rd deleted file mode 100644 index f937ae7e..00000000 --- a/man/characterizationDechallengeRechallengeViewer.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-dechallengeRechallenge.R -\name{characterizationDechallengeRechallengeViewer} -\alias{characterizationDechallengeRechallengeViewer} -\title{The module viewer for exploring Dechallenge Rechallenge results} -\usage{ -characterizationDechallengeRechallengeViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the description Dechallenge Rechallenge module -} -\description{ -The module viewer for exploring Dechallenge Rechallenge results -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationHelperFile.Rd b/man/characterizationHelperFile.Rd index 67cd8f45..912d8343 100644 --- a/man/characterizationHelperFile.Rd +++ b/man/characterizationHelperFile.Rd @@ -15,3 +15,11 @@ The location of the characterization module helper file \details{ Returns the location of the characterization helper file } +\seealso{ +Other {Characterization}: +\code{\link{characterizationIncidenceServer}()}, +\code{\link{characterizationIncidenceViewer}()}, +\code{\link{characterizationServer}()}, +\code{\link{characterizationViewer}()} +} +\concept{{Characterization}} diff --git a/man/characterizationIncidenceServer.Rd b/man/characterizationIncidenceServer.Rd index 42dd31cc..713ffc5a 100644 --- a/man/characterizationIncidenceServer.Rd +++ b/man/characterizationIncidenceServer.Rd @@ -4,7 +4,15 @@ \alias{characterizationIncidenceServer} \title{The module server for exploring incidence results} \usage{ -characterizationIncidenceServer(id, connectionHandler, resultDatabaseSettings) +characterizationIncidenceServer( + id, + connectionHandler, + resultDatabaseSettings, + parents, + parentIndex, + outcomes, + targetIds +) } \arguments{ \item{id}{the unique reference id for the module} @@ -12,6 +20,14 @@ characterizationIncidenceServer(id, connectionHandler, resultDatabaseSettings) \item{connectionHandler}{the connection to the prediction result database} \item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} + +\item{parents}{a list of parent cohorts} + +\item{parentIndex}{an integer specifying the parent index of interest} + +\item{outcomes}{a reactive object specifying the outcomes of interest} + +\item{targetIds}{a reactive vector of integer specifying the targetIds of interest} } \value{ The server to the prediction incidence module @@ -22,3 +38,11 @@ The module server for exploring incidence results \details{ The user specifies the id for the module } +\seealso{ +Other {Characterization}: +\code{\link{characterizationHelperFile}()}, +\code{\link{characterizationIncidenceViewer}()}, +\code{\link{characterizationServer}()}, +\code{\link{characterizationViewer}()} +} +\concept{{Characterization}} diff --git a/man/characterizationIncidenceViewer.Rd b/man/characterizationIncidenceViewer.Rd index 8bb718f7..84d0253f 100644 --- a/man/characterizationIncidenceViewer.Rd +++ b/man/characterizationIncidenceViewer.Rd @@ -18,3 +18,11 @@ The module viewer for exploring incidence results \details{ The user specifies the id for the module } +\seealso{ +Other {Characterization}: +\code{\link{characterizationHelperFile}()}, +\code{\link{characterizationIncidenceServer}()}, +\code{\link{characterizationServer}()}, +\code{\link{characterizationViewer}()} +} +\concept{{Characterization}} diff --git a/man/characterizationServer.Rd b/man/characterizationServer.Rd index b85af663..a21b66b5 100644 --- a/man/characterizationServer.Rd +++ b/man/characterizationServer.Rd @@ -26,3 +26,11 @@ The module server for exploring characterization studies \details{ The user specifies the id for the module } +\seealso{ +Other {Characterization}: +\code{\link{characterizationHelperFile}()}, +\code{\link{characterizationIncidenceServer}()}, +\code{\link{characterizationIncidenceViewer}()}, +\code{\link{characterizationViewer}()} +} +\concept{{Characterization}} diff --git a/man/characterizationTableServer.Rd b/man/characterizationTableServer.Rd deleted file mode 100644 index d92445bb..00000000 --- a/man/characterizationTableServer.Rd +++ /dev/null @@ -1,24 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-cohorts.R -\name{characterizationTableServer} -\alias{characterizationTableServer} -\title{The module server for exploring 1 or more cohorts features} -\usage{ -characterizationTableServer(id, connectionHandler, resultDatabaseSettings) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{the connection to the prediction result database} - -\item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} -} -\value{ -The server to the cohorts features server -} -\description{ -The module server for exploring 1 or more cohorts features -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationTableViewer.Rd b/man/characterizationTableViewer.Rd deleted file mode 100644 index b82f445c..00000000 --- a/man/characterizationTableViewer.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-cohorts.R -\name{characterizationTableViewer} -\alias{characterizationTableViewer} -\title{The module viewer for exploring 1 or more cohorts features} -\usage{ -characterizationTableViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the description cohorts features -} -\description{ -The module viewer for exploring 1 or more cohorts features -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationTimeToEventServer.Rd b/man/characterizationTimeToEventServer.Rd deleted file mode 100644 index 638499bd..00000000 --- a/man/characterizationTimeToEventServer.Rd +++ /dev/null @@ -1,28 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-timeToEvent.R -\name{characterizationTimeToEventServer} -\alias{characterizationTimeToEventServer} -\title{The module server for exploring time to event results} -\usage{ -characterizationTimeToEventServer( - id, - connectionHandler, - resultDatabaseSettings -) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{the connection to the prediction result database} - -\item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} -} -\value{ -The server to the prediction time to event module -} -\description{ -The module server for exploring time to event results -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationTimeToEventViewer.Rd b/man/characterizationTimeToEventViewer.Rd deleted file mode 100644 index f5626ffc..00000000 --- a/man/characterizationTimeToEventViewer.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/characterization-timeToEvent.R -\name{characterizationTimeToEventViewer} -\alias{characterizationTimeToEventViewer} -\title{The module viewer for exploring time to event results} -\usage{ -characterizationTimeToEventViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the characterization time to event module -} -\description{ -The module viewer for exploring time to event results -} -\details{ -The user specifies the id for the module -} diff --git a/man/characterizationViewer.Rd b/man/characterizationViewer.Rd index 641ee31c..460de01a 100644 --- a/man/characterizationViewer.Rd +++ b/man/characterizationViewer.Rd @@ -18,3 +18,11 @@ The module viewer for exploring characterization studies \details{ The user specifies the id for the module } +\seealso{ +Other {Characterization}: +\code{\link{characterizationHelperFile}()}, +\code{\link{characterizationIncidenceServer}()}, +\code{\link{characterizationIncidenceViewer}()}, +\code{\link{characterizationServer}()} +} +\concept{{Characterization}} diff --git a/man/cohortCountsModule.Rd b/man/cohortCountsModule.Rd index 8c4cce1f..84eca181 100644 --- a/man/cohortCountsModule.Rd +++ b/man/cohortCountsModule.Rd @@ -32,3 +32,27 @@ cohortCountsModule( \description{ Shiny module for cohort counts. Displays reactable table of cohort counts } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/cohortCountsView.Rd b/man/cohortCountsView.Rd index 5d3a0977..d1245326 100644 --- a/man/cohortCountsView.Rd +++ b/man/cohortCountsView.Rd @@ -12,3 +12,27 @@ cohortCountsView(id) \description{ Shiny view for cohort counts module } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/cohortDefinitionsModule.Rd b/man/cohortDefinitionsModule.Rd index 87a60709..d9da5ce8 100644 --- a/man/cohortDefinitionsModule.Rd +++ b/man/cohortDefinitionsModule.Rd @@ -29,3 +29,27 @@ cohortDefinitionsModule( \description{ cohort defintion conceptsets, json etc } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/cohortDefinitionsView.Rd b/man/cohortDefinitionsView.Rd index 44c6eb84..387e60c0 100644 --- a/man/cohortDefinitionsView.Rd +++ b/man/cohortDefinitionsView.Rd @@ -12,3 +12,27 @@ cohortDefinitionsView(id) \description{ Outputs cohort definitions } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/cohortDiagCharacterizationView.Rd b/man/cohortDiagCharacterizationView.Rd index 171c47b1..f83473c0 100644 --- a/man/cohortDiagCharacterizationView.Rd +++ b/man/cohortDiagCharacterizationView.Rd @@ -12,3 +12,27 @@ cohortDiagCharacterizationView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/cohortDiagnosticsHelperFile.Rd b/man/cohortDiagnosticsHelperFile.Rd index 5a4eda49..5ac9f07f 100644 --- a/man/cohortDiagnosticsHelperFile.Rd +++ b/man/cohortDiagnosticsHelperFile.Rd @@ -17,7 +17,25 @@ Returns the location of the description helper file } \seealso{ Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, \code{\link{cohortDiagnosticsServer}()}, -\code{\link{orpahanConceptsView}()} +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} } \concept{{CohortDiagnostics}} diff --git a/man/cohortDiagnosticsServer.Rd b/man/cohortDiagnosticsServer.Rd index 73e1512e..ac6eb4ec 100644 --- a/man/cohortDiagnosticsServer.Rd +++ b/man/cohortDiagnosticsServer.Rd @@ -25,7 +25,25 @@ Cohort Diagnostics Explorer main module } \seealso{ Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, \code{\link{cohortDiagnosticsHelperFile}()}, -\code{\link{orpahanConceptsView}()} +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} } \concept{{CohortDiagnostics}} diff --git a/man/cohortDiagnosticsView.Rd b/man/cohortDiagnosticsView.Rd index ef34d0bc..9dff57de 100644 --- a/man/cohortDiagnosticsView.Rd +++ b/man/cohortDiagnosticsView.Rd @@ -18,3 +18,27 @@ View for cohort diagnostics module \details{ The user specifies the id for the module } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/cohortGeneratorHelperFile.Rd b/man/cohortGeneratorHelperFile.Rd index cfb9d71f..5b4ee1fe 100644 --- a/man/cohortGeneratorHelperFile.Rd +++ b/man/cohortGeneratorHelperFile.Rd @@ -15,3 +15,9 @@ The location of the cohort-generator module helper file \details{ Returns the location of the cohort-generator helper file } +\seealso{ +Other {CohortGenerator}: +\code{\link{cohortGeneratorServer}()}, +\code{\link{cohortGeneratorViewer}()} +} +\concept{{CohortGenerator}} diff --git a/man/cohortGeneratorServer.Rd b/man/cohortGeneratorServer.Rd index 792a984f..022c3d6f 100644 --- a/man/cohortGeneratorServer.Rd +++ b/man/cohortGeneratorServer.Rd @@ -19,3 +19,9 @@ the cohort generator results viewer main module server \description{ The module server for the main cohort generator module } +\seealso{ +Other {CohortGenerator}: +\code{\link{cohortGeneratorHelperFile}()}, +\code{\link{cohortGeneratorViewer}()} +} +\concept{{CohortGenerator}} diff --git a/man/cohortGeneratorViewer.Rd b/man/cohortGeneratorViewer.Rd index ed2776df..ee251fb4 100644 --- a/man/cohortGeneratorViewer.Rd +++ b/man/cohortGeneratorViewer.Rd @@ -15,3 +15,9 @@ The user interface to the cohort generator results viewer \description{ The viewer of the main cohort generator module } +\seealso{ +Other {CohortGenerator}: +\code{\link{cohortGeneratorHelperFile}()}, +\code{\link{cohortGeneratorServer}()} +} +\concept{{CohortGenerator}} diff --git a/man/cohortMethodAttritionServer.Rd b/man/cohortMethodAttritionServer.Rd index 6e3444cc..a1f96a9c 100644 --- a/man/cohortMethodAttritionServer.Rd +++ b/man/cohortMethodAttritionServer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-attrition.R +% Please edit documentation in R/estimation-cohort-method-attrition.R \name{cohortMethodAttritionServer} \alias{cohortMethodAttritionServer} \title{The module server for rendering the PLE attrition results} @@ -26,3 +26,25 @@ the PLE attrition results content server \description{ The module server for rendering the PLE attrition results } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodAttritionViewer.Rd b/man/cohortMethodAttritionViewer.Rd index 9b16769e..d2eb00eb 100644 --- a/man/cohortMethodAttritionViewer.Rd +++ b/man/cohortMethodAttritionViewer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-attrition.R +% Please edit documentation in R/estimation-cohort-method-attrition.R \name{cohortMethodAttritionViewer} \alias{cohortMethodAttritionViewer} \title{The module viewer for rendering the PLE attrition results} @@ -15,3 +15,25 @@ The user interface to the cohort method attrition \description{ The module viewer for rendering the PLE attrition results } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodCovariateBalanceServer.Rd b/man/cohortMethodCovariateBalanceServer.Rd index 41a874bc..83137c6d 100644 --- a/man/cohortMethodCovariateBalanceServer.Rd +++ b/man/cohortMethodCovariateBalanceServer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-covariateBalance.R +% Please edit documentation in R/estimation-cohort-method-covariateBalance.R \name{cohortMethodCovariateBalanceServer} \alias{cohortMethodCovariateBalanceServer} \title{The module server for rendering the covariate balance plot} @@ -29,3 +29,25 @@ the PLE covariate balance content server \description{ The module server for rendering the covariate balance plot } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodCovariateBalanceViewer.Rd b/man/cohortMethodCovariateBalanceViewer.Rd index 5e9011c5..020c3683 100644 --- a/man/cohortMethodCovariateBalanceViewer.Rd +++ b/man/cohortMethodCovariateBalanceViewer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-covariateBalance.R +% Please edit documentation in R/estimation-cohort-method-covariateBalance.R \name{cohortMethodCovariateBalanceViewer} \alias{cohortMethodCovariateBalanceViewer} \title{The module viewer for rendering the PLE covariate balance analysis} @@ -15,3 +15,25 @@ The user interface to the cohort method covariate balance results \description{ The module viewer for rendering the PLE covariate balance analysis } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodDiagnosticsSummaryServer.Rd b/man/cohortMethodDiagnosticsSummaryServer.Rd deleted file mode 100644 index b9660fed..00000000 --- a/man/cohortMethodDiagnosticsSummaryServer.Rd +++ /dev/null @@ -1,28 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-diagnosticsSummary.R -\name{cohortMethodDiagnosticsSummaryServer} -\alias{cohortMethodDiagnosticsSummaryServer} -\title{The module server for rendering the PLE diagnostics summary} -\usage{ -cohortMethodDiagnosticsSummaryServer( - id, - connectionHandler, - resultDatabaseSettings, - inputSelected -) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{the connection to the PLE results database} - -\item{resultDatabaseSettings}{a list containing the result schema and prefixes} - -\item{inputSelected}{The target id, comparator id, outcome id and analysis id selected by the user} -} -\value{ -the PLE diagnostics summary results -} -\description{ -The module server for rendering the PLE diagnostics summary -} diff --git a/man/cohortMethodDiagnosticsSummaryViewer.Rd b/man/cohortMethodDiagnosticsSummaryViewer.Rd deleted file mode 100644 index c14dcde7..00000000 --- a/man/cohortMethodDiagnosticsSummaryViewer.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-diagnosticsSummary.R -\name{cohortMethodDiagnosticsSummaryViewer} -\alias{cohortMethodDiagnosticsSummaryViewer} -\title{The module viewer for rendering the PLE diagnostics results} -\usage{ -cohortMethodDiagnosticsSummaryViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the cohort method diagnostics viewer -} -\description{ -The module viewer for rendering the PLE diagnostics results -} diff --git a/man/cohortMethodHelperFile.Rd b/man/cohortMethodHelperFile.Rd deleted file mode 100644 index 01ba84ca..00000000 --- a/man/cohortMethodHelperFile.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-main.R -\name{cohortMethodHelperFile} -\alias{cohortMethodHelperFile} -\title{The location of the cohort method module helper file} -\usage{ -cohortMethodHelperFile() -} -\value{ -string location of the cohort method helper file -} -\description{ -The location of the cohort method module helper file -} -\details{ -Returns the location of the cohort method helper file -} diff --git a/man/cohortMethodKaplanMeierServer.Rd b/man/cohortMethodKaplanMeierServer.Rd index 0f3f3c4b..fdd6c12c 100644 --- a/man/cohortMethodKaplanMeierServer.Rd +++ b/man/cohortMethodKaplanMeierServer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-kaplainMeier.R +% Please edit documentation in R/estimation-cohort-method-kaplainMeier.R \name{cohortMethodKaplanMeierServer} \alias{cohortMethodKaplanMeierServer} \title{The module server for rendering the Kaplan Meier curve} @@ -26,3 +26,25 @@ the PLE Kaplain Meier content server \description{ The module server for rendering the Kaplan Meier curve } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodKaplanMeierViewer.Rd b/man/cohortMethodKaplanMeierViewer.Rd index a896e9b1..78201b40 100644 --- a/man/cohortMethodKaplanMeierViewer.Rd +++ b/man/cohortMethodKaplanMeierViewer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-kaplainMeier.R +% Please edit documentation in R/estimation-cohort-method-kaplainMeier.R \name{cohortMethodKaplanMeierViewer} \alias{cohortMethodKaplanMeierViewer} \title{The module viewer for rendering the PLE Kaplan Meier curve} @@ -15,3 +15,25 @@ The module viewer for Kaplan Meier objects \description{ The module viewer for rendering the PLE Kaplan Meier curve } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPopulationCharacteristicsServer.Rd b/man/cohortMethodPopulationCharacteristicsServer.Rd index 34119408..e603a0ab 100644 --- a/man/cohortMethodPopulationCharacteristicsServer.Rd +++ b/man/cohortMethodPopulationCharacteristicsServer.Rd @@ -1,5 +1,6 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-populationCharacteristics.R +% Please edit documentation in +% R/estimation-cohort-method-populationCharacteristics.R \name{cohortMethodPopulationCharacteristicsServer} \alias{cohortMethodPopulationCharacteristicsServer} \title{The module server for rendering the population characteristics} @@ -26,3 +27,25 @@ the PLE population characteristics content server \description{ The module server for rendering the population characteristics } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPopulationCharacteristicsViewer.Rd b/man/cohortMethodPopulationCharacteristicsViewer.Rd index 9262f9e3..c6191bb7 100644 --- a/man/cohortMethodPopulationCharacteristicsViewer.Rd +++ b/man/cohortMethodPopulationCharacteristicsViewer.Rd @@ -1,5 +1,6 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-populationCharacteristics.R +% Please edit documentation in +% R/estimation-cohort-method-populationCharacteristics.R \name{cohortMethodPopulationCharacteristicsViewer} \alias{cohortMethodPopulationCharacteristicsViewer} \title{The module viewer for rendering the PLE population characteristics} @@ -15,3 +16,25 @@ The user interface to the cohort method population characteristics objects \description{ The module viewer for rendering the PLE population characteristics } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPowerServer.Rd b/man/cohortMethodPowerServer.Rd index d9b9b201..b52c51b8 100644 --- a/man/cohortMethodPowerServer.Rd +++ b/man/cohortMethodPowerServer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-power.R +% Please edit documentation in R/estimation-cohort-method-power.R \name{cohortMethodPowerServer} \alias{cohortMethodPowerServer} \title{The module server for rendering the PLE power analysis results} @@ -26,3 +26,25 @@ the PLE systematic error power server \description{ The module server for rendering the PLE power analysis results } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPowerViewer.Rd b/man/cohortMethodPowerViewer.Rd index cea46b77..f93983e5 100644 --- a/man/cohortMethodPowerViewer.Rd +++ b/man/cohortMethodPowerViewer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-power.R +% Please edit documentation in R/estimation-cohort-method-power.R \name{cohortMethodPowerViewer} \alias{cohortMethodPowerViewer} \title{The module viewer for rendering the PLE power analysis} @@ -15,3 +15,25 @@ The user interface to the cohort method power calculation results \description{ The module viewer for rendering the PLE power analysis } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPropensityModelServer.Rd b/man/cohortMethodPropensityModelServer.Rd index 1c0ab242..167115d9 100644 --- a/man/cohortMethodPropensityModelServer.Rd +++ b/man/cohortMethodPropensityModelServer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-propensityModel.R +% Please edit documentation in R/estimation-cohort-method-propensityModel.R \name{cohortMethodPropensityModelServer} \alias{cohortMethodPropensityModelServer} \title{The module server for rendering the propensity score model} @@ -26,3 +26,25 @@ the PLE propensity score model \description{ The module server for rendering the propensity score model } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPropensityModelViewer.Rd b/man/cohortMethodPropensityModelViewer.Rd index d05b543a..f26809fe 100644 --- a/man/cohortMethodPropensityModelViewer.Rd +++ b/man/cohortMethodPropensityModelViewer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-propensityModel.R +% Please edit documentation in R/estimation-cohort-method-propensityModel.R \name{cohortMethodPropensityModelViewer} \alias{cohortMethodPropensityModelViewer} \title{The module viewer for rendering the PLE propensity score model covariates/coefficients} @@ -15,3 +15,25 @@ The user interface to the cohort method propensity score model covariates/coeffi \description{ The module viewer for rendering the PLE propensity score model covariates/coefficients } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPropensityScoreDistServer.Rd b/man/cohortMethodPropensityScoreDistServer.Rd index a5b57e16..f8e84375 100644 --- a/man/cohortMethodPropensityScoreDistServer.Rd +++ b/man/cohortMethodPropensityScoreDistServer.Rd @@ -1,5 +1,6 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-propensityScoreDistribution.R +% Please edit documentation in +% R/estimation-cohort-method-propensityScoreDistribution.R \name{cohortMethodPropensityScoreDistServer} \alias{cohortMethodPropensityScoreDistServer} \title{The module server for rendering a PLE propensity score distribution} @@ -29,3 +30,25 @@ the PLE propensity score distribution content server \description{ The module server for rendering a PLE propensity score distribution } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodPropensityScoreDistViewer.Rd b/man/cohortMethodPropensityScoreDistViewer.Rd index ba8e780a..872e7705 100644 --- a/man/cohortMethodPropensityScoreDistViewer.Rd +++ b/man/cohortMethodPropensityScoreDistViewer.Rd @@ -1,5 +1,6 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-propensityScoreDistribution.R +% Please edit documentation in +% R/estimation-cohort-method-propensityScoreDistribution.R \name{cohortMethodPropensityScoreDistViewer} \alias{cohortMethodPropensityScoreDistViewer} \title{The module viewer for rendering the propensity score distribution} @@ -15,3 +16,25 @@ The user interface to the cohort method propensity score distribution \description{ The module viewer for rendering the propensity score distribution } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodResultSummaryServer.Rd b/man/cohortMethodResultSummaryServer.Rd deleted file mode 100644 index b32b7b21..00000000 --- a/man/cohortMethodResultSummaryServer.Rd +++ /dev/null @@ -1,28 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-resultSummary.R -\name{cohortMethodResultSummaryServer} -\alias{cohortMethodResultSummaryServer} -\title{The module server for rendering the PLE diagnostics summary} -\usage{ -cohortMethodResultSummaryServer( - id, - connectionHandler, - resultDatabaseSettings, - inputSelected -) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{the connection to the PLE results database} - -\item{resultDatabaseSettings}{a list containing the result schema and prefixes} - -\item{inputSelected}{The target id, comparator id, outcome id and analysis id selected by the user} -} -\value{ -the PLE diagnostics summary results -} -\description{ -The module server for rendering the PLE diagnostics summary -} diff --git a/man/cohortMethodResultSummaryViewer.Rd b/man/cohortMethodResultSummaryViewer.Rd deleted file mode 100644 index d1545136..00000000 --- a/man/cohortMethodResultSummaryViewer.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-resultSummary.R -\name{cohortMethodResultSummaryViewer} -\alias{cohortMethodResultSummaryViewer} -\title{The module viewer for rendering the cohort method results} -\usage{ -cohortMethodResultSummaryViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the cohort method diagnostics viewer -} -\description{ -The module viewer for rendering the cohort method results -} diff --git a/man/cohortMethodServer.Rd b/man/cohortMethodServer.Rd deleted file mode 100644 index 83f734dd..00000000 --- a/man/cohortMethodServer.Rd +++ /dev/null @@ -1,21 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-main.R -\name{cohortMethodServer} -\alias{cohortMethodServer} -\title{The module server for the main cohort method module} -\usage{ -cohortMethodServer(id, connectionHandler, resultDatabaseSettings) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{a connection to the database with the results} - -\item{resultDatabaseSettings}{a named list containing the PLE results database connection details} -} -\value{ -the PLE results viewer main module server -} -\description{ -The module server for the main cohort method module -} diff --git a/man/cohortMethodSystematicErrorServer.Rd b/man/cohortMethodSystematicErrorServer.Rd index 3f44490e..d8410d6e 100644 --- a/man/cohortMethodSystematicErrorServer.Rd +++ b/man/cohortMethodSystematicErrorServer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-systematicError.R +% Please edit documentation in R/estimation-cohort-method-systematicError.R \name{cohortMethodSystematicErrorServer} \alias{cohortMethodSystematicErrorServer} \title{The module server for rendering the systematic error objects} @@ -26,3 +26,25 @@ the PLE systematic error content server \description{ The module server for rendering the systematic error objects } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodSystematicErrorViewer.Rd b/man/cohortMethodSystematicErrorViewer.Rd index c4dea713..c3187437 100644 --- a/man/cohortMethodSystematicErrorViewer.Rd +++ b/man/cohortMethodSystematicErrorViewer.Rd @@ -1,5 +1,5 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-systematicError.R +% Please edit documentation in R/estimation-cohort-method-systematicError.R \name{cohortMethodSystematicErrorViewer} \alias{cohortMethodSystematicErrorViewer} \title{The module viewer for rendering the PLE systematic error objects} @@ -15,3 +15,25 @@ The user interface to the cohort method systematic error module \description{ The module viewer for rendering the PLE systematic error objects } +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/cohortMethodViewer.Rd b/man/cohortMethodViewer.Rd deleted file mode 100644 index ae650d1a..00000000 --- a/man/cohortMethodViewer.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/cohort-method-main.R -\name{cohortMethodViewer} -\alias{cohortMethodViewer} -\title{The viewer of the main cohort method module} -\usage{ -cohortMethodViewer(id) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the cohort method results viewer -} -\description{ -The viewer of the main cohort method module -} diff --git a/man/cohortOverlapView.Rd b/man/cohortOverlapView.Rd index 11d57f55..ecf3b61b 100644 --- a/man/cohortOverlapView.Rd +++ b/man/cohortOverlapView.Rd @@ -12,3 +12,27 @@ cohortOverlapView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/compareCohortCharacterizationView.Rd b/man/compareCohortCharacterizationView.Rd index eba1e958..ca43605c 100644 --- a/man/compareCohortCharacterizationView.Rd +++ b/man/compareCohortCharacterizationView.Rd @@ -17,3 +17,27 @@ compareCohortCharacterizationView( \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/conceptsInDataSourceView.Rd b/man/conceptsInDataSourceView.Rd index 72f44a10..c5400057 100644 --- a/man/conceptsInDataSourceView.Rd +++ b/man/conceptsInDataSourceView.Rd @@ -12,3 +12,27 @@ conceptsInDataSourceView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/createCdDatabaseDataSource.Rd b/man/createCdDatabaseDataSource.Rd index 60bab3d9..2bd8b7e5 100644 --- a/man/createCdDatabaseDataSource.Rd +++ b/man/createCdDatabaseDataSource.Rd @@ -33,3 +33,27 @@ use this to create an interface to cohort diagnostics results data NOTE: I think this would make a good R6 class for other objects in this package so you could query them outside of a shiny app. E.g. if you wanted to make a custom R markdown template } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/createCustomColDefList.Rd b/man/createCustomColDefList.Rd index 505da8f1..a1f74a23 100644 --- a/man/createCustomColDefList.Rd +++ b/man/createCustomColDefList.Rd @@ -35,6 +35,14 @@ A named list of reactable::colDef objects Creating a list of custom column definitions for use in reactables } \seealso{ +Other {Utils}: +\code{\link{datasourcesHelperFile}()}, +\code{\link{datasourcesServer}()}, +\code{\link{datasourcesViewer}()}, +\code{\link{makeButtonLabel}()}, +\code{\link{resultTableServer}()}, +\code{\link{resultTableViewer}()} + Other {Utils}: \code{\link{datasourcesHelperFile}()}, \code{\link{datasourcesServer}()}, diff --git a/man/dataDiagnosticDrillServer.Rd b/man/dataDiagnosticDrillServer.Rd index cff580fb..907f4d6f 100644 --- a/man/dataDiagnosticDrillServer.Rd +++ b/man/dataDiagnosticDrillServer.Rd @@ -22,3 +22,13 @@ The module server for exploring prediction summary results \details{ The user specifies the id for the module } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillViewer}()}, +\code{\link{dataDiagnosticHelperFile}()}, +\code{\link{dataDiagnosticServer}()}, +\code{\link{dataDiagnosticSummaryServer}()}, +\code{\link{dataDiagnosticSummaryViewer}()}, +\code{\link{dataDiagnosticViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/dataDiagnosticDrillViewer.Rd b/man/dataDiagnosticDrillViewer.Rd index ba386ef5..7f92bbef 100644 --- a/man/dataDiagnosticDrillViewer.Rd +++ b/man/dataDiagnosticDrillViewer.Rd @@ -18,3 +18,13 @@ The module viewer for exploring data-diagnostic results in more detail \details{ The user specifies the id for the module } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillServer}()}, +\code{\link{dataDiagnosticHelperFile}()}, +\code{\link{dataDiagnosticServer}()}, +\code{\link{dataDiagnosticSummaryServer}()}, +\code{\link{dataDiagnosticSummaryViewer}()}, +\code{\link{dataDiagnosticViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/dataDiagnosticHelperFile.Rd b/man/dataDiagnosticHelperFile.Rd index 907edd2f..887231d9 100644 --- a/man/dataDiagnosticHelperFile.Rd +++ b/man/dataDiagnosticHelperFile.Rd @@ -15,3 +15,13 @@ The location of the data-diagnostic module helper file \details{ Returns the location of the data-diagnostic helper file } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillServer}()}, +\code{\link{dataDiagnosticDrillViewer}()}, +\code{\link{dataDiagnosticServer}()}, +\code{\link{dataDiagnosticSummaryServer}()}, +\code{\link{dataDiagnosticSummaryViewer}()}, +\code{\link{dataDiagnosticViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/dataDiagnosticServer.Rd b/man/dataDiagnosticServer.Rd index 63ec90db..372daa36 100644 --- a/man/dataDiagnosticServer.Rd +++ b/man/dataDiagnosticServer.Rd @@ -26,3 +26,13 @@ The module server for exploring data-diagnostic \details{ The user specifies the id for the module } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillServer}()}, +\code{\link{dataDiagnosticDrillViewer}()}, +\code{\link{dataDiagnosticHelperFile}()}, +\code{\link{dataDiagnosticSummaryServer}()}, +\code{\link{dataDiagnosticSummaryViewer}()}, +\code{\link{dataDiagnosticViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/dataDiagnosticSummaryServer.Rd b/man/dataDiagnosticSummaryServer.Rd index a5eea92d..28639530 100644 --- a/man/dataDiagnosticSummaryServer.Rd +++ b/man/dataDiagnosticSummaryServer.Rd @@ -22,3 +22,13 @@ The module server for exploring prediction summary results \details{ The user specifies the id for the module } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillServer}()}, +\code{\link{dataDiagnosticDrillViewer}()}, +\code{\link{dataDiagnosticHelperFile}()}, +\code{\link{dataDiagnosticServer}()}, +\code{\link{dataDiagnosticSummaryViewer}()}, +\code{\link{dataDiagnosticViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/dataDiagnosticSummaryViewer.Rd b/man/dataDiagnosticSummaryViewer.Rd index a868a131..3b9e5986 100644 --- a/man/dataDiagnosticSummaryViewer.Rd +++ b/man/dataDiagnosticSummaryViewer.Rd @@ -18,3 +18,13 @@ The module viewer for exploring data-diagnostic summary results \details{ The user specifies the id for the module } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillServer}()}, +\code{\link{dataDiagnosticDrillViewer}()}, +\code{\link{dataDiagnosticHelperFile}()}, +\code{\link{dataDiagnosticServer}()}, +\code{\link{dataDiagnosticSummaryServer}()}, +\code{\link{dataDiagnosticViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/dataDiagnosticViewer.Rd b/man/dataDiagnosticViewer.Rd index d2c840cc..291960f7 100644 --- a/man/dataDiagnosticViewer.Rd +++ b/man/dataDiagnosticViewer.Rd @@ -18,3 +18,13 @@ The module viewer for exploring data-diagnostic \details{ The user specifies the id for the module } +\seealso{ +Other {DataDiagnostics}: +\code{\link{dataDiagnosticDrillServer}()}, +\code{\link{dataDiagnosticDrillViewer}()}, +\code{\link{dataDiagnosticHelperFile}()}, +\code{\link{dataDiagnosticServer}()}, +\code{\link{dataDiagnosticSummaryServer}()}, +\code{\link{dataDiagnosticSummaryViewer}()} +} +\concept{{DataDiagnostics}} diff --git a/man/databaseInformationView.Rd b/man/databaseInformationView.Rd index 63492980..7341b9c8 100644 --- a/man/databaseInformationView.Rd +++ b/man/databaseInformationView.Rd @@ -12,3 +12,27 @@ databaseInformationView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/datasourcesHelperFile.Rd b/man/datasourcesHelperFile.Rd index 4c1526a8..bcd60638 100644 --- a/man/datasourcesHelperFile.Rd +++ b/man/datasourcesHelperFile.Rd @@ -13,6 +13,14 @@ The helper html file for the datasources module Define the helper file for the module } \seealso{ +Other {Utils}: +\code{\link{createCustomColDefList}()}, +\code{\link{datasourcesServer}()}, +\code{\link{datasourcesViewer}()}, +\code{\link{makeButtonLabel}()}, +\code{\link{resultTableServer}()}, +\code{\link{resultTableViewer}()} + Other {Utils}: \code{\link{createCustomColDefList}()}, \code{\link{datasourcesServer}()}, diff --git a/man/datasourcesServer.Rd b/man/datasourcesServer.Rd index 10a2f784..e70923c1 100644 --- a/man/datasourcesServer.Rd +++ b/man/datasourcesServer.Rd @@ -20,6 +20,14 @@ The server for the datasources module The server function for the datasources module } \seealso{ +Other {Utils}: +\code{\link{createCustomColDefList}()}, +\code{\link{datasourcesHelperFile}()}, +\code{\link{datasourcesViewer}()}, +\code{\link{makeButtonLabel}()}, +\code{\link{resultTableServer}()}, +\code{\link{resultTableViewer}()} + Other {Utils}: \code{\link{createCustomColDefList}()}, \code{\link{datasourcesHelperFile}()}, diff --git a/man/datasourcesViewer.Rd b/man/datasourcesViewer.Rd index c5fc5fe3..e986b45b 100644 --- a/man/datasourcesViewer.Rd +++ b/man/datasourcesViewer.Rd @@ -16,6 +16,14 @@ The UI for the datasources module The viewer function for hte datasources module } \seealso{ +Other {Utils}: +\code{\link{createCustomColDefList}()}, +\code{\link{datasourcesHelperFile}()}, +\code{\link{datasourcesServer}()}, +\code{\link{makeButtonLabel}()}, +\code{\link{resultTableServer}()}, +\code{\link{resultTableViewer}()} + Other {Utils}: \code{\link{createCustomColDefList}()}, \code{\link{datasourcesHelperFile}()}, diff --git a/man/estimationHelperFile.Rd b/man/estimationHelperFile.Rd new file mode 100644 index 00000000..392a657d --- /dev/null +++ b/man/estimationHelperFile.Rd @@ -0,0 +1,39 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/estimation-main.R +\name{estimationHelperFile} +\alias{estimationHelperFile} +\title{The location of the estimation module helper file} +\usage{ +estimationHelperFile() +} +\value{ +string location of the characterization helper file +} +\description{ +The location of the estimation module helper file +} +\details{ +Returns the location of the characterization helper file +} +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationServer}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/estimationServer.Rd b/man/estimationServer.Rd new file mode 100644 index 00000000..a0416244 --- /dev/null +++ b/man/estimationServer.Rd @@ -0,0 +1,50 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/estimation-main.R +\name{estimationServer} +\alias{estimationServer} +\title{The module server for exploring estimation studies} +\usage{ +estimationServer( + id, + connectionHandler, + resultDatabaseSettings = list(port = 1) +) +} +\arguments{ +\item{id}{the unique reference id for the module} + +\item{connectionHandler}{a connection to the database with the results} + +\item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} +} +\value{ +The server for the estimation module +} +\description{ +The module server for exploring estimation studies +} +\details{ +The user specifies the id for the module +} +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationViewer}()} +} +\concept{{Estimation}} diff --git a/man/estimationViewer.Rd b/man/estimationViewer.Rd new file mode 100644 index 00000000..a873b1d6 --- /dev/null +++ b/man/estimationViewer.Rd @@ -0,0 +1,42 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/estimation-main.R +\name{estimationViewer} +\alias{estimationViewer} +\title{The module viewer for exploring characterization studies} +\usage{ +estimationViewer(id = 1) +} +\arguments{ +\item{id}{the unique reference id for the module} +} +\value{ +The user interface to the characterization viewer module +} +\description{ +The module viewer for exploring characterization studies +} +\details{ +The user specifies the id for the module +} +\seealso{ +Other {Estimation}: +\code{\link{cohortMethodAttritionServer}()}, +\code{\link{cohortMethodAttritionViewer}()}, +\code{\link{cohortMethodCovariateBalanceServer}()}, +\code{\link{cohortMethodCovariateBalanceViewer}()}, +\code{\link{cohortMethodKaplanMeierServer}()}, +\code{\link{cohortMethodKaplanMeierViewer}()}, +\code{\link{cohortMethodPopulationCharacteristicsServer}()}, +\code{\link{cohortMethodPopulationCharacteristicsViewer}()}, +\code{\link{cohortMethodPowerServer}()}, +\code{\link{cohortMethodPowerViewer}()}, +\code{\link{cohortMethodPropensityModelServer}()}, +\code{\link{cohortMethodPropensityModelViewer}()}, +\code{\link{cohortMethodPropensityScoreDistServer}()}, +\code{\link{cohortMethodPropensityScoreDistViewer}()}, +\code{\link{cohortMethodSystematicErrorServer}()}, +\code{\link{cohortMethodSystematicErrorViewer}()}, +\code{\link{estimationHelperFile}()}, +\code{\link{estimationServer}()} +} +\concept{{Estimation}} diff --git a/man/evidenceSynthesisHelperFile.Rd b/man/evidenceSynthesisHelperFile.Rd deleted file mode 100644 index aa65874e..00000000 --- a/man/evidenceSynthesisHelperFile.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/evidence-synth-main.R -\name{evidenceSynthesisHelperFile} -\alias{evidenceSynthesisHelperFile} -\title{The location of the evidence synthesis module helper file} -\usage{ -evidenceSynthesisHelperFile() -} -\value{ -string location of the evidence synthesis helper file -} -\description{ -The location of the evidence synthesis module helper file -} -\details{ -Returns the location of the evidence synthesis helper file -} diff --git a/man/evidenceSynthesisServer.Rd b/man/evidenceSynthesisServer.Rd deleted file mode 100644 index cf33e7d6..00000000 --- a/man/evidenceSynthesisServer.Rd +++ /dev/null @@ -1,28 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/evidence-synth-main.R -\name{evidenceSynthesisServer} -\alias{evidenceSynthesisServer} -\title{The module server for exploring PatientLevelPrediction} -\usage{ -evidenceSynthesisServer( - id, - connectionHandler, - resultDatabaseSettings = list(port = 1) -) -} -\arguments{ -\item{id}{the unique reference id for the module} - -\item{connectionHandler}{a connection to the database with the results} - -\item{resultDatabaseSettings}{a list containing the result schema and prefixes} -} -\value{ -The server for the PatientLevelPrediction module -} -\description{ -The module server for exploring PatientLevelPrediction -} -\details{ -The user specifies the id for the module -} diff --git a/man/evidenceSynthesisViewer.Rd b/man/evidenceSynthesisViewer.Rd deleted file mode 100644 index 6e4b215e..00000000 --- a/man/evidenceSynthesisViewer.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/evidence-synth-main.R -\name{evidenceSynthesisViewer} -\alias{evidenceSynthesisViewer} -\title{The module viewer for exploring evidence-synthesis} -\usage{ -evidenceSynthesisViewer(id = 1) -} -\arguments{ -\item{id}{the unique reference id for the module} -} -\value{ -The user interface to the evidence-synthesis viewer module -} -\description{ -The module viewer for exploring evidence-synthesis -} -\details{ -The user specifies the id for the module -} diff --git a/man/getCirceRenderedExpression.Rd b/man/getCirceRenderedExpression.Rd index 6be115c4..f4b46023 100644 --- a/man/getCirceRenderedExpression.Rd +++ b/man/getCirceRenderedExpression.Rd @@ -25,3 +25,27 @@ list object \description{ Returns list with circe generated documentation } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/getEnabledCdReports.Rd b/man/getEnabledCdReports.Rd index b48eee5d..681367f8 100644 --- a/man/getEnabledCdReports.Rd +++ b/man/getEnabledCdReports.Rd @@ -12,3 +12,27 @@ getEnabledCdReports(dataSource) \description{ Get enable cd reports from available data } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/getExampleConnectionDetails.Rd b/man/getExampleConnectionDetails.Rd new file mode 100644 index 00000000..5e708ca2 --- /dev/null +++ b/man/getExampleConnectionDetails.Rd @@ -0,0 +1,19 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/helpers-example.R +\name{getExampleConnectionDetails} +\alias{getExampleConnectionDetails} +\title{A connection details to an example result database} +\usage{ +getExampleConnectionDetails() +} +\value{ +The connection details to an example result database +} +\description{ +A connection details to an example result database +} +\details{ +Finds the location within the package of an sqlite database with example results for 1) CohortGenerator, +2) Characterization, 3) PatientLevelPrediction, 4) CohortMethod, 5) SelfControlledCaseSeries and 6) CohortIncidence +} +\concept{{Example}} diff --git a/man/homeHelperFile.Rd b/man/homeHelperFile.Rd new file mode 100644 index 00000000..72c2c77b --- /dev/null +++ b/man/homeHelperFile.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/home-main.R +\name{homeHelperFile} +\alias{homeHelperFile} +\title{The location of the home module helper file} +\usage{ +homeHelperFile() +} +\value{ +string location of the home helper file +} +\description{ +The location of the home module helper file +} +\details{ +Returns the location of the home helper file +} +\seealso{ +Other {Home}: +\code{\link{homeServer}()}, +\code{\link{homeViewer}()} +} +\concept{{Home}} diff --git a/man/sccsServer.Rd b/man/homeServer.Rd similarity index 51% rename from man/sccsServer.Rd rename to man/homeServer.Rd index d1679ce0..45bbdcc7 100644 --- a/man/sccsServer.Rd +++ b/man/homeServer.Rd @@ -1,10 +1,10 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/sccs-main.R -\name{sccsServer} -\alias{sccsServer} -\title{The module server for exploring SCCS} +% Please edit documentation in R/home-main.R +\name{homeServer} +\alias{homeServer} +\title{The module server for exploring home} \usage{ -sccsServer(id, connectionHandler, resultDatabaseSettings = list(port = 1)) +homeServer(id, connectionHandler, resultDatabaseSettings = list(port = 1)) } \arguments{ \item{id}{the unique reference id for the module} @@ -14,11 +14,17 @@ sccsServer(id, connectionHandler, resultDatabaseSettings = list(port = 1)) \item{resultDatabaseSettings}{a list containing the prediction result schema and connection details} } \value{ -The server for the PatientLevelPrediction module +The server for the home module } \description{ -The module server for exploring SCCS +The module server for exploring home } \details{ The user specifies the id for the module } +\seealso{ +Other {Home}: +\code{\link{homeHelperFile}()}, +\code{\link{homeViewer}()} +} +\concept{{Home}} diff --git a/man/homeViewer.Rd b/man/homeViewer.Rd new file mode 100644 index 00000000..ffc34871 --- /dev/null +++ b/man/homeViewer.Rd @@ -0,0 +1,26 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/home-main.R +\name{homeViewer} +\alias{homeViewer} +\title{The module viewer for exploring home} +\usage{ +homeViewer(id = 1) +} +\arguments{ +\item{id}{the unique reference id for the module} +} +\value{ +The user interface to the home viewer module +} +\description{ +The module viewer for exploring home +} +\details{ +The user specifies the id for the module +} +\seealso{ +Other {Home}: +\code{\link{homeHelperFile}()}, +\code{\link{homeServer}()} +} +\concept{{Home}} diff --git a/man/incidenceRatesView.Rd b/man/incidenceRatesView.Rd index 6cd4c74e..a8ae79b7 100644 --- a/man/incidenceRatesView.Rd +++ b/man/incidenceRatesView.Rd @@ -12,3 +12,27 @@ incidenceRatesView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/inclusionRulesView.Rd b/man/inclusionRulesView.Rd index 5c164c9b..3dac0b49 100644 --- a/man/inclusionRulesView.Rd +++ b/man/inclusionRulesView.Rd @@ -12,3 +12,27 @@ inclusionRulesView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/indexEventBreakdownView.Rd b/man/indexEventBreakdownView.Rd index 59090e51..48e238be 100644 --- a/man/indexEventBreakdownView.Rd +++ b/man/indexEventBreakdownView.Rd @@ -12,3 +12,27 @@ indexEventBreakdownView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/makeButtonLabel.Rd b/man/makeButtonLabel.Rd index 7a8f9c2a..6d32375a 100644 --- a/man/makeButtonLabel.Rd +++ b/man/makeButtonLabel.Rd @@ -16,6 +16,14 @@ html code to make a button label Make a label for an html button } \seealso{ +Other {Utils}: +\code{\link{createCustomColDefList}()}, +\code{\link{datasourcesHelperFile}()}, +\code{\link{datasourcesServer}()}, +\code{\link{datasourcesViewer}()}, +\code{\link{resultTableServer}()}, +\code{\link{resultTableViewer}()} + Other {Utils}: \code{\link{createCustomColDefList}()}, \code{\link{datasourcesHelperFile}()}, diff --git a/man/orpahanConceptsView.Rd b/man/orpahanConceptsView.Rd index 292dc446..c77aa9f6 100644 --- a/man/orpahanConceptsView.Rd +++ b/man/orpahanConceptsView.Rd @@ -14,7 +14,47 @@ Use for customizing UI } \seealso{ Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, \code{\link{cohortDiagnosticsHelperFile}()}, -\code{\link{cohortDiagnosticsServer}()} +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} + +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{timeDistributionsView}()}, +\code{\link{visitContextView}()} } \concept{{CohortDiagnostics}} diff --git a/man/patientLevelPredictionCalibrationServer.Rd b/man/patientLevelPredictionCalibrationServer.Rd index b06dbf22..f3b88bff 100644 --- a/man/patientLevelPredictionCalibrationServer.Rd +++ b/man/patientLevelPredictionCalibrationServer.Rd @@ -32,3 +32,29 @@ The module server for exploring prediction validation results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionCalibrationViewer.Rd b/man/patientLevelPredictionCalibrationViewer.Rd index be958e62..d3f3b180 100644 --- a/man/patientLevelPredictionCalibrationViewer.Rd +++ b/man/patientLevelPredictionCalibrationViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction model calibration results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionCovariateSummaryServer.Rd b/man/patientLevelPredictionCovariateSummaryServer.Rd index 32ed5c59..3d99221e 100644 --- a/man/patientLevelPredictionCovariateSummaryServer.Rd +++ b/man/patientLevelPredictionCovariateSummaryServer.Rd @@ -38,3 +38,29 @@ The module server for exploring prediction covariate summary results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionCovariateSummaryViewer.Rd b/man/patientLevelPredictionCovariateSummaryViewer.Rd index fd4fb28d..7ad174a1 100644 --- a/man/patientLevelPredictionCovariateSummaryViewer.Rd +++ b/man/patientLevelPredictionCovariateSummaryViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction covariate summary results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionCutoffServer.Rd b/man/patientLevelPredictionCutoffServer.Rd index 5f2916d8..8886720e 100644 --- a/man/patientLevelPredictionCutoffServer.Rd +++ b/man/patientLevelPredictionCutoffServer.Rd @@ -32,3 +32,29 @@ The module server for exploring prediction cut-off results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionCutoffViewer.Rd b/man/patientLevelPredictionCutoffViewer.Rd index c4dcd60f..b91f0de8 100644 --- a/man/patientLevelPredictionCutoffViewer.Rd +++ b/man/patientLevelPredictionCutoffViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction cut-off results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionDesignSummaryServer.Rd b/man/patientLevelPredictionDesignSummaryServer.Rd index 238528ae..13d992ce 100644 --- a/man/patientLevelPredictionDesignSummaryServer.Rd +++ b/man/patientLevelPredictionDesignSummaryServer.Rd @@ -26,3 +26,29 @@ The module server for exploring prediction designs in the results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionDesignSummaryViewer.Rd b/man/patientLevelPredictionDesignSummaryViewer.Rd index 311bcd6e..f51d6cdc 100644 --- a/man/patientLevelPredictionDesignSummaryViewer.Rd +++ b/man/patientLevelPredictionDesignSummaryViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction designs that have been run \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionDiagnosticsServer.Rd b/man/patientLevelPredictionDiagnosticsServer.Rd index 8b2db8f0..8c262d88 100644 --- a/man/patientLevelPredictionDiagnosticsServer.Rd +++ b/man/patientLevelPredictionDiagnosticsServer.Rd @@ -29,3 +29,29 @@ The module server for exploring prediction diagnostic results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionDiagnosticsViewer.Rd b/man/patientLevelPredictionDiagnosticsViewer.Rd index c2eccf8b..67a03a93 100644 --- a/man/patientLevelPredictionDiagnosticsViewer.Rd +++ b/man/patientLevelPredictionDiagnosticsViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction diagnostic results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionDiscriminationServer.Rd b/man/patientLevelPredictionDiscriminationServer.Rd index 1cafe353..fec85533 100644 --- a/man/patientLevelPredictionDiscriminationServer.Rd +++ b/man/patientLevelPredictionDiscriminationServer.Rd @@ -32,3 +32,29 @@ The module server for exploring prediction model discrimination results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionDiscriminationViewer.Rd b/man/patientLevelPredictionDiscriminationViewer.Rd index 0c2c43f1..bb48f5a2 100644 --- a/man/patientLevelPredictionDiscriminationViewer.Rd +++ b/man/patientLevelPredictionDiscriminationViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction model discrimination results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionHelperFile.Rd b/man/patientLevelPredictionHelperFile.Rd index c200cbc6..3693e75b 100644 --- a/man/patientLevelPredictionHelperFile.Rd +++ b/man/patientLevelPredictionHelperFile.Rd @@ -15,3 +15,29 @@ The location of the prediction module helper file \details{ Returns the location of the prediction helper file } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionModelSummaryServer.Rd b/man/patientLevelPredictionModelSummaryServer.Rd index 0de376f4..e89e3679 100644 --- a/man/patientLevelPredictionModelSummaryServer.Rd +++ b/man/patientLevelPredictionModelSummaryServer.Rd @@ -29,3 +29,29 @@ The module server for exploring prediction summary results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionModelSummaryViewer.Rd b/man/patientLevelPredictionModelSummaryViewer.Rd index 92aa79f3..6baac054 100644 --- a/man/patientLevelPredictionModelSummaryViewer.Rd +++ b/man/patientLevelPredictionModelSummaryViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction summary results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionNbServer.Rd b/man/patientLevelPredictionNbServer.Rd index e0c3a360..c1d54c5b 100644 --- a/man/patientLevelPredictionNbServer.Rd +++ b/man/patientLevelPredictionNbServer.Rd @@ -32,3 +32,29 @@ The module server for exploring prediction net-benefit results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionNbViewer.Rd b/man/patientLevelPredictionNbViewer.Rd index 93badc2b..2cebf1c6 100644 --- a/man/patientLevelPredictionNbViewer.Rd +++ b/man/patientLevelPredictionNbViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction net-benefit results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionServer.Rd b/man/patientLevelPredictionServer.Rd index 7c725ebd..4d5faa63 100644 --- a/man/patientLevelPredictionServer.Rd +++ b/man/patientLevelPredictionServer.Rd @@ -26,3 +26,29 @@ The module server for exploring PatientLevelPrediction \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionSettingsServer.Rd b/man/patientLevelPredictionSettingsServer.Rd index b987945c..9762a2ce 100644 --- a/man/patientLevelPredictionSettingsServer.Rd +++ b/man/patientLevelPredictionSettingsServer.Rd @@ -38,3 +38,29 @@ The module server for exploring prediction settings \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionSettingsViewer.Rd b/man/patientLevelPredictionSettingsViewer.Rd index 63ee8176..616b7a74 100644 --- a/man/patientLevelPredictionSettingsViewer.Rd +++ b/man/patientLevelPredictionSettingsViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction settings \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionValidationServer.Rd b/man/patientLevelPredictionValidationServer.Rd index 2e36700a..b1379ccb 100644 --- a/man/patientLevelPredictionValidationServer.Rd +++ b/man/patientLevelPredictionValidationServer.Rd @@ -38,3 +38,29 @@ The module server for exploring prediction validation results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationViewer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionValidationViewer.Rd b/man/patientLevelPredictionValidationViewer.Rd index abab5da5..f950fe00 100644 --- a/man/patientLevelPredictionValidationViewer.Rd +++ b/man/patientLevelPredictionValidationViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring prediction validation results \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/patientLevelPredictionViewer.Rd b/man/patientLevelPredictionViewer.Rd index 010e47c3..61ef9117 100644 --- a/man/patientLevelPredictionViewer.Rd +++ b/man/patientLevelPredictionViewer.Rd @@ -18,3 +18,29 @@ The module viewer for exploring PatientLevelPrediction \details{ The user specifies the id for the module } +\seealso{ +Other {PatientLevelPrediction}: +\code{\link{patientLevelPredictionCalibrationServer}()}, +\code{\link{patientLevelPredictionCalibrationViewer}()}, +\code{\link{patientLevelPredictionCovariateSummaryServer}()}, +\code{\link{patientLevelPredictionCovariateSummaryViewer}()}, +\code{\link{patientLevelPredictionCutoffServer}()}, +\code{\link{patientLevelPredictionCutoffViewer}()}, +\code{\link{patientLevelPredictionDesignSummaryServer}()}, +\code{\link{patientLevelPredictionDesignSummaryViewer}()}, +\code{\link{patientLevelPredictionDiagnosticsServer}()}, +\code{\link{patientLevelPredictionDiagnosticsViewer}()}, +\code{\link{patientLevelPredictionDiscriminationServer}()}, +\code{\link{patientLevelPredictionDiscriminationViewer}()}, +\code{\link{patientLevelPredictionHelperFile}()}, +\code{\link{patientLevelPredictionModelSummaryServer}()}, +\code{\link{patientLevelPredictionModelSummaryViewer}()}, +\code{\link{patientLevelPredictionNbServer}()}, +\code{\link{patientLevelPredictionNbViewer}()}, +\code{\link{patientLevelPredictionServer}()}, +\code{\link{patientLevelPredictionSettingsServer}()}, +\code{\link{patientLevelPredictionSettingsViewer}()}, +\code{\link{patientLevelPredictionValidationServer}()}, +\code{\link{patientLevelPredictionValidationViewer}()} +} +\concept{{PatientLevelPrediction}} diff --git a/man/phevaluatorHelperFile.Rd b/man/phevaluatorHelperFile.Rd index 6c80ebc0..9bbe7459 100644 --- a/man/phevaluatorHelperFile.Rd +++ b/man/phevaluatorHelperFile.Rd @@ -16,6 +16,10 @@ The location of the phevaluator module helper file Returns the location of the cohort-generator helper file } \seealso{ +Other {PheValuator}: +\code{\link{phevaluatorServer}()}, +\code{\link{phevaluatorViewer}()} + Other {PheValuator}: \code{\link{phevaluatorServer}()}, \code{\link{phevaluatorViewer}()} diff --git a/man/phevaluatorServer.Rd b/man/phevaluatorServer.Rd index f8e32d9f..2cf30409 100644 --- a/man/phevaluatorServer.Rd +++ b/man/phevaluatorServer.Rd @@ -20,6 +20,10 @@ The phevaluator main module server The module server for the main phevaluator module } \seealso{ +Other {PheValuator}: +\code{\link{phevaluatorHelperFile}()}, +\code{\link{phevaluatorViewer}()} + Other {PheValuator}: \code{\link{phevaluatorHelperFile}()}, \code{\link{phevaluatorViewer}()} diff --git a/man/phevaluatorViewer.Rd b/man/phevaluatorViewer.Rd index 6dee97cb..1537318f 100644 --- a/man/phevaluatorViewer.Rd +++ b/man/phevaluatorViewer.Rd @@ -16,6 +16,10 @@ The user interface to the phevaluator results viewer The viewer of the phevaluator module } \seealso{ +Other {PheValuator}: +\code{\link{phevaluatorHelperFile}()}, +\code{\link{phevaluatorServer}()} + Other {PheValuator}: \code{\link{phevaluatorHelperFile}()}, \code{\link{phevaluatorServer}()} diff --git a/man/reportHelperFile.Rd b/man/reportHelperFile.Rd new file mode 100644 index 00000000..4bdb64f3 --- /dev/null +++ b/man/reportHelperFile.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/report-main.R +\name{reportHelperFile} +\alias{reportHelperFile} +\title{The location of the report module helper file} +\usage{ +reportHelperFile() +} +\value{ +string location of the report helper file +} +\description{ +The location of the report module helper file +} +\details{ +Returns the location of the report helper file +} +\seealso{ +Other {Report}: +\code{\link{reportServer}()}, +\code{\link{reportViewer}()} +} +\concept{{Report}} diff --git a/man/reportServer.Rd b/man/reportServer.Rd new file mode 100644 index 00000000..7fab7c76 --- /dev/null +++ b/man/reportServer.Rd @@ -0,0 +1,46 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/report-main.R +\name{reportServer} +\alias{reportServer} +\title{The module server for the shiny app report module} +\usage{ +reportServer( + id = "reportModule", + connectionHandler = NULL, + resultDatabaseSettings = NULL, + server = Sys.getenv("RESULTS_SERVER"), + username = Sys.getenv("RESULTS_USER"), + password = Sys.getenv("RESULTS_PASSWORD"), + dbms = Sys.getenv("RESULTS_DBMS") +) +} +\arguments{ +\item{id}{the unique reference id for the module} + +\item{connectionHandler}{a connection to the database with the results} + +\item{resultDatabaseSettings}{a list containing the characterization result schema, dbms, tablePrefix, databaseTable and cgTablePrefix} + +\item{server}{server for the connection to the results for quarto} + +\item{username}{username for the connection to the results for quarto} + +\item{password}{password for the connection to the results for quarto} + +\item{dbms}{dbms for the connection to the results for quarto} +} +\value{ +The server for the shiny app home +} +\description{ +The module server for the shiny app report module +} +\details{ +The user specifies the id for the module +} +\seealso{ +Other {Report}: +\code{\link{reportHelperFile}()}, +\code{\link{reportViewer}()} +} +\concept{{Report}} diff --git a/man/reportViewer.Rd b/man/reportViewer.Rd new file mode 100644 index 00000000..e76e8aa7 --- /dev/null +++ b/man/reportViewer.Rd @@ -0,0 +1,26 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/report-main.R +\name{reportViewer} +\alias{reportViewer} +\title{The module viewer for the shiny app report module} +\usage{ +reportViewer(id = "reportModule") +} +\arguments{ +\item{id}{the unique reference id for the module} +} +\value{ +The user interface to the home page module +} +\description{ +The module viewer for the shiny app report module +} +\details{ +The user specifies the id for the module +} +\seealso{ +Other {Report}: +\code{\link{reportHelperFile}()}, +\code{\link{reportServer}()} +} +\concept{{Report}} diff --git a/man/resultTableServer.Rd b/man/resultTableServer.Rd index 4cccbb4f..46633384 100644 --- a/man/resultTableServer.Rd +++ b/man/resultTableServer.Rd @@ -8,6 +8,7 @@ resultTableServer( id, df, colDefsInput, + details = data.frame(), selectedCols = NULL, sortedCols = NULL, elementId = NULL, @@ -23,6 +24,8 @@ resultTableServer( \item{colDefsInput}{named list of reactable::colDefs} +\item{details}{The details of the results such as cohort names and database names} + \item{selectedCols}{string vector of columns the reactable should display to start by default. Defaults to ALL if not specified.} \item{sortedCols}{string vector of columns the reactable should sort by by default. Defaults to no sort if not specified.} @@ -43,6 +46,14 @@ shiny module server Result Table Server } \seealso{ +Other {Utils}: +\code{\link{createCustomColDefList}()}, +\code{\link{datasourcesHelperFile}()}, +\code{\link{datasourcesServer}()}, +\code{\link{datasourcesViewer}()}, +\code{\link{makeButtonLabel}()}, +\code{\link{resultTableViewer}()} + Other {Utils}: \code{\link{createCustomColDefList}()}, \code{\link{datasourcesHelperFile}()}, diff --git a/man/resultTableViewer.Rd b/man/resultTableViewer.Rd index 00ae4af9..97b3a3d4 100644 --- a/man/resultTableViewer.Rd +++ b/man/resultTableViewer.Rd @@ -4,12 +4,18 @@ \alias{resultTableViewer} \title{Result Table Viewer} \usage{ -resultTableViewer(id = "result-table", downloadedFileName = NULL) +resultTableViewer( + id = "result-table", + downloadedFileName = NULL, + boxTitle = "Table" +) } \arguments{ \item{id}{string} \item{downloadedFileName}{string, desired name of downloaded data file. can use the name from the module that is being used} + +\item{boxTitle}{the title added to the box} } \value{ shiny module UI @@ -18,6 +24,14 @@ shiny module UI Result Table Viewer } \seealso{ +Other {Utils}: +\code{\link{createCustomColDefList}()}, +\code{\link{datasourcesHelperFile}()}, +\code{\link{datasourcesServer}()}, +\code{\link{datasourcesViewer}()}, +\code{\link{makeButtonLabel}()}, +\code{\link{resultTableServer}()} + Other {Utils}: \code{\link{createCustomColDefList}()}, \code{\link{datasourcesHelperFile}()}, diff --git a/man/sccsHelperFile.Rd b/man/sccsHelperFile.Rd deleted file mode 100644 index f2bc86ab..00000000 --- a/man/sccsHelperFile.Rd +++ /dev/null @@ -1,17 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/sccs-main.R -\name{sccsHelperFile} -\alias{sccsHelperFile} -\title{The location of the description module helper file} -\usage{ -sccsHelperFile() -} -\value{ -string location of the description helper file -} -\description{ -The location of the description module helper file -} -\details{ -Returns the location of the description helper file -} diff --git a/man/sccsView.Rd b/man/sccsView.Rd deleted file mode 100644 index 5a01ddbd..00000000 --- a/man/sccsView.Rd +++ /dev/null @@ -1,14 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/sccs-main.R -\name{sccsView} -\alias{sccsView} -\title{SCCS shiny module UI code} -\usage{ -sccsView(id = "sccs-module") -} -\arguments{ -\item{id}{id for module} -} -\description{ -Load the ui for the sccs module -} diff --git a/man/timeDistributionsView.Rd b/man/timeDistributionsView.Rd index 0b1f586c..ea088476 100644 --- a/man/timeDistributionsView.Rd +++ b/man/timeDistributionsView.Rd @@ -12,3 +12,27 @@ timeDistributionsView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{visitContextView}()} +} +\concept{{CohortDiagnostics}} diff --git a/man/visitContextView.Rd b/man/visitContextView.Rd index 0e1cb542..8ae1c96f 100644 --- a/man/visitContextView.Rd +++ b/man/visitContextView.Rd @@ -12,3 +12,27 @@ visitContextView(id) \description{ Use for customizing UI } +\seealso{ +Other {CohortDiagnostics}: +\code{\link{cohortCountsModule}()}, +\code{\link{cohortCountsView}()}, +\code{\link{cohortDefinitionsModule}()}, +\code{\link{cohortDefinitionsView}()}, +\code{\link{cohortDiagCharacterizationView}()}, +\code{\link{cohortDiagnosticsHelperFile}()}, +\code{\link{cohortDiagnosticsServer}()}, +\code{\link{cohortDiagnosticsView}()}, +\code{\link{cohortOverlapView}()}, +\code{\link{compareCohortCharacterizationView}()}, +\code{\link{conceptsInDataSourceView}()}, +\code{\link{createCdDatabaseDataSource}()}, +\code{\link{databaseInformationView}()}, +\code{\link{getCirceRenderedExpression}()}, +\code{\link{getEnabledCdReports}()}, +\code{\link{incidenceRatesView}()}, +\code{\link{inclusionRulesView}()}, +\code{\link{indexEventBreakdownView}()}, +\code{\link{orpahanConceptsView}()}, +\code{\link{timeDistributionsView}()} +} +\concept{{CohortDiagnostics}} diff --git a/tests/resources/cDatabase/databaseFile.sqlite b/tests/resources/cDatabase/databaseFile.sqlite new file mode 100644 index 0000000000000000000000000000000000000000..17914e9fa261dfcb3eb467a690e49e3e6a91b18c GIT binary patch literal 266240 zcmeFa31C#!^*{cW*;f(>LkN%wVGBus5RzdZvVoC3>>!Mj$xAXaOPmD=g7ks=QtMJ} zU22Qg1+CV-mD(z9)w*I8jat6Ap}2x8YW08ao0<1slKYZ(1@deAf72S0ch2XXbI;w+ zIrq+z#q)v*&fOf1h5ZS4In|G%X=;|+O;OZT_^%57%X})~7hUEL_?MRbuJr3vYFzUn zJy03vSBS^!{LcB6?iAB-=4xF&^)|DH+6Dhp_3_vYuDK&=Di~?vHpNd5f!aQQG7%O2 z_62-_=mvi*=udEQUzz+b`}U;S=qfIz&n`$+Co=8JL7UH-JxG}Kist#dD}s-9Qp z?m~2rvAE&W?bJB#vH~dbX&cetuQMD)-#FRqipe;+MFkLYBDYpziO^>rFt-3O0-qItJphPzgxiXnD^vI+rOa7+rvXr~1ytJKKZHZe>>efh0+( zl%0BNgD?avHW*x-S9u7Ki%YL_=`8?W&v1DW)p_Oh=bp2U{w6I?}cWZid zOax(tkcj%Y4O}D<@OAo==`#LxB9bkP`d}E!7&6h`#)<3GiQRTiX-%-)le%-u&4U?W zpgE*Whg&KM_KFAmp`P?n?gKs8ti+wsAGaKosK^##pU6Pc59K8T9`vW6E81N#J@2kM zH3Zb=bT3%?x=QH?JwD{u?OtMw$E+5Z98mp zZT+pUTW_$gx0YMJvpj0K(6YpmXMWp!n>k^gZq}KeFc7-Kq(56fU!S9UQ}=saSXaURn|++Um|e~eW8P!#U^X&d#z;R;Uq$=q(bT8Z z14x-(K9#f0d1l(>q3L`s8Ht92ezrLnizlj@VJ+_t`QwT7y2lN}=sW`q8Sb)D*jrWB z5#Z+PC0s25?qr>Wt0BOhB*Rq`;N}=5c~u0s*|PG@BEZ#|C3#)~T&*OpVrCj=R#AU7 zlDHWJ;;JQamD34uRkCWBMu3}T5%sK?N>Dtn2&l`?q~2yhj$`WsJxn znVzKtxQQ~mln~&`Wc6N5fSVx0jU~X1H%aZKhyXWEvP;F7G)~QERw{`bO(3pBR=iOJ zxMEqgk0ij2l~vye0$h=-c@`4j#z^L@98Q26Et6M3fEy*Vr<(vbQa0J<6W|J^@>L8= zq0I*~LPDb4YqtnA12l!;)PbmMTmHFq;UgG!kfOm9=UE z0nQ@pMS239S*nE!9YOIVV^*>R;*7H5F$6e+3`eWN!M57XFNB{%c`N)JGMj;)taBdx zqzavnJI{B{b3EYqnWNs3ZGYW_qbE-u(dc#l|;> z1U65E%_f1(6=8KGu#-htEeY%-5mrM2nU_uo)t3G6`(D2=kD@rirjh64+D`RzU)r zBElw-z$S~ZauS$FgiR!YRf@1O5?F-@n?M4aB*Mm%z{*9~I1<=I5mrh9D-&TQB(Mo0 zte6BgUWAP$fsGSkMIqV zVYwu*AtG!L2`o>9xkzAxMc6I|;0x2(yvEoFdFh0&|Ek3kgi}0+>l)k{7^40<(%r8cASM zSk6EKlY*Rjl`z<`7CV2P#x z**?sUw%PsA5ACB_K(l~m0nGxM1vCq27SJr9SwORZW&zCtnguiq{I6QTf(oYX|NmF3 zS1Xrh0nGxM1vCq27SJr9SwORZW&zCtnguiqXciDGfa3qOa~I{@<-E^%iDned0-6Oh z3uqS5ETCCHvw&s+%>tSQGz(}J&@7-?pbsoCg3W;=05r`orqm}T6P+bkN+XgPQQ;r6 z$!rup>0<`NhOrilj%B>B{Th9)R{L*i|NjZ){Dks?tjvGY`=G3v2+abT1vCq27SJr9 zSwORZW&zCtnguiqXco{cpjqIASfC$mG@D(f{Au@+Fyhn(A-bxxb( zCC8PHwT^uIhxXg-ar+dw{qHdwZ>zDHtuI)wvaSYJ?W0*hvw&s+%>tSQGz(}J&@7-? z;D6Two*YY_kuDwy-25*qx0PWrBzoCQF084f7N&4En=7n46(HN77a>A@lOa>lwuYa|#5Cfel> zS5-MtNxk`)l2UtXqLC)y3v>kwL76kf6$z-!Qyl0O(_G!F=pcLja`-Om1hAv;!LErW zBZ=B%48AB?c)VcMWIKY6FYI1P2icJe8{r#BHwa((n*zxmteR|7L^4m!=ltmVdBgC1 zeJP~u!Kz9tLRP@{uXU~4gUs4mZbLA@)uq46Fa=IMTQ$>yaNc|jjy}3577cJsAah|L zkc`DRC~pcZ5>`z#BYas74!;w%pNx^yQsK#}=_Z7khLcHkh?US8C_Y~0F#;OfcMkT_ zcMJ%K>pKTk^c_9Y8P|6X_R@EBNGh)H9PFjjw6S1#2h(}62}_Hd5-HHHO{{{ea;Qe-#hm@KXA@*UhEw2bUA)>9CSSI zQ1k74|GTq+Rx-^3nguiqXco{cpjkk(fMx;B0-6Oh3;b_cV4xm0rI|bEMQ>LQ_Axua z1>8(mZu-jpSaw}@4zQcMvS(qL_5HB#ruI5<&%xQ_z&{^p$3ADCvf-bvwPK&sM=kj0 zJI&bVREG&ytb>dZ`tQ{FK z!Ufh-duOf7;fD+qY_=7v;Mcc2-Pi{al-wj*abqkP zPk@>^zvYLb$cCQZhF5d(O*{KQ&80DaG7QQE+>J4RFp_SHpr2z8KOO~8^xF%u`h9uI zZBO@ses%FcD;Em}T7!Nxq6FP&MDnA~g6s?GHgkbQ5DhdlU$FAIC~~9cH{vxOeNICk zXxzEewE81Wpxd4{ei(`kDUCQ^4n1{OALv#UNG3SbwbyXp0lpN4%yifeGVt7eQ~N+0nY}g!6Rqw@)E$b({31p1?qJCdW`i3md)vlA$ws0wKsQ|YeF{E-_gqFpb(&rk7IOl@~wR_#H2b!V+@*J zYpOS}-xTvhQHW8uoyF-Dx_x3F)NNh3t+hSQ!RQQ?2%SKt-;p=?fhdHj^n#UMnn-EnDU#eVn&-yg+Eb=XCy^@TZoG0H7!=V0l{wYA35)oJkXb`*cr@d1pv zthcnq`odi8aiQ^3dztTbybFbOb=aB8#ICLG3w@%I1e!u2hXE}Bgq1O4AH};+%owkk z?!Z;6`#`g0q13Vy_7!N#7c`^2@A3msP+G^Ij;TZ4E47FEK(i%n!XgRgB!6Umh@ z(|_a#ppdtMTDz9-?NhbVt4q4;-m@4Jh!Os%D4t^H%CGc|$k8b%N9fu#Imcx&c=!pM_ zT(A?xIR6GesR_>g&c9hIY(d*X=RphWeAfJd^B(i_=KGw#Heci1X6BuoxkbO|ypHTb}+>8?E1H zJ*Z#HF0($XuhAD-@6kKiee4a^U+ccKZqvPP<#dl&=jv`|&$pK8F1EUKaW-oCw{Df? zZJpQhly0QuPMwurM3+0-O?T1yY?4NM*Drn4{f^*`{)apr zGni$z>kYdNa}DF|bw(dE*YsT4n%7Ou78#iGoHTErsHexB2+irSr1C~<5ZrGm0QcCjg?MPrLt?%}W z#j%u@+_uITmeQPm>YmfFlr@h;u5QCp7Or>2qFBm;=RSEWf~CwJ_t9HnJjLjHD}<%g zUUkZm^;k+x_UEfl!&0gr^j#LjQ*OMjx)o1J{$XbemNGSe+OB3S#d9;ya9B!Z$1lb< zVJRi%_E-Q*abC{vY{XKmXMB9buh4!EH;ljgR4l6h@CU~F@F<$fetYLSMcV!c*Wzi^ z_m`b9_7nx$SD!wxeT@R`i>&u8s}*QJ9=-b8RSLAPcVEt|RG@wF#fxvPz?OXAgQ3mK zu@vXxyS`n9f1f$@#=0X*@idxx_u;`y@HFJIKGdK@TcLkzu>$Rfh85cvDbT>T`_@7Q z8n{(YTcAWc@5#aQ6=>j6?3kxSTYS^5xe7G!q3u0ci8lJ2)%8lWp{L$`k^&7JHCNBU z)(|*I_RPjoz*$jUho!(4d~YqD61shA4VD7Cyt}LMlv~<1S79lz=Q(*6mI8Z@MlYW7 zO6`%Ec*>LUZ)e~syOwuM$5LQTyk{Doa{Jh+Q?c-s zu6PAjBbcL}n}nsn9MxQorNA7ud?J)9!r5a>XmU=3d~Wj zl;SBy-zz0p3d~XO6=NwdM=cnOrNA6@P7$7x{KJ)FuoReyelr?N@!b5guSQ`hFcS?M ziKW0y)I0)9p|(#bD8y6v=h}zk`?NV+dicQtJdJ`e{)k(F_Vw<|zRg#l!5H5$Oo4Xz z9d3YKc<+BIlX+mH!SBVC}!9fZ%6s2=1&`^MEpb`zDQ#lGW z6dW3$M1zP-e+3$fhGZ+zAnuT*L<7HnKLr|cxjV77fLz@UECsop?RW|}cx_k;aHO6Bf#U+lQpYg+`}Vu-TkNy#{cIh!8*LHWWE*3B#(IVI z6zd4fN0xgnTP$-d+2%LRx0p{iPc^fqXH35|tuu`_erEi$al3J@G28H(;kSks!#Mqy z`iJ!w=$GpAbq95K>Ne@BbQbm{_F9%>$1z_s4>RX84NM;W4*dr@K~JL@>M5iS;m0!v z{46e-hE1Tci|41tALrsa)_d0G19R>ea0VrG+Ns{Z{hW0 z0sKHu9RU!!bd~p!b-&s>tZkL2Ry`2K$nw2^ymZ|~x72R0s7V8Ly_FG7i8k-AZ$61R z%05t0trmvnOQZMVkN>%9UCyM6Dzz{)nM%@TsfD4rQIh6W3qzA&p7-`Q$_Bl7PgccD zwJb+;5y8HIak4&qWp%#XwLP^Q#YGG)elwi};!q6ltDLGXw42@=4-krrSRiFFk z&nu>=g`t6FfcN*O{)O3G`dGze)i4-^4Bqo^KIx9fH$PS3Q42#3*lO=1H_$t)&O1<1 zsTu}eQqhu?6&V=QTQ7%22X(~ze`6onY+Ch5Q3)I|Fe%@Gj_(LGPS6@HPj*R{+j)tfA)i}d_o4* zn}V)*nfJj7xi@$xJ>?mn1}Th{Oqa1T%lpVh0q0|n<#@)a1`2C5*88g`%5E9-r*)oE z0wCmU8NIh3oO0ie)!CjB0w4^s1H6y@zNq%e*WI3C^+2?6V!XdN%Y9(Ozu)$ZRS!g? zv)+4SN@7J(8mKTjOIAgrv%z~y$}|;Y)WXo{ELyZ;v|1P%oh50b)WXo{EJ+)w7KTP= zi}&8NNk*uJp%F|{vQRAyg}@{whpUC5p-6%isD{B%B*ENjVQBwT<2`V4!xi(k-d&Ne z8U`cL6z`ksSMO`lU0XgZ4O1A1q{dZPEOwsqp=v?-HRHVd9{RNX=_4iOL)3!u)=28* zsRg;>4)0$MPWitL8(*m$j6i0^C0mzKsL1=!FODo9R{LNj%J@`;6BcZzd0!fmzx&*= z#g!-{QzZ_Dl2Y%(Q~vn-=kI>K5~WS5!+izYC7t)&{_X7VzOq!JY({lBG>{DT-u<^1 z4_^N4)=HFSs1Ap=OQO6HB$SY+28D(nNft_zQ-ey4 zJ{egkRZR^F4L*`AltiWmg~pyN?=5HDx%W!vhDj*1OAQJw3?*48*Gdg4wJyA(%-pzi z?RS$WYEZ%!*L(egkH0f=6*UQE_NYOn)`Yjey8KrU zeZP4U%C}L4f|$RgAxef(gF?fw*Zaf+V}Jge4|Y#N$ttQ)Fba#ZDo{#^fWoh}#5Rux zVOVVKzvwr&-mv%83Y71m3Wk=0_j>aC66h>iDT4Axndt<6?l%q@u z0n>|yuo&dM`>L)#<>vfD5Mx)&H;|Yj^`Y=!Ce5HqZ;l4{NDbW{eJu9_BQ)` z`xrZG`u%C*)h*Q(>lpSm_K)nj>?v#+YhYey z{>YrotY*eDI{G#G4tfW@k}ic^{yy7$TQS@#c+mQ&^?K_W))m%rtJCtK2({?)B5>R9iMzI~usC2PeyQ#h5Z1FBzZ zQpsw)$RAM0de1jo+Z$D~-oHNRSIK(kh=Nm9vRW4-%ePW@_?tZ%m*Sf!E`QbSgbNwwE*Ndxls3bS@>g&Ibfs2i87VT8GP z&oVWPFde_OR1G7{z^j+2VMH}mvi0z%Mh7so4J@u*>A@X<9NNA5V?dmpu>QW6d4gU^W2<}NL5tR^UU<+FbyhDtXhG`jg$FG^XZFH_ z7MnAA;XzBw>Amovh2*qec+j$OYA-x!kvOF{9@v^s?u7>}06o3&z;ds$7ap{@tLTjf zR&tXHQthYfan*zA_ET6~-U~;5&BR_f^465~!r_WfP-^Xrynl`FjZ5&cjq9BY9BQS# zb3rdG>6Ht)%8GmCLVb0tQhlV$i27<#FFdHPj_HL5_0`e6@Swgrsuv#AS4Z~3gZjpZ zUU-m8s<0Ox)b5A(#slrXpcfw0?%lodK)cUZYLV%>C@db<3rBv<&|Wz5)(q)|!xhgP zA*^${&nxm~Ke!jBRP4N0CTPxsdSgQF8dq;js4)-hjR`qoa)zf$*KKx6l@2xd0X?&z z_TIl|7S!CcduBncJ*#IH)Y$v=%!1}6XU{BXT5|Nvf@URq&n#$Cvh~a&xH5WXK~s{Y z7Zz|*n0sbH9n;hc3-n84&n&208WdSzt6fNIK>kX3vz&nDG zM2ZqkCIZngha({~2qi{B8-p!?=_V6yDD`ddhmst6V;5>T7)jI88mAiVgNZzLla@hB^(LlY>L(n}z1#3v>QRrk|u*o!p@K#vD(E(@mm#Q^q#V zF3r8K+QJNr!L_)!=g}+GZDU-sPu?7S@W8q~X*Rlwi|Mlqy0!>JmNg3Wr$wnUE)I`QPRpjM3;SDx%N!rYlWO z?aXWHQe|?^<6L9ntFhJ=sY;dA6b-|57N|Bd^HuqT^n4|J;g1j9X(Lty+~nQ)0n~D1 z>Yj-Vyey3l2jO}Gm@CmJ5ch57Vo^~-hDBW!ibW7=aE;F3iqS2-EfCyd3Iqsd0KEEV-f^G5npU%qFfm7=c5^QK7Y9 zmm*zeR27IeE*6IuuIGeC)@2}p8(~g^TT8kQ6`hKazV+M}NroG_7^VG7`^3Y=b@%eaIkUS=6Kv7(~LZYeseCS{KEQXZ5b zEDr*~CiGPwKGYYJj&yT4KTV23+e4_dTI#=;cJkP zE&-qTtE*G@kP*_;33AoB-6FfMIS7NNumhEilc_nhD{C|c_xHH#7f72`cQO(@J;@1< zJ-554VxYlQU#MJ0N$NzIV!0JLYGGg$@g0M9Z0?_$X^Ye5NcW5Y`nn;(qbWF|QhyHY zVwO(4L=Ma}veP73mf7!h9&FN`MleshRpI=TLdQt$Abdg(5;~87l9Qk#N`zET^TRb_ z(U`QisYq`e(fU$}hWt!zv0yaji#Cd1v?RSaqvuArEEIlE^)%G=Q~E?VLJ7dW2+(CR zPOsgR$VjfZ5<`=rBopm#6=~pQ?FO?HZLi8Qx=Kswvno1QeiN5~9jjFP>Awfyt3OR8 zTWLui(Tr!Viy@AG3z2nA_ZUe&EQ2Mddr8-}SCXm9v_7yamT3ly5O21@wWL(JyQaC* zMnWS}=O;Nknw>^hK>>ZPD_sd`)xi9j-?F{Vr|F+QK?pzcA&}$S+Goe#O3wU7u2O2TWwv< zNmcXa)h(D)=WCFD5BL-ahE7fKR7Jk@I<>Y6qFz-?>U{OJr-}{fRQbD?EM2$=7Q##G z8kSehlPzfFJas@?R<*Q#;R4^;R=ZJ)#A%VZ)PU6H`!9{e@pE&Hu8InJ`;=5aY>{S# zjB_)9c{a66@58X9JDxbnWM0>KyO<`U{fDeyHgWMlEZBw?!?LGn5|I4~A#zX_wrmmD zf1)+7r6}n#y2g*E`P}rN(q+xvZ4o}WQ!%=c)6*J+fQ3bT+GE#sc@6u27|raqmnr8% z&dttBC+m2@ajnDW7;b;Z{yY0xdoGZ)k7fbQ0-6Oh3uqS5ETCCHvw&s+%>tSQ{&Ou* zZO_Ux=F%pHf&0MV924m(`wN0H3fif@_z7K z{Fg^x{9u|9fz2vKrz9784^1oBKmXMiCmH};fb<59k=A&VD#?sAFY^Wnb`8g zpYH!9YNEv!=*4zN9_8R+*FVFN2jBdcaD3zZt8=d7S?9IR;f|gEx!qjTOtXMy0nGxM z1vCq27SJr9SwORZW&zCtngx!F1%%riOu1d}O1Vmxa-Oh<>`EMLhQp@B!DKkBZggh? zMoNakf^N~G>5<(oRY)I|PkSwp*TJmBn!e>i#%d};Vli(`UDY7tG@?6`Xu3d2e(I<` zNH-`krlpIF`q6^y?r%)V7Ws5a*J-3n4o)K_jw0qtI6Xqfh#)Y_Cd(%GSU+i!+3?7Q+)< z7|t5`L&K-KoBg3Umr5KJA1~qH=nb4g>q4&O!cjOD)Ycjd#ODZyw}2rLOJ?A5dQ}TT zD--9$qRBR8jt0LVT>)R0XoatA4<_0>zn~@>X%ddW3ooyW`R7F=Elc5x!8^0n#*!^S zT$1p|5_k^y-gN;du++jyF?c~~d1Xb~Okuc8CmBXB?!-_wc|w{2&bP!8-RR{RGMFy& z(y}xHj(CNVO#9;B5%UE?{y0)}xR`mrBy|~6e0WB4#MYdQASSqHskX6}YxXBY39-Pn zaNcA%w9c)TwRHG`$+QzS^zm7A_A9aCPY`D{vh1Ie#2p z6NU>4aO8!J;<-N@c{yAY1U+6D*=o>PKO9rH0q1{tD6HvnE!WhkslidGWBk~-nhvK9 zD!7G{n)2W2Fdatmf5y3wa_)0}B&-6oADRU;3uqS5ETCCHvw&s+%>tSQGz(}J&@7-? zK(oMqivZoIw6C(y0Cw%8SwORZW&zCtnguiqXco{cpjkk(fM$XJJqrwW z8S;!dw5i(#0-=y@@IXZxJ2*#?#^eq_G&Am=t}f^%4t?F2Zb)_yRCY*K4^$?v zAEIJ}qBjq70x_@aH32;!w$70y1C0W3mH6HXah3bK+w5VsRQofwF8CL zUYQtnxCJqF6C}UDfGscs58NAola{_Lpup4%3&XmNhy^c6cndq+033yQIjOIh*RjL( zz40(?fe!KDC8gfO4q<@>E*!uWNyiRhl&K7xM12yX;oV-e`Z_UT6P{eT@A& zyVZUs_yYzwdB@F;Y0k$SpE*x~`vC?!fA4t4>2a*FAN}9!=30p~3uqS5ETCCHvw&s+ z%>tSQGz(}J`2Up!h8ST7Y|7~xHihHvp^!^~2q)b`p@9lSIOHA*<>bL@&D~#%Xaj}` zB6Be!(Wbn=0y%xWK3jpDK3ktPR1np5rV94@9K0~-%=xz>>HHps4zmqxLxBl+%nGvTuyK-c(gi!3mjW|x`g2jTkNL@*lhm6dLo;4Ak{@Wm65PvG0Y#p3XI zT>SJ9%KxXGuTt=T?W0*hvw&s+%>tSQGz(}J&@7-?K(l~m0nGxM1vCr%mswym(ftSQ{(CH7q#4(QapmJCr1Jl@{r`VY z)oGe)7SJr9SwORZW&zCtnguiqXco{cpjkk(fMx;J7BI0cv#|e1@&DP>1C;ac&R;lJ zItv^hIPP+^JE|R4`%Cs~>;ZeR?Q`31+YZ}YTYu~8)*Gzrt>u>QERR|)v@EgYncp_w zW=@!=n{}pVOjnprF^w>OWW3k7#aL&w8(ubCXW$H_`Y-hl>Ce{B*XQWo)csx;)>W|o zW*=uSW|y}Fn2n5=G1AY|SJ6ItH1#Pc)BC4#wi$h=frqB^(>G4C&B0haA$-Y$ zJLHci+zCIrrP0krn&uhWxR|@Fw8`IISx11ItCw)K1h|uR60U{-cajWOO@NzYl;l+r z;AYFpH;VvQXO`r732?QNyo#A=oLNQv)kxxI5QwXm#8plwz*WhrVHyE$mPORFVk$xL zydtb}3W2zpjD(v^fSVyJo`(Q8T_&%R05?t6`zi=x*i%4K?%65uAv>{3F2E0fiGF#&FZ3^$elH{K+* zmm&h(ILR&*W70S^qgkmWZZv_o5?S#^5#Wkt)jpB{H&#}CBM5LsvgTPxfEy#3vvN2A zZnR8Z0Re85%${xn+(_AEn@@l%l*(5zER9psT!u@{WhjBT0$KG9A;7t1%_WZjmoF8s zaxejIn5_D832;MYr@|*;?{<88p2yodloSgudC7V@j1h{@Oc~%0PQ)U+n0nQ=m zSz%7&)C@~@aagJ_5x{IBtkOuJrB&9d4FougtQYACaAv6%Ds%+JlZ;u(5{NU(ipLP( z3^E)|fYVEz5AFZ!sQWYff4Ad(#~&S=9J3rI`-}Ep+x_+;+h?{1Y};(JZFcKFt=C!u z*0GkumOojx!PhM~%&(ZQGdG!wO-D?BHvPhZDq$XUoyLy?Myx6q+h15p&RKju=~Hi_su^=Rr1g` zXte(q+bYw817MNV>UiiJ>VXSIpofRvApk{>Lr)SH$ZCd%4x(PVYSTKo1XnMZKONI1oB>`4Rz{)LYpsKz#OEga986>!wBF?j!MA4~|qMmjV z;1n5f6A5s#47ia5DDw<>Hjn@-WD=7kz;X##nMeaw)#5~{HsT}#%OruG7zuEKwC?wu zP68Y+lh{TA947-tNr0s?V1xu%BK6|Ra2lwpHj2gCs0@+dibR}eJ&B^DWQv|fB5~_RuVsd>j`iRW#v1G04LvN&LP0fm*k=R|0>2nIiGf3?mWdg((#Go z0msiA^^R=&>-HP%VSA^WGf808B5Vc;tV)DUCxJ=Z=V>G`DQ93R2~65_Pa%QL5X&~11SYf;A??OP0-GjE zt0aL<6=4-5uqh&J5(#Xw2rDOnc|_Pm5?G}OD0SQcUhqy^#g`%{464-DNHjD&TAi{={z}zBi2nj4-gyoUI zgtdY&bqpqf4Hc#3lE8+Dut6lSJQ3z1fejX614&@HA}oglHb{gGAc46=Sbq|jK;P2P_Fpa&R!2+}eC|?|V4OU4-`k)$}!# zPRBmWUdj5{G0b7+L1u^ZDd%O*HO>)^j~(|rwmD96WZ66HH!vsD*VxzF%WdD;9<^O) zTVl(zzHPnD8n;ffvX*~XF1M_)6q-LY-(x<5>1VDnTTL&St}z8n#m3K#yNx@HbB+BC zuN!VKtT&YFztcaezfiwKpGUuz`6ol@p{>#31RUX?S6aFSbPD-llet85{{Ngk3jh;Wkk zVKWg1CBjL2M;{SR+B~i! z!b!WwwL~~+`*;cwPTD`NA;L);$kjwRX-~I`2q$goRubW)?b!+Ij z(hhAY$?|NKxI9}z0$VA<8c1L(MA%{yn3Q#}hy=Dwl(vurCT#>4kievE;CvETgQ(;@ z5}34ioJ#_ec8({Lz!r*1)}#FYTIzR{^GWB=olBj0j<+1QIHHaU`*-$7?C09&+xy#I zv;EfAVk@4s>`$TuIZnJKd&cHsyUdFD3v;XffyO=hnlK!6FL!U=4q;sg( zL6NQ>4-c6s!e&-Xyw~-xv#gdns)vW%6!pj|sjGT;$WBp@oFxrnl|1C92uLygrYCKs zFs_G(1QqonXG$3y9v)Iu)FWlbzdbx8si;TF4uE@jNK;XdlpO*0@Q|pY9ywKBowG@h zQ=}2p!`G1@C(DtwBuI~x-{j$INRYC_;2yr31X&?(wpAoZ*@18m5BEQ)ua$DSh2RDV z^~j0xb_;hvs7IE`TLN4Ip&mIw^5lAWxClZ$a=f(4@bGXIgnHySxrM-yryf}6RC> zlmwYCZwMtMNZHwO4_{1zl${>;@MB4kvh(8}zK8^wCq=zH{1_7CV7Y}xlOS{DL*FP8 z0N01-~%7>vs5@e3lRXqG~6664RyDcC=_Lpl5H%O@O*x7QKaEF9? zWR|qj^zd+tgnDE@xwdeTgnFb?t}R?8p&sdwT3;m(mq`dnRRfq5SFYp-lK|y?ESE%A ztGtg5B0*ZDQhIn72~u{-+`|tfL7L>+=8zzb^5q3wETO(O4e~w)S4*fz>ZP_<$;0Im zo!dcAQ6tHn;o;$SiOwQ>0TfBb`p`2 zkD`*dkpLxkgT-_+RY|>(+W#+e4spEg*yT9gG1>m3{R#WU_NDeb+gr9K`#hW&<{3}M40h~)3lpRZq}cj^8G_xpu(*xfKr5p`W+Ea3eix%B?3w@8tQr?pcJH`enSM5 zqBPWXL_jG_LtRS*lvZTaHAFyZMMhms1eBJ#)USzvlGBFz6%kNc$Wd1j0i_i(btMr{ zS{PBkBmzpiGwKQ=ptNwLF7F2HX+NUU|X_WhC zH;Fy10cK0UmxzFM5^ygOuvP-TNCd2rfG-dMr9>?1c_N^ciA6m}1e8*-sAq|QQgnoR zh6pGnaZ&#u0!jznsHcg5(or|+DI%bB*p2!-5ip%_mi9_ZNuoXV;m%p2hcn(~F=Ml* zz9G-`{J0ykC#kDZQ%xTj{is_RdqPTED(Vscvkwvk~9)8__z+6B;IdOup|q)(bn<vhY2TBQror3JlyIi9O@H|+(Qkmrp}TS_V94AW9l24G79$qogR}T z;buqG$YEhQvfI^;J+7cJE{taOG(on zK6AUHsuZndMr5JXH9UOgen(ZvrINB9zS|9tJr#3_JXYN8ipQRivMbv>e78FudqOUj z{JtK(+a-@ZAs5N3v)e6?Js}s$%h~Ok$DWW2+zBM zRE|I|`2l4hO#5gS&@Ax(&H~+n20aaJor4BPy1D*)!pdF$pAsSEmr{Jv%`MuKOj)4v zJtCkiQ28zqP!_0shX^RG>8Q7ffU>~ITSP!vVB`Q1P)aqU{*MSK9f+g$69J_hHR@kP zKiHa_E7$Bf?I1<{n7r<-Ks3@6Oa!A59~bkxTVl~!EbfkRA%7ycfpaIK?qH;e+ced^C>m;S zb4Q!qfoLciq4rjBPxJi-33_pOy;kTu`arKG!ALR=WsieOYro`&xsXcRX{<`$MYs2b zN-J7}Z6SZW6-;+pGS-fa7~ulzslBt-|o6YkFpq-%hf-1B* z8sq%2Ftyj)d^JBfM^LXFuikl2X7{;ziPm6CD=4?Fl^-!cs9ZZ%xvxU)d;37S*)e}0 zk&JQfc(O5++$36YV=Nd?fSNhK<%jkcY`6`t=Hi=n_JNv9WBz0qlnb~UWBy8h7qAt^P<8=(eYgAJ$K>CVs^Ea_FhM`arj;Kr+F(Hw0t;kh`rF z%ou4&4T&@VwvR7x3JMyr#`|R3g_re#f;G`dAQ_LN5hpz;!oVZ6Olt28$7J5>03CI_ z52NGY%8d{9freEP4zf|Hy@vY^@TGR7&30S|8F=o#sePc0%w8LViB@+c>JCNY@zneq zi3ftwWIV#fVbaq-b}64_6Rfu$W4(c8bNXV)UYJ1b%^l{NkPY>BwDLJtL8mxICnw+9 z7eh>{Q#8h)>9wYM1N%)eKhz@BEsN7Dbo<0UsN1@5TWfoqgV7l(5jufPzawwJA!)&G zNt}L*?>f>4`qjWr^HxvaOe#rncr?Qx;;Q+t{3b-c?U=!2W7Ozhg~zR)KcNuVjT30C^B01#HjjC~aE z(kp7FJ8;$NKG1AgD7EZ_eFd8G1dzg1Jf?7d_>9!f9U#{wlsj@B}g+)esg|VrCA4(&Q zw(D^k-9EN2hSVjA7}u7F2BLugtbpRMp%J#Ueprx)uNCtDsXdf)t>aNgp}pDmv~9fg zBFlT0KU*%axXpK)YfLYj!p46ae_fXExAp z(hcyM{|6u5K3%AD+$g8pwY)=JQ>+y>{YCD0!XHbZ?SCVe*vN4a=!~t=SR(ZtIzUtA z0T*eS>Xy1jsttCaHfWkA=(7e_<1bh3Ig$Fv8(#-BzJXH(RW{;OxqYn4wc1ZKjbf|o z2wyuIV!=jcBn>Aj14SpD5V1S{obZwp6I$jW!i?QIs^{!*8tg3J*+7wJRivdgb z1ji{BYQb}#ymBms3WTCnxJBtJ2bBE1rBo2*!W3%uxQ~uWRDENzEf#I&z39|_n)FA5P*4ARhimJWpl=qIsd{yxT?5#IPLrBsk6W5Ow zB;f{&n(WUP9FwE~m+*&!5m=uH7A$@=QX~i)iK(jU2Yu%pi?CX5Qz8}(a|xI|VLgOu zEN5Wz7(reRPG0g4S00PJ1%7B5n}l+)KMRc(

    1!OwFJ6n`4oaZW*vfhzpIwaUdr= zN|1(gh? zQ4Y(yts?|!xFM><+O>n%uQpW&We zH@|9LUBS{~xaQBO8;xV&%^p5^LSMN2dT4)c!H*i}{4l72WjFYt>Qe!R8IOZka0n=` z+m7=J4ty}wCvGI@I^YY0#Zv%QpfR^U5C}GL5iqX)#j|)1|pV>@@~jdgwDBv~$m z7i67<3Et)9-GhZ{$98C%diUY%KIkn~5blUJwZ~D^72-+Y#)&7QVSfO^hEeuUD)Jv zfc`T+{J`a?ePYKXXrG(a+4!gJa%+?tW(R7R&SipPEtp>KTzr?xq4Fmx*3D1df&A3{ zmI_@Zpwv}V&M-esr>=dZL+B&9O9Yj$!#3(8gHL4rDR+(z=p4MGLC_8EVd=hXK)EF< zN0y&vt}aO>9Vn^9yjW0Z1zw>Q`nOJ`v7~I04wOwYV3D9p7^}+<4J)>vNL^|n0S6Z0 zsp+68h^8)%>Zr<_!n+mj6;qwM(t%P}vg-vK2C+lP zm!r>FeIixu-13B+l@64%;yOuC3O|5A&dS{;*F1Er^oszYjETR)_yRQHjEdd^GfKzS*STESi% z#$J#EazZ<4x8#owl>9NUMo$RQS|dFsswoy zjVDqiOaes*N}#aM6jZ{7hhM2Zaw1id!o#V|i4K%GVVfc7gKN#YC*$9qNPQMUtRV{V z?R1V%2R&sH+W!xwswwAs$3Dk2`|b9@wjI__t*b5nuw)7O|9;~e#^r_=4NLU@)X&#F zrK@NE&ek)3XHKG@q-TQBcYugvO!P;m6Ypyw+?mO_|7rW88d)52C&VFn zDkf-9kI?`Ek&VY+gHGYeoe-YfcDkYsAUwI}_-h~!TJD6P<+e6O1t4g7_3>9g9?IMa zq0BR*f&z7zI)G5-31|hf0Ow8!aBhnz8UO;EZykRF$itpHA?&#|EGSTeF#v=;Pk;ha zFmxvbL$`$#%MZcO6Chq5BHalg(lgg9HUJ2b9y$IMAPb!Cgup3JpC%|U7gGTcIbD4M z6zCLB-I-PVD6b0&I^fp85Kz7B`0LOu%(@f8tXo?JEpSb-`o`<3kG~cHF2n^Oi=vU< zndLldON$`B3R4l)$v^Bo{^G^h@6IgtXFSs^h@X!U55eDE$6tJxknm0j3G*x`D6tTu zgy&|SIsQs?jTG;MNHNG!GzEl;#~yzzx&)ASLIC;9fS?0zVt@eh378mUVdb3=R_3!B z1qE>4E$8L@&J(%bT9gchA)p2aceqSiJJrE{|16*D7j!xU(>$zae0)OJq;ntvDF)H~ z1P7VfDA?D^g`=?;q^yGfl=-g7GGrr%zU(T$=GH;g}_`z_J$24O1X;Dx9ks0azs z$#6snQbv=IiwS8>!qZq&=IB<(j3+(3%_mqDx3ca({DHA2vZf&s4-R((-2PY$>`Ha$ z-pl5**C9jlxa}E5Q`v8y(5ANp24qN9ZQ>v=i*q+7V-fI<|J=@Jtre8Qg`|*D`yV`! zR+=4*#Zm5kC!K8kfKvpW@PUNyFFWIe)||Y>1z=|p3_yx|$E;f}2}$+}APljCFkO zDnT7=D%2UZ&Dd>i6=a8pzIddXSHM?7aN(V|%$zCDogdGr2g34Pb zQm4+|ZXq+J12R)m`~L-$bBp79$C>c0f7@(7*m&#L){x~xORM=EbEB!lwAA<*Eg}#@nK?U@{Do7bHN(;FtQAI(Jp0d(AS)r;3l?fF=xXEy^Qb!U36isL1rfd33&0&lh3`nY;IA^T({zNwDH*2}K)&5vZ4^ckoso9nsYDYw#l9{Ohg9EV3rr z)EtCM2YPKLPnYl$cyu~b4<}r)$%5zk7DK9OfNO$Q?1M8kNtp5@0q&{U60uW&hq7!K7K9z7I++Yw5w<9aTP@aIt8#riIa9atS zy=o36qcK5k$dPSH2AllQ!RVv2@?YW&JUXeV$A%dx>a&X*P#*Yk>YUQ{EylI_8-s8v zQ>bJx!6vjs4*q0^Xp zg^BIQkLMi6CSM;pEp_>X(A42X0o*VH=i=ZjEjWN8^wFxbLOjExW0-m#=aHwV?+^a) z!SORqgC9o5mY5%ojU$bOb9m5H{|N zuH&acHJplY2Vv2Hy36Ktck$l%C{LX!=z#MBL6XtwcN85z9hS5u6R;%YHlf1>85LHZ zxov9?_3-6K%j=J$2A}{OvyHaF0a9VZL?4~`#a`aDMbH2jIfe}Neavwje3v8}rNI~K z1HMlVrYh(rFcHlB!%MvJ3_%s_;6;75%Y69w8KXKDr?>e7$-s!x;+3sBDtZ|NU+8swA zH{dUh-#N~KZw6fCsBjDhKfycpr|fswFSl>9ueDd}9rn?>&+RtbVcRRV-L~J-chHy9 zo7kt>JJ~DPc71?d2O?_NF|3_A!t7)I!u*aohgr`oVk(%y^pA8k{SN&Uy;k?C?jhYy z-MPAuZn3UXm#3rjXR`0wcG#M2^|lh5(|W}Evh`2aYpiEl{nlFRXsgBYF`QGl$8x2m z-ExY>YZ-3Qo8LG8!+eMNQgcFIWS(jsYSx=Rh8qkXGX36kq3Lwfa?=b`p~-Cg)cCS- zxAAwzbB$r+65|wOzEN-Z5V9N|FkENYVF(%)8Y&EV23ikS2nwIUdKjdb&S%xHf=04| z9)Kk+TC`ylorNW>zN2a;&0tB>Zdfsp`WQ<>=N74tu%sz>zA%pZ5KCITp5dSKce)F)U{@cXOZqit9cx+#FR;z|9lYNjn%Qp=O; zn`twibp7s`v@wjgkbPODM2Q*k6bQHau@sa-IZKIBZNO4cj-ywJvRaR)Koa6iCCVWko&t%2 zGw>9+@n*UbWiN}Rz|BZ|rYTV#WbhQYK4vOvZ#r|ARz<_DM!0r;kh&;nq;A8$4V~~V z#8cof_iz{Lb6wkLVew?_^ZXhQ_Ici#O6+r2yaM~2Jv3zq$VGi#_%81BrNURG&WlrT zC=k(kQ|fhCGz{&I6pnmS9e5-P313aUrbyg>H}xu>C>#x^_9+qJ3S{aPB_iBIOuei` z9Ch~|>YqwPMu`a5>QetuBEn_1)YA$?bdxOgloAmxZKeLMM1)&YsV5bP z=$Je8gaYyNXlyL?xB~I;k*w9!ekI~R+*ebNDG}lLI`yam@w0O;+C}YAB9_)PQjaJQ z(dDbu!?=;;Ds-&|bqGsBS71;d;7QwVx`TQjOB#2b*+Ct|l1e@dkD}hgli&gj>Rl{p ztmlcFsCTd=bY&~`H!KOArlXJhNsuvhHT5Q*1Q(Z5f5wyG?ojGacoJOONj-oiSzo(yGj%_n1b1pu_u)zR-I-0@ zizmUIm()F261skpx*JPE_dim1;Yn}-BlSl-=|$VO)SY>!Hi4YjwPXqm3kXbf|-?i%VKa)>*;(7vil#MW(2! z!Bk-yWc<$fFXJP|8(}wpnsL5yg0a8hE5mF0!;Zt&ftI6|H!Y7?es4L?60$6^OtK6z ze{bGze$;%k`9gElyu|F$Z#54#{a|{_^n~eFWCa6fILT0KaOkgwNgTT-LCIu3ECpRC zY{OHa|Jv~sxT0XW5+ybSPl1zcbyy18$4tUgAlovaL}?y@rJ#d*vy~_hIe)QEtFekoPWurJ&Oo zZAz4%Pry=;E4m#^K}Rd1N|fgDSPD805mBPNG7e7xU-Tv{1)XgOD^Xr4#Z%xwLP&}7 zN(q*N&Je6uqP$m(rJ%I`)08L+#^Nd9_1=i5fJ-=urJ&UQpc3VrB0L2W@mujLAK^Z# zUiKGwq%J(oo{x|RBkf)VbG zzI}kYPKj9Y&J^leCE|eU*Qjfhh}Mhz)YS^ad%oG)PW@Vmc>nq!^(!Ufog)gUtCWbB z=-a6)m5AFuDWiU=MD%||K>e1WDeQzA}yHJ7?ni3o{-)Gri>C^3(^ z1Uy)O>$;;p2zzlz$D%IGLmTz34uaH1y+DBm`}8AAm1&3a@Y)E89n@JArGK!yK;gQY zCHR*Ld;h^oG{^>D_y4u`CD2h++51(!@68@U1QG)RM%JVgvRQ->7KJ1xA%Z9&2~85n z0tsOg)YsyI3d$%!#lI^mqN8j&xS+r&49=)y90g$%WmFKw1xHaC^?&cHPIV`#O1(Ng zzo=)b4<4c4{rbJS_1=Bkz28+VJNn!e@@3S?cDi!e=~(%P;Ls(6yH*JZyfy{OWyhkG z%7A|666LbPy%oxkDkfi{q3A2Z1r&hj8h*J#84|tZDVH6NQm7DJpt$Q53ejhTBT9wf z$-!NtP$fE9T&(~^_dM<<1t7XAPg5-W!;k%y%79KLSGlaLmr@zfy-ZOq>(*1L3_Lil zQYb@TdD%%2<8R93OZ21Z;}{8~A5H(akERv+D4sTX6$U7JVsmSh3c(|qTdhm}VMZG+u1D)zE{#o%;@eav#!{P;O?qtOx7y zet<2|AtENu4znIWoC0NZhE#a%Dd_Q@Vo?>O%?tPLMyE^2q5z?2jiJB=OcB^BKR`>W zz~GnQd<*3iSRw*tatBVToew^07!Fa4l^XB6iXaEHnaFv?a6G?j|IoTJ@ETtv`h$WS zI=UNbi=mhZ>DcNZED;<9scX3uxn>-gb$03!g1pdXk|^f@@A&iE$1n6RX#{65 z2;zVTrw?K{VAyk2E*VXbBO1dG<(%(V99euI;<~fIGjC~KBfJ@KsE444vZd&#T@8t( zs%jxL1$~X7VUQ@J2L6vubFuRv%_Hh6CWOZ_t?WT7lZXeLvmSZP^Y!L8XN@Gjs zV0Jw5z52_S`D;pJC)X{8w}_17K()RQ(t5^%cPgYYK!3!rSJ-Pa=|u)meby!LTfdQ-V?NSB?D|R$NW&kOB|wsXW0do)1Ob zzDr>iS*YHak^PB>An~@D$OW`>+zvR8inuWlzywK+DYd>@Xxy-K#}fw;skW!f_L?1V z2o`aR3c)$LX1=<9qBj#aq4e6ai7`PxaOxIuYbJuD^is$L#n5}A>Y(?Cxv1rP51#Zz z+@Q%YZ7osPPPa7>RVgN*mXE634kwEdH>R*|X_+5JnrheKH^R%J$)^=w)^<3{jJP>D z6&10IA)BT8%NqL2e(1|$vT6CgydBO@BW_SWCe5kp0_=t;a1=5nhU%C363p}9`d{Mv&Rn97vUK>u)^!NPmL#uV%UQBcN&Y zFY5$N7eOR9o&W%CMHS>Ap}D5#)%qbBYUb^ik|=_dux27d8I4T@FSkx;Vxhlk83r8! z8Gc{*T`^AC}pf%iu3iq$rR`36Ur$Y z=qvM*dx3XgC-lDT5IZ>KzE(=e{`_Lnm1IDdG!Yp_w)MYSM)vL`oi?gYMuq4q*%>Nq z%^}u|9Af=Q8a4|K(%WSqS&wd-ozX0yVxSy$z-0kDYoKL-Cla&CrPD> zle2xlZZ3N=nyStyqdMR-?~FSLMOyP_q&4qFQmEz{lbY_#1)x)UF5o7_N!prOvNb!|xDn~@aWL&Pk>R*Eb`5eGek$BbLcCv)%;$=bg~Bwlwz5NMj#O#N@>?9H#3{;QZbR z?JB7BH{uyX6&&$Pr1s5x`eUFpG2gMQ(!j^Q6B-v%nwT2C8B@c1iI^O@s(nKC_2}T= z3GE6`5#PKdPTc>`na&*ty2>spDe%<94sD#`?N-gym-Q8S_ljbEbYq zVtCImmfyhr!p&sa{(~a`lAy}wj$Hqn$Q{|6AR(%W$W3(^?9vHuBt$b6VhL_Wmf(0o ziBaXU)&`>xJEL`~S!<(+NR%p*e-oPd>*n7ilrdFy`3!Wozl8*xU`Q2dRM%6U;LhlS zGIYVsNEh6jh&-xtYgEb?ysZ5_XA%uQ-0a;sHH=?tN{ zouI!qi6ombkz^Nwxk=4LZoLW(gRtOEXjmwrWHTm|j3YEVslr*+FA$B~8EtAwf*d;d zm6CL4UD8DQ5HVk=+=Ky&gQ)0EXk<8P^_)5}m1A?(q}xag5i^#`t;&FT4kAz0~WeraEpa$S^E;2{*+uT-%j9U=!AAEq-Sl$^sK`PO?oPO zyFl}^zS;>5WKPrCjA>e63~Uvh(B#&Jho)<7#&oUy2+fMBFsDGi*3LK* z6pt$xfva70?EFf|_)=R@1w7DPGp22gCYT!4EJunDb{i=>I$eE~|GzoN|38qsjPuU+ zyyh9^;oN_B&vBh~{lPWJ`Jyw=anw=g;OuwUhuC)8rU7f-Rn{JsM=a^)H_WpkX8%^x zK;us16vKyxMFt0d51+*CgP#h1sscz#Y$7o-0}+Y1BzD7~2Rk~`4^2$=QGV#giptob zBf&LoX#@B$BDeM;f9%3K@X(&^Uy>FZo_($fvd_&6AmOly$hgm}N4~vC>dJ-n6-*IPGZ@(4JNjWCJ#lXc-M6#b6|Lg(U`Tg2aGT1ZjWe z9}6i9BdIDp2VfKA0IVcP@GJjVK<8Qq3^sNGc1ZF>Hb~hE+sl&o4Rf|RY^paUAf*4yat~{Qc+kI#3smsSVcreT{-=Y1CGl` zssdL2h2U7-fZV}NU01zaNksl!xyM4%%t-2j1P0(Y5BJQd!5K^E5s@iZ&b|Z7LvAEh zWwlD<*aT@DD~OoVR<64PEAso1)E44DZUX+}S|X;d9Vj!fkR~*en%bp?Y=YE~bBLI! zR<6$jaZ6Jq6-sFsn;;FNpNJW0<>pA>_5LD~idq=Fn}ET44iOX2%03YAqDE5Bl)C!) zF!4ig@ACCcl|;-iE7#kRWi_IT{NR&WHCwEz`K2l%=8}~g#7GewNmY5Z;O^f5At`k* z>wCw|uO?#R*f^OUh@8Wb)YT?2W)mdFtRZ5W*m#-hkjFTZ>I&;-V@jy(%4!HJoDFZy z^YX1VM9c~+S0A#-MN(hel$%YEa4sN=S<0(oD)}+K*~^lkeoaa#7Xj0IvviJOW{Gx ztF5YX@9~#)^-pW^c!qhHZKV4A6)~w26PSR8qhVMYv8x9fkA<2SmYT7 z^6kiO)*DYEaRy{wTnZ6R4Tj-?-YDslk&I73$%^{A#`$Tnu}MB)(TGh-H4YC%DIxl2 zw?d4dh$KMtQbNSc2uCE+Iufyto=S+QhE@n#M`Dt(GJx@|@+YyFwkMJWcUTsuCdlGc z5x}@saBr4b++miFNUAFLgZn$=RV;&3Fz?Da0Ss6*5xJcaCJl+CrfmP5QaH}8=bQTc zw6-FE!Km_&gqe*ZsR)R6{J@>l0GquYw=SC(zBlU+4Iva2}(OaLvf zK+N(INp0h*N|(Xi4eY|4ww#)PnAy2+d-9X@9A#;Zq^j(t@TO=6Y}_*Q=XT#VFCZpu zj+U(tiC-hBub>XXOzUdla0P0M`*CDt0P{7=4=&6q6iHps523Clz)iq6#l)Si3Scf~ z`P&=JQWQ~DkTw`HEklM#sH@N6vbh0FqAY)%vydUV<6hUmEgOmi%+ zLtw8fj-;-9h`kjx7+VYvHhbsX046h5s0?yP{g*160F{;8UlqW_!}40hY*dj{mQ@2i zUg{hJc2ovTv@W@mDNJt_NnQCsc?L1e^b#j(^H~S1Ub1Zv|Nk%VKJR1R)!qf(sov4v z7|+k1W1fAU&7L)$dSL!f^Yrr=+@H8#g`9tXa5uWAyEEN!z!mVR>owO_*E-iy*A=cY zt^qEq^Q7}N=T_%B=Thh8&N0pbPMhO%nxk*M<4Q+~Bik{^;k18Yf7AZ7{Vw|o`z(95 z{XDzf_POm1+cs#1{?Rp{Ye3h4t^r*Gx(5DNH6YKXOqpl7$K(s`$R)}>tXR1C5^ken zVfg{>A;rS{Ebc*tLZqYRHYpVX;Vbv3LgBBJwm`l$lv9}7EYFOs=QPlB8pvkX;Qr@x z8qAO%F&qR#9GlxXRMz!`<1&R8@%5>X zMsll^3J(^%%iX9{2pqoL{R&lnT`+vxETuAFVe6|<_SI(l*H<{joaJsjHbfV!0+NOu_@T?aM%Z9$}L%J+B7|_mGgjJ7D zeDalL2Yg6k#RTJl;AE_@=OO;VtQ$Y{A;T0K4Dy9YnoLIWCkivDjdILHLofM8{AN}U5pG}D)T2N{YjA|GuJU1fxAtC8N3R3rARSLG! z(8gAF753ax?tS^?o+(JH!v>@T3`XJ3eIqyZ-Z?V`d2d*Oz=~iMo;aTR^tG3DOTk1k ztUxfbJ%pDZ9x`tKk=PVW@WKeh&}oBk+sfDv7yb0F6wJQD2t?~_7B-4C`Y>w>0u`)t zNULa_Ey5;IH9kyu!URL>ENRp?h!uv`IaJ$utT43Bq1pzr!q7T9gdIVZ3}A(!1q(G2 zQ(Z8r1R1bGjl_%-OfViyQ3w{t3|NIT-CnWb~$AKvsD(p_( z^6(qmjwDAhCNM}zqTT|Co>KSe5Lx5(B}p9 zsbGL4eTw#HZSLLGZ)NJ;vK?v;-QPUn))w}AyEt_hzwRD9>I|13*FCj}-Hkm`k6i2epFC^W-@unVvq<2v+le6(f%hBF`k_T1Z%;q!qF3- z-&pwF_oFZ@ouzeA4e`RWnHN9zY2z~7|BvCG;k++v;2Dv|TKjU8J zzR+!O?Q`Aa%5`;dHpAY(*xB20*l~|zrX$vV%)Ze+$3ED0()NU{);7X=+PcHK$T}J_ z1-@WeVG%66`OoI-&6CVMOb1POoBXE1#?OpT8W$Lo4Br}_0mgu2{yY8|ei5Gxc?6%) zw&Bkt*jeJ0SFmIK$V?NO6lrWqz$rZQ^dA?^pY&2D!EU1o4{OA^(i$<7VE@sC$HToa zJa!~acs$3GmYSIaJC!y(oV}TZ`^7bGCc*xt36I&Sq_s~b!LFtWj|Wv@&yUOon(%m* z6{;Vp3N*nng-WP;WFOE5hXfqbvML=J1rV+<&$jJ+Fx}QmYuj|B2+#nAS+`7j?sN?L z*8qmecW4C2=ShB^3HsAi1I*8qm8_%dl5kcffyBG@i>HrG~R;Gr8>o{mBD8ft{; zt~vCq7zVEa4Eu=F(z7OFT)T$mLS)&G%hNGJT|1n9jg}a1Cf&QlFHT)EV=&q9IB61;R_uy|PB=yEqeLw`tw-Q)Anf zV}N0RyGA(JeMwE8`)~$EWNT?U=I=HOw;U?|V&iCI1_oJcLBra9v$XEWz_4j8XjtKI zlUDc{7zM2b{cpI*2-S@-&05fCyRAZS)tP}2%39E9dAkUYc3*Po+gE*`fdR)_(6B?f zJJj+Djp(N#BVg!_&C!U)e0?FbUn?3C?1j*?wW1*zUI<;T6%EPjLg+G$Xv{PhLYHbq zLu$AX8Ut#zyl>3p7D8j(t0pw0T??USYDGg5u@L$St!T*j6+&OG6%8wde!|laj(M-g z7t1ncXhrvX308M4mgzE$=xxV)hM}ixMMHY?P~FqCq9Mh(gigCOi0*J@Buz!)!YFt) zkXEb-i|ZoEuB1)XgcX-XE%g>@!s4nZRBxdsEG~+q^NF+qO;|Xk2%YpKUeba!bg-b3 z^bBE0WBKy5{1%Y>RY9BCHsw)bkS2|^JWW_Q<~Tou&DDg3!;bopf~RQ0;u_E)+;gaS z?7`iq(x!leZ&ObZv1#kZ%=WwUP@v&pK<1RtodJUgLcJxOK*NSHf18gx?-WF{#wBC8FHx-rESNIp=xe%WS!lv^?L9>z|hljg- zrm7g8nFMPipxz6(Kxg` zgz)?iNFzD!Av+&s;#(Rs26&=+p!3~1BZ$ToZH$v7QvTfQxU-{`i@0#m|0Xr;HcFc zE52!id}oMHFm)`@Kik-`K+Ft7|6mnuXHK!dMK!2&S`M1YkHSX*t71?v7V!!ENEMO( z+589oc^8$4-?41d!Vn_zWpRX!Ljp`6pF=|u? ztBO&hI!Nga1{Fe$>Ukul_frv~vq4`KAvznJqb3A*`FxC;5U@D$eN=?#yb`S@1V)SRts+EM2T^K5 zXc2lT4b)(#1B=j8MFcED4;2xx2y`-(Gd;nIz#?>08YhNU7NM(}m}n8YsEeUR@T!W@ zq3%%?qeI=TDn^I8OX<}FpOg-Dr-~3A>JAklI@IkdLUgFxRD|eIx2g!yVP#PfqQlCp zCWOPvq#{H|j8RPpM~p#5h>jRuO$bK}r_|Sj?=C)p`$a_ru1tSc5rGTRpHxJm8o2)q z#6^KEy4~VGe86yLRix;6;eJ$=g5kpbpeBW*h5KGj3I_{!MokLG3in;S_>Ap#LgF*x zP~pDqSOy0H_wSBna13zYbS#5IfIHo>47z1-Uw15njuG5f9n0WI;=b%y1_u)NMaMEY zM7UEO%V6i{K39=}zR!IYC%%hz>qqfjK-WLnu>|z|Pdk=?j(?(K3F!C79sF>h?0?U| z|BZjl%30pCJZD*NS!lV$IN3PJXn<^gI}NuR<{GjLz44bRk|`=-JHjrFF4ma=Qz`yUEt*4ImfMz*^X3)$Nn$-PWx(mnLWkc)Ao(+P1{qp zn{5@gY+HZpS?fVKH@MY0&pN>xZ|K7R3p@x`)z$^Q2dvNXe0*>S4+aI}e|A1zVP`3x zcfo7jJBdXQk83XCS8*m5VIIy{CZ12Lk85jFf*ZK3Ilyl%UdD0zxs~R5Tx_WIRi)Wq zubDPu@7&`Caa%GLZJ6>F7}s;2jzw@a=N8)@*VY7tHwkEh?lF} zP6k2L8uurhJK#yp@>@VLdV{V2I}oCln63aj6aqs`SAZP}p&h0xz>b8_4EIuLIEPla zCrhWm{AXzUdxQE22g?qw!XyfNhd%p^*KjP^2#q7w$UhfNf&Q@Gs>eFmnj zdhR6#LA)^FUStr2Np3HF5LZ)ESp;!4Rm38QtC>O; zL3EiYU=jrXh)Y-m(I+CGMGzez@>m4X+aZ@l5LaeXSOnoLqiiyhAUG{tjQ;-ucNgc~ z?Y+i3#>;v3dRBU-c)ad6-M71^x}#k0y6$#e?&|0K!13UgmaiKY@j|~u>{r32hNxPm+Cpq8~ zp#hECD9K|bos83l#*s|{Dl~=!WHl1W^L$`9zOebTtp>f)B3lEB+W9cMI8ydG{ zVb6`R`x>-{o0S-0`;wZC|L*xhD!~wbL@RiIwSHr0Y9z<8RDyB*%viKOk_$^J!C-!7 zEE*(>5On@ZB^c4qj71w|6V{8au&D&Y`kAq4wz>(AeS7?&j3Za25{&I<#^RYwSer4x zpBamW!z(;2IwqzPjPhs3;>k@|y%_4xjKvM2^o}wK#`~j(yF$phxDIYZ(s6pUuOm5-o$RtPrpbZae=L?11YiB+f_txwS2@(NNd`GV8VeJ=v)o&J> z|1du-Z(E;Cf}{YN8i31eiDn^_AU%L4JVp%JgtdJ}@MkamdnQ4m0Bv|MYW;*Qw$)Kn zNBS}eat3I^<0@U^vdAPz9iR!1X3-(6oAtu9SyhuW2{H(1!lPmAE^N$;j{1jnNG3rd z0Zn*ZxrgZ=`2;lKaXBA`M_K`Gcv$0y;gMZH8y*(^VR)n&(1wTIKo}nR1~lPuix7rC zPct6&4Pp3!n(?ri2*VH1jE5aY7(QMz9=07}_;WSmVJ{MfkJF5Y$$6l#ecyx!uleRk zCPBIaZSN0uEn)Q|Z-FK}Ze_yoNMN815Br-iJaQRm!^5UW!lx6YH9)+=;-u{agv%3& z(+CouX+z@zMIx<9CrEUlp>ABFgw>672O7}0NC~SONe?ujahW2qE2R^pKG1^3$UWij zYiF+aJHJUMNPwULjT<&;#>gN@gFw-2Q?BUcE*$?;{*EcjEa?Q<5HwUS`nw0YuhI#! zB4|L19`6zw*%36LaTh2(csfCr1Py3h;dK!n5GVR{f@}#I(70ceNTAXQvLl)}h>wMGssPjr^p80lj1>ETeyv5!Nyavx9&y#RE zaG7U>$Kw7cumj%czT7>+ZFIfkdJN(L^5AE_;bZwJ{4)Mg1IPcvu)vUK7z#W7BZfa2 zZa2Pd+-h8HtTN^p1$Y*C0k)fNHO({SnED%k@E(R6{%Gr$)>o_>tP9|Nzpv#R z%YMrSOPwX#5(QBKFF6eMx8c;`N_(z7&h~HHe%sx)8gm669b7=K1zN8D+h3kjHULf} z*u0KW7z6&f>luYlMNHzgNB`_mDiSd>Myg0eHH=WY2MX2#`^r(tDl&MV4Z_3zO-w^m)72!M_OAW?-j<$SB(#aU?u zlO)bc%b6r`R=Sc&5@)4lOp-V&EoGC0^P(k8k~k|ZW|G8NX%U+w+<-SSN#cpaLN-Y_ zU1(q$+Ty0FnMqdk2!4}I_FG8n!2MmxUbl=SOfNFxNTM@s(pM#P=uK{|y=Z7THs5-`n=sZn72F&ar-C z-D17cnr(Gj-m=_d@dNMw8Q}e2WiBwsn2wn?nd(eF<5}Y#cX?!wk7l)G!r`tVUD!5iUE!L)T;`(*Dw%M&{~IDacG1S}eNwynXs$^n9PSD2 z!u3Aa^0d)DAI%%dhJ$^gTe!{s{v+K7-0uq@ogfnq_l^UEM|`g4*oGH<0i+RR!@;gy zYG-l)=>sXQ?a^-A_eaCYwhJG;;(zr6_dUr0vF71nB_T zs>IU6MMXL1J-juEAO|1|3{6va;ktVVO*nORV-i93KNc8TrWL~0{pZZwGW(V!g0z1u zFg)T2Qwj3@vB2=mD-4E2e=IOGgN4GQ8$RgsUjENX1PT6FU}yzL3-=vaFMQwa0UtqT zKMGSB5opY~r-f%A}wpFN#ODj88RGmJBZ z_aEuol=~vs{H{KNG<^f{rd8<@hlnEwyZXLRcLEQ2rg3Npa(d(?k>LgD=T3dMrK}xW z^_=VGXAtD%(*UOnxS_&M*IN(%a^Q^&f~0&};CL)2IrC%?WaZNW$CJ7^VXK&XC4(R> zpB6aosw7vO41&CTTHv^KlG4*;5G3Z)0>{l%*s~)upC&l$uLcP_4xU^+sL!G_g4BEn zZ)eoSJW*}lJ8rooCxSGB%zW%%+=YdKk(iGij2koQnlgL(g@P>v4e5@ z)<<~!)iuKsZUKcMFCRNtbX5#q2&WMw=3@urCQrJHP9w<7#|{>q6{VVynvWff2b9vQ z${@(ihhT+EVcJPThDbCHc46Bc4`0~rrtujB>G?Fksc{H{BT=6gIBxhPa_bC&Tz#70 zU>qc_<_v;#eOlmX9Hjf~41$b(THt6LBx3Rmf~0*~;CMdf5_awzxnkhmccl^J?L&A+ zqdWBCaDYmROC!kN#}39}ViUHkjC0M6*_1|*z>gh_Jzb)6Pa_jGfw8kn%}ys15X|f- zPmdkW6?U$C>Zesh({cZwVm!oo|Khz3Zu!sg9P@1Q)OwQKKfCw4Z*yPfj&q%GZE-De zO>lXg2c7phE1bg}-#K1%T<^$r^s>Kif5cvG9|flXyKL9mCfU5e>-T_lt~JSW*0R^K z%5sS%+WY}T0?ap$HvMe+vuTwn*VG-V(?7ZfbPfC;YG8B#Lpks;LFrh))Uvw}&jt8? z!t?JucgwWO#iIil$H4{_4+a(sd&gWjsmo`M(E$wOV1>fT06$6CZR|VmuaA3E0vN?X zp$aDhp$5~Vff(UBOZDR$-#cyN4tNFam?3)ZPTJSiT?}%wB!t z$$qDj0>fEhF*8hOg!fN<96R;tlSu)Lw_vIb2;)WyyS5D5T08mHlmLcVAgtZWH`uME zeY9vcl7#2QeL_kA11#8()N0fUulWrR-8*$mN&rJESdm~fq}08m0~l06kqRmewHD)X zmT^)%PD%jdDHtn73K+>fHzhEb9f{_qukhqAi^rML-$)5y3zP0Sw?jB29w;USFkXQP2E1?|3-8}~ z*!jkKLt+2}6`0x>)i6xhx$fcK1@HAu31EN%qLd~H>H1ZiBtn-}0Sr!HL()lNjIe#z ztOLDQ!zAI=fP_h+PT12g^*?|AZbeD}gAy3)L`yGSQ>FwkE`bq=mVS`1$@AI|=REUO zN&sUL7?Eh{r8<29j7LDElBJh)i81J{um`!oR>67S z_HOoG4eb9zJU@Hhf-`^>o&v}M_#fZ_c*K3BJKsIf^}Xw_u6tbzT;p6(&Xdkv&fA>j z&SaNY zkFg2^DF(NRQ5YF8xJOxqf$oBPgjE>0Ex3nSg@MR|+sG;mtQFittinK1!9B<-jL}yQ zunGhD1b089FfvVW_pu5Ctps;3t1xg#aQ_cU_8@Ml9ouKCUWc9{+&xU9cU=l?y z5bka!QS|xX?qU+ft84B~Hc{}<=hiccB7Fnb#3l-id)zuEQRHRd?qCu{5(e&eCQ)Qu z;QqiQidXgAS|(9AODp4UV-rPE^jq0PAxwc=!z2o4WqY~RY@*;qz}5u9%F|O zHr^Kea9o=${8*k!*{GDkU^MdZv07WCtTwBSd-wmrp9Sz46MfEt{qSc@!FB7b2Y&u8 zcnl!k|9{4LKl?rENpG{R0bK*S26PSR8qhVMYe3h4t^r*Gx(0L&=o-*9&_)B@d6V6q zP$Whal-E_()h~=4DenJ2j`i4-3a5^pP>?q@zxB6yQ;V|m zrsTB#GHXIkiHz)ooZN9aZGJWQU7IErLhVH*({r*4!k#8Sr=Tz|x3DCusH9+0;l(BS z@KDmDwkd2^QZg=UdZ8SI7PJ=+K9@YCr7#TE@>T09TD}bvoRphAXzF5Z)VjEfpE4=81Pa4cI3;UZ=o@JBn1R-){{8ttUa-wT2_$MR_!n#2b_Ty! zYGJ$agI|dK`qD{76I+kRU_sva@r5}>VU0u#44M)d1b!VZ506kaz#27Z5Pxmg;3EW? zki^Fb`^SZCA0@0z>2ZQRx%D`2`BKG{w1~BNC)ty8vU1_ka>wOe8urXN)3PT|9hWn% z0|N!m+9lo^HEs@vnOUvo}7~lb8128 z?}`PM)?HpvF4+IaWx=u{t5BT4r6odmrG-U#Fz4qM!KyrQ@?EDLs4P)a>k>!tkFBdrh!dY5TL`rEPvTyr})p=4az-Ez}#@|8!dk_1|dI z0Q`aQM#xtYE+Jnge_8)ET?4uXbPebl x&^4fIK-Yk-0bK*S26PSR8qhVMYoL=g;4wh#e_UbEIWl&n6}SLw-LtBz|3ASQMFs!> literal 0 HcmV?d00001 diff --git a/tests/resources/characterizationDatabase/databaseFile.sqlite b/tests/resources/characterizationDatabase/databaseFile.sqlite deleted file mode 100644 index 0e468ca0fed080868b212707d441d044b504c195..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 131072 zcmeFa2YeLA**|`Jy&oVzwA))z4Wb$((H9|l?*>!EaXLw7q&snU0)(+)ugG@nxFyD~ zu^n(6*SNmVcuif%RONDo8j$$C!j0Z?MR5U&|xdBsNhnQlEE!a z;ZQ?uDApK@Cu{4%^^s^K8Hq&;{cb?birLkxW(%vTXD*s8Y%WBySvbupK$BKnZKQ6q z0Njg4GR@Iob9l3`YWCVy__uZ8L?|9~qL1+%{%==w% zdpI6!25w5@dP?3vvIAp3>5%xIz%n7Km(|(ZG&&eiYt{E-hLK8k14K}qUB8ijnM?>M3q}=Eno*HYhl@1@yW%|qg zrtG-e?7ys@*csaD~&>lXbZ+)*OT-SU3Q{;zGeS*oGD^igkhzj>1x7e*xaw z5{U-mZ8RXlx{D+dk!VA0b2u1H)b0w$V{*t#tuWh4%gVS+Omn08uXYH;cwq zx!>z`6ERnbO|qO?6qgxOy zPq+@EINqtqC=uhpyA9!Fp_W){5*WjUnq)c2wiYslox`(xOtw-{w}S#cqh>s3WXDlOlCN1^JKD(YME?Hp3IgIN}!aPk&~-z z$Xbe=h?7%b_3CEUhQcaXioz;b3aY|6{5+S@Ryuz^_v7yJ3eeKwp@9$+k3g=*u8CSC zg>5xy*21YI$qQoCD3V~wqkig~igomV{PG~vzIJOEZvdKgk!am=Rv4xZU5)v(o-Qp| z9b3Zj0*i}v2c^z!JIQcutiB!scSjk?=G0NPT)60vaXI3S*v8Ho+NqOjDMu(D+D89+$hLBD`)HATWC@EX6fKtU{?5Qbnwk%_-5+hn`=|_RqNoJ z!}M>44!+qAMW3jHZ) zNZBeU=}2Msf@l#9eh)m)mNc|Z!$A{6Lj!RGAVu;uY+$Q!*{w4 zzADBq<8<&fjs3=quB~HSHa7C9hoizmFeQwp{|S>z5zP;1ZKMQ z*TEN1x>wmx2OrN2Utb-3ex`qYbnp#ehOblyUw?+Lw+_C3j9+@`;Oooi>#2jU595~- z9ekzCa_FIhuQxMay6fQU#rUP04!)j@KA#T05~hD%9eh0)K93H*?#!;@*1^|}(dW{^ z=VSch)WPRf?5uFed>si(9vYS^>^j)ol&#XH!%7!3tF1ctoXje+=-_iGqflYi(LKeP zl_nkPY)tozI{2&%AJ-v1fYokkDg5b@T=1uJjt2qlZs?EVPtgNK4-`F6^gz)AMGq7` zQ1n3214R!MJy7&O(E~*f{QuPh2>)}wTMh8P;!n{7MGq7`Q1n3214R!MJy7&O(E~*f z6g^P%K+yw55B#rtU=`P^KgT&Z{Nr%g9X9+UAAje0lhbK78O2wwLO=UE`u`aJd(Je# z|GL5X|8I|Wgz$vQ>_Be(ZhnP6KPoCXp!~4Sn(OZzQc(7^UWT8IT zlnA4D#^^6shPSnb;T>yLvx032U>-HTvI08=-CfYyj6|xM$4wlIn-l15;=I=Jq!HYd6E_Z1N1~yo*1B+A zP40#Xuphn4KEDp>T)z<$1?%c&!RwL09E>Itt77vB6A&mv72f$j5Hy=GsRZR&q&6j) zjMs+X6(D5ZK>8B*O8IT^fy7=!RNop!B=8>ftSz&`^}*JrB<N{Z99I9<_V`OllKT>DYe(&(z}7!x~Tdle^aal-zmPS_)+ zRneuP>}Vr9V~ZiSm=WMK;y*FO9!4`ZTh8GLn;pc#fqIh47Q<{Y%>HMFS%m*>-YX2g zCw!OqHu^?-zxVzY{#pDfdZ6fmq6dl|D0-mifuaYB9w>UC=z*dKiXJF>;Qzb_#@OHr z1Fn3C!Qjh10W@l!*0KLwvTnQ;F;pN1gIsGdu@vxl4?k>Uf46Ro1(=K#y^I`X;`SAK z?uLH%ub=#|Zj2de8O3Tbvl7vhK=$A3#+rb^F^*+m+sPwI_BZP$7?Fx9mczml&!S$!P~<^ zG6t6@)`fRY7Usl*p(I@5E5z!Bcw~#=m{>LGTmfrb&1!6FJJ!`2;U3hc)}7?)dCkgz2VH+X|1&T5Uffnx8Yl7q*Zw=$Z) z-tfz(x=8cvM5qyN(hW66fc<@YK5&V(2BD=9Iv#C+ zqW}reeE6kA|Ge&g_0{vQc9CXvck5#@m}t}QYu(u|ue)Ey;v>39Dd{e{PdwfLvn?Km zK_;WS{7K2!7pvaLc>44I7WQ|M>J{NoYdj8@#-4nNO?!8g)UyvVBE_*rEEwBW(|uVO zEQm&6uoWLP;;)S)gdLG&qmT#(;c{?jC!ZIh z#u6b2t}*!V2xxx!{FoPOR#vZ1YV4|DMuPbkP!HQT-n2}AFW=$83YAFZYr5_9F7oW` z=9b2`L>Mv^n7^=O8O2|`-r~lJr%@mKmf!tF7b&iRq!G^T3GgA3)`Z;E55J1Lu*Pbt z(e=u{U0tM+_!hnv0$-+TOW^5iIA*e6)$GJNm5J;6!`!Y~tIOKLaEdV8(ioS!Xsv35 zW5o~*M=4#r@6N88xN~6(gs&DvVVg1j(AZ$dn#vVTH@C#Q$eA_NgT@o)Z8oe(Nh0m0 zjWfGS5qxP2rLC}$p>!Ir38QD|HmgRZ`Ryyu>>`z`n@H9Q2nOZPSS2UE6SZKK3PLjf zY1Ri_q;h2o1_`j41fyGzZR-q*Upo48pi^MO)Ovd53ZY&fF!3O{Y$h*P;uBFTtON{^b6D-`{+H@x9@D$@{4H zdT-iW=bhyp?6r8_@jT(V!IOnA0?hOX?ti&ohpz(cckghoc8_;=cYW%5)^)q$ID2>7 z=eFl;x7#kVon@P68)maw-?2Vsz0SJFy2(1#I>2(m@;ZD$;9AQ$mQ9xFmVm`ze#?Bs ze9$bJgXU^;nVB;kH$7sy#LKcZT!mkg7I$SCB|msB4fGH!M(>l!ClWu@O6P{ zTtCCNsH=vuR=9rBWHH)uBinw&VECc++CKvbe$*3jPxxw3S+Wqx8J1TK_lS?|uk$@W zb)AsFB%E5x(0d*=ifgzB2X49Zej#3n!nS^eMckSiI^z5F*9+SUP@K5@?15IXMOx7J zDbw$SmI4&t$5OA_#qF||SOJP}AG-WIMN700#m!G`F^QXHEzN}}&VRB8r3f@(3Wut< z-!5zIC(a>e1hy6+K!utdfpAs<9p6A*#Vpp#J&6>efXatgOjk>M?{$ZT#sU4H53l08TExk0Lb4a{;D~1@%jKC2p156z<5qXpsoM`0?s)CAyhyIg15@l*iwiB zu%|*1EI@&9Af*UwE?~xI0N1D)wFN{Va7F#eZ$cDib`B#1L{;z`^V$(|af#>7+&E_L z-TV0s`R#xw=&a$_=eI+qPx<|4;&ygcq2xT*0e)Q`J4&V%@oV$iQOdhSy!BY0$oq4K z@Mq+=L!wB#?_ZOr9;J0T_5RiQ&5#o1n)y|E(p`|p*u(^xtp1gG>?r-9>?`uvQK~RR zylUHt_a5y(f?uBB4*R-OJe$N0|FS&sXdkBHm*%s>j!CWKm*lmh9j;Bh_nCv;qy_!> z#rf^9Em8HtBGhhSrp{r5qv`cc9}E|NbLkh0TF(72un@uG@RqDusCkC{TPfiaUswz}$Q@4BtZZ z%b5|FQ-}b9A0?PwfB;3V9Dy*afDzw7;4+Kn$z81}K!F06NtBlCUs18q8kku?2@YI2 zZ&eo(0fDQZc+cVIU-1ooQkYSI0s|I0KRvG+PVy(LCz&LniUeo9^9JzARfd7E>^34N#yJX*ePtA|%3?d?9#A zI>f|3pIm=%cbzc05Jiu_?6--rKL4C_`uSH2qY6?SzlRzkjLfGn{P2(cU%16xvZ>{m zLS-sm`P@|TiBHcMGyWH!l#M7vf-1yQienZrXJ?=g1q8AlVp^Ubd;tm+$dviv zFGK+um{F8RrECDEP>=rC5XlS|ioaS^f)oY%V-j^|aSoR2Y`+2oI0wshwr>G5NDh{p z9DNE=;2bPRQCfh4n@;wm+88GUFgYyn-SgWaX4AFk?}po1SK}N^?f~!0V<$OSPP{j-9mV{0;?4IDzVW|? zo$!0|#N(Ks6YtJvhnVjZ_ul-6r`Pvb>38L^;}lJ1_dD~O(VmcNcH}ps3@)eKo~Imb z8FXRuw!C(dDry(1ghYcJ&ynKTDWLyVLAJ}g~TnqMJ|L5Z;fa@QYZ-<>AT&}`gTsv^tCLpdA z&)sGJ^JO!fKYsDK^WSeJT+Wkm9Wi}ic^+{s`C!Dt#ebgR{Kfd||MBJ+!sRH;1y>)L zJ}|8ajGj?5FZ$w?pWA0RXFT}b&*#b(+E2!{+4O<&Pl&7fv2~YTe%B0VuRTZKeEXfD z*c-OOT-JWqnLgl-3t(aE%ZZl9Z=c~@a_@gneddN?g9Z;DIl)?(%lwnKPQ_&@%w_F& z0CRzb^=lt^CEIg`Gv;}Jd9OE+H%3k{7v@4Y>wLh41mH>p&m8P+n&J5Ru7)R0G$ISj zCzwvgbvVZr8g|R}6X6-o(;J>&Ju;2C#v3sgOeXb=GI@fg4|XGG?0#?3vx#eGxPo^M zUfVDq8#taj8B;A{0{dcTzxnNNKAqtjzxulye`&`|2>;J9JYews&UdMAt*^}cH}Bov zHt$TY%kzTgYIxdT?*0;<^rzhm-6gKqT-Up{y2d-dcRuF4(7Dpt-|-j6FC9t8REOFA zwEd^{4fesdk8JnacH3s#Jk}Sj*IL8YQI@aa>3!C+*wV}VhWQ3_v$?|bPty~oADh;g zc;maqJB&MwqS3}Z2X7J7a>ERtf-(R8r*ck*K6e;S3UDRaBIetevvu$-RK5aPIZFrM z0_K~xH9Gj_F?=(1@Xckua#^i|Zw}MH89Ml8J6ghVVcaNqp`udM!8c3MS211Y>&Ul8 zYZP_Ubf}xDsH>c+gRhzyhABGuW;m&x6_a&zPo!*>lXR$?&V2lHq7J@kO!umE@J(g( zRqEiI!mPdu9ek6S;hUg?ZxZum;qf~7CNg}d>)@+m{4!1lUnQe&tPZ{kX8gwJ;G4jV z!)P6R;~6_g>EJt^@ykdZeB+pLFW130mf;(rgKrG;(ca-Y_(m&!sW?sM>qs;kr7ZVh zI@FD1x;In@UpX`ELv-+sV1{q74!+^c^c>F~4P*3`>EIj6_*2lqH-y=2 z13LHyDgCS9WxkF~mx0Q3@#|1m#th#89ee^aUHa?b3n<;I?5Bf|XNIq@4n9BAzdkzn z1~9`{s)MgT!`E8}Uq8k#y>#&PW%Tvb!PkfJONkD?Qf4{y(81T6nJ?XS@bzN+(oF|n zPevcW9S2uh#c=@{aGUBQ@kFw^9$t(Q-~!;J0Cy$A?Y;;Dlra7C>fr0a@WHiy9oE;K z*;U*+__{IrTsruCj9<`8=NH{NSwd$~yE@oC+ zb?`ZvRboo4+6}R+!pRMK>zpud+={CR7$WmI5fxUTs59z@h?+morLaJ=rH3_%2*}A z>cEUN+MG(`5@uv1SRfr&xtLK2OQho}7bz;MBv>RJ=Um8g!ZPVN=K^ISRZ6f>I^NCs zw40R@ER~Kk&ZCS~60DVu+d5b2Wu*kGrQ<5+Fe(jtRL)l1Q?*AAV-3T2t{%pjN++w% z(Zg7+FjnrC89TJLW>Du;o~?&(I_0a{rN_|8ilJ3)dKf1$j63x(PGlH&=wW0k16AAg zFjg=cTlFxGR~RdkGGm8E@pNT05_%MlQxsOk^)QZA^8TuAdKkwr8e8-*j%FBRdKgDB zj8Q#|Bb8NL*(@`5Xf(>{XjC@o;Tul*sp$aP_diVxWK6vF=M+_I3 zp=i*<7+@Id^)U8VGQp~_9>#u*#yUNWeHq4(9>zY(lB(PyGj?dY^`@gy8Pvnqi}F=% z)?;W-riZn97)uz&O?nu6C=QDU6k8%8VTvMXxd%>+~pe zFru$yq^ebV7%hyYD|G;@bqwDM9eit*Xj8dd z2j3YAU&S(+k4~CX0HZZ@&Qvbdp>8!(Y*?a$Zx!Q~#X9&_DpRy_kq*8UjGYU0@GWN^ za4yinw@jI!mGgD*EoJ&QPX`~1GUw{xTde3q_?-^IRFzW&}ndvEr}ycM4B zJx4v~c@}$0+^@I~x*Oc1Twl6=?b_p-?Q%JvcV6k-=p5wuo8wMLt7D3Tvp;G7v3;ez zukE<)Mq88ZbnD-(kHAfV3#{ENf3jR-*rB&e6j;NePKn(ri7P6Isq#dN`|;_*Ny==;34@23JWl^>9|O)3#a`StI?g#pInhxi!BLQobB<;` z1cyO7&N+(p5S$0;IOj;E`dlT!iI9$Smb1QvGa()4WS$aNNpLEpx-1ZP7!&N-CzEu0SNIOhEZ0hdT5v)&c1Bu8>)x154)`l(Zk6+Nv@Ix>*4IphM_@vID08erAiv8hqEU; zZ_D&>max{s36hR4>>jL6I78BL&hAR4StY?Kl8$qBW37dQBpv7UvDU&-l8$qFmDyJ* z!C?~2*`WZYJYBAo;513c8QC=k$4NSFtBYM@aG<2)oKB^eRT3O2={P6zl(|ZRLnR&O zw6oU2v67B++Sv304wiJB)5@+fI9k$iPKz@4DkV5vf;s6tIMrj+b<9Qvr%Ti-PsO-a z>1L$_=Sw=S@(il7Qu66xTum9PB(EM@S1EP0O39-~6a_w@>a9N#CJ1=*xb^0BD zcH9Ja`i-@JWq;6qwtYH?DgG2aQ1n3214R!MJy7(({|7uUMUszg7>$GEQ?#e5EO5=- zag;lZudG0?e@&L;vl~V($9<}-jBDPlVute@=m@By`V@tI&>UizCrL3m;W3tV!0s~* zzr@UAk=2u=s2<*_hO1cKW<9*T;cA6aOR!zI2Gqowx4;& zJWj>Agyqbg^XSm1EM__LPI{b5=OVVBc}G1?#kr83LwRRCPQ|%E;jEPM4tt!6b3R(w z_$A{iDett$sTk+6>pJha$Ei5yvZWk2@1d?YoQiV}yHw!BN5?s5vn4Ay^U-lm=5^{S z2~K@p%nixpzMMU+jQA7f72+rCvD_kFJZA#Kk&I%@j1D)rDV#rrQ0(qHhX8#43 z;22kBN1K)D>flObBvPEN+UZ=JuFL}Z-#S|8&pv4LMA30$Uu0qfM zJ>C}$zK?t_`hMfP(RZ1z4ZZ^~&o|!3`>fuNp{e*&^gz)AMGq7`Q1n3214R!MJy7&O z(E~*f6g^P%z<;I(dV6eef`}_I(UW0N`i3tFl)CZndnvz16-H~ngS}l^255lK0hBn= z@9jRy08;jrIN+Cdj{efL6h1f5+pd;iMAde z{a#UN1SvCmncUC=z*dKiXJF>py+|32Z|mjdZ6fm{|i0P&1~h+ zd4IE9->9qWW+K1I6$t9;dKl4fj7FnOV|w58es|95K)+*th46ow;Rb{6Jl_ECZQd%+ zlb%)Xx7|D4Ue^Ivx%1b~8II>1tL^XF+iYLh8f_fh>et<}&-?@23RvT6 zR%27!v98vbXx-A(x)ThFMUnO$@kk;G`g73Arxzh2xz#1@isVm4}$=P z)Q3aJ8-`=k|KLjau_+>J%CPnoU1Z9lUc<@ zYE6cP?Gbp5L1<}&jz=3J$w&e;AATv(Kd-xAef9jSU8Gsv-TGJzCffA-T6gx#>+YAa z_=ql2O1c|tY6{02V7A4>Fvw(dmp>^P`(o7_8Bc%y-@^VbQoSM^YK_Ok(d5ae*tB;? zNj>`@BT^h|#DcM1HQkqm!GdT623zq#VLS(E(QtDlXgFrQ?`_Feg7qkIwfA{1P3|H+Oc(L2ipGSdSOSkLXh?)2 zvDQR1oPaQ6dHgcT+yh$@rakUmH@~ZU#Z(b(J#E32Z)N(MdvuLecyfG!s8T>4NGjDwnx5QJ!hc5m~$J$CxAy2VsokB|S@ zReh_8#UWt8jtR%WVJD3xLJ(YI3ABfpUp_zP#hR7X>ysM0DwvUAz6I37_Ki0!)8ET? zc(6hxQu&&0JH3lMJG;51u`LmXOa zo-l8-VMR(3X*X@0*;R^S(IiS+VIxE7G+q-%&(LjFjY{*|SDx8LDpxm=tQ8Op%Ac`H zPJAb7!73GmWd75v54uR@$`%X~VAl*rw>H7>aZ`Utn6bVZI(+8m-QRVQz7>sOgid0S zIuzq_vy+>0OVp(8Fmo?fAL=4~vlB7M|K;R=XW0%8 zt6Hq6x^2YiU8HJdG7hin#zL`B2og=my8!$`fD6K2)qD-Y|3eMy48F9_Kgwh6g|x`q?lS_ox@0Av0TV-&YrJZNR(j{{W^h3AV&zJHt_KUw6~q^>eWF z5=Hu|(oZ@gy*kkn0VvAt>-ODy8)j=wACtMUGr||g;w_N&he7)1KiV`4OYcifuYO?4 z9i5UMZh=Igj>tcDxV8q%?@#4Vx&Dmaosqv3z0{ouCt*+I_W5SDY?+A_lu-qf15f$gx;}FbXd*JqY-|iKv#ySR39h2_-!|2ZFSQ$gF#0xczO)>BlQu6pEp&1$_ zRX6SZrZY;GHHM?XU9pz7+;Dis4O>Kww<=$~l<$m^B@q~j`qntSXdgop*6Vy{!*r}e zS!Qsso$0~+M6A9EbpVFJ^~q}+rfRGo`C;?W z&d6T|#>eVoO(1>GtDB~1tRLxUtM82TS+SjMO~GdD9oHP=hRGW1%lj5`_H+B3&ptJ1q7A@rxg%E*Hl)UuHNYhfaP!VI zVb1Ku)r)4AttzWRM8gy!>De|)gh{5vE5S^Qq$J}8!{=Xg@2Z@KEzrs-$h6Of>_8tL zHcJZf=zXZE%Q8r)+W_9!9)$8p6BJ8=p%4U(DD0S)=QFJnaA%d=$6)x^iZga~(QZ8p ziqjAYiC!p^K!FHSuIm1i;^T3D75L%%iL}3qlrC#+Y9^=>?pPt13*g6zXPQsPIu-a~ zelqbz7wKG@NQPrKTm@6e1dP1#);c8V!fGg62)V;zO`zX2BZ1edzM*IpT;cfIak*oh{ds$f-D|tew$S>a^#bc@ zmfu;z7K8aZ^K{d3lVmD0erJ5ac$+Z`;)*{-4=^6^M*%_@hj8}X$&(L)4Pl5jLK_6u zgmFkSYObKogUV4eKF~2)5GGUzqu|d;rXfvgvOtZBY%C_5U>dSjP1b)sOEw-$8xPXX zQj?V?RAgA%_z9*>5m=pONkP9grtRB1g&!fP$LgU_5Q0k9u%|aPV)+Vok3{$Ut26Rz z;3hlJ5a;&w`{!jF8?bZ*KQ3Fgy;Ima*pv*Ty#k#_I%4b&q8_deSx%isVAageYEx={Dv<_%g6mLKiwA`NpvL+!!Z^%^JD2R7f| z84cCVFiGhs559NPnOK3c5H=*NTD;?8tnWuzJE zOi6ft2-CFmoQ1))Sb-8#&%C3$Q`2Y(z!%6iqflf=71z?rSJt0_RVYtSmZ#6|RM>8W zf+c=>((}!d;2Mqn%SUt{-5Cerf_Fnx8$bl)qMlEVsa>rZgJu0L*xnfxv(a{g9)u$Y z^^|Vgv)=LCN3# zym1-Upkyv{Mt{^P7tP<&3J(w=@q&H-+w*IeYDQp=t+rF*<%d{+tHA#5A2)7Tf)yxv z-K^i2ZtBbk%z^rIFxm#=+x_Z~H!a4}l?giQ$_?*!MtU_=W1A!JWB^%z$?3I=H13&| z8dljE`S8F8irVO~BT{g|icUqjM6jtj3?(@9*r)sYw%`IRUx}hMJ-%Gh znGRHk!m!atqVU)rPoeV1HqOT?lo?v%+5Ki`R4j$+Xl#``tU-tKH+>-Cdu$o^{>sy3iGI&2pF5s)+~&9lz7@F0F%nJ_d~AQleuw=Ms3t74kF$5TeQtZscDwB& z+gY}GwqZ7_^&RVD*6XZ$tedP;tphA4EU#OBW4YFHj%AZ&x+MS=hquf}%m>YqIcTmn zmzg=JK0IQ&#LKcZTt$V5O*6dF*X|)8Ox0h?mg}a?s`t*YPo4#Kj;U4jk{dK+wcn1oYHfeNTmT*Ey$ zaLb+d3-Lk}P^PqqTT??ve82vBVOs$TR8q8xEz*L%Pnmuvv=pE~)jzwqUDgsSK!K`s ziWUUGO%}DKsHSETH_KWO2G65_>KCO5Aoy*vI8?nwl`3%#F(ZJ0x0V3CsF5QO5aibC z_y*pqFpKqaPa=gV;LQiGn68%i-s=tvjRh#s8wylLprL>nU&D(7)QtK9 zIId02s4XA@9j>PSN09cdD2~Qj?pG2$Yk}e%wtE#4=MYKJa%+caEN%-wiE9?+J6MU zJii^z^*P0}N$l`1%M*{z;ZgBR^V#9V9JP*LlGlz-xV4G*K69{}w4fiqIKLf^rBU_5 zBGk?XmBR)HdSW_U{LQ6bENVIT!@xpJ!3^$U@_%P@wfr&EQ2u!LIkiWWCG2;-}}eqxDXW^iRX>?2z_`^_=qqKQ)gXtw)!501f7d zi~Lja*wKmc9J_yVelsjr+B_+*86AkuHS_2=i@I-UIV!fJlPo4PYdc-d+Gm%JtnFQf-&V9TEvcw)d?>x9z^QQ!=$zH;kBgZspUVFf5i26mS0 zv!MkjP=s-c+hrL;3Q&*?ET?5~AqvRA%wkZsbWkA*2tt%1Fc4EP^Y2b(K-NP{%kzUTK!F08GC%xA3SHdF?1Bd&NCuJ@P&B+i?yihXuZSemlf$ zx)%N2a69X2oP)_7;C*@QBnQih_vW>un7>ZE`ToH-{@1V*eovlw9P@MH-TCYg^L^sp zoB#0i`W`F&t~_>}qRH%jXMQu<6LQUt{AQHF<&@j=l%p+!E^OYG*N(OfI+1y6UOU<| zCW!}b8oInB_A}m+-wu0*N8J6^+E?!Q=u*EKx3jLtDO}DxQ$9OvDK2qmtXn?_P5~os zXV($hQVb7@zrJwGf=FsF&*cf=U{9e_2jTxX=QH@;^gRq`0CxIT!_EIC-Y>l`cn^86 zg7W}ty;X1~;9Jj2p8GxfJlj31Jrg|L-JiIhcHiP|cZb~7?ttrr>t)w{uFG99*Amw# zm)rTF^C{=8&I_E4&biKEFg))$o^;&k$U5pAvm9miAMCH&581D@x7t_O$JpJrzuBI& z-C#@EYHd?(eXZYEU$EY7z1X_dI?p=PYPP&>Ic)hEVE+x4sh0lc@6E56A29#a95*jD zk1{(=@0lJqU1!>3+GLt$8esh1_^R=c@ham^;~B;(V=4D7_Y!wMcLkT^R&nE?lmGrF zAZfrO+|+0=;MKh5vbmGb|HBbM(x697ftIsFydcz4_R0q@`y~t?l{^DT(0UeS5xj)a zqq5%7b&zm))g-oj^!3(vuep?$FnUxIz=F4mdvgRBJgN!sikBt$C5#e0ZHa)7d6Nc2yiw>y{v(b(2kZS9VTAVU`IrN;nhVIS2@bf zpYf6gJR$;Eeatu!^hm)o5TNBZP`v58^>>Wh_%tsO{HP*;({&e*UKHx{+i@2O62_5g5}a+B#Q%bJAQB`DCAB1Q6455! z_THpt6W6>aNEl6ONg&i!r4}2r4ug#Y;(t0uqLm z8X*|w&@O9$CF-&PWd|1V7dcBb$P$y_>_8S0kO;J7W+({x9QO8{t$qnZOLmUeqGgzC z=Oqj**+o{1=CD<~nK;!iVO*&afab6w0K-a^05rkqsPGbol_~->e;5J`E7b%re<(pf zBB+w-4OwO%CDG$F{V}sr2IxPl+%N8riKLN{0s@kni>+6^jpN8eejPUVZ5m!L0LZ| z1w&3P2`;=g{q6qrvH>3m5{8{x63F|hlz@bhr>4(1@uvfXv8RRt7bxgF!01z>2305= zV)o8?f8O2ePC>!|R6{~)tBIWBG#C^vCx)d7sl8dGBm{)2CLCV9!^NBLS@_PLKKBG9 z0zy^O$$(ccwN?W{u^#kJ3F8!kLe)a>0;fVWC=?4J$-6ue0uq6tY9V;Pr$Pt{RdL0#y^>{a&6#ehC9m zl?iyimrd|X7=EhS@qSO+G5A!qb7toN5BR z-^(WO5{8^A0u--@h&RsPedk|#&*vo!In@LZubCy5hd7UtXgowbbVqvn!=IidNO_R+ zD0w#3C?1omd=kN&bWXxu;6MUl@-*>bQmZPH21RaXb)!YIS2A>)VTyw}(EhP*;HEK|7qLnj2!U$AL0>Q~5UPL-1NEn4` zNYwRH2?J4$DXIdhgrTTb2xJz0#JfomR**0p)sUd|PEFw@f=F5St81td!K5q!0_?Ps z=a=$O=~1?d>X!&CrC|x&j+a}mQYq!Z(xYg(ImD~Je(&sMt{?d&f=g8b*gC63aH*;t zr7p4pzm$hdkE$xIQXVipsxGxk1evl5RJB$q511ZBtJNd^oXl}vGH8+OQIb5#)$-Ck z1o}GYBiy6t?KCdLpPSE!SFy~)7V${&Fey>X32pg8a2Zy4sJpWe1unzNPnU!p1u0M&Huq3>dp?C+ zhTTgZ`(pfW_`=|O!*|Gcr7!7Q?i=lMdq40#>AeA-{%`h9^Y-)n-SeX79?vD7X3s*; zX&#&VJ@>Qj+uc8QH@O$NN4V{-cU+IT4!X{9o$0D_^>lvje9n1?^T*C6=L+XIXE(=Z zaD(8Tj*A^p$707QhsXYr{b~Cz?dRL;?X&D*u;|_A?a_hN?TrcP({t;3b7b@cipLBpKDr9XoF+9IK zd-d!iLJA{8EeT|83<<`DS`rA1R&mSp2d*sLyk1CQbf_hPa;;IExAH(TP(C=2!uU{$ zSlAXEJSP$gAw>Wp4JCvEf+wR#gAfS`1ke6rrv2gzzFX8Fq%;T-lc3<~5?g+K&Vd)3 zZxK=&gh)srv!ja2QUoE=c}+-A)%ITT?tV}EZ}?!1kRlLKZ7)jgm`)RnNJ9e_gA2E` z(*z=_g^=t|_MDK?U_>m06n7~J!H60ufB;S6irf$pkf8KPNSn;QU(5;dcUGDO-T zA%%gWh6HUHbO87ifr_jmv}IV}{h#xe5B>UMKBd8m&>xZ`%69N64OT=1u&4AC&&^5D zU`0d#IU*fCK83NOlAIs{Cuv~L+w;?4Jd{Q0LhJ?~Fpkf@e`HZEBLpTY=HWdg$7rJ}UE z-__e2jQ$kHhbjTMTr3Olr!YEHx1)M7ZO711-Hr;z)BubNRR*A)kMSZ#g(?EH^U+Di zr!Xc|5umMarg&BFsj(x2&*4)T5vmCwQSB$D$w2v27!Rs!#8qQzBSwR20k8#n#a0sF z0x1jzRpWs6K*Jm2eTK0&O@DtnpTbyBB?1+Wshs#kRm{kE(=5=SFYMX#IBDf3n>i}BqUHZh>FjIjklF%j6#Ya zL5&nhhbN1V{IFy6p3{F@mLgD)PCP6Hr^6SD$1ZP~^4iU33MqmG)nZ6Gye-!y4H(2? zNO?;p38XL>R6;r-K^e2`mp}@`K@9~C`qXn64=Mo#%ODvubqhv>S`wTwXE#4AbniD- zNMTHFX}Ls(*PkK?k)6{xEtduOQv@Kg z?Kr$q1sZ$^3Q&0Si3jaJ?&E&p7ycB%hbjRmx={fb9xAI234rKk6loVRI8;_X5a7I= z3c$!vC4l7R@`(FW7#FGp;Jlm)z?e`afaK*@lO@ZiFd|eFKyb2(7mx*8n!-grAw_gLf?Erbz^+T5EDF+Dg-Br69W35Lo-zwkqyPy4N!0m`1xQE%TqZ&I ze;emf@c%O3NT0*|uJ^*H?+K$=owq0tA*%sM`!`c78SdUn*wVrKVXRWaIuzYHH+H#BKJWHLW+QP%r z|Ci18nJ+iT%nQxK%x2TuaPI$V(+<-r(|A)4K%h!O(s@YmI&~6~CPf=h%Six1UJn6|rZ zpOD5dP%TET5jOAJI4rWDmypIlP)h+?bPs(V&_H=R4iRa|lUU z8pA=gz2vy2OMK+D7f$Qh$o#l5~E*dAK2_|F)8tg^; zj#aED!z83NkPu5j*%#wH4J0Hau=7~NE$4hU@w#Uh3uyugHHvT{a53?3Ag#fKSPI63 z({h8P!GweYAKj#SG?@^J#(* z*|~zY4~9Sk5kUglKe~&1Vvqjg_?r*#X#x>d5^x<*p45C=gAtJg*kIh^b~5YvG{K0h z1X2f-JIbduAQ2>xI-u+lQsC$1SzW8Q5la~fPo^rj~_&Plv9k8Ma!o#PE-+~ zJ<2FjCt#GQB0!teXz>cN*7!8Wh-w1Zq{paj15&H&|XCYdmv4qA>*e5nlfIRAVX%XfC6n*w7M2Z zYoH-~I$M6vM=mP}X$%e7rEwq!sdKfcG)9M762LXv#Ai>R`tic`bwV2BLoEs5nriXr zrvG}?^Uho$jUl3jL{-EKq%cTSfGo0>oMOvao5E;OBLszglPFsoNMXRJ6{0Hh5yYtS ztO275s)hhYm1hm)r6DO-a3qLPO`@scX&@u+4ub!*Y9ypIkdcr8nh1z@U4|VOND;`W zwpLxk(;!AHL|wzvAVy4q;-6WR`@^R&Vr1vz0d@ME!g!Hg69-i3a|(k+l>ij}=)m|> z7%Qp;FzGX&!bnji0EM3J;?K)p=wJQtE&de7i7Em3xVk)Qd4V7)g-CD`OdnFOFF-<)VA}073y`2-=o7a;8{YlK#5jV*Ny9(L`TwhY+kGp2W8q5x zA9{c9y%C=O*LtUV`vU%d!E?9#{C_w+|9{8*nEN{S9`{D~RCj;ZKj5Cg`(0PK60YU0 zF)k0B{{Ox6CTG?ea#lOboSfq=#}UUt$6iORV>*0X?w|HI><`}@G$M%iw zPqzDQ`)u27t8Ei(J*{8C`Tu*Yms_`4ms`hKyIDT7JZHJnaP1{=NAo zbGtcgo@E|vHktlxItp(9NT$uE879GGFdjEPV!YOPj&Y-Ls&N2!f_t5Nh}+NY;?CqI zbA6$sxgURqU`!hD;0l15aL+$|c{Zbgn9z=H>Zh;e`!fV$vI5Xm`#Ayr3;~*KJGv=f zX(u?7ZAZ7<=i2#<24;c*=z@A`0H47yQ(2=xfG(G(1pW*LnMxc%1aLEaPJ=�j8=Q z-R-WlV|1x%M|ZR5+W8EImMR0#?dsjccJemAKZAj#N&vbZJtx4Q!KhNzjxIRQweuN_ zC|L!E(Y<3<@iKB)i_c&8^k*=BR0%+L(c}d9GZ;Lo+R2a+48e-basmo; z&0daz&tRy?DmjR5$y46t%3z?VB0$q^i1^bBKTAlV27d;_MAi`p(KU5B4gL(qh^lsU z$y~0T&tQP4Qh+XrV=U0XL+B=&&&um!83GU4UN*oTZHfjBIs^e|zK<0Di@Y%A&k%IT z3P3lcDFQU$5Cow0K;K35X9zfC1)v+sasvDrf(_YrbiG)vozD(QUaKu{$B@6l8MMu92;DDu(u%BL|1R1u)aM+y9C zi~&^|@E)BT=`;p_s&>3b({_yhRPA_=rWRu8r!oLVRys`nGzNYu0eFw53NY+bwc|Zn zZV#j}=woXT*P+jd7`_nS8gX>zjDZsZX@dFaWP@6~0lpz(_*guC>p8wX4_z5Z6VS&{ z97HnATgA85{O#`RpI8t`6WFJs02$_~;_($DuX(VwIglo}kD)lAwSyo(6@|tQ0{s|@ zy-0>-qxjZR-)|>{7X{J;{HZ8FhGn>TJor}P#}$o%G(mrq0**gu?I8G1MWM2TPZI!0 zBN#l5Mlx!|x6x~O!x!*r4FW_2AYzjE1{@lIlLLV?L4Z^TdUy*GxSir#m*2JIMBCy( znm|Am1&H7_iEqAoV2jOD&!;sQ5WQokwnBpe5rNtYi~*IofnLBtRy-uWb^ETlC2!px zNMi`7ra)F)DZY7wYun4yZwRC@08}W@8weo7aHn|uqMzOH+UGwFq%rFA zAtsQ<@Q=6Fn&Y29p-Vl(ToH*62vuCeX5t+!3F^|yX!eZ~5q^}np!t!u26*53FnfO{=JvBWLQ;Vpn} z=FiN}neQ-PY;HC$GMB?G0Dm+6&UBNh-BfRyZ5jf%`u)}TxbYXpv~i2E+E~W@z#Zof za|gIRTs=3N8w{OQ|L|E2jD=u|a%Qu5ki4bpfYK?4cn>+~ z)jKN#S>{|4x<`JuKT7~C9YWBJvZ&m-B!8CRS5-SCQA)c8z5+kGgI#GKg(iTqd!u&P z{&Vet>`3(lLHh*3Rq~M+f0h7P#)8f0iu&B489qz!E7SMQ2sCvQ_mM+Fe3k%MmH=TI z`VKsw)gV}~0r|hXcqMs@-k&81mNfxmbZR02uxvYm6pD!izp@sfd+_OL8-JDnSXKar z98>|puWUOm0?6%rRs&z52MBS{Gh6;FhOg`}Y{rO#3c%o1$eS+>L-F;SplRbmb(}utAVdz z0;!2n4I2202vALoY9R2H)qoZZ^@2Z3@GEN~&X=hG0$&*cwWMYx-x|PYHTV^>CbS-y zXrjTdKtO6%R06@TtO`v$A^?^pKx6F`?0tW$6<$>NZ>1LA_+UWH=45q zzp?^w*r5tE@D(h?VJD{`qk*r`PQp%tyi@JZXy7X%K!pw}Km%W)9Ze*!cqzHEfzN2* zD-e*dBfme-X9#>{`$)nLB_Q}!MF3NAs(4Qi{KIDmfMp5LR8(G$&u9=V*nq;0^5%Gk zAXt?I9ClQifxuyh`iUS|Rsab*x%cxk1i-QcBJY%L(vj2wr8|)unU-S6KxpY<3fGB0c0Y1g)|JWQ&x2RGN{&YA(+M7ohLez)Q&) z0#a41FpKFOrTz@TsH|~l^Hhu{2$gMD7vTv$Wff?O@C2T+1ezi|L8mMM+4|((1u__% zDp4DrC&^JecLQ`r15PmoF2c(cd4QiPXp%;qx~nyLuUL=A{nEWb6lbpJ$u z1_M(imjVg62rp~!XD}*Nwc{c@wE#m>l>$S^KhSyei(_y0XD|{~3BW~oDgfh9l>oGo=zHD%3`U_U0k{ZHeSjgT zsvQ^MsRE2YRSHNEUVd@hpINL<0Kmz3YoY=cX@kKLw3exbd z_a@qf`FZWQ2v04TmuCTr20k%!-8BcNW)AV0x%mVT4d~6*{>+>_4Y&wTEts9(j*9HG zeO6vOF0xY#Yw`?0;Uppc>WK@Zf4$`mJ~K0)0N2>%yW#mvbshnVH}nB3pP7+Q08xcr zZ_Q`Kd;+{T){|jC_`j9&=J5YHz6})rKj^*EyWP9mTjA~H`O5Q0`3-;-o^f#h-)HXU z+;_S!fj0n_xJS9&u8&;*?fRwbN3OG6^IfO8Y|eL`k2|k-rkq=xGvN$?0nPv%cKpn7 zj$?ykild+XJNv8lU)!&;@3gPASJ`{xGXVF&9RNw&3fmZ)*ZPU|8S8D$QCfxsTFui3uY&u{%m$?P-LF1Li?Z!36 z3S&?1EA9n&58yJcg=3V;+=;w)4OB(#fHdi8V7{F|RT@Kq zfaHAg>1Mv2U{w_XJl#@`6}D@@Do8*pi%~(qDk}l4EP8;KZzpI~MF3eJRpDt&ReFylnfDocQJU&aCrTm=*HGc2lsz*R=T0hDvN#jD6Wt$aJi ztIBQ$CmT_6Oi#PZ91!y{|(OcY0u9NX+31C%eKshqiK=3Ln04hcHI-OFb+xD^rLTtGgI>(6R%DS;Y6kq89Xg*7DD{CT(uMB|(xPk0j@xR za{<`|e^vurp&jP}w4DG~)(1F%(=HI)%36p5I5UnK;0g*zu0Sm$z?Id2a|Nn_;8v;u z&Uc{LYZosguWayH0$f=Flq=BJL;0)*xq<`~`ltkdmLOMZ0uZQjg{%g+Lc1zg$ZCKq zw5xK3ECH^ph3Z@(OOPvTfGStW65z_Vt8#^`2DgF%XhHTBZ+-B?(|T=wn9pi(DJ(4%q;%kK$Dr0o zH!5fj)WF%qm&uh@{&oy%Rqg%P8{QG$#P75A8qkh0tx9}pVzl_+6*mliYsUiv+A*SK zn-2~uUn>55<}>H6`2N@ab_{4)=?4QfrXk`>Gm{TZ$)4kH$9PuN-haJ$jQHjkrjP$# zJJsKg!K|viG{Kq0N8I;cWBqjcfOZUJS@j17mG=^FjMtX^^5S3l+cA)3*$+VH?-XAO zKJ!?QdvEZ!V<4+)ht7W>9a zla$=wj!`TteJ^zWkK#-7Z2QapxWM0zL9D91|9VSb@wnl#uOEK!A%8o@u&Q?Ge1-U% z4WI59exPJPJI1hzddM(TBaacR!Vb;qk;e#D)vg|S3}98_RU?n_tI`a6|DbaEIgbJD z7{02S12tpCm&vy)2DD@Fs%q}PzDj%@e^DefpdCY3RdZ>=D?UuV6*8b516Q_r^Put) zasShqD^ffD>Tk!eRp}WVvI*31M)6ONM1J@Gw0C{6aU5mb>vMdz6US6VT!ZiGjjU3P z>()*hrB$dl$9a=n;@nwx>!ejA*6X{Cv#oFM*xj>ZLPh>{DnTnGB#?@b5>MO!b|gjln5daLA=0Ad8y!=nccma-96h-DWcU}qTKC#-+c3Zznwq(n{V#& z$)AiIBCM5@kDij?v^O2mSwu)HXFlVGKeUxagtM|@or|0>R!%%tcv88If86ckn^{Eo zDkmO26`q{VB0^U=F&8;utE~9o_~e(BEA%JibBJ(NHnM{d`Ly!Uy`R5)^hok{uPh=owIhc7^7v%|Fc%Si%E?Dh_5Mn^V=rETL)JM&=qV@9xZvH5znv)E{K_A)h|p8E z`CH?YJC$qnOJ+Gl$SGU>76gAmxt+fP;Ym3}xG5)x;NMm5{`K##{;+mAiwHI4%xBzj z<^AW5UBCDETUkVyDJ#A@K6zBR=6^K|5n{?(zY4)$Q*N&wnZ6_M%OOHcIr-?RR9m@o z{oucTeg8K(M0hDDhv0v&+(_LUga1nGQABAeyUOsi6GeC_tTR0AL=j#J3OwyZl$VBl z2oyNli6XQVqSOW6>3+KDJHWgXyXCyLNgXn>=gh|*HF0iJfE2rmT# zJncjgUJ434?L?H9va5N7b|OklStoefi6}2+qvU8OiqKN(o(hoo_3-LF9icU z?L?H9vL0}>6H!{qw!qO&84+H}?t)(pcESC;(-<_JOu9s-!Kn~5sg$)Lh94U4^9*O%^yH^y^Q_Tmt(fOtek9c|O@b)ZY?+fL2YZKGi(ON^x@$6U1x&uZFKV`$>SvB7j^-#+Q$v&7TdvR-SR zX*!->H&0u(g;kTvvb?uRD!#ulb2@e$Vx6Oo)7BzR*G;$PSgnquME6BE@S9w^-&z4@ z8x6zukrG!m?YZYMWVYqo7qUo}?RWC9t~ zNtX`9ZX|nS2D;v||BL(Nwi|x@@s1KlKkOUE9GwJwgAvtvTVay59fCncb4l~ z_A;y>hVAO#Hk~FB4o$#0wUe3MyQRxbA2QeUV4hosSuXgrEdo_g{@=nx-R;axz8xLU z%Z#gz<-Vk^S$4g-rju|xq0;CLy9P^4ml}XZM;}8I(}p=8;4$kki<6a#-X-cB-N{dq z_<4aOk#EOaZ_zG{K~42$6h-Z{kt9qsLxu$m!^l`Ukv8$fHkk01e(I8({_2MkEytB5eT6tbCmNd0;B0tBh zv8;{?qJ_LxESL0?#nNo~B%`P0D~DB0FO-jzD;juxs8}izP26IzmMoSRv_ko~x|v#O z;kd3oKVPmcR8(E9Vs zY{GogZ0Rtwnhrc2b>Ba_M&YP3uTW=s7g zlPmz?l1~G5+eaLu!=rrUPlF~8kdG9B!D#0VE_pdBnbo~buapN5Hh zs}9$RuQP~M7fZ2#IEf<*2AxtYx&VA~6#>Iy-U^2WZwbCE5P=fPJV_D7>< zHB8-W>gK9xdo`WA?2U{!PUsJ?O@`D17zhDQ;i?wmG|Gkub%|(nEwx?KIz%H zf7se_Yw(Z#uWfs??* zdOgBN5EXBjeyl8%NIo*m4)Qs~jS`2P%m+<-VP0hd?w*N+AeV>JIPZOFmmg$R)wE*i zFoYL;;`82%9f2QG%=zRLYoUB1Un#=btiZ5-6f&2Lo0Veqn4eA6s{jC-nk3hHzEpsm zYL_Z%iOqh(6{kKlfhs%FnZ0|Z*N%}$ElBYeinD5|01ho2Kc26=kWe(n-_!&R9|Sm9 z0qHHKMOR=TtE{cYnFG00jndRxhvkZj`K4KHE?lEA2Mvq zPO}X;LN?^EG~!~AeBhLW!la{IjAwyb#AIy+4siI1M@Ac;!{S=O1=Q1sfn|uxj3DQi zMKmdv>!#r_4bl0+)eTQ4=QLVyRxljA5n)V%kEytNLKPy2tNR!vR|$knwV;S^A}D1P zExTsbO*lKGx144Rjw`}3MZGmMJ>5!Fa^L_U6|YnI(1bX>vEd;PaeCu3eR|`<<3nk2 d{+OJX-ej8g#gVB~oIeiEbtWEx{QRFk{tu3Z6h;65 diff --git a/tests/resources/cmDatabase/databaseFile.sqlite b/tests/resources/cmDatabase/databaseFile.sqlite deleted file mode 100644 index 45d191b27aa49ea1379fbf7be9ae8c8372c93f74..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 372736 zcmeEv2Vfi5kv6cq=*?D_U`i0xtj=C!TQWte+3J+oB?<(V03-klp^&1Q0}vnq+JBNu zbK=O!B~F|kUtH27JD0@1 z^SzyUZRX9J*Lq~XFUmUlxp2T4byTaaQ>oReTOAISO0@?5*A4#@fAHUo_z(E6I_vLz zf38t&34T_Cg>8SqGA*{hnEqheV9;n8`UdsQ>Y98nUgOX8Sij*D2HoP?TJ^|@sI$+{ zx&pmtoFTt6*c)JdY`E9$i$tZK)ifX7)pTr^<5<(q{kt5eq>7w!+-P(-PDOnIw%6?( zI_21R@Yt?ByN+%mPn}^88|{t6!UMhmr~i}#*zK31^!odzA;z+aE-nyqhMiF^EX7xX zn#)_NKo0*XUuS2uH|&d?$^D+JmnG@KyFPc`*Cvy=SQMDDy_26igHHcY#21-Da63VR z&PdK1#`P&yuUlMSuO9P>`t=2)Y}o0F`nX_kn2p5zsNks&tEXsqY8gSrd8<^sua1Ue zY%km2&$^(|_|CJrVia&9vA)w#Ad*YWQjK&0;caN6`QMyM6y6fll>bfX0@<>3aRbh< z&l%0p9O(<;a8}!Q`Fa~`CpB5}D5sHzvfl7>p57c5&^V?%b29o0QG&q*OnS{7S7=EAUl7O1Ni9hrhI%V2rlVHX=BEZ&w+{yNX?WL9 z^LD7WaT?@+^PB|ZEa^ypRaSvKUzSrs^6RonvO{5#|0~vap7g@Q>e$ZWyY%{%>rvDO_`{uBsNx6`o&nV&+iLPT3JXp zlK5VYZtO`y9NX920Xd2^xTc$LKagxvs#{W&0A>*>2cpP*FvU|b=A@5=#FG2cK zhL={jfsJ>LruePNt7@%_11r$8V;|$}_QeN?Yp{ zb)BOj@u6uN6^Ui0G((XvWm!BS%JCwT+UEH4ELj`ZCstCVt0XmI^~XCX)O!4H{gld% zlY}}(U_@YXND0OQeJI!LRg9aBxWc{=j!)U+jO0R=Js0A@V4Av26m*wWebP>|)HazU z^~vO&d@WU~Gk}U2wQljMRqFVmaTy8L35rPglbR|afg%V(LrKh z!8RDOY;z57qF>{dcd2?M3CJRWcSO`0!=Z=P9poI~3UhgVLC+>f#1{zpS%=WI9RbeG z`Y(VJrd;fJ``qQ*9F^Gr%d@&1JS(4(PdRxDTsbX$&77ADM-Q-3FXwInUqn;b69FEG z1dJomn0p9T9pNa@SmaG!6)C%d_)gCAeqT5e-6f29hl2hgcnRGAhzPHR*#I}dw!}hy zp9|h>6^2aY%#$2WzhA@vKL@M=UD0D)GZzSO!NY9W$KhA^JN*%noDjTW= zELeE*U)Kt*2Y9POcs@S2w6f7C$a>;?p@LC15aPm4e=bTEp;ed|rW9y_PxFMGAup`l z_pm`X8-^kipAIatOEh`dJz*{uny$=Irwi+ym&dNCH|TTuqPa4j1hfxoa;}qgPFovN z=l~atdMD#Gb3r#5wn=Swg`NAkpywDH4$N4v6&sdR$(C@;GZVM$GP7cIXn+m-ouLru zb8^iNhdCGPhAH@v%M}ZUaaPaw5fVl7qq74(7b`aPd>mVHO66sC01O4FVSo)r^Kr^5 zG8;BWok5|Asq9PboO1gwySAfwdd-PG>M0ImYedSp%D_ zAq6cTG)Okc$vqAj*~+<8N@FM<7h5# z@VG^gPN?OsFpI-GP9KN4Q0}BM;}nr+)Snm!%kvNVuW^FG*+`s(+I>;)VVGgUhj=GG zh$0IzlttOkacBCRt}{@g5q|`MfY%H))D%4mI}Jc1lQSyUc`oO9_B*&K(GGq9Zjk5@ z-V&#&2u{0AK^HU~cnZ41Hsl~r$0x|~mtiJ`LSlm|hqf~1O?W202OS{7g`1)W*+Hx- zj}Px>eeQJ1?e|3m5gou)Nv?LuLgm;{h^z`++&K{wlnO&lzmJ_ffyW~3cq7ABn$;7b zN5illVGl>!S)a#?ll7zmp)l9)^Rqj-SdbqLHdk$_uBfWp?7oEPwe!(1fN z20nZ@8GhmI3DE-*I0#(qKHTxaaSo_iG68a~Zd^kyKNpISmYdr_T`-}CIb6z&e>OD5 zeZZEWqOdC~DkesgDCY+f|JhaS=8F39Zv;-D2oFx3qRim4-9DJECWPjUMY&d3Xt<^< zBEUya7ON9b;Nxe*`+Wf)eqF_uiU}#lLZJyt)x;Z~u+QBZWkY}~Pb>Ngq-vJJE^&a!*T!JtB@JrU)4-&b z8ffBu2w+7qWDg%LjB9n2#IcVS6*eWLvoFj(a@GGP$|ymN-1;*3|hEw(gZ2}79z16Bm)yX;}N zG-9D=A_H+U4LCs_C#Kz9&OvwGX4 z**~|I=sb?Wx|{60jjyV9^1EZx3}gV2Gki@a2?3)3?k>@g+wJqiVg$g)*C&2wADNcB z%fUh7@DLBlCPz8%PXRfw0Te1cA-)m#?}QHo{&4`TD3H3t3-M1}cxamg-h&klIFux4 z&8QNnNyHWNJHrl$nZnIF$)X2Y4i<=!KxBf7Rhslrwrgjz< zzd+sF)Y4i-3|shDOLObK@(GhQ$C=k%y$P0^j+#v{Lp!Qq-p~3~ga2%VbrSr70*w__ z6HLbCDcHMYxObE{)K*tjR8&G8_y@w{nu?0L#=1u2UsK&sQ^EgLRasSAQ-KewYHMrj ztI1y#m30+$q+n%375ta{SyNHnAd(xZ$g}FohK36AS7l>WU411fSKU}&RnPxb)lf(N zs;;bSs1q1gKs|Vd)z$UY;7YHdHn=lKM4Nf|Ll8#`>DZ8vLuKvbv^*d?sq9x)RFq6>F%hZ6wvMuB@-E zC$#}uZ3DrBYFAeCVybMY1?I>KA!^BAz_5mA1H7whkRfu1r%-uPlbY(PT0trmHRIK) zsi_98e6=d8P+O#i4HflJZ~PPJd<7~S>uW1WRY0MQb@&bl>=DZQ$P^gF5l= z8j$q(-_;F`;@{O!eev(g>V|spZ%|}|_%}en7x6qR>*{L8|E`A*6rb1BRf>OCRMd=P z0rv?$@XcZwsKNwK_*U_G4K%y)ziTGySyNw&@8V~I8nF@Me`|#QR%LggY!^p&c_hTT zdZT^*UUxqh&iM-;fW_t90zm}29ZEkc{zxlfSAH5~1gy!{W3;!8#gcmdS3Q3d~B`YB1^|6>W1_Wxl5Ebaf3DDD48+0y=ht|M>UmK=|K5=}_n8Z7PqlU>x({{Lie zdajqbaPvRgpIx&5OZI>)}78pOOSh5-3SvW(nMP zfYGQAJl@Ta-EoMratwkC(*e-2_tj1_j4k$XVUIyb|G@;q;$Hebh>HEd9>2$ zrqb!A|DU{@XIM7mAV;gj=u-YD)HQj!38r}(7y4w>FAe+S=c927%sL%g+SI~DL1|Mf z=k#l7Q>(P8#b->!sEPkk!+zr6j4ecqHd9W-q){@M6l;|1d}<2u9d44*N))xa8B^uN%5 zMSqXJOJA;6>HbA`k1n9QUHcpD*R=1_p3tt=sx|+jd57kVW)JfV=AW6jFh`h0^h@+( z^c!hEZKGbGK0^&qH&Kh!KT|)Vev5jWdZFqUst=3KknIPIY9D1VsMTtN=BSXA9OI7N zVjgpcct@Ed%JD%MkP8a)wd&LqO|Rc?RPPYpXTNwB`;-AO?BONzqle8`af9 zQF=G#Qg?_KNH{pirmoWizmD5X>bPAfMU9u*LP|K+I{3g3H&!YF@z9Pw4#K1P`b2;X z8PXkit(1f7cW`}?Ee?_km2h6M&uG{zFg_Iad3=zVMtqYL*s|BCZq`#21)?yJfJ?|} zhMy4TLXcDz6JJGKaJ>or0{uMw0!44#V^r@F%Io(!2UrK(_2`FFs!>NJUkUg(=D-zS zShd@z-YmSJgGBbEZekXEu~6eKqqYK3y$4RWYfU|wE7jcUcussq(h zYBGQsr|Y%bp=Z;ZYeBI>X~VRAmK3kA0gVa8_01%+G>(nXuSsrK9A$#+paX9d-Rz8R zCY_zUxUw4BgYe?iuFmtWn&3U#j!s_OQHet~|HZGhn-c~bDsar^8BEj3N!is~anR<= zN_KHls&fk&wfSO2>)?d7V>1rhJm)Fho0QnN30nX^h0W9g=uI230q}*VZ2&N3QFPq~ z)Dd5Lmii~}Io6~4`S+%%pXYqz1m{_5pS-tyT_N)|MXz5w%lVq3SFM?GzNYAo)$+{O z6un~AwDUDZZz&fBX@lA@i}{x>Unz{yP=1P1_?d!kaDZBHGJ!I)REzLt)e58ffbb^t zN=&{_Rw?BE*U2jt;hl}kg&`Txrs;@ey+N-j6GmhxEZGzJVqG_g12U8=T36(Gue1x} zF|eM}7x^Mvmd#cvWc;Sfmrkb?zD&cC*RB-)&8o$(MJfC{8yC$=DSY8I3ujOYU#x3^ z97^GNube-PQurd9<_WVN=xy3TkA?x2uDc$GCKz$y|7JPpk@pVZMUbrl^ka)lTr8rRMOptr}Du zU!55hhcDd72-6c(B){IUWH~L&PEb-xZD`W9Q{v|lG4DiHXOkG ze+R(Gw*A;PYIBwBe^eMjv|>>A<5w+*Kv}A12e1{SQJY z+5fy{KGSNdWdG0PuP@pET)1Ta<7QAq5JSoS&)L)BCttc`|MQ-OlKr2(ElFfjvj4|7 zVgFay{}J>Lp#8tn5LVg##dg0fXuH+6-1;T!z1FkV3d<{&r!DWa_${}aUowB){2sH@ zyxy!cearM7Q`B_S_=@pKt1Hy(VhWgDE2E@?yeqrAdiqCRa4cGPzz4DB(B?>Q2*;nI>)SsT2@>g2I3pdV^QkBZbQ4-)rN+R(pg^QYb66+s2pb>=$=Qp;*!U{6vxtR@f#5&XacB zB0Ts;_pHN!74Iuxnk(LK4JG0O3zaNpI)lq#0y3Fj5v!d5FVo~(FM zU~|`N=*u)+-#O9WW~obTUo^e4V}`yAyxS*u&r+K_?;ULg^<|pgaD29XnWk4Co4GI3 zbZ4tfeVL{mN2l-0G`;D_?7JsT*BzedM6*;Wv}~xyq3OFPa6UM}d6o(#oYDS2r3tBQ z&)7a^d%G=W>$Kf$TVbQDKec|vdcSql8nSj+Z?)cNop1S@-9E%!kcY<^`sgO+Pd}YP!!fYB~dF1u9Joz+dov*J)t6OJLie7zm7Nw|FN1&8p2E=8D8Fj6i&d!i7=GI}B9m-3immSPYqm~{3nn99h z`F@6KR;yo@XcuBG8>amB8OzY+x6N3FTDcF(7^cNqwwIx*)pWT;>ThP*p1d@A+3vhF zYUwVZ86onF3kS~^wMgiSCn|HZd5hDvp| zs`ro^P?*I#qzUxm?a~Bl(JeqQOl4)inNioPHQ9vmto)4qru;D3mp@d-?lpAUob)#CB{pIAUfdi1T z(#zaXJq?wLPArEJJ1&U2O1r~2OVC-A-6KVUF{6uQmW)!$I+hv=u@l#i` zMzZm~yKG}#8og{oUK+J@J$4#No;TdcQ1xo{mF#hQqRZT{ZW=0m!`f-6lzk0Q4S6`* zS2I+tT76G8?D%KeSLG+t_VWBhYS~I48l>5p91OKkO^>v=B0k2nV&WgPY5BxIC}SD? z!@w7_-+)-uV_CYGkd57*pGe!6vVGZh*|yF4GMxSQTW_@d)bcKPSo$eRpd^8k1WFPpNuVTwk_1W;C`q6sfszDD z5-7R^78ot$s25`}=;8kc!_fE($z!lX?PMPI?j6s3;Mey)xY@en+5dCsS%7|2sPm3z{`AB0Z~yGn_;UnueECX?X0k+7 ziHemwevEjh@7VFs3@P(I`I+A$yKuQr%#s4 z%AY#1lJEy5$RZz?L&wDHLHxG3_v=Lwev>N}WgUHCF6i>|4T*8BkROD0EtemJ>MJ84 z206v$x&btf8Q4JMv3q}76r~*I{6is3UgzTcTu}8ikppDH4Z;4>P|zccl>Ye&qS5|&3ZhYG zt|w?jkFrbBf8F?}{e?>uXIati^@aS-h!^_i=@@oY4swCI&OitC+Z05j{Z<9hs56#v zwaG6@pBca~Q>jYz_oM9>i_+U#V4WL|`dl%;Gwg8tB9O0{1)cd!NEZX5JKgYm^PM-t?@f1_;rGTdKm6V>b{qU& zKei5j-hZedGd0E#Y_qAZM+y2qE!}^T%lGSecwB@+@x8}6D%=DmXkMRdazv1tO zHyT#yAJOm8eP7qD{gL*B<{8a-%|hm%nA;(lN`fwmE`hLZh1owQ2!|LnXUCHo(oK!rH=^LiUf_Wx_!At~Aa zvU^fW_Wx|R>!iIJCHsH+mG5L1L&^S!o6{sVgAXZW{|gQVx|fp4!5{!oC)EVNAeV~- z?f*5Z6Dr$1wi@fdTAh&f@BdiVny;GMOfQ-)n=HmF#*K!nhQs>*)JNe&{(E%w+HYuk zG{4ZC(`cEuF>C0D>1OH~>Krvs{ZaKTs&4?RiJ#!@;MChkyrQrE>7L>^+XUkVwwhoW zmb>v!2X9jpj|%J~cw`Gtf$wwgg|^TL;%Hh}zMe$=EjfJ9cj1_mjL(VAc$1Q*;94sZI3_NWYj%`bhvC@MV6hS^{chbX7t&xSqF&B9)CYb?YlF`*p_ zBhsPm3L{e7Ed&v?sE|~>Hv`};{CuP9K2{Vp?#8GFp)2;oovO}o0MzHbNg*WKyGD5%O`uOJ%juTv0> zI#Wx~AaYm%NpdyNKKOa=)wK_Pxj2f0O>GXZHC07;iqLZtl_ zfQKtcm0C6L*@ugwLjLA!H|q(r5Iz|TW8hc+Rz+~={w<2&Q0!)c1A3BGZr)7*!_Qx@ zq@P$&6!q+fQ~F_unTG4ZVKEu?`aE8ozcwm_M0+0b zDS$%q|F2Trsj|J%w!nI~b(!T}%VzWE&9|F=U<#Vl#mwu`4{klrX zz;|5pUz%afGUknphCWaIno3d2)DNgzRR0&)6!Oy@gvo3j3{IvGhN4Aj`^`fU;tzr| z0bK#Y+#m;YpC2^E2Y>zbO&3-drRv$sPM6;axsCiJ`0I>PP_*x~Qc#rFN1(9h$}GUR z-V0Edh>7shZ573dh@QsMa}4^TUI&KmkyXxs6MR-eaCBVnxkjo&$MyZ!NL8q~jwMyW zwlKE}^0;Bdz+TNfY5r?b`t(sR8w)t2oX_pZju!N|lmVhWeaZk){Z0Y|k%RJzE_@2w z$`R6;U-l0@T@)pa54@3BpFehPeC0G4_C?T~4EHLINrz7=j!B(8K`^l&DkWRC2b#@I zpiVt~qNOOxY=%T}cqqlqhN0sL(Yb855->E|r34J+?j$g9W>`+4o#}wq(9HL=Blo|r zD9Sk&cH(dde$l?L(-#y@CqNfF)2YG2g8PJ6xP zy_#y~Ys@M7W%@3974;eFkosrpPpU`MZR)jZo9Y$Sv%pljpM~)yT52Wq6kVu!Z&OQa zRa;Z5i%v5O+<>irE~W|60n^o8$9dOL=Nj{CX@8)tps*JaIf#h$}1fUp{xGC__mri)>(N zmF@WT#PLL-0!Xwcj;9F~K%)BNc#`lYkhaXy^ThEKA^9ZL?|=W~kBXwET>o!B$DtA9 ziQ^$c1&}~Zc!p2`Bv2C`AtY*&S9<=q9)S3x)xYDyn~I_)KCEeC7mNk7g+D~^kLwhK zqy2HMf^gKCxQ4*tno53Q_QmnUA-e9F54RP^U(gyN#tW>2MGrw=98Vp}3qtqBG4fDe z5Xu?H=)+nV`Q#IqKdu4{T=76^s|7{rOU)cawP8jI@UlUWAQu7Od6M0&LJ10h=EGJ`-edk0~&yBpe+WP!f*v#|RwGHwp;z zTof9G6I8dzy{|ZmYo2hy5DPw^`F<`kN67TK@EjpigJ%gc814#7yE_EHGHqQm-JE>P z$^QRJm0M-Y*siy}!@AOPk7XX*<42jsOxGLVZd_sbprJzlY5lFbuj|^i|EUdVUe;WO z$p6UQ&D5u;7WKE)J+SwWX%O=K#8q(&E#%OGQa!Z%(OUzs9||FrF!q3J{R~gwx;uwtB%B%B}XHFHQ z&Q@-yk97uTR%j%S5s3<;(vdiZB`S1~4j)OGV=t(Adr^S2;O{;~3z`Z`eOn^{qb^q~3O?KNyS7 ztlMxLV;z+RrNeOydsG&bIvd9bNOTLsG^>z!V{r_I6k2fo%EIPVIH(T2^^o(-%vz1b zF+5UnT=ZqrhUy3p>dytnMRG zM_^WSFw|qkHBb*4>aqM9s0S6N<7K2CIGoR&USe@f>&y>$51a1lD5!Pp<$~;xqYn;> z%w(@Iu{dUWRvZ@wcufARI4%tEm=BsC;1!fJ?*Fe+4XJDw;O@V(mcLuZEQ`$VHE%LK zV%lze!g#ykn}#F$r}e$MpX(ypziBht1)6tjHZY%Ln&_|7?bIKsw^I%3@2TVJ^{OX< z&Fp`U$9v#=7xPQ~J6^o8pmw!;S6k)Q-EGa(W6be*w;X)worEu0v=vVd zC*l~fhb}2t3s!vZx`M=e2ya-3vVjnuBm&0`i1|bugY;zMPoIcmT%K(Fsh&87;;rM? z%EgyYIF8YG!utOWn!=XFhru~9J4**6@RS7wO9!Lylm!J#2P5$WOGhE`hU16FKlI@R zJHK5}k7|Wn!GX}svtT%WNO4e5=|ROoL8S-ARjQPDBXNwj<2`E+{>RnAR=&-gyWa;% z)@NMVMB=wAj|yJI+muHIFXBFeinE(y5Is$5cE@ z!_v_>Cgf2XmWsqNEzfbXW_nODA)k$7avpx??qTk^!g_PNmjx%(j6?Lp1HfZ48b4}0X!wocZo@75=kytUrS5yWJ9KNc|DyG2 zjhc^W4l%!F-pVx4KcerT%c-wWe#iv)Y4u6ftEzX;-Wia$$H27BfVc48Wy3 zL5T7INq5CDWK;JjU0pY!C+3o4Ryki2&M;8* z$-@~2DktHLy{4$rXpduZA70E4K0EJRpE-3Za78q(aeEURiFGouraKaAWnxXWC)N+#rKkdJ+!cjjoF$8?LV^xOEdZuE#$FnT?4R-IG`$BYV0h zv0O&>RCl6`us6seoc6>Gz#ZMWzToSqf<@oV_B)})hoPyrC+zZY1{d@)c{qa$dMV*- zD7G|CB$fbU+^E>L;->c&EatsK?l4?u0N1}m;#gd{oJcH|lRteTu}Dt-u+g%R@HfaK zpA(4%us$Z?f=u9s-~6Ir1vC#qD<`K+1@X_9lRt=mo}Bza{MQryV5Z3-pOcB}K)aiv z_1Aykb$>2c_=mwG?L5zghQdBKzi>a9u*nKQpG;U~1)xqOECj$HlZd(#X5f!Kz_T>e zRk#WuF9g3I<7k87r#oSik2~F+Fv`cB>Pi?0cY_>~Ig!uAA@ zWqZGEpY>PPf3VhCzGt~$S#JK4*<&`D9x$~UUpBtOc(dUrhLmBw{u}zU`USdA>AJM9 zYVXtT(fm^LX3aL{Crp~zO8+~3fnG^H0TBS#Lngo;wHnwK>8B%sIeXDMYPMYb&w?BG zp>snn4(?Kei4{y3%+o6eYcOFjH!o%rEOxCs5*oIF zGO-3xx5>mBM15Qkb+HA~o;U`aNjSvTWD!J-ZV`S?YfrSw!x`4kN9ExR>*phcGx$M@ zD~+}U=DNlG$|J)Uo+`LSd)W|NwLo@Q6PU-g_>Aec1m>tMK4a>50`t$}4r_5m(V5r} ze9^Jm{EeeK3l?$2=?6C-BvwPWM`z-8xp>o^iQDAj4UW})gf|S)#g<7|0*&u7QRg` z-q6Au32*S}6)2XJYcH;Zzh$8Ika%Rh*Tct(8BTFQ5?gI zFP6?k4e-Vm-t?)P9xQlJIl#i9Wzmb&nW&bFH?;67xp+ehuOz$;#g_^0|8G>CNBe)5 z^{3WhYdP%ybC!kX&zXB63*h@rdyT&`{)4gB@O{HY!*cy&`aZo*_YvJ8?eDbrXm8a# zuenRJm3fkhFbnBV(_PeGsdrJ$>KD{^s<*2C9oSCu(=m*p{b+a}K0L6YU`0FqQ8wgv zMqnhP+J`Z!9}Vwfv+f+mfPQS9ht4cMU2vtF0)Ecz3kksq!x+*p3vaq}7=!v{;Z1c6 zV^}{1&J|rI-NP8zk50`4U%gVexDQ}h0$ddhw|e1(*PXz~ewny~Qxik`W#SG_O^ofw z`~@;draN&Fb_=kzs2KlejugIYc$9O&IwJ@fJBipY$j2STeqKKAAod}`9rsa+E}8ZO z2Kb|^Y11zQg^!4b!(52#C+2y30%QAS;0&%N4C|MHGq{>Cq90ES69R`yC;ST4siZ7YYgkNYaTkbW?D|n@{FT#Nb3Jy;4 zmf{(?cta~cEf;TS5ZiH5Rse|YI6(jmGKr`o z(F6SD*rO)*|7}!_q5XfG^(E`w)>|ykS<;qG=5L#$<|U@jnNFJ2#`hcd8h&Yby`fV7 zZ~B;ivF`IaXcF2FYHx%6|GPAsnWvfajDvoh_RL6WH^H3%W7C-bQ%K#z z=;T-rOAt7Uzk0fMR`J?T`d?`q##064JY?)+R|@7X9>l-Gv<>5tg5oo#+lKKxLGc+= z$A|GS0Xe~0R8jN{<4FPx^6mO~Q{nrI2e~kq>u}2=%z-#e^bF%M0=d}JJ;Qj0KrZ%F z_b?tHz}78?aN39Q^Z-tU8qGS~#8_kc&OEa6CVN zEnE)abPhX!I~u<|k>?9HXAXy1H(Y$hk1U-r#t}vjej52FEKN96+PJ=rZXZ z#!~}m_&uHGI6K6hVcXeI$mXvOxG};B0wwB z^X|_TK851hM;8RL^TSKmFdiY0hdJFfjOPdBVNP`puSrFEpCez z&j0T<{oHh?X_N6A#-QVHzVtNsQ|i}TYyjKTld79foNr_;6H**FF!V*jr|E5q1-88|~L!_a?h zWks%Y*Dyx@lX-S&sHae2WUb5E)K{3UVT}EkhdE4F82v8~bC|9${-3N6iY}IpVLSnV zy$=#n_zM+zRz8X=(6R9dfE=vpj$u3lAO~v*uQ@_klWY`470Ah9JOzNhW=OMeSHYs5 zoQvWLb8;9@1IPzJpB%tB@I?rciO`CPugdhBh7(kcm4O+IUVtChlNp z<3Ry5v}KS?_b{Fmz^X$o&0~d%y(uS^CW;-;3dqDA#Ez#0Wa18D$MXUxb{QnoGkhyB zM;9byNqAqOVxN>G;RMNCtraDpdG6 z2@+8Bm{46V_8@vpl`a>15ItT{j>|_mgmYpTPZ8i5ambGF*Fpt9IXS`==EN`_B#@0i zePS5T63E7%>KVr41ekUIw;>{B$J60|IaoD^z<@ zJRneP*4;@wAb^uI?DMu1TIt+9a9CI*Y5BO*-AOzoAXD9`t|T54z=eejlIcjQfH_*b za0aaKxozTD9NOr3NA+z!X~`-NP4wGqw`g=Y6`+7M{BYj!WkY z@^Ocy^LhEW!_s+(a3?$9#gS7C|a~KZ?;FcO3 zA%9DutvdSzIeMG$Xn-ud!P|rf17zV1-X=U2fLnn@mr3WacqjmFgekaXXWx^9;ua4D z6rDGSTRap{blxCt@lZg~d3O%up#W?pa2w3$3vJ!mcjTbB@l1d$yg}S}BtRD4AZ|Pn zfUUdeGHD+c4+KCC<$_(;6DgFhKoq14DvcY3Mdl1!km7-WB6EfHnU|A5Lxr4;+7uINb92oxImQ%qoC+R@Z!9rNhY$ii1*T zlj{j6-k71(m&U2&jR1NUx)og0vHa2Pg^3p?em9>S7f$kcS%_i|!yhx;s(O`yTCAJ% zTF_97wR2tzDy~khA+^9}FjpFhBv(Tn`1{Wvs`}Q;g|&)yr#~2*@p9d(OeDEVc~m-* zELR?t3MW?*RH9|2BpgjT0F=KT`k_yrIa!!mTe+b=))}0+dqzcf)Oh?i#6KlF7xlAV3;K^S~Sfd)?qP!vsq%FAw zI4|X=%sXCOTUamJy{oNq>+ZH@>MGNgTr3M?x-Gd#7RJ=^=m zn?0{GCzB>w0qB!SqpSebiKKx5kU>la5p^WR`2S+>DZ|t(#{U1VZ1{npPycg$NcV~k_A0ew+Uqp$(5z%W#8lFsr*~7| zrn=NmsrLbcIr@oflDC6e2T99+ME&-671r{b0+21z1*=^z7mKhCcPtWh1bk6;#?>zk z6}jzNs0bBjlKV(Su%XYPL?X$(Pz}Mje1j%fm|_lt2{Jq5a*y(;U|jB29u9 zYBt@~R+yUiLLP-7M;|-$G|3DkF-}-{V0s{l5yZ*^Q?Vq*7I(tF5a?JzQAd&ufXmOn z4=>pH&B9dN3P;)lp_zMeBw4RKD$Kui%A>;kTT4)hW|flgg=7tYy7>9`IZuHbWzAe5 zzy%#got{CKbyvyTp z40>l{*T8_ibxwd`z}_+^z%XEMCcvm?B}E-hZUS6ox4_B%{|ePUm2J?bwvJinTdr7c zG(TkCZu+X}i1B;IUc>W-L;6qYSLjA{I_-#7qe(J7lsjJ}Q_Yu~l;}w;4d_mHy(*4 z)`!`!3$uuNScfyrIvvjbe%2L*akX#A!Me_~0jJ}52%KsTJeUku3q^+RopvrKPeDC=LMs{EEqg0D7LEn8 zTgT;O@0?bEzMMQcrxlb?f+g%eTN zHCQj4h&r<-qH9Hu1IZ3(-h%Z|zp_AId^@om4moGxwH-*d&j~PC4{dV-4A#SO0*s5* zhZGcbIC%_kdF$b!KVB+O#rt7NdTwTSKsec|I4DHz9#tF^qIQoEP@-0a#2ZZ>224JV z@4^4LTHw}ZGw1I2MZ7aBHJUs$2e1&wcW@41A&&0=fknkCCuCTA?g!X8-?k?9|04gkig`Oz zPJe{1p}s)vP(KFw{{I=+Nd9!EFdl}FWO`_4W1;I?G?)Es)ZyY{!6ZbRsx4+Q9Z)fsWIrFzXoN zVlbo+u#lM_M_DfmH@bRZ;Emv|V=mUgg&h$t0RN4`i6h4uxERF2^^3(^;BR$+QeoVl zaH2YrcU;=UTBrzy zBMy;@;E43d+^MD`c@C;U_NNS&TrX}Zu!Zbvb3~#L9326rcO(a8Vhtx}24rFlyJ|7Q zn)K?T3glEW3Y^K@VEod*y9#tgw6f=7uo{Eg;&5wCSaqLDMr4MdPbI@LLr}fRvjhTE zAd{dvk|99gcV!=P{<+Xr4?CDq&K357*#)hhlZiF7`k+j#q16WnYaES=E0B()f4tJg z-2ewspOJ|*iT_`x>Jjt*U$QQ;JYd;te#+c!`l%@Zx&Pi~++etB=+M8U9|QaUGrEJ? z=d|av^EDsS>|uTang6%Z&(m+BS5gm9x2XSB9a1k)eHz%2pUxD9Dq+?Fko7|AY$yZ#k0MSZtp3k<^A_^P~=^))SuCJ0331x4Tl9`J$R1gg*YYLeDD**Vaz% z39b}owvZWxcBL?Lh0G{aUkWo*RP#fWToUu9F!jVOyjtF~)>_!ya2%tpf&BbHd=pAQ(cTm$nNR|X@}w}c#4Ws*WEG%0M;0LBN4m;deUU# zPGR~8xnXE`YPkY1lq-elA!_+)LpGuLQkV{62j7dXzEJ4k2KSLdFu2>to%6Y;O!mGM z=7&%Oi}s~3VT2-BlsAPLBzEu}NnRO7QskSMIdh|F$QwPcU3c$c1IZpu?7$mPJFu2^4PiQ@<>i~t%(^35GXQn4*laW2$ zld{Ulp0a?YzFO6(vc17pX8nk@(ef>e+x#c<>&+WYPncZBSB>v9))}5O_~GuqxZb3D ztFBD@KJ7-$gPMbo`!C6?pzo(QQ4dlL>MueTfG2^G_!CQE$Qgf5_@Vb)?JuxHL_*Fm zc>f@iS^h416RGT!G!iY1)ap_nJ1I`r3rJ^Z}H)|Kxfr`m_Fooe}xamRyE(TK=b2bOa^k51D z&*lJ`8c1RESvM+KS!wsBFa)iVU;FP_Ti}YN$=?@)?mKx>>q}w4nYay6o)mdOU@*m`DDr~9VA@1L zh%;CwaXC}B0>)O}f%4}EUM#GqwQ_C=$CfjNiA`k1pq;7ha$``ZQkbk{E5Fi|M^@ex zrX}J1rw{ktTcFW!6eGznW>c8ij*ic4Fq?T(n21CPDDVnn>JcTNz$=W&MtHBVyaMD> z4S>YDsb#e;?QoMworp4@dNFB7>`y|Rd~+gPV8BJ4KS5=0#H6pGD<*40*><>!`vwS3I-MoZXo%u;7rYW|D) zKg^Gs-)l~q`^|gJ8_gEeuT4*y9yYzrbk5Xey2Z4@q&7YWIRrmw95ecjhm4iR`G!Bh zNrKNBt{5&GoQ7t@8iP*%3;oyiAJ@N8AJHGz*Xx(+{;GRM_n7Xzx|GhN+o#*8vub~% zeMWkEUREqLaw^5rYtNJDNzo{Ql->p8c?on?C0p$6yk9271 z&1$t_`2&~1Hibh`L##8r%~4fRS*d00BklRAw0)#4Kb2ZGavZ4!NzV3>W5TOn(oTY{ zL)g~*RDeC2p9-)?1Xu~q_L0NFtH^=cjg0p>OFaK)Uk6xb*TiIA!kFb04Qvr5&ek#E3;$fvY z+ecdXSC{X5F&DO>7Gaz7Qvr5oek#B=@vu^y?IX7euYT=2*{~pFqT3z$sQ|k@KNVna z5nv@a+edB|US)S@!&WvnR^iv)l%EQ)+wxNZwo!nU;A|gh5MGTwKM9s}p!)n&fUV0< z1=v~vR)VvAq(*o(Ig$-qRZ&4&a&>+xz*gm_0&JxKE5X@5QX#zBIjJQ#G@_8V=BEPe zmi$zJ-7LULaJG+Z5?;OU@kw7xn$*VpRDj)(p9-++1y~8r_K_R;SId6)_iWh8#=2_! z+I9J<0J}Cn6=2u!uu`1uBdhsWmmj&B3)?`3i&gol09&4)3a~4ASSil-5r^>VJ73O* zg(gK>@{0UafL)%S3b17YtORHK$PN6fW#79$8x{sf0&CAt1=wZzsQ|l_hn3=NA6de` zy8MmXvti+DiEbC?rvmJv{8WHl$iqr;wvQ~}UoHE;yR%`TNs)d#KR*><=jEpY?DagX z6leR$b^NQ#U-zzD*hbQCZTYDHYt2suSPKs;#o0b$7GCvjnFLFOY|2jsSYv)Fz#0Tt z3C{Krz3}R}Z%%?G9Y~j-3b5MzRDjh8uo9f@BaHCs<2my!Ond~E&QAqcDnAuq)dH*p zXZwgscy)VS?$wNy6N;}UmNwErcjw0%^x|0Sr@ zvQg3gm!R551^d73T{*3xvatr;4x@toFGU4d!Ty(`0<2*FOHu8kg8g6i^%rx$wibK( zs9^s~Q2|!4|D~t^E7<>1RQsr4|CfCsXMlmP#c^#^u>Yl~04v!4QdEEy?0+e$eN?pn zAGw_SwKcdf7!~b*2`a#f_P+!bU`6|1f@&WX?EkV4Jw6E*$F)(x{+FTxtYH63Q2|!4 z|D~w*QPKXdn)J2xM98B3FF^%Z(f*g90<38NOHl2jqWwRAd+yiPla?&n{}NPy743fs zD!_{NzXa7jD%$_flew^s1Xi^FC8z)^+W!(%fEDe3395ZmwEydJR$nlA;Cf_KwErcj z04v)65>$W{?SBcXeN?pnO~Kr+ts}Y>?SBa>z>4<21QlRK`(J`;9~JHYwUb(MJx-OQ zqWv#H1z6Gkm!JZyX#Y!4?W2PIzkJ)I;i7@)R)%BVE->){&F@fO!Gvyg8eT=1z5rUm!bl!VE;=|?W3aopU&yG@U^5Ri}t?+ z6<|gCUxEs-qWv#HwT}w+f7xHYnftYMq)7?(zZ4Z<1^Zu$3b2CxFGaPF3if~5tCN~k z9T_eJ`(KI*u!8+BMFm*F{+FWKM@9R8!^d;Kww_G$qWv#H1z6Gkm!JZyX#Y!4?W2PI zU-p|txv+J_@h#Z@QdDp|2=>1e72FPj{VzqekBIjFiGf_$M&ij5?SBa>z>4<21QlRK z`(J`;9}(^U(BCJ)Vv`yX?SBa>z>4<21QlRK`(J`;9}(>TYl~04v!4QdIkhX#aonYWCNHX^Qjhh-m*yPytr7|0SpZE871ORQrf%|G#BzE^Gyk zQX``MFF^%Z(f*g90<38NOHl12qW!-(2NniL(vn5{UxEs-qWv#H1z6Gkm!R551pB}2 z+uzClTJS)VuNCZnDJsAU_P-PrU&#=WXU;iilGx{&- zKd65_L;!T?Z_%&P>vg}B+W(^sYumKjw9B=O z=I5GkY97+OU2{=$O4Fj*ps_K(XTHxo%Dj)sFhPg`cn`ge`ZwwI z#dc_x%#!quJS2KadV3xcwK#nXk_=NBE=k|azqD#=4pbvT-IRv} zP}}m50IHFPn!<2txk9}T{2Z9W=& z*&6=Krt(~pUd`8W{u^@OYVpffzNAI_UxEs-qWv#H1z6Gkm!R6y zqW%Agx8=gtp#7f~?SBa>z>4<21QlRK`(J`;PYd>c*~cc?|20I&g8eT=1z5rUm!bl! zVE;=|?P`D!3g4`(KJ`9~JEXvd>KNK-UnzonZe< zQ2|!4|D~t^E7<>1RQsr4|CfDLoBOr3#BV3q|58+d73_a0D!>Z%zZBIzD%k&JKc3|6 zs3l)3*#A;gfEDb2DJsAU_P-R>J}TJ%WnY1RQsr4 z|CjyOmRup%5m>?gm!bl!VE;=|0amd8rKt8%!Tv9M|1-I;HDp&%u>Yl~04v!4QdEEy z?0+e$eN?djm+MAyVe5!)1^Zu$3b2CxFGU4d!Ty(`+D8TZzwDLgC&3a|uweg7Q2|!4 z|D~t^E7<>1RQsrC|J$v(u=Pa9qWv#H1z6Gkm!JZyX#Y!4(f(hf`i9DO#a3^9${Mhm zEgy#bf6trGLp=XKnyQW8F!mc>HN4$WssF0psr!>|Ot(z?VeK}}lNt~6H|EVu75!~G zNSmp9sm&kvX`jpMbE5I*bD$ybg!I6W zg}@aBW4#|P`2$;D^;95@DIoWd(`0`rJN4n>;5WHqkoRD~hgSqbBEIlY(1U&fFhK)p z%nPX)9vw)ZRuYf$r}5&)J-j~UmuGL<3$6(~sHgt-rq32fdAlMU=uA{tZ`va-0^OVL zmluILnPv%sK`tqI(r(cDO{5pS^0_ztxj2g0?R5E|1NogUaLMuAmGPuq${^96be}Rv zRDaq@knjYVtkMglPXQ1=`22-S{Gd2$f_wycHv=aAKOMs{mU9H*DoZlh;U$HN;lW^c zQb{}*?C=Ugey~$Oo@^Q}9ON(9F!+CT@)yNXUmKaFBEDb@Qsa|3icP}>g7V|gY#J^E zlplw3r{RJ>z=8fHr`+7>4j5${VGy*%y+vBc@C%8)Fc*Zi46hw`x?KSnaALP900U0! z;{?VatI$rTG4)XsnVdQJ=M{e+`Fyjd!Y>HJv8Z3Uy==`?0LQU;7ZoyG)5 z%79V6H0CsFB8xk@#n_w1G)5bV%3f{P6ltz%%^K!<)0o3ZMg&;dVFDu=5nyG9*^4$3 zjmRRUzVv?RpSYLBJQ4YAar(`nNR;IuH=Gx4B_I<{U;1|0LFm5pZL)(<&h$P4Vvtc> zX#cNPIaRhhtbey&vRWzp)c;+7hhC+N>ulO9+Vz@G zYWBiT`)T?w^y_H{WdCbXKd&BD->CX3Fq-_sW-!NNBWYB>+1%V$9IdyqzVk7-@(Bh? zF6?H*s;7D~*MYFsL)$WaFcdBhO7l>JY{A1g+>^1%$e!-WSY>2Sb!RMuy+Ib?oXMC$ z#m!`NedU8+E0T)$k6UWE>)y{nitlg$G;t~EbNTIEipcqqc7})^i;eZ2YT~o@YY17;AnpaZ%b4PjyjXUTM~B> z&B-s!P=*1t14MN%-f`!file$_Fbraln;lXQ3)VMuJfcNVUnoN>3`vJFl){h{mr)Z) z^qwdq*ozqz49z}J<)YE=ZY#PX2YrwVJjglxT!bW51%Qal$HgK+Hi9nXi|IS&5T3r6 zzC4HU)P?jV0uRAxb0B;+eG$;n(P=yKi6SkBn<1(&2!n5~3+93nIN*XguLKUbV1@_| znE7(btv`JZU@&bP^OL)~iqkWX`+4^>#ChUY5^u5erw0`QqWjYWiU3h;I!1uNa*eK{SR(+W_${eMYiyW6(K`W0)JVKl=bbr&`sav9bzqU&ADa}m~Y2QqLANKxf>g}-i|3&q2 z)z4LzCY%4${@a(qY=^uH@UL&WP+pu4yc@UW(K&#@+J5JN&*cYCsxO0=5%O2cysGOy zT70Yt6V;c&%Lx_1qJ0^>tWXgw%A2VqShzZtS%%(B1wfIUscO}{=k6(vx>{M}<8ZT{ zFv~jnVqpyA_hz;#1Vwu@TNHw#Jekb|3Unp20EaT0VA62GD89(OuShX3%@d|5v0(C< zFGHD)bA?S0Wj4$eHgztuo?wIFqO{CI8N5)D_dUG2_Q8KHR?l=sxF9UJoPIwW_J9Qw z_WIyPKjP94W$<=IB_YB0fLARl2?@Rjym#>czx|?!V7bg{K*Z%Uj1fP3Y+i9x*#z-v zoO>vOaU2jb2eWV_$_1P*FO0QZW|gvtG?yt?7Lf{ORuV)q@+u)!PX;e&Bmq+})Ia-R zan!im7mh?HO_iPu-qEN4679(>R|bjd&)`jsH(|GvS9;zIUe?H`f&at0ks_@?bGJ#n z&Y+ttY4EN_C7@tQgI6^w0R>AMys42-ZZEF@eHpx{kzZ85l76B{17ohLqF$c|heTfn zZ)a2l3ycN4l2H*XFc$D0M*dz+nPu3Y!OIshSW2ambB~$n&*1fo@&nQR8N7f|ejvgA z|GdifX4_iG_kRrR|FoqXA^=j-mCkAE~%TR{YUK<%~v%p zi2lEu*-Af7pP+sZdG!~n->nVmu`7;=| zcRNhMipaA+a}3~c%F@#(b{1!~)C>pN@iYj;qTueg;MmW!Dgp$<#Zg6oC^mD102yQ! zohx$~aOy!t%!k{aDvpX;LnI&p?2*ART$c<}uPbv%eiYi3IVe90)t5OyP+-eNK8bM| zynB!sjH*}vbkA>#qZlDB8M+S)e7NV56<5h+@X|pA5y4=@+XfXx1cMQ;8N}fa+^R}Q zHI%{o1$pPjD~DstilfG(v5@F?hs#>wE=dSvjf@ORz>c; zW9D=QuO3tej6R*gTL+Z^BliC))rVEK5u4fiChL03qn6|5Uz+bSZ!&$|MLHoo&AQ(~;xO=7 zD%qwVaDu5Wq)~v%U>MysQ5hO4gCTX-L}jSBK7$!)?jWZ99IMHj@xzdh%L?X6^Ph{; zw~u;RJnX~y+~~F*H!!@JGYUaL?>?;%6!dN%fdUVk%mR#LywGY|N#}mqKU5_D=lFaX ziS_wo=Sc6x=nT;t8p(K+N2Mc~e&tcAaE2wQI8rMn;S(7*G@y;3R?{O7%qvb0+yf38 z2(JmE4S6Etl9NAuBGV@)f2t?rB>cgemqR|D%qd`xo8PAIzwLZ+#Lv5~U0%-5x+V?_ zdosPsAi*m1q%ugb3OzxPKsoYCZ!m+2X}Zbar|7OOGnm0tHFJPW4`wiV%^V;T`+uYA z5tZ$YwiVWoTW_)a#FDhEGk?w80~r7=n{3997yI`ah)Kq5F4TzxHMAh<1_Y z0nHxfS?~dLGuxS!3`75d{ucc({SLZ34{CLJN9+cRV#t%I6+4pjN z5jH%)PiU__&Hi544CG+r9Rn31L%*MOMEL9ibUE!A!!S?m#E*rZ+%WOob zM8(Q+sNK5=*s?KuULw70Y*}6+wRCJL5&>{3TXqZs?9izW>#tvbsz|f(_zD-ga@f}g zOCoj*gX?6+q1iDEtdkvwa*tt99mzf>r`!T#7*NOO+WQ?B-cZcN(!`D;3p@TKZz>ZQ z!?-%d@aVu8hSw>ENBPGv2@apzPXT#)#xNHSu5@j0j^9%pIrJ~j z7^cNh011Y8%#fo15)AQ}EC&NuWtLvwm>Ga@vv+>^r;2p=u{mcF1`YL%nPdl{`^Jp2 zgHX;f0|EJe?7atERLA;0zP-S*SWxV)y(@M^_!2K#@?Iq%{se(yD~xxde!{oJc@pPl!e^UgUl^Sot_x(Lk` zWmI7uBn(q_cT{}gJUL!CnF5EFM(7jR;ePty;P4QfUy27O%BZxVI%$+qVMBG2NTZyp z!$oQ~Fy=s`3~Q@}hps}ak-H0L=saQ!(e&M01C7!m6D}QSloXk8$pE963Rf3_Sz?SL zysVL@1?SyQO)sQ;mEQQEFG9wm4Kd;Pk)g-dM8+71hbw0KM4Kv<#!R1JQ-zY~>Eo$F z;+V9BNlE>G4bdQx<3dMg?INwS!y*TrW{t+hey6>+-35I1|1-5oty67R`6&NXCMcDP zuN8IW+vM)D6S6+iKcoi9LrIFnNxWL@COVGAqg$$l)M*>-jwZgj_LX^yDq=>GbtuE5x)>b zA2%8g?QkP!Yn{^J#`d<>DTyZZgjJiE=icN4b?@4t%z+HW+Vxjd?E0IzMTqdxbSF^vwY$V zF}jhlNiiXKw8D%e9n%)7q+v#qjA;v1l29W#4T&#rE>Z)=7|B^kY~TLq;myLDDE*?y zfv^1=#p72T5Gs4okARUc8kdCnwolFW$Y+COi(mYJx0(WOO59!*Rj0Wthhs8~mI4rQ?nD|4sdp zamIR7KYpD54f}^0$r(#F2s_IN|F16EN#g%H?Pjfq!zl;7=BZ|irkwpc>;brCmugp4 zy+-Y#+Np9^9#{5J{HX|6DC8^T?PZr`?$U3ic9K|$L_A+y8w;`FC(=k>wa3n!&-vrX z)k1neteguptsKvKkw)^OJsWA0Mj9h*r%e)J45!-2%2ni+OmQ~i)W+0`WMWg_>6uVi z6I-7s{4z$InViotqz?*-#V*8#I1(Hhh7WUyi^CE0;Ys?CcudVPJrB_t;=)7q35oIH zNzr(Wao2GEL7DK5!ouiNM0Ana+>p+)+?+HYd3wI9v_nu z92BrgrLu~un0g)8=|H4c*sq9HNCS<1i&%vuz}SbXz%ytO87k7)8*5;D&=;QX z+85GL@K2f{CK#U(pvTldUQc#Ikw$;pX~R3-UbfSQcf38RHnQ3kxh12Gepnfcg1)%? z_1;1nHV=AC?r2>?Fh0pT2B$6Kz*9mZ9=K>@4_oTPsdT=!)Q6+I-Kjo0ctvl|Xd^lC z$Yw!oJbdK5Bb(`y68^6frIYjjYH4?9yEy#r5T$venW?F1zsug&?uMP4dbaAes-5zf zvY+CnVz~UBJY8O1_MNPq^ptd%D1g3?sq~BZ)6H0at_> zqH$`9EX<^|kt%7JNns;Zl2DVJs-jbIks2`0B*U86QC_+0)Y*kJRG#tShG9Bf@qnZG zQTYQNc*x>RQX8w3#+f8GRw;=!iK$95gtjqkoQdQN(xDWKuecSKmY1P3?y%Z6K5n@gSJ#DjWd$GL0hVn#2QKFAU%7|MuttPZ5)T^c6Lhf%W=IL7t&*i zPoc0R+(a9K@uB84XhmMb6&=KgBbi_0V&fC>b34L-qs~dBbWb-dDhVH>%X@=Dlfpyv znAVWhyS8!c{}Vlx;+~HAf1;<7lv>8ow5Me5_+K9VFe5pAh^_N^O}=|xSa&JSb_fo` zw2S3DkagZjjvumxDx8=?&L6UcDx8=?4j^KQDMf3*C?h$6h`qEoN4cc1$g;0K0nZck zSXmu8kd#ai#5){iB&QJBN*yl0h_|6STz)}LBVw;4E_!1|8p(k~%sut`&fD9C^psfz zWa(KYc;q6Dq6sWlj8Ch54g~mbS8y{>0ERn`q2rxcmv69!S7j3jKy!W4l#^!(|H8r+-#im85QWsX|qUVOZuD0`ILM`9Kod#EtVWz(vgk^=5C56by+#M) zcje)oaX4>sl6YA(!m-Iol4a2d$0jEUmDNZzv(U}b+vI|WvphDrXVQjm{+Ypj^?0Ql zMdy>=rY1!oR@&RtxCq2b{7sFhSaqQqp^B-YLef$!Ry!x?Lk(=6cGKyayXYF>KU+v; zRZI;&`2%ScQ~gi=KvLOMkNiMgkcuj%x=cWg2Kl?tq9y4KluaPg=(w|1*oWE(lG&5z4CXV1s#YM zbRepJ@&~vJRX+Ix+=a@l3k9f%HC4ioFng22OPBg(3u#OEUbz*{;bKRd0erV6&zD2XwZry42kwuMzwWF~T0OA=Y3L{D#BEi9KE&ZLUh<6sOudO0dKHbjU2 z9g{E&yK-1ka-2Rm(h#Bx#;=kfPITN4a+u4%-47}52RZEJ-|mMbMQS34!6eaypMP&$ zVogrC7wjp|ozZJ(AwA`m^G4zgVR}*wn<)5mV@;)Ps}VotrEIGaKjkHzjf@QeW;zIb#=IkPXMg1$qOUDg;&3g=^0lQ(9IhoPzU=){wlVBD6Upy2kf)Rs zLiI1Kq5O~P(DG#COeD?s-%>9fXCm3Y|CV~mSQAP5HIS$GUod_@6M4&NRXp^=ss{f2 z&%7ia(fB9~9Fvd2=V5#!>t`bGGc5wi(talL=F%dNEa__^?I7pCh}%c z((Q&-x1IZE=EjHZ1?i*pW2h5?1{BEqM2kc=HaB^TXpzXq<|gkBCFU-4oAfbt!=g#O zU#G?o{`hC+?h=%Qm!DzO*V@O_wJ79D`E?hhGH+f^R#0B5|=#uDv zX5Q|2>WEE@$94aSBwEwo)VYX6OZ%HT6_IF3KT}64T3zS{>1XPIC6lGa_hj}zypwT^ zCN4Y#*IF2&=yK>)G?MXh=vg$9@p9-vC94bD8Usw^4VYw}>sh~K%YSx9`-bBhve2l} z!T7zxEZ|FCd|4#2@%&8QcUdH|@%&6)b4ljsLbnOw|20K(M2?Fb8)^4z2RLLqq&k$< ztkbl&KV=_+-~TtmuDW`Mx|`}x)o_(mxj zM4Jj{=>CrbposqzXHwf-E%u+{v}l{F#r{*As zd9p|oNm{m%Hff}Z6tS)zH-8Zg2{vXwpP6NYna?-tHbeKc7)PZnV!$;!4- zCXFzWTxHuRlZ2Z{sxmvgxv0$;ZXzdsadgP=LD7Y@-hJ%2?L1kyiJbRk6J6496FKe6 zCb}eHCUVvnd9{g1RKzw6HQ|H4c+T_eL0|8}dBXfZI1Lu_I1@g%%NClXp(cC`mn}3& zhMDlGT0D;{QtJ`^uhG;IInHvdtX;2d<8aiWzvhl+geF+iL(>)m#h+pe6kDL!0>u_6 zwm`83iY-uVfnp03Tj2k17ATqSq>zw;Ic2Puw?_y6X40v$lIf+bzmt|sFJ=9mq(pj2 z@|`+g+n98cY|h>Xfh&W`6%ILkFZVZpVNjkdCY|J$+fJc0CY_{|+fJb*I-O*Zvlmd< z!lbe3_^dV-93v+O{{~*lej02LSQ8YPQsf1AzFnG!_7~ja3Q%S2(N? zIez2VN_$!xp;h636n}~>P;7x>3lv+R*aF2CD7HYc1&S?DY=L466kFh5ut12Sv{)?` zi$qGLQdFl-nKBjYsMRuwl*@6gk}x>xFYfir4)?0oZ^&J1Kkpv?pKp)ex{iH4y7lqs z-Lb=a|M2th_b31F=h4fzi*M)mus}J}f|Xz`W$*`Ukzy@-=QRm`ck?)Cdyy3zw!E6MTRQHscg5PM1Rm2ACHeZ-zT#O-OGc7BWUIb4yI{Yc02U&zO-WssD{ zBCW2a@GnI#F0H0RkH?;xj0_6Cl2466!G;k==DlA~{;wS&a@>eB0NOcL(jLYCDE<^% zpx6S%7AUqru?31PP;7x>3lv+R*aF2CD7HYc1q#IiJr(6JueJJA!yn9UWs0iw!~fN^ zO^cR|Tv{}0*1VZZ(>9G3lv+R*aF2CD7HYc1&S?DY=L466kFimv%ny61)2aN!5^_$ zMiU!w3I+Y(JP>JnY5O4mAZ>%jqEwe^+_R$(+h4u@g1exxGi`2g!@W#-yUJa=4CHS9 z(WSYsxD|J1|JWf-+yBDdx;JlaSoijFEJp13iU@1v_{y=C_L}w^?Eq~Vhf@wS9J)Bj zHNR-aYuea9v)^nVZC}ssmfdo@A$H}}=hSo5-PLORK7ehiSXF)HEoFvskg}}elpOpmc!;>1=!|G4y$blltDU1* zxIW_LP;0oHRotzkmCJBB;~vfli{HfMoCtp8p&QKQ=x_dQcw^#n%4|=#zcq}@*?7BY zUdC)}53jaXLhLcE@z&7*45L~xg7t$PhKiJ zRS-^uw6PMR=5n$eDh^MY$>kjBIs{({mqXh$_>>S=DETPg3GzMVg0f`UvoKI8fp8=%5ypI8hhVe zT?IET+tN{`rXPufHdczI?McsCSoN$5m)-Z=Z|i}e&NoIWAU0Dsb6LMt&9Px0%as5OD_&7?Zmp$Rd z@6|JJaoOs#3(D31lFNR!Z`R7<*re&Di0_T{zSwgRV7RUU8lPUfc{N;&i) zuE^z-rWWS1$$S^}l*_@BP_>2rL`WSgAtkvS();mdE}INw6rN)jJtwyvm*cY6;bGkw zT=pe8^$GI~5mMVqNC_^-x9zVj*YwA?do?@>+~aaG>h$UzxUL}KL`W?wA&y)QwQEf- zhse0Qn#&=N3Yvs%P$H=N>BnIBoYhl^)rgRqRze)OoawE*9$KBt<#Z;?fcO8sgh;$< zSP8-F(8p)_g4ZF5S9L2PcpWN8NI~n6#H*T>5WEhtMap`DE=V}BiOxz0UWdq1)j-1K ztc+>A`9O0nhpZHHPJK#9RVyKQ9V$pjLF zX9X)6cr7cNtC+F#C+^|T-rcIV%}>B_q2ir<>fvd)GEi#?FZ^lo;p?fNkl}14121F&WT^Ub*>nq2 zoy*=Dn(;y%Rq#UQS=LGhUdN&jo_C!xfXl{F5A3$P`~zg2`XqE^DJW}121DU zc9NAJUz1ZQ`5p**TUjk@B-vn+DZmq#OPk< z3oaW^MUU3L=CbKh9QX+trL1J&HSEZ?Hh3=MvhkGPGZoK{_%2C${-)qH%(JAG47`M$ zUye7!!?^6(jmYj2FC@3WI@=KUtDq&!vxJolCoUVWoOp@ivgz_rmCI>0#&Pz-Jq52| zo{m;B@B${Rg8Vh*_|#~F{>mIUe|A-iM`UBT;@r-PLY%kq^& z_T|&?q=5G)c-<{{`SR3Q$-t`@xhq?Z!Rx8>FF${a`!$=~FgFTby*%x$WZ=bXWYbxA zuI6$&*?rfo30}0=B31C>D6rpTWS~Bt!-*d}{T7 zLBPt0-&^{Mk@mIiuGt;6OSkK6 zCsF^b9;I%s%2usag{Z13FXQ(D`YG)dhZHG_cJjaFTjbI5y0ROxrC4zBr`Q6;7Wn_4 z1-!!E^LL8LUiiPw>yUYcS_#3yu>Ur%L*_NiO2}vAb;!I7Rzf}_uS4b)VkP7=@;YQ* z!B#>(Bdy@GOqzvLOvs}L*~`r zO2}vAb;!K>Sqb@!ybhUHUn?P>k=G&f>SHD3Gx9oQUcIe^d`4b}%*)?O$Y-4 z3Hgk?4q4ltL*VNjMNUPS63?`pOM=k_42V2@)^z@saF>(A)k@mA@%aM67m`89a68( zRzf}_zeDQP$x6s)IC!L99j%0XMuvyftAmx0&q(o*dU;t1`HUP7sh6jfkk4@PNWDC) zgjg1{|2WG->g8@F@dzD(4m7vT?dUO zS94agQ?o>qtO?P0YZ_`w*gv(uXurok!#>?U&c3(3t9>PVk=;$ZBX-~0&9+Ol>u=Z2 zPG=`m-&LPbZ&J_4UWCDFcXds*O7%dMiE9ZKtH!AURUK4yRT^ck@~m>Fa)~lo8KU%7 zHdK~SJXKs&>``PW(iCBeZVDHLlRQs;MULdFg~k7ANa1 zbCp$+iKI8BN2K3NXG;^M{iW@sI;l)@S8_tKNittDN-|jDE~zO|itmem6>k#H6ORxN z5VsRo4#3QB3X{O=~EG6*QQfa6zf@}H57QWhIVpKDKB$}FI{##i=XB9tmO ztUk>^DS*#KD<V7}d8%;X6rbO^H0!{?%Z^hF3E7lD}X|BJ_Z?J)26D*i_Wv78@ zQ7CPL_LnwxMB{i1HvQ|jrG`#GldI2o^JGI7#>QE&;}z~4bDfPQfBD5aiHXP@3s|1! z%TuYPR-h>*D^(dYkjNZk!F(KO3=AiMX2$lfY%W`w7y5DGq zroT9Mc*_?V7>l=H152p#e(r#bnxZo$5u`FPW!e#rQ4i2u&=2xD;;><@=4 zVZ$SkY0|Ns^PlN377N&`D(Q!GUB{txbx;4?S?(B%v0#DrKU}Oe6Q$3}X_H%mw2QW2 z%Z*>odY6G_IIkG9r3uj&Wx;N!Cw0EG1%U(8ATRLPQG|%y_DtNLV z#s*ukmw8nVjya9y4IWZLw`vo{1_>AvRcV{neqB78x7H`P{?<&44YXkGU%sfYXe^rd zeB+Zl`^Ys6uwVhZqo1dxq4^!AZ;O~jWcIgU$)m5I9zFxjpL=Ox+FjDmeim$bn|>RI zE=2RMePjB)S0KjvTCiX8P8ho`LknEaPJZqq!dM>*c73PEFxNF`LGt(!eOk=MSZ~0@ z(vd%U*4m5~WG?cZn2?Jxe+yQ#b%QFUcB6&Ws)@>a5ShI!Scm7!UcB3n7RHw!cPpX< z#(G*X!;enq9-Kf6_fP!sX@yLT`B|_jNz*r9I)@gO>6Niy9O+9B3%0t&+Zl(hqD7%| z8jkWMn6Cvp{4^na>m9Ucw_Eog?_^-Cy9K+u^=`+ET(sDs+uyg7{4mxHFo`;0NVOR+ z(Bi-&Rcn_Zed%h!>Nh*}W~>A)-nMRMqb9i+^RZw)k2_ro)1WU^Pj(J0MXtSz1&iGL z)Al}P(3eA2lrd)zecl4*E}>XiPV;Qqu7REXX826Sw4`Y$njJF=s-H6N%fW4-3!F}Z6(|zFd=YbgW0_-K72M40| zt}hZ=K5)mFCtxq=oLmaEt6VvD@@>76Md}!yH9OB z7*+B8wU^%-(yk?7cd0#3pz;Z0TREL3SPQ^zQ=7F#PJf?06=Nn?bHHv=yR1Vc{ye+B z>q3Gx1ME7z_VUPX=$nMx5d>=rSQfp$X-Il**Mc+C2<8IV6?zTX=GXo1_uGgF)&#JN zte@t`XC}X#>_@Q1fSqN1G2b4X(OF7mHUcb@=`)|pnys(tLfSP1?1W?Iw5f9w%}4fn z#8eI>SOdTg2UKWOz2YVFkCjS?#?rpj2W;QQ2j}*D`-OR7o9I%DM7Uk4dMc%g?lrle z-b{GCafla|RTqB0sr#ebm3s^_FHgKzF(jGjsRP*D(ev6jl^-+zGP~=%C0PWkEnwy) z9hO%r-SmR_OxBu*gK6Ju0k#EgAF|-`Q1i8e`&#(yB<*Sfwl~f*vG(20=D!}Ub2~)( zSD^-A2OaMm9Q3N3`KjxuOBoFbRvoZocQ*R1O4XQOeXoc*T$5nc0AqGcMw0qJpS+Cc zaA^e{V9fr@k-Ec#va2r>tSVq^-1eao$HV@r zc)9A2l`{!e2{3kll|s6dckPGWBUnYi*nPPY)wo!;xwAMKV-)~n_j3zWCs}6flS0~+ z2aG)j2T+4C4xVKWkapz&W6w_?)Z~!&jKTE!oB?Cc-EGvYS-ddUpDdzmNi)a9AV56Fg9tt`%ve39lW@NKH1a1mmHgR$3ih&=Y2?qgleG9xw^R-OvrUSMe5Dq36FH97_HkG!Ij=b`>ZU#>`%8Hr1OMe`vQnXR zZqr6QyaUNDL272uMhZj@HMI{`j{|y?S-T@2k-D_VDc1Q5X2} z9|h{_+UazG`WSuG=!Ecufbft&T^HZp9XogI)sO&*`uI>o;s;*`$41BLz=+ehUkluY9v2@fj zaQSqTu712>QcO@(c#PF>gy`{YK$_$mC%cBaP(zF%ULO@cMjsR&6`nX+uqm_khp?q9 z%nCYQS->znpoS6QAqHZsgwZjHVFr9x5L4DmDWYCKIJoPe&x{yeM~@*0oy14O_}d8`1lVJ5<~Fl z4jcAiQ~trC&Gf?(4f$_wYq8ciNX-Y}yC7c|_<^@b=fB{!3Ih0V^Xaof_}>@wgL;#( z%gMQQYq7~$xGBP8@U^ffG9ccNkQ9}O?}`t$ z$5>4sg3*$KBJd9q-k(|Wo93fG;9H02M;F}kLy&L9Po@R8{P+*@+p^$W`@IP@I6R z9V-A4x>Nw1uhaQ|@!k@GpDlho40zp*Cd(e3H|tFrqNa1=lp(_HAE}SSD@{POA>2R~ zgamT;fAC$44{rVse!}1TSQ}m*^rPRuI=CU@M}&{iN97w6E9Cw0vFht>XgPd_ptX5q{X|e8c_mtIGF-0zRM071Te z!50U=`QR#r#`!nubU*o_(g3SV|5#JIda2bUbR^Q`!bkwKz`ch5R(;S}fcQQpU@Akm z_c2M)L1f#Rf7uH$Bm~EY$1y$ycU;0pH#UY*aj^+W@$Yew{99)0IXU0mX$^hslBuYI z=J5iCSSD6F*Qg;*=>az4c`Y#!|DTc%EyN?dfrKA^FmxX`PKaSxcnqbY>>0JINBI9V z9PW0!>3GEPd&k+1iH`m8djNHgGVNXMiQ@Qwar__0ev0G&B>&?@as0nH{$CvbxA>=v z(e{uZ3IR0<*_&@B+#C)#cfXa8BXVcsj zNc=`DcdrZ@7?XSTR8>ETl<@yFv6IO0hT|c}wT|hIv5vhQTRN80zS3UR{-Rx_ovMw{ zcGtRSOFKMwxa6?MVVOg!gTcYup@D-|^9X1E@6ddO-w+U}@zT`RsO=xv|7O3%eu4cc z`$6{Y?W@_#?C#hdv)h1k{}b%`+O@H(q<*Kqu0E(v^sKQ6lNKr!mM1EerOTI)t zQ641kD6cEG$8Q@rCEF%jBpV|eB6FA3kSV11q$i|5NasqEaNd7gX%(qha#M0xvQ9EX z5-0JOw33t;zZU-~-Y5Q6JWU)a_7yk9hQOZ+sgPvC-KPoKt|;VrQp|q5*^yO9g)9^9 z9?dXxLLtqgqe?Cy8I-AzX2RX0spPpRI3e+{_;=b8@=Q1(UoPm!dAoFrXiG>m;qKC; z_cciW`t&4e1Z@eKCfpsGotTF7o!UhH?oUCu)wnw}JwFfy&dvPA={gk)xh9;DhZk_r zV?An1K}a^?Zqr(VvS?^zi2R#g6ohOO?iS5#e2j*aEAO-UA_bw)fV)X6A5Nk{$K%`I zyh}m2-#8(^Z{XyK8%yAPA#5QiG~jMLUEfMJd^}{tmBt zl=+T=P-?(k&;DUnEp>a;_ln6?oJm2bHQhqn}Serz+I);m=lrj-1&3&B~uVe4!A#P%26xSZN)9u&D4A; zP;3zCUEps`&kn8^%HbqXY(A(w;Lh_|pzf&M zc1Z^cLg@i_j=#a$FYdWe7Dqv-J>dAfOw=~BoxiJ&f>AJ@XZYKsP2I7nBAm2|bw&bs zn$I9@wcKw{U3MuE0G{FpyM^1E9)G{4EyDri^F2}1XZzeLJ*8k6fG6pYC8H)Qkw=U> z1w#QmL9ZRX*~)$K;eoUzlp=83Xot3&U+)rzlgh~W6(-mSqy-GUe4g;YS z!OVL3o%xpJ4ZLW|moCe&cg#i=#UQp&G%=Z2BXT zS8G3KY#;@p9Kp;+;{wuTx(t8L#6mrSnT_K(RO-@S=I*m;ODIS%vpYb8oNs4cYL-Dk zs7Nrgd*>TedDiYbzm%XLlq8thUDp^@yT9bu?Jg9AnglbuU-zO~gEcW)R|<9$#?j2~ zbYE1j(zJn37E`b*fb1Fh6E$iWvAmj!f<6GUrz;M*9Fl)qX9)$n0GLS!IT^ZpYo~!D`m)}3f|hI+>5tkv`#eZKK*e?hkj+2K zQTr0Nul?ms!43ejnd?4s|8nh9f3{3{0m$aOX2_Ep)HT<1qu|*Y=*W&o!7t4-keOua?p~^?Y&T!RbFe-u2K+66wGW@ z_zHF1+%I4>yH2Q4FthdK2I_vM)7If^RcHrd*-F$9`Nv;N;l z>Q$m3lqs0m>bD2=8l?YHKAD10r(n*a@&2CL7R4}s@_dC@4_tPu8vhjpU z1v6W#kDQJ>-fLCPQ4p#X%xq6G5DhxtEurC33PQPpneApKpdo`&pSm2UAk-_Eg?#d%e;M}0 zCsGg!7R+o1bp!=^zIt3`GXqSs)AZjuz>}n3;8${vS7Q~Z6yWk1ITu#8OSiH zdbP9!3f8lLboxGkh9x~%(mGm1dRrGjwj;iaLSvj31+XEjV*%;5LxaL1zmk>QO~uv* zknO@rI4>5^J~}1rPvH+DP(v^ixBNlY_9K?t51@N z5voGVhjdHV7{#Uc?%Xi}5ztb~kWI@8d!gYq8vJzS6>Vv$Wf1BBhVS|QRHdWtq-7-# zo5L3d#`iyOs<@f9v{Wf#Y*$&<L|R(P8Xohd zaHFM5v-QiVPD@>bP!BPB&ky348>vo9VZ-AMF5gBssg1^r>NBz2Aga?++3=WB5mz*} z)$AePI8&XL(uOB4jYnO%;e*EhJtVbDI0Y@W4MLs8xZS(WG7$xVcbcDUZP=~bq8Kzj z`P(z)La9#Ro#rQ$I3=SAT`EPU#=Dd21m0{rFr9HJMa;OL|zkR%(()OM6J0N=r+gNiIlsNxqhh zmjp;WBsC;*{2s!i;`QPg;#hG{adT`0;Zt!EKZIg6CsY`^_c%S_mv9Y!Q&7c8{1{?1 zkIr{TQM)<8D?5B&j-vb^VpOOkbo*vh>pA^#1qW`+k0M5eT0++yrTX43nMhH77%?hD z6IxyUxy7`t+bGJ9BSzUcu0bu!$PV7EwTGg-0|BG#&I&}$2PU<-b^Iblc@F|c*}Yy4 zHT~f$L;0p6it;W5jIyUM6S+9OtFhtFG>Y;*1dOuzU@B@lB zzn1@Vhf^68<-G_PWpn03RHxsw!;dd}QdlE1z_#i5_c(NnHnO<)y?@GX^;4N^j=+ZYz zwTZUneF+$4`;%#?w151ajss|)Q+a0sMg<1$xVK}AU&5(1Qh9FzM%fCMR}hB zMpw7v%AT39&3sk0s=oABhVo7YvD!R-d6QSQ`iwGXUN0wox{#r~R{^6NSDDHzIa|v7 z^BZ-^^`0UuxpXRaD-Z^T(Sz0c_)Y5aBh|kYy+kiTrKiMIq~o`NyVhw-2q!P~M|}QGQ=;&MY&1K)sC&jbRHSM)@7IIZHm}r?#6Bl^hKyzt=V2 z-?;bD#9gdy6rlXB)coYFxl*h742=Yo-#?mPJvrmOeS|xe9091X(~~ToxYRq_g`(kr z3VSl;#ge1YAtsr3EZ{z~yZiuh*zR97_8Ge;c+Ubxh5Er#W%ZTcj;Tu}^R5Mq3OkZA z-}H4(bIqVA?_0pAuy-gQ{gva^rVQns3m6qv`O1?UP6?fxOWX3^1&j*ou`c)RGu>>~ zXWqSlQDNn*;r^oIlO3$jyng|s!Wvg=bNtWK<8@Rr?_j{Fuo~6%=(EzeE{mePhXJE( z2FynFbBw-6x|X0Q?_$8HP*K=ucbamz_94{t z^qj60Zqm6XmG?4WRHz+n@oHg0pINT7E$?Q)=xgc}xrOv!*Y3dYkUMQ^Dup&Y}g6(af{` zcc+ygev= zcg(z|c;GPzJ_mOZ-5ajMr;s#>_%n^_^kpVgtKCI(SGgFO2FOgVC#lZv7Le{ory%3n zXHPoN^BPjSSwOmzO+?dQ+n*a4>P~ca6+n(vVIDx!d-yKO{WXh#J{FMfo-@$2m50s; z{E$JwE&#GI9gC*E7_VQkkb>ZI;Mf5mebH3Eu^uIV3M4JT=fJUw(Pn7Mnxk8twz(4! zd=4Btszi&XNa7ov=$cGG@HueoF1wE=51A0KElNZ{@HueoP?bX{ZC9R)+j1%vd=4C| zZe4-WobRD-c3Gq)_#8NP{L2J1Y2*;R=1`sBbAX*r>ct@kUBf5{J_qh4J&eX1rA{AF zx~jj9hy|Ym$4;?ng;L#~E!!MLLGU?nFX-_%HBrigKTfs|&mt|s=fDYPG^8wZk#EWq z5fFS198I|EBSI-XA8xuhE}4MfbKuxXJ^0updAau0@eGbZ@HudK^oXA;D0%1Rs{6XS z6A*k3uxCq-+I9T9GCBf+&wZaEI9YjPd_#C*u>A^{Oubuh9J3jc(S_$nC_#9w=InM1u-0FU`CHNe;=k$1}+Gy`X9vsw=yGK1=DWC8gzFvdu>c$5wo z5wQ&|AUy`_DjGeqW#?I13N`@nDGei?K%*Y)zj#`eOj_2rfb{6C-Dp&>-mms;s+?lPo^}(ONht_E2afT@b|?|WEexnHA{_#s z1IL(VeU#`fj!lyz0)o#0_U#D>t#V_NG58!f#%>iT!E^JubLXj8@Hudd7e7Vu2QPl# zZ3z_%J_qg*o#U^gcpumEwQD95o#1l-HZc6R^D4a^6$?HGj=5+TmXCP6~q0fn)xhRw!cW58WpDP!N0$9PnAGM3MWAN#J z?X^0s#NnpHA%`^%Mu#Z;W&jt5Qktil^Z4w)uQcN{LpAQ2>Kd8-ZTlnk>+s2cG4_7; z&Fr1*p4(lt+ikbRZh~E)ou^$*I|V-X@0j{~^-Oh~x)+Z9msRDdF01yama39fLHN|a z+L*%LSDsLARL)k$D|;(jDa$EdDz4zje}*De5u)g%sH?D(Kaii4Z<5cIC(8TEUF8+< ziGNpRNVY4&PEs)qs6K>I$~0Hzos}~b zs6NC|%75G5>FWy&1*#8$lq!=tUfll!LxJi;B&FKzv60dj48?ZhH=IH!rRFcC7X7_C znf3~(zFCN+)H&sMs_jA67O1{JuTTT$N(V~kv9>_<%|bM#@!Uaion|r=s6K>KnpPWC z=2!wlf$E!ucuI4pp}jVqW++g7fw-ZT)iRU5*dd~Q2C8osA}X!B{Jd@TD@0MC`eq@d z(k9($%-i!+@+6@85L0P;cVB4aR(H~N5>S1C5~B72+x*7$U~PfwLsZ3mRAdd$SAn!G zP<^uyR`EEgKJIvzp+NN^uHxmg-q4?H5wTvN`Vd&@kkR3yF_yIjs&5t|E1fDG+fdg< zMB4(@htNvr@0vO`Y04x6)rZ(hmv)iAO%XE`s6GT&eEy6vBwW)`$w2iXy3%b{gIrw~ z*49Gxh46}R*F~-sO^CL&P<h|Hv_{EvEYXJ;@VfY0;wNRKRR&n zHHKO!zYu8|*loPqie)+~IShKm(s{tYz?usdkqSW>C~Z`2}~u zkn^#>Uns%sY@z%@v?ZW~ThD$|+4Wi|KTBQGpujrWhrao18kKCJ{6f4X@YoukhzG2# zh4KrI2z^|~x__m3)3z4MFGO5|%Auo6_k>Z@LiyR!wG;&%C_7bmc@sq~lwXLs1jpk8 zhSK^|)I#|M7e`2qFD3_cC`VBXm9(xD1+~mWj|d%818D)skNElpn80Li8o#!b<(F+qo3wIX^-9@Jr;% zoo>-acZ%|)AEQG2B`Q8tIakZ9!LxpX(#)6>DB5e?vh{mav@K8j3Cc%cVw}gHX{2K) z&-)3=hhSnJ{vLH(T8_5mi9be#7)BJ#@uMj31t2ITY1t_0O!+ZQriDQr36ZHhFimv;sbls|fSbniRIr2cI5d2awgX*hcV8ht7Ju}cKI zUfvx*Q2zMgF+-o$AJ{`jCG-9Oj0y)3kGVDJWZm*E6y+TP1m%w)9vfZO?O}tv6y-ev z1f@ZXLul-?HNTzEZKEjf5+Epl4Dq;$t`9Fch$zbY1TZQbL_A)-KhN#YZWQI60tDqt z5yvm++`H><7b(hn1qez*=~^_Q8VcW;ola5SEkIEIIN}LEG+dFfkJ*a%3t&_@ka*%3 z(<3)Gd`jE$jsb%5M-opwakfPV5gP^GGeA%pi0_Az8&7Wi#r~7DZ6kP6Uh>BhCy#VG zym8tRit@ez+*UZ4I2k!lO*&qJqP%l}p#0IqDeCkVx)~aZ^4q4)D1Bz4bPVZbjl#M>`Ai!;3^G6h?Hs94GRC}Ga5e@t=e@qtgJH9Jt0_Yq)JIH-7%^D+IN-;Yp~cM=ekKdN|A z$nslg|oG>%;Ck-c>-H+k76ul;hzMO%nrY zTi#cY&-FbuW_(cRsi_p@odpEtGYO`ZdNkj-XD>y0ZvjF1wQSnXpM$-)%M|6^1sG+X z=G|y|z{Ng&s&%3$?=K)Izm^$QZe^Dr$)hOmFd!(umKir+9@Q@`lcK!GfS~+ZW*WSC zxQi%;qP)uhqs*%=LFuX;m6v`kqA2e(ASmyyPv3sSoHO__MR})zSPky_u3MaIO5$1g zmiHQ9RB)_!>8x5atHxduCYZ##4KOO=UErM_bnp1;>`;pGegho96P(o@R(>;}>JAk} zdB*`p1-G(i%*h|^N|eGV;s42E)rb85rS^(;uQo%QstwV0($>}5;nV+5I&5;7>yYTs z*TL1Hg66g6ss?FRXwo#p@Y(hxsivtSaPEI&RSD%|eCq#?%Eiht%E8L^ zN}W=oxQX8@xJF@AL@9jnng6BaPjTk|PWe~zaq^*ZcX@TWOm!=u=QkxhFm(VA7GBACJ7tk5wa(mhqm_Em5o7afVHk&94OdrOb&QywZ6a}Wwv03gSqO)9y z(-Z}!577oXLk?rT0;bQg*>xMDv#Xq;!1N&)!Di;?R5CDqj?L<`5uMd%u`2?m53vfm zBAlSBb{a5!j;$t9h^{76juFXe!1N)ML06)EJ1GiGA7UAF6;sG43QQk@8FU4#MQ6w~ zVEPcvpsVNMa^UHi-2Zm_7tH=#EarP+2pGKgYJH-&~-Ttm_8)s(4Di9?z+=}>2qw?eHGDNcgH{~ z8JIpN1UTr9eQZsN0@LT%ZhtqTyZy~NiUQMzbRWtTD$@N=8Zdo`aZr{arO$pEFntJe zP==Dam`Vnw4^a-vZU(Z^2c{2U4#JEsigIaNVEPc}psebJD@B3nL!g5)vJmzh0n>*_ z2W4}oOVGB!^dZzinV?=oQDFKI>!2*MPaH*o=|ixCGEjRLiUQMzXa{AlO;}rC`Vj7* z%-77W2$(*^J1A=|y@pB#rVjxR%DAWYrzkLeh_@NUOvPu2}~af{-}rWNiLNPOdl%#sCRKC>oYKYPDqTSp2>@Gv@I}wsQIH_ z&C#qaFnuWcqaM-GtSvBosQRPc)G=99GBABexuc%gc#Cjo1(zX$Lm+B}AOdqQM zsJGmUT@f&SNE4)<_RATxEiiqk|D#@d6}uu}`cME!J^YQ6Xu zX=EXqNd~45HGniKu{e-Q2Br^1fHb0UBZH#A^q~rnMnj&tQxup!q&Ct>N)r)9f$2jX zAdSNOfG7$~9|{3!1ZO{M3rrs>0crH-0z-l6L((LT99?CSf$4KB>J)@%)aj5r)eB6Y zJ53o`c|;>t0~iWSpJUOkOhlty*~zpmFnu8%lSRr-G8C9T$D(Y>h(_67G8C9T$0Bq& zh(_p^Fcg?RcZ{zHq|v?m3Cf$4JxsCN+u zk8wou%xi`M(}$`+8qNHXp}_PxL^)cI8&{(4+iM9|V{nCY|RR7-gvW)Z;fp*|3|d32Drsh9=~9|{DC zzUjO^VE9lWNcy^%Zwm|`N(9MuuHaE%_)sHAY;?|#T?sIJp-7P0mzJjDJ_EytDnU9n z-B?>Kc)QrRj-%sR{VhQY8N-Th)Ebk4|CwbI@5QxE6b1foe#5^SZ>oLVazlgJ6b1edp6IDD z8xGGL!rB7=H^1dyk2m%7SFR(RGih7k|KO*d*1E;ajAecl1^#b-%fBLT+LE!sEq-Hq zf&YUSd%7gr*EuSKwgvuge#gHiZ+f`uwz_RDMS=f=k9&G%H}uPQOfv9)^E>`kc}CaP z37R@Cv@P&|@PHdL4$r>6owWu2k3{@&c_#I%4b!vO2m=3y)NoV6=|StJZK9Ha|05Cq z$~@CmpGMIUnG^;758m_iF8XcrRdEyr{*OfbYxB~#JEzWT#Ciq%AAIXGszuaY?^S}f z1^$nOSLe-`+22+CvkOIm|AXg!#;YukoquIg6!Am_PiUR*fV*V9+v%KZ^+mqKg;%6WDKX~nD?YLw5mGB3Q0{=&1{xy2Dof?Z;SHT<) zqrm^cr$4*friZ35%+fIm{2vLg(wjYb?1lAytS#_=@c7T(J5%*zb#`9?|3?!3b$YY^ zzJ0vm25%}E_&>x0<}{rg{;DzN@K`VKe~1ToJoquU-;mi7DMo?+Lp;E})1XmN2p0xm z6!<^H1HS0J>Cc%ckfIj;FT?}fn*V8k@FAk8h5rljfYyzaOHFvkOe9xvq!S=+XE4wG!*|19#o2G!lLJ_kiG$rk=E z6sXm-*B%(Tm$kLbyfiEoQK`7XHt2H71~n%h$A#Okt>n|FaB|hsgQP4F8wE zi|7^Q@Kg zhZKhzN)!nUweWwIFI66iGv{u9X=JE{|FdGGY37&ber;@+&rl2hzd~b>+2$uLeVW_t zWT=JzUu0!-=6eeoT<9rdsD=Nt0;+Z9tEs~~;{X@6hK2tNC1@v0j=D7x?{CSyVd4LW zJy(x0i4x5lht+WQR0`G?d11fx7xnAvNOfv9(vygFC zb!zFaD@8CAct4bpRUh7XiAz6ssuy@al#$iy`(?uVMhpes4`pO^6OLx=t-w&={ZK~M z;K=f>4JRg3$-w&|U#Us&TU+0(Mid3!4_QS`)2m+C6`-Ri@P4z9`_p`Sm4@ASWKa}% zKV;~%TweRl-en90-Vb>+tGf8GF{dx_o}CO;j@Qe%QZy&D<6JeHhaV zydQR%9p1HSQDM!l{kQogLxKN;2fDlS zn5FxlF%g9o~Et4DT= zBN+<(A3V?<&%bEVG>oCZ|G@*@A^FmU6C#EJ{|67WSBte-;;jq?{tq5#kH^W)qc<@W z_&<1{-FGK!E#t*d;Q!!(=E}DkK7SQMf&YUCy4~rD4Jy{9=oH}p;DL5qw!i8QJfGk( zngaYEJkYMGgAP;)VJPr_@Ibd3Q);-*hoQj#!2{i5s#9Rp0fqwq2M=_!wKLaTieV`5 zfAB!NT-(^zVH`t&|APm*aRB#IzatC<{tq7L26c4)$D9}n{2x5fbu0FB?0uJ^!2iJm zU8`NY-qrE$h*$&oKX{<48|#+6i}ybS1^y2nXq|lcneV=5DDZ#qKvx`m&3=}Op}_ya z1MO`0%p<8kLxKN;2fB2b6OPAS84CO#JkZ+Lx=KfM3uX+2jdpa)>ct3cc zkJ|6v(ws+u_k#!eO523iFO%7o0PhD6^u3yIv~KPU1>O%H=qDT3Es4)!DDZypK)*J8 zx7{<4p}_mW11%kV;buP_LxK0hL3QfB<8szzG8A|})L4}$5&0~_o1wt_p~kB8)p3XC zB{LLwKh#*2EA#x?go_LX-VZfam39pIIgghNydP?;bl1MD>(Afi!28WYja7{$FUF2I z!XyLlhZ?KeGaa_Q&0r|-et~uJKz);}*P-E4q_ndovYz>S36p}_ksHC7czc|RY-P~iPg zW97a5o2sixL$BtNlm?DAo(SAK0Vc;nwn@Cm0I6A5O9BX>Pe;+xTSK7I;4#W7lhM=sl-oh63-0 zbL{*NWPTajjiJE%ftU6^9dEe(hUvw;pRfG7Nvjf$pgwnc?2a7H+5-QFqwM-gBM!&& zcDC?;sIjVjFlF^~*4D!R1;#s|r+)c16GJWhA8M>7xvzYi#ZU|XhZ?Ir!AHi9V5o)v zLygtz6Qz>(Gt|QWg&M1&9maUCOJk^o|3i({yqKqZx--NL}9;r~L7 zRfyz8X!S7G_Cx+3vj5JF#d!?1@PDDk$}nx@=!d^E$rk=E)L0GkTRmhv_K=Y~*24dV z8mrJsBUUb0%}@*fhZ?KDZhD!vGRYSHFVt9t?ae7mPcXrfE&N}ou?kNy1DzQL z5D{bt*+PH-!9YS1R@r)HBA~c)6>&opL=;d&Ktu+;3Zh&EL_|PD*_2H{c2Qq-SDn*6 z-RTCt<$dpdZ}R_NV(OeaU3I#;s(y8rnmBCHIYT=tS;GGiV>R)|$FBBgbrJt#j8);V z%zr99xSi=^rEX27d?XbA7iYFP95&upkS*g8Sy`+ zyDKhyd|=nqBO(>?KgL)U|9Q1W#uv0zi2w0yXwuwNPrD~+UBv$wV>P+_r8&o1QYzwq zjIo-$G`ek8Un&{#KgL*1X}ZI=@`&Fc?$og-2a|6`2Rv}mlMm@u4-cEta9o;AIC-l$<$mxy%{|6`2R^bMa5 z>G*Rxq5c=*|NlMy|ML+4qn#FGf-F_%A^t}@Eye^9D&l`Uo5PqOLPh+Kc3O-HB2>ix zXs5-PAVNj_k9Jy&2_jU)|9I+$F+qfi_#Z8?7!yROi2w0S5MzP}74bh>Q!yrpP!a#* zi6O=W5h~(;w1{F%5TPRe$MZyt2_jU)|7g|3m>^5lxwB!Xfv1fa6GW(p|IspuF+qfi z_#e+AF(!ym5&xrg5o3Y~74biwRANjJp(6fA3n9h?5h~(;JjcYCAVNj_kLQ?8h7RBI zR)e6)OsI(e@wD-tSVos0W@d;~#Q%6E*x=CI-#?2s7pW5d2OD6$3Z4G`e%%?7D&c>y z0oEDw#l@DrhKN)N|AP%MWB;Se9b@uDs)YZ+2Iw1G_V3Hd6-26p|G@^Bp7Q&Lr;n3V zlB7ox{s$Xi)o+WJep+^(NR{wE*Z@

    THoQU z|DA-ypaeu=^Gtl`6@!{i`9f`aiT9C?eQfGh9Iq@^g_k3$L(tIiSB?frREeYhh%zd0 z)K8!&6rGzENyH0l?;`HRE}w*Hs{%x;%CQ5GRftyp#L$PABFHZ(H6-FA4W%|B zNJS|%5iNyi4_}zr(!q>r!pBXl<1xL1%*EUI5p0NHVTEZ6A}Cu@&LDy^CFL!Nn(}sU zBZ9?JrY{gZT!Y)bMFdNBy2#Um% zOK6+PX9g6EFk+LzpX1RsiF<;KMKopyM@`z zS)-tw#rm}8z2u>-2cK3Ul_lc!SOhH?G=NUTbDCn6Xiq6kF6FMlkRm)k3UU?))TTN(ir^p-#X zmADi;ti-3l$ZUxk@$RQf#Ak!ZL_`%KOECsf@&aa4{z3#x=1gyk1Bk-oG7@+gv7`hp z22dA8ep*QvT|{BQn(3Gzisb=45I{-14|%X=%(P!3{-~K=m1qD*_`MYM@lDb6Eg!fL z3!-m$kWAzd>zi>LDQJUCp$Xp>vB1%E1#M8Wq%4w%_o4(Of`P;WL|>fceV)N9fbwqq zG(^9c!d-q6iJ!xZdlrdMOkNoQlv)=<-Y5I{-Mu9de?XO}MEq+_Oo%?_1qLJo5mZVk zA&Eds<=6)b@D%(gMlVv{ZX_}qjL5pM>%+a zvwYf!u!xU;7{scbaR^{}&jjQ_hFXzN1LVmS{E|i?O|IbgMAYag-LV~%1}RcbpO1|leOQ)WuUYuprRg8~P|gElC$P|8R&p7mn-3vU>#8=Eb`L#&g967ZE_ z(-FWDvY8U_!Sy8U?zKVuq-G)7`#QhSaiaeJCa?eh*n8HS@b2_J?_JJT|4(JB|GRrz zdb7RNSwwF4{N}ml`M`6+v(K}Q{-0$l{vT#p z@nO#H&X&$>XLV;;r`_?JGvtK-Tj787WY{P9mY^`h! zY-zT8Y!2)1)~~G>t*5L9t*=<0x2~`TtPfg8SbJJqvzWSuHOcC<+_HRQ`N;B?<&b5E zp}E z@%4P9Lc_fJj#rihHv+`kyC{S`G>o-(LJMdZYwyw^#Ye+fdl%bZ8QNm)T@(T#8phhY zG|2hUFxK9s?dM598phf?k@cftti2P-N*Zp77kK7D=ow4z_VFUO zi#2Sb?t+G~=q{082Dq~5?onQcLBq1>4hk`77>n*=Fvz80EV>hg88nPVcZu`a&=!mC z5}?*Jj74{`l{`SCVOews69hDjMR)OIZg34=FB-<8yI6;GfLL@V<{oGmi|%3&uh1|S-HDKhhOy`_aq1$p6-9SgPeQ}I=#Evw z`5ycTtXOiFSjIzk8pe{l#4;zG6_(ryd8J`2xr;$uLBm*b7loM=8WtsYBno;s)?x@^ni5*m6CtuQd5p=sFmg`c7AQ~}eVc7}$gpmjbU6VlLRYzu=E8k&S;D5jyI zi2}wdRRQt@B*TOp4UI=D1mH9@PFne}friGS6#{Y^8iNqxB^nwnVA`HT(DNv?Lc~l% zBLx&=ZyFkb5Qfb(G#udtKJ=oYVG{BoHVq9GFtL}%6ErkLTKV9dh6baxfDhtmXppq> zfxIU)kU?G-3N=BhjfMt*9SZ9?y}zL6TX=m24fPW+@hYF#q@lh7imD+R>LXwbf>Rpm zjpRqx!;yOd#G)b^>M5bPr6|COwS2CDhERZ`P-R3zLV&T%h=!y9KUN&bD8Tu}9|MR2 z9D}f%hJ*k^Ti!DYaN?AB{84}tr}%U;4WR%>p-PE{P=KS$?a;Fn;N^VAjE36c_15Dt zJPio}W(VTs1vDfC7$CQz07qefPD3cb`N=b&Eeder#9V+Vz=;#fperfBk1YZ#3UCyn z92(*R%v3RPVgZm*fMYO|K|@@CnN`$C(GbdS4CaYw2<0~(xB@++{KhVM0iyiIgP<`X zl;0?Pp*A*7|Dd&M>7*XLPE8bSq59DxsdC|y`%Ff~d;LV^`h2u4FF!BGgl zXb2@ZdYK2rG$bV$rkQA{26hE=P&9-RoP3VgjnR;l;KM&bTPeYBI8NJ{VxKF3KzD8Vt9T%#c=!B4jZYbDV(G2u^usKN24ZUaOO&d=f@91Woc$6y|k zhERhOdn$qzH8}YkRA+}!gJV7TG#(A121noEQ6vqa1}7dm1rRkjf9iE0qXs8K#TyL? z4aSl;8bS?@zQKc48j>2klP5Z82sK!glF|@raDFo(La4!_w3LQWgX3>M3&#~23=J!HOarg*hb}5+clA{{~=15stzf6AhsVM?Zm$D}pG(F_=xGK`Fxi z7W{&PD8gc5j|NeM6CoHu2ZaceC`=5|pb%j;)Z?YaG>9S`8_YkIo*)-tJ{*VQV!lFA z$gm>ni)j#LI11S?8ble+PkV}AL{P{u+kyd}@Sv38C$@uC$S|`m2Z%D9Sj-bVG>9@B zgQ;v9lrju8$TWyD9EIEv4WbMup5)_iPms$n1QEO_*=+U%xe&8Ih`MA|^#r*T;~!Wq zgRN6WF)m#7F`NvFalVNU%RNCZ#{AO-6+fz-22qX+SDj#Xr){0UR^Gqpe4OnjSDu!pHZqiSC)dfxJO)*} zsx8!PHBBvRwy3|Do6`GeCaq$=*Lv1^nC*+ViN(#gtl!!O+Pc`9+p=ucY;$OT+R5J0 z-proC_Sq|Cx7vPXk@rV*79DFlZA;kp*f!aovOi~EVGpu3`lIdp>_6B)x4*}#`n_y7 zfgk8+^nEs;aDcu-U!bdKn7G-h_f}*N*+iZqOUQgOS^Y}Apq^3>sXNv6>T2~77C(KWnaRUSSThb^9I6quKh2&sdeiaqm8RU-o+n&wE#T zL-ynL?cSN@l6=jCxv%vpZzr!0s~nu3KRn+R*->%1Ct$tonZfo|=;!I^Y39lBq}s}Q zN_*_?Tkdb&mu=&1kGRh|$FUt2_Bs^zX7|(XrOw&z1 zOLZ`xZ?f)DtC69$uN=9K+QN(EvLo5vlzFm)t(yH_du3a5^Sw5QEz5e#;l;^Ru{>VE znQgH@NnM=(6X7|*BxydZn^l&JDJ8MgS9w~@J&8SK+Tom{Sf{1bMJ8<9Wx{zpvD{W! zhBjDUtgMrW*WW9v5W$jXWrIX~U9KW?H893!Wgx;R7I-VW5WyO4Wjmf4>^{?6nBrgY zAq=@DQ7`sVkgu>AtVdQ@#!liA%&M%$ZeUZHTr|P5S7i>GVDpqJ!X$RSGA%{~Oa7Gm z5rGP@5*0Q>OGrK}9#$k1mh37IqYbtWP;d%8AGRYiJ%={fV9bP>6|v=)N%{;14&+{B zf^ZT{`^I3=s4_&@M95Ee2qflo$Z13{r93mU#-dBH9#D~&2Wyd)htLM=com%F z7E(?yN0Se`uQ-tiONo_fh+svpG8Pdm=u}!Gf;E&1<{a~36}7SuZLly@X^RL}j4AAk z0e2QQ(NHj_BKDRuJ&!h6U#hf|Xaaj4P52gx&0eg+DPngQQ7A~n?pZh)EtdKz<*^G` zVy6_xRUO+aitW+?wD7I5d z79Neku1J_Q5lefO#%O~5=jLD+F#krjNW_CZ(^H6GFHRGFV#LOkrUPh$jVew15W!HM zq#}axCvoB7U>m8b!W4%vj^MX8A9f!!trRv9Xp{bkU{^@fRz$G9i}Joid?=%QDNr0D z1(Jd`*pEi}1Z@x}kc#-2!TxJK%R3Ol#%+DDos&l+Q;up>p`_gqm z0Ncy8mtZUNbQ{q{{2Y(I+4@a*-QpLZ_G|#6OMIe6#TyiZO=y%t(aHb4x+8Jy*mgcm zt>ULEwk??>E86a=Cg~)}!e$$?_~n$6$ilw~ui)jtzI~n11luAhA0c|4PYbB%^4N2u z_?aZ5?b*7_rX0pjVEesR2w;P~76@QxJX9&M$&7;Erufz4yn8%!{EK$H`}WxV>!}>! z*d%u370zsmws-i9lbSBka?Y%S=Og|ukEq6`Z5W!9dN-c@X zapsSBCa@>wKnWJI3-Cz5XGR>@2)3#=;WH{Wy-?&k4cn(E6Ojok=M{W+#IkzDhF!uI zhP4sECV%A+z&52gE)n|@R>S^a!x5z~BG^Ji=_%1v?j7kz*tbK$hgoduq2SFIOXW?s z@My3>>q8REXPwMI06Qtx#O`6KzG6ZI8^@aPdna~(%)(Z%EoN&3u*d3TYy{f_DN7_e z%g;BA2sXPmy@?3cj_1wFKkt#j6){u zC!-9Q>dfR&&d+T_Uy&lhBo*SNz|H1x$ z9Xw6g-v1RnUXRIr!~L=QtUKY}&DQ3xc1PT^++*B*-R<3t-E~;R?xBCt@8~D=96ikT z{olZj_cw%>oMqa^#mkel`^_Vf0HefNL7|KBv3K>z#y|LuXlJ@B^&{`SD%9{6uO;EC`A zI85L_%LW5%Ppybdfy2Ud8o?BJ;mT8NFh(OX1r7_8Z;tO;6%h>G=eGcSjS52%xDBt;4xS=K_i#~&x0*J zXarN>afsSz1XJK*PZk;xDR3gTZ=n&90w-b-7L8yEJP-Cspb?$|=QTU9Q38$d6gWVh ziT6Z!3Y=ZB*eZdjG=fQRv0H*C!js_KpJKZNW*2F2B0?P+!8CXjmV9|4JPppfgZ&f; z@kDqcoc%#;sbF@{2&TeCa6}`R3Xj1eF;9f2!ujD~&jq%jQbZ)f+13h~;5Cs9$9)%Q z1e4+WyFkH81e4)njTwz#GCT&67mZ*tT4A!sFh|Gk;0ya-X zWWsTS2>$S5CR{9OqY;@2hc#_9A~WF+42C0PCOitO+Gqqb;bK`EjbJ7`dVsHMqY=!6 zi`^$^1T*0=Sm#C~mZYaX2T;gU299rxBS4hc$Gb2+xDFM}z+g2g@lC8o^As*!+S< zFcU6zzn~GB35S5$6-m*K#7`L$;dv=b;J}y&k3l$1BbW#m(*rbuiEy!diYrncdSZ*w z*?(yS^WcR~Hw9l{9y|(b`)CC7;Ayal4~<|RTAQ;CZmE6OCXVTukZE2ZF7Az!>oBQgyRt5<16q`^rP7Rb^FrorQ1LCI7^romysEDg&v zIINhZVVMR$1f@D*nFfayv^0!q@WORajS!Y;a9E{F!#oYnKbNp)7Y$;4xT?M8hHt zP7<4Wg@r3Tl|6P2huBkxhA|7C2Ak^8FlNDHuo8@hWfuHBz6OGZF$*4p)n+uzv*7Hc zqp*5{hItO0Ls&jR!#o4dph(@(Fy_DGU-8@>4UZAl#2|Ri!aV=Y$Z4>fk2^eyog@2^ zFWAn9Up^OOW)?g8&@f7I8f@u9!zjgxgLU~052F+(2J&@bG|Z)#wM`7^%fiN~J-h(avZNz$+;#C#zc4Wkf8VF4};b0KDB$YPHr8sN4@)H?wZX3jP(v+ z>+)OJ-}ct`rg@XRF3+DlXKjzk-vPA$ss9q7{X0)D`xQ@HPb2n=02MvOJjDH@`*ZjE zY)!y^VV(buLE3ioN*)^uR1n5o^&jB%yUd)vjYz}TC(*4HQ4V1(Enys_jjAWJ@B^&{`SD% z9{Ae>e|zBnz6V4~LrjsV!vzu{w%Q621iLCGK}GPRViHfpFKTJ*1)>U7R2yl@e_<0V zb_iBTh;=k%1=_@7+b0ph`Z96^5iFA-OC{pNdeTWEUVu+9YbBQI5G;xiW$>g0GNI0$ z+$RyQm?xN?m1PNNgW)^*84;A0lX{4tSe(>F1SQ-=ru6?|IRi3b9RSgwIKSkys!Ao>rAH;@T& z0KxpK7@L!K&<0C0i7Xv~HC5zMw84@pvIr3@gCYTm_`)W#01=jlAcB=D1k>36NwEmF zgB4C>jzrD)-JF65YUc^&EbqRo1bczXe^Lq2-4&UL+@|;mLHX9eFX1Tbu|N2!8wE?j z#4pS!PoNDVMuKHVBFH0G&;~Ic`2-Pc>916gD4%&jNks%3`YV+Y!A}q2pL-5hp1s!G}}6MF3MHOtjVtk zzfj_5r%k8O20tpH;0BN42TaGJ34S<8St$|h4gR=zuEdW~HWMcC0}2XOPl_M#d_eHT zFKD(!06&X~wJKuOF~I^J@ym%=$R>XM+jJ3ohaYTGUX%znQ^0Si_^}NIzi|8EcfU>V zkWHHdhhqvVC(%ad0zEA z&i3Q)!PfVea{t2e`Y*W`v3>UIvEB49vfuA}jE-aL_G?m$>oVKzKF>AS)!0?m`GfPc zbE|WebFOo^vx76sS)T2Aca^Qh-_G{Bo6mlQuahI&k?gRreeK?{A7E?m7qUw9E^PO@ zN_Ly=hV4DuAy)6d+%}8-(q1!LGW(6a3)Z;xDeG+ZyLt_*r7b^N&Rcd_R#>K3y09Gw z-R5u1Z<@E5A2p9Lw_!ULTGXrRVf97TuMSb~Q!A1`*ze-)BTuuv|9X>qiA}kzyrwKy zMl1KR%l&u%RG;NgY$j7_nzpVB9IMB`1@ zc;$SH_PjJ@t9c~jW&3@voy=gY}{zMxyPK^kw0#=FNi zB<;Q*kEazdUZ!t!L$|rtv2~J{G})mj%zwm@T=EtpWT;CuA37FMIa8ZPnUpgt0{l^$TjZP`Xxr|FA|FqY>Z` zSp_w}YnM^sDb2B!Mr#B+KSaHP5{n0nQ<_AbH%`4y_)ouMtLS1n427 zp!A70TRIKctPw_Ngj?(o4RR0NYX8<_TU%_?2*Wjkg%ffLyx;u%z|l+VHNr5B06jE3 z^xNzozyEmmRgExIBR~%g3QAP}c=fuNMN7Z8)Oxfy1DI(CwC9j2m>{Ol@sa}ROoi~8msWp2m>?%oI~cJAMAPi ze!Ey*BlIsy$T)Q6v+|=W&GKu6ej0%vB0IOhLuPclG4Umh&{reaI3cH?)T}-S@A0(K z2z@kygA*DSRQY5`_wup*8lksFfI~DWDE88r%Oy-*H9{|qz^@`ZyFi(={;?~bk2FHh zqJ;VdmbTx0`~1d98li_qfRoHBsPgAu`H`Fo8lk&J;P)cCUP19bp~UP}H#EWn8UfBB z^U&u{{`^MiwqrFyH;n*?$S5ea@X*7-!kQYPt482G)Xy#OW^G;3(5>IBE=37B1r?%g z{+iKjjMhWvqJ)M8Wh&(OK40^eM(9+O(4asWx_L_0nA;kmqekGDSwFj=+~BcQ`o5Z? z5jtoDILZ12*6qKH_-V@?jnKX*A*-O|qyrb`A7dY6@%b;)&SB@DIlCj7AEBQ7d!@ET z8)g<**GK(VNB<-VW!e;Jn4$f>wejy+`hi*%`FoDWZ&~E;4Yj}DU*zu%w7<6~^7m}* z@6C(+UHkZy@fG=dmd3xY$ltXKFVn2Z-!nCS(;|P@t~a@f!_IY})q>DFljGwWC1$k=N={pxdz{9V8LoFaeMufAcCzw1}upvd3#tIsa- zcm3+?7x}w>^;t#!u3deZdd9yqnUs%JW|6;Z*PEQ7yCZi%@3nK9doy!0^~=7uNHguS zlk4iu>fe4qaaVnSHPf#?y+||t>gyEwyMFbxi~L=``dUT)u3vr4B7fJfzJ~Gd8T!?y z75Te%^{Lg_Wt1*!;?GJi|CXxvJaW6!&YOS%=kev`%D*!5Q_g9Sk={V(r0SgYmNs3FxfgLxc1C)( z#;H@;LHIedL5woex3$=?N}vAx8E4hcNUxvk>wEa2p@pwhl=r<(ipC~Mz8y_ef0Y%t zI6EsNJuBBYr24*`PLJP`?9@v7@prtee)wVc1n1VvNY`JWsuek>Joqg8#v{|lKT(Hs zGBYyLGj)%rCL4O%e!E(=ZOsHLU4JH%DzLj!x+L!jPKkM4o=Da5ta*~SF{2(@F}Y>U zp{++wWQQqoYpRyhS+ka0_FR20L$He6oT^DWYf-bBrpU^wf>q@9RJ})MJ#q9z{c9)N z2v(6BRJE+miq zx}`NfDe2q!#){H;qgM*PxJ?6VoIEjkf;PCST1r2QT}^Mlzv|xi1-rHwkXk zEn&{gWcNt-fAtc)8*wMQeYLVno*TQl<6c%RZa7>sHn=`h1N&p$X}7F=F@894H-*`7 zKP!4!7bbB(r+l>Ax4FUYB6qT)N4EziP2UwSQ=-T{tmxM5t9yL#yYr)}Mebfjs@peg z`MyS{q|!z1TSb>{-@Rsghj5>2MebM)C%Xge{Ma2M7k&HhIkD`8W##Z*P0c9L>t;uJ zuWGQgI5N$3e1)Wahd%QP#a$Y-`SkMZZ8k|}MZ12?!kMPNdkaq$xj#uZ{!tS5=Z-s* zV&zT6o#{PtdY!Z%hTm~dDq0Mk&-iO&yJlJZ=4yANw3&An__DHu|+LEJ7VB4RN4=fa)z&%If!5~MYF3Bk zTgzF?9<~;LK3j+1imkzSn{S%mG3T4tnf>OGY^S_*b8+=2^#k>Q`hpr($EuywOtm!m zjeJB3*?xGBl2PP-lA`>fe8{5z$Car{XQiG}#`J4>|77m-vSR4QZwC91CN)X^NpMHN z%I-*JE*tBkI4Aih-f7b$GsQoF-|3Pto~iWvh*h87KUXx@)HB6DUZ-T*Z@k*+}F*>E=?_XE9{8SAnx)P@N zN9&Xa95Y)_S&$|unkQ2HqjXBId7js9y*W`(v|&ezf22+sIPJ-)OFGpO6m0~O;vbf#zS~2>FF6Lc4!^^#IhtFO{KM|FY5q*|553c-IWoyV%uWZJM)^`~&W^X2Rmb;FtDy*z^%#k{@D3_$1td*CN~Cm$rAdGx(*=oi>ACAWSs&Y48h# zibk8kFAy#oZ3e$U$Y`_~`~qR4(Pr=qgpNj=!7mU#8f^77%}eq_2x+t#`~qR5(Pr=q zgpx*^!7nVFWJ0Qcw(A@G!eYsyHiKUvkTkY4_yvMVqs`zK2q=va=(zd(>_v>E&Yfu_-B@CyW+Mw`JeEZ{8Svn+#OAlfvxGx&u? zoJHFi`~u;ov7P3Z6h8|&rF=HOH8oaa<2iU`^nfPC&!SI_A|e_=F?b0AQNt1RnSmrf z1fxcq!AlU38f^wIrQLBw^$cEOfoYMet!MBO3rLIF3|?Y^Xi=NNODq5_YSX-wp)MVlME z!~;m<+6-P|abr=N!AmS!ENU}&iN%OTYi#lXe!}MK z=j*)itCe-@Wn||1x^9_${=0b}$Z=qGe`$@#b1Pr&vTk0%h&e2`vgAs;HT`vBDUF!! zTU7YUp-}WyMr`QoIO@dyI@R9Mi6u2+UEiZTtnJc}5gYhATw1+iUiIBNv4lpf<9qan zFE3qj%w)uDU;Ft>pIFy%s!lAf5gYjyyN2(6deALKtnceK^4hUeGp_5zVj8ikZ*keS z1HXRY5+i2$S}jjI+vMG^b)r`z*7q%LZTTtnQkW6z`8t2I_m#m1Cg?VCIItm|7m_lwy!(uxr?d>yK+x$pBH+T40|Kh=mCzQxO~ zzE`KmnR*!+xxS7~$F^SIFIhjdOCz!#xBvP5h4@p9nB!~z-HW##vDVOuPL0TVd;#xF z2D>vg=f3k~|28_2)z@P_Fw?jA805!Tj}3es*GyPd^?VbZXxE7Ke2c$yoc^O;YevlW zb#kPWFHa8Fi8hVs^DVKaXP4ddG9%XaJ@9a#?2TDkeyFGt3mCDUuj|y|-%hcV*NJA0nB!Yg@AZz~WYu8AOkda1 zpReC*c}6F)-_*mauJ2pY_s7Xo&4(B7G4x(A3Xa%#`bE zGxc2Hf~~4fR5W5$-;%K(pPu=AZAQ%TwG3U_{KC;oI?<#N>-m-h+2mH?I!0u7X2hZU zA9jq;hzm7dHQ$o08*guY?Ihzh@U^_UsmboXA8Wh?8n3Z$$ul+1Z_T`q@v?ngca3kd zV)2_AZ@$JW=Uej9k)!>J&0)OyzNUk%%l978pNM%Hj~zG0VxCs~inDwzFQ|1E_557x zZ?48m_boZS?&AuM@{Cu{*RE}gd-q-KtnnVwcr1~8xboQ%ZZ=7qo9Sz@@}*J^vOwd_ z(Rir_UWV`f)B~^O)zlNUvo&6d&dbU5wIGjA30-(r_Q&J@v8JC*-V5Hn-WA>n-ZtJ; zwlCfLp51JZ|FNEyo=WcD-S4<}xR_}23Q0oN!4IhbgU$4GLsr$p_C+5=Cgb6+(eQ-Xel3nm`Y4GNUNqe z$pMI}%EPD?=a$&_Pa7#G2OzS#({5-F(G}Xo%&xJ0)c}jI*aQ_^Yz_XTe)SDbP%)a; zP1OJkwj{0A7XHtZI!zmARt>PYOVVo4b!>XDsZP^I3snOw1e3HXw-;QT)Wp3rI9 z{Z9@+4DobV|~=x4f^X6#Gb$3?66ErzDL>$rdxUIR=ljFjSHz z%vDzH9b=X~89dJ7QH>P;dBCN*&qPf>6-oWr(B;|dl4S5Wi&C}2J$<^uS0h4Dow`!!P z`2)og5TYl8$5{ZYk;<1C`TN0cl4S5Wi)1Bf+}!@{XJ=iKB!kCUNUM=Lon&*uHzmp7 zaTeQ3(%AA({+c{Rd@xuEl)>XH$d#lqjSF&0OVV zuSTlBP{Z>Du889%oUpBn^en;WgQl!Q(7EmZTvEiftJ4QzuC>c$~$_k~FwcBxn4M z4tV&mhoCxgdJ>ZI=TR=2M>Up@ud29KA} zN!|8;dcy7ZCSutN|})w!z~borKvO zJe)pZni_EHq!y3nFZaLuha?%EajKKN%y#ao=$2al8BO|d)z-) zCmDy3ESl0i?te%pWfyr0^gt=qKSw7u_GFITe4qgyPOth(_0QHxxiCw7M3Qum`)BE- zhDF}Hdb-E`Gj)=zj1tOO&*1SHI;rS0uFnCd`lsup%p${DeKI)J|DaAXj>lO|o5ADL zbP|T9^6Cs8pQ@9pyB=G1tL0HiGI)H7PSS!Vk?GdP<2?Q!W%}U%kNDrNUQ7TctAy~ojkR%ygVhC1n zx&cZ0987A^5UgN@izI2DNevo;6`XF6BwbK~hG1o2{J4L9+ar>s3rf%stl)HmBx$Zr z4H|-#VaG4jcLoPZlELG~U`0$fNRq+hhG1nRQ~|Y>B!kBd!3s_{NRq+hhG1n(otML* zKL<;a!Q+NtWsI0^08)_&o}eLE84K$CrX(3WZU|P!iRlJOGI-n&tc;!5Yk$UoM?KLM#{-67rKgx~kR;vX0Yk9Tojn85MO!3E_jte% ztl)HmB29J-^NkyG$oZuO2Ac;u=?5V!t86RUH ziHQqIGI)ISKP4GFK1wHHd?b4^czmQz^1;A+y(AetKEgl}a}ttd@c3|@RP<5N*UhB{ zhUuiD&NNQ&4An`^c<$g_M|n7d$A{>oqECT7U``DT)=4-KhCO8&JU&P#;dFx}89Y8v zC*>4*?~D^X19Vc+$Ja2y6X^d>Nd}Mi(@7Y!$a6Ayysv>ID$ONHd&YVE-^+Byn-Q`#&gi~m}eMU_itr;_ib^{b9Z*9(C_IHwqySo+K5tC`M-nhzt_W6-TABY zgmbNP65C&|1Y767*RhCY`|H^Mw4Y)7>QA@-FW$~FzKvsT`owO^uAQz4u2ScB&WD_5I#)Rxodu3}9M?Nq z9c$&D_kR25_Pgy#`yzXl+z8_p`EGx^+*`1p?HAjVwhL@qZAaQF@(#$#{ttiUP0V|# zJI(ksME@`vW^t8GMxvF94X9WuP>q=-Z*Ohg`1v_Nmp3sJ)~-nG0F_NfrWF*Ky)mK4 z`plBg#*KVrXEPPa+?cxe0LFW-vdKubQbnqp4=5Rv_%wOtf|^ZGWMz|)Z)MPKp&}SS z*NAn|)`3%I-9faGbfwBxw9_b+I9m8xqbVJTWYOn}Y}MKl?iSc-1& zbuSD2d@9f~6j3_raPM2kQQ1a1mZEEn#D*Zyb(u}0ciy+?2K@f0vdPHFvZiZuX(KVq zpq)ZR7ohAKaooyY&VySq)vU6~$j(w_S7pOWKv!or8(}5<7`nWPIln`)K~sS7SytI( zq-UujRn`VjRhg5F#$k$4Ws{MkrDzouP_&FD?J@e$xgcDxJ<F?X%sZJ+fOm2D(! z8FYzIQ+=T8#Ol)m8>j8Qjc6ln%b){7r5FHRE7lDDZ1Y|3yhF5+yk*c`gvvDlx<)LT z_VK>?FWf@3u~vye_Y^AW0O)G5tn89I7ku#)(Z-4;2HiubZ~)K|v1H1l=WiMOInl%_u->%I?mWqNPIdJhyTc>(BJv3CDY-<|RqE-_NM$5`&fD7&LjVFjRT z#Pq|D`|`&1pHNNYq9-b79TX~^0qAP6)b{q4t?yzsW#t~Z0*a#h2sK{^IwF>?9x~|2 zyDz1(<#H&BE)^=l0q82R_>U`#}TQcirqUEY7itZ^?FaqcXF>m>GPkwV_SEA(-DvB-whHe}NxfUXteZER(6d&wW=6be))UV<75YW+PfI?}BA7)8|jG z7Xn=?7R`Qj-oRngh?Z-;DB3TUzVqJT3x2pB=o&HW{sDK6dgo%I<-#wDc8VpJ9=-g7 z;~xgPT8wz|$dw=7^####6&NgA1xJ96hfrkB>%o*$;N<;pRN zb_*3i0lGmA%XlKln2)O;x#PGSW_= zk~@H|7Bfn3f9Trn4^Y{19U82O3cCOu5i1S7HxMlsrBSp?sB{mY~^64p_5;yvgL9$NUKQ;&^eQq$~|)J8l;uM2f880;O`m7Xf+cCx<0e| zkUvUJa^Zxia*tfz2Fq6d8tA&*SAAm{ZGIhBZ}B>A45zbs0#J5M&b(mH=zpfGbLmlx zRskI-JCa#telJ(KXC$LlA_>q{nU$w}d-4^x{Y6)21f$g~QPFZf({BD(xo0@iPSK8* z-p4#!tlT4zcD1J)#EK*DpE_;e=~R;=kd|d<<491GdeLrjtIz)z=DqU&Xa4`G>p|Cr zu5GSqu0bx3^JC}z^1J>maxK3Ba+{409QQcRb{y-N;OOtjx4&z@(|(5iX!|&O-~7Mx z-^#x&e{cT!{4x1uwm)pI+itd{Y-?;IZKZj?$*Sl4l{c|~aH+$Y?K&F>jO)TIzC;QzxKsa|PZ(;$*Sw@E9?*L(ZpuC9%9A^&o$u%od z08vP;i3J>I7#WJA0IH*kvw-7t{Ts>Wp96>jL`^KVzq#1v-%M>V7Y#1v-% zM>UcG#1v-%M>T)}#1zjBI0D2JX8}hQ^Zd}5Ag1_qf>h=LKuqyz1eq@|g&)hCrV^y`YE((}Oz|lMnR{kEQ+zT(DvJh6 zVv0{9NJXpwVv0{BNMlyuAe1VJUS{=b8cV?^IEqqNHgV5Ub%(xg*p)_zN{>Nhj=O2gZ*@n|Jfn#` zhnzV`p-%lzf1n%1?CC>q{@pbIM(fHZ@*Lg7T77}onOlHv5c5}!8b07}n%6av=O`9y zN4)XXr{_EhbiJ6CUiy3FcA8B!k>}_n)?RRGe8V3HfUXlWe_62A+tEWcAMGBKDMXX!=pfe5*So~yPrbbowI=c$y~Kt|Z|EURSXpdCcqYKQtfch?w=qEpObTwGd6Id7Z_^l2792y|ESO zDluc#@f(MCIEQFT&FdgGzV+~@9S7zqTE?KJJg}vU{Y*-TYogRVS$0_e>f=G68^w${ zRc(i!vzN-I)I3>sHp&5XgP7_$dgJxiJVZ35=5>Nt4$$>tdZzn6=V#;}nV5zmo-9XohSxfqTcR{ClL{n;>j9VD5vtIzZ zM$D_-dGWyLlAUcd?7m5{M{x;yuVc!8=FQy#* z&ETh=xs~X_NcV!c1<-Y3Rb$DSuKg~e2O(V~mYLoh$?uM5UtP24{rC10JrL<)h+9C} z@>(ADQS+M<7ZY8HbO*8Is{0N*`N?O1t`>{z+fTdlthb0BfOL^ql+8l`IwBSv{@}60 z9>6b_E1M2M+ArqcQ_*-tmz_XYiG>p`=~K1{=T=a+XZx^7+15ZcIUSgcW%;mam-rbLgbAsO)}7 zdxgpX0b0hO29NaKx)WF1t!(OxbRonofUXlus_YZKe*{;Qt!%15+Ama22+*}+#Z#-B zK3Pw1Gn&egc0=3(=o&HS>cKOP|AF2LG?gJ;C{&gR(A8p9WYQbIzR$+NK8#kr9q5Qy z+b&kw6h!)#v=?TtKsSn` zHwJbb96_<1rrt;&6w2EJog24k>V>pRsN52u>&5yzK%V{n|HJ=n{(ptljCd06OPLqCpzXj zY8}Ng|Nl|@KKcFsEV;^`FaNXrhw?8nas&qFdu{)b-vFF%JKi?MR%vtPeW=0$<;`s7 za%A>9CSx^9>3Ya%HnW+_82Lrx!Kb$XL{77r&0I$HH1-5g5KB02W;2)JF?})7DFC72 zEN^Br7d4dt2%nYZ&1~kPIx9fr?VH)mrQt@sQlkMPZ{N&jF3Q^jMBcuc&0MODSi1)x z^7hSa=A!aW03vVS%w{h2{~jqn&29yVDb8jtDq#j7rZ}6qaGgvsnr1e0IsCBc-|U=J zZImP-rZ}6q2>Hq1+Q~M6nBr{aB8>0iz5s|R&SoxZd;*9m&Sox$Yo8wOo__!!rZ}6q z9Bw>qrvtnK z$(Zi|#1tPvkoo`%Ag1_mg4Cc15K~+b#CxW`LbZqjA~#7e3sXnBe8DLFvwqSY~|=Qpo7K062yyJ)opEj2!7 zd>tTm(P{`<@?^(3uWkPjAa>EJ85GdJP52uicF`gPEj)X`>ZRw61c+Ub2jfk>xCOHQ4oI=3?gW@{+;~6=Kx}g4ekOAf|X9g47TP5K}xzkcz$m#1tuSziK@pqKuqz@RFb)?uy0SAS$e2h%toeoM=I$sV`;W8;dD&# z4g{&Ep@Qg9P~KcjkjjJvh$&t~kn)ZIF~$7^sk}#knBqQy%-y$vDPH)G5L3K>AocKt z(=o-p49bS<0b+gJLy&s-0>l(|6QoiZ0b+`~2vQGU1yQ)ZSF@8IzHpRD?Vuut>+ABr zezy@}Ha~pr1g%}8FV{E%AXXAf(cIXh`zwi^-2h@2%|<0{SkqiN_Ua@+?4so{h`nr- zb)t*bBoi{hS+389Z=fW)XiX;)q_XY+qKnpa0zqqkYa0L8qrU<~7p-YGL2K^$w_Fb; z3=mzkrduFwBB9q;Yu&GWqNx!rS`XM<;~r`-Lg`wjOk^1Fbw?on>d z?RI_cdeU{ZE8*JUn&|2;a|1qd-s`-`d7^WUbBMFVaZs-Kf4k!xnH_MHW1##>;4}LZ z_J7;s_VxA&_CfZd{BQFg&%Y}FWVsGtRldjef$dJ)UYQ>tY&~Sd+Wqxwk?(rsmI=nP z0I<`>kh+>opUIonE*Urz>~g;r`IaY_tIl+9y{&lD0~ojO*COBV!1FK z>reJ;k#BZ#xvEU3SGQmL>C6nBSH9E9;bb~>aQ~fe?Ou8-aq?|WF4vgp+w1N-|C>CH zIQbqYmy`RFd53Ktmc-a^zZUrhCzq?wbliB%56d4um&%jxZgRQ0OvPu{T{H8R$BC0~ zZF0HVOmSk+-aWURNSu6Mlgrg)ykUPg_j`D&_HL1LDV@{zpHUl{uno8Rwa8a9xy3{> z)&G5X%DwAxxzOG%`b4UIF*vmJZjm#o_J`?vq24WW4wZA5)ltr#at`A_(z`{@n{p20 z5YoFv&X{rz3qh?iuiZwW5^lp(8 zq?|%(G5X=V>Ynb}0Oz13UMgDjS&^bf>978#%|ePvDW^s4 zPesdk_im9BqMXAhWkriV6;kIA*@X}B986I;7s@GwDJo|{Ifqfv-Ys(elXDoQtZ30^ zKB@|b&+D)~b>^{H1*WK+`s5UXiuP`ilb-g6X-Z$wqEC0!IaFW-&Oz&XRqCwWSi@JFIt$obcqFiYcm3byOjPjCJqk;Hj9Ra;}q82vbzfa&itcMdkb^=P)YT zyG71yat<>o<(wwxFq2ZwX4)SnyU@Eu&SP>8V|VP;B4;r0@rtn*lF8k*u&GPc?L&v` z|8^%pSVVaXo4Q2gzEQZeiU^*BeycXpxZ0e$nG(dPM%3IjfCESpZ z3nSkQ5MGe-7B+QJp)P>%vXr;5smtL1zPWk(-6sHq7pJ_1O1F>e1<~ayZ(&mx_30BpOmQ}KF`urADbA)YgS?lOy}0}!l*ANgQOmQ}KDcASY8T}PNOmQ}K>1C{i<^_l;E~hTw@w>j+ z^TA&)&jSb*@6{q_Fs9DUV=BE`{u@{*6{$O*KLqF2j+;aiM zN@8;sHLnGTu2wUfv#1aVKytI_s^X@ zd&E-!(bZ~ZbC#-CAKmfznVkWmtJTcrENU7J5M8ZiHfK@6cYyF}l{d3FiwZg^h}|E} zY|diVsfrYDW^V3bg%isJXKuqxs1aX~YNlfwe1aX}t#1vmgka`Bd>6qec35v*_2*!PXBS1{?H3X@V z8z83mYJvt&y>iyF9j5@q6kkP<3d;b*6kkb@8UO)eimxC@g=G{(p~qg$%V}VOqfF{$ zRKy`NB=K0@BICu0X<%wzO3*ZY7X9cBfLKXO2%2F832p|6U9`mnskk~o?4m6qXqx_- zCOsA)cF`6Rq%yYwVi#=zK~oOv-?`_S5dg7^HlLsg`o0mTX5V>A3Gkxn^Z#Xe|7pMf z-;+g`6zwRQT6Bn<{lDqI$shAC^$+oP^nKxb(088iSl>8bS>X?bPZeHJxS{Z{!lHur z3vMhprC?e?h4&}#qu#T7Kss1MbJ%=eXCnhsf3b-*#Oq-}O&& z1?4IL4?0hGE_c?-{QuV+S32U3jgBdf8b>$#Z}wN^7XWA4x7p{}>+L=B|Hyw|zU$wg zAC+GLjLomeciFzMJ!8AUcDj7uKgTxIRw_Rp{!hE9KK@(Msyq3v*}0>!vFVUn>}w^h zx{o&X?Ro1FIZdH2EXT$m;McLA6 zr>2rtX}H@JfO?g+>PA}?&^_x{RRK&k>9gAvz+{vDy4^u0oAlM~4l>!KpKf;$Wh-fw zKDymOrk5Ns%m>NP3~bexbdd8;V>QnSFYI|_!)24R6Ht9X&&<5>q5M;pV&3DxR((x} zEbbM@KR$YI-KZwS8^w@U{9n&%Jq3bL16y5)_Yyk~m-_`>_;17;#FS27|Cs;X(S$n@ z?;&=LDf{b)qX#1{cWXN7`lp9ofejnj>Oj1^*kx>bQ;xXYv#Bw!!-8)yQaG^Hj(8uj z>-g?h-q`a{#O3}#b&p(c`wSC82e!)8C)L!BV%Mqvskr~eVTjj=k&`!E{_T)aRCgQV zC1Te-`kLHo_hS9AASNF5`dz*hruPnP%|l!^^~F~r4=>(>rOUmX4xHERn$K``fq^Y2 zA>LW+dOL98OTRpUc$FAE<%%iqTwQ>bX*m(`fY|j#x1UCwwI6UjTYFgF?iW9SvBH5Z zCm=2>^Vbch%j6=&Tt=e|$p0B9%-H3M*yMFw8!s)v=Al@KG1$W){>){6o*Vli@ z_L=Ttx8w5LTA#toBzJlmcjds#@9<+^9@w%I@or*w_S11Jy-pmtwZp=u?j&T3z5+zH z^fIyASP?IXxV)-I-7)-uE4EQ(^d%s&xGddxS1=#(8gb;>Q*GB5-9xy(1_a_q==(!= zLcCfWIqQ($esujtxV{KP7OxPy7mxX+!%^2E9ud>WtX=WJL-^&uz!rTKh%8 zgJ7c=^YYG36TiUF_`nu@35YBh5WC;{?!n_azKwW;n7pR^!ta-EfN}@6=xab^@h)Pw zTwn3uPc1~eUW`8P(W$BLQ-te_KxFZrIi=T$qdIF>Ul4Q>uCD@-#eHJ;=Y0;lZoj(i zWFu?EkRNwq3`>uQp}+m7@;@sv$97Iz|woXw*9lC20`5$8^p*N2Qn>dM-r~D29d=*;)HJE)lR+3l9S&={`aguPM7&sR<>QyEd#xCC>e%;Z&!VBaWd-71 zu{EtHOijni)QHCK7M^?8DEz*DV9RpEUE=t^^xf@yAzm#a{^Flz{(UV~W*OqeLKxAN zs}PTf6H4zGv}x4>!27i<#aAF6d_~e&l{wb7bHP1>FnfDo%MvWsBj)MbvzIM_VrBaF zw155l%$}nzreYUkv3@MJp)oW1vunopEX5^2`n4=V&PiNDX3UVQe>m=J9NGG{EJV&r zTzzKpjxUDpeg1Sh?*imp#MNbnE?@bg?eA{H$z>n($gQz*5VoT>Q``DfpVF@Eyz{KM znoQrwo<-rY_;BynBA0ql9>WQ?w?DXT-YIplgj|)m2KxrSV>I@9Un=ff*|us3^?q^uWXR#<7yR9KeR0UCD<%*pS7XTK8Z#Z@ z!)M=ee2q<9>N(MyiIZzDL@s1iF z%ZyJDCs$p_^(-7nw$ukbW@3f%9yZ*=c*&vGB)`os0S%=78^BWlpIMcb>d8pGb*8;f3(IPYc2ipI(zhvKU-)^5{Z?yNw|26-O{5$hc%Re@M zeEtBr@^|#*`$t1f1>!qB5Ru>)O5qJRXe7P`<5eZVA{i15p{r&n*Fumquj>-;*tYHv$Ku zzEK&zcW0}>=c3uRAXXZcas1qJXi6H0%20kzMfh5Rcaee{#fYKJokGhnlVd=u?$)z#C$VkRhRY^h`+$NQ#E}Dkxa#iI zCseZT)w6Inv3=6m*XLG+6)ZQm9oM#Dp_~xSn>-4Fd}wu1!g9v$kuqxR;zyLCR8h2_+BYkd5&cN04n>Wh*rS8$^^s^qovkD9rbVBMc*;Zm_f|0wyHKNKvNVQQ{UP3hA{u)t#I_ZB;Dvkm$CiU|s?6H^^ebPSHbN78^+-I-_M zpxE*5X%`0LhbdT2Snqb<^2(6eRI={Nvv5bTkNhaNL{=p?h;f}3b&ebrq>^<*o-Mhf z*ty1-N-9|HV_aG@sB$B_Q=}bNaJkqyf5|8RnX*^Gbz(;UZ+!0#9!n)lPp;r1u~UBZ z#BgW3J%NVrOC^wA8dbT~kY-)MvVpwLa$+i)C(leh zeHYbPI(7vYik)(&-XCUGX6r1cr9<9(d~(+TQwWx}UBU8lC+5hE^xX<>5W}y!?}>?f z2NEp3JJp#6M)~xt7h~3*QSp88e#tgamz45DVp^~MG zM|jIFeXq9fR5fa46eu>K_p+A=mR4TD@-fkQfgHbF3YH-T$I*8M&;5{K>E{((AU02_ z8?~pSO~KVd3~oHmc9TZ1H1!Jhia8^SJKmfcs$jV|Vb#C`p>;Up8PF=7JyxSCIVk1cg&AR{5Goj>)R^8rbJHOW$KIIOPLo%EG_1y5k{`EId16uV}*s_#c%z3cK z{J@2;W{YfS6jQI=e%#4(o&>m}Rk!+C*a<~8WQOIZ<~E;nI8nOMZ%5T8P}P|ZS6un;IX50fW$E@lOSyoGWcoLi-Vmw4ep%5v1}QA7D${k)2Yc_C zdpeb+r@ETYSU==}U#=K+V*e2z6Qw7*wxb#|E?dVnzh8pS=89H5&9xoX@W3zkY`XIB z@C+(TPjYQX)n|N{JbP^3*PjAa(mGtXQ2e!BJ(Ee~7Ezn&c)`iZ2z{GT(W+;)W={k% z)z@Sy)~sJMKQsVNRMD#Ew6?2Gb*B8iJN^HT;wz)YU)mW9Pby7w^Y#V@a!?*DBAb&z-ZkRUK2hKDUV4jA!9H&o6!J1v*h( zE>)8Wb-uj0M{hLu6|J?oRCUJl;d76@^*YWZN?P?)S95jHcvrMm=N2LR^iP{gZ@m-; zjEdGs4plqkfxiyE?!BS(eW-LvtDf&_IuY%(P|+IBEutY)9Gd>qTAgZWR&jQ?o<;{5u2zwN)ar)`(ocE~UP z``MhbG3rl?>Ul!hsWU87Vf5~79H5RSgHf3)lrveQCk!c2?NzUXYKMk82I@&e3REi!@Kzug zh|0vF+*aW6U{vM|@mK^j0y~2iT}!9xmtA|4SDt}-(vYf?O7-EDXP}-qq(HS61+P4U zfv8L#%B?&eFOAB)Ar`)Xy5rayjvCHCdyRxe<*PEg&HEc_QJFvlbyK_a@kU_LT2#*^ zQjJiliM$aA2BI>bD7O)Kyfi9PiE!zm zl{Cj1L0}*%bBl5sLC3YIo>rs^VjWlYa2i0h=sW`1t)O~12j>!~zTM|l!v{kkI>)MN zcsv|6OuLd#CB^C`LERcMEyg0RXvVeZEIPHye$#&db!>n^REy3eP$k^)IwBZ|&akQ@ z9@nDNsUQ~Lf-2&}LyJx$kev~##=xlrs_bN5H3S3EDOOd(pJ16uSE~1Q?W4}bYkFP1hNN`+7y{Kj|xN$f8H)&PsdB6Lrp_8 z$b@6K7Cn^C#8SVYN(>xAAnSloB?JS}Mk|@{cxhC+bN19wRiZ3KEm}`!%2kPjbp+&1ll}Hi&hiJI+YTEz(6!&bw(W8wWze}a7H$=!x`E5DnC*K zkPS(2Mg#*fK*hm9s#9>p5O8*XLRQuktdzAM73PdZd+QG^kHNm zY9!CLKNS`fj2ii~xu;?Sl#xVh5Zs+Ys}KxCds}r9JYE`=S+s040R3>d(4sPv78=Dy z12_|cfoM;wGvV>ls7$QQJrgDUYEhY7`_E@0uy0f*+QK`%kp9W%yleD3B>Rd|hCS0!Ju!{NWV2MhhWz&TOMLsRA%5pd2Gyp^6*v^6ad@D2_{J6K3sjmNd9k(m3B1>ubuh!$BDgvYh0Owfga!{ckL&aQMR~8~6~A7*zj$Zyyy8f)r|7k!%Zr+d<`-2LdHo;wGyZe@NBf8QJNth0 zJ>|Q^x5;;yFHrbX;nRiZ$#wt67M2zqD0sNww1Q&_rWEw|{^fnud#yL&UGE*??dkc< zbDQT3&t}hfPnlfv?>_eh?p^L_^3DG*u18&$x%Rl`xgyTLov%5sbEcdtoI~Y$e_uE< zj(v`8j!BN*a<#t)?U%^6|C8;3{Gall&c7!A)cm>m{cQ(i?*Fy6J+^taP~P9N@;QH6 zY%mRn+4b!k6OPGnHU5IlETQ@JnVrUba5pudnPat%CT~7gMvF0Xtabz9%||d0vogo^ zcwCD~a|}9KG@nMy7&FNh7oCC3B(v!aG@60ZB*UpK8p}ZDmZ#l&yZjh2#v6-ZAST^% z?zP6_T1=W`I3pYN;acOUuEm&Jwz$6$498@U8!s`N{X%PNGkeS%Nop}^o1qS4vO6d9 zON>QpG3KAA8Q-$^=dDIC5R?8nx7Bz&7&B}$nJZ{6I=ygg0Jg#@m}i8pT_d&_6YwZ> z)Nt$&{KY}RCf3mIn)drwYB6c0q1|ft65ejCj22^_dP;Wj3Epl512O5TbK8x_gE7NO z=e8SdXE@fEwSw7lXm@pHt9etSaIAv;!lHLqXHHpsLg)8K{SHcLG3m0Q-D=4--fpan z7L#@xz-hytT`>E?>|5V#w7nj|Kuo&s+;-#fV9YSvx$Q;|9FCQ;RXVujQy z^_@Dqn008Rv{(Uw@VFMUQ$g%03ynhW5svAf-oc!JMSh?$ z(oxMhY>4aXi8QF#sA#oD2){&Fv=+-FaEy`fc{9I62nM1jSv3ZaYta*_Am)#tG2|_x zClF|HVHmiZK-QDtf-rCwfy^Jl1wk+n-D%YZJRXkf-_C)~7LBNF|6U>-)jywuUs&8c zwK+FWbQ@Kc`2lDZx)Ck9mB7))JJNal${-ks9&gnuJRXY5)LYA!$~mtK!cimfR!u&c zzk!ZclWFH~wCHhEON-{9$;i(C<^F%~7e7#ZcJapIp~c>!4~iZry0~a-(M0+7{|En* z{ww{h{zd*ezuotu?&?Uiw!)7m|T2{L35}2#H`g-kWtWX30Rvs?6#?hb zA*;lqTc6PG8~6e~h2ktiJlj~T!I+PNkXRWlE*&W}Pwh<1g+wqAm(Dcjk=lsIOXJdz z<_bxx8f$T8M49P>6?-X09A`!}w?|Tm;dmF6<)C0DPYEfLOxp$Q!tu`d3zuMSPYEf% zjhyRP7U_}1EKDsf{ME!{C3xFSIywrfP>&y&tI# zN0rgy%$Y7Q7B0S#bvOb8aVuv^$F;bJn$L_W=tO2O?k14g9?*$_);<(uLNFZHSBJ=Y z52s*86y#|Tb6dNTv8t_6z25L8to6d}IHn zHSh~9#w_a0qx7BW)mKo1s)xw5ajc9MV-|J6^S!@Vxuu-zgkT^hEo#oV#S4;?qF@q2H8G_;1I(FAs2$K`I49ARbz6^m}JPj5Esu4@K47{oQkBh1Qtf9)V z2qp-GmC<6W37lsH5}xJ#2f;vWm6bqvJQ!PPEf59;wb%+eRjz?*KrkFLKI&4p3wsL& zJx4}3r_UPIr3rK7!!hH_F7*qRVG9CPXO_NHeD1$4g_gO~w*#EOee) zY!;o#LKXzWG2^o=)eG3r1iDnU4;h4G#}ym#hDm`+xI4?mx@F!9UVp;``m0|8Mn;^7WFd|GiN7@4}M{XBYO9v;U_GE-5&v zU`|1}z-7$-cX+3G`^z=|U-w)ubN=~cBZ zbzbA#;hf^^@A%8{u3YCoh}>qiqTi)G z_um26HJqTRrcbbeQ1t})i}sJ`1ap&WH&oUWs4`lDMK#&8T-_-I1`<|LO*$S-Nbks> zL9ps3jxkz7nnn;v|ERj9aF<>uHR~P1K;|CVJ41Ezage!3Hn4)^SYkL%?$IUK%R-R6 zTFfx^PQ48!kCS^W6l`b($*aZuV^9C+;vHwhFSIywkMq-8Zoa$guUvAhj236^QLW|4 zZa!*W-?$Or%%&kR9gH+2!h&%lyh%@gP##AyEzaB{i^qWS4BSqah`o>p=!rhOZ^CsvRjvMO>7{4eKZ14u<al=Mtm1lN4t2|<*acLr1*a3vc;Zchp zLp8Gyo`K9WvWF%J&p_rG*)suzM=%`Uh)-9KnEd;SGd>=#1VGH_Fu{YmPm;%d`8T|AymaDGMxmy!_O>{qP=NMwQ9!@l+Wt&Ya}Td#e^SZF`6H zcmn&z4JVlueyFkBdl3pxm=>2l5>#MA5=1UB?4!k{p#*TiZ6C^YBOlSrQysdIfy`I3 z#4pel!EoGI5>d=icEEHQ4Cqi%oDrR~A`e zev^$%peqAsQi<%nCg_S_I8HXxDaO)juApm!m}g{Rtpk<9abq0-<4P0=7El6R8^of% z!SDNAg$vnfappH!U*4&Vu(hI zPogt2oj_0qP9%_x6d)*q;rIj`N8N%2R6x*rvHbY(*GCXCMKBy6h4Of<1g#Tm&4Kf9d?fzD^5sum?#rJMR2deF zfgXyL(c;4iWDiLY6v04TSWKO0M`0~~1Qpb!V9&bSK8)&uLl4F1jutL`9ZU4)fuL9!Ek1-mwT&(Bp$G=zjaGu<@nF2cx@+RhON-aj zsn`@8lw@EXfh-6HN+KAJ*J4ML(LsGB?VBd+wFf0@#KLX|`X4&^bABvwX?M;NH@AHQ)GR}#TMyvj;RJRXdPt(9bRn89?a zT)#>$i`o4D`r@Q9|1T-}+?fBbC>mPSQ_lZiknjJGH|GD}`=0P!;XA=M!&hGTUE$+} z|0+Dba6(~){OiKxP2j8w)eYLW!exuQ~d@a~k#P8~278WEPOkD~x-CgW<#? z?CEYX&xmszgZG9`iYW_j_XW@H2|YcWFqVi?#)5?{jC;fQ#q5{Y-ul)?9Avcw3pTRw zg>i52$^;Yh&60xXs8lc^y&u0UAUbvW1T%dWqBGDiec7}I3(*E7ONi_(6yi$pXlKP`M(Z=C5C|L)nZxXp2sda zVFp|#Ey2Q!)BdBN$GQ z;qwbNAp_~F#L|5`Lep!fko0nmDCN1O^u|gm|Iy0^>8r$o19N9YZ(0Dq&=Sn~wSPTq zZk}|0AXq)QE07**U7C;c3YP1e)11Cr*8!AeAp2a0<+*^e46LC# zj-wA5l)02^*sJeV!wI<*mD0&2SYC@VmvUXmDJNcY`8f@^x^y@pm!(p_@CugTVsvWR z{zftVtJlg;Uq2Ymp(Ugh1i{#J29(9hXbI^F0c5F+pezHKHDnJzP!{LrT7sofhWa1z z)06!l=gKlre!v5#&Yhyu)@E9wlE5+4xj|VhF`S?edb~V>0m?Rr`F-~Ed*NI(8sP+e z(Bl&;vGx3&9 zQz{1bhaMPCl;JPrKup;*plrQZP;%_|6 zw!hKSc`ixX6MxZFuxJKIS|?VGc;Vf%UZ<~-5NhX?usuTj3X4qL?Z(`<~bK z%bi4dFUHDfi6R204*R{~&Qpy@3P_G%AmO)?9FGSRK5NNw4x}YmBBezyXCO$%*s%QMY$h$m03 z`hTnYRQD8jf7f5GSLF_XakbvxTh5!DQRiZ3y|atsJICXWvmDDEhdMgiKes<%Kihts zeTtm_f0h4m{`qp%|H=7Ue!lGk+x52Hw&}J3a?igv{^|9ubiqk^RMY-|zW&=JW82U{cydK5I4xVP1=}qznYw zy7r>QKda;yn^i+3gS|vcvKS!q3~DYyU@&RK0BNEKdb6UK1011$F1hRvz0GR=M@4B# z<^U%cGWO$ovl5vDoOjQZ&KLhalk1IOI7z`kmzaCc?r-xxpf`Vdd&R_l>%I?meGt?O zCn*@{7c71Ode?}R*Kd4M`L>p1u8%nh(3^qG^|3@= zkez|d^&Jt?*BCd#M<6=`nd_T$(cIXl>ptYNGmyEyInU*c*$5U!x*q- z*JL1bdb5W0{N@$MXS}x~7*3MYD-a77>ZY)pPJ-+*+TmIHhVz~+AYwR4POng~;04GY z5lb)oVs_b`L*W-%k~uvV!~of`GJTTL>3On)j9!Nbjxjjd4kp`qJWw48Ey+9{^AXV5 z8OS^y%LM?{8OS`|1btJoaogKk&lB`{!n14@2;}KnUa@DKEoTqNM z^R7p(1P#N<9{3dKAXxGRs9q&jC$7Bh-VDv)lFZ|=Bn(g;E7K<_J)V{7v=51vlr|4c zT-Sy7Z#(%IW0Y0mbC9{c+%C^S=Jx99p6*(6qhaEd_#9+zZ#=Etuev-3J5n8I8lPM) z({T~ryCiUG=EWr9hk<@j7hGx4N@it4jXyKC7M+w^vUqzsf< zk)S;rz(7(4vgAmXGXRn@&_*Rrzc=1_%*cIQQUt@vJnVWh7DS&Zf}{;%`k8&EegEPQ zAW%3#S(04^3t51q4PyO*r&r$mCNAu*B~GNuu+Rlaij@f_POz2~r{G#*Hx|yQU>lMkiD7(Ng23k#j^~mh7*5c~HS&>1-;aT$^i>1%K~_i=ZX8Qf1i3Zy+gFCYU(hT2h>1YYCPYY4N^_ft%@^ zWh=J~?Em9RT>y}jfyWVOAt?ioC2;Ch_17%wF^EfwU^qda*A$6`p0oZ;=AEvSAZeXg zRMF7$KOO0LmXM33>$jAg)fDBVDatr}omlSqG}fBzN|GK;m0>XpkQ6HuOl&kuYD}^9 zBB`hiR8+2UrkA{0f~7_>!wB7(=7))OR3ZaGdj_s0aI_IvtJ8&o?##e71WxsQd+Wq! zc5v+x3@28jl3uY;-v{bhBk2#cuNBj){_IgdtPq+XP8b_28QOOfELj7(bFJ9$@$4g3 zoZJI`q0j%9<~^NP{9f_h#pf2UDy}UqEc&SEuA;p~tBXb!b(A~*-R@8MSNMneJNdrx z-Rq0{miiif#f6_1-e;`;S6ApO__*M1x&Gf8`ToDB_cQPP-m|E{00{j~d1_YU_=ca7WQ`qXug>vS0f80{)?{_1>Ieg$x{bGCD!v%vAb<37jf zjvRBw``LD?}0Al%z@@w)t+CH`2V>{1wv~8rVEbnL8gixwn z>e@5=3Q~PTmE8~2=tz+vHP}r;sWL*r@gDL5Bt^CA&S>4sJnrk;G}^P=GnrF2UR?ac<0%byvVQXQx;6{$9z zmljwJrSw>(RTWhbl29$B``2uL77g(q+d_S6vZWf`n!vJ@9<9ulsrJED_Yp0`8cONb z722D1q^9-~s-<-Es?J;Y`putyzvVrCUUYY%lx|+3ObZQZUDjYq+E)t=i3p`URG3xA zr?pvwDYtcD_(Tt-bc3pDW*T5XWgK9%l(eYOTGNf5RT;rhN_VQNOw-K-W#auFOi8b5 z)mkJ%Dcz+0PZh+QIGB<))v7QgLaDs}OJR6t29qaQ7luSAsT)yMGt<2b&BWVHOG+yW z(naJdayy0>^NxaGD5*PARi;`F&D{C$RthGiC$(xV5}~ASMpa>^n@v@aHbM<1r5&{> zjEJ)2cAdyZK}}VPU^my2+gLOCkZkl24(f(e-8j`>6yCRPL0_gvggkswH=Maost9&q zEvXw$Rg|d%XU~bfGMJQx)2b-!YQdy*npOn%pI}m2Oe+FAMKF1cHG!8nnA~Jd;B^Zo zrFXPA3(doWN!>K&%0lz%vZOSP)-gfM^av)UU$lw|GC~?fPADr$-9k$;huDo4hgDXR zgUlg@?zpteb){D_E6Kst@`7eREEi$<8SzHFsJj6)5QdTlD zBoj@%_sf0X;!>`mq}+B>Z;rm;vGIaXdC15RamIgl{BmH-uizoek}Lj6Ki1usQ%$=V ztNfPgHH9D_16k(eK)G_m!2Un$AgIZ}rBvdG>8n4l+;XxGf|?9mLg2K1{jNQHX(t_2 z#+=`2iwT^ax&QL{FBa$^1o^PUaFS z_-oV_L~YC*zw3^>j&JS3U&OO)aB#2rsrpzdJPab#-NEA-eLgyXCcw;kKqYHqj^#?4m4 zNx8+Q`h`!h5C@1_CsudAujjr~_JF9t~qrFFLPq?sATG_ICX4c;0cj;~2*~D;VV*F;4vAN&*a8W`jJ+!GzqRFhQnNc0yc%c;YlcV(Y zau1zja)N{gQ`UZxh)7D0YeM_f_-$@qUHjE3A}Kwx3BNH-L7;tg?N{~+r3|Z?ji9J# zc=j~VKJ0y=lr)(p7Q?qoZtD0q+jX|@p_)tps zx(aQ`es*ha7NWtFbh}oU4T(rf-((W%s@^-8+f|i0$yj?}5!5x3(j71S#`12f%Dvkb zQl%~1hqJg)N}640pL(NhZXcq-l=Qq-?L#7x(sz)Dx~e<@Q~TsLntO~@rq8AJ&1Jta z1^HCB%-wo3l+rD*)kRU)kM_(ArF0Xl&>Ca344T?UXfQR)vVBC9rDo~`k1nX&jkeT` zr1X!5Km*eg5!%z(esSthN;kgH9%EV1Q?r$X_TU64l+vxQLQOZZik47Kf+=Z!Ev^?4 zk<=7kR~`z1x;EtAJGuc@6{!7Vn$6#Lnz^nxuLz|k5o+p&P*+5QsfpHgMIw^YKOq8L zRjzyX#8B6qZB#-j-TSJ#nl3)*%3Oo)eidq2S44v;>3^+sMIw?qlGSxk=gmR;_1(>N zt;-yL;>(A8A6o+VK`5nrU{wLrZ4PzC$9gC=hES7P09_Fcrbb)W6^Ten|AZWLHCZdr zwKlWGSON%BdP6B`fT6BxWeRg2zz1+BC4DfUrY8v0713a7xOH8Th@|A!^H^8YRf4+a ztj8Tn9YGZ^Jsv<;eC~!)hZAagnnPU?4WIpR|0Chz)n5wg`D-xkpEfr=8 zIYU+PDHKZ85Ng>w8Cp%KsqaG-5e=py)>T9zl&Ye_Oo41wMcTzPlnN7SdgiH4$RgQ-E5RV1P;HBcw`0}SfMo-mbkLaQrGTZe{H0|-^we%WzA$wz1~b%=G{*m*-# znAHGC8-#{Z{RuTagW$aQ*a)UH>+>QJO7)|{Oixs}7C5elQhfb{D-d*j#XALBM;^`+|4B_gL>?-cFwHJdb+L_pI_%d))3%+;_X% z-1FU4Zl~*G*PX7EYp$!G^LM%O|8>q&os*muj$a+GIj(V>?3myvv;S;=$$q0;`){6I z%RiX^LjL~zJ^6F;2ibnJJ!(7Ow#hcpR-X5ZthAc_r}bUG;n`v8oT^(jL^A8lOXP&o z(q+K|Vcf20zc+h6ZhCe!&^@1)b_-CI&}r&kga*@kcrka%L_{dfJeJ9N8{sIqh%w#B zY3{N3dr%|F$I(c7DpSBT$SG&oP}P2ih)9~dE|cd5)v7WZ%q!=H(#&;@&3><7R*lu3 zxvsf}z;~HdLo}GSc3oTw8DWG=U^4VdHCoRylxAkjG^Q!lILgeHsoN;g2#uu2F@a4U zPKhP=f81nVt}T?-|*>n@X6ga*^nby;*VBFfT++2W%ss6?Y& zT1FS4Zl>7*sKij_vKsiT08~OWlGZ=jh8xi|h=EFtIdl88v|CVp|l`$ zW@6&#FTQe`RYEkFmUhcZB_u*==CVxB7f^tP=CpKKP({-?4+ ze;`sqQSIuVpg32iBOsuFq7p5DR80^ zN=pLKtDM14? zRFSm)y$@($@)Mwej5x3CvO0ahuLb`WZ* z0iwaQ-C6@ALg{=e%yeF89y+T?+Qyn?a*WWdhRnt%MwNH;?4YMz9u;pI5};XFd?}Jnd++OMU)7C-0NI;%AC4Dc)Kv=l?~26+I<)|Jx$x|Jk?y7x~xv z5BGQWeeZkBcY$xUug2#oe7EqP!o70uzlfUsHy6w+2+P_3Siuje;8`#(+2 z{)c*cy1#KhjI;j_T@Sdwh4Rb)G5MWr@5w#?qPB&$p|%dP!v8OSp*H5K<{muu&d?R#n1+x>dgQe+ zSEZ6bOhX8v!8U7GMMS8Lxhm81)5ubh>3Q^^Y5S*mmzunBl*PMDk56?|5*lgKSH;QR zluluKZmM1@w>VsFY}R!S^u$P82!C@>m>!_2_sUHUXPk246@5S71-}Wku~3*=qRuQZ zYbdipZ7dXKdOU-`^gwH49?Eq8g1`)A9?Entg20GI+VoGR zvjTgCX%q*6BVyZ@-bHSE0>p~6^}*k`gy}&I0!PHcqffi6@;iDj)5h$TDF~&82imkS z)K*HvgZiw{EHKtS*d|?-mB2`Z+L)O#*#Hojo|kRXOzBeSdqtXT00_)b=Bi9C00c%f z(x!h;4UZMm;~xZ;VXC<=9W0pGl?2wmsLuYzElfTD1g;Xx&aC?8?8Mvfn@}6`S#wjX z<^B+_nR_r+Db&V%)*@pi=0>x?hz8rNeHQJE7;0la%j7bYz_j;YsEzq7lgUs5bF>p( z3sbLD0uvf()0fi8isck0Q=tTw`yRFnZAIET;BO8J)00&REO%F&9~n36!OOOjz|wF* z_b|n{R1c;qh1!_&T6}0r^XUZlE}$$u+uNA0GFcZ;mZ8j7 znH&o!i)f_Hiz+#VX~+R(8%4XEkVu>UopttVc&wFe6e}NeZ$JNw5u~h}l$~iTaXib^ zb!l6~P@9X;MaJBy(yT1jKG-IGmc`h>3uE@m)I3lPeMqQH+AFyDCPM_OAsT7RM+Ic2 zw9Nn9U#v3cK((9@TBMB|E|VpK{@Bodle|zHGhC)v8uUl3QYg&~*FvL4!_2B78cbUo zF4}rAls}LQT^m=xc}u)61+?Ln4%BDT<~DGTfo)>qF@!bY9bIB2bN? ziwQNwjX^X-BWa$ZXv+Nrv8pqxdpg)e@rdH? zMF))e|N5eaBA@?5oa5Qx87{y2|H1vF`(N(O?jziVt`A(d$(8>WyXswq&JUc| zI=4F~I?EluIG%A_=Gg9-=;&$x#D2HE&A!4u#NHwQll;5ou7A_=``iAoy=c3_c7ko1 zt$*H+vbyjW*-H^5k1%z2)j{;#`etr?nJg z*D-|!)Llgz?S=L-ucNj{Gj$X~wY^46DZ8gjcb?X3e2+Wh+nBF0-CU{{a#Z>nc_R@aK&$t496KdNuo}-6F0s zXN420wHXE{dr8zsUD;BzmxOd~WA?^$3&SPB`!duf?G1=$nqI&qVJP!CraSomF!!eM zQ50SLZzhwO$xLP@Y$1?@Y?EXLl0YUqd$I2j_I=+s*>?hnC?aSw*(WTbKB6LuBBG+` zCXU{Ee&=_1{<|KZS#by-DH={(*6csT(qbL zy99QZ(|4n%2;3bUd%B1ZyF_b}r-=AH;v5@&muP58k>dBLU80NU)GpCLPti1adtG`% zbcsB=&Qmm1qPp~k=n{$&A4eC2i>HL5#K+NPH$<06)LS%3lh>q=y+xPsgZ}hc4R6sz z?Qa~o*^%xkfxnr!=hOPP&lh7idWwkqqf2jyE|E?06cP7Fmsb@}i9}P1#&P-7E@@AL zRHaKKm{0^hk3J!SeW3;ao+9Gx)b$aOC*ygFz}dk8rpwP^Ul6Or>#57{lUBV&bUlWy zE(rS~KQKDBYX|Gu{-~?BNV-2ZrYjHP*l<(yH!_g=1bry+yKeP&>L!HH$ju)jYh-TO=z7t+-*O`ZuUE97$LhvuE)L z&FAtI4UkRJrBG03tx2Au{t^{?II7lh%xh>$Q9q8VW4=c%|A~s%SK6%W3!E=A4Mlw< zs(WFe&IIi((K>b3P;U_}Ak>vMq0YI1aqC<6uRgUE$ELSPuHP`@AqaY%bJ?JXJ%=w$ zoq>PjDe57cRM!`n{?P6ct@GWYwLYb&8%I^03t*E8*yCJnh&rA%&{Nb^+SGlj@f|L6 z6GdGls!KSa&IIi&QC*e>$Fqidi#loV^VZhNcOIj82~5uT!s zvPrr$4UT86NuHt(60LJQYiLSQdyc9)cYz~WU;i+Z>a2mDqIS}zF4#t$Wj3Rztwigb zmLX^xiR$73)LBElMXfcR%}iIFg*s=mX~xyNKRz)V$ELSPF7&W6U6~fXH?rB-<{8KK zo&FL3##59hn>6ZuzS-D8RT0!#Ym%oZSE6G-cnsX5zf=_88yXr{lv8Jbp05#}B2r#h z=RlT;k0K~9tn(d?1DT+i64hBnfi=`yS>3>iC)1;M~8e z;3>hagPn%23@;lVG)yw&8H_<6VEA9_e{V70XGP7jh2s|Q>L^fTgS{fN*rdEkpT02n z5tP7NJVyH)3)2Pnifqc?^!Ltv)|m7S{*9-Ycs;rxUm2JDPb5mb9$k>Hj7vRAay`v5 zdtHCz;IC@q#l8(0GW;waA%~K#2taY>z$!tBkE4rJm6wGcB|eU>TtFGidQ|ao)ahPb zm4GsqDe5hji%~6XblcXCU)#7@-zk}_px$?$tDCgyPjB&Hty9ABybkqmuv0SG_>(Or z#${JZrHS7&oVo+pDMXWjQa;@(DeM%27D!arf7mH904*k7PU?jvZ+tO&hT3NA6oL{j zNB1hgP9dn`<)}*Q0)6Zhf)YPRS6P6aqM_bmezcwXq`H)C&PVuryNd+$*SgdVv zFBBvuv0Xv-eS3e!pd}I2>ANSV8d#B zR*R*}Q=jQ#7<^LTaJ`8aZIf3O%O{0NrAI5Mf>Dj;>}we1qZayn=$as~5NY9hLPKQzu6k-HUH9{LLVv`|rtB(rYdzPL9qKS9(J) zA8~SYQNGd}6ip~roE$}Iv41D_hKxUpiJOxa!*?t1sCKSM3CP3lJjKM#$x+Uo5H)nz z8^kJcb9B*`@QA2YuN;VV_J(HFTP(dB2=8f~1NH`l_xi(}y~VAx7giY4rN6K@VB`9S z794mh^C#>ay`eS9Q=BeQah45vHlQ~MnkG?Q41-E*QLU$#lmhA^P*j?r zq!dv1#zdtF+FUk3S0aJqUPHabvI0;$kwX1lsB~VMfR~fEK2!r$D81*-+cYZH*VDqiWvbIHI(!umY8?bt0dqI94`EH@$*N zYfbVLHdOSG;;S8IYsNmQ3rL8S@WRHC|IAC=Zn zZ*db%HK#tvN2TG=y+!xcKlu@pN=Iscqn+iVYJp0_PH+0tTs*~%Ws~Y0(^``}#Ss!6 zq@FXXS6V~kilIudj#3Y*8YvEJ{s=!!qO)oY`$ERH#SP?r>+B1H)|aTRhp{gRO4eTJ z3OukcG}K$n4_#4RPe{1X$`0&{Y&P=tx6hg$8YTO}sr}7OrYrHlzQ_*rm^l4a+usNA zZ#=~g+4`{u-@UuA=MhyC9Q9h0JjHg24r#aO@$ysq^nIbBam7$9SXW6?o)|xAcDdo41BGm_TO{lM$R&|iP#qewMbN#JHWos&|2|-^Kg^%taF!h zp|giG#&O+o)UnmE%+c4;#QwGY75hW>$*}vsBkWSxvvB&~fUqRnU$*yckJ*;P-v9Ni z-&hY?i>ywL58k>JG2h8Q>S>}%Brly}v2Tk{x zMw>EBrjWBCdqXybj0rhPruua?Pln>1OS*TOb3VY|yw2|Hk7ZPL6K&9=k=; z#O3qw$5=h~P;It6luX8%J~t6rIeKcQ3S)l|lz20>pL&pkpv0TeMfBJo1SQ@~Pw&hp z54A7U_Xk0VH>1n4V1H<+*O#ab`7k_tNHvR(iI)xk@uwYKgLa~}USERtHx8zY<o)3zG z4};$?-KS2xuP92K8C^Ip`h%jxndv_J+QsJSQ*_Syuth1k;7_qCenoreEy7_}Ts1F25e1Q);3M=S6?WCb@jz%=}w_ z$S~7K{21MO9r1j~UGF_U@MEw)YR5^C!6H_PLsPpPK#vlKru*iP&e*pLM@l>&)GBdk z#7X43=R=}ipIlsO)#tddKl0h2>5tz0`MkC)!t0ZzfsjF_6ZY62a0Fe#qMe1I9(u|J3=ArjS{BJ~+1TGyLM9$e?~DHVZgdQA7i#F0;|lA6HoU3%3Y@#z}< z$R{YN3Dj+tfg@i-y~X^DIn_6}=;L@)I*;{hb?mF_e+6l8qT)5$-@w;IJ$6xT3M!q) zM!24Ca^+|{{2Nbkq0~ed(4*2?lRU+%C0f@zKZ8W1t0daoxjBB;Cac;Ie8&)Ur9|sg znxINepxP?xY{ICT5FQ0c(Fw5e4A?#si%06M0JrNDoxOZ z64eFtIHn1@K%%;U9+f7jQWdCnif&B>j%f|`7V{J7)G=+>tA=AbhmG#-f9h)6&rvmR zvD~s50*SiDbPgMO{ovaJ=Dy=msp?D5|o73bhrqeaXQ#@Om(*+Lr zh9ME>EQxxQ0@wEXaZk{h|AJy~5Ojt_b#wgK8w8y$QQg!&_J)Rfi{(NH@LQmas&dM7 zwXxV65dD93c|^_`lJk-aAsRE?-12Y=R&d#y;Pq&~dV@ zx;g;t4Grb-|Cpd}<@|qh=PliLqo<>h{et~PIQ?(DJ=<;# zI~Vq3*y6BWVX?Lwws&mXZS!sIY@yck)_vBE)-hHuocwnxbX(|x(C(qpmY*$eTdFJz zE!`|p=4<97X1{rfd7wGfY%+aedLA+Wb4`6rZaDStyO7sHibL*#9ROQ|gc>g!j~O3^ zJis7hi{L+lj|T4uUK-p#IK^ckDv^O}Q;s1C4TqQg^6%iQ}YG}sx4}Q_m z`k&p}ff>O#WYSB*t-+kK7@7qYu|xYWz|O+*#6^~QGO&8;Pn!wvl>9CB<_iyZ|D#?X zZdVzVtnJC0Q6KLq(Rf!0Pe_SYycKchm(LGw=d|*A(5U1R?!!eyD{US5%X;J4vlBQa z!c&cNm2d|Rtu=-%kh@J*xpZ%9jfyG(-^~!wkXuuZ@qv;p?P79?>a8ian)eMqSah;F zQk7Q>;Z#>m;nojWy3^h97c!y=rzV~huF}m9B_u~xK<@0&=Fvdciao?(3kw+ke({3yi{1;jM3lzJu!#; zg;DzpLlArO&b|rb2enlHLUi7{ar1whd|UgAYNkvZeIRwCw<~BQT#ErhsS()=tzUB8`N9Z?BitLS}D|91AmP;*!en=w3lOiYxqso zURD9x&v8EPZ3U@%uW8To7);;8aX#*338MHS&mXr_zU12PkMnWgN)V4B z#`(BQC5QvN_&0N!zCYu9+>;W-k$DeA-TZTiz9*aemP5Y)0X=Ex%uc@h*Yhdkx2k=Z z6SMb$F1ISR7B%-Rlk6?_;b)$Yp7ypAy?6Zn7EL#&Xl$Hssl4;)Y|~xEuYRiUwP0qtQruU+f3>h?U&Z;jOC)~W>8!tf^SZWBKI&Q{8vDQ#G6bo; zMEl3%TL8Z#B1rkwo7q=M%}2E#`~!cOS(4khYU-XxH5)B_^ZCG4(HGdIbNn6EQ0;P- za&JM~qo3B-;3VHXu8;y7JFpu;_onvPy_O{pzRngMp08mp-(AX(Fn%@gw8%O|2!P`hEbhweYfqPw`&VtZ_o~^och@{iQ60d2B`B2R=66)gJ$*g>Q(|T9=`h zTFZFUH&_Z-S2jzYvF7m&l4xBK5Jd+{R2;{q*P1k-K%#>W^Bv{-t0-zsP*VFhrZR8y zu3Jy5C~B>tULQY{P1Vh+U+sum=dvOC)s9{tKb8%(9&lncOeDRp+DEN(+1yo2hxEUp z9gxt%*O#|m9oM>$MQSahO|wI*l}iRv<~sI`WAecd(Ptok?}wa#IK1CcvT-`>G7>h*Qg{>I64fjnvr=e6C= z@O6uS7yl-~*R|#+O$7b&#I_c`F1*?Qvp;0K>FX?iV{+@h`ETzkSLML|AZRCv)?Q=> zpA~{Ki89zHwNpzmim*Qj+EJo95pe7iw1Y%-Geg)P8tV16C)(=XN!TB-2tdF2mDeYC zRc^p^v-8*=*=+Xln}hCr{G#lSw*S^2T3cH9+VE!o&;HN?Wsk45{Ec-!9|X;pXd*vh zyZs)u>+ty?C@KBZ1@+h;1SO?^17G{ahvCb~e=FV`(Z;sC$2OT>dYaLS^T^%lm z6;=csv+uIsYoB88ZO^bb4!Z?)0q=x85%yr%tgs$X8}PU7g6)v4+P2I#7ET6?wEk#) z&-$G8J~$h&wY72R4agDf3SAvKDAWUM1U|Oxwyd)Zv!q#q&1cNdnm3q7nKR60(>c>V z)BUD#rfkR%TnIS;s{|&6my|};x1XCkqy|^qj4FV#(&GFMpzPic~@|^9>nHyjf`Yl-&BGv zAoE!BZ$g?p5`CVKJV&hFy&>CrsqY)Z-yIKRE=%s?SvckJY(nzPu=b1Y@JG87kU7k~ zpv#q4ueT@U5{+!kw#D&B3`j3)zG!fH%6DEu zE}-PZDUN~h{{=FGH6J{@;XUE>?(;Pg?mqdSz9p+i@gi8(^247NeD~u*Vw2~9)w{#5 zUOe4$sW^fcXfjXpZk-p-^bnF~epND>Z7Zxcb$W3!ka;Y9`~3S}zwaMH@{Mp*vOe4P zAAVx+Wgv4|;ud4GW@!#W^6hU_vI*PvDEP;FHUXK#T6l+@*)&b&CEO)^UARg%WZRx? z_U^MIwgQ>Wl3w_v^x1C*5Sx58xJrhzZLi-yX#dJ`AhTF}|JOf$sp%#{&eTW;+jj2m z-APRr0h!5SQoh(Q?(P|coS~6+w(XPeubTUR45XJu1<$L#GIuW_r)y+Aw(b1cb=&@V z56BFbFeoE&M5}g$BmRY@n?_V;f1_X?2t zEY|znxzAdhBQ~c{@+zMySO#Psi)F8rRtXL+nx9eK8ps?L@yPuhriZ*mNWSP>B`s|0SL4@Od#waAn}ttk_>;x(F(D^t zWGLHOeLi8?GZTT#Vhv)>I-f7QN=SYvpK24x;jn9U-$_7bvIf1{87^KvKu8`Hsic$n zFD0*?9Fz;Bm&JeE^r`;rOG5Hk2!B!efy*5%qkjf6gT=fvcJUMbX@ulUpj7fEt7yD^ z!wNR70z;xjyp1EVf4m&HGSc=)Ze4-s;NMuxJIb4wTX`7#d3 z92T{H&dEvcHwZagBX6^wQO+N;UXZj0*%() zh`4%WDIs~hqmm}JF0|97+<{L4naNy*KOdRqUrtEA;t6fuedj4Sc)1af-ax|GSC6dy zW-KB3IwvIW`R4(a@Slx9W(4Bc%R%OYy9hamkjwaC*SUq>)^PAhi_Aq~!$X!3k}v8; zn`_=)ajdMK8_4`X(tt;|U41l>kOhQXHl@kNKX1PZWL}`f%k3_I?|O`o0|>eBi8-fQ zIGzDAH;@r{c-!d2R)ply4XU(g!C`njdIFilG8*)4d+&fqLh_hKCC#jRmq*`;dbBf; z*=)jp&mN5VeGDP{5^|#P8AzQU2QrIwxAi*Kedl_Oj4y#@O$PDXZvv7TXxs6leMSk?|!xG-GCHQciwgYJOo_(OUX-;!z43o5Vk3GZp}u7hsDL8wK8eT{9M0 z(hdAtAbEBf2>E@DFM%WUNSkwV0u!p@y38FzAIUD{HUo3ltbeKJcrcP3806mjK*JmF zX}5_lfrUuaSXQ9r2VX^<8hzwLKh6mB z{^gJ2mczc#{y4s*gARcMI1}Qh-#crsn;;NOkS1j32YMV_iNh2K0y#zDnwh79q8q~ zbng2_(yxdw$=4%Uf#@%HpYFW-mS!cg1fl_{S9Yd$CANe+|7y3hcFpGfQE~nlv{eck zSpqIU`BV9Ri!8~eSF+^nPh?4!?n=IPyU3DE-4&@?WC>KW%KK!=@fTSFrK{wM^l4&C zc%`ane4mt8Chb}pBrrtT zGWG%hQlHq8R0(ueQi<>(&Z084pv}*eGR2lOmw(!>oF6Z8+6y~Ik=A)6(Eic8CSOC=Bwp z_EJTnb$==qi7biIU7=Dm)m@=dG|^q5Qb4UFX(E+^mqx0c2JheuIaDG`B6L@z6t0p+ z@Uz5Z?VO4Yv975xe11ns=4d0yRnkyWYrehXPx|u=rC=x2{xp9J9hu~zOYK9(^;K3>B%>|)Ot?z<#G0V`tZF$gvfpolBCk?cDW6jlR6k`Iz&xbLvr;-uQZ;N* z?O`4bZPlQt_Iw_#&fiGhvaV7-fhMS)YW)g|Vp5Guv zwdXTtf)YC|ASK^Hu2Mc(Ca8?inTe@UA0b7x=jA?v67x)gBCqL~(y{#Aq>SjBcv*@b zRSJ_}FgL9@mddt1t>xH^Duqce{Y5EDLMfl-QvZ^PN=ns$6eXdQ&uBLF2qu*BsVTwC+4RBf%wB(~ zj1)Mbl+Q^CW=5lRP|iC>WvI@4GD|@o6ga9B z=8^OlrLs|_Fmt58NG0WSMdH>4e+{3v{X#SK)>6`_QkW#t8<1K?m3FUrQHmHE32 zQOJ|(MV0c29`)8Y)q6_WqDoZe#ktzfeC%TI{R3Rle zA`Qx+3PF6N|4XWn5*yLKqzWnF5xqziQX(XJkt(DFN%SIBNQsl^MXHbzD$$EnA&8dr zKZPm;k&^CWHdP3sB>hFI5JX7&i&PWN|lg^{ACtZNQsK*MXHbz7}1MVAtg4V7pX!@ zctkH!g_H=1UX%(YltPe%Z@JDnJ6fN9?_1@KLjvD~QYBnc46sO^HJ6~W z>ZJrtpCwh_Ur36s)BGpTYq3A`b7lcu|-X#HVR4GJH z`ipc#LC~bXNEL!uNq>`?RNELF_yeJh)D7DM37p}R|tt1eR zDh;b?fC^=+c~K6ms8Vaqi&Uu4nir{1mYNr-Q05vJNoX8ZYN~lr3gs>hA-T9YGwwQ6 znYW799tLuQ+RS?*8^l0Yu+rP z+mwtyWIIa=HL@Pt`q18zr@9;hGLt1HeV+7S!G1#W{nXXF!@TjmFh!Jh7Dz8kF8S@n zM$bK{kv#sN7Ia0<|91|LasKW+<=pMu;2h`7hxq?0>;bS7qW>X|mX1*SCHrgk3j2JR z@lOi76Ltpn0o)QcEsTXl*?xtc0G_n1w~evo!d?JZtVgUntjn!~tZ7zr=!MXOp=F_W zh4u_hggF0G%X5|oEK@8UEKSV6m`|8@nb*N=f413ax@LOcw9B-{G|be}WDfZP=KCKC znHJI^q?z%S@pI#A#tP$n*cl)x_)hSd;C;bcU~d2x9A)^`@V?Rc%|+D z-&LlB1-gh{DbayEs(dP4WlCV6Qa#m#98&V}bd@QgL7lebo6J?F1P3bBOF2{QAli~o zs;f*14+Nz~^hn7^)>Wni2z65O*>#mEA%aSY*9O{>53#FE2@+JQAFPY{DgI%k&{^W6P9Cr$&cm$c~69 zQ=%Pp$S6r5sH>5Bxym5k!Ex8fcF(LAFW!%oRLfNcfe%vJuY1T#E(KjU5XsDt}=*{kebje z?b&-b{DYJf%2fv85>g`hgOnVvt}=+5keYEac<0$?79%A`tE&tGD5U1_YOj_LBSp1` zND8U>{a`WI$SX)u?IEN>YT=k;fgjcekfPc{Y=zWfzK2(vfk;v9A;>~%+3c@(7u>jn z6xAN0Eu>aNSN+*+-mgee?IG+!YUS~M-M+tS5)?_hxym5^LTYu(cVI*3IHaid5QrgF z81>Bq{xegMqS`}5rcq}PU#_1PgcQ{tLNlb+Jiu3hUPX#(4>1~2YYXNMdo2T&+bNmw ze5ySJYZ}#JlR4o|TcoJ=O4O!)Q`Y`HrSz*VI41I`_DbBQQfs1K-kbl+CbUJhhsX`@ zxF+r-e0wG$MYV?z4yi)*=m$ZORGg~}VmYMNw0QC2`mfzcQSBk9L#l=?sy#$^8WqP^ zJwAiBsP+)%X;h0#P_r706xAN$J&m#{M+zcEwTHk@qh`T`M)4M;sP+&6BDJamU-auk zifRv`phk^WPF6&UY7a3XQY$x)Sp8P=YNV+45F8@4;`qvh-XC5U6v^(n${(?ie} z)!rzn8R|h&NKx&BB{gjfUt^`XUofwhL$x;$O4(2qXUuY__Cb=GvYJQ6-SLh@`_i?N zn)K9r6OX3nAVst8bNMH5m)`_dJX8U#<{+Q~+wi1ww+CDmW?H1Ul|vX-vWWs(wG zbfPVyed$t3byl|14@HV0+d)_6sGYpNFK8 zS?K~v>F-FAo;?1a6!gjeKjQxgI1}K%uqVJ~(^Qz@uNQJLWM9ZVA!9>Y8vik#GVV66 zGWIn#3;rqionSvy`?n2_FkCYP3_jQuFv}1EKLY=yl|!i&f8-(ga+8S>r7RVJg224M zfNm=fjoT~hPt(ft2rh;e;<Z+mq)vT~UgHl>y45?qWi#B%~e(mpD<)Ukr#IRqDj z4e{)NIAE9Hd3fUSPQYOZ(k(WMf?A#H$yT7)Z;vLt1&-zZ=b|Wi+jvZ(E4JP}F3g)$D*cYK=6R z?^vkeYAOfutbjODlHkn=E~+#T&kPK|-ELf$4;xds}| z2#BpOHKS?eDFhc;9)Ux_<*?UVyxjHN!vs$zxG3O2JU=irY5VZmD`mO1tDFP{HH^y_ zds?}R7_EWj*3kyOcOm{ly%5dWif&z9Tc@`azwY zRclbY%1PiLiapRcdHI)YMv5+jI`52UCxBt{VNKT=d0 z5+jJR52UCxBt{VNzo1Bt#8pmW1X22d6!A&QNsJ)kf28Elb(NDCVaBW6@oI&XeCxQ% zNsJ)kf25@7u5uD1%pXzO>XTmvBSp0*F@lKyk)qm@7-6yEHRd2iwI?xxi2sqI+LIVz zMS4!;6VEk7ifT_{1QGu$ls@-TPGW@B(R`Pdfk;v9NsJ)kf264PBt|H_w!hzr)%B60 z+LIVT#Q#W9?MaNVRw*C;3@NHTi4oSS@jp^jdlDn8Q);$OBSp0*F@lKyk)qm@7-5Z# zhb1tLlb#8YL~E)&i4jE1E+}2@g~SMJI({*F* zwuts+Bt|Gyfi zA1R`J8Ho{AZvP#Qaa@fQ(Y}nt2qOL$lrHx|Vua;w1NjYF#~?+uCozJE|B<5FlNe#C znvX+@YENPW5&t7awI?ycqCI?#6iy`MQSIl;NJ7N_Xp3q;Pf`m$gH*z;Q%F(m?~;^= z|B<5F&z02NHeX&#e{~;HRQoxS67j#Fbh($=lA6g=dt){sMYW$rC^h~^ifTVoQqz@> z?|+b@+Ru=bi2sqI+D|7`pM6>PT6wVxs>5&t7a zwVy1h@u!}9_~a%WtGQJBNs`X#Xi>FGVGtQQ(=#UEez`t*2wma?SO5gZG^44^>6EO>o)6LYX@sM%=SMY zx*n?flPtekj#?@$Gc2twHuLA^J?295P;)D@)%2BVzv*6><#(G5A*Vwg3n>ig9};K$ z+4!ch#5md5-WVBtJ@~EQQaJlBC)jMbV0a#8_Xiu2g6{l}v;TPXpH|_}+;M3K777(1h>aVpQzYf*2$n zlnjVm`j=K=B6t_RX7&Evh(prhRzcz3R|-gzmFgamjuB^_Bkm1|Q_cyll=ui-!~}?E z1V*bHeGpu!^AUI#SY;erm>_Ui96P}}{%~oCTt@4vATE{2Z6GZl3s(hkse18!e+G<4 zioBA_iAyCOYNX^VDXm;7@DUB{rKSZC%c&zRpj7!F&UbYjc?EGuI{b3!;T8KA%b#Da zl=>j9914F7aY#C-$H5a^+4-VwJhKj5+5SS{J=7H&XdSw4qha}A*=Tr*L0g2rhd!d4hsT0q~`u+X-4(m~l317%aAbhMgX2d-?5A#nXuno~RJkXEkj zk0EeTkb>4T0~1e&SFBq1DN&iYZzB7EH2L(D6ZcINrXWQ=J>|rGbL)N=`Sc{0!^RkV zsR_@&-V|1{^I4H{T1Sc2vb1t#TMY3-T$A|3*ia=~!Ru54>*8X^FLBo=xUx5ff`_t# zq=g+0zIzYi`E1-@3(8;Iy^!F_1{n%&ViRG*kIC?OO*CT-h{3!NZt{^AXQtonM|hy#05L2(Ij$q2P8VCj1f4WSu(=+4b1p zPZ3<%K0`D{ME;0-S+|i5u6;4oNASto;I}eS0)Ti1%bni!oJiF5IF3c z)A_09+us_QKyYO@4W%)mY;|m4%8%7H#PgZ=*yVMr+K_Kgxw55(f`>B^dm^64nCl$d z|Id@ey0Wi^f?HXkatPE5i087*A9fuX9CbIr$7yYMur+t(nHqhDy$XBjw0WWZsr={# z1Xp(0P^>%I+P+Hu9j#}xw!fJ#Hf$}oF-R*{w%I^j%^)D2#o9IO`TC||jfr(-uMGun z$V4dt;?S!;c42;gEWwoxHx#@cTNAnO^7Y04Mcm8S_6P1i#N@6pY30hU8^XFMEfiSQmv1i08As| zz4mj0E8BJ`xP^&~2I6@vYvk?&?PrG(9QN)IA6YwFs+Kk&p36D~cN$QCR!4%vJ{|(M zFp=XxJcng}cjdcA8%hZddwOV}@I}g+wlc)C1FiO6_|nt%B*B&aJw)3@)&ub@mfxUH ze9ueE2@acl2#N83ZdN*QS6ht5n zy*lW^;P+OQ5gfJx(SEAPj0ha|^vOGL_wvoJ2NArBhMSovkw843wJ+T}Ci3q-1n*37 zHCKXo9&4XG>v~+o2Ly+GLPTRinJAh-JePHSZ~BIBX3G-$v~s55CML2ci081jH(nce zdHpZMI&37O{nTk{83p3mfp*c?jzpLJOz;i_pQ6@NAf6TIu)cNw>Qie84jYVU)11iI`yJ-U8D2Mu?X zw~+z82v!A6(p_oguoH>aWKna07zC^N=S=(iysa7K@&DMMvpoKPG<;Eb*YF6~`R^s? z{mzlj7LJ>a6OQeUyBr-I_3Rhz`|S7FhuD+Deh)hqRuwigtPQO5KWBT!w#GKV7H_?7 zeal)3XaD6uwf}!ZUk)t^oddi7$HVD=A6uS^<&o&#qfH${rLy%i** zx1vumoQwCRpy<9$sdo~5tworDXKlm=uK*T430zi1}UojF!`F8aH!tnGk)ub6xDvHq{IPd zNKx&FNNTJSd7~{lvs5uyQsU5hVT;ZzRSc5UV4kAxvJ)w){Xj{HU1yP^+80Plh}1xjSFWNAw{+CEh&+G z78J=%x+;1}N`FVP(%x0kQ&K&ZqX?ftTU7fVk`k#gq^S1YB~`-~)xMjgM7{)VQSG}* zs+SsVAw{+CLMU||6;f3D&XN*IMx?0rog~#)Io2r(DXKk_lt>{7ihOEa6&)odieZqV z@0<>js$q+2-~L}Is(m|2=~d08+P9UI$oylwsP@F25IHBLsP?U;Em7ct6xBXoQX<8K z6xBXYQlh{GDXM+0q(q8IP$VfBQ<1}$ld2^ucv*^`R-vn+Q#Q+Jtt6t9%+iDl9V;Hb zBR7&utB_T6CN{qcwn2RP9OC&b^W(z7g{`I2lva_c`B)H>LFVV@HWv}kW4X&d+Q0ho zftrt%R^ip~P*(Vc@)1Bhmu0;F`n0eg61gxKm7*5Wr3ZY74AMUAZvI8;u)-U zj}rrLG$JXB3Rz%hV}%cVc;(?mp9vf?OF8a8V>YfmO03HQJHWqu8dkX6Mm(Qo|8U{z z(WiD0+@t+e=%y`GAF#v%?mh#nt0!`!=x^(3wB^;w}h zV~#lF3)9{_ziS6oMwZ-J*-C!ObKqyhAqR2h)|!rS_Y>=~;w@j&8G^@Y zKh?>WhrRPi_LR`w4l4G&{W`MC+l=OUiRI+T_z{-#+=f;ZD}D_io{ z_xV-Fdm^68T32oQ;g5<^g2xbi@d-XrGzM{qR>Pj0Gq?B^f=6q37+bWg9-sC{JezfT z^7}9Ds*sDb(<-7g+`<-I{T!A!^hF$U5Hr%xtorP4V!f$`-((B?ZKvH`FbDC>fcMRh zrmy--E_+X_XhQJ$%Fc#3an{-!$m$rkKjx((Vm(sBEo=@y4rcCNw4T8_%zGrH<+x7> z-dMwLvYE=P*KvX8w+`ex!yg}W-#LOuXt;^Z__5)lIO7h)^I7W#e_#3P(uwFUtarZA;B9GeEL>6_TZiO5zmFAOKx5KCx0Ws8)*1VHdUeRi01^_ zRkkcBIDUiR^$9*LjE9FO5r-Va$kR7%{bC4SkKj`ZjyVc%r6CSEh{Lac+$Hrlf`=1a z6n7vFIf(ZpPF+LM?; z_~uAa?MciaPK8E_YENQ@j>@{vSx8asNz5SpX{4z3BxVrNCQ?*;5;N3j7uBA`46L9! zvsvRViY{u8A{s!7YENQ@?(mvBckE51sP-gg=(br|3yc)ip2Q5I)(I)9J&75* z@q-IHj6#ZPPhy4|wy5?HGw{?X-_ujXw`hxMpDn2xccj{9NvikTyB_`Z_h7U|wI|DM zMCFH|X#S*ycR!xH5h<#D2D#%LzI^X>q^S0-2&L{@iWJqprKCixj1<*Aolt5K z3{q74G)ajCNJvrbQzgZewTEYsqT08RRBOd&ID!<_zPY4C9ElXw-XkdyM+%DMPhu+F zGLFQ{RP+>Sr2iNmM_$3>kLX7uSyGF4e0q9^{STz5tt3e;$@KJV>fDGF?Le2L7N1m3 zM@EWvV4|cJDao|mNYM^VkkrDM(|;U(B@Zduf$@@>|JGY;bCZrDMLRH#P}`@#VJDN2 zq8%73sk^Ecz{7tHDcXU}BsEKohmoQk7$d0}YSFZybRUgqNlowf@XlvWH%5wTA4RAy zE?Jj$zY8gPs2_iYs`1ev%U?z)X~q3WQSIx=)(=+d z^P-TV+J{SO;NN*KuOC~46xH4-ss1aUfDP|@AVsxzNUE!M=97oo7a~QqC&iy4@rxAI zK1|vYrH)8Z?QN109}T3a_Et%WQy!6`+J{Q2)2%bG66m_1bRP|iq{K%SDXP6$QX*l9 z6xH4&DShknsrDg~5+4n;MYT6ds=G38wGSz(eXyiz*rM7S2nAa{Jan@Y+M?PANlJYD zks{hxtd*3g^FxYgU$I6~y&vs#|JtI9f+8OcS4E+u#2QPai1rn$CDmKWv3!pd(Y|7p zr207dU{&7$a0m?1zG9`M^m^qH?JHLND@C-gSS~5?!NztG?JJf^s#7RmU$qV?qJ70u zNwwj7cO2P<6xDu-q(p5YQdE1g{6&1Q1x1qXF%_`<1rxt`nTk%mE4kZ-TXrwNdC#q3?t~ z3TOQd3(W|vZ@F&y(DFQF02Ww!TU_Q_=5yxP%;n}Kur?sa9AWy&bj-BVw9Yia#7yxa zf5G~Ir$aWtE&%Oe7r@_*pBfJsi;Odjos9M2+`l)1i-P9`cMooCxNJCT*be9Zbu~o8 z&-tJKlB#%2(NsA@hsB@go7MMFk4J=MDYDB_s$iYJ0WhVCRReMYEp~jre0=p`Ekl!D z#aH+XkhO=Sn#*r*()jGa)NWIEMBTSR<5Q|&a-z23tU%K2@ozQTBhSxCse);V+F)iN zanftvv~BYEnPycGXK;{j^`_lfK7i>}d5}ZPZ+z_LN@5 zry!6YFyxVM;gEXdVO{v(Uq0^s+J@K3FM>IUS`CHcc&6@opzq!eTQsm)6$BnN8%nlc zOt0e84S3@&J$Q2LAMM7ufeAT#qxX*aP_vg(1@jHHZ=4fwzjX8ahFzu+5M~-`gOHtj zb4=H)H;Xkey^7BX!{u|9 zRK=qafn`HU|5w|yG)#6>QWbOKQqUmVY;^f`Fvfb@^sX zs^X!DXiWx8=`?BC32#G=w`f)cu}Cd5@(F2H1yM+?>+*G$RK?>DahpN>fWjxlY3p#p zgnXYRRq+5sV5}qG{l1ab8u>y?s^Srdzy>z12H(P_VN_`zf(Wcl_7#{@8n0ngX&!?J ztX;j+U5Dj7p-lcqt0;|kGCku1Pwda1S$Sky8@wS|zP)^(~a4<^KI z+N=AfX}6)Hm`4)=Ycr=;<(0oY8b-C{;e^2Qm3gMc8b-B+c%oLLsJ0ME)VfZ!g&3mN zb*e2y4>hloc)3{>#0|BsOHpI0AYwrO3Xhs5sg5cVDrE6Q?y$F!l15xrBvcUlX(A>2 z$5ll_g&bHfe5TZmluW?s8RZLR(aO5-MbS}I+c#kt9`;Qho=Orb6s+iE_;GG?q^KkQ8!7tm%#>97kJb$R z{M#i+(GHv;sSdDh>hcNuk)jE6A7ip*+^0CClE?KR0=7o z{dh@rh8*YoH7${%+K-czn1VuzYCl#|-5RBA+1Sm86xDu=q`LCsc%5G;lye_`kC0TCyv@6AJ-rVps{L?69goO*?!tVzAI@XWO6PQEp3~y^FU*ae__Z~~m-_g}+4!-IwyhAxI!sQkYK%~t+J`?)(Ap+>*_ zh(m}j8mFo+3$&d?m`O4^~gjh7oQ>^+3ksbo{$!h`;86%d2!<#Dn!DP zL_g0*3rLiJ3P|>SqMxUu1=Qofj0p253k4*fw?seBMhhrPS?tqWKvZMyRI1QTag}P! zT}u5`sd2O)JjxnZrMS_4@FZ(om8wSj!Go-EmCDIIN73{S;cv&+JKa|_PRbeW2ggxw zfOAUu~nb`EIC0e@0!tUjVuWuQvarrE1;(Z+|?=RQVE$LN@H9nL*u#{x7z%HCE z|MdsMhRytz@QXCw&Nio9cyw#W_L}`%miq9p2_N51B0OJ;56y<8pN(zqpq$*U@i{Ez z=e^nEM!!Y)1sd;Qo4e#g`hsbEHcLNwclq9uk%XU5`7wNx=Y1NV#nSh!n8p^!)pO}p z^EBSdHn0Enccc3*jn8CB3tRM^zV$_7|1OP(_Ai26)VsT61}O$vy){4FTIK{*;n626 zq`}oK-)Q!8S=_WK(P=ZEAv|BUuk|kt`uRx+EM?frm)AV_0^#|(eU%SmTjK94Nqqik z&3-oXEEwc@=TLpZ^M(5=-;ix-sLZcwd=|?|X+E#p!oGy(EB95t9@~<{XMo#jJS-eN z@?iX=iy?&POZTz;Tly-m6^)1fZQQZ#vqz}@eC@v0{uN41sK#e7PjZ^;nSt*T`+V`f z%7?Qp>(Y45smgPgj%6&I^VutJq!OO5-dA}$+p?YOe@^4`S&N+Ijd%6CKzP18BBIF$QN)A(E#J9m1&OG!@?o-g26c`Ms;6zXz} zZjH}jt}QKp?zLkm;rR-Fm3Oc$%63;;#Swg!dzPPtGo?(m+!Yv`)NF!-?U|F z(v1Ee5&L`-9|{w8}+UE7X4)a6FpoBZ_F ze`G0adKF*Cukk7Qv#(uD*ZBNE#QdAv|NLeVX%An>uk!GFoB6iIJs{qT?} zlW!1yu*TnHn;X>sa>iD_#%Bj28?Tt(aH5;=d@(=%-YpQIU-)2|#%Bd0wl?bCWQ<%U zo?bPO@SFEd7(XceipFOK8W*35sam$5*e@Xb{Xrir-Rag+@A=+9l=a>6Eyr6Cet^cC z*oG17$NIJGQ>x^drA4_D9x#t$5$UgmqpZH8gFe<0JaK^dbD+uN;6U zc&BDRH<0j1ua<{8NQWf7iZAL%`*-u^57d5dUQQsfeboyYW%T>SSM?*m_(M2ZXjC`N zes-XxX-8N8jq}>?O{(fC-IBs*;Jn_>Q#3qF!_uqxa(*;BRX+^!G6U__y?0-$aX%8C zujfa8>7FAuau#UAIL{kME$+&~zM#W^FX%^p{{6f@sH4`7j6mk)7n+$eXt(ke{m4({ zr)(Y29xK@8s@>70M}}`(K-$BX^dr9@`-ywnpWT4=bMph4&3E26_f@&VBfW~R=|_HC z)AD9rViGkzFVOYy&UtSq$~8*qReVuD@)MrtQSmDppBw1>@~IE+?>?Nghp*~KKF|O3 z12>A2G(IOVYgKu~-{EqKG`)&1>sNUbo6@52gI-6DXnZ#7aK}AxwS{Zrd76D;Re{C=$(Du!F-(?JXP6Lyw+Q@;}4&HhrH~oqYChOeNtN3z$Z0N*D zSPRzpl*Z);I`?Xt=o?DEAAIY377ekuG= z_`~6MhmQ&G5FYQm={)az*;(ye8$6t9}dTX`ZQ*sbR=BAuok&3K<=e4%vVYjgJ|Z7<(9-2LBLz z2hh^u*GXRIIcthH|_L%CQ#q*!YM^1T%6hwN%? zK)yd?{g7C#4ak@-)(<(=+JFq}V*QX#tp$+CF4fOnRtQ=7v%p3_F>KO`>SwvW%F@d2 z{{I>RO;u?K)28q#iH8N9#gaDF|MA1d#l$vu zQdJs)mTFiuHX%dMnJn%FLsegwkl)ofS7CJ!Mcg7&hcNe6!MJSBIqO7(LGRiz;y z-GA>FFSd*nbOuWw{P6cZI~5Vz+&xuk_?3qhcR{5gm`k~*^_E=?XuG*{s?uh*`BP;I zUeNh0>gT_POfpR;wz+GnwfpGh4wf+nLFcg~=Dz3UucHXf9aEKtK=CqPE^}1Sxva&- ze#>4O-<{ChEmdg<%Yxg&g0W~p=P=LaH&>l+Mcd7tQjJ!&7{iu82)FRu&ri)?Pi%9S z6kD>zel@E_n~lPD7Hjd^$@|Y`MiQDkq#E61S;{Mub_+U_wRrx+SqD5X5SqKADh=UA zt06E4d9R?oEbXKJX6@K1kA_Y4b7xeu-D}JK`0H_k&R{L>SvzLg`P;-ccSSYZJ)mT# z!4I5P0=Kk-7qc#HkuSegKX*h`+Qzo@;j^#Vg3f0tkr4;3oeCqixf`m|5EhPTy#i(g z1Px1LH*M`*F<1tvsebN+YPL7Nxc`ZJS_?XtC4U!vDKh*gVw=05n(e|L23;Ix5_AsB zSah)M%A53Q;0~xto7tAl;7E9q1f9*Ix@S#0w|F$M&D~Fx4rN=m@$<3&Bj_xauwuo` z*JdmtG0tf2uTu)#{mnDh=CmwTSxU@Q;ya3C+Dv zm4>I`gP8B9E>0D6K69VjW6?S<`J z7I8HC18e_dgyw#yM(+i0y!~K7LvZ%)<+gD-9}${+ohl6q?tdossXv&YvjY)tzxU6z zcm0IsJ}1%-^n~>jo8twY6^K0c(#bQu789C#oY;~FZjan_dDd5g&Sa6E%%A49qwgy2 zZ>n?{ya)LiMBUJz>c%g%9ljhWH`Fvl8OOue@kfYYht_a z?ahy@zE8Cc0a>%rOGi#WCq3CzKX{rNz2T}7NeDVW(Cmw8BR4%E{n%7LxSJZiR$Wyt z=)8byOV5UP8qn`$8;v%xwbw2-PoH>I(7DXz`}{p)@0Urtx$CL68@}9?(d!?W^S7XL zSYqzfGoud=CNy_E@mH>E!3(eQ1f3ml4GsEnYg@UzJ=LE_=(WB0Eca7_&I-8x`unxs zDZ7YmsKnH4FKK$R)#|pDg3b)2?|9-=#8-4w@p4RT$*f13!8%CgdkF!mH;}h{`ku3I zRcW>p{n^}iQ|tGZE#*rlKM!Wpb)NliYVU?1{W*c6UML z2lA}>*N66(iHtPn(9y0Y~5soy53XopSV|rEpK38 z^w0)*4XHvcq(bde`37D+1uT0e)z9~MK!w_O$j%#g{4te+GpMGHpZe+Pw@+xzOY*}O z4>f*s4)jgO0Ue$@6r*9Oem5~X>|p0>qbjY!XkMVt+HZ%nA^t+NKc(hxCRN0#{$ygS zw^DC!7PjETspAh{+`Ef@!;=Wz??T3=g8YblMj`s6POx^8CnQx*W>M-#JUY`1$BtDOYD8@9;gKPG;B}UhOkj#8DZgY7Qm~vYTJBUcU!Xcru9SXb5Q+1#@g0eA6EY# z4c!*HFmzz3+j84-*7Ay_$TAhO08vmCaMZlbyvjTf@&LC@=S=%d_ru!%_K*qqKIDy% z9U+TDdWXbAF5na6)5g1DH^5w@J@``ao57XAbA#IiH-+>6-ZpGCEH?}{q#KOzGlDXz z6_;7;sVK_wc&~~r5OXpDGeahMn{1IO5O+0HNLV7&Wx=8_jsHdMgBRS@1(NKi&K)Tu zMjR(9`z^M502jSR?tz@28DHI>1M2=o+=keqfjlSf>VEQWVpApZOLSykNs{~n9`_(C z(A?F1Bqx-lD02DFkLyqPA2=^)jatsl+IQ5$xvJ} zY^RJ)+|@lKN$VF>rO5#nvDMw{Y9}?-O`6JvQ)wMZgJ?75v*51oDoG+ZHjk2BBq^5Y zQ5hu}Tiv;?=1IU^-AS6Nqj~ae=B{RvBqJM}N6C(oWQEbNfyw){d6JB+?oe0rB;c-Y zFHMo5B_1d8I(1jKlVlz02BIun#xow-e~8_7rDDS zUy`krQx(o}64j$*o+Pt)T-@p;RZo(!)wy*wPXg}h9BE1{e51{iUlMn<;)ed)ODLO? ziZ7~?nd+&uw0V+@tq^1=E+Z)yE;Su5V0_ylc*jgTS=0PXY5=_ z##Xnit9cS|SEox;amtPwt7!A&N7P*nZm0HQx%p@BJ|ouB=20?LlH_HN&68woHMpO( z$DRb-)y<`;MrwI6ZJzuZxT`&qtYhp^(k;n+<$!55*cR_SNyb(yUT2LjOtu8#tCM;A zAw z;K&8Wo62{5Y_;NW)(}HyDpr~zqf(4tvgXNM4Q?kkk7$B7m2d9YYH&eo4G^6va6i$M zSl>WKC8<$#S1YclDlZuzcvJa4j;&Vw(VD+h0`6*XN%5wnr|_4`m#e#4aZlBo*6~Xv z8C$LRs5NgY0e3aHssH1q^o^*vtm;k4M+|?dBx9=;zqRH~CE%`xvQNAzdAZ^*rSCZ? z0Y$R*L!Twd*lML5wB}7E;I39GLe=)CC@zf1QY$AZX3@8oQWh%YRacSF(JRU1YNa+* zxhcy`je`8$cup$QM>>mk`7_A-5PvXzH7PZs>b=GK8+va^CRf|IP4(V+2e<8tnWTK| z)O$-Vz8Y#p>DvTvDqlG6>QLFdI=WVpvDHesXib$R5MOPs^KPWV)m;r`qu8glM=v2` ztCbSc8h0aryBexUHB+^EDpS5^lB<=9QdKSDz$$7H&Rq>frD&17Zp0|hlrNFwYA7&8 z{oBl6(>&-tpVs$;bNivx^nX~CFMwD-l%3XkEoDl;?N>@p)xkmD5ZE~RSjYO6y3?A< zNx5sdXKRjD;wB>}e|3RBS(acj_& zeDY%bP^4O0D+##$OQb3C$e}6ufW-P2*JVlqZvP@_int4CN{;?y|3Xfxql|nF)KMn6 zc>e-^OQj>#1fJ?8kox6V|NJ^yMF4gF|C6Bb^AP`+gwKH4|3=Om&Uc*;JLfn%I};p# z!0vyKIaWAEDAE5}`xEy2>|^Yia0=jwu&2ZB4jUep9%i&%vb}73$Tr&Mv01F=tuI*D zS^HVjtihpYLLU!Z6*?j`FVtcAO2qwLMciL%o@wrBjy3&idJonEEHw=^rNU`|?}uy+ zSrAeXl4ATnjJcyWtN3Bjn2+G+BgJvcVAd6fk1!=AtCO@j?e56 zC$2;$2{-N@;y13uh!Oc!b=T>0YIpAE`{R%Mx_RxptE-<=UGtpklD}-v*b;08z;s(r zTY>cjYom3eb&|Ea<(TDZOPsCrpJq`D{w;VT&-Z^NLOdu*&)^sYeEpON^PtdF=IVQN z=-r>_-Kr@`%;-wAm?C_HEQ#o2pv~GR0h9>wprm)ucV{TCt0u2%L>~e*URBbiiopUx zh9densK~}i&Iiw2om=|zizDimZpSn%LR{%=V}B*y^}w^!Y7kc{j^rReC!`uBk$kR{ z07`_pQV^VUKJe_=w}c}4P$-Nq=&|{Y-xVIdDz{4gtN0A(wdNCrB4vE2v*jfqLd#2( z2(znDpP9z)uv7%Bj}jrib@_X!nqlnIN1q)FS0cp8E`OHq z^P;;RX#7Z)M3|Fp`RoWN5oTcF*-1YS&yL-ADAIvE5wUIX@D;iGq5-iNzo<8#C=}s) z)ItLw$uWpfk=wXsjbrXm{0yQ*n74)cOxF*Dsih)deUu0>xl8rLyNHt@0+J;WW^!AK zfPfNV-WG03exX1F@&gnhCYNMOpaCU`$tArCJUS(r$%VU5-T8R;GnU!tBU6&NU9t5n zePkp{BFyc!d}IWah;DL?#zuZg;gRu&G8FNXAQJZq&s?5cTRwK?W0{B(7 z>{z%G(fzJbjmgG7g!I`dsjrSQ$Rz{$j%17Jvm;p&VaB)Rvm>BHnBN7#$xlB#JN~3A z5oUaW%=5lelK5XTQUH%kN#=i{%!&FksKNA+DM^g*B7OG5`}C2KEQv59-13nT2u7F# zrrtz6E1BA;M0D$G2uvKj2s0r=jc1S+L4GyF!?G`Zn-=YA`{9Tmu|+g87Yq+g2D-(M z8!23ABzAZnU;lmhC-TsQENRSVhY1jB+(GKu@@-|G8dvN4UcX`1Gt_t*xr7XIz@ydX z)-~L-a%S5n%}bO<;*`anZX}-MU~Q$5Ib{$*9KTH;4HKJ^MrN5?#FG>iYTQcdNxBz^ zR!y$q=@DI9yU|~S8u`*L=!{8#;n8YZ{D3Qs%tS+liE)Fd5j)mM+%z$6qBE{SvZRr@ z>6VX%fYQipG~AR7)4-DvAJoX)G?3)&ga@MJ1|&6O7A}nuCD$W4o1cI>JxgPRWJzN~ zz6U`d)X3Lnf#BpdfhVbI@tTAh`SL8dBu|X;IHtyWtT4F(VniHMBb%%WauII@F+#GW zado~&Lm<@1mtjFY^E_H*i$_x$SK{4?cZOgQOVYRkNn#q{i72@o$r(HOVN^3|u#hZi zT$b;N5KtPIVo}5gL9B>bXk3D1%OAHYN-jn+&x25M5t799KxmLGXNGS+mNd@E_e2ONjkB>R zVpZUY$PattEF_6jfd``GOe9GV;Xx=l14-ggAT&spG)~X=AP58-r*T04h1CZL;0f?| zn&?b6x9^j1BU~*2QFp1{|^YXF8qSc{BLCW|D?k1{$u`ESpL7q zzsz6fFY>+TyVG}`Z=r9HudVkhw)5Xb-lg7Jw)6jYo+sE&01Mc@{~q_3?nm5LxtECi z{~+7*Z2SR2xWRF{V}YZ>;jzDI&)B!yC)pL--?rCmN!wQ2 zcw1NNpVpVH`>iKi$6C8sj#^%|++;b^GSgC4@B^#3{!fV#|5wG9Bz<+oY#w}JI%@HG zLs2j3NQfH}($t1>)AbW6?=gRGLs1X8gxDexWp>Gkl6xP&W!t0XB}$YGh1O4ap5>K4 z^7@Eqllmx8VhuNN%eAL~G+RP;kLuRY7!?|AU$SoN$@2W!6-9^H0ZFaHJJqv zC62I8pL};0zbWj=NlD@eNiQXYC3~VOQGICCaC5|P30(;pidu-C#Bm8d*`&x(Gb=h? z^yC_%C$Wm+JX4}4DO`z=ankk1#>GTWLUxbn4$;t4-y`_U*Ey-{NjN1!{2}=r0kP0T zDG}xm;rFgW-&9netqo#Pl8l=Y3kPB$8H!MUNIV>f#g6nG`%cM-E6Px;2=Rxj-)-u9 z^u~HB78b5Vh(BDf@1{JFiiKqNh(4rhh&6<*VZEq8p8#oyg`5&$1FCr>0I`Vcija|2 zA}ff6WGKRy{KIcQafP5(O>Rju_aBPzRsV1av4@~qO>VS4c9bQm>4UCD`z7Oh;+3tz z`X~|N7aI<hJmZJRSg$3%#8ZAvUqb-@f#OUw3m7 zLq5T-CX;_t*b?b?v?8B}!y126`nw z+GKPCZDd#fa44cLfD%527+a95DmU)AV^jZm{Rtu$F^**L5Ly@3M~N`w z2+x?Obs^b3qB}_Aot(uNT5DxI1jajwoDw1aF^_7*lSYVtBz6WG86}B-Bu*1VLoyW6 z*E$KYh-U_|DsvN#KdSVfglia;2yv9lA6iiJ*@8!C+rq+?$b1xQ-Qgb|+uZtHP71G7 zgJemB8OfGy3jrlU{G-@&i5CTJix}Pr^N$dr8a{{qXFn%FB_u-;eNB^i_Lf;oO+|~W zB^1#YHi=7!GY7dUaufAKs&R##5+T--j7vh>!ulu?VlCI{hhN&MTu7Eg@>$Co1e6G~ zmLP)ITaU^`+;n6rl4P17$VJI1NRr+V8WobEh`xA9s6^a8sKh2Vzq@sB!UL))%IM&RA@^yicujwBHh}kR_4YJgN{tiPT_GEqjw{YDKG&Btr-A$Vi4F`hp?Rn~>SY@XWQj zIe%MLmOS||`8}`1!sooe*B_{)MM%}CKvJA*NLmCTOCsTX&yMv}BIQ^V8G?myQ;Qlx zvi}Lkv&Dw3`Ay;3k>vURoPrmO{C`i;+@cWM{r}lOGO#r;KG3c3&%&1rV}2 z)7+EYC$M$@&$tqmy&9H@SUh7BJd#z_%CtFWs`~SVlR{rm`EU;9t-Tz)NGJolRLs5OLxd`OqV{EV8 z&-9gF;ddRV_6)n(yhMqTk-G-tSO^mP zI_%h#C~;mZ-~F2%ggS!6o{-(6y7Mx;9O>V5FGsjwl=&{&Rkqv~Qi-wwJNRX;zU<(e z*~jnXHxRFDp6v=*0<=8Nqv+k8OvM6#kj>wLx5^@ zkLqK2MhL{QD4aAxfLt)j>{gx-kUck*DDhb&nj!=e$$Ss*!J>pfBk%qr`xb zNfDxn*HV%gF!CD!`XU*M>Z`;>6Q84>NB<_(mkr5m+5hWZ7r$hR6^f!0bHnMj{1VW& zRvS^&uj{0@-Zd{#qQr@QD0O1&n3wO`?&PHSbtTW(J<6OIOe~xH z^o#6Ua2rnQO`LE_lo>M6mt=RKFaCTeQR2(Uur}yRN#e`MAP(q@WGJey3K#m$Jvg~- z;?EhpnxYr4WrH_MRvq;I`JgFQD5@_F7nhLH8_>5VH$a~?7)NVUeUa=QWtI)}oi;FeCOc>a^+isJ65p0bUov zN}SyK;`?u_{b?JO70K>V-N}i8j&u1IbUjg4c-c z3$HQgTbUc&`t_5Kf7N4NqC|UOebyc6bMVGzH}ET<{bGHTsDk7MgD^l94CS zx8=xFC|XKFLWZ6|--?{3Pq&*w^bKNt$Pg6hi}g{WU69<+xMiiX?>4G0lHH>voHX>E z+O5N0whadAi<}ZY0ZS~?zt8CX2$^#R^3`l1s?^JJ7e~@$X8s1J-BlfV%9Fy{owvpfA=(iMB^FkG@EDj~>rS zL*E7C&Y4~2)5|p4FLFw>9hN9g(%|<7eQ9EJ9Flo{)+pH)Nz&4x{URBPwjpAX(Js)p zK6ho)w)ktg6TOz+i8(FdGn&V!;t@4x@aav?> zL2rpteUun+S|lCSTcSh;W6WvM+_vR$IZBL}tO~X{^yJ3A{Mqz@2v!(2EhR=w7MbM^ zL7*ftSraZj>&<_+>p!{>1WK|oGB6ekChaFVa$wqM+gix+V-=3f~ z34*@cj{Xbi)yQNF2tr6}G0`JNOx7ws&*NB*-voky^-*HF$uhn#kHAm85CkNHF=n$` z1c7hjX4X`R5r0+9_5-|R^mAqqnvuj`sm6)woD_YARAx_Eg#z> zcT6N|=>E!(mJBe6KAF@BD45}Ds&!FU@_4q z+Fa#Xr|<9f<@x3%N=$cHhQez*4H-JGsW-m~D2(+{V#H&S{uC6ZB=J~8H&B?Q%Q51y zs=D$8vih!N(1s~ljJk=Vji|zu?1xD3UkH9YrW;M2ECcs)Sj8g1A|FI=)Ae z1ci|d#afvSk_|JAIc1J*y8bN@6t30=`seN*rlAcB#fr!!WL60%T&-0N$fl2m14Lon zWf=;u=jUSd*uv`r3S)hg81Y%N^iKUnPJ+UeBtDBwj{}8C?i}->8pQE}!j$wPN!AcR zFF{E*!xDZBXYi9#=B}X%BN>XhiCkn#1t?sl4er+E$KVaPqirbWGB06{1gANH!d2Rc zBU3usx8Fb%c4B?Vhyy5$^-*FDB*_RhD2!xD%+7xdb#JUsVKs*15l~__EGkb3NO~Q! zB1uv;2mvK6NQPG)==I{j16)`L0VNBNoUU&!q<`UoMvi1CO4qO~-?VVkXLkKd1cZQ% zMO<;`Q=ebD!qhVqJ>3k!F^x=bfe=*Ys&4q^;BDhunU^ThU09zDY%BjO?>(6|a;%RM z-HGHPoz#DsAp}U4M0ey10Rl?&G%TvOajGW2DZB+V1K*Bho)A!S8ow1~~UZO-#!TONA8r}k|j}ko@$)%lN{q2bdPUN~l2$1X^-ONcNLnN8C@iHK%M9I`d zGAjonL38zucyF?k0lW;9+<+vRl>?EWb>;I9L72-r~L8=9-r%(Y08g4Yw!QXZoM`O&}6j zA0>>k^v zwg+u{#k&7Dt+%if02i>m{|hWHSTdIFmPwZG1;_sH{J(3QxhYG#PW(`I{a2$r#Acg@ z>evqT_~=TU7^z;k@K5Bt5=o3yAN^4J|MH;g!E9D0F;bKCEvxj88hS9Bk;F(X+R9Jd zDCTAA!E8nnBSl6N^k7P4D2_(znAT9tcC>tZD=$=ktvH&i+CHsc`o)gsI}(bck#bRY ztG`zK5^Z?d-jNUadzzOhabl#%aDx6?N%iR(XGSW27%<&c;>1IdQEvzXC5eaXd(Iwq zIKa6y43s1uYW(}9%==!%NeBZaiHDkRyY-)+-qkZ{2m>YE_)e|SGijZKFd!Ll@QU&pYD+8itTI@Y-?NSHB_)*W*s}r{1ZNc?uAQkTzuBqboPOa}5at@la&G0)zqU z(>1Pps61~2In_al6CXv=F&F_NgAZ}yqsZcQ@is_h5+5~Im+Vy%28kp-Y7SplH*F{< zMHna^k{;1`5;Em>8;_`q0%5{*0h7C5fRLbs^8k z?xYG+k{BwI)PTa2B!+6Wz9RJ&sxXqF7&TPuCw+cs-{}dCg2HShAzuGk$rJaPa)n~l zP_5;MH9xFRi3Nq(Zpv;FE-qLN<% z3Rh{`)SK&VjhC61D6#oiA2Or>3S)hOv3cB;=B5GXkd$>}F$iw0l(11}STK*^a%E_-&#lYOe%a1w%mWGFU+ zbR_HaBSQ4O;vooZEa47zOvsK)OhrR6{bUg_T36z|amxLftaw3w`#?9v248`=5YII@Q zM_T-*0kH_@Y63UR-#8{=3LA>y#6LE>_y(^J!~*N1 z#55#HzYnoMG8kj?5o!MgK_IDZOrMBo{G^fzh7bfKdHz4I;B)@{KU1`^XjD<>z)yjv z1M$G-z?eWgcJAN(g_jgAFYI5~%KxeVG5;n0dH!<0%lE$TF5mgS1#JGmi_QPP%X_|e zk+;h0^L*&J#k1Wr$9b{dbao97v*eb`P*{X za=>z-Ws#-I;$hYP|M@Q%XC}_l(HKQGPD9iOY{J;vsB!MzIvSFRtX7leZzx z{hLvo)}QZ&b|^|qMN*CPAu&;^_~n&LC2@^63-!mhk z#<@om#fhyu^G+X9g`#aRliaXTx03vr6xWHbaSX(*=!$ zpJVt(4@zRwQ{voo39?q-gYXneVsi?{nd!<`L2M$y_`>`MhCLWxkRQQN2II_4<+%|_ zXM=HWql{XM@aU3#diMd14Cwro{CF0maYIajRVaz0AFwUm|`}*d>>wLrtGm z&N44ij%m8$2)l9p+_%#*`!;YDF18RIL{$L1Ri14^{ufqBA^W^(8C9$dY=7 z;^?7{X$v2G=B!;~4)H=knw}PBmsn5BGa+{1unnWnQAjhhaPJ`yt zt^P*O{6S+%G9Lx+_4E(&c zOuliT#`FiP4)q}8x}Y&7YmsbeFUu)egXC1)GZi$ZWHpk@9=f3IsNwsl#*`#85c9NS zN>*Z-WTF#DjASTYVPW8Z%*Ztm!lb}8&`yjcjGdl&~ zwQ*E^O7=!_-JZ(J+g&`LlhDGE48`@+{zP-#P^^zma}?yS%vE-1H*RgGX{M&3IIi(< zYGhUdgrQO!tuF<|vp9osHGdeeB5J$`ud)#a1s6QwOMnhbi7WVcdBQ-+6OruAK0~w} zHH1GMgn^RXk(@fbbJcG@=-w}CMC;|BqIqB1|&mqT-U)y z5PI-qQ&k#<3azrJdhV5tZW0D*T?fugfG||#hH5V#z5n`|<|Rrzi1i^u3Gh;2ebjgt zP8!kZ%qGk}xBhcp9gGH=StU;99g+_r&?Qll%sXs34p&ae&RA3OIRTH>h(uU$V0nwq6*$EJh zur_4LE6db>$fnlu_E;Y>ehJaQ`tbaJe!;5+MXwj#RCIdLyrOCD*)1kTMMTZD*FC^S^swbOn*<`Kfc#}H~4n?=CJ+$E#42jcY4oda{y}C7{Hfo z4ZvldwVpAa&h8)FhukUm7WY`T3&5YQ7hP%BR@XF_;ymVj$$5+OOy_iG7sp?YmmN)x z4UX}Sp#2wi>R;5p(LTanWc${Zvt4CdZ5wIpX#LK5zx4v^D(e7ikvRfTQSc9|c#D5( zf?G+Eg^HgsBb(Cuo$@+z3ST(E%_L*>`N>lHsEfDkB))CBjF@N9#WwjEawlb(&R!2}zZ%kyjm>6Ks(lBfGT79yd9 zr>fO1?H3t6yYvdPqTvJ|ixadab~%%uuC~QKXKI4GNKs?4d5HXUn31Rn?jr>|?vhjP zeDL_=oRc~x%t+kc%tq|13`+fftTK#Dr#)fbJSn&1{v zuwq8JTwi2^iHiL7MI@Zyi-e)RgALa&>sy&yuKWInNPW4D6m`hkY>C%Na2qLDF|SXq zFS5Y|Gm`oAMI@YHheVt8m4-z@--;Fos;UWYCPf{jjtANUaRUi%Ck2~tM3bC+7)bCCI}NsH@>#YyACP)!^$R1>AhO8qfZld{|_ifZO< zq{s#n%r54uCL(HryF^i(^s6YUNlqVB6Wk{XHecJ6Snd>|n#Peo(z`_1V1jwYJk=yf z*90?(@_07X4}VJ3L`S@*WJrXJQ}VX}C3Z`D&sKvSRZWIV#8o6Rq># z8WAG6NOk@-dkfwtS0=(=DjttO2WrkW45?B zPtZ_EAE2*5QcZZV)O>vlIT}$-c#xIe9B6IW4F?nM{11 z*2pRe2WQ2@Yo$%+-Lio`Jd$d{j-^UJJx~MM6WWlKgn}9%8%$X9KRhC8!h*#~ISSmG z_HG5pN<9MH8rfj{jQqDoM2(-0#Yvr|xHUN#QH}3HHebjI8;tMFduxJpjql)yG4V!v zy~)vuYWy_3r}R4_9+$Ae`1btwB%NA(8!3+ZStt&Bp2I7~hh= zI7HMqpV}z;J*fwP+F@^@#QEe#(Xgc+!1$Dnq#EChrAi(XO2r<4=l`<{p6BQP-BEN- z(VU__Mc%*%fja}c*!TbLg@3Tq|E?=s#`ga^&i|$VF8}H5`+q;b&G(`&?K{Ia&8K*e zd0+D0!uJ20?(O3F+4Hie$+OKf+|%Cullvui#(k=LoVyF#|LWI!)qb1(Z2K&GFWaxSXKmNpcGxD_imjhnAFy6yt+x)g zdMvM7Zm^tVnPcfw@H?w;o_}hRI3+206?r5%hc2Atr^_+r^+ZQXM8uDBb#-o`zSAxq zGo>c^pqmJnn8hcxV{!vENxajFheGrBocf8uiXad+m}K55&o3lF)FiP?QcKatnAoX- z82@mRFYtwDlX@!h;}d~oUL%qw_;oSGzVN^E%~3xc&$lf+Fe z*O$sw$$}soOy+k}*lmTUyr42-FCke6$`S{* zWd1MF@hc*-4#)f}k-8C;8G9 zX!NyZzGZhcE;Q~9f|TdheEROVg9B+VKQBp)pz+2-+~$acTWIv^WNFw2%t2Sn5ab82vF$pH!-$cc7pf>}0TB?l;E zkXYi}q@Q2W3?!C0Hz;>99Xl2-RAPyRo6R<4Tk>Q->G260Oysw41nHV!7EX4d@Z7{U zCYX1F`bnl6o*UV4f}c+UZAEfs@Zc@a{ZkXVn={@6v7M_Fe{%Monjn5|wz058762;~ zOl-;+8%}Kae?41Gi!%+?#Cp7eG$swf#T%%J24rXNxW`iW?~U@a zAsbAv*^hbJHaYB1O{~S@q=5u@He$XL^~g#YD1?o&Ymgmr!IO7A)ql1eF3PS(R;;v= z9|_rDVpaY}LPSlh#Ns692akllDV*RdQ~uAUSd}MS%kc)1@q=*T4b;RkWF^BVTx}Jy z!Nk)1&xS}iv4qq&@58a-@VDjR`*310xhU`Z#@t-9b2in)BCL4ck9NdKB^Dw(GtanR z6|%v^g8UDONI1cdy@R0SGZ|Ga$I!zGzK=FsB=x+|IxF&gy_<^_mwxFXlEfw@<{&FM zG>9a!!NlzR4~a-P!Oty$`buvTG*jlJ^j-8DO}89Q%p?~{13U1LEsq3L6Em>lV#iSV zRV3CYF&){d&%DdFFIXqPipT~N)ABzgB5GnP7ANTo&q&-xVhXZS(BaW2I~iHYKtbFn zI|*6IKtbG)4JIb$e5Ro2wzWnj{uT`ZfXLp-oVe%mVRe zW1Bx{dBsCEoZLuskh}_rSCgCH>;UF)lA0pPw19Xuxv_iOy&l+iIT4STqLupY&_`wQ zuvTi4m?E(?wk#g9!DN0@L{6DglmE*Ufq2AiB#9{!JBJ##hL%U!|7D6mJ7mMj)kJ8? z6@g~exs!%_&e)u>5zUx8f=I4-Zav$WWrwU8-at(fne^;1E%h#1u)! z1T;ezqb7+d%G=JN=*`X zBz8HH#X~ljWbP>6+lq*qWTpt>mRCG^x*869?KM8&2|5MWBb1TpVat znH$&aPyjVaOp(}cS#EH612xG^5j>>Wu}{_v*vRLBOC%nRjf zUWlkkVu2*92~rWumSh$P9!VPc1*wn?Cnu05BUwvmUuu zYH~EPk}n1EkPRnC5%DA##4FF$7Y&HL_yulz6HbmK7fEgw#A~^0x0)P*wUUMfq2*z% z)Z}nv#Ufu>JY<8(Vfn>FL`{+jgwl6g5RVMAB{jVD5Pd7CdgIn09tW)=EtdM7I9jleSg7f43|i zvccql{Nf>^Ci`P?(zv4#j~w%+ChL%uvR@${VZ+H zrT$R7rQ|@maFXwb4L_mM99R&EWflj9EnVN#nl!L}c!N2G-9|2(^R?8#$PLtFUu0L^ zvX<>4a;?!K{l9F^6P+znmiGU%c}$WT%P~WEV#d*=((aq(aA-l zi#qA~e=@K(P#y3Veo%O4;dzDg3qx$~|C8+WzxDoM{tmuxeL3HSzD2$Yw)+2F?;YNA zymP$WJimLM_ar^1u+#ra*w_Du-RHUIv%UZAuEVYauHEeHzYflCojK=K&U)uyXB)@+ zjvE|19g`j1?0?!{w5RP2_FB82?fieY?E>3ETiE)y^=WI=y3snq+Qo9z@{A>BS#23; zX;ttkt1SDcrifLMERe{&$#G$7idYq~Z=%u6#JeQ1#Hvivw?!2rMxqT#EE%>DyL21n ziZ(>paB321LsG{e+7LUIt@h9#<9FST8x5%`VqT=t3ekqh4b;>G4EkDqZD~8{T_UWK z8qZl{WMho6VXMLFBO8S5nqo#p?tk?4P33juxG*(E9LkXIPn&pR_!Xl#hz03?Qp}-% zAIs<6q;iQ>8K-X*Hqs~;Vu9s`Q*^b1IKte3AsB2xquC+m;S}{OQU?S3eqNa4=6t0eNY0@Ml(7Re25&Zd?Sq(p% z7pW=YVAk=SxB4cG8-dcO&479|CM!u`m3WEi`kyTR6%7ETeK1xT13|(ZfhTcf3 zDdK0O;RDc{3^k;PpUK<4DI3DtN<%NuzL5>5`k8tk(`L|xD$u^G*unMpul?hS4^8R9 zDY{xh8gl`?*@O)+Bw8cJg?pf}b^O%aEaFOepvx+y8$;TZkNf)>Nq zgj7>Ku?EsqD$tt@Q>2Kk$=iQZme?9;J_P8EY&fM5y=NLbS<3C34cF+~jg2>@3#U#b z7fDm7K<~<&_Q;vumtQ^2yhu%vS%MA55i)Z7##*VVZm5hn5Jqm_$SSEa&Ki18{^FH~ z54AZ$+c%PGsw#!{uO0c0klBB_qZ*0P-xUyWOhQbA_Qc0e|-%#yw;O(heI`0h_%YAH`Yo``H>apVaR$TtE7CKHS`{7oH;_9HIiz|i=|4_*g$VG z%l#}Q!&0_<-L%C7S zhZ9m{zF__L!E2YVavDzn?Hg;QrtJ6xdEGX$!IUj;8eNNsnzCYX(s-2+ntTCPQx;^U z@hZ`e%$FzElq|Fl2q-|QddFZO-ryWO|PH`~|SSKxiq zdz1e4|2VPke>wa5-_HFN`}%)|dzxEu9do_py47_SJNqxl=KeqGywbVKIY6KLf55Sw z?fq9OzWr}v-~L^;cWt-X&bH06^Ph-*FEvr%JrK}$--%L9d1oZ%Z1MDBJGt^ zpZ(?hspds$nz#-rJs0hm)Jjbg*CD0n!c`NtYnr(ZIYHMq$6#lxk%Tc#3`gaR-JyF2 zh^hA?nU`2%IHWFGw0emphU27TBi?%|_m$MWNGvfN(%K0K3)VNBM#JIKR_*xsy~fY3 zFbWpUzOGgqma2W~H{aW)!r}A@X7gwJUKyynMq5b&0`3SnvtdH1QtNI}VDI^fFDnM_$D#OT34aqKkf}jO8f{Rkr;1{Qz0Hf%G%+Dk ziViOV)=Ew5Cd5!&O3^`a$`Tt=v#g-^yNkto8&I4im}z1|q@OxyMh z*&^)Or5pwnM>d?M?qkKx3p?~3)>l@%IydmG1Gnv5`>QElI8E0pNV6QEjaRqW$5~Ai z8`5yw6*mrl=~m-Lpg7h_P3tzqP<#$MFz4?@s=d>6)PIQ6)(seXm6qqNhtm$TjXN|cJqN|BwB|=Z zscB+F^5s5tSSvNnj0hxn3-ZiJBW#y6b0luVBpMahhfWBgril-!VLxXZeiJ*>LQF^+ znkGIZZ%hcAB0faw&mbn0CCe3N?EbXukyq;Em>?TY@dG!EPb(g6Dc@v!>0fe8Dz%9X zCu~19>~(w#QajCy*fBT#`PO}R8W%xK*ly-a-mo8Xs^&#%Y6t4Pp7!4G7GSN^)M>~r ze&6T$>+SQ6^5HE&HkjI;*GSeOqNcWCaTV#~ZY{Y{tlxm3(4_TLWTku`x+co9l?>2y zq|6I~LfI|IPTP6)NhQ0A<)9!NPSFJoOFIAiTDL?uIVcsmVZ#od`{Akhix*CvOoAdc zdI(BIuJYOr$2wirjRa*g)=J8dAShTXHMI#@X>JY#1z9Dvk+ViN)k*&t;xQh;cwvxK zQyZ|MN`r;iAgiSGNqt6a#GY;jYs3agHASZM zl^<&J?L{AnZ{QFcnia3W8c2(eAU2d;{y$iV4P}=hJ9$?pHtF>#qqYzmWWy;sw{Ics zV<0x=xe>izoBZD)mzu9YIE8cjJg^VFaR-P^xi%uVd|LUt7V{!CwHRxa_r1Ydsi{TC zuF`iuY?5Pxtdi1KJ{YkP=QGmSAgQJnV5wrCM1zFb&_sGZvV(P5rWq{6hO+aJ&G)Ug zj*A7=9sU*F>UTk8MYbmA4Vl0Hlf_;Ne8+-P<*N>b2v4dTqMnaf!MH9 z#7AECZQuR$hh`SmDsM`GwNg`L(qH|Kd2EW!2S%mfy+Kw<&EVx4v5{<%@!lY*rlw;J z#9<9mY{&;*BmaM$&;P%nXlK!^qF#Z21J4Go4y*|b3bZc#tnh)tiwl<&_V)kgf6kxq zpX?vaPX9aNd%|~#*!k}b?~UGF-YMSho*&rRf0ufed1^d9_lNEW-IuVl|GK$;cRlY) zx=wM8admV4?tH>|iF2v5+Ua$C;JDLqu49U$v;7DAA^Uaqb#~2uob5x~O}5i*Q*9?& z|FphnOzg7d6xP5p8v07rvJbGUpP%og_LaTVPhv-utUU)mxQhx-^Yx# zn%;?`NlCZf-SKNowp*Hc2}?(P3ro=>nY&k#?a$RTu@PbyMk5Yl|4NBvHp2WZ?|s%y z-8x)IV#aQdKecL__=(Xg-(|;$2z#QxPt923CuY9*L^yMU_(G@mb`stoZH;vg7Vahfm^KOwm%y$53tKv~^S7-`Wk>QX^*$`VI0 zlNs7&1!B1>C{9`8C|1nlUp|^Cj%+y1&-H>?NDZ-H&wt?3owDNWFtFlrJ7>Q4k||y| zz0SPIt4ZlLC|;wDyxdW7;w$~li`4X5R9s5CL2;~=nyyDSui`XeB#uHH_#(G)$`VI0 zlpoI?5GsP=l+_)D7$(s7KwN5+3yM>gc#0L?+eaP$)G~vGHjZpKO;=M&xgWG~mTfmX z{x_UnZYs`_6aL|3w@9HuaduI&GuzZOaT#+C@)K@CMy)_`td*Kxii(R(r41H(6`EWw zK{l`AlqH^`<*zh*A1F&a#dQ7fFOh(O;*=$;DVI0$<&@17M>d@1=YAP&oMqbs{LfyJ zy4ZL)P`pa3F1zl!(3fAB%{83H^_327egC`KKL3W8rwWQ!X_dEpY>(WbnHQ;P;xnYQ z8x+S{m8O}`aI;#m1w}?>^k3&@ip)W!d+WOz|0G9+C zY?KS{0cDAsnEot3m*z=>g{V+gcN4}tvviJa`j~RJ!NPlhY&gx2wJ>`gb{yIF!Rrhd zqQdg+vyPm(|6YeFa5&8mwlFSYr-!-pg9(g_AS#vG!0^R?EZFg!d6Al)ipnhh@`L|+ zwu&ufAu3p_uIVYwN4_B}2&w7GSfDgv8(tQY3Z^F^oA(ESvSenS)a^l7C`)GMP31ox z%fysx2n%J$V;!VVzz`N>!)bo3g`u!l9)5+eRA?g}e{1@<$epIb;q*!7MIKE`9Uv?f z+OUaTm(KrWw|SA89*eb-Qf~+g)=Eu}K~_q=Av%;Djchm8QHJgvXEYIr4oL>nqmV8C z;rj`j|08}X;iaMMNMu8FhXaTXWk(<@C3p}W$___%@x6~d_jGE6{L&yBPU8l}E=|fE zAUa`9J89h8dkcRzg$}2OlITdE=pi~`ZRpZ(N8WuRZQ~l&YDMSqD^jkjjaor;uvTh% z2(sc#J%felP&StY7ZM#@XyDY=-_4FbSaptZ z5k#k4t6g{OxBn*Qm=~$(8myI+enWJyR%*H$Stss_Q|NFSXY6^jyvapK8$POSpkY<1d6Am#i?ym}ziVuM zf$;*k^etV=l>sJ=l?|ms{-MGv+!`?fx_K|GYk6_ z+Was2_xT(AL;dZ1U-=&PUFuur>+Ai)`+_&+-J-AlKjL}9bBSk;r;o?te#3pEdzX8X zyQk}@E9bh(wc0h%)ry_{cdzpbcJ^NnvFHCbw&#C|{VV(3_VeuX?IF9}_BPA^x7ak> zan>)b4_Pm>F1J=&EtcmkNy{mgF_z8+KNLLPJnQe3(LIB4o%a(Tef3 zu)H{Y!tvT6>9vtqVjk*8>^uFoD;f<}yf%alXXsMIC9mCFKJbNE1}t8i^4i?cz42my zdonhhK^NiBw2=?D%C7#+xJYzr<+a+f%5fK+_TAOyYtt)p5?9gCTp>n-t&1-U# zU)g-$eJ`AAUeqfy3^f-goEX=j<|IqZ3?=Pc|9Kc>(4aYGiGdiz4kVesXS>0I=9DD{ zLdr2fbIK9}v7DWM*z>9ZM!BFlWr=}U$3~u}cbaRkpgFSP3_m&xIUeqh2TMDC{OSv{`j(MV*sYA_s z>Dh~TUeKJfwa7}}`9O2Z5(_c)@Zo8X#lJVS0nI5(EQB~lOV*sS#6n2Jq@X#n;Y_6| zA5XH+tzCQM9iw3ATX>TF@11X2x0v#UGyGI7Lvx2FW!a#4l{V7x#>02qoG~vd%`j6T zW!vJXm>jItE2Eo<|1&PcAZJ3TwG>5&3uXHuEA?y;7s?XzAbnGXxKNgu2kDb4ybF|N z=7Gz`f1{)o7!Vg^!x?_a7Q74V4`0iMw7Sc2VaIF@eQ3tKrg>4<409FoOfv`!R;O2{2d}yj7%AVz7l!1283i9yoU&-t9Rfqy6Ok2% zco{4NhO%U`-IN=DWAi548!QBdvShN|;`S5%n6+V_!9rjtTZVOL;M*9u|20?$46@-& zS2HjyS!hfTJ@1SQ3>aRR3a$361DA9?9nZZFXG+bBT$+?=LtrYj(Pv$-e`Uv^W?LVPHD0to$YWh8rbA zd?-t1-Ayu%i8ok?4`n-Hxr?nf*8SxS7UDzMVq_&Z5Ai`ZoS}OHZ|tz?!U-eAdJTvV zJBq7*<~<)*ykbfn&fuQFY(W+M&<*hkYa?#@s?Q&3`9^ymU*2qeq zJ0U*EhBK|qSK*i@%_o8Ql((2q63*Z{0FNeR+Yp~}ZS*Of11{TM5}yFpO3Jz+K3J=6 znZp11<*yvmKQ-gWBKzqxe%>=0Ed++LWXfG{e(q&jtPzD5hq7eK-8g+-i&%RKfuXDi z>oA8Wj2$14UmVK1k*y!F@~p`XV*UmM2H9{1=l-)Xdb&Um0u$1z9&>GL{A#SJaX3Tg z-btZ{z_5&d--rIQ){!si83)!%`r-|N!CH08uqk){>ys==xidB_GG8h}zVfOWHroz< zhWqNjBEqDLz(_2acXtx~kS_uwu?1MJG%r`YF_cZ8f$VC1d(``kAd0{cHk`)!|1No2 zoCpm2>^TTt{)(cMMo70oXS71;xC2kr`76j%`$%w_<5Uif5T zQ{kEH41l49?fhT)pYmt@XZx4B= zxxqQn*~jU3{N#AWal7ME$9l(fM}J30`@i-N><_bZ0e9HvvQYx3?K9g!+vT=Zwn4Ve z)??OJthZawwa&MOt!~Q)Y^J~kmc^E8i=RD|{!eM**+M~qvD5!W*2~y37=`bbpF4i? z;MwYPi*2=4)s^9Js7h(#DFTq^JTNLY=lo9?S()qnpPCgP^jbhjeoPvWdtPqjIXojP zawX1JuIUl)L`Xi+2;_N3uZyod(36qjTu1NP`<|MVA|xMO1oG^1eq8IHj4aOuM?d?l zd%lN|d@V4LXH-4cuHyD*7#YfSb6&7&;P3`Q@&&*^ZhPyQ>8UT?WCs-1<Cny&^m=h%au*|OwcyHen}d?P2B2>qSl|y^Q!#} z3=@F+djZUy+&1y&^3xblZURaZ8|yOfwdtgF>{G+}j0okzZ63EOV{Rs7Z$fTg!e_<4 zTwcdcVC<3j`Qd(7Zy+Q$^icnejgF!B%>9aywYl)C&%bZ8`U%NhJdoRF?kOo-(V3Ao zIrTt?(&F9wO|qnk4+x3}IeG92&m5TD#K3A3P?~y>qQ>jzG`ks5m78(teOvp?Jdu!m z#SGkZCfn-a<+Gn)WMyu=qkO{jM|+uMNfS5h;--s?127m^K>+U31+YHlI`5rPyjE0y zZp{TS_wMV@9(4F*2B7{WP27(|34_?k)zJwI2$5TKMPL;BnmB4BYt$8WCeXgAl>KZN zB^+aasWtyn(!^c0D0|M3U)V|F+Za$|0_~fal_r;>n(dpIZ6<%IGOsCV;wD)Xy1YM| z?y>YqRw%aKk|yqq1u(kadh);HS>vssqH#McfcfmK_i3wMWB?V7dtd>~)6YMe#sCzp zeN#uNc2unnc#&Fyp1INoB|{44@KnZz_P{Q(iBBV$pU6Pzkvq z6~M6JV_VOD^K=HFgzcM{3&rq+sdlaK(phKzdhb;~tYnu`?TVyJsdn5%in~sE)?KuA z&BXG$a@4MU6L*dVz*<^46^)xkacR}@+8b^BwG2Sf+BY$WNG_#naX%<76@HLiifXlQ zVkVGWN@e1fPh48OWu>z3=1bY7R3?{nDazEo$tnGX>cboxxgF}$zKQ!Y^YKGe7-q@H zUr?B`CT_smwJ+d({iY5##?Ddua2WDr@4_OHjKn)aM>^N;heQ;-*Vb*WKNp z&9H0FDcznSmEm?vP&fDGn^cVAly1xjbvjb_-^*9N+{Y>1l9^QR44;L_%3>!Bt=1lU z;??%2y?zhJbTg)%_`!e+2cPqmiTBCu^jHO6aE^B9dEW9L<-Bf?wH|+Nyd(U=A(Jo5 z?7&L=r`JF1C$l4`b!%)=-7}|gs*^6^9KJyBn{zoOvPqLG%kb%k;=%vZ+mgHd=`Ref z4{5`t89wo_U0c1h%b#xNd}Hn1oMIDD&62ujPGw9-BWPPDvCn+3jwh)P;kF{TchB!H zzrRCF@R9@9J+lS5=<-)C`|{2rqdYlu-7}{kcgw1>Z*I9xjQPmH>z*;D6Y9_KfOk{* zHG4V}M{U-xZ)P(KAA1fKzUA8E{rD7qx;{(mzN7x$r_OoHyr5rZ6APemLBS>3e;zt; z&YpiZ8ATf*RQDu*`)Jr1<`vyD8?nkyws)5PGek`2lYv>T|oR|L7=88AFh-D1TBi%jIKyG^cA0Jq9;+w7h71OL-S!NyQj96bg^LX~v_*LU! zXtcXz_*B6HBid(I)+~H3@}&HFcFEKuakbm?(%<1qIl^5sYmm62NW>%Q2rLFeHi0fxA-F}@2;?TgME&UuO+a zhyPCd`ei=F@H77EYORNN`uKEb+^TlzS@3=5qYiEGm9KEtGk%H;&;M7m&+0{Q7Tr^HVbPMJnxewMCxHh7m$LkS0L%ZsD15l^%EC2;Ls<6z zjsG!r0ziX*ILrNy`2ORI_%``Q`%duw%yRz(n*}h=Tk84E^MWVi+3uO->Fz$}e#Lz~ zn+Gt>t-Ahoz2Ul`U|Ii_)~(j5*1lG+<#Wq3 zmRl^BS~go|SjsKOu?PAe|4OrZPGPK~Sg`Q-Q%`*041N7X75c5>EK4ga1v+!g_#;}b z(yX3R7zHd#@qK=Z3Sv|8bn2Ij8TmSj#eS<+qR+`n53xiqyqrT+V zU{Jl%EXyxgU!-T~bNJZtaeo>NiddXwnTAx^N~#{qGUPu}^;m`>{}I(I&Fa~OaqF35 zKHatDN~dvaDk4iTCn$`0SqkxHQD!{-$ zSU)5I(29+(&>Zu8NAd+VmXIXY4NlJ3e;w(!_?b^K{-*ciRTrf1|sn^3Lxq=v7ACK0N>-%CZ0-&0z~?06oBorxQV3_asen} zaTCiQ5!EYhVwr;UN0N;eH?j0U{v)ZoKJFMpkGYE&C4d+)3}g z)+7U3avmEtz49YQhPC2H-s*GWM|5zUuS+({bTjf7)|7u_WVsf&Z1$nq(~pw7uQADX zT5`=rcL#s$!pM+T_D|<4zgRt(ko=$#vz}}K?TVcn*;0)t7yE$dx9^p6GOT4#}p=7+IqgpOYy5=)ep@@+CvY-F;f}nyY?Tb?_uc zR%^%I|NF7^&z(w0zD~%j=S`QSE-7YuhN`pRnWhTjD^l1M%3w#BPtkhaP zH|DrEu6me|d;zjiCX4&MxBszcoQIJW+VLA+`t|D1>j}wM9h-N5Z0?|G-=E6Ju-0Ml zzq7BsX)hu9X=?`AT1&n?;<3=pL zbI*PnO}+}qB>!EzW|EVQ7T48i$JMC=cAas3O=E16C=Y~+heCJU3Y6wQszvP zbZV)-+rAjrE5*oi&GFibg6PTz2sy(f*|UfB;SWZJv{rKuExsf&g^+yFk8yWaW~IJM zG~4#MPIElh^|K4UUr0#4(#Is(_lh4LW25Y~wVLB#t2|1+w)J@+Fc zYqVC=N{+65{$)Z=F-fPE{NvcB`+H;d@+wf9@AoVkNw_cb+UuR>T-^y`vEUdBikqkSEg9yv^V8-5@NJkfP3|F-!6BP(;B z4~E=&?q?T~dh&_4KweqJ-J*w)6}eU;ejJs&S|uc(Z42ZTr!nVQ^B^O`xmI6|j`kc! zRpM)QfV})!{(a^pMwaJVUv|L-@$EB7nS7xRkXQEk?7l5^V;LFBwHnv+#w)B|LTZG( zD#FJRE7`}|x?EuThaIQiaF~#MOKm9gvit7&Z((2m7hC&VkF$JldD@b;?6l0Zge+cmQh@kZwqO4?W6Y;KtLck>_I3M9 zA3tL+724IZ{dyW@P`jr@*%oL)pwNVs?bkon2x88pfFJ=+pnit zf_mr^_GN4hP*i)CXu&g{B~w&;{yj)2(Tt+n^Y1}|I+OooKl1_Hk!r8!U`D;pT*1Cl zjF<%!(LT$+2Z^%IxPTpib3<#Oi1t}M9W%;0{emo8Ap5PLs)_blmXJYNyUy6o*0hfY zifEtJGc%*C9c$SNj``DoBHCy9#~)Fz9RupJNA_+9ifEtJlQg5O?cbcjM%LM2D*K?r zdIF+-mVf#YWo;Y(=&Wa^Hv&bp&+7S_QP$Rrd|!`z*asBRKFdG;h_bf&yUzMG?5d6`c_qKL|Ii-d;ZZ!P#aI^ z%|6Zi3l!CUGg2E4vuZ6?fTG%OLaM=73=I_3o`2gBcND8Xfuh>8FFPh>%)0}MYR^CJ zh_b{aFrcXR{KJl*#9@g*QSJF>9YHPY%zofrgZ_(5Y$?kcpLO&;XUTgX^o{&<0Lr4; z8=rP`YLR|c%49*2amBK%@p(t5=IN(+K#Q)V+8dvEbZUlv_QXsmi)wFt=FzEX1NF}( zKvC^i;xmfPpn;;=uRv;yu|ftYs=e`fN57*u`UfbgJ^RE1s*cw8E4>gXs=fZL$9RXt zv|6BOyEne}=yx1{3Ex%qF`%gS`WGLgEOAbapvZ7!S#}ZDYYN|1V$5eiQSBEZHC6BL zw*p1AUx3sUKCNQgmq1bN*{2>*VhVFw_wQZ|6xE)6=>bYCx(14B&pz~+l(G3SP*i*V zrAM^r$z%B0>;r(J+VgKbf|_{R_3!->9Ss!Ko`2mDRI}Ps?Pnq-7A1?a$Y5q!mVeQK zvh*|lppPaqX3DbcTMkf@^i$%tL0MFL_A$q#j8ln#qS{YI3TA^C{XLmLQ|B>NMxoNTQ(XD%2Apffy~^4e2(G_ovFniztZe*WW-^U27`)} zW``lO;=P`ab(q)1V6YLEW``oPiZ3pmKh0pU36^FxWY!+p%g$%$ZZIftX?6%<_&Cju z`wWKatYq~;6a7Y)s219iofXvk0`U(?+ zp*r_RX2a#@-0{u}r8+~*b!oPaFukv9|N4cS4TkDmi_C0eJ3)h?I@cgGkA1_k{%O>? zhU#36%z_UCpT5<5tWgftxeA&3&-q%~-3Eg?7iTM*HTD`5xHwzU{Ew(?aW>rik5tlf zy!8@Shr3^2c%yM^DrpFr%{6?k<2aomp1CyJ51E;4ixv~u=iT;CN>YCyXRleJD$5d7kgH*^8h-zkGfxS-{?Nuy}(`LZteQU^&eNl zwcRz1%>{5dKXx8;Ud`tIk9C$g{&u|OxWjRwV})Y~oA>{-{RR8=_OtBs>{a$6+gEH3 zK+JZkZHldz&0+n}`T+a>-(VeWEwvo8ykWV`a=vAmWss#kdzk<0U)g?=Fo?kbeZCGG z1;u!m?I#JtZX?YH3IkuZpCk;;C~N^``$@uZwuR*}#q5(npD;_q>aY!z?I#JtZeuV2 zC~OR6`$@vE`xO3Rrw>rrD$4eggkiTa7$7L}yHK{DBn-RjEq; zg8@KcpH;S>Bn)Rg|IuGlEv zaAu58u609MRC|&zh`|7$sP-gbI3vk+3UPe^6xE(23}P@qP~^9wY(GgDcGbUiuJ5vo zfTG%ygh31j07bPY3BwMyQC|6)EKpQ?k}!zD0HCP$Bw^S#AXnR_t}{?ndy+7S!2qDB z_9S80%Fou=@C#5>dy+7S!2qDB_9S80e33p#0Tk7qBn)COKv3jIrEEV*7&i9U{tMf@ z5-6%YNf^Xn08sxQYi}JN)$#rRM^=)}W`jE+M7RVJ*m#h_;uI^^;O@nP6t}uipkC@0 zTgj&0cWnz5XsJ*tys1#3M%{(VcV_OKdtOWS^Zk5(kH?Sx)5jyvJ$L5J+&0`W^xXoeUrfeGdVHKKPF)^gRR& zIvGF|`W^y?IbSYVn`it=6#50|&==zA4YXj^8O zPZauIMHMkA^u3BJOls`q@)+oQ$rk!vMHZSelL17b?^SFOlS1FC=)$CQGJtHM?^S$Z zQaa&56#8C87$&8Y0h+=@OqGf;bi2$Q>4-w#t0=>ybTWV_^u3BRG-a-yCklP9A`O$$ z$pE6z_bS$iNulpmv|&;@89=ts_bT2nsi7&dVV@9%z84V(-5oj^Kot63gdRlcvnhx| z--{T8D4h(@6eMCgREc1Ok^%H*c6xf1h(knqw#>Jk(dF5qvV`O3^ePdAGzQRuia@jl zu2{A{vgK5%D8yXV?@MSWl2i}#dVV&PQ>7vilN+EuU7TQ!XFyJsh(<)wxJnTYkUKX0 zGLbo+136V9FdB=0>f}AQ9qnP#@aXb%lszjVZ_VlJTY>#I`PL&8*h%1rDXIv)| z=~T(hb0McnL@&hY{XdxF*^pDE0vWS?dhZYBcs}G*WwSlKdxFJ5kymN7jLIL0Iu`a+bfFmD8%BqAg1q^zn=Oz9)zh+-FIRi!h9nPpjm zV@ZgO1N(^LX_{5lhNyv%G8dr zGWma)DD-_3px$z?dgtUpqR{tgOzlifxa&l4Em7=y8UIg>JNEw`|NrJb>h`-YanEx1 za=TLA74iS2DU(vVik$$Dxq{*(z{#%M?6=r2u=f#P`ro&OY};*PZJiT;6w&_mi3<`- z6P*di6KWGSC5%ky5dTg5)1u0Mwy5z>5RH!gFRxlv@3fXxnn}JLucW^7z-K?}1rnlU zFaN;JzdzNo!n$|zs#OV(!q512sCV<*gqKD#%>!2fS9LrJclvhTC~NHE2ruz?N8xUtEnk2KZegGIcmspHYE|W<@Fbs3J1AT}UwqwDYL+eE`xaPNr9KK5o-vCN2ru_#-~F4f z--aImSM@#$xBGM=g77k5=ghr}4%R*bxGMV5)^<ibNugysKU^TlU?tI8kUcAZWj zyu_F1E&lPf?|B!3ylPecqwq7nv+&|b=Q}#Le)iYf!Mdseij5b=z*QlTZo4jFpvDyX zy6oD&{G9N7u-;D=`zYM*)9DMs3w&8=mmU1*``-XpwLuDZ`gBnP;a*?&r%ok4^T$NM z)%F?Mx=v_lToeOluRl<^{p*JSS9@q^T$eczUhd2Bw(osp?LxrSMj8rt_;iYc@G@Wb zsTZAi_~#D*SG#E_{ESZ*J`i3S>GIR{N1nNpw;;%?R$FRlTqivUFNt*R@Y&QIm$d`y zYF`bF>rx29izB&@UGUQlS(foT?ZYeRqy4r(7Ti3}G!pkB>ccvWZ zIN~e7<<7n41Qtgom?ag2i=7ClbQn;Q{c94R}te6qFKD$D8vC6V!G zy>zpxg?Ih`?$P^SWq*C>DWv)$&|hYM`##(3sehXM!52pw+;<>W+Zx@(sevBjY~UGwj}@ zyn{eqbqBz8>W1*L$T;pK|2VCbj2rrF{Z;`*Pq3s zcvdwie_i20G>(|uPmdg;kMJU_C^Dg6<>~NJuE)=+h7drPdJv5x1|fjX?hwTzmRH>p zF0E@l2or~wpVgnd>K1_OJdei3EAT~8BM5~;ZO$;{T%-iJ2Gz4K@+bYTeL z#gU4k*KKJxr?Z7;ReSjE(K#Wa`8kG)q$kQ~XXj%P}jix9;g%BqfIO2_|1@mnFQ zYCBU)pU5ij-(nL{JW;c%wlSr}1yStutg5X{RpwqMiVCI?1-`G^!W4c^68RGFebr{B z)*p#`aQQ{olP&Ol)h4EN{7)44zG@>=TlyU>EBL;MDDZvN2BviUuc)(fFBdYkV@OV* z-<)Pdf$yu<17*hlM4|83F}1UeJPLR}QS5se|4)j0G%oF^sQzCgYX4h$KJz^4x!g0w z(=GK(>XFo7>Sf~mzdmC1|7Y%qd!Ku$yRSPn<@1!sQm#mun$q3%mpB2S+O^X)%~j%Z zB!8IPki08-LUOkF;{QU@O-ZYh1|~Iko)Y{0?Qza_7B~|e#~k-L);WecTHC*{KW@L$ zKFywI``h-a?M~Y&+W=d$#7`0*O1vboBGC}F{f86wCoE0qn~*B@^{bEH5kD?IGd?ly zebL;k8kG?=MM;^vb?1)1?oyj7h|*?odX35lnv_0ZK~wNeszZ&+1}f?d{h7U;SA(iz zkl6F;^ZUNAHf4y+dZX&jA?Jcru8~{#nvYStZ_Sb4L}AN6gqQnz?!EH6@*dY&kI}rE z3=4Ppb~KkuAipNO%vZGX!1KQZIXRbC)5*d`vf`hyzRlA{5iXJy^B($Y&@YdIbru{V zS#h=cE>E~fR(w-^$u-mO0~`g%u57v4j)QO!*7hoWTy;bp$;hZ*X|8RnJ6eZiuk6na&BUwj&{;+lBVZc3BW9+_dYvp>;w-l~YP}!GE?D70Z5QWsF z0={*GI4C7JmT-}*sL1WUtLj#;?zV7|tQaY_71-FCaFMLov^Q_}p*4V~Shz@5Y0)-P)+N*G@wTqG+_z7m-J^D(gQv~as`-5I%i@Joaj z`tnxnSozp}5W&~T?R`l*uD$iBt76Y2!bP%T!hbT~7?}Xp?SNOV%)I#M-p>g4M!Y}0 zIO>moIReeAu>ro?Ol51lTqG+dyxX@SRm~fG-*eW)$Y4Hc(34pKM zFSo+0CtM^eUWoiLECF(PHSvJ!?T-l;$qIAhW3V1);SS#go5ecTs+S2b@%0_w<>Xvr z5#!a{EnJ*Sm0Bk%gYF<)BrE>zJ9E&>O)WgD8kEywwL|IcL>F09UiDVXsNJWlK?p1K z^?i2w;G$>u0=~t<&-iq*g78?$ip_xQ`VhiJvZ8Y8ns!NPmi4S^5LG%?p=qd(%B$W8 zMs=YGVIoJ7`&YZ|j{7a6dDR;L*GUS(%Oay&{bKY!4;~ZM7Xq$JM+g_milPaBcU#BH zLi4KE1Fn-5gf~uB)jlzF9KX=ZwMFZi?gyfS=9?U7|_`ZO@k87t6l&`$Ew1D(S(Vt zg@3-I*|=w+4f6rlSqs8rWi94$8}vcWMB^CF1*0Q3_gL9_^e=>oti{va9vl4LomLyN zs^_rLvuKVA^Qvcq(cx+z^?S%@QDn+xE#LIqvI~sPVxvREUV>kKZ6_MS!|It#`OKOg zqWIRzs)j1aQhECAdBT5#n~jcul()C z_g^Hu%r|UDP4j>HzhwC^uUhS1p{zT7OXZH#b%DQaGlWz38+SWq1T_*|%FYp=P-~8-v_q__%)!r5g_xNWprk{wAOCjBSr`lJ=A3g9p2+s?4_O6PoMKW8V$A0i_VbX?|` zF|f}Mv{@tEfwhn~T=~di zxw);TFgaE$@`h6A$}Ndk$R$vdt|y8oL{_ax9}>0vZ?RwJ3+5KWB0ht6TCK<;617x5 z=*A?HEq)$m)j~3HNuTScH%u5n6eP!LA(^=N6;eWN?xZ7q#q3@S* z>ql>TQ=WjWDTsx#YL+q;?TIq<{RK?vZ$e}XeZK@Kc@#?b4n(2v7c&(-bIQ>7i~dIn zeGkf02Sap4^!)<1HAGd6mJo%$pU;%H^lRHo4$}QQ5!T|(1 zx%0AH{8#?8k0=~Kkdr&ticRRoHYExNP{>Jo0qs<~1AIsn4&YRvcHSbkj(U+O9Kb0| z?O1i^D_0bnxpd(P9Kgvynfq{%EgZl}Ol|vf-^#(cbBMwLtYB*EX|ZCt;~kp97k170 zOl`SS?rM9ADD*uns@XJc_NS-D?j;I+4~uFxd4*G(-$fMqemq}s;}Ee@xaUTq(D&n* zy72lYVuz+1h(h0wWon(dESo6w{dqvm6$cIOd7CKo{TQa!=GdGMKNKPgeLtG1)n=ZX zDD?d(rdFwC%+D$6tQYo3rdFI5o9VukKot6Z1W>o!&~Z?QAw;3?&t+EqUkLf`wCI=}DGmx@mxCJKGupQ-Wc za3J&fCHBuk-}hrmC&|bb`u-fIbR`c_==;7*>692z==(lQ4K+h+qR{ufnbH|BqR{uf zn9{`$M4|7?nbL_bO+~%1%b3zxD5B8!rA&=edtNOi3VmO~l&&Ko3VjcYYP3)#3VjcY zYIOdJDD-_HU-2voeP6)TSe0WxLblNNUZ%8IA_{%qld0&LQ-;3p!Bn&@cwuMN;Kcl34jOPx4SQNj}trp z*;7uYJf3o0%5rfEKxfw(*ITZ7*A=dLu5(?;9eyP2DKIJa^KZ8i1%p}( z5rZBGqF_*KAz~O{uFfP12DKI<23;vd6c1`vEkq0h7l!0veni0yRSOYAbRSVb)k4HD zNG|2-`L4DF3#PJaAz~P4?l?dcJj`k#Vi=^(Eqt9Q^gToj(f)!pSXs3YF$_>&7j}>> z^gTojdXW`T=zEM9^hUBBA?wjg2{ zyRO%$^5<)a!U2ScVbtCy-oF3914Q8fLd0>>mnn}Cg#!o?!=OPON`CwP2BL5PAz~OJ z0@2|8<(i7Rc_3mKVlL<;3Vja|!%)$xr!JUF6#5<_hG8oGHJK>%JwyycKdMMNaQt(k z(Dx8A=nou3q3L*sl2~QRsV!7>0|pCpJ}|Bno{G5yNnGTf9sZ`W_;Nk#fOZ z^U*}1?;&CszV4Y1rd?Q}sHmGKs}>@La}N#Mde4gaM4|5?V$fx*M4|5?VmMcBw^_M} zDD*u<3`2iwGV+0<9Ymq;Az~Qzpe*?MiYW9wL<~b@rXyHK6#5<_hC#b!iSIU|(Dx8A z^ndmaaqQw+qR{scF_f5(B%;vw5HWbok6xOB=%Yieh#2U>MSn)8L#QxVY_5HtW0Q5% z5uOkX=L8!1aEbEEJ5`_Z@p~8~o72-J3D~Q4YgivAO&w0jAbB7Uy z0|=qQLYdlY@;*^GfDkGyxIvuA<+J*T0|=qQytQ&CXAjxJ0fbOtj!M+LLlh1mgbK6Q z$*QmkMBxBJs4)GCS;r$O=W8nJ!3CkhWOG|WqR{scDoprm+j}cq`9z`bAygQrPMW-u zDD*vq3R;pAg}#SSLFdPbLf=EEpw$Rb=z9ni2C4n^IunJyhfrbI_{;7b`db=N=z9ni z^qwC?q3J+^Di`E}NV3qpm_{!?{hfBI6{5)}F#LWT3hqT{b;JBUKxL#Uv? zxf6xHhfqNWIz*xGb2y+FEkDrK>?R6*pUspGk%>azX8~pAp@~A@XELR~O%R2?@66QL zxoQVvqR{slOzB*^rr^PqRojUvT@gYQ`aYehF`{Cn_oYQdq3=5aWo|i26#BjcQ##j9 z6#BkBQzO+Tx+41 zKwa~w*cRv%Q8<82nA$K+o%BN#4qzHn>&J_;U>}=76b_(=skP6^lc7!%g#(xh)Esqi zHc>c$Zl>0hi(`d)EFp>qP{#k$`_jWf=`C6Oj~HOuH~-5t`^DP zBtIqg|C^DVFTVeuOnM|~PtvTUo=Hj0*m;c@lm;Ho@`!BLj z5UTyqa)F!it1`2_CT;AQZnXeoTD2X!!r9 zfBAKCt$$l}fRn?wZ}H0m)0#eG9^WV)uBE<~R}Sk?wRVdoLGtV5Vtl z_!3{!-=>W?aBvy$a<#w7pYiRx;KAlc-g?#Iiz7{c7`)@jC%L93zfLaqxA@BZFD~gm z(&CFEO~1UZXU2qwz`k7XZ}LvxzDuRX9Afd}@Sb0rJT`C0jljzV|CarWT^C*O@Cl0- z$6CB|o-6;WFz~~Wzf>IV{+vGhQ~1XlY5G=&$n$@W1zs-sx9ng3^=CId-Hhyu(%hzR zR2;qO+5N!FHUAcWgA6n8u=w&w)8|hHs+>;(FBkn={oNx^Vc%i#Wxh6Fo;$kFwJm{{ ztNtzf&BQ^mfh#P&G}3HL(bDsqYyf^B@>k0e?H??@B+~TNeRT&exCeN-?%%TSc;gQD zZ__QlIMQtD#RY%7dy&Ow*GaW3cv&v8uTngWdOc#{d_(8g$p!zG*~wAUvb-?TEb;I| zC%5=5v-x#$#Xs?Tn$4ayKL503w;XZe7UjF^A=YgX_Z)$ef)}_EwlM`aSpsG+{#<>dwYb7a$4?KZt((r1JiAURa&7jahSPVhc|#u?EsvhDuAX04 z1ZFS#WV5KrZ)chHMmjBf_2iI8@m`Zl{Hb@B&iHElM-_JB#j^1BKdd}({p(yqonI%{ z_!Gaq)%^zoO|5%P972=bZvTSa?b=xF$*z-vT{nBvk4?pLo?9&Q{1VNtlZ*Sw?D~=7 z2|7Zb#H$XZ$#eej;|IR+mf8F|xw@bDZP&G3JmBMVEW0IR}MT#yd-~IiRwwC?uI;re+H#hc{ zH5$1V&TrfNI=RB1nz8os?;aX`WUIxAB@iob8@y)CILmB)om}Ei{OZ4d7P}U9~MYZo9>cRS;)B zdc9kDoyBL@$q+zyb5+0H-)7vj)WUHz}e|qIDpITgLr1)FMXO~y8pvkY3 z>->qoV81-=>}`t|n>B2^@$t_l=Rq@MT%en=_Tf8vz46kw7S3k7)QL5D@!Bk%DBY{1 zDAH@gjw{-|$oFD)os12%y(zNZ?aV~W9*ui{$k&N^<`XKnO`TD-x0rTzbwXllP)h-jhFoQxL& zyG}+J8XMPq=%9NJwXrZBkdAdC#E=da<7UmbA`ULH>tt}D%}kP+&Uw~*4-Ns&u9MM) z#!7msl_u8J(ET#J&{#!VnQ2~TVd#DtUubNoI0t>m-U16__jjyIiP3iSyNk_C6hr+= z!kuIWHgU|ZOJ;1sQx{AZM-*5XztXeok{BB#-vt|N7KVOzGS*j|aCcj$Yb}iZo?Yi) zOz*#8VeI~nb@s+xgp-0h*4bkGogLn>E-}X6(bEasj4|C7&ADZq^$aaUPshhFgPx9K zGegR67AiB9dIQ^CX4h_KOs5Adj6L14c3b1C!STV_wOiRt3%Q%|WAT<5aB=Mx#st`(Qj<>jr!x0|m&+pj+!!U$#6u3_q&`e#I`>K>xd zRwYwDnVZdRAd2q<8UN3U`ywvw^|ZUvR;BsUns`3+ghk{(){~L?eQG3iZ|dw+Z)%+T zb@yGO>fh&XlJa3nIOW=uwJ8-T1u1UVx30r3zw1)hV%H#7dh#F1?F=cDqVE5Oq*X~Hle&n=|FqcmzuLLWIm21*Z0`8h5pmq(*y=dX(am8O`~E**-)&!P zA7pQ7``&iIcD-$-ZGV7SK}n5q-tvg%j7gS8BR6(x&E>zrPxG1Zb)Hh~D+f+oMuW57%@_BxCcW zJ2pSu6zDEMUvfg$erIU9IMU(fZ=U_&+txr!=|{GAJ}3`>nXPHDhh6oU4Ta5XftJFL z=pCuoyt-ubDNPqfvM$_djQ{VuKxYBH{e|17T=Cg5O&3J6{6ikK?b`>mP=A)~T^r8( z?73TZY1$jf_-g9!yN|vIwA_$^TC(eS*Q(cEpJLJ?3d*=))PI7XR$6qXUn)UCONq4e zfC!Xt=%``7wKDxOORS+y^1zU))f(bEE7LEN#2VUlWpB30v*!yO+y6*{#&h*QSv2MWX6R&mna>0cf=0{|vUy3^oE$e%w zP&2n^h#!!dektuVG+Qoa>EkdVSccf$FLzI%#;xDjX~z7>e>7Dd>HgYnb@z(pK;>XEKl$~ORpW+gx-61^`tPnS1J_z~reDfD-GFit@b~-AGaBYm>F$?1 zCXmT>->tSikyWOtl1SdRywVRp{}oJ1t*1?%t4?^)cW4O@Po`fgJq@ic7nMRcp3oNg zEtTn)sbme!IeB3G)Pu)0#ILGMzZ82KDwXHStn+Ay2cx@RZiFBpH5&##`|_c?iy{Dn!89%h|daPDMd}nm`%RLY1x{Iot zi|}2~LJ^PjUUu!bKlND)*Ol5&o1A~Y{J8dwHpzq0-Y=A2ya}Drf8~3lyFUpoILZ7z zr>Ww|h$GYAyW|gk;$`}!?$Z|>Aa`>4c!7p-6r}3Y&|LL}v`|Ah3PSS{R4$i_O!`qn zJPMh9A^ZqB|DPA)rabbThVYgU>W`puxn0b^gG~s+j`n^b0i&G&(MG0UC_ggM^^L(5 zC3h5P6Z|}C?-%m#EEC}6I-&Z``YU@mvrdRTy1=;nCu(1sb4XtRrg)uHeA;il?voq& zZ`Tkww@&Ik4fWo(>(SvePHG68TPM^WL1XjY74`V%X^5TMzD`O$(~_PSMc~ysA^6C| zXjz26rPMS5K}BYrP<<9855U=|?_4;cFSAZcKi%TdC97wyKJ|~b#LmsE6T*+6k#dd1 zLH%wlWFKeN3H3)%fjY3FueOA)mJ(23ZkSAXU;4d<(A81_YG~-@`0E~7+)hL6>h^U) z07g3q4&}?NTg@hX@&KA^v>t+xBC~E4K<3d5`a0<9l??TLz1>L5>dD?XW3?Lf_>b+ZdoG}=-j1jqDa*uP%GHE?dvXRWCFdqgiYjrvpo01 z*YspROmjDAnoP2~yPzHU*Y>)^~?*yyk9&h~W+&i*Sz5czd-&Ao`a z)q{P`6t764e`3Z}@;hi`VB+l0o=^JPdc@|}&9ivB@5*8F1T>$;m-|{Dy1V4bmp%br zF26VJC;9f;Wj^&Si!bwaD!#YLw)LZdpJVZM-`;hqD$?Rhea-%Ed+@IL?SPjn@u~fL zcimev@6zWiz9iD@n{}Ss!ySO1W$_N*-pk}lna?f0*w?E5VAHkltOR~0^4H56p2-$p zN&sP;vP z9Y4(lewxLn`1S^O9DcXx4~zHuvTxgFU-mA)67%ci8h+D1qQ8%S`=;#+oxu=`hkN;2 zEnWZ8@fQYzeYuF=hgqxr*Q9MSl;!b@Lqyb^2Q_ zPWCms-FxKaf3E{xF5|b_b3(3^)yX))m-<@u|Ht?K(cgiW>-a7EU(09rAgetkzGmwK zi(iSy_REF*CNI92#>+DTj#|9*E82s>~W+XPpwPck~$_e!~LWCIkE14 zvH0fiPWeD&0CuHJOzGnK-Sv{|HrEQ5&($pXl!*KxbtS`D(7ftj@SY4gd^PK--~W5H--_Axk612OkOX(k@Qeca`VVsAkzavHpaJ9r;#eDp-xc*zz8VG zXkHXvK6Fuj0~rCO8%M#R_UkOaJ!(G$?LoeV(`TcA7mC7{9{<0AFqOY*SOs4x~VzJRh88G}pW>Wjx zpJ@}n@ZDs*D8JSXzmlBhMfF+(yeN}7ex*B2FQ4_)kWY8zmlQaX{xZz)am-%YSxH3ex*fCr|E?|meWA58-686O^dpY89Y+Rf-=W1 zG%2-lVA;%#-l}kq~!R8L?w#@M1<@wP3*eH&wBI#VEC12)s2${J|A6A*hf%-~7fUFHnG5U(`j z;ohdk@eP^d7ebc0+voScAA7Hb%B-2)WzO&mNlO;>Y8PxH-)-ss`7tIbge``D9-D&O zks8N0PmX^sH?FrlaA%Qvyqk?U@HI>^bH#{Ig=3f;cG0 zKa)-MdQ>j7dD=1sT)KZo3`ao7l;fYyh9G28-GlEi>HcZ44Dnpd@lRz#Fc(cj{JKf^ zPl;uS=S_}(G8=;M$uz{XA;&+7If$T44(CEetPAqUrTfp11@L&J`zOW#Ae!p#m+DXi zb1IseC0Do{Nt45&VyQvFH?BTh__C#yy8ERzG-m#Wpdz*Hd4He}HAdX?CmWz8vO3bFUB10JB2)>r(X`i>HT6=@(m3ACwYy)| zMpC=?_E76GOj^WE?Ok1SPInjwwq<3c)sns<|J~(%O_xWS_b-`5f#_jHxRgoqwVyyAI#g0bLYr53eJg0oXn*9%hZCMj((juY} zpG6Cw+$PgRmuTASYxdeRbI<*9EYPwb(rU>~a%-Hel2$QN zyP4BkO?-GJ(6SuT>gBE0929hUq}kE!J)1v}0JJQIwCMXk+I1@H8Ev~P((L(p$AA4d z0(4)bpHthiXj;^h-n+H+o@YM>T2@4ww%xwHPhWEJKg%jKUE=GqVBEKXTKqC4>mf~A z_~gZ~sI}Ou>0)2AJFlIVGO!icmer6}yWfxji@GmGFN-40uJ7nraN`1?Wi6ydf2iU{ zZCezSUi8X?cl5<4o2-Pi=;NP@G|^&Bi=4*QSMILp`xn?QwP=x}_@MsU+Cfig+Usl8 z`;Nzs?&b);yI+<=TDCtDTLYi3zxjv?;bs@zvaHqTthKuPi;@1eU`fqWJx$x?Vl3B{ zEwcaC0$Ngp^rtHOq-imh+sl(*Y0?#FSrN%CkzdYryUWE`?mA@~H@gYYvL4c;#ho_I zx*Nn7;}T!Hrw5kq{}aEwdM#SqX*1<1+#%f(@r-S~rgL)9S72KfMOrNxpteHSw74(J z-@E0mr_h5vkiJ%~p4_2nF_tIZxbDgkcwfqbNXzyDxudH7eo-!-v1t=-|7ZO}R!hw9 z|F6fTolJW;?W(j3LrJ$HMyc`7`4o`lqssZXa~pL#*6FSU*PTag9W@80M> z&z+NUCgoU4ZOZnPQ7PS1;$82E)Bi3JrvMbVoXIDXA5Ok1d2(`@So!}+(&I_{k`^VM zBhCT%-uasIe&=RU`=8^qsXV}?j_G3Gzoz!j?N8aSvoEy|u(!5-V>@WO$F{*X#+IG< zXW|=)HHq6G3$ROk{r4s~;@^v}jbAU;0A$Dg8TUG;0E~bVxuzV3P*?4MSkSA4;|U`G zGFPwslup$#RurjZu4!|&xhtx2zZs(dnG;Y#*Ob^ZdWwCm_oR@WC8S}fUq}i~ zOg4S|HG)PANhOX=n=_>ncw-dyhspFnEO}hQfDusg*fa(5m^#7&*&C3lSQ;V7?NCoj zB6HM{P5izv0!lKQ#vyvA9(}rIF=qsX zdM0ni=ol+mBOqinkumNmBquNlkuvoM$?;6;vuLnCOr{6M#SroEY265nWm6EZ(g<_uIUa;>`&=+6z*r*7kzuyG^Mk4b%08Fq!q^uRf> zy23z4pl{5sK%s{b=)+e77weuxk-eGht@a`P4SEno_F_`6zJ(qDnG-0Nq7Lp^1Rkt|{ITy>Y6##SM<|oTr9P(II^*_lb0N7PCt(*qf? zyvcwO=)|TVX-v(-_e?sIjUS|N(4Z0M$YlAMJFdIp>L5-@wwV*?AW74S6VI;~=WM7l z5A()h&Iq(;i|~%4R`N^42()7o-f`qaB-=6x?j|QPnI32p%ZUtR1X@dg-(1u#ej^xx zR&X^=Zd1FEY{?|Z4QdyYIe`|EG`&~$-!&Wlv+`MA194(gJC_(k7?%NV9o9@g#RYgCtQ;-KcRO*llb@JAB?{uesO%i_!e=e zIrjg*|DO>AjR`_s-w|c-?=IT-EtUq|30GS?)r7;08f2SO^S{oS=_MxDEB@jzD^YDvhdNNczZB**>jb%L*e){*GUm{sO#^f*>_P z{*#xm8A57OgBQsf^Tr~41(BSl-ke-dcQ3GHEL2=6D!^dB$ z3?6xjpL|9T6em1x$xBEo#n~tbCnquK4XQM$_9w&?>2VEOM5T6UTc*G_m%h5}0 z+z5jB)MuvSTw*dk7)yM@Qt^ynk#r+J^~pW_@!zaM_posz2)c8HIT-DHg*2u|ob?W4*Ea~eSqoV`>UK$UuHFM&;OP_6&bUV>Oidr2%x zIlpN2jV)f`rTIosC{Mb9=H4c2{K~;gVB82AOs+T~_CXw)1Ct2IoS;&krk5%v9iDji z=f^BB0cQk3cS4*+E`aw}Q0Y$dK7!{Gxd2H}o)Bk|2ap8iIa{5h&=z}+Bq+}n@^GRz zvE&Cf|IG;s&2L6@r3AUvZDg>+4b0k5aLa<6bM^Xq>y1L${Ubd2Y zjwBRzE|y0b$C>LeOchbeWKJ+i+BADU{04PmGxwZ1Bk1I7LjX)YM@8sh65a#Ub0)n( zJA4FyTZp<|6j^>~aAwn_jhq7r+SoVwf-t3N&ty(8L6W8mMz-27^0+Q` z0dqz$o-IO^A) zb0e^o$wlpd44v%rgzOl(fNkakwn)-+!HB!$2k?j31g3#; ztb0_(|5M{$l=1()X&ckVr5T>TJui9g@~roa@^tsar@kY0{#%_oOzivji~D8w-D2ne z!R~e`-=`c(xkKy$Fd(J1>l@cW*R8JAu3=)&zmJk16?^_INbZx|H0gt+hmx*Lnk~Nk zw{(8xeAao5bDFcj>2#cOJn6Vr?Dt>dNU$Hbhs19G)9r=!B-;lzzip>&k}cn67iax7 zh_C(=6T7L}|4_ok2~!h{_@Con5^MhHtN)7-?|VaXXCC_Y3hzZdGUX+a@=ITR;J({$ zwt8-aK(tkw2iU=EEQdE_2t?beM&JK|%n3o(u)^F&$a>}gXM{kq6{$`2Uy&SboeA%# z5M&ME?$QxmIg+5=;GL`QZ6Lj&HsCCH>FQ}xUK|-VF1755F9%r8@`hT&PvGrK{wjo%yPq=@|3hyC&wdTe-PL2xMKB zT4Sj;4IsC|OEmMYtyu4(i>7sy>;LWDuMi37#aEUneqR; zc@Ufh3J=r*xtEO_Ay9a$W^}$VIP!AY400=yc79%01|ENMM%fqWRwi>oO4ylhou4xA z!TmGU8gUhSlrv|9K-RTp7m!=|#chO?tTTf`P$1-1Bth6g>_Kj2(i=iy2NHzb+Bm7@ z4Q|J2%X*FcS`g`@M&e-}i6AIE$ZnB;xjjY@6keq~Vf8k(IEJPzlQ}_9cnja3A9?yd zRRnGNm${6fPxFoGcM`pPWb3N=*ZSR_H(_2beaax9bH;0Ev#=pAxw<72wL z!3*IhAbiNN-blZHZ2#@~Rts>f5PK9rt$1D5q^rUpaxAyU2ny9lWaS?}uUu_2>t6L^ zmdTu;5`X5ztq{kM89&YA=K*sWK_UHOI2QH@HG-h|U><76Mv-~w_M=B9)cBp1N*m7K+-H;9@L>Kw^i<&i12xdm;m9%)S} zZ*Vbq4GJE~YvqxF>L~dCSU)j>i?}^2rpgVqRkDG+#_chJ3z-DjrEhOI(KIKxK$51{ zX0-0y@z*PEwPqo3MsPk`govBGhB>u)OhVF%yoTglCLvEpPGiy=lndZVc|xL&oK+SX zxS+lL%zAj<2UQKF`4oqQ9XX4Q8^KxJjLK!t{Uo-Zz$wOLPH?6qO=q3^@YL_0t!&NC zV$KN8V2hCLA!l*s%m_|rQXfbqEt0dC^akY`cX9y~W|Fr`BXd8yx_UY+OfZ5|**Fwv zlGE6@5uC#0QgL?oH_cUT2ssPM$xK#?y76;%sMQNJvzW{YPLia4zNv$L)oKp&eq_!F zRPN=tKY`Q#R>)3c>bb8azb1fk9nLKK=?pt^&@_}UPn(2dBXH>egKX%|3@Lf$Hh ztQ@lGshRbotOvIl{~x0G|2!4{9~1Haa?c=f_TP7@FQ(p}x<=Igr@B9JKknY+UgSPU z?E3$q`u0C1rDuxM^}g#t>)ZcvQTe|+d0uiavFHD>q}rtIN#`dOiWC1nbUxy|$T`K? z(`k3S>u7LX;h3f3fBEHqvwfW1usdw;*&eXI{J$#p{JSV|N@CB1zY-27+?lX0VPrz* zgt+*(;{)*<#mfHbc*GNpEPm<j5HAy8(mKlu@c0HhhDHE0O9Jw|8_`)!_iz!MGulj$L$$Qs`T3>YC0Vo;q! zLjd9~q=cC1E{G3l2#^FRrq9li&7->jNswX{ayN?~RHQ*ez@#^XQf!f^TI~3%`rb)H zP#EcxKDb}!=_!}>MG5K8CavB0| zj}Zb*HeaLwukZUk4gr%nA<$%b9D%F%W-sQ95NI+;me5FW*l&bDlR+|^Mgqx+JW(2_ zReB*gfl0`f&`2N&3T&a&<4x5~O9R2AH>4Jd>$f)KMrZ&EB1Lzm9OyWL*AE&YA;stc z3J)$C05)!fK$9(!2X+S3hd_D^F_{xmn#>d~@U_ky0Om46LXlz6PoC$zfDszS&Fi!0 zUGX{`AV-}%k0dBCcwo^zfFvj|s4XJTGwBVfh2Yws^IMA=m{uwfAlG{%{X2BMsdD@x zYeIWNYBjk22~-!+5Qx3~D_%d@^h5rM5du|K`E^Jv^<9nk0Jp~o4P|dEX)mhZR@w0$ zU@|8(M3UwZ3^LEtlcYHW%w>cI#~cDU$jk^0;){Y~^$cbX$bEOZt74jUR-c0tJ_n|nZ^n7WN+=^r`CZQUN+{&akq!xAS zX$s{~4!@>lR2ScNt*s0XP$1&{$^ zuF4nteXhS<&PwtxlR2SmNt*th^1R#><$a#N%o(99wg|GC{EJ~|CXb8zREq>-NS85IU#lcyfkHcO0Mfy*Adq}t_`j+uI{e*B`khsDl+i^aKrDe=eSL-7~KPmTA+J4BQJ*MCMm zNHF*gt0scny^^O)JtV=P5=@_$0LRW7^`N}UUzplt!|q$;L{K6~*yO=5>Opy(EkDm9 zmGaUNRv)=5x{^z3Dx5_^Hf-^}$!~A?e5ky-nhH^*w;r=$mHn*UhtyP%Xr!QXx8dKs zu*PzNw_a_|qaS6fWB^@clh)O(rhZcR_?X*!ujLckjCv4dkY^wdvo|v8MOqA1qq@hU znrzfVMyw!7o}g7JFHeI20dYNOuTr%U;3qf;NP_l)bho-6#nq8i+Di`tul=M!KvJkL z65osD5uJZ@#zA1xTd%g?(H^brB{%xpDNz~(kzmNV?Vfp?+ruEJJ$Up_pcsM%LHy+7 zC3|lf^P}|>qaI}0>@Pm}IC=d*c@Y`}Zcj$NkY%w3ff1v=KXpm z4tew(d2~=q90ZYK$XIaifaO0~9`)9%t#)YKI=u1Q!N<$wPiPQ|A_Zrq^Njj(_8a6H zXb`wP8TDnc2Z0fz9u!z7Rlc%WUY-U4qTzZ_V7)S)>;K|65lPY@AgL6X>Dsg3{NheP z5;WNPeTTkOeEP7oNrQkSXs`v}ZW`02@T4SZ5SaAVtIc$@N1?ug?gWu!X!B0Z;>TI4 zcDYdjN4@nZzaY~USrkjlV;MjGzds$ z@XVVhi!d(v8wY_&Z#`Bju8@0v?VKY~8U&GQm~qJe=X<=1o3~ybBS;xKsNA4I@J75B zKIgHGoU|JoJF?f%Qg=5qHMNdQXc|u4Z>MATQfOl%Xe`f4u8iQgecNmuTGfJ zkE0c@6-{dSc@t|8BpN9`x7W-sdh!(X)~jP?)KA3s8ZP%xgCKw6^Quyk5O|{nw+BKO zbtgo%$Ea`4B%~kIAe==uWAf~`t{@?lu5Zd@xjahzD~If&n&xMbO_&_6K7-za9!8sK zOwPKs*@8cx9)})g(p&F=IlDsafOzCBRerCgxx9R&IPj6})&`&DE^mD*`~(6w@^E>i z(HF6LH@9bb?~~uG@-VhMkx58FkcW{>V6sq(ykr$jlZP=bi)Rv69Fd2S zj05rld1&YwoWnqdU{%WWr~heo?b{hRhne(-wxNezKkez7ah^oU!y@<4VfQ)Zw{rEE zH?$Rg0?9M-aB0N*`_WTXb0@QhLtD7ztIFkJlx^fi$iv(oBP8k=De#!8l8;Ijl82Fm za>f`RZTUrE#{W;s@BjP7`F}&L_wDWqk^1qqmq~l@7RgO81GDoWY zBm2|#tL&5QJ?u8y30v59scovQ%w|hGnpmBZo^P$y0rW(V1IbS>V!U$pIL*}ef{_&)<}vCc}pWj zGsc%z4?JuQi#LqRbf;A8nRw<76}zdCR6iMBck`?(zvJ)8x#6yIeA=tC+cc;4zhPN3`l~as*v1awFaAp0ZE~#=!Ra{HA5Uu+zp2TNf1_*?zf)b_@YWX z(J(OS4Y!3S&}wy4sH3Q~zAO+&qG!Cjr~83_*NmQTH5)>U>N)GW|26#CBj@YfF?xoVa56C-Tr z=?k?B^lakxWQK*DiZ@>oXQGFJLk%MgN(%C2Gz>_hlDbE347@~IrC~r4l+?HX&eTTMwqp= z`N_dQSU&aEqmqI=0u4h!r1$x2-*lr4V`; zqR8b;HXa5bz4cLbhrIMu4}-T?qd?bNztkFrGd>9R^e~8@H2Mr$e*w1#ateAFpgl(Y z5+>ncP9DbCcyUaUJdETbCWpIkf6!NR4tf~Lg-p&;XEmv4kUWg!0w$NM<2seH(G%Uv zq_-X`5i4^qYxB^X)8ysJ!y=VX{LKFJ-~O>?t+yU45tqvVa{aUNC*Sfgx0N#d+c z^0?5kvS;LBv^j%qULZ1)W0x2_3=&k44 zM7s~t&*b4U-`VMBqkby42XYGJVQ!C64<(5OD+h~n8q`CO<}k;CMm>}ymaE6*FxhbO zFp`t_>aa?IJd9)olhgRC8F?5lsTz%P)y#?su(nvws zwOhjD_yy>#$Au!RI_8P0w14GK$ipJcoqzAjEhUCE?PdHwLxj`%`~T#$JkKAV7d*Fl zDm}wJ>8U@b9!k9-b#7{Ts>glG{U7&U_k4Fj%0DS@rqreENU2CEO7Xb9avgHr;o9t) z>?#qb0Dh7Dbn>mD24GZjrpN&tOR7%Vnlvt{hd2fBr1L@NUgvygZ>PucmE#%5ZH`rr zp^kR;U+gd2@3gP6j}>PC{%(6q?EkmbHo;~jo=H5O7)acaSdrK*;h%(e#r}U6CCpAJ zPDqOXApU{)OXKIom&K=urvE?u%WM#WF}|&ech8uoAu5*?^nz2Aa~ovp&4he|%^Dh$ zRnzS(*1@d4`SdA^=4wi?o6#WDVSHOvJEAYH%5nh7ZID?uy0kiBY;g3Yd8X$!NOh=L zUHBAzX=aTEsSnLd`*MaqdQXdBcat?+z+`TN)Q8&Y5LvB$T}gBccxL7{NQJ0bz1%Ch z1+t^%Ghsf`oWXKI~WmZ?sL|>ZOjIfY{u`bO>Zdhj2V)>FTjq$9M zgVbwvM#72cOEYVPr6AOPFYDI(((n5^k{CUe755R%oc?cW>F<5iQS7GNkRB_Xv| zec$*rx&_Q;goP-K)pMFH!L-v zX0@P=?mV*@VW9$JU7C^H@G>^1#X!`h;dsQ{@KR>=+OMcf18an(;M0B|@Z7R{#{`}+ zSvBc^%nS>`7yUTYLk{OC=7y!#)4d*i43}) zOSMN<@kvKk`I(dv7J4s+FX0Hs-0=MW#T-9pGQ#s>n`0z5EESz@UDTt9TF1{0BP=zY z?sL?m$aFW8xnZg4v{ik=N%SD{^B^NER9&n-Gm;yYa!#Am^_J1*_#V#)3qcpl93#2m z>Hmv4zF{-M(_))rBsVN2n{HjyJxwm;o6rbL(MB%JlV?SrhclMR+^`gF+N!SOitaPt zUm0N`+hX;Zk=(GOHgLjYMtFS8e!$_5MtB?>YccxB7SChx*fyToMp)J@>Rv?6Z1b`_TQkDv#l9@h zz>M&i*a*+6jPU5#2+x#^@Tk}b54#Z_$*nG0e$h?)1}??^@rY)GN5nJ+VQxnF+}H>Y zPG)$xKw_rnxX2+RJWN97FiUk!c{xUm@KDii6Y;eXr@;1oWwIo7i~)1T2oGVhsABHM z{f|{ilG3ASb1;(w)0#f8ySMs;rDKdJn}e7f+&gb)U3Lp;lM+H~(;LQW!=80pUpx0X zmBOQhP_M|EC!f0Ss<=*8z~Bw5WB>Fwo0g8ZmL9Ypl-6~OQP3;0`|;UQlUqN@4f|w! z%U5lc8jN~~?PL}8WJ+0OQ zk<=%jA+P9G(B^uQnSXA0yd^$(2WCQ2iwOm`QIK>knr?DZf%ieUOp6X>4`*{_Jfz z%p1n~!-3sj?R(dbU(mq}P|_H@~cEE6K-57BN|wB6fzl zS$*%OdCa6YtWNgR-yT<#dS(tuen>iu=5d*?IPAIPR5w^y5XOqcvAh<6=5bkM{Gw}L zIC@hJ_}DAkqka5Ak6V8Xy(BNf^BAAEJ-O{MKBXYpgURy4#tWBz^|rK1K1MR1$tk-R zU9SUyDn7Kdm9{lC&vlJ<}3B?|A&4%RSRQUXLyH zL~1B?m)QNkDAnnH*InPNS6p|yE_97_bxJ;+97(=D zd2w=4vM1?O(qm%p|4B*Rlj5CkIcuG3<+*>3KScfi-D2ne@s2L`KkcvD@3C*UPp})d zA8k+BuCpz&^|7TTev%kTygqSpV&6n(!utsg36~^{O~{V_GyYZa{eOM@hnNE$01gK{`p9&i$i@c!dnL61pDypQeHQo&-w?QV_v^$2H_59IY z*Y=+N_}j6dS7mXl5(bB zq9Oq5Dyyp81|jCCi@E|Vx{JsvRcG3rx_O$Yga079i_B&;2wfLL?3OT++aLrTT{>ph zSlQ(^2xUiX%q}4-Bp$JPflG9kkQG{w*eOrQ+=Vx~OUxP#Ao^zSxp{E?*Q-s|oR~}& zHpl~_Y1H)TD<(>#Ruq|c)v`yX%xw_DklL@yE~ER( z(l@t3=tE*F%!LurePuSIK?ucI!^cQ&gH(w6=Fl~8(S2k|o!cNaqGqGgG}JX@rApMS zUPKe!C1eLOd%nsJ_K5Bhvl$HoVt0v=+y*HK^`)a`4hS>KPf8P@+D0 zBeTxhs3*6f7hgc{4HrFJe1Y5sDF&%;TMme0zZ0YT#;nmG#h?xhC#wAnhnTE+w=tR9 zAjP1zny&6*KDLl=R}Y$%Wet)9F(fkk~|L0{M)7p73(bjiGFkNQ>~ znWYYTyU=>-sM|Y8?fCny`5WpRUm&+ZDniYUHc#Y=?i;g4gVcmHeD+(Hb$Ie} z>>HDX4SCpX{JufWE{n|E)oaZD*KdVpcjupZe*jgqF z8?wR40}k2`4cmH`iBfZgj<`AH?R~Z-;N&cBO4Li2nvE~>OlG5W1UZ@6jE2rJA6vzY z6gJ2e!!(zpa+B2F;>er{6@yz`yb#*kiQ5qMmZA3YD>}C!omqW+OthPs&1mQtyS1(>vqnQp$(s7UlU(7FJ`pD^lerBo*lJYDmYj<3x#rA9^^97JY%^w~Ui0Ks zW-}U^#&#+rxeZO&TvQI2nu+hKG-jh7(bP<2J%V{^J ztxg-0mg)J`^Q`9v&l1m2PrKA_QxBx>PMwolmYU)|>3-0?%{|`THRZ3A*Hi9G*^n|y ztpESpb<}m6Ymuvut4;FPD*B%#qW|Qi_mdjL>i=O$?VZ0nk2vpgE_L>IHg|mQc+PRN zW0}L}XkkAss{gOG&#)K#AL8CSI*Mb7|J6qAYIh}akjM*&1qq~8CN?>P$T{bnY_b!^ zV1skQ31=L@*k)I&tjppYaLyQK8`~J$fU|LU)iYgF)e`=__s)6eJpQ=n9?wTTz2EMc zsj9B7cDbCNI!m3qoHLyv$KR0szt6G7G1?Kd|7L&6eye?{UDzAhzOhx?uD8v%721-a zyZ@WPGlsOeZNymMz&#)-JPwG!s@$F^x5BAk(Lu*Ww|_oE~nfpr)9{f)#}QU2T-E zyHi(;ep`A(#>CVEF~~SyX$5;Av{sn~q*=(Q7<+gk%mUKBa;O-w;YcR?glU#BN|qI0 zoSd?6`i^(#6BdyHGBqS)xrL0<(G5ZoW&_POUeMp@(s7pAK&qmME*-Jy5oQC8|G9Bx zzaOV?>4*$Pm<^;^-by-lURx-_Y#{AjqNLMUW&>$oNTnQO!;ub5X3gSOlEJ}sV~w)V zN0`j*N#U1{-5?ZUR*>2-s7c4z^oU^vnXlm`{eGOfCn?ILV`RICVFPiC z9yKG=I236^-PFDos2OLO@zd|B3P?lz+q^YuMr=4DH}0Z!rCIW*Sz&y_Wj|i}P^q73 z238PGO_dL6-T*bD8-yav99n*@EDiaZt{JiE5yKoZHEUz6NzLS%5gCdwV@NZ(Q4VIF zN5B}u-kx^~ah6#{nuCC9aF$s`S|k%y;4HI>mfhJ2ep?@11!CJoz$!YAE6)zW3q_bY zbl#s&_I@bB%pvX7jqY*#LGC>Z>vf_1Qo-2t}BI zv}~F*k)GFeAht~e45ahvKu9RU>>_PwaT+i`A|m(h;!M}b^$}6(6TF7i4<>0K7*u_RpcD~6f(~+H_*CygP|NP+1*{L~g?xPOm5QQT) zt^@aSP=}oOT%%5Y7i*})5qUBRil=#HC`3+tnQ=Z2k62tnz0#tuC*HzFOx($$j%ENlE;;x9GW45azJ3XPGoT<-9U3+Q4YF6=+Fvc$8zHZ z<>2gcV&@nspDOnTJxtR7pP2A*Ldx4I_oS># z8Jv=qd?xwXtQDR^r2n+Y%=yW+W!K-*!LZ-s&!P zw|CoI@3C7b^etwAZtJX{)qdYnyA! zw=3k2)CldE9`Z!@WvGg!3ml94%*UBu2J3q=!Ywu{7RP{Vzb z*#qS^X)Lo-wC@tCOJ9X>RF)pW8LfSo)Qm0+$443`z zqF}kmJ9%s^g%-U)y{T8BC^KQ!L6+68rRwv8dJ~%-waIqPSN`HjGMV6AQyJq6sOgeG zJQyMhEE!edN1xxsrbi4*#?*WIAKQoh^X%_jZz4kx zX2)osSk#++h9ZU?W6qBLP+jN2EBEX3o3q@KF^fH$Eb7hK3u(-?FDuGTY&atK)Z*A^ zpH`GPE8cH%uOj#UF-&G=$*3|hW@m6((+xrqX34BIcIRiCEKX};+eE;UIgcY)NJuEc zOc?Fct@LF_orNN+NC)lHt>&}FGRx(B4yML3%SHQQD}6PVSuWZaTgj`jV7cJiLW?>n zSv8iKFz1`Sj7^UiCX6|I=l+@W5u7M#4uKg-rX1XMk;SzQ0+f{uf>4ARESf!lvT~Lg zEd69`bM9Z-v}I?fg(6_E;Lq3cu3`OSA4VKHT zr;DB1wADH@msnLKK%2IVO^?ixtf}wp`x3AGV9ZJYFH2-=z6E-(18c6KMF;rQ?Io6 z7S2)XRVXrzSXC%S*O1us$W+pBFvJey-|gTU5*dn2p;omFK-7?jjV2ST z5vwKsp@hVSBNLf)TIL^0mmeQA=%%fyb5faf6X*uZR?0H`DnN?T(G5b8@x-nfDw7gE z)1@OeJu*(R=Jd;%mjHWLzTnak8H$XhR<$XG((%aB7-F@c07^$}I8w~y(1K^EUESbW zI5L|3krq8e4fEoIZ~w%9+42z6a1`}Qi=v^1)T>ZrB(ZB+{QFk>dm88(5}O_wAz4$y zB_UZ1bsyJ|$WUZBwR&C+c~oi`vFFv0*l>iW0%{f&YM5K+#Po1Po)vUD)0Qm;ahLBy&eL%N22vFoX8=hayFEg9S#mW>51cqI7fv)BmrO{{JH>7pII(=?MORb@KJe^Nsp{ zp9e|>yzt%s0{%__!<&L{=buV@Ic6(hPxemFma7}S#x*X2;oCloioqe5+ z9p5@?95*-?IeIu!?8of;?3?T(?QLzp*j~2XV_Rn%Y-<4f{VPrPKNN*P3YsqYaIR7P zD;_d`r5YY~hFK`etdI#tve#UbRl~#BaFmBp7Vyk4H9kc-@t(DpX`+TXV!9RD3{=C! zZV-wxgG6)k)$nL6Gf1?jK+SB%rblN=LCl%m+N>JRW;P>3(HSINFIlM1UucrXrV}Vg zN)sd$WyVJzqdd!ZCabJejb+A%HnVX^c)N!2VJbFWrr*s`UkV%&V#CoX?3JrZa+#gL zA%QqRt)g7vDBp>oC4S(TgyZ2Y?kAjY(5|3Rlo=%JhP8rx<6-8FaBQeoq3A?Xaq%nm zdygHwz+`c3h)s_gc8GfGn5UbWtlh81FJsJ3UBt>V~l zmf0a%mIRIsXPF(MWk=xH5F3tiJ7n(hL*sh*-!eOaV*@dR8;XbK9QRnC!*G<_AzIJ? z$0j=-Hfj#ia$zXS>=4cU!m*)Vg`&(3(cBIk8)DO=%ns4QSmxLe8HzGHM3tg4e=3d* zbDE>f4$*?KI5wOeN;63nE;HN3vEl3xV#gSj)XtbJjtys-)iL||?o(zYDNhiGhS+da zo*j#3jh4ECLy{HG8MATZ+INzyaSTNb^TV8gn#YDiLN^FSnE|qj=Yrsn5Stz~3=s2i z(Zn-{gvd~onIEchq&6h%@UBplnIBqgLJf(=GV?<-Bh`>-EHgifd!;vQzPO(@B#aG5 zdo!6eCt8gOoOo8-i4I45u|LwH6l!ebF=@5RX@{cBBst&X!g>{oGLvNWd9vvln;z{h zC!jet!}#tbV{91NE(&&tzSNqao6J5*$UpuC>ej z0jAzWhN7LQRW0g-dh^+lPOSDBN4+`Qk=TJ-aS%Lg34$9koQqkIR0mPLem=g0HkkMEjVaGUiuv+t zg;`K<>QyM3O6=OJ4^Mh={2jX9#HL4^OV-qT_8sL<6rSD4^(HbDZAPtXuVU1jg&v|! zi9MeqUC7xc#A>-us5i0Us63JbO_nJm2Y!3X-OKDQ>J5>Y=tGU&t0^Tl9Bst@NXvpk zz2T(rzikU!J$IiqNTFy$>XjB6M7^n3p=bkQ*U6(`cBJTf6Pq5bFIiLX83*5Ny7}!G z*PF;tl;!qma~Abxfr}{Q_MvBdUfYFO>Hkkic**qt<^KQ7pS;gQ<-b+l{;>XU z`u`I=A&)ch{lv!-Hzf8;Y~nuY{-66s_d<7fce3jP*MqK&t`V*_&YztxIPY?#(%@{Ri1DtvTHMeUef`m)tiK_TV znlo<92IG%vpNSDFVP=TtlpC`_{teBX5@v>IPPy^6tHm-iBy;S}dj|ccW)4=dB!@Co zl1pP;@Z)Ep%sDEIWtdpdE@zqbp=I71bEg)|tdDWkyBZGaulBDQ-=bQqVSSi3#r$_Y zPrZNYv^jf?XH{dvC4AH5>VvZ0z!U6Qm2f;pv&scvHD(OHfYK}RM4)rQj z(w7&DZ#u8?M^nUqHIL>v3$>Qj6*04ZK#kG(Yjt*y;4Kn7j zXMW0CGtF!lM~Ab_22m$Dn=FnFvEdTFjX+!b$2S|e=KX)kO!=z6C3Luij1jNUd=4C) zEYZivCA`V{qfki;QhZghJWOt!*()3!>Q$(O*&y1EW*i;PG8?2V4_X+{4g?%&Jv>xm z*dR)A?olY`QDd1E()+$^Q_uabBHik%sIkln8EsTSUd~3RRv(xZqB-fx3SsSrOSl!X zGL;!k$_kOEi9Pk+_~Ca(ETO|C+zQdWb7OR5Z|W2Q50x-0MDx;((W&(dm=&UV>Bi`2 zY`YS$LUcbJhlM$iCCmWnd9z$N8EVRh!@^l+fb^ABi2qq=vN$Z9O{OU~T$WD$FhL&{ z&IX8`X`U%&vN$ZnhD-S7g5}c^yS3Y{d_JFNhDS?`A~7rvb4QH zTV*g>#jTaQ$qpF{mAI(g>3@FL(e+DHU2$qRT*9;UmYv7lEP}((YrC5z4yL%~s-xmi zNxZoEs-ze1vYwt$iJf|-x$LMo^(s_iBUW?S@j>8h0E3S-+a~Ad)pz%I!)VSpAC2Cb1=Qy$9D9_hh#$lY};H!VJGj(VCsg`)* z=oY59=FFht`SEb0%!?289BlnjD7u+?r3Ix>aq3klx{25sW|@9dMO2)#8;R|4W{5NQ zhFXeqmvaNL+Vg;lb9OzkS^yap=j?^VPT6v0hYy-p=yROdaFnO+sS5cfjEaM|{??L` zV=KB^;)SE@xZ*r30u|4Thx=9S_+&$8>yJXwwbU!kZAZnaSE1+{V$~rPy5hvPjzTh@ z$8g+!KuqAIex|IEq7P7)Ise4dXD7u7x!MgKoqAsFd zg`$gzoj3iCuXf%3l|ClKwuvq}Zw{u`982o!0Vh;7-TbmXD9q=KE}&bVFIK>of=&Pb zJ=6c+no^w7KKb9|x03IM`v189|JK0Tz@R{V|8f75{_Sx7Uxq&c>i^&4Tk7lWYmjsz zsWR!>q`66%-rv1Pz4v-A@DA~|@SOHkd3JcF8g>8QP28V&dE%tRcJA-pN8Go#m$-Ym z>$|>imASULM!MQMe{sI(-0NK9?C)&q_}p>OahYQRoc#B<{SEsA_6_!a_JHj(Tg-Nq zZH6t|=16$&Kiq%)KZjz>s?gkSmm9|?JDzvuv*{ZrwXp^@RI-&+)Ld^IAL>ElCe zxP-Pdy2YBKuyAIpXTmr>St74~=K;fRXl6+rE+LZwj>X{%<2XK9BG++Q{L|Gvtv?Et ztfTSK>>C^(>Q$E#!;&zcpESd&^_rcs#)nnO4wW!lLQD2nBahw^um4j1@I*`Ma0xdrG`Cxg5ByQsD11?A{ZXi7DJi45-)ekVuiBS@RbeyV zZ|XHc1H)ZMW>9G5k8of(3kHQXFw&}Syi*?-&N9nl=r>(1xZ-0~O9Kanv&^!XF*fs? zE4mEV2ZpmOKW~|g0W2S&4-B#4629MY&5Psj`}&P4ePF=vzTwpk+ixzlG!BlCDrt&}HYvrgo{L$TQn;!Xfuk}Zvk}0H&=76K()T>a*WMa>& zICC9KCK0QBqEKJD}ol4A{kc94B(FW{QuYUpr&-+vO9s zsp5*LIQ1%2QcSEmGtq1x=QuOkN=6f_jSec#*-^x5yRuPn&W4ZvqrL> zIXX-DzA99l*l@{kCf@4rJv|4##PfP!RRjF)^;mI;+)Waa1_lkNU8t z+3zh^{dS|t;$uK;xI`W{fp4jG9lk8SBizh{aWHb@S!4dZZp0nOtq}~B2)e<%rSc?4 zWwGI4&<)y^^r;>C#?c@sRMMLo)K&>`G??#Q!Zr;QTy=Fxn=|dq4&!KWmSyN^XHem2 zaF%80O{mVAzI}rlIs6WAwmbEA!ST*VnoVo1j|Q>Q|DTp{%&h;nG^KY+gX9y*mC08p zFG>yv{tmnm*caFo7#V2m|H=QF{|^5Ge~~}n`^*>fUFDnR>zMRs(yK}LC#_E!mek67 z+FRw_;hpO3>a}~`_3SsQ|20TFkyx2{ZQ|U-{6vrYGxuZeOWot$om_vpUUwaEZHMZA zy+;BK6uR}~)RgKdOD(}ag zYnR=c!OnEBxL{0LRM^@>WzjabtV4J!ASXZZ2`RKKD}Y z$)kf!&X_ukGfg9-y$3tP%K!a5W76Wf#b$f$@K7c|`D)t+aj-4a9O^L2Y|(gx#gz6{ z`*z;{Ec=UD)?e5gibF5l(D<4~>Y+EDV=<%C(U(>&f57^S4l&b2GWrtfCEa-C`RT*g zCI;pa*v^te+gU!qY)sN)hE-&a@R)CJ9DPkdHKnXOqw~0*tSyIUJdlIZ5@-wjUsLt{{ejH z+Uuj*IwnmTMeN&uw$sSwjrH+t9g~KPBBFZ^4!>e@2jg{Y{g6;>Jd6tvFp~D;qPiJW z#=bUHjp3TC1{2SWVC*=Hb!Lbo_F=;(Z#`m;-pof{yY7d<4_j>O*jT#rk@X2vN{_sv zk6UUCOcYy!Id0jtMyzd2+9c*hF=@dC8RZ9;^WgcHqvXiHBOMf+HtY*n8qjH7AxG0n)3~GBVVse%rF|vAW8Pgd)B?Vrn}j+<%=^q6a%wC z_C$VL!Vs2v^QEs%T3G}d%dCgKeSVfF{Fp3`2=yWqW7flzH)@_~aB92B;)rmTSr3ch zq^gzqYI6sU2xpn~uu7f~KZ5Un)07Cu_?E+kl3j48*$Ety!g!B~8JCEXbC%5&j`8HX zehcL304m6YLj$#k{>uMwMd?xNkGjMPrHZEJnm<9BGv6>)K$>U6$FAL>dvwh?n@?=t z6`@aGTYtN*IcHhc-Bcs=p!_}5oU<(JZppbd<((c;$8B0TQju`?WBS@MNr@&qe<9LCF1CXX#PeJm+jCv0CCTYR*}fcek|Z{6&eMtLFzb z=Pb*+Tm9#+(?9O2<_K!e+0N95H6P3X&*^jXx8XD=HXI9CQoF!d8QDB}w@a5gUkqHe z?&~j}-@v5qByV6&Z_TwPshP_cOQ-H=G`>KO%J&G?@_Fr2MVeOU7xl*0Zj(`0dAhz-Z;SsKFwGaV|kToTs@26EY*6@}g^ zD#R6zrLaHJ^3ri&VB`9LJ!_v^biFm2(*Iuto9a_uPq{Z`bISOXt|^}6&y!zBemwc+ z#XXAZlI zZgWm{c6B;o$H0@09ggXau)|~j*j{4aWuI-&xBG3M+sdJ0;Cx$mTfKx6>7{ZnctV0a zaVb;mTCn(+(G{n_>d6+v9_TutXu=N5WKS=hWRYFPt}S10OtcRKGD{2(?&))4{6I#^ zdNgL6Sz_0-HjXgp?VdNVNtwh-uJ6rX^b3Yk%eM+_}LMs zaykK-Es7hTc%amECnHB%WUkmf<>ysvoQHwT5+h5ho_h3_D;YV$B12;LxV$wp*PM{K zuVV0;H@AJ5*q)IxR&4gOz1Y13EXI4g09hyoZ2$O?`=0xlkupGxdhWg);z~#M0tsU@ z|8W0Hz4I9<%gdN#2eJFWLvYI2Q6TfhfG;2J8J+SeBV|n)lk6dOnH$XwBDmixNW8a_khhHmTb;U zEizN=er@lkExc(!hQ-h!{km0sIf{`3EV8ZG{dC(m<_E?CnJxO=_-G@q{bEM;x5##k z%o6?E)s$Tmn#oA%)tUWlLu6r*=x4uq_4W_%W~7V;n`ASw`-2_}FDqUS)hi1{_a9a+ zm~i|6BZWmmKjprv^6@|xh<=a(^XI5_jO=5PX=3+F%|3hL@D3pJMepg=t0!On3?t>v zZS(G_;>y^gs}DFA0GTJm>Mwd+QQDA^a=W%kwiZ{&)1RkL2QpU-ntJ827l-nvqo+kS z65ETb-re`qK_GKP@26jTt?D>`FZHmnZ&=RB3j)^f=={ zW{X7y0q4Z$_gei-Ed{3y!WWJ0ww4Xg0g~nT#=4kZDtAVi&D0lTe*P80VQ<1wB}HPz zEm8Z{e_yf4Hl+n-Gw^b41kDr_#-|K@bJ@3!tjM26&9NU}uo z2@yHv6;|+FQb?)iD^agBG3j3K9V)P|D-g4<1!v|iK%Wed_mv}2# z@y0I=-am5sBMj+kA?M&m`9+7%4SV(a1N|Oj2yB{Gt+*so7*9F%>)7W$reJBCQrIG` z5TliX!+&i2`Ru3BFIg*HEW~IfKi;6@r?>1aPi9DG3o%;BJAATHkH0tf-N_JegLq$Z z;|)&rKN`R3afWoV5INHMIq^nk9{c*X=nRIyW+T;#TO#3ji!ooG^d9gs1hy9OUzC0L zC(kuie;n_~5ZK(zk*vd?f0eeV^@htB0$Z8cji3;8vi-s_KdyL`AwdgCgudhz#v5&z z{J&<&^qp^03eJma#Ve75c<{5?8jSu5bG@EhgF>pi;olLiUJ41t5zSap9UM+|ALBe`+ckkjAa`_M{;z)m35iqYMic<`TpD|QsNUDxzQBQwDLDsjCJ<75}Z=fh9R&`hu*R@Ze=%F8aknnwEkG!2URkU8%>f~Fl<6%wOqsYkn#&Hg4)yFwbYDs_W@WJ)WFOSs`qwX3j~TfS0IrCWw;kq+IJ7HV5l8{0Ul-8tMcNfoq-ks`zrxnEn#Q(hS4e|aF_~VeR4kf4>8?$EQ?iS)nG`X|sidEk zO;WUq$qY*Mrz#u^f65ezZP5OdDH2<+UEzvcs9oWTT%cXyimcPFa77@MkvgA6lcQ;D zjdq0;3C32#&r&P56EEA}zS+*d!b;p~pOHF%X!55M;f@q9dPSgXg!Nt!9u9TD!4X~)p*fLmlgSNn0 zu`Lh>>dkHa#jjsU&WO;6DNk>nbL5Fuj9+T;_U7Wro({+vGuF6_7=W1Fv8r(7&F3s$ z`u`ge{!B=DH|4REZ7Gw%|92)IOMWu>rsVa>Q<8fow@$VPz6u-(JQ%n%Fc09F8o*3{cYhP#A5anSu!+z2N!JOB$3EO7eSu z^uFnhd2jP>@y_)2^|tpWdQN&?@jU6d$+O-w#naQ%+G9`rD)EKH1CTASCUJaXL1L== zZ}+F}r`-=h6kxe~v^(r>?E2mHA?zEt$+gNg+?5WM13z(AIrlg>J7+k1JDWMqI*vLX za$M?|3V8#`_HW?yz`N}0?Zx)acBk!QhzHzgTW%XvO&ifb>kjufRfA0frHhs8pq zR2C;vTzk1zsM^98B_tgb!PkguFV_gM_hw!ew#BuVtAmPC+ZB-F+RJr8MXALBq`3BS zMNm;Heu@;=Uakcys-sU9)p-snuD#45Qj|*SR}}jWwJ0l+Z(ZZ*IER->^wcs~;DaT2 z!&*|?%&a$0Y8kBO=@&_swq8G z5~OWe4l$~vlF5)9ZOg*MsO)uvDWp$O+p=t8#u`=k(@lmHX|uzsXpzsMCbd^CQMD`dE7 z{32J#@YMK4u8`rZ@rzs`!(U?;bGbr>%f>Hqg$%EaU*rlIjvK$o6$0N)(>9kY1b&-- zkt<~QY`j^nkm0uRi(DbYbK@7eLWc9kFLH$p|BYQ_rd(>N;llBYOrcW4i{lrWLZyZy z$1gI4N)2C*Ut|iE8txpw$P_9Ck4}>>hbdHQcys(OnL?%D(CL546e=~GIsTWVP}@@Q z=kW8=*T{2u(|CrN-PN`fJUfdqGiObP>t*?X`9Pc1dvJbsbuWq5l0BG=1s_V`7v z7x;VHuMTs)z|GSya=pO2(=T$pz^T(Ol3uB$;LB+jnUR!Qx~%p^QmAd|Qc_X*>xPQV zWlt?#Qo8{Xs%`0FYCsvIW&>QWMYS8?dM&Jdk?Xaf_C>DO{Mr|}Uh`^SYysgbxx@j-`~OT${2urC&;mXZWa6&G`H8*ZOn|fQqu}B1bT4)fc6W5U;9P*1>l)Vr*cZ^) z`MvX5=Y!76opYf!KugDOjyD_!99KAIIf@(&?cdvgrcNHm`uEBD{i_n4qielf^V7cK( zD9Uu)k)jD4EH^xf^R`9bl3=;vOPrUYXFphOcoQb2f&h3&disOqhCg9a>TC+6=rs^5 zH#`bO8I_4%MT*`B!E*2^&@EJ@C6J;QL$Dm23#4>abGi25Wgw+0=wMr1dvG_9Qb7Pk zv9ETp9Q+QX)IlytaqYnYK}rPykmA~dCxTR=aZGYAq`3Crk|3qtyGU{E!8iF2ifa!} z3Q{TvfNgQ@!CSE?b5j^nTzha^kWxVaq`3CrzaXV*Dj>zR2S)}e6$DTeGXz?c8y<}@ zbKu358J2Mn61`Qq;nNsdUFTG)KfH>_CT&%2_%*cw-h$!VC?E?WEm=ic3mwYAzkv+{ zMv$(POmz766s3$&LmkS&)j_WFe);b<;%EkRCO zor$Aa(4icBq5tG)9&{)Nw+J~a=z_nOWd8MY-WanUlnb6hXocDb%9e@S^m~Buuaz z{3x7=DjbB3kSxJ+aHx>tQ8JltWPS01<=|N%#bb{$*N9QzVj(rqm{BggBk2+>2VV;* z6&6xqup*k^!E$iAkQ!r_BteQ43YLTSg_H^nAw^R&SPpI&QZrtA0LoSUffP;5U^)0> zNX;>el^{i;2g|`RLuzhy=?@Qw_8`Tz2M-OY`FF`s(>A2I_TZ`^wSeg*^N5(L;IkpM z(5&rdq$?yz==^ief>zU>Ue`NG&za@Vpx-rhOUs zbrvP_idHN{ifLa44jxiVrd@MnVE#o&G40F1)3d0mtv@DwIvy#eeHplXNG*L;){pxL zDW-iH__sjN>4?xkY2FN@DLScmgYc;YY#r6b;mniYw_)Z1xRu2!C6FVxr8oghZNTy zyhe+oAdY6?hk?ZKh6sF6n@q^+I z`rMg{6xZJHKFtwQ=PM({wFmzb+p0xz?F~oNY)hRTjBRo4!4<`}<~|A)@-y?0;@X2x ziqstAjd>C&u01%XNU041NOA4KOGQeZ28$He9^6%=rW-}TzC?;^4}L3B>i9%Ou`pz? z3>;XbCZD_eCfEj!6xV(>QIocOcKnX7b|b~LpGDLJ?Y)}EwV%l-D07f|@SsJ6HhRyK*Ke%k73F4uk{QOb?Mwz&2ah*C}kQe6A-M5)7@kmA~pBTDVNLW*lY zmQiM@Go-loWB!xk+7}b09AIpVw3q(>?Ek<0|AX#p-K*R~-9gvSu2)_6xK_LRx*9mY zaF#f)a87ilJAQY(=(xkN%+b>kfE@oP?3dcd*xT8DvOQzF#kSB^VDlIrKl~E*FQWod z!sJ5;VU=@2%@-pFLZ(^9XEgaGz5D3*EXyRL0@A}QTumIrVe8_D>vyjBW)H(5Rm{TG z3_`phK5zH((rKC3GrS?g)l@<}ACDMiIOLL9t*beOcwT&ob8dFCt0@;XqoO{;)#O4v zH@?C=9+I^#HgOo-mQfL4 zxJtu7JS)E7vL7#fDE1HQjI8R6ol*H13WxO0*+yNKD;VyxaF?is7mB)gl7+i#;{{^= zkpGPtn{gv+-D}~{y7{uf&g6@_bH-!g=Y$H^Af6YW^YL|qA9&+)*19alh(A>&Zy=r< zpZn9R1B&KuVz?~B_#b%Ad2koU&2$cIJsh8R(GmZiMkiV8vbHm}u0lG9XU7-Z;L7Rv zMh3%WRc8}-3FTxVo+akL|JTKRT3^X<2;o_+>oXG4O6$%@8^gOBM*SYuI;5B``n%`M z{x7#?ttT*Cf0}X&>OM{7moQu%$bhZq$CqUfop|H{+KiG>E^9L4Pt7$7Y#u^9Ppn*R zypyOi<+2(h3aLMFCo%WM z525tnOr*H>+>*PeM2i_Iv3 zK|x%CM`)NQq4xD7#kFUigsT0G6xW`45=-O}8q=>rifhk2i6v%~04c6L^CXs56*s)+ z&k0Cz?U^T`q6A2B?U^T`&MicWYtKB1JPEa9 z7%8qj^CXo2j}+H_H2E9q)N!P^_M?bWQ39m6_9Ka!dzUc9-BT7XHkmB0+C2G{4M#(dzxb}i5 z6(vB5Yu|^cA=~j7%8rO zccPRHiWJwrh$wwgkw<9C3yIQ~MDw`z1w^TntMHDbz4ZUbC%m7K@hK%YQ8|7ZS)|8oC$e+S>MzUO_n`Ih*)`+P~qlMW_boHRPA zjrWZADeq0*`QAKO?SIenh-Z^$m?tgqRALR}^Uq4mO0>B@a96r_yQjPJ-HEREU5~mp zLk@onSmXbn^ET%aXLqO1aokbr*y)%9d-?tLkL-`zFM-_swzjjjr)@Xe7TEH^5PqL| z`2WZMn^CdUvT=PvO)6u{gs~NN$*;*jr~l@#4CjoBB^G{8sM&>hR(y(a9%K!}7hAXo zg9{3W9kPoCUVp0VL$p;cqhgVTd(p2%yilxM(Q?zdejl>d7h3o^p(Y;U=L;?@uyD6f zGZ687v8;TTduMmr&zMm$pW$jMA`T9VtKWUak4$Bqk)@f@15tAlad22(7|^c1hr6M3 z8LlQL;^zx4%wf2irHDgtVal85l14UWoiVb1R8U6+7Z5*RaKT6cQn>P35r^PHEw43L z!E7J(R!}s1Z)a2(IY6pW<@F<0H&PU=U`9}_M(HJzQDGzjVWVc%S!^`FPFy2c!K@(_ zNkE$3CK(k*7LaOGWqu$A5rh+0KRi8W6%*Gel40P9LIoTU&k;+n+?i24v5etHr3}@& zK1*RsZ`}}>Q7%K_`dH-GjUWUon8l=$L$ELOw$G?A>Sd@#_1OmDpt^wrqiBZ0RRV}= z6?XnEPEOf3eaAcO7aEl_6s|uhunV|u7|tl4q3{BK)3z;t-G;40;Gorj-ri$tS?fj( z4TY-$Hi+lNR}I`;GxLcN3^xjCoFC6U4{lV`FmRVpp#W?>N330t<~p~YiiBiT7$r4S z>#EWh;^Fu@BOFBgZG#oe@(LOGq0b;qU+jzuqo#&xROLq?mKDFm_=QxsAfv)4tfBDM zf6l+@i~d^_4pE@XjhO0fmLM%Ez!t+`0Age~b*O-n8uBv4f8A!NLFSBzJAe8vwe{p` ztC@@nqo9VtC5k@Tr@@;kG$Ip#7mDTndm7XvG-tR`Rl~rWiZSW8AK3NNjffYB3(o%5 z`p{?8$&3o4w1$DV7SrXT>s>Cy^Tq0lWm_E+PqEgG`WgnFDwIo(c%E2vL(3Iox5gN5 z6xlHFmO`!IBc3Z3cl~-@#qr||?`OSi8ws_Pk9dxlIrfWtr@bC!xKVDyXuY{mYx;S0MjZ~-x^mDEFA(!mc0T>t znFNL##W)PSwNRM=i06xWslM+vcRa^%qaufaHxtU)M?6o==&&9GnD9fR~xEVs_ z1|Xg*mhAia^krXDRg4U%0)=>eq1=DObHupbYfnD8>?_t8sMeucZ!J`|0ODaW$M)d` z>p!BpI2jdCxkKS?gmS47&lYnQ6=e>oyq~oWRXh~lN~rt+#IwY#zltws2J`~rf3u z;eN5)%sN0kR}6b%(t&qQo?$pt22pqup#lqt=ZGnF>{qA~qVSetshNj>IE-r1KM4!R z@YbPXh{78R6>2~{TTI&bRkI_XP#uSi3aB2U@Ww)ACLo?ArZu{G`Is!2u#R1#5m zQ=x(n3Wu^jv-YlgsO>wY?59Fi5vwx`&0Gb<3&qsu|GebrqO%N#3L_S-!V!oUi0Q)v zJD#5N5W}I`h{79)`Nv^Ly!aFGd@=Rc@Av=Q?kK~d@`%Dy#9XM@1f>cQ&l8iMY}&8Q!{#wWjItMQFuViF^_XVJV#74565IUR3}lmOU%B1 z<-AWXd>Zkv==b7~1)o)X%kXv<9uO*sfq1r<>b$Pe#NWdVhpHvkPgOY&h-Zn}B|q$K z_`-_}Z)4$Jp~4yp2cKs`uP53c`;33hTU)qKOg6J15HA$dw!gU~_l|C?b*OBjI+G|= zpaby&G4{T~=YR8k!tj*W_#}A{u)$5QFxM2!4SlA#2oWL6xJE2iehy};%M@#!}a2DVJ`xW+C_9A;j+xNETZTH!>*e2Mz*}Ty8 z|GR&|N)~8a^2hdJ|2+FUmRzK#Ay~-*ZR*%~q{yTVR4z# z&^Gr*S*7`Lr1Gp86s%-{wz;95%}U;0juZ<3R|+GZOkHd_?e zo(0-wZkF|_yI@;fdlqO@C*vZ;wP%4gb(*U|=?gxUEYLRD+&_&J*PaF1CK{=BeB8c`~11u3q5DpC4e&F9)TCrah0U|U@KW<;q7 z6H;9JrbMZO1(D*~Hz7*JlaS)tHzul^5yIJl6xY5HQ7U|d6xY5XQSFm1UmE-DN~E~< z4Tw@fBSovY{Zmg%qYJ0&;@_w^G13VaAYLG*EgaCd^S{j7s-%>-6tSe=`=?Iq zc^2_}G4|Rye`c352d9!!;u?r0cW&FY{I6dS&l3}Vo4(##-@`gXDRJN_-Z|k3e^c|w z7x<~UVou^qk9bBDGn`W5>WO93~1R!J#wX=3@P5AGeGHWl%( znDOeA%cdpPW35w4Tw}5P>ecUk^3*iMv&F=}qVHFAq`I6Lm6Q_KP^?IWGqvAek9d|C zzwp8pee3OEty4-|J+b20(Z6nh2HAfOwXeKJ2*f^qGUKbxMf~V06L2jhN9GBaMAjDv>3Mh* z!`E4OKuoI&7WQeh8SyMJW5j)J+D?C&;cG1%q6_90EQLeNXu_I})ib*_W%wEkcZtcb z*zY}d5Z4Nz9`sP-xN#mmUTxvYLLEYit;49ked({AF1dxZzRJSALgiB+4l$#y{ksX#YzkJ2^C#HJWtHda*R0h3{@h{s90g)0iiN15YH9!Us|;Nt7UwFV!4GUVsruV z95H!+*YOvgs7VZ-&=K}GtSeQNP{og;Kcck?H7bcvkz5oBc5wB(4}Q%5 z>0gT~@ECB}$f)iJ2?1mY1gn^<5Q132a|tu?+y|CFQpH?_vC)P{-+6WuQoJqZDvUQ= z_Xtw-`U_SuS7Dr2ZgzSbDQ3!5F;`*itEZEl*A7OCnQ~RkRZxy0Qp}XAVy;4Quk?n^ z7xzPonQ~RkRTv>F{BN@%#Z0*><|+&^qI?IDVy0Xba}@>|WzQ}^ikWg%%vBiB+$is^ zC>}PcVy;5ptK{K>#Yl1OnX8}-cci%X%vDgvHd0)B<|-6CDLXb0DXu+p6_go`6xW`) z3hIa$q`3CXRZv;qNOA3%tC0U_f7lJY6Dh7ea}`uM1Eje2%vIoe>0y&9<|_2=HSUMa zqryg8KymGvs~|in%a)8bXAV$Yd*&(#HmM2_ zrOxg}ifivDN>#8#ifiv9N;#}ZaqW|c;&T<=m|S}=Q8~u@>lJK^YwsaSxsOP3?GuSo z?jurMdpA+aeME|D?;=XMk4SOtokS`3QBf>x(xS>i9}T?BMYmHU1+Ze2?7SXN%;Fyn z8&PwcH2mXG#|cRBwi1Y%muhTbMv4t!bBgM5}OVk*%oC8u^`!z(3GNR~%k>c93%_u|7(r!p` z?b&9O!B?AyMk1ffUz%0a5CsffUz% zK2a*Jswn=^sGP?rc@*)1xkz#C=MvR#`OrNl|LBAi*M1J8OlK4+uKjGHYW0h2KZ_`p znTTz1?Pn6DKK@8??Pn0B&m6wFqH;P>x~hd-`)Ne=G7hUciFf4MPbEryJ{8428o|mb zM5$y$q`3BziBcvgQe685s2~vCjhZD7Y@fBSL@4p%;K7hj*#g-DG zU;N=2O4KqlvVv{#0USbCJ7X!U4pT6?V>K*b)CIE-|Mv5|_fGsx=h$_uhNX+TU{<`rI~yN6F(J-w z4T~0aK*;iKy|4V();T2%gyo95U}3y{T4ninSFdFtEL7A5;jkue&viYorZ{HDYFMJE z3+Bh`uULI{-qW|S7GZIsE|?b&etq!3gy{1Ogk_1kU~W8Rcjon%M=xd|EJ)M^bK>4^ zfhLI`(>tYQHTW(PWCzFd!-hIm!`egLhO*<~@18EMUPea{wyc(pOYMf}ZQ8OLJeS(n z*?#So)!?(#xz0NZ-b$V8^xA7#1%67M>-55FSp^b*H&V%R)KHM=N>K2R;Iz#*yA41JnfR)H&0=Q_#QzDhbF>NW$P zuE=}2aRJ_jRZ47MCA|=Z4UmgnV<%b|6SWH5klJ@+g_B!Wfdf+KI*Ho8O1d8EHsWvB z%Im9+S-0WZg6~nM8LlmO9d)jgwk@l`->7q)L~UOsJq^{3-p0w(YpiZ?ZNb&3(+p|b zvI?Ax+Sl1vx_y;&FVtvI-oGI(OsRO4mX) zlW9~wn`|}1wFTdzPBUCv@G9zD=h}ilQRg~o+p-Egi8|N0sNh4?xz0re@1gc}<}bIb z0>7cobyBlM6?hD2U*UPn%yOz?u0mF6kD`4)Zbph4305&zAvq2_ z2ph#NyCOy760Bmbf-+Z;qG1VEF;}5m!EQK_HG&ikPOyr(3MvYP6b(_Zin$71zx!a_ z#>$J3qJaulF;}5hTQpq3D&{JvS%q!UparX#tI+8&nK8IUQEcdfRm@dTJ9&`e+A~){ zzhf5Hp1BH{-Ur&gG4C9<#kFUyLb_SM3n{KWa}`ukRiwD~%vDfM08(6g<|?$4C!`EK zg%sDGxe94U31}};Tzha8Fy7nvgXTwme=q?l(!NC%cnsQv*J2zks=!sKeVMDxd<1#K z?Dhu_;mPCtsbM}s_s?bNH8)bcE#@OAw-PBna?D3i0STn|$T1%w`>Dt3UvcPFr1;1U zCWX{oL5h#uAfnV6>qzmD8%R_ZESo)lb3>%~$PFM$IkHIck?T*Cikl-vBNwddN0bT% zDN1{4`Vyt?RyZVlE#qY+IMG^nMr~a*S?4-wW@>^*S?S_^=&pN?coVl6%dv0 z|81##-A_ny?emG^devH0$|H*F1r*mlmnikMz&mp7bBM}@W7CJ8c@inEeV8cqhDVBP zpG{QPF%M6iyXi8dxb|5@sXz%*T>EZBsdpq&T>Gv>sX&RMSb$La|8o*vPe^$$r3~u- zFG%T`(lGgC@{#1*l2;`UN^TkWIq-7e{=lX{aUk9QkN;KwKL3UOf&Rw6uY55$?{9*y zL((rv&nDfHv>+)j$>n_q*8DH@4)>;czVlRhc6+9Ix+I=Ud^zz>$p7z==yQMQKH%Qs z9u8jqcdjbeZr3!Z^WWNKgIa&jIv;j!bIu1Jzpc~Z_}CG5-0#@#Sm+qy=nT~WzJ{~> z9<=YUFSZY}XV{Z%r)_WAN^G~V2Q z(yGCPu630}ORJWav)(ez|Fmkbn`>R=T1j(R|68t=G?w+Nq*c3W8G1LbiUN3d{5xWo zIik$-YF8~I?+BS&vlYaZlSZ?4ALezXRZEjuzsi-92D5&ZD<{om{VG=utmRr)xpH77 z*SgA;1M9ffRZ^~9wX}-O`wCUMP5o>VFs&MlV!a9GUZquoF|(y2Gh3IRjwSEwE9(MQe;-k@&Vu~8Wl)KyngvJ%O4nR`ie$Y@q{OzvR^ib^6@gO zW&Hq?_lgUjA9#JoTiHS$tEmWyzJb)SUu@a-W$=G*^tAXK(SP*v z2Y)OY!1_Pj;#0+zDp@i4MvD)Nk;C7s@Lxk|sF~HWo`9(*{N6X-&VG8< z`g$|AH|2WDY6B+UR%|sYqP4bo7~kP#eGfmhf%Qk08?f3pHj+)V_#820$u`^L$yJP( z^#&}y4=ng!)4<}xV#vhMA3wSOV7x3iVDdq+b=IKY>J2|=@!4YBpe6G^eTp*QGpl9A z0h3P^TW`&~yXeiAEj~+(Sl;ZJ)9;XtkXbED4w!t3*lKL>9&7T_d=+Az{hfYu_gMW& zuZEffc9U;xJ8F@IV$fTgSB?CZqTiX-vfO}4wiH{Boj$U*{)ZM{AVx24ch{LY%dM6( zt7W|blW!!p{+L#4lL)^wR}`J~-_#}gBjaVs0h4baw*CV1Y|@Wbf8fbozVp_98_r|AtT|xv zEyP9jN8WSqK{fNCeK?dVHFNB?Cf_h#79BA8fVe2>o5`b3JZH6^EqeU%WtT4(e8_lN zb-?6P>hM`Y1dof7e;;AIEIWYxuhl+e8~2~tMztcN+NnS$w|8&bp&u z`@M4+pJnk$V)H3*+dr`MEX)%H1@(Gu-~T1!yIFjSSkK>V(EnU9VB6qNCQamT@~#%| z73;5+SxDoo{^W?l(=%?X7(ko1GpjQ#-YqWtCj_y)G>Z?5>_E!T6aIaS^(VvPQ-m-A zB9B;nwz#NOS>~#R(=EPZbr);7!(%O`6=ucP*fvkE%A~qnnborL017$vgFll#YC9Vn zhE3{Y@Ba1Z<-_k`4MXVx8Rmpfbiiu3pfEo0>jT4@x1!1u9jl?}fC6bbub?14sA&J$ zwYSnsuVZz(1$wE){P^fi-}bovwHw*3q0oS8(M@1pyvMu+Z`l5A!ayi7P#4UN=k9!| zO{>QI)=*raE|?QHI z_>+IX*e$^N2&Dw-wwM)fvg(f+4gNQUflx%C4hZ$w6WVTQ^XXrAF%ZfJ)CCLUP2PNA z?ygk&YIm%L!U1)`g2U&w{ypXGE(=(TP%@w{m>+M_eBBKx*S^3&C>Br`%sc#Nv~*gt zTl+E)$^_H}bK{Li?|=J-r)Ud*$7(1LP#4UJd!Bpo{i|2ggVC`XN(0md!|?`Ryw+_& zGrq3Z3@lHWxO{;ypT6xKtDy=&-G;Ib|JeD-$@dTX!TJr-|DT=kPD0A(DOD+ZQ`V=9 zPRUM5O8z3bI{EJ84avpHp=5jD%Ro)w*1)R3kU-~v!++c#^Iz*<krqga3cZ_A+Gr@3hUg^|!Tw6aU^Zy?^z;=`}J0-q=jxZDy2;3>z+mI;5REhgLO) zZ(yDzDiQMpQv%x5818{tu$s3){za=A!$+vy1_5nq3^$=}8{~zws)4Y#t#R!(2xwCS z5pSFMlgxmH`Ykl(t!g0LUAGMaTGv3N+hexDe+oVD9cm!TooIH0`-`S3#I>%0aChC7 znA_N@1|r^dI->y)?5+!tYuTYj#<^8rm}^=4bktTg5b3Vl5IL9~YGjaGHN+gu+NY$p zs(~XGXx9b8limhrOu3Z;VDc`CFqSfqIlN0 zS3h{67o(-^Y|_y0-~TQ@-e{tt!N(jtGkJf<-xw_|XOm77n_3(i*Ta8A(OIJSXu0S3 zb>|o@?Pl!vrrbznlZM8_4@cD%iNV)S-rS{CGe%3R*`%9@O*2M~OU|BWww+ZdhNr%J z$M6YD7%gpPlWrw8$<3}u|57y6+qoiqO>vv+7%eSklTHfDVuaqY&zL}N8z%QiVlkjsY7$V_O)ZQ zw3AJ`vDobHfBy@q4=Ora3@uo{V{e4~;Vw1ON;c_KvALzpu8k@>ON?%@zQOFvBdl#{ zBU`j@<;k_TZIQI$OO6f?NqyhpW3;r8O*%zvZg}MG?}ag|fG!k$|EM^+w;t^+?otEx zG4(s+nV<63%v5a`h@lN;Hq0L0nzb#BWV7x1V)J6d+f#JD7|<#wv&#zp?0|`^=yqcB zwAo*MS$w^s^Thb{AN(J69n9JWJ6X}mVl(Xgac?P8bgmHB4gMl){X|BCv8?EZV)K@1 z!#3u8tmqsuXxa149`E=JqrqaPeqZxLn?3UvDLO0$*sg25_jf*HWo0h&S2n8EcD5LN z`zQX(mWNo|U_1XuPqNO_6IqwbY#V+h?>Bgl;)>A|u6enFwJpnXnY2%AzNyEvLdSd-0eWyLx)p&~Kh8{7f=$?;Pap{Z>}2A zV(y!a2J>3c@Fi(D9bRp2MMFfuxw4}5ZJ#k3Y-~j*iFL(!11_&`Q*>B}u7zuDhdMGE z3~fbw#pHe|^&{8xP&8Dl%gXq_D0}ZPDT?iVd?)7_qC|Ix4Kz)hoy`K;fF#K|XAlID z3?c|7RK%PxfFkB_^_mkq(>rn3bWPWQIbpu$h~Zb&-KWo~o%Zv6e)|v4!@OO6>OED} z?>Uuz>a`Mskv@$~ZJUe=m$L{;DUT9stGU>k4*Pk`B#YC4ka`~;JT~KJ9I>>&> ztX(^gCosM~wH2&ZJ@My?w%=cX>5cM6zB;uPtVXTubKQ-9Y}r6c<7-n}!K&4=QwM*r z`1{EO##g55FfZ6vrN*}B6DJJAjC*+_Uze)Gjsh&Mwz=cZyJ!A;3@MGTO4VU*fK{r} zdBqP@mSHz8bX^tS(`)WLe!x^x8efar3RbHIZ+U)Q(bq>zShvOiS6+0=u$I!r zm!GyOq*`rz<5?G1l3fVpjePN`4g(;n_=G`vuco-5T8mmZPF9Z)C?_v?_!xk+!Y&ERZ4?6_+>iC8y%M z*qOS;=L?cJDg>&ouW1WBM_>0nQ2d^0dACD+S*q|Z za*1L2p{<35)TxnPQ+~|9^93p7^nyaL);#`SQuJj}ISz!QPJZ2$kTK&k&%{|oFk zfOGw`{Pq5@?_+i!z%9NlzHz=jKEL;U?_=Jpyz9NAyv1xiz+un7J?DF7dm20u_b2YB z-8Z<`x<|O%yS{fdyKZuAbWL%|&cB_{Iq!9z?VRE4=M1vF|4%q}IhHtvIy&3`XMfs$ zz5R5y=D*zbyX|$`W44QJi*5C`Agjjz^;eu=3tI|8CvszgoM2L($Jjh{(#A65+=QCA za@l|zN6zelBbAikD_e{dLtpK_(C_)@z&L5KCT{XCCHU$V18H2=&5?z7F-Qr%!o@%u zJKMESj2`NfGK&*zl}lk&@TJiNTi`;|1yB=gs#1clZZY0wTmesOK#_cfi-9y&rO+Bs zBwyuXAdN${XbliqoM0y)J6aP&7AN{x)dT@0iQZNj9$j?Pk|J0i(T!90rWhDc)#E;SF4#fh#~<{==KV2YS`Vl9JYVPB1UQDor$ z7d}PlDJ57s8v4Bjjrh%$5}gofToXv`L}YQ|7%MvwASF6tQ6$R?G-BdTN_0S^MQfzU z_K1vX`x#%L<{`2;(ay>|1jq?Z8S6A^UlTB_N;&ThegWncq;a*u*BUEq`D?+?RRkG9 zq_L`x8i>f^MA*te1Vj@d4#2cD*oU7HDG|iC6^@tH6v@;vv;YggBCv8)kc$(VN^X^cug0QE5-wpJ2fA>iml95V8Ch-xW>KUA zk)%a}S%@r7*sbV7KuLmWWb&aj%p&Urr9=_FtdK2=Y}|>+LbeF9xN(PtSp*<8GM#ME zAPg?5aM+d_wEdcO7KJXd)ZdIo#CyT5lgyRUICcAwxbcKzsj#w>xczZFkx>+D@{` z1@rz8{YyzE9l>kkv`w0Wh@2wlL`X@ZA&u*l$%ssl#Yv_i3j$UGkdj0?lE$Zoa0pmde~b;;QXk7ZsZ=JC&?Uw{PcFH(|7 zOY&I)4iFhjvLgV@x|1jf>RzYn*O~Ppb!QqA%ow$ePe2}|b;rV`Bomu}oT?wwMC*>o z;w00Yg$)1!Qj$nb(!rtb*neY5b`F45jiBUdN-Y`yK_-YQC9wrmog$ek zg|}N&nIefioqXsqw$E)htui8u6HJ~K`W*pMf~it?Dbau6ca$gevimlg5`Ei zcauOA>Rhd!+v-j}DZz9qm@y)7`K3os{D`_63zrf^uo^eb)4C(FIKc#KVciiBO=vn5 z1q@Ug6;&*;(X5I~A?geodzG?L3x_W>TW&0|!F=SXLZV!#eO1A2fKq~KSE#*l^#rXw z+9M^1h@GgPjzDXV$l?SOv4yoqKs2Fg*TUMP!iyzNBUK?v7-}C^H)}a5TvrfFtR|0G zwD-7r_JT9pzjxyACSg*7$y%trap)GUJ=!BBn7#$%_r_RaI(dZjdBdOVk=A`)N=(D585^aEU&*E9QerA1PtuRgC4MEy;=~jSzY;(! zF`3v&)EZQ+Fkc=^Od^kvuQpVzPTip0(|S4SofFYuqTax3L_j4bAd;vy@ERhE6KtJo zL6faPfRq@AMUihZ)C>hnEWvl7ffy%A8K@D{VlxLfxbGQ9YBUB5H%_vk&cec_#7T%8 zp)Ia_h&l_A#fi~YH9~-t7==X|4x?p-Cmf$VjK|s||!bk}Pk;AnMon})XA+k7e zf>qTJASc+0SIY_H!jyk3p{;i{f$}l+hHs*;r}qc1>b=%`s&|aH2RrjG!)^gwPU8Pn z?ji0@?8N`)TnE|e|3U1$|IeIx=YDnrpyCWUK5{(i*z4Hr80#pte`7ynzmo0!AHh!f zJ8FB$c9U(DZHTQ?(T_#1K*&%2ElygcG07sFXp$*Fn&X3Gq4Dc3B}x9$IAVb}3gakA za$=~IWEv1YO5`(U=mCO^C8-o7I>qS1^@X>f$C4-oJqi&lMkA?btKV8(0wN`e6eJl9 zqu~>Kq$H7obD!dOQ{PM)K0y{It)w6Ulq8uHBnkltMGYY(S*890#QRiXiQ!H=b-t+p2fAVvE(xI5wAjI5fBS)}jN(n_|ags^Hg6~&70!orh5f&0kPM4LELQbqO@ps$2iGom`x|*Q|RiIf^_&WG2v6tIm1iBKHNy ztuP;vl0+j;8^iD1Hn#ori#Jp@)S*36l4!)a|LOkuvW=ybE<_e5nMN!a)P$m#Gz1?J z;Rke~MwF7n5NXk<5E)BSX-GOY&{b0yo+Y&%Qik#(VixGCQRh5+bn;)XK1%2!8j)lR zp>?4>Qj%#zsN+0-)89GcC|!swP9ASX7XqZ@U@XdlF4Ub;k_bbKA&Vl3FeDNZ*g|A1 zsqKQ&SaK;u7XwS|9_-eu>yiy<@Fe}9e_nTB2@98!^@y}!36aG~wtBL#Q6V6jtmOdA zLP2XnjVmQ<@NGnCL+3+eEU9gCGMa`3KZS|MSW?^Tq&?zRh}H(4*ahGl`#xCu$IYZQ z#nB#;fdrn=9w}Lg$k|%3|2%C?h%8RVtaw5|G&#VUCrs!`$^Q7ZLgiJ5$XHU_%w+IH zCcB^=u@vQ$=_htL4_AE0lG=_Y;}NpD6?lrPi(ZagyX~yk2v2>`p2_@Hg5KBA_JsCG z$=-;Z6)GRTWR|we%ZPV~<;6+aiYF{8n(SrG6Aca|d>fHo(4Hu=CnAaT0-6vROKRJd zjAlfF1E8l;Ipu?fwO1d-TS%p3ITlW0187EAxRfkIBvD*I47kpVEO#-qrA`2T4LB^77+Y$fx zXcNmszZ>kZa~4|bcOL)GE_xZ}|3^f+hrbX1CwzbSyzp!`|Nmp?nb3jInW4F%c*q<4 zFI)M4dT@NOJm?6#8F(PDJuo^@!p{GD*?*7!EdO+WneSU)&bQCE)i=o}dH?i2#_w4tq^whDP{~x)ZbYJ0K?jG#+yIyzw%XO}6maEPcVSE3dc3$Y5=IrCN zIbL@>>bQih_iu2x?XTGHw(qo0v&Zdz+xu*_|GBn_ww^_QFrzL1B$cT)_yY62yXObC zaW5J%X#;k3NhR`)%&{45T0j!{M#e6q#}i~sMfv7d$mE*QrrBvXQ?&~oA2l0jOhx$? zP{`wg8y|YAz{Z~=Sds;f7Ca%|LmL{gc2gJwozQ)BdP zKzk&W=(s6taYgZ&U8xHYS)pn=PIm#3y}An!SE4c%N3sLp0UUoM^*FT7!UGgZL>n1h zzylOXL>n1;!2^hlsdeT!BpDJixAu z{e0!{{}$n?Op;1u-5h?r^I>fZ4tN0Vk<@Brqi}sg10pNbDvs1WU>q{b4c9$@xDu5~ zxIzz*gHU$m#N4-k7Kl}Nd1hhlTj+wwN)0|Z&2YEn-3z(DQL?y%_r zf|FDxBS z(Tx^f&+<6C=lK`xz~&lLQQ`R%vdqe8;cPGX%=;cL>Cx*p(;SSFbY1bz`2 zQ&H!+l#zHUDDYdS%+{7Wtu)DssoDl~%_V+?q=10mI%R%&$#>Da@SHPAC4!Hnf`DJN zM^c&K12$%$IlwO>D^#ZZfM4TIJZ!&+i>gfj(YO_e#e|Ba65&Va0%9qW?5ZI{2oQ@% zb|jZMGxEyYkTwF67KZi^XJ&qLODbj;TGJFHEh>WSYSdz6^T-XLJwpv;8 z#u>*%|8pK`vA9^$r%Y;@ddsITY3CF{i>+1`90(1*@c38EM+ zQhWT&<_9P6DgdKZ%DiKKl8&43x=Bwgd8YY@TbbC{=JpjoX?aaxv`U%2{KQu~9(~As zL`rT)dr0mI7)5)ez5-)}4N6{(w#2r5s;$x% zF8bIq{I~c|sflFaT4(RsQCg(=G*yVrNBa!5f-p@+zuRzE3}L^Ch%qAlwJ?npMv
    RG}eTIETj;51x~0`=8in{`LzS^ zEm9K^WF!Zn4IQoONCX+tM&JZ2v!sa$G7Zk!U4avP(-iLsky629io7S}DJ&2fP%C5a(Y*ujDmciem1-a0%TIHt05iVTK*3RzNOh!pn7l&@YZy>eB5Y;P)) zXuunZJAh$oIn!!@B$^2rrbr^$$Y&B5#;96SiDc^~o$zCel&1_+B-x8y7+g0{LnO&X0K*iy7Lg>x1BOunNa`9y_S3G*3s8nB@-#$}g)Gp9DU$5p9{%Oz z52kxlbd*43Og+_XkVlni0Uujs(4Rwr;aYXv!)qp%^_9#98BNO@)Kd^iHdzA0h>WT$MBNC~Vq1{Z#z0GYGn2$*6EVO6F)34pmE_|fT8tswPnTVV;==ZuO z&e5_Vz&#?1)fraYBOt0yx8@$BE=eUT94*>CMNUP#y6HE1@)`j56gdTvB*g*TBQmDq zE*K9@Z2?yD@ON+zN`voXg3Lkij>sS^-MqE+A? zk;N)o^H|vK5fD|`Qb!uA!kB}Rlpg;-%h&(k5Lp|6`TzUE=Y%JOyNA9HHHU5rZ48~n zZvXo;_)KtbaCLAPJNN&az;l6vfi;0afp-4S{0aZn{&oJ5{tmtme2@DsVdwrg_>S>@ z<$cn7zIU!S?)7@!^*rLa$TP!J?*85VqWcc_cK2j=f49^1l6KzTNv^2#XXh)<2b{Z{ zlbt1wpB&FRZgFgJOmz%!xa=?6Z?hrOK$Ev{oS)Qrg6FWVVjo@FdI_+p!sI zU?6m+)I_uw`HCBnnSdnPi>zGL8c3@$iS|077e6ezo^xeHWt2?vWvPC_(zD;MD!LJ$bf%} zBzlX?x&!|dN%YplNS57puO0ZH4UUW|iX?h#`k*fVd)4_VZU2ajHKE?}D|6>@ZFUTY z0{<*K;a&8G>*8!5wxj5VPK z^DA>+xOT?Sly*UfG0d?0E2eM#VZq?qKBS#f4MuWyz;L~?aQNJchVHkTk4Q~KgOQ~V zz%beqZDJbCVg!$oh`EW0FQ7KMrRS52@7TgC2h>s|*>FNeH=vdx$bKwG>Gf zFHU)7$F#RT-9)KHWULAIp0JN2Zny$!YnAC`*IgI;3|E}QnsDz)8-=WQ0BUQMWxFcw zz47nMO>am|3R+Hfi~+T1PqgU-YicnPmYT?_MT@B^iX4ou?XhfQU+ITsoCctlA_pPT zf?A3kh{#EI)!sY5b3aNgB4bUs`y{N)^Ir4k#YI7!pfOHHai~ z6WTXLR$C&$2^3j{$l+REtcLRi?VBRwh@9m8=8lC(3hPm#T`4kvD3aa!YEEl2|PDN;t{ z1Y8*lssoX+rd}rd9%Z(+byRDW-Ok?%F%gT5WUF}@z&U%bzIZ}o2VPWATk{N#Do zbBkw-XR4>t6Lf#>&be=OpXHwCK8~FL@HIOD@PKQxYm%$K%kF&7`7pZyaGvuxXV~$j zBk9=ZSnC+!=xYDP{;d5j`*!7^QXff}_Y$7RYX zt|Ot=x;hkUO|VjmD@o(kHLpK(;z;b^RB)VS{cAL%U(U`TO#ZTGL}M>c2w!Y zgMC?B@?;3R$_DkqJ@5X~_zfN=DyP`hh`dgGYoRvDW@w7a2IZ zpWg3Ha6{)U?7(w$*RW54O=_(ym%KSmm+)M+vjdNS-Sq-`zg7IjHR@T4h?BL zov$JcdpH!xWlJlr*mK5^58gDHiluOQqgOfMvbQd28a{+S0_4^yYaZ}Eva@QI`ABK1 z_@Bt7qv)|{Gzs5;T#D?D$inq+!pPhWk;C|^h5>JJQ-NGsW>-W`UOQ>r%?BRfNNBkf z*#(hv8(x0qvzeY31Yt;tj@gTgO*E? z?GZVw$FV=}ep1UN0J#*|4v`bJ1zK8c4CGQ|TSU&)CL23ZauFFzv8xY_yae0#b;xmc z*%jKQn?P=jGBaV@{NXEjJ7z4!u0b>&2`VHp0p!*w%R4o8IdJy5Cb`j6Sp4P~;d3P# zQkn|=6aVz99u&)gR*euT6~L+!7Xk4U=||*HUEp()fOv}ZA#(gZ{O=Bq1mY>ui%1LN z5gALd+Yt>GBg%|zAH03TCwpkCW*bL-`e4O{56&=IjHPg|NkAbBAAorF$hY5}`_Z)j zn2$tLE|D-G9t|l?Isb`x)Jjsyf%PKE2H+o&(G*+5XeBQYBBg9t*ie4X?czTu@rcyt z|JnKfuSV{Q?262a^o#hz?}i@=Ulv{xt_ybveHJ6ePUb*v}}|5yOLcn(tc%LM$Cusjkxw%>ItljcZDy zZbBpkb;B3PX|5^_Y@NRMQ>+_eqiLoqt?Gu5c$#1K2lg5XNU?G;b*HvHe!gjMJk7Nw zJS1coz=5%X!{+3)goayI5+f)%&15B1(wGAlD~Z@>nyE{xN+Kkl=J#oXy~Yf?P)T;D z;knvL!Pk*WmXU{qM4VAci;EEDG#8sz-Z4B$?k|+nTy7fJsy}wTeVV^Ss3gHg(^1Px z5=d#fghObkZwxQwe#3a0@0bB5jHBQ5mqMlL3r-l8(_CUgrL;3A&(WWON@3U`r@6>9 zutL{1@)yLIXqw4P3(pZqJl&PrOLG%oZ=FSV;!@MFq56->wov(G(Oy*Ya=J5Og;ojn zA~u@tWNj}(;%UBr2KY4=a*O;H-lid^xym%`6&eEYi{e;LbDe2mE$u~YG|iNz6~73H zr`r*G`?cRt;<&$)Xm5?WX~!$_ce@vwJwr}&wQ1NO^nS1xWuBaFgIHs_SuY>>MQk)3 zv9=c>@igDp4EzciOK1<(>PGEI8(f?!r#P)#dNKP}w30UDX1NI^|nr70| zieH4p)9fN{(_X<}U~l2c%5s{^PlI3K69W9wZ$B5H23Gj?gT082rajj7B1BHRu{cX} z>1UB?O?b7XnH0-JCt$5|ujKN^XqstHD_XI*c-l^A70Lrz3omAn(_DuBU$o+9QBD^j zR^S0>MQk*+)7oBy$f+GzoRB02bMa#(r_MyIWoxC_?T8h61DJ`}Xlk3anFx_ne8r~0 zkdS;f%p^A|%Bii06~2x}BNecxBi2f@5NtHH#nMayDNSwW5c;J9`^bkVwF%#8)jG*d zj&f=vVvS{W!XQPk(bNWO`{=9JV{umFBe||oPOU?%@U1dDNU+h=TI*Ni_eV~x!QzC^ zFL(vVemQj-VypFo6vSF1Hkw*({c42BsZ+5yq07LlaTu3Vs}L(N1hqzNG_}(D)d-PO zr(kiGuf`EsPOU(!<*N}JO)a;6HA3Xn$yl7_tI6P+T83DmNkXj=8%-^>elTizlNU+9|*4s*M{4NK4qu>pC6hO>L0QPUklz6+!UM~>>2nykPTcOSQQu*=s z^ZsA5z5f@vrnzL7+j-b|zjLc|oU@1HFUQM{I~?mAgB)$_U)!7P*Vq@@tL zS1w^JA=qe!$r~%O$OxJtszzutzylfbGECLLtA!C1ctC7C!!v5YgV0@phq{7`F60c+ zImS9jkq3N%oFO{LSne$HfY@lpTIbXvM9#3}8q`gQCV&SVf8!Y&shbc+01>t7npOwh z#WO|ZAxlDP3kgXx!2?zq>x)D}&?-4il#g)?mPiO0u7_4;4UFKO(f7TEr9PQ@_;Xp(?kLp+Ym$^5F1TfOQ2eW z$Y~~lpl(9i4S2v$R6Nahtw5s}6eSQ*U2tD#Jk9s5z(YbH1cX$pTeSNu!Xz+c+6b%~ zqAlh-OC$uXlG8*aO<|`{c6)o6NC;x1X(p1a8U{k-G}A`#YRiU!AI^As4XK+jyZ|9p z1xbZ?n%|cKga~f{Laeg5Og4d4LblcTPS&DTa+>I;$@nO8F#+@ zgl2`PBBkh}#RP=3g1qNpr+pje`)EC)`CWr_-H5aJ(b1{6!A z)#z;(R=n9IFIFG1(KM4*R@Fy{oSu)bHjXmUi-YQu@Gm_Nv6kZmV&iFk#~ySCL486q zVCN4MBx2^^3yhOQ#Abjmkke!>;>e3?8DN74a>-si z&2LhHx(TtZF+Nz_AQ(?iCl3iuHV9!4t!#Blq@13HRtcYMqhS!MpeMn0R_3c}NJSfrx6yUmy$>P&a&moF0u>L2Md<8o5?5njU3cH!Lom9!cyKA_}Nn;f;dv^a%2hkQsnV zG9@|S#*s67+(0Th91R!71E?fbaVH}7M1C3QaWloHjM!*;m~|x)5>NA;FVISbZyi*! zreK0Kp5}XB;2}XCLM3Y~=CBkrTu_NnNh;A!K&+q+!IOxMrjNI-Btqip!Ngw6N*3Nb z7*7u(4_Q`{NxxRNLdofYXt?l!he}e}#THC*7QMD(72_Z{(UXXcrW>p)i4Y$D&nS9Q zpa0(w8Oh@RZ?yP-WB7!yKlESHf=o%X@G0p6(s%?d18;^BCLvzuYs>6LBAQ-|pV(9_Q}u`pfmQYrks+ zoA+;{&HG>DT(#aX3YlJVcwg9EFfn2yIXGo?<_!1jA0|83}j?nRp@tk1e8NP!T8olrZ zHhM}uJJV*?%SZj=I+{H@p5c3V^@lu)@F_NWN_|XOe0A)9*Y0`Cd`Qj^$usMcb&DG*Jt(aa3X-bx^)nduxtB?K@`zOES}aRdbc3{xzTID&8h zh7lXjOfkuFDOR8Dx_YJcLW_8Y@9fnX_9~VP*DK4KJg49A`B1{}BxHD+c0TQNkzuq- z&P+t?d@XqCBQlKGXog813-wMezLPUV=?HZM^6*nHXPDA~h9D>tAP=$e%vh5Lw$hg^ zR=ho8e1V~P7Usd?8LE8*Z34}+uHddRIYYFMkPtJ*0dj$zoFUq0o@Ue_kvyzHG-IuO zgyKdbA%gS)@=!v^nGuK;6c3Px*m!0*Ax{`_fjpKoYZdy$Gbfr4xfDV30C}~_{8K+% z)pqP@q~$T~11_D)R?JQ~k`r4VS|w+OBGx!pOe7Dn(aaF*mWL2ILzIr7Hh?^oCUS-- z9YJIOd5Dc?jyHKYst6Ja$SX{=#WPg<2wDort5I9u;UQ-RAt6G>4O$*rC1;4_F%Gs6 z$wO>3!z7PYw?&AYVM+)5W=S4O9ywEwSWEH{8_)2YOyC0{NHZX>x*+!w&(xBK1dRsd zRjZ3z#c*<_2CbSh=)hS&KX$d)^3W{k*zG4TZw0SkcR}73FK84rjasHv`WYsLW4uAwqIia` z78KTv0(mUFX?0JioausAjnvoWi!BeWk~5tVJ4;K>J}I_5#6~mLs|D*2B4>`l;)F=W zAdk!+%bAXd6(SX*w+h$}h!xt9(OU^No@q~r79tgcGj>m3>qte;w8Iw>LZx{z1xo@B^;{Al3{db9Xrnk)V3)}gBvuBfMwC7m&XYPmH z7r5uR2e@6XH`&d9r@Mx^Iyt{|CY?7p*E&yhc6NNkqW^Oo(;dB8^#7{1-+!dN9b5JP zl(y=>-WFu0{{Q-uvqX~^r{4%|ja<|wXNe}6t)Cqwv^9d2vRWEOzots~v}s#u2~y4y zX(IGjZNm&Z_L(%#ERiO{U}uDR0=5plEOb|+DGS(I#0tICXvzc|&(@gDlU=<;yQk5X z8)C}r{eAZ={AxIk16h7?uKua_D?&dt+BAD;=J_u?bld*x%!lMGlP3Hj9!LwJo6)9; zRdSYS6ywBA(KpDVl+`qf?i(R4(|vBZk1k zonR#0QKa)tOC@?m$mK!%CJBTr(JR700(?^}(JPjGBQ~C;dPP`$1bo-3^UrA*f5VG6 znoTvH#cd95I0|3nyH=Up@xJu?%T|~V$yp*?tUlKDXqB903jm=dS`Iphm9lIlAn-kr zor}N@wAO9W`9`Fi4P&XoXC3$^IfrZrv4Xe;z9}|{SRn@k?HjT2Y``3^k19g$1^6z^ zy~MM)?ZK-E$rotfH3c^b$XOp+B}69BzR@Zr&il`;EcE$J$HI7m z*l1>_Wz<-Y5IM60i?eLlG^KGSVue8-8aBmlN32jT5RKS)W}C^`QAJ4Y0MUi1op=V< z39?HPX>JFIW~Z9@bH_b+>AgsFW-D4HQ7>Guz@hiuXI7dIxfLOK1VmRV^G>_s z);`~o9e|lrum+YxHCiQSRv=dRjKa`?SUvuKwJ7pz7s30HW@IU*zqgN;^LA|!;_eywW@*mw^275Efk znqTYM9IQ-l{jtiSqG+oKfrHlKw1*Zg`oOgq3C!utY-$DK}%p zCD?e5Y6v0cW{kM({<4V^vo~z)|1%B*IjSLqAln!S*h7;Y((g;IBMLP~G=$ZNORSP} zL_-L{wlNS8Y-v{05Oiq)xP^v)L`C%N&d;4bLH9G{vM83Qh#KvZ0b`y8+(NNLMF?Sz zp*YAjW^#5Lwo6O5V7c)uiU$^D)0G6^78Yf=!(KG0`m^(j9H>9gpdRnr&yvZgs%rMPO)sa0oW@nT>!=r8_%Mg z@F>EX1z@~ZndZM>-!U8dndHT@rx3=4#S6fA;k9UTmgov$77!RmtK{r*tii-le8uTN zv5iyg$%qw{9JFy7FfK!^pyYsYid~9WLCFE*6iYTD2r)M>j@Wp1u}NN7jJ1JrcJbMU z^V>fEib5D)WIkkG<)JeIjI)ElT3zNLXBT1(EZaC*C1)2PcCvmEq{uj8quKeE^11;b za&{gTC*Q*F4H&8y2TmcuWp*xNEuBKKa}X;y8=OM1WJiLqjsl#5*m#!TxS`KLumlKQ zKmksvR%ZSA>HV%tXA`H)G#@&u2rDVTDb?!8Ma!S||NfNuker=?HJJBQ%h_j+%IM5M zH$bc8>~zFV9kk*0YhHXvbP8gl*=g2JL5Q54ip2>*AUK5tqFJ^h0mcyFn+iRJV%gRN z!1ft`U*?CJExMWD6pEdMSRsf9ryw?-#f=GGF?a{3u-nz9ZT#=N8qB)JvlC3Gu(>3< zLIa#qrOXURZl8PpN5m=P(JCQ|2dAJ_a&{bIr*G$X_pTP5f>=-Py_k>GAuRrv>UMl#8#I9MgM$c;6qJd&ZlX64%yncRQo9G*g9feq79SHaavGFW! zRPZap0ub;`Tv@uI=X-$zXP7j{v$#>Aog#b#z&GrnQw~-vx#|w{Avrr7t(wOs7yjP5 zP_F^_2Cb5_Cn9!caR0-~UE)Dvgc&KTE!NY0V;rxkm#d|92~y6IrFz1k1HQqCSkAJg zde9dv`whh^h_(E}Q0xha6;cJ@8^p%5xMt5KrU<|{l?BtO@hq;{^TK6OIv?PhN@cPq zyZ@$zXPLgyna#a8F=IU~-^m zz~=w2|A2p${{(+~->1H(eV6%G`i^I@;H%!dyxYAKz2%-?J|GL^gu|H|Q#JwvPYh9MKTM47WDgvFp#stZ$BJ2tm(kqg^X3(GW9_-gMROiyzTB z)x0KP<2hXG?-c_F&1)R2Ok955d0$Mq#&keDhhicCcS#bjX%Edh`oV2O?p264kN1RKxIHoqudMF_MF$FTdjCfZ-9I-+7L ziRVyIbX0^$TkB4|mdf%EMr^$Q5j=)f&do$-goxX446&*_$8^L$IR;}`IY%Ufu!{v8 zL$ORkfMW_{7iKcW5-m~q4QhoYT4KbWSKbKjH)ISrhL%gTgmFW&?nH15V&gg7?dTH| zQ{b3-W%BZaN56dscL&6CC@La~FtrViVRwJ^*l^%X@AYOklXDZ08DWYW9D`QLIie+m zl^(!2i57E2OB5n{Sv(JDE2JTh)M+>=l+HyE*n>WQ^+iXDVlK@mY4r&zMyPKddIaf&6|9);;`Xyb^D z=lD%vdK(XlL!l?Urs=m-=` zmf8tea0|tfrFOz}IJkvkE71mF798Ay*mw@N12Cn-79{Omx?DFH+`=OCkB-c&d4nXX za=0Df7)6)|2e(u!%OkIU^JU2_;+Fns)l|0A>iA2()n5c|L90r0{r<@<2$FMsu|Uh- zLgK(2*$^N-!>^3~QgjQ&l2vxX*8|)_u`=2q#NFT)itUA1Va^=fg4lSD-$9}GmIz#N zExM&jSzNdHwTD;VVlo`h^)w&yC_=mqZmCknSFXO_QT~bfkesVPs|3jgZb7T$TsdNe zxEneR#gZ)o$Hqs0cgs^h>J@-aL*mO^DV8fR4xNT#dmvUA_rN<88%3-z;||`T*b>AF z6Yby~#Kv=Ye6UBEGqBYGbRdTKyVufQX!8;V&6|sUR!8;iD$~m&&uFw0MlJCx0 zq1z4Kp;)ru&hpz%v7OL{I$AgI4#ggWSYdV^yo12ZNh~qk`Q7p9UTZoFAAS=pV5AUt@Rw zo$DXZ=KsI;HTkY#^Z$d{`u{Jyk9yD2ZvOkj^P=ZA&t}gMcJJT&?nm4gy63uMZoBJw z68|4^Uh16XEO-3sc+PRavC%P##s5Fpv-a!ltL;PV9c|y*p0(X(JJUAZCKvrx^hr@# z$N`k(xjZTARK%B&zg+eE6>CoHtyR=jUsGEhkH>0`$um)6D{9XXM_F#j{GnHVpwI5< zSX9JL>9g%oJ}Q@I51#TRzbQc}mmJ%c-FMK0_Rb&2pj~w6!^($mzt4`jZm%~^rRT1R z19PvnHNoZi1_owUvT_~AD?b$N>NE15ol3=&@01PcwFFjQ5CL+_D;rn@j}4|g&s4@g z1d0S!nlBI-Mh_D}OkjvA#OPWCB=~$y{30R^m${&e-*R9uwI@ah}1luRilm)L8KWx#s#L(zU?0TwO&c1HO z4{Odb2fFh7fC4&A)-ej~lh;IqmN!v)$o&@m;Jscqz)YWzYog>llMx`sBsaU!>p0^s zL+}BXEa!=u==F97c2QMFy<~6&#S%3!tX=ZKvyNG>W5E>^OVq?m-p*fa0SH@ zH8H2n-zATCGme@BS0FZ?$L)n~Wy-fr>)XC(49nmP7Nx&1?aFqsD@~T;d6X4LmDnBK z7r!#;blnC3?cR%v$7}Vu_xZLQf~5?vBIguK*53(< zQ{Wu2@q8PTK6X7l4ZDH!8fA*w>459gzsx2Z&qvIM!io@g!`Q-Z$oeyO#qem0`A}&- z-1^IBNGEbfR-b$bJHtOXhJ=OrAR)V9Y<>2QYjje;F%%m>Y>9U9voVbaj-gmTVik5y z=aBwJlLE(3ESqlO?T@P;fePph6w8+00ag%^;26Zl^B%&nFj|3Q*aG)ft5oB8Jngrg zBFuM#W2%)^&mNup*Q<{b$GHB5#}9OQOh1fv3A6k@|%(e-={kf z97C}-#0oJuIEG@25IgD6N6&a8tHd5du(_RxoyAiI?;E!QgJTdI&+RZB!xB~c)pL5m z;Fv09+7+&e;*zu0jomaOHkxScN~^oahUSh5Q5xY5T~*Uf)M$AW(-b_?1t z_ELUCYLkwIjzh7V5j&@+>!;Fp59nC%4`SmvJp4DT2-Dr*pSUvb`n%iz@owIvI-bMB ze}jrJ?+yN85xaH(;1=^CIky3=629EvAGE4Gx4uC1##pEk zvH;I2l_Hc&7T^g1I5>uudm7p>s`8Y(8V8>#I)-9bBUZ?cfMXCF&z)-a0XB=lS2Xp% zSuYqIQ>o1O`hPc_SaiVTIG)25{vkyeGr=*H%KZCJOK%F&$)=TPl@Ne~W6-Md+$sO; z7@Uoib7bwE<%mYHWbK`$V-U;Z|J6mm7e(HVBqRGH>mtJ=Wf5EWy>Mgr#_;y=)Nt>x zC-h$EU!iTGDWN_gNARuS!@+BVYgrzkH1K^O71$Tp9GDpB&F%pF!vCWGG56ZN2$1#N>$}3Y#W&qI$jA0=df)dZy|=Ty0ZY6?y*<1|o+E61z(bzvJUcu~ zJ;OY*$L;>et-7yuZ+Fjf*Sg!gesjI%df2twb+T)$tJL|o^S^Ajz-7);okQ7a0snJk z95*=DIz~9U+rPIr+i$XOw4Y>;veN>evmLaZZX0haXI1-$KdHGlYYs(4JZSVPH{S40 zk1hXN#Lfh)QrdMt9DeZXugoxAYUVe#naCOJeB`l<88WW48$HPO!I8%Zl1EB9GOS$x zVa3iRMYRlBsYE~Ra`$-UJ%Z%nk&g5$*F1LQc+Z?~`H6%|_vU#U@4WtGg5;@I9eGr_ z_L%*%b|2YP*}x8_3y!%>{`r(E39`aOdX%g7K36*9=LUwXSB{xF{k^tt^d?AtJsZ?$ z&z_&yb-u?kWSvsl^N#PsJ!can-`uPteahu;ymD{lpjR2PR*62Cp7F=wO9`^nM0%Ag z-`>1o%zGsaS)+74=hWvHOG$#{C$2z^F1qq7mSLF0kkx9Z^S*8D?urp4kAeVs>9#FX zu1;UZkX34jvwrCKRc13m^3X>|x|FlLLq4pXbT>oBm9jIx&76Gw=>*9$s!-W9PiJ<1GLIm68WoV|{(X_syOkij5ajwhPkpg>=wA$3tH#uu_suCCK#)Ab(aUrx8`h;4?DUOd$QmWqZtTEa z6FLzj4{LO!TNyFzU~|`lLm9GKS@`rIH%%p(*iZ1LY?uiU<39YfZs%7)SoYBpgaJ2gkxP|lD%&Bze7<}cA^c8MCXxu!;4 zcwNb`)pKc=43XDNs@-wUNp4;g@>z zb)E7|m1AjD$Xcg7)8OP6Y=52dOmCB4YRuA#^ITmU#*gXwLXc`lv}z*OxF)b|+x`65`Ljn@YRlHg=3V81;Q^#MOmINXY8m?Af0;cdBtVRy7M_8 zE#xuVd0BoQqIP`x*Y)MUzQIvimVltqnYx*ZfrGtB(4F9sik5+EwJIup+wX?ppK7 z#=g=IOY|^KbXY}xGUCpeu=#*=!uL8(bXi4y65{qsU;Nhl>ajXbi%m__EAkT&cgL>_ zCina73>_!Bts*}GagXd-UfuZZ=Q>Vw+<^ReKBK5R?qQ|zy>`ofPmI!$y6fsz%=z^9 zMcBOts$MZ$N%e#juu5;i`*AECo(hAKjI7@4*xrRet2#;9`>>u z03Hcl6j~Un4F!WA1{1-ngDcq?fX4*BVzK{qfztvf2D-940COzvU+*8~FZSDfAN%s` z9>7a{YkgDLO@QsZKY8EqKJC59d$xC}ccizsH{|)&^9s8Y;Cjz?&rDCXr<414_d6`+ zzm@F`IK@4doetQ}^^@xj*VC?>TxYwMx<_W z@Sx*r#}>zI$6!a);jkZJHwN5izl@z4Fy3Bi?_m4I_KNKR+aB9;+b~-RtEBkXqlHgT z73teYPTl>VKjWi+(>9LOV~^|6!l$JS%!&?Yv4yyEbqs#mdbIHAC4cbLxLWISjgG-j zV2>6)xnz_x?ZtC5r`|e2!_?u&uxksOQerD2G&QULh~LAmEo=@+{1Meb*A_NuB>sp3 zp+^g!B{E(;@wXXk_P>9uUOH0RwS~l*)M#X{YYU&=5o(0A zb!}nOI^vJWSJxIcizED4ONnCBHsX(zC@qE}2Gvrc*u;$ZBofuNh0Vl>KT?J~t$(Bp zX+aZxCuN9FrBD)TDMM@uMf{O6#AZyyA1Om@ibVLahBBlDM#P{R$`Ff<#3u>hO~f)7E2jo zF_HKrWk`#M=#!Ko77__hl4!SUvlb4KC#xt!T0}&Dqzq|65&e-eq{T(_N6L^E8qpsq zLt1o1e?*3QH1qtrG0F|CxvAmhXFkNk@CetD8aiV*zMZPA}8@j z+M-y%B>qSlVsVoABV~w%N5YRZf@q%A`bWyp%+^0rhFH8K7K;q^Xy###;d&zi*4#>h z;I7Rq#1RXiMDfUmcD+h$SY4Z0WF!7aiDKc5_#-8X#W3QJlqeRs2tSgrxN9?uR>U8X zD5-fo$-|wx;pWW7>Wwx<1`!~P=3 zu_iL2+%WF&S^NHeh9T>e9xuB)jXU)KL5?wz?UWlkcY1Zt86^x^tCXi+IJA8UP57Q< zBE!m!{ex_Q%6f*ZQKFq6R6koan3T!)Ke7A(lj@z68;5u7l-d8M0ETxbmk*JN)|+g5+18=*W)Bjn|Dl^WbT788W6w&7G@W z=scbv`8_8(va53AU3{tOxolHOgVJx|te?J{wU;1=nMlTGt|Yd5!KVyauaqlK++iO+ zk|2kgNXAl=7FjW5og#nY?0ieNcL%iwFl3D)tsC~m)8A1aonRu5QTCPavk$WjS*`S1-|76F$31J7*`t~5leX(+mUx^D zQ>9c6eRP7d`YaP8HS=xJI;Oj_uXyOduiNip$hb0~c>bTs>#=i7&HU~*9ob3QH~0y* zG;<3>Rx0v_DcAJ;47;1uJdh$6Ee%bIzRr*_MV>OF{kakP_Tx+>d;1bTeK4CJb*1!w z>3{1!`+7aGlkZy6-_B~iak=Ni%RBP3fRtYH@S*EZ!ECkE%(p7($ZpEMGjDJWd2|Uw z)+zn=uRT9;{@=gtVH<3YQ-+w>< z$~~UVM>bR{UF~ab_+s?~1X*b!+bH|q(Z(5uj43@P$4X}o7(|eKW0Gm-hu_TJ>%WK1 z#WpC><0=o|Rd$dd`EDc~8CLfFeh>S5k|FDr;>v%&{bujC39>&$el?6O4c)?!bxN`F zQ5fu)G(SM*(mqn^-I%juOi64Cep9$`}kQlZOi6&>uZ#bw_JGq za%YMl`gVz}KX5+nyvDi4Ioes~_|x$^i}&|9mN`yv zbYc4gp10p=KifWsoe&VQeQry$9Rlat=Gdxi0ahLQSMdxBZCDyaTOns`bS8_EOe!j# zVNnj?j8z+m!_Hsv3=4PwXKa2!9Da5yo?)>M;Ed%{CXRf8i(9lXNVD%K0`M!`y+sR! z^qqrR3XKgl*dfbWSTMx0Pg?yt_|IMW=m!@93WY~m3yX>XW!8=*U0GSEK+0NJcmyb8 zfg6;CQlzYf#YuoN4p0CT@>JHMO)VKK6IaS5O(_bf^S)R|pBx#;>gmI8`$&%!kmbvS*bZQmk5QSMpX2B;ku@%@`$0g7_Z z0yseJoVa@Wp%|NPU@e*tbY`zEYhjU`iR!)E-Q%x;fTG-MA)U^|PHlBAw26Aky%yBz zs2yFOc%c6K-B1?go`rSr#vLWk?~ebu2vC%J7T*EtO#LDR14Z(5Wi2ew1JsV*kA85@ z#}c3@_blQARI9Qm_bl`?Q6+rV=U-43<(|cWCaU*`Y~iXMP?UQX44Npvc26FlDEBNX zG*K(r$wil63@FMypI9^6*S6#NcHJugMY(5jqKTTL-53Zc$~_Ah0d>ZnncGtp+W|$n zXOSbIwmy4CkCR^d&OnjWUs($aApvzd7q(Mx02Jk(#gc&9ywBJDviqL`6y=@;l_o04 z7G}l#fTG-M(WTzLHhwkrg>?LGKvC{ld7gWwD%5=;#k7Hk+fNfj6ooTR$>s6V3kE4a?UxJWOB|X8V78Q z!8zxg13os+*k0Qh8wqKH79Z!F!*Px{eBC`=Q}0T9&b{~f_{)#=+n(;XdSs=Gz# zNz}Rv+lx&XHWG!}ix`xs)#K-vZmG*43bhx(C{ZhB%Tpn4(-b5X{l`R9O4Rb%Ry~z< zZ$oy`e{393s%&}+wT0S`WontVr4&)9z5G(9XW^1La#5E0o+6$m6{x-VPG(bTQ`4WR zE!19qD${K(+9|{4VML+!Bbi!wZ_R?E#T7)M_TnQMwKe}Q`3>lEqELJ5Tbc3!<~_Z( z=9yijeFbW7eJ@j#-eyy`1?fuvG3%R|qGrm+*SrFvaNb+r%@m~)I$u*^B39hhzDT|H!g* zIhH3cud>#r4trF>wii#xF30@L^i`X#{9rLGNta`}%;=EEVpxza$GR{x>G0$Kxw~MW z#jqS*j^!|;!yUzd!`W@ zEQY6`jQ^L&@Bgo7KAd@e=KRd+%;p*2X4Gdqm~m0YvW!6)9n*hF52xRkz9)TddUbls zw6D{SrrnaZJ#9)_k2Fu}hpC5CuS#8)Ix00!oCWZ@?-Abt-x8nc>)`##TkpNcd$xCu zx6<2O><4f}Q~+%CO!5?YT<-VXPrI*huW^rX=equMz2%s5%T$yvc_5*FgNB?**dR^!^%%AN0LI6dT`P z1M!2t7c>R$fQ~gHexQ4S{>+x|Sff4+S+|O+1`%mtz8gB$h=_rHO@HS5!CwQRg1#S! z;yc1$1EGSxBZxw2AXL!z1W_mrgbMnuAPS{{P(j}pnu1h`zXn1DePb7dk7VFeS2u^@trM*LhT_`&}jgoP^`?mO*M~Fi0Aym+508L>ErUpWVgqAHKP6AI;TD)E+_wod(ctVG5=OLIr#yi-ZVj521oi15jJ2J%kFA ztOG`gLhT_`&}jgoPA8lq5p6-QW9eD5&@Q==jYi_#&VZmS%%SFwae>Cl}h)Lumsx-DxN3sI=O ziYF4bh1#o#!lFiAxb&h;k33Cnq4phF)sa>jfGE^H>%UT{eFvuEwTBf}{+jkoja7%; z-b`0S?N4D!hwhpJ_uF67j;XO~@4Ns}sC`?e8nuPmw*gA3)wVUYh1$1fDt?S*sC}#d zN}={GnTnrZux86&(}JmiGQ*cYf%=8oH)l$RK1AWX&tyuUP(&1JpTU%2r2#YrDVUBm z>5YOH@qLm-&#p<6f7V}0Wtu>KzJxSFc1>y`09)_@U~hoHAG`8vyt1Fx$KpOJnRmAR zO%^f|`86Kq`m2=XWafAV#37yoHK!~2`}nD;vGO0mvA-Se*JpxFO! zq9@n=qx*>aO7{|XmD}Tb!*!o)hp6!Hp|ee$5>R!Ltay_|G&(zc{gNm*M?StqG1o~`-#Kd8 zg-qH9XJz)evHr6a_NTz2T2%>@7%xwNt8yTX>wAe>FQXHWp>Q2km#?WR4UhpNmwL{6u(#Ir#Q}HhOno1-PmaQh0Myf4?WZ+#L5ncGnxPp9Hun6jFGq zsUvv8%gjMfE}q`+^VWc?Y9WQEnfi-9;icxFfm80f{f~PAS0zKbGdiXxyu=(jv*ow% zihX@(Q_G@SRX3z?uc^QB6CN-tmkx=wIr#|Ss(47ZuA_X7i(0`!_ZHmv;><39s|q58 zd(55L!A0L(=Oet@EP3VAGk5gn1?NSzYBLRmXPP>yB)rNr{coFx{<#NQS37FxzVA|J zC_PGerCIvbT}LK&I16yKt%kzW%`?_iIa|L$Ru%Pwy&vrtuFhHyxY}Do;Th)cG3xsc zwO(%a`PubBt6p;eR~u{)Zsi6DFEjhL8u8q|X>9>lyKE@Dm8ok52p3kp)O>$kbvEE? zs||%WH_vGI$fw_L`ZwVvrg`H9=Ra$5C0tRh+HXU*uB!(K514}=d-=YCx9g#Gwdsb! zTberNSGdgGn1fy#c}H|PSGpC|s+~6!?lE;e0pZnV;PMt9{Mq>oXkBf;q5Hn;$I zVCrcb0av?mQ0rFWg79*)q-x@{woB3gS6gxrZe<+^FEa!G6s_KvF#~Y5FNeatrmjLD zywohe^N}aN|7A1aYI6>S`%ImOAiTt^d_8!rA1;VS%s{G&I>b3hVz}1Ew3U`}2S3!7{ zSvK>&$NQ~J1zhafph13}i!o|J%cm5M?&T0d#XF}_`;(>5s)k*J9uGw(~;9?UH zd#F0+p>eUBPu1gRZQcJ|Gr-k`AgVJiQ`bNcUTyZf{NS8+e~boP>ReY3tjl6A#*fQ#)!YaY;#$6ZQ4Y=4^#Kv{y1mUGY^SLv9 z;ple2U4ZM{3E?HdL5s7TC%2RWuJ#^Lx}P+4Ed}9$;NVB1vs+B)Z{z-2V@#K;QYF=t}6rmjB*pMUzI0YBmF|>o%y>^5Bf~>L0n|MtDutY(m`1+z?(C z)MqY2XEp+^D>(=+4Nm{7@7%$)94Po}Ht-1JO;^FDE2>!!jp~vPYBUhk8(Tsj)&Z^) zF&Y=U5>0!q`;$Z7z8Ubffa@X;!mEQ*^KP8Ja{EO#?yp(HU2fDk$M{7xtD(_GSY?7f ztO7hJU;ZyL4A_=f$oMVeSjKfK{%@Q9U3yLW_35k9`=w{3y_fb>+68H|(~466O8s~0J*nHoSN|;E z*S=?c7m14hfLQq-_1^B?-o&{q-URJmZ#ADr@PL5lY6b(bhmJQ=z7$($2HZ} z)%mOQRp+(N70y1+G{-xRha9^d^Buh%t;LRhuZj}@ccx5B38eUvKTduw`5LjBe@t@M zL{Tt5V*Ou2EZ@Px2p!?46#A)E0a8{^O9n8)?N~L~$<3e_Ukm=-I5Z!$hI> zB8f-T@Esq#ecdPfi9+o~CXc8wYFp?IM4|Q~okx_u@iYZ5U;lBH)3e?g`kp5WwO1KE zi)z#sYOnHn2`SWGW%J_RQglVsUgh#EO5fN-q4wZl==+%{)INok(8Vl7q4vp4>7)}; zsC^Psx|oG1)V>*0hLzFP6nsVMSi74uy7Xrjy{IqU*ji-cF2f%@l`q<+Io(TZx>eQ=s*h(%)$4{J?$g_(DCx00_@qR=|K z4{q}etICz|af* zQ+fZ~_Jo%P{SW=J>FLi+z|oJ;2^hjlg89x9&;INF=K*IwBF)@&-|_Kf)7uapFnbL@ zKJmxan8aW|!e{QfAoAtS8{g2l$Td|MzjfTZ`zW-|euTi^yI(A7`HS#sv;3>~zdm~J zO@ME(hbqi;VDYW)^BV}SG6P?|H{jN#R|3ush0ol16LSoFd>cin`_uxH^lx63`MgWnM@vJ$WVdB%Xw=R@o4S-8y|g=%pS;U#9E{cqn5 z|Mg42(X-gTORhYeM0g-*Tz&mDH{H7!aP};G=C(WQKK$bOLWQebQ}x^he_opRI^fIg zp=Ov{Q(wKce9<7ntIa_r&m6sR*D%1B*?6kCMINJ2yPEJSv;XB+Z2F{A55Sk&xYykL z`xn*M)Q%v$((HB3zOR103eyZr0N-?692qfw4&fqxO}%H;>Pw!2))(7&s=4v>=JFFi z;pOJQd%k#g%~iZuyQp@Njl0eDU%w?*HH;x#WF?jrzrN#*KcMx~Z2Y9T{@OlE&YG}_ z@X}z(3k^$m{C*4I3jtrJb~)@qcuBBqK<7gppST$C1vc(BSIHA&Rv#ohVD?{otE0!< z6M)aR@ss9q<@48Syt-GgTAj20HsJGY+-WZRrq#yIDK`;bZT4#U$Cn?~9RYl$#b?u@?{$^&&) zLet=s7S&F*8$C%!{}Cp#5+mQp9&#CeT$uv6&PouTC@V1;a9#C5xX4PpwPo+>&+oLm zTvR&=aGjMPylGa#UkfFK+ASiQou{JO3DBrM*=_;B4z$48X?#u45UEi=CzCd*{7$ zx#KPy_t!$bp^gfOW{1mP3-yL0<7ZY|Us>ZpJy_Hv7A)eadtQ>F_&2&-tC zE~p(2;~6P;ew_Iw;UXFF!-qF-JG99jPf_hK#Kj&EZ?u1faFL8?oV%zU`rq-=1i0EY zL-&2Swc3MP7pB{rwDq^}A?S?SIz!{S!h~>ffoai<1Bk zq%KJ{#V&w9`Rc`4fM@$o^Y!z!^M3EG_1@{-?Vaf@6ZHU}d0y~b@7e4b?CO^os^b&K^J2%pjgGMn!;zHo zR?1^37pE*w8JyB7`Pbw~@*~Lyl9wc#$sLk@N~%w~C+X~@IZ2gC&6|ChFfq`~e|#6m zE2Cb%>$abMNmg4y#@FK>hy0?R(wf40+~bg694+@mUcHwnxYv$vhbyjg%Kqr5rY zzrOTT6;Wuw6-=#r@x|Shc}Iyt11<;Z#zkWDmxV;30hckg=9=~U#}56LC^X5 zAybR2&r3w1_OR$>k+uHZW~0Q_7k`*?RpV~+K*={zW3Fr z{WzxdOM}`%?Z+}TY=6V+X*WJX6ly<)sYY#~_UMF){T?nlIgr{y?ZFAvrP4&9_TYqS z2ZkuregyYx)NKRL-+l21nu3>x|M+mG^hYJ4Q2Sv_jZ)c`FNi|zhcY!fLrzxf2_TM! zLG6by6|YwnY7dKE8d0b{xRd&YP5nacVbRM#k6cxCCQ+z8EPClJH|{uc15v0wIFGvS zkSNq17QN^fwx%Hc-to9t^g=5V>CY&7UlwY@z{h5N_rhA0D2}V_^&juU)b?}KihZK6 zEhwtor5x%4qR@a)RJrqJd1B4SM4>2%llkD=UrNdsywVc!2s;LKJGB%Wa(&n|o7m(WgYA_ORMzVcS>4 zi3y(&h1$bvm-){&zjN8oV~IlTJM$IiS*t;bLhWI-%c<%)L2bpouwk{!OtsqOHQg4j zx;);IuQ*vb_O}p)+GjDPk7*?eweP@`PJt1H+P7y)*W(a{+MmLdc9w`@?PdJGtl1C$ zf8zhkQ&*=BPwnD6={w;&=-c=I9RI)RI^?>@wahih)zSHjGwi(2xyL!zS?z4;_}X#Q zaf@TSV~V4P*zfASz`%b$xHe;tc5pOi<6yH3Z>O`c` zGSSD@yQz}})J<45)2U7b7EPK#ZAD1YL64o6Q7z^PkWgtZp2>) zp@Lp7L=@Y{Uk9N=g;*v0`sD^uY$bmkgbLN_ETBn5v61|B5Gv>+VTocJ`RgE5sJ1F% zh+-4@>mXF|K@@5ap@O+VW@?5Jh1x@?(AU}!i73<_LWO>6z2v1tq4p3e#9Iir z46TDup>&qm(y{P&Y74c8P$3{P{~z60MigoR2Zt zhPc~8{24`uP@zEV+V{x(X>{N>RX>}CJGG* zp+bMLXX@7ZhloN0La5MhuRMX)PZSyuLWSOwWe8oPskoa5LWKdM;N-LHkwl^P5Gt5z z{lGOuq4p3en951Jn<&&CLIrt(?A_Cr5{24BsG#F)qELGX6?8!sQK&tH3WG$BbKMy| zh(hflRA|%|Y7e2p(AHfK>>YY3wT0S4s4zqx(wp(FqT+5Ie;tGhL+<%fZ0G+HQK&tH z3i<;jQK&tH3PaQ;4rddE+C!)?xN84hf8PHHQK&tH3WICgls$a>VWLob2o(mxohHVJ z+C!+&&&t|STc|yR3e_*Z{`IFqMwP4=(yM ziViWtz}4@Jo1D>8eFkat)`u8jQGwcAk|=BoVuU3Ve*FC158Xte0o(CYdC`fLFF9Ww zPZS!kEmI4>643C~M4V4XEX6l$Nwl>RbI6l$N!)F5jY4x&(dA5+>JAqutkGNm6$M4|Q`rt|}XDAeA~ zRHJ^O_AaK(3D=c&YCBl9)#$MRsUT?qh0#T@a3R5~^PZVmO%#==M z6NTC*F{KmsM4|T0m}=A(Xn%Y+Q@YZF+5+v5pTSh4E3)=7{-56LNVClMGoQ-5EOVvU z0iaXHUm5RYJf3k?#+Hon8Qn6H(j)2jr0-52pWZXwC3XS0EA70rQ`5@R9AfYPL#caG zr=%9AI(%=5o&R_EM*Fh7UwNPL?)T327J5#4YCU&&HhG44TDw1XA9C+;PjTnDesUdg zT_N`SD|b1ZG3Oo5P0k_C){c)Iha7uEq@S1aQ_2x>s^6lN@)U>Ii<1SQ#mFIVbY ze7d=RaP@%JXPP!&ZWh;_b>+d!X4)UkitBqLKS%EI{D{q$nZ=K6TVk%~wROeyy=>lV z?mzpdUs8-UHeYJyZRkE`>Gh96`_(ot`oB@^9yhhn=1a`3M{4GlJn;qaVj;iozsKCa zGrm6oGq6go392v1$?>9XPEmBOJDj_o3Ao^?mt=ipTD_Mskpw(=H2H0cf?7e2R^a+ zO0)BlMOj75AB6VhqJG=H81~D95X`RAwm*5sg^vO+SM^(bs(B#iyvuU`b-&%dI7Mdt zq;9W1+XDE2&9^cSv{GMKZNAK`=vuIL=muVcR$SlH=9`-b^5i$*zBVtGl^(e;XW<79 zXkRYur~V%pBVR7VY+l&6?SMWH9YOtzZC><$o2n1B`GDCizsUdK#ADEYk# z^`{mupN(cTu)dcF|&LYq%B58NpAf7|A(&F&Rj+uk+yec-zzf14~_?{4!|X7|7& z&$Jp|0K8n?Z;jV&9(bWvl>RQU`ARc;_0q8)=G_mxT;6Z-Uh}|FQJIrs*nEZQKhWd5 zkvB~RUas%A_;mAt+UBa#=0z!e>GCh@#y$?bT;Ol_=lzc2hSB%0bO_Dtv73MUbc0Aa zR#cXkmIf+{>*Wf6i}#opCjIES@~?~R_Djt!eQ#U&M=k0vm-t(}Pw@Ure|~MO&5N_0 z4lK@FHm(8Mmuvi~KNmXT1Y^;kfSKL(^cS~Q9|m47^0)Yt=7rYEcWPhM=(agG|NiU$ z;j-A`db!Hq=DSv}{Pu%lo39SGS$Fcr-#*z0?aO8U7B9xz>CziIU(nCy#kpKXBhFiE zbOv6o^SAg6^ME0a(7JK1%~zT|TW8Ph|IIVN%Z2_H?=&y$F!_a>z8Pfm;`Ewr&%Lnv zv>$<&EB&ee`&+hnZ`t+N+I)GiUE6KzS}ovJA;tA_sXy@tM2P-==yaPe3%0qw^{`Xs z@FMc!db!r0`2F$_<>D`GzBJhOlGi(4bNV6ZPY2-7Zx#|qNe{I7l3)k#u`3VM^78%S z`t~;OH22In`_xNs=wkE2zE7rqlab3+{>AmD*!)TJypOs>7Nt)jUaSny8dv+t)LXNm zKXSc4_5bWa;(OeVB%7}ecIo)V-kDqR{*nv+i9bF28*|)l{k#>QtgC{Bo}%UH4S2t_ z0sgF~9v64;Eq42r!7jIs?D1@W_B4v?TO%*KKhYjL;Hu=^1RmVWwZCuac7D%bnl z{dscg*@4IH+e#Gh_C31g$n+c5Lx0kNUtfOrIsM+G6SjL*RtHN9ZaHuDGrZcPxIPW| zx$Up)G`M3f^{28bIOL^U*1nv}>y?V@Q-PoVFBum{qX@`b?yBZ z{CIJm%~u3h?6|VcADMfAmy7=1;_09`2P1Yeg$4G`zOAv{W6iE8E*5X!F6-)y!@Bzy*A&qUab3p74d&I$utBsaCt_dm)SJ2QCu$e!dW-AjVt?xB zf_7qESlh78RR;%+Y@d7SRD6HP)&9hfJO6=|eK+22^HsqqTU+1rL@{smkXJ8b3EhpH zcjSKdwhk2>m~^cd%lw-ROYDo){iZLr&b#gWbPCzk6q1xtgu3lEnR-EiCnJJs!M`iTP;g%{V! zm3h>|3BNpk#dk}ev3nQ@PFndxcI$%M?e>c6McOrX4Nkkg>Q4<0TTjr?O@xH34u;$YUn zIT5(9Sclj2!WBW|iIZQn8oUHRu>!9tC|0e!FlR{F3zyhnah+UyM?DxXOFG^@X7`{h zIQjTb@3-6Vip}TMZRE)`P(HeIf;P_2_`JFejFnsYdmAf(*48st5xn%(Kfba(vvQ8* zJJqdgDkJQ{*r{%9g1>Y8o>#YqFB1?;9Z%_DzmUt=8lCD^CuoN6kWO{068xQm_Pn~4 ze3?n|_`XLwlRJ`<<%``Y+~E%MD2^u#!%^HjP)-6QmnO{ zXJe@JQpWl=j}Dnuakq`3(o32S5q4aZ@&CeRKR3$^XWk-C{~MWEn3*ni0E}cjnsH^u zx{T2o#Tl9D-=`l>e<=Nu^bKMSKxKLhaR$IEX}6{AN}G{ZmX?wFU20V10j^42pE^0U zBDJ~i2VYFo0bJ@^$x^fX zzalFh@AjxYrwc>U9kpl?ZuFcYzCxa>=@PT3;ooI9-BJUzbVlvAM;pX@+(QJz^&-%56V6~z|+1kBpp$U_L&Dp%kQt{nyxmxwrlhF zx8YQ1Te_hZEyBVXy|#&O0-6@fWcOV^>Z-{cq!xyx6Kc1;_pw8FpVLdz;xO0Gvp#H> z`5$Oox}bL3yS|$A!8E6)E6l*gr~7O_nF6$QKrPy39@sA&iEeqCE;l<2D_ipRrrAJC z_tT<1=7AgJ+1Yn!y3FjdZQJt0%QgZnollE)ng^axOEooJYPNalEq^!mT7}D9Web@Pn&o7;hUf*(*Lw* zF{`X211(x?+SR?oiI=`<_a@NN`?P2g@ST zGCQcYzXw`+o)#@MIW*|X+fVeGEKkmuvp{_Sm&ROP`bI3r2_)6#H{DT^4Nj$`f_3kK6>b z^f;*}7yLDI-=`}+(sZfWu3PDU*7jWrwDdPEI@R3&l3XFyLDMB>x0m|1S+%S$(9+wa zw)eIX8-rxMq3M8`)oSxq<6r&^Xz6QGzt0^dkF!3{qD4T~Y4(}-~;cnXWZfk|PrmKSf10!1f-LfmR?XYR5x%=A>3W^tet?5eB zf9YE_DWjeQTDqQAzg^~@tFz9&VAUU*t}t^e7r#FHrO7}`$CE~RW_S6rsnT?L&_A`= zH`n*!rS63xxyuyMyGP3J-1lm_Ea?CJkHe$7-UV$7@6)C?x3BBDv(MFYL8bsQ%$a_e_+lWU(*pMNyWPDf$A z^gU@Pi*6LhBj0pPIE->B5|H_YfYD#Gmq!S-nnjyO=s0_5iWwI zCbh}#NMXHjJnarn8gfqae>y*-+bRi8%$nM=sue1-XtH1b z@~XMDw_B9hc5Csx#jizQ=GY*wUTpW!Xv`JDHUq}@fB4ys_9zPLAmi3o6f424rtt%A#y6LUkh!GQWf_u-Imy7tM=v(4&DXt@cK1C4?di7 zmj6k`^vfX!Y7selyi6fo;w~BMH0H{G8-zaUj`t=D1{AJb4a?JQ9SjVh-S&SL~R}@f`VmA6KhcsFBvH~;y zx2#-ly{Nw=3k4pGw%ZJqOgOMFtA0Y0zp}dTj_ zk6Z(+%a^cnx%I;tDzS=gG=!6MSd;6ZfTF0fQ6EvjAx-{@0*WHaM!#hNv+70hWTU^L zaswOx6^cIc>SeK{$h*kr`l$tbPdOADX~pAlbvecL1H_ZvO3%2>b5Eaq#Y+e5Z>1&G zX5NDH`d@wimG)z~xW2#5d&~>AK;}!dTV>{c9GW(5IXkY!_5EyKe7o)X{%zL}&`D>( zSDJ-4Pn#e6E6;A>C1rRSvm zkQNd9|6iQ8CT(n5k@)uicIq>!*NHs|Q`x5hWt=l3OhU-v%Yz0kYL zJILF?^PT5aaq{0T&ty-)lj;7%{i6Fi_d545cebblsBzuv+Aa12EO+^w?~4-wu5_++ zj&kNWesP>|-0wI`>a@esX1U8*wtg3rSZe zZAluFl-umLX8(rpKRYZ6DU#Z#V;|KGs?I$u=SgIQWDP|dYwtC^z)j9W+E|e%lo3+S zrbX&1SV`*BE6R~n9;Zc?T1U^Sxvh_kWimS?^PNq)$AA%1o~G55t`x)W@r*V?+j$^* z0X}vQ$!$!Qi<6$y^Cn^Un9L5zEN7GMF<^vF=cYQVisc>HJ-(%kkZ>+ZXI)p0-9vIS zlc2Lc4HRC#*&*R%HtilZC3BkExUH=+V(cE@(?&?9H8t5wZAtPrb`MFJ+0#GcQGMODx z-f82DGGK&+gGv{LhbxT~pL4=lC9>&F4_;?>NI9;JFN#em-_`1WSGBp>#pq^CYR>CS}YSA?3(gEyDAV28@p;<;_|oJP*mVOy-A_ zOKV-b>ggNq>bS6uugzReNO-mQG@*;~1IGv{pVqo)0@E^?9a4^MW0e`m2`S%JHKm?i z`fA{d8zJG~l1-b=ULdnW%GqsnH2{o|@OSN|npg^shRP2q-`7&BQdwVR4wa>VGeW}s zr553FqxCQ4XGDHTxWaDhA!7DkcSb?8^DedZ2hIoyr}%%g$Pa+*kZ_QjJeEosFha^X zw(JB?2MKcWmciS=nq|!8g!;tale#I0w6a6J6Z9$$=#>cImvDBdIuU>~xQcrV0h#J8 z#ANxQO6FkNSsc%)>`+Cb3-V0K4wWYY*#6m}vP1w|H9J(A2w+=fhe{FwEPZw;kN|){ ztuWLRa%;2ip0;q?bq~o~L&j;rVb{LdEq0u@_ACs^+D#GEiXsw`Q2+DY9@qasbhX*# z-FE*;_CH`pQ-vW}xoOdE^Mbs;<=Ru-c9og)%m+X2`2bVw-tQgn+VNO3O;?&( z&mL&eu;C!IEvq&y`lPwP)7oFJdPjZ05dE$Qwo9wMxbWO}ftEF!7A?Q&5O zy>IOm4z7SH49SX3ixw5ji{$tHn>Af#=Iv|oO{DE5(6+4Cv}jSkd!5)raDG73rDo?x zldc)#$B%!qTGMX(YO$AtL#6gbze~)#g^&Nx?Os0WsW2pKH7#1yW*<8D-N$;g(`^UL z;>kCEF=F7w&=XmyY0+YoFR98oixzdwUC-%t;I5X~Z&{~l(JpiUYw8QUrmM{k-~B#i zp%XtZ$tq2|-$y^~@1B#S=_)hNG|qYQ;||ahS)*yuBJTcFu9DI2N1)Q|{=wMOpO`lc zXj!3Y(cnIzq=Pw+l3)nok=}8 zkoI+1_uhMT+hu0=!*%DsUE0p>iH!f}Hv7C;=4+V`WS*V5AhSw*|NkiC#f)n*)?^IH z@TdQt9!kG6eUCT;Fp&0F+S_T5q@ABOH?2=v2l3tiXzJyu>r%(3=8Lue5#Qau^L%rB zrQUzMC%lKe7kKA;E4^u+uf)!OS9?}_dVAWtzjeRtzRW$(-QV5X^`$H5y2`cLHQLoh zoCf%e^E&4`=P+k0$NOT>zbhRp9o3Eu5&74o+>){-WlTzL@^8uiPJS@?oaC9wU6cM4 zU;Y1;v^VM0q_QNh==}f1zwEH^ZkxPMD*4f5goRU^;MJtJOsM2%lo1B+79wui4iZW5 zZo%2m@m^e;!n>ub>jPXYo2dh^<4ACG^)9oL)NdFdv%|v8Z8~J^p7L%jcLQFbG-Q72 z2ExabI=#t>@&Zn{S3&jWvkC#Yz=hM)U1jiRr1TwJna3Vh# zfIxUC^t0*RD!wExQ(Ii0u=^PZ%dKH)vO{)*hE^S1wfeCo(^?(1e`18eMb?|P;n3J= zGs40}Cd=znwQ*=nW`|X}xsfvsM{fthCiD{?FJ!H%;ObY0oFR`topLAIh{^1*@UWW>gn>Y~ z5(J0agho=)jFAf{ewHgc0t^B&5=5L`e2va_UaGkJdCC5tG^B;zY(` zzz7#{QxNEqtN5o`y*q>-b3>e{D zZVFr#8WFzOyD$l!3JnO!945htG!P^^GYK9FJ=vJd4reDC2m?9cP7>gkFpYrU(}A$6 zAk{WWaGL~z%N+|#PC39U0*r7LcQCJPWY6BLxHjp zBixR!1`j4}j5x9_lkhOn#)u=^FbQsiHU^N{;noR806-wDszLwj>=zX-O=o{gzB=R? zsh|A*Ho`5K#F7O4HIT{daPvg{WWWe#a#Qf4CmH$8YJ@YG1i`6$NTxFh?{$)q$?R}i zqV6$Zgj2bx1l{A;p%L~m2{W6zhoqNDb61u)+oK-lDHIH4hdqh9hfTS;DVSQM9>4R9 zu#3qA>LKY&NRoO?W``Y#y2pSKPT{5?Q%l{$_fs;H;OmfjNG35^CdV2taim(4gsj0pXd{6lH_-2VS05iRxh}Hj>dY5|piEsbEdqSQ&Jv%%TJ%-2O{>c55 z`(pPTcd6Usde`-=>vGp}SEVb>`JwYk=he>D&cV*+;w->N9s3;19R0;vfFGnhk#eEf z?XOQti{#J5SO2q;rzaODrzL%u^kmYxVxPZm&Hff0|6l*IBf>ds;+|E(%#DCgD2}FC z@z@9F%UMQS-NGb_fKOPZ&fGg&k~)Thjei4?D)5WI(bP}+s>KZr);h5V+SJW zC4$GP=YaUh$R}6)cxCnD_D_t6$imLy3mCbJ{LYixQeGGIi& zS=2iy$);#-fp;4b&LUZ;O4h^wm?lY5iOE1jC1v&4;n7brl{E=b0uhy&)jt6@oa8DC zj#K9X^Cto$0)FH|RrZsKa&do*2>6k!)S;FRl#9viNFqP7iUA`c{74c(@05pff$JRU z$Rv39Bo~t4MZ(jN)M7FaQ45i@O5oa)N}@=)(eX}3M7WdGVSQ#ds>F>O5#d)7xl(Lz zRk9qz?;Z01!6M}}!WFV}T|7deVY)4}j4)TxnLwYUbytNVDz>Uwa4i-XlbK^#MJ(El3 zw4S{5^Aa38liA^QiN?-=5njtpf%8D-W}h(-Rx5z?h~Pm$gHPbYhF2$cdr5?*KQY3q zxIf_a(gfiC7~z#ng14)mf|X2WhgT#LfdM1DoSTB^ltcgrF1(CMh)ziZCIjK6Fm?z} zY3${}b<02b_U=1B=19|nI5uVTe z0oRl!0QbiTL)9m^q$C29GX9_0EQIm@4;eKXw}`#}24}QS|2F;Q^c&MRrjJZ-D^~r# zn08ItW>Np|PyJne`(K_qAhnI}8{bR5Ykf<6Wn!)Wd)~)H<^O5kUS5}{!E>)?w`Z!S zSgiDa!+n=~qkE({@9$?KqKPpc7J0odYQc+T}=yIZefhfCN9y*>@P86+bb+tJpvuE!3 zf4^lL!ia*)wdNAJNp~BVT5!^X5k;3voX+x1tDW#{0Wv=-TrR2;oA7GA_`=&#k}5O= z&WJ){59Wa0&9NFD#8Gg-V1j901@-qY448uzzAi!6k!$TF+YOj}e8O-)ie@Y}A+4 z$d3x&jP#w{_m(rojxek*b4C;#v;_LX!#)ZQ8hrC5eUStQ4c=a)FOuM(O;=~PT!r#7 z8HlQ7+e%ia39l`ZwbJbK8UBRwThsgI6fY%48s-)@PmBn-a0#X@ z_s58U3%5oUYU3NHn#uf#a^Wm}XWw|<;^7lsXMLG7BH+N4sFS=lNRIS{S5!nea1;Z8 zlTG>}37#Chb4gz&0};7{5QzmZTY4;rj8XCpvw95r-4-hlL6>fk*!8EY^C#J3(ziU= zzeQ|g+bHkOWkkTGTlH=6Gxyf4mA|0*%l$DT;L@$NHZ+o?ewkG>nI91@9X%H2$+N>V zpOK{X*k#U$fM*A}CeoK*k49t->kIxb>5JrQCYyST)l3E=YH_!ozwjO>eVeA30+E$q z5_qALzGXpEISUhQlNb@<+0o2^TodWb{V^io;;p@I^Ah9QgQzc)`4Q#fS@U;N-YI*< z-W9Abb4Fw-U)!(FYE#b<(iamn;MXO1J|GExU72dLv%EIVUnT>QMIaUw(~-U+Ii=41 zKHU~85IGHg0#$XSZ`1SJjmSbCeJ5&_AgLJs+6NkIayyrSD>OZ1XnO zmpLOcom+(BK+>0!L`Gy9lki!Ho)1V)WwJu-!1={xGvu{NUnT>QDYjTAO{fkeeFMQM zHB0w=vhp!otUzQk`~=DbN#8(lNcQ6|KCtz9`zJ{!7n1!Oy)->NYc`GxMRVpEgRKFLe}$_xtz#&8F_JPO$!SLb{dg!e9>NNubD?> z_q4Ea67$zaLrga4}5E%`6LT*j#DfR#wHm$7vfuqYo&r#esbXAKms{5Jzs&$kBpF{rKdU+_sp0ituIVmjA=xMbBmCBA+aEZ6&c24)2C<^l0%t< zl137X$v_0_C84H~#HtRC82Lu_kjwla)?jXY*;{w?`1#%yF!|!TF^I`E+wXq+ryIth zSlo^L$UsS2Vhs>mSRQDm_WQBKV$O(|+#*OoVnOr}8NejSs&85NjvR={Rr=&ILC{5N zRRtF`s)h|jTJe8Fv&_28 z+cURij?Xm2?*9!U{$H)*|KsU*q;F53klrcn%d}wHRcWil_x~=bzoyoS)&EOV`=z$> zec^lFceQV|Z?Lbq_Z{z}-hJMA-U@HJ=OfQkp7X@I{{r_vVyD0R-50p$yDQx(uCVJa z*G|_YS2vg2`Hu5Z=b6s2PQT-KN62xfV~1m+BU`WdUoFo0YcKZtJDj{Pd0uiwa%$2C zNlzqQm^3TNX!cjLhD71N`hP|g@?`oD1vzE3f#D1&BMNykNGoas0~v^lO?0%i+~%_D z4=%3z@JHFGHgKQAnY! z%o;Fo_8moVTR?w|D0o;Ctiv$jwumFa!-80iPN(6iU_`;gs>qeAUB8xX>W6bLBt_UTmFO;t}+L`Uw75s7pB@jF`|${gA{|lh2q8tJ{F`H^eq%ef{#^l z`h&u6>mqwW3Pao+1s@BdHBuPKIjryic_jCv!)2SKFp{&GoURH}_DPZyW-<_+Wlu3YMfd6KXZ+%zlkL(LG>4hYjtY0H$#=hA3>eYGUKW`Eg6k-FS@3=( z6CgR7yH~p8p~CvU58)(75}d0kYU>j9Y#EU}f#?X^1Sd_XVj&Zh2P^LR>Y0OMn%h4yqTq0?6}#_W{`f|mhy|QNA6uE8Ln4r8m znSjYa6xXFJJpA~7?k-R}KavSVvf{z3Y8OA!VCxx(;<^;bR*(tGf)(F?FlX!Z9Q!9m zv_Go>Q8nEK+#e&_kI97{qrblNR97?sllf8QU|B9C#MR1$gp=cpD7aTpd_$IiNIfbl z5a|wta$&j|knF`I6yJ~~kgR5Ml04kD`;}-3CIe9{MO?W2o@e`=`MgBQ5+befTjb-r z7A~=64MedN5vp&<5~ab)kM?%hn>Wk;i4m>f{;YlYX7M#%t=1w-aDR*_lp>z?r98v5 zFIs}h{HR)|Vp*bxS|F!Z7+aQL&WM)swZUR!35e;VB}_togDin$AR$SXK(Z&3kO-lB zg2_NsEhE=CzxgM{nX;c;hL$J^4q7rTQg!%?Q4*}YJ-Tbpp!@Bg z7||l`4`f2f65JmnTF4|gTl8jNGC$f~l9nYP2(m1}Tu!tgKBgxVaM*7|yYWRUFL~y* zJ70W6YCtAH(qIydMJ7P9E0a(}L?&P|5LIi%wVrbi%AEx7M-zw~$y`TeZU0+sJp)m- zU|jvgX+k*>nIK?RH7q~$=IS2yPmHLa`?ID=sZuZQj}gsfa;X&K0rjFH6EK+{?IKCb z1Zp!b=+LRv+e0LVZTSGIsd zqMt|NETdujo^U#UyVBM(5LFwbD-(E4$g5}*h@G{EPTzE1ySat-PmE{>?hoWw^j!e` zF{166Tz-AIn^gV3k^WbDL;5Z0tJ4Rkw@>>v?Pam+|JJl|X<4bCr#_c@Me2%FGqscNN8d5u zRld`Fz2d6>eV%`N9`u~!nd#~2ak@WrKj}VK?DXHw^|veLy3ci{>r_{ntC_RTdAoC) zbG$R(anccS+$7fh4|KFk`6lJ1lxtJgru0qmCcl^bSn~el1!AxN^rSbF?oQg3G&!lD z*+0!r{MY!uSu>*na#!&EjE<6K#f%2!>bVq zJ{80@%Ce0}@Tr!mg{BY4t1HXKk%0#Esn(4D^vJbm+-zG`qQUZ;R(z8E(i6620}bd? zt(1o>KdXvg)t#e$Qq}&|Sx24U+dnZHz^8(;1$F1d^~Y!cp9&%}QkdgZIZ%Bf>#CK)k$F{0}b*JM#{&*%Tqm@z`WEDtZ?vK#`URB_; zzpu^vtwy#@3PW_<0A5v(-{fHyPou&}!s=grXuTv!VI;w?f?6|D7)kJ}7T>pY!L<|B zBZm}bGSI*)JzVDMjJZR-x2t3jDO_px3VnL>0}Wr=as?WArHA+lFIOam#ZS~yNZzI1 zXz0NTPgk#1ReDJZbAOD6VkY4YM+!sm+W>x5$tzbh&wfqq5=l=9B*CwOG96MFN#$4R zc#0QUkitj`&x&G*MSVBkd1YAnEu=7$fd*Xbv04URd(}r$Qn(^m;ko!f-T(Xo6jrBt}$d7kO)QeTzONccT%I1n+8r+C2J8Gy;=>hPJj5+~%s;?w+}Oj!Be^P-gaj>!HqlpT5dg zG|-@qol!<`nvhW-Bb1qCM}xl)PrlLqiP6xSb%V?T8G-v_G_+z8;#9gJkZj2$taK+^ zKhTOgUqCuj>KGnibUwu*lYZNX%q zL7gw7y;AtBLAEFjR%P5XXWfXKZD9iqT$$)gWQ$UBa1&dka(_;Hd(Y`_c0D2cL$=`l z7!5uq;ki$?U^1t{8-MGN5jgBM8a&(>R2Y&GkaRPdzz9gXn1qiz^i)F9$>jWTvJg@g zM zNap@PT7itf{V^Jnn1n!-jKE}0L$kz2;K0|2?&ikI#yOj|dksFzu#S6dGoe)O`qT)Om+tFVUNUnQ4 zL#5=^ogmR*)jLNw{rm`T)EJ1Wvt_gqAf=#;Ab(;GdEf)b_5T_NYOLe_Kx#o5A+A40 zbS;xGMrDLXPXqAE!Q@dP(Za)PboPzPEh;^6mAVs_Osc_y04! zW4(TR?f-aBk^6V|QTGk*4ek+Y*Z)^tce*yXM!2$_KRIihw>Y}O@GSExx zV981vF>sYo+*Dq8dnET+hcSIPi+etD<{g*IPP^!8beSV12+l^ zOG#rS!Hw!8w~%{FJ(NjfB*BfE-tO*)+xJnkf;2`F+^EH}`1S49s4r`~$@o zsU1{k9#;lOx0*eCfBQe|pA^I#tZ^Z3T1fL4qTW~v>jC>#7qVnc7e3B<@u;tYTpc!wjwy} z;G+*tZ1=h?ZBB#mu&`cKyD~8Pf`%Rc2lX-B-Ol4r@DxE3T&Y4?T8+gvzDk~G7a3^b@i`t%H6+d-wL zB}(#_2g^@sGkRs#WLwif1F!OMnNXQPW+*p@t8ZI;gl0~I@Uaq^fjd&ruz}5B@RBEf z&|svyo`pzY1|-3mD&mu+$P7q=Gc{>&$BJLSQ{TqP3`l}AwO~z^v-KN4p&5__X9`jY zWCkV!4ZN~Lq!7Bv(@qP}3}t3{X63BQuk(Nz;#PKWbpn~8EI7~%|NP|L)9jxZ4J%kT z$R*HC!Tl*{SkBhyDC(AB1l-sa?`vVC~vIh4jw_(1#eUzhfGTsav?HUbGb_j0~G6Rxx z`NGBOr1=kJt8`N!c`B3R)oD#zB}ryLat@R8wzR*p)8G!0Brg)l*-Sz@fy}^Upn=N{ zPvTb+dN!2=8-FDUG;rCW8*4$y3?=4Z|K6d8)4JQ1Ga6=ae;}VgX5jwhHcbC-X5e_& zXqd*$fm2FmKyoURJl0@t4J~flYs^%)VETzBBp-EKzTmV85wdCX^_U83N{j zYoA}T_KmB+4CA>!P^v&?;Qr(`jQcNUfU_Em2Bj)ba1@Tm0N5J!&YE{;@^ zMZpYlj9oPst3^hd`3^Tfw=yZ%2vGdbg(jHffM z78L*!GkRn=(%(#fIQ_!(73rqf1Ms)B<7xM%?Mj=K)*~%7^}W=`Qun1UN$s85-1o8X z1>cpv4ZdMMzxP*f)O*l-j(57Z-0ShYE!F{C=vm;Y@}#=ob02nJ;$GzL?apw0=z3o4 z0l3sP#C3}EYv(cNjn4JXan4+E`d`HHkmGE}G)H%bJLRpEgDK~v%ugv7djY(i{8aLV zq86YcxnSwT#C zkm5)307t#E4ISX9HsOa|6ANO}gVd}p>$6y$wE;FKCVa@G_NsK`qy?$M9Y9KB;#g<9 zzxwGF-`}z(d%hOLq#vpKpd;M){(>VAlb)nzbrccbUuJV+B0HC;zl;>bWLi!)r@wN> zcbDIK1u>bJ)2yzuj_)S2(tG@0-DEZ=CcMW)-DIR7Cf&wF&Cx92w?aWoI*yu+vw*s1 z#Ed~!x{jKS8$MZ|*_@bg9uswwk%HJNZcgvk9IqxnH49=Znbmts#;b{}^b>VA6HZcQ zb7I0%Ow>(A3S!bh)XjCVPHv6sCY&T#5R)#VW)scLI957|)J#$TFqCIvC+32Igsvc+44 z*_@d01ruGGk%HJPZcbO8#9x{d1O>5~%qAQ)vpF&0_9ePBBLy+x@6kvSUK+yJm~{L8 zm*C7AG3oeO&viN*&>E6@yq7Uq5R;A{X=xSi#}6JKtNk5MUZ+5xk{0G+J;F&Cl2|tep6!+?(9^jKu zx_gO)q8>1t6B7LOgMH4E)7U-Y^X$(AEO_DbWMB;4dH9Xy+`zL;mE|Cn5cYA zbWLn-5Hx3%?paDxbNm#_i49EL93urW^Z(EsKUs2O0}?mKNI|SWHy8H=px*J*!ie>g ztX1e6_wZ47HJtKZ5bMjW#`&1kDn9{oVto>Kl97T~Z*DHm0iovjt~O%5xRbr*7H3Cp zfV;1h$%0rlx0=XRDdjsgCsviXlZ+I^D!IA1o0&SvcVAAdB5`w!6vRY)KsQ~S=R?i$ z9hDO+OWYhI1+h|YF7Bq&&B5u4IkA$2%>j}d3rGZSBx;9ez7gvwuW8MfxaWqNFYq-j zC)OkJ6?xw0#EKImJeQ4F5nnHEE?d{bnOw+ZZ+Q^m@7-XMl+n8apSs$oS3L9#H=>u zco;Eaxk4aozY4S6=3Zk&f>MU}lxjn=3zH=|&7(u6sm<0Y)rMpalLH3)BtM@)aslR{ z5$g=(fm!0X#d(li05TBcI>M7?$>L37ncfPCQjSL)%Js{GmyUR8q8;^G_5ZcaGT+Jk zSLV5y6Ecf4lQK?-_5Zs>^q((I|9dU{zVtK1{(n~Ne@oiRv;k=y#o2#HQZG(DP1OIl z_I>U~tpEZs3`wz~>D>wlz*?jfF`rKmm zEe>qX3E`3@c>e)Xa6+cxwD%DATvQpLl3tZO`%6#AM4Vv7iJ~XXYJci!k6t&|y0$Wt zgoDdJerxnIeR==Of)n7I#XZM$a03@8IH7zqO9#CwEnWxiOu-58&gMP6w&s~#8Sy$W zn{z^VXNh!Rq~L_i!f74i9_XY4-{Pew!NCY|e?q{u>~< zCxrhN|K_A|^TWB|gmB!be{pY48aK10C*=MrG*{x>G8%Z(bNmWUC|Az95A?dUcmenV z1t-9nn_;aei5Gy`oD+$iIXIfH-~>2xaX~(fjbHkuCwl#V?7ew>l-2b={yekfnVD=# zT!63)OAHSoB$*Hhf)Gdo2FL;ln}86KNeF}_WD#(Q&RDgJ)}?OMy0?B>acQl)Xt7#% z>pBaq8o^qtb!lzuQtijzx%;`#47T6j_xH!|kNRrKJokCu^PGFmUCurC+^ebC^CF0{ zDQm@!Ap=jFehRf=EEsr#Zq0X}{N+<8uG5QzvB=WnTdedVDQqy7-qNd35IY8zp7^w8 zREZ)fvnmuLTT;HUDpsUX7ubH{1N^`gy=>|Ob_|R_f#s)L>Sa^dU<|Cmbm~%&P^<{? zo3?P^3r~JEyl~>TrBx7$k=vucv5>RU6cUU>!8ku_PA{Y~Iqeu&i2}POjnl6}VS};s z<|2ZGV&ob-!LK%Z5*kc(pod~)L$JuC^}M2XmLKS#$9!#&lCfi8QVPbkk)9hF=tANageR|&{DxxW?r4!o^XiB~ zre5)9$B4xVnaENI-==dB3@C0KRw!&RHadNg6vU1lugGa`C{ZM3ID}#(fDniN>y2P zamlqy*G;+%H8iqiMQV=SFUus$H3zo|IxqgRW0{I$t#OLdDYL_l1r&BUF;R~@M$_CZ zg$>61=}V^|cFd>9X(ozbS6Kyi%u-m*`VwqnY=**WmWfb;!UkjB^lU0fC`R_JNU>tq zqTmy*i=emYs1pF}m|O9XuCb%*1MQegVQbj6tGZZ~oe+$f>G@TVP|QI5YQwGIw<2Y@ zwO>11@sL)&YCN}J8&+7&lo0Y&*x+ktrRP^c$ozk;@tTqQT<(>*+jE!Z=I4Bz^LWnp zbGGIz%*o4sH~a4Fv$9ua&&+mZ#j|dL)Bmcn#%KOD^EVLv-=0|sr~khfcqH)cz(%siXY&F$s_ z(+})^PkZ@gt73iiWVkczP!qg4l7eio_VL)iWBNQZ{#vvY_lZc+&({8z}j- zOv8d(O<=XbM95Cj4aLd%D57y{W}J}OtOLs(_W{^(WEJtFmUWq_57=?yc!LiRLxdmK zr^`%XgK==ZrLmy2vJsyfC#T6l$V^#Vb{yG2{5*R0X(2O=MK(}6qXk{uX2-z>56Hj%O<@-`=YWPho@ctn@WcLF_oP zi8OOr2oIT`aby!Mq>-)L^_r)!p|~H(A#KlAdZ2sfy&Y@vo|Kg+6!)P_n!PN9S9)O8 zzV?h!D<6}Y>^L%)Hk>iD_xJ|4Uh@=Jb{v^Y+kX$|3cYcUEmmdz3CT zdz=doUFBxSk(H#Gh8bXUD-@5|v1^$GPm#2kf|^u$l*wS2&D~ zA#{y>7msSpHPGHA+6;_+W3OOijC`PW5 z6LQezBSH?d51dMGpuHB=hn?yJ{LCA@KBy1av2KM8?=Ri>t=(_ya!}Y{Y)5)ID2N@~ zuE=R-sHhKWt`Uln6R}0v(pHFylrYy&Y#Yj?8S_FQsm8n=>r`B6w!EkqiYq(Tp|F|_ z&nHyqy1Za4oL(T9T)QHtg@p)#D3di5BRf=tK+^UU;AZ{g@C|$K*(sGBijh4kB2(Hm zuvrJX*T3>*p#E5y$&R%uuJ|d@dJR!r*|9AO%Wvw{Yly-IW1G_pL_zG>sfwJYbRiIB zb%tV_P}wxATQrsO1D*6({HsveHmVP3)|RLs>H~IcgTiXox2PBxdy2wp*0-n_3LA{A zPcH`rv198LIn8zxa!@vAD7F^KK@*yg1GswW$ydvz973@*C{tQNfNAZxQ;^L6*O2@F zUd#O{tpBgiEzbEo=XqHFC(-|8{r`#Vi?iFZ=VTv~^{1@;Sr=rj$~qzQpP8}DeVJ!x zHfK%oU@-p7c zxI5$gj8igZW_Y|w@9o~*-sRqjp1*mX@?7WH<*D@?#pC_gx{KYWE9Sbiwu>E_J{TNtMX4GZ?##J0y_d8@M8@j=CbHVO!NqYg5T zteA9DZFIw#9YU#m5f~>Z}860bH!Fj(S_oDD3jLv3wh5v zQ1$3JftOx6U1qZ5$iUgjPQYOw67p7D+3_AF8GfD(!}4Agm9{WW?HVTUrgvX{O-=jO|i%TM7zpU(h;A7q`NO;@GOu z1{Wb_*!cVPo>Lcn?+PSlWYuU@Rft)Az>XuUhF?mki&F1B>bEfy!jZ!KM-QL-S_{F=H$;Zu*Mtw_ZH$I$g{PTNvM@#JuGya-J3rv#eA| zJANdKMu-`^OOQpQsYHkwW06IpVMT3L*ifA8!4+U3Q@Q z?pHP(-K35(wBu|4jl30Cc6^P(rmfZrTNq!h=8n7vO`xWNsC((@-98F#OXbV zqxit>9|f;!@62E&5cOMeWyc#-33ir{uKh8+ek*J+UZ2(mMi<1{@fC`k=APn$Mwg%2 z@#PAuxuY$Y~LTLU?MDX2)kKEWcoreOlB!j4fAKErL+UPGLjw5E8T&LMUW5 z`@phl|JnVwxRJ~tlu%d(;pckb29q=N3a36`$5BinKLuEqnZgF+CFv`ig4pqy>eJc; zPRI;TK8h7KZG}@F*&2bl-p^#5&{^I_lr9|I2sz8_d0nCk!B|GfW3|Db=Fe}eB5-y?MOztrck zlGdG8)LLUr%J?ATK*r@6+cM^7jPm}``;hlMZF9iK|&g%a4OqG^O{95OjiX0{W^-q?B9Wk0Ka@eWPn=$0}&LG2AT>s$}F;QVW| zt!Z4tB8y`-+)-uS`zXWGJtc7Lqf(KbKo*B)wee0}!y=1An~(EqqG4C6YSO|^AZI-A zriHMf1U5AI1?mheB%XSOdMME-+n86MhYN{UR5|Z;vJ=SSNH@trT-gb*I7EBglxFlq z*og@+J$!8RWQu2d?ICos<&8}LS4qALhtKa3Hkbet zB+cR+g4hXUd6eIL%pDVc#y4gNrJ&hqVv+i^HnA5C1!G~0f?!jdaSEkiEV472&%9#U zgtNx#N>SKQ0`F949ryLCQ*W56E2aFv;>8c2KeAgH9H9ic3s#t!TBR3CDL*jls?lHO zUp^Hn1(_h)R7faAab+iv38KZ^2&E`&Vd6w08D?hY(~~p(tN^URD5Ra3t7KUI*_Cg+ z_D(TF3f-V7Z33Aanv+ZD24j)Ap@oPD-C!)38$ypO-~RONzLib7ZWK0@s6b-g^7L=v zB*-zkZonHrr&#I=%ur&M%;c@oVnc*(LRGW>_ksuCyHj1{YA28-(pMSXbm@;qvkwW~ zD6Z^8NR=Q=Ze4w^gJFek6t*xy4G^Xqen=a`GTkVooj~SC*%PBaxbQ8$wk>pnroRa= zKZFdm^+}-{j74^ch84QOSY(GZos|y;`csTsF~BHnD1l@4PGuKoF|Zh5$_~`bc(v*9 z!i!}S2qjd^p1(?S)d<~`Rn;75Z!Y`2DKpuL>8iA8+l}JNPN0~*PI{c-k9FNBY+-_K zX<)kHmo8%6D5RYzR2=Yw4;fPEMop^i#0d(!fQqG=VTEomwm@O|`Opk2bc3-|6;_)C z3*9JeC^1DgfiJ60dGQuFUHA(|Sm>toz|zJ$Cq6iKw-j?IF&SmjB3p!R;I#AFOFo!+ zD;{VjDX#d1I_yKD-6*c?1PbQc&aUKQSkZ12wlFb~&}F*O%p%rq6w*#iP#o~<7Z_Ep z8+6&1ofxmM+F~WwjfNeku<3N8Ve=KXk=_}~w^VT5XxOm|%dfE3RD-ag#2BO!%`?GO z0vE7VKJmqhvwr@*)T5mktv;Z6D7Z?{2kgZ03cG_29mi@aLD<5?aRkd$axy*?g{lN0 zCnt_|dNYJB)DUVXj!~ap_|fSNCxl*RpBB2n*gS>R#vhLKg}f zO5hC+>*#%6Khc!|PK*b(|Luy(`=oqB2^`a>1?UK+R3137)Bn%QT%TE-X$E3}p9j7bSO=&6 zedPbO|4RRM{{sIg-yeMs`Ofn-`KDT*ThCiJT7z)*|G12IOvQMNH2Xj9R!p(MHHi_I`#Dn2jk+3(+U5d+hvLcmqC zr(At?>7U+}wLX+oyDGg^{Mrkai8d9QX%@ZsqDp46lgJ3s=Hx=+N{W+`V1)RXpPJF7 zO+@3|PEJvho)Pk|d+~C)SvBC+pU@S5>RuTV48;`RVYQb1)ZZNfI z3&BDy3L8q2ODvd#165jgFVs?ARrBja%kpdQmJ$vn$=$0glfO!vR|vI~S1oRsymjN- zQJKk3B1=S@my5=txU!ST64B=6LOU3Hv}y=bA6OkNy>B^_qRaqZbkSe>k7t|(2nBDPWqL^ z`JF}#E3|{LK7~Eu!V79IsW@5J4w@?_k>#Pa2caE|MV5y)#}L}VSZaANiPy7>H5m^= zI~a>>4{d5Lw4<=0B)K$9bZOhaBF?f&jIhv7*?~FJe&6zR)%h>``28 zhj9&}3|I+-b`)23VzR ze*CeHo?TMHp@fRm^HpgxbE+1asp{q3&;I>8t7IlS(W|)9X6RHc8dr9rM`5)YI#r8? zot)TtB(>l zP>Z4)N~j<`tE%&iL$6=+&SknccRHy}G+Z9%u3DW)vB!g#|Z3>%K;uwqK^|V>KXb2eF zs_1G_)*b$QVq*pS8GOA#sIe^ZzHs{{IEJqjLTTr~iLH zXMN7p?9a2G&%QBxF#BYf|G%4cch>pz+<#YQJoB#1b2A$<#{@p4r~Y>ZP6{07e_!nW z_kHDi$@gR5S-zFNan`%m!`8)Cn>EME%y=W?7a3<}EX~OGe(ZhRdzE*G_ayJpp4UD9 z<2l3A=$YdF%>5kf{omuRcIUVbyY6#+*LA8ZIsL zA0LPDO;HDt-LUF+ziWQ%`j40-`8cd$k=?*=%0g0y`~TEr)=nb3LF-zn)HQ4J9A^q=-XF zwRJI2r7d|2z09gwb-`DMzOFn+W}2J?Q$n9)3&kjQijvfZV2aTu*-9~Z(zi<$l;2sy zc;}P8GK@vr7x_J13@aK8#v+?x<`1&u__WqF36^g-Fuo;A6 zc9H`Nd|xxHP>jNclHF1pdMy-FUbQsx z-CH}xERu?`lgOCRrrAP2imRd|H71yTrn38U8Bc-ps3l~-H575c&0PK7Okfc(}U zRx`>%KNyRQhemc4Ji`k8U@S5owz%BT{T*Ofp&yJz#)D?U3;if;D2aD6_Kn{4z4}_d zRYT|pZrj?v=H5f)FH2E}l4>U-?4`m>-$Fm3s+!y0D}JJCpUh+@kvXABQRqi;Rg~O9 zq{#H6g&QmVpow2{vy!>i+Jt^E7MTxeJ2s3(=EI6J%pcshjfam2{a`FIAG9uB=m%qw z`JgR;3jHW-C`m5ik{ug99z^J;EG5DulvG;){8ic%Tj-~(YU$v(9Ls$H($6|2MQy4r z^rN_%np{gdL8>1fouCw>=6rT?jUrh>V}M>~l~yPQV^I*^405&Q%{*XTG#rdYL3qpQ zawWIag<>$aS@E!*%o4{us5cypU8S(w*Z0T2=9wwdb1m z>ZFWANgR!*sa_}srtv=<$%=HNwe@79;!0Zs7m86_O-(i&Q8DNUZaZ18NNP?mt{4pq z@pq!PpGilN8B8c#F&Y*{;_>UN7?vwW!!A>Fwdnp=+B};p25~htS$kx~ zpm|@iMv>%~60(8{#b7K1;R(frW<+kAI{JIMVlWm(<1Ov@y;U-q2lolZVC*7Acg=4f z58d+9FrzCJgRxZ#+wnn0!@(Q551O}_QiTmA7s{>-{2sl#JP%Kq!w3t-R901e^{wcp z$9^hh97^J_ytF>7$^#YK8;-J``dVhPlP4*zwAFB-7{!&HoUgFjfFLA}=7`C83Y&I4 z1Y=KB*u^-;Q%D?RQ9RxnvK(UYQ=EmwF}70C4R3hpN4Ji1NL*n<$vINu5Hot+r{8(- z;xl!L&pA*rcKMlWUVl*vFO-}uGX<)&8MbH&bE;}D^_HLT@`*B&ovct?X)|phamAIL zoTad7C9Y<!FQ%)&`~ULdls@;-Dt7zc6YuZiK`kQ~9ndk9pyG znTgE*r~2
    ;Jdr?#i8?dsNOJavsRJFlS3nDEnX8PiOxqyDz&Ydvw+ZS&wFYC#xlE zTIN@oFJ=BXb5G{7%qfBY4ZIS#HE?>MAu!qhFMk{e{rA8BO5nc|_^$;1D}nz?;J*_1 zuLS-pf&VWhF!kUGDf2(F2vs&0))&;}Qd18Wq`*o6R;t4$ADl{H)O_Xs7vWJ+wCsZ@ z0B`T`qk^$00I!VRBg5|;XDPq zdFJ=rCKnzR%mWI*(-!oFLq%aHAB1RsT>!#?qCis*j!zM$l)0J#79AW%cx2AT>9>*p zu4d&?J}rf|59X^9O}k|4#J4|vi=l-EFc!tyRh@eMf%Xsi@liqp7>i=QemH#BW!EsQ(15~*4&vi_TVLH*HvfgS3@lVo zd0^26*N@FQ9__O_sDkdiRaLc*9QBiJpRr6rC6!fevzA|Y`iED@*-Ozu8uia)uFV0J z%+ZYTV4f;(I(JnW#*R|h1;o+utpwvn$Q)x)wB2f0vi|Y6Z(~>?bBsmNcG^B#;o!ws z6m6#+1tw&!u%UxFa`Kl^wd3Hxo`-s0)MY-W>co#KXDnawv=m?HAlz^uy~3+5e;h8C z<4!pt^En5aUhcpD{uj=dnTih5$bTmDQhWf4lDV46+6PhW|1=s+brNGs)N_nQ@pdPz zA!k$W)n$&cDBeyB$rUokSQKy94)-8VzkD8}D`bwbDBi9c{7^0Vr!cILxx$7HW+3sU z^F)=wgnQmkZvICoM~W|W&?__fs@9V|3w`|53L*2^Rn2#G|77#|8)c@VgC0^Fnas5{ zS0!__5`ECE>TVGY_T}XjGFMnK|1URS{{M^IvvOzWyqR--&W@bY>`$|w%RW1M7R>su zg&qG!=53i9A=dxyKs2yAFv|Zcf7CzT_n_|->nrPK>*S0-WSo;R&-;b<$KFP-;rWGU zt;g?v(7oREiR*4xuWPz_(7eKIF%9_4|LuQ`MzF27 zXRxbh2x#ILsWeeWpn1{4GRvNqn_J|n>FN)+4F(6g2E&vfeoCPtU*;tjms$n2xw(Z< z%KqTM(AI%Ll$|`b_Oua-sWcecweQfKjU`rbV{UE+dpq~0=Zd}uB6lq+wh9;K=Gv62_V8(4v>aSc@;MDF z>>ZH!`GOf#x&@vZmVJomeCuBQ2~k)*(ACo!l=+_z7g^=Ia&s%(HQ}D#on1Xt-9tTH zM8-}1;el|^VC!I4Z%=Swus__>Ik*k-rT`IrTCW@k--vzcbjuz9`LoXiPiyTSA}ag$ zUl7RjpJ0T1BSj51)o-zSo{MJ%2YXe@P#4gIVg;u));BgmQ{dR* zAk7=z1!5gsG0iH1`cfq5t!S)ksAl9SHSw&7$(F@lDQb@_IAvX-Rn(Q6TkNXt9fA)- zRV7O3?U0XKTcPPfa%*2Im0)J5LU&nX!_wID=q&!7AB+ z#o5|DNSH)=hm>$XbT?4nzma{OlXHL6y75*yP%e>*Lhm{A4$9xaG|x+UK6>Lgs|b2R z(nx#Sf;~e!N#{ZvDYUGf!G1?K2!Jr8!Qgm=E~*WY8UFdEe5<$@_*T?;Crj(bH<9N! zM+YdWlh?!dZ5?Zs41rP^dD=yPGyAv~|E2;+Qp0z*jj_t04==~x_~t_3k99@m3kwL(q!5yL!NM=?+3~*-yJxGA^~H zq&kV|03i9&qT{T>xwO#RTKl1mh5Nfshh70cAR=|}5%h|*{k(%k$68~Ga&sqos#{@n z9$^2XOf-RZBM;dR&pgJOSeBbRhJk74L2{8F&MX72hwO*y^Q^LJT4aFH))Z{*I5;KbP!``vOUqGKSu^Ry7PVAEw-Q{lC|KRyIxqlZbZUy|Cxg=(YL*nQYJovt z;vp}|0K@)6_G`;?ts)p(iUd`FuWC^w#bX+J>=h;!Uy;LY2tps3B%D8Kq9|&s_B4R` zj!hED+Tq4*s{~jp@hln`=nd}f0!yre*x@~$B%!UVbr32EPDUbJ!hk`L56cRw-nJym zDgc6oj36~`dpi&l!QI}%Vhzph?*ZH zwuoT;1kn0XM_4l?9!3--! zUx0^lZd&89irRo%_o8;N^n*LYgWG!B0bL^}j;-WH7c_7-*hz#_1Sr36WL>S>DulTZ z)BtI|5(&zOBigdipK@~-G`26~qFo)EU;vu0<$ zlX+$4lECMI>jO3Z5Bzug+x^G*9`#-1TWEa@XZvll@-yDbxB~9XgJ*R3H!7+=8-#*xU*2IA!<@Q| z=T=gXQXv}PvQtKWs+57)&YfYa{A^;iu4ePbAhe=(B5_b5P3jMKLxqAV4>19^g@Z6Y zbq(%?pRI$zw$`5D)^KoJYfpPO^kAg!*3=gX7lp7I1VyOE8yebaPgv$spCj{B@iCy# zhbOKntwGTw*@o|IXtRpJ=}{u-(N=)SIau2BPTc?I|YSi}u$3_8{QojI_SBkIa#Rgj3hPx9vr(R^dD{w^&`hx;`kTBGhsO zO5!;2=+ST1%4#TeaE&c|} z!SB`CHAn?46PFBicZ2*Em(BwD$yAlQeE71f*+ryHWpibTlg?rlef`Qu}mW;~`h_&G#G@oLXz_3x~Zs~_1h&TvY z?~Xfu=<)SesP`ZvrT*SGa_YSG+)f9gV86q>9vTe(9h@eu8BTz~pu-qmwazMsalXPs zGXy(YcXoB}4R-eT2^uP?cZejWas#DS*`Qb0T)oyR1H-x8-O}6F+u7gRw~cz=>Z)rR zQ&ZT0jM53rH!^$C8s@9?v~)p%TET}(hg1E@$&7+R*&b+GZIwgM3S|q!%%q>rL3#$m zd&sbyCdo<6kqIb1Q`f?*A~(qntsVMO=uifG1vL801Sl%|rd2bZ$iqA;_*hbL+`LW&me_B0X2L(wYKYZh@)%P+CHJ@6J}Rm`Fv$rWp`I*@mB5(ZHuT&EPbp z{i7n7lH!z+4)Bd^DXF){gM~QJ1JpVRHSsq!XJ;7f!(X+mu!^A%0Tn^Lg<9DIm87qi zWE9T>FdYUTGf7rWL=Ep$yaG!=Af){b%dHaXVpLSP4_;45KM@=d4S+R_|ED@J5 zxVK?0$uo1tr?h-Yj$nYh2P^Bi?Jk)?#XVwn$a(9UldTevR+*BPn7c?)TwLEYfsqV} zNzB9RmRc3i-Igo5UC{GUg9ow3NuyUztxCaBodL%Wty^N10mqE8aQHD#GG(~~=E%yV zKBCo4SVlPLJXf!%wMw8RRd~cqQCj{f35ZSBn#7EZWdS~4X{fPEXcs6lclGdPDLsL= zZRt7J>9I^e@74Nh?&A>I!8qVOYHAANk5uOlKK12UfZS7!i}_4iWTsO`GIhoYct)*S z2%VVXSvC-S_S8kxw^!_0QnNT%*V7K8FN`O1tLynQSww>+loBwtU>qe3u>@k`0kC*( zadmxg8i2v}U>V8a&uD>Nvp!VCCq}h<2AOL|{&18Qh8X}rU+~zLg;qr;sok}E+Pa6@ zVZb0WKCm%~AqpJ{Gdh8R25f|e85o>cUES^291Zd}#J>fvz!n@kZvnRe;0s-Se6a%m zPT`Hipu!DTp2VANEl7s1l%b!_tQ-Uddt}jkK1A2{bq(~AsV~eVdOP$dXMP0*eciEO z9$z!7?Fsk8A{`$m^e04u)ypsiL;e@aPNc4dVt36@KQuq~FT#_0*9Pv(ZmwtFNNH#; zS78kdxgd40y~Gbk#&((xpLujurBzP7nKk`GoyG0&59p8#PtcegNu<@o8Xdf#E-vml zAX!j8pn14%4z(qUJTAje-62N@hlecn9VDxn@Y z~0{&iMwwZwkfMW_N1En$C3g?>=Q-1+P?!C^l15I&?_^I66=@i&YIbS^e&X zb!H+H$gVv(#jRfYM%Dy83ydwsD`swE&WoP0?hkUj*{^5c0lNY2%e^GGGq)_)pYv|c zPjb%A*^o2S{e1Rtb_49oztrW0bNQy4FT=Tf7x=Gs#r->tSF$H$d$Qioddz*Dt267; ztesg4v+^?E%X}>Jvdp&35JV5W8u&?IFi;IA1-xg5-DkKrm~-95<{1BDo?*|+R;jZ8pwCwj*hc!=YF5c)5&C`SI$P6Y%%$=qAyEwkl&*4gy6_Jq5e$Uo2+SU%Td zdm7C>le|-=P%OBJVH!r3L3;*Zd>k4K!zA-i)ZAU}t*8J*eRGhGYp_hS7x-;hU0qH7 zPguvVAkSy!X~%kxKOXYbK{bYd$eP@t5_5=Cstdw&U;uiWV7Q}$7@tpb64H@JN%XJNls6H`QBcyIhN5cGe!`lPto|R+(VDY4%R^ zjwuFE?;hY|(P^z+-K|@@$?PS#wRey4mf2J6Eg>9hE8{Q%aR)T~A`*qSz}$d&`ZR9| zsJf=BwX+BOf-uq8*55nSxvjo+FHD?SA^^W_o>A-h56=rn;;UF&4aul2|(>5^R6k-jyx`m#z4TFZr-O| zOM2Uec#W9pEh~3H%Mx)poghgvoh2%iJr~S-AvN!2^M3Y?n#MZN2cs^(0g3R9Pt5yf zddtgzBpD305h~;dt%Ed4)JB?ayl)N{cnb?bnXI#~sRnP`U_JW--+*Kw`cLyL&ZndW zEK&+-K4ZLRK2QsNOAZv2n^sJawRDk#Gpq@cyy1fUz70s!W^h0AY0WE zxTQep%H|=AfZ0s23hihy@aY2;CxFgB~XJrJh2gNRBNi^_EpAu!=GgV3ES9 z=S*eYPP*65H2Q_yDaGDmXrqw&1j~*}duSM`M{i~$mpO3Sl z!I65x6H#~6hSP@c%P)eSizC5}(<`EaBu$w(eD~O5GTt+)EZIp{r4HXShBagy+ro&V zfR@oEKoN?s$EEPb=LlzkhVs(!)4YX*0~CWoEcw)!l;g&D$4msm5COs?QfP&N0F-0L zcqfkGZ)i245SV#CbPQ((62PAUVTvNqgtD!t0yB5#F+2(G&?89*oc2?+G059g`188u~zl$m1RS%qT%24&)_{Yw)plgd!41R0Bn6K@1kNCnS!3gd(8A z%+KK8r_l=Z6^ldgf`q|JS%jhpc$H==ugsGOfdw8e5E&*QU@`%UxzEj+5K#k^O&KBJ zf~je-$Dg`#%|<%4@(rY340vvY`TvWqjOL6f-m#vqJa2g(_nhnL@>F_H^VXQA_chN% zPX?UJ|AMQ-b)G9^#@siU3)~U2(7nn%+nr(j$#^mMaPI!x%W}JNm*nQ>{5|KzoEvg_ zT!(T_a^0PimHp@JC$q20-k!ZM`?#zRvmOV}!1k=#tkIc&%X~iby3C%;C7F|4?!YI3 z1A&_Ydti4#Y2ax8TX2%#mHxf{Q~h)OIlgy%_n5c(F86i#PW0tlA6UP!Znw^Z`veO! z{^|WZ=L|3xqAo7PbMz>DR^zo3@F zH0NYG1%belnpKO~zc5>XL=e&6%}eVBj`NOzxi+EOw7h9Kp}Ox-v3ZfA3X^3vd4?B7 z=69hs!7PN}LA9-0d%Ix^z(BqH$q1C0-vOJ>fg9Kh^l%F9VY8N zp>=%AI1jz3Z(>1M@M5JA0V}A&Wu{wxmrM6(Ie+-_v&MMy#}iip-K;}cgh>`e;2%2Y z%yHiQDdbIeckk{2_6O=W__Ox!KIaVYPYwB!rg9v-jGUhD9S=kLIPVnb^HIiB2=Y+C zcfnf$AO6{1){8FbZas}|_@PYE2O$2vJ#5esLmS`2Los{^B1u5!_T6P<66rd*x~aMu zdJR5qk|7TLB;5%CK!*3sOVZ}p8EzfmIml0yBF1Bu45fRe zR>#YgFdeVfx@y3;!aD~>1o}S~r3cg&8jr%z3654Gcp??>fWb2FV7>au>Ugv9i0T-q z_=qEbhEo$PG(i4D;1Agk82eSH18eVH9pM4C?WZ0;Fxn>@4=dWR#KE?ife&jiyh3{- z@cp~%jfW6C+(`l=U~#;&w}0;n?TNuJHy%`@0Eu*f2ntx?Ss{NhCaR1FMtjHSGo9^# zD!3f}53h!wH||&Y>2e7KgAESUk%bfbi{)QrfG16jBK##?rjt++B?E%5HSSe?2BF$B zNMLk-4!mAs+ym2uVpb#RYqH=*S_DOj2l%vaWWDiA7?3I$=UqM9!n8;1?rp0>zs0BX zo-^(S$LS;;&5&gD%ZnSofC)Mu-bhPC9)vpmkrjNa@pDy$SO#iYGO(~Zp-hX7yI_J2 zZfa837?61d7*hHb09tL_34Ur~H&7^df7SJ2nASf+@knlZaeA8gV!64n|V(PpCXQ7F|20aRZopHfsxHhbdo((>-;*k=4fa=-ZkrjzE$1MZ1xcjq5Zx^2Grh zJrULI-+iI+qZ5D&)^4Cx2oIg^tjkLn*P;>$7aj4#(Qp-34OSS}sNPX)VFW0ha}3;S z{7|Pzn-l?}wpDLjtvV?}k+mj*!tJWTxT?%sQO-r_aJAJqp5gPpk!i-2wzotGA3NMA zT>9gDBh!s5ra|*&0>aKQhwp6oLE~}^R9+P6JYn0UhVL?dpoUS+iz1P{Dh=OjTn0Y1 z67g}M$s8j2Vr@LNtS@b zQa$sW`$o!)@2kGT;b=+q#sI}0<06zncZLuzi|#Rj3{A%OR0fAPB-LdCReG86U1gY) z49Fdl>ND|;G#lShf{=a&>NemG2;gFi@oiNTm7js4P=#G-T%dYc3gi7J1&Y3uw*OVe z`KrScJ_Y1zfDZ2o<6EjqwIYXtw8PmhisAjnx!|ZPVrs&^0f+0rH?r0^2fXpH8bi8S z6$77}?+nj}p7T9H_pjWW-EO$WuhRURdAqsZ%rjnsPx1enBjf0XrVFSS5d}p+CnP{1v%ExgWGvm?QNS7F zT_YwS_uyl0^e(h1GKQWkP%Np)eiKn5X=oR|PEKZEs%))^jJ66PFi|l^D=Z>MpV=%? zCxvQu{o=^+mQ5q$c~0I1BRafK)@f)Rbw}hltAgx}bkl5(u9>8P?fIYVrAOaz5P?!d z|GqhLEZyj7;}5ZJ{XhE(+w1B03?3KOM~<MPr#ULg@TMZ_R_J6d|7SmS*Ks>{Dof;WsmFyz>u>?K3kCzM$A^~jnBk$y;V@MkM zVr;p$EdrYucayy$f}R?=L`s@3&;bj!XsO-8j*sXAUVG#yt9%H8_ncq(HwD3;Nmmp# zZW3wza(*P2?rmiaNDh^(9AbWm85L=?pKqKO$+3#z^olXGD&j#@P!NME?prZ6z^Bq3oU z)DroG8X}pP9eu#2?C43TNa;uSQz8MYd=m-4B)Q3OjaEBU68NjYNyiS>pe84cqE=-k z13St{x<0T3>LY%}EfqZ>j%)!z93>%c2|@gZ^eW9uBR;x^lhp(|zLVaTP$CaJ6jt@l zia$F3)1H}XVau|JW!VtfUr38hDal?LkxJV$Q(CBNUb#GyVHHCJWRW7qO$`TU!T@pb zC6Xy?tENZ1R(>(rT1|3;TaW)i!co4yxe*TyM4ZAt&9{8g9Q-%VCX(PoVBMS;anr*j zSTBd|8_G7acS=iBES^xrWle&8EE5@*6ih$Mvx)5oG9!F(-ol7!<*$`Rt7ke!KD zxs?xFlgfo$VATe!Hb#TmZ-@hI(5*j<@2X1YnsscVg4IIltUc0pFiB?k@)>8++BDw7 z{TTd@W7`vPbbw`fPRSV*Jq6Inu{(e&5%SnV6F;Z?bQ&O?&odxrFa4R4aR4$!O7`*{ zBf@_o{vtRLnsoYx_VBP|=~9tDoLQtRxMnvsDIwaObg8hZlY3YkkIwuE3<9~m7%a-(6Hr@HXW>FK_^9w<` z=8&qwLmdKydLFsJp%Z`Wq#f22m<_@vV0sD| zH8{{uhwagfch!NGx*NA!6?6-rzIegbDbl5(iYT1U*ccvH+--9F7;Jg zpIJ9p^_B@M@zIPm8OL}Z@UHfJ?70KZ0H|^Q)BQ7dn>*lo)V0So-~1R(0a$MyYdixV zO!wd1NDHz-`ucnO!u^9ZZe9FFWr3DNUo*+J)J2-?O zDJf(Ywl9q|Sw*zh5iFo7yCRk{Yo~=7LWCkY5N@ok;>KBxmH-bzdAkiTv zfn`PPm>X%()YaA74+~d}5c{p==Sj37R8~jo>0FALjL^@*7u)In6_#H;Ycx!!(Yb`zWWL2pjVt1eE-DK$P#M1O=7xhZQH@JwCzB6h+^o2H{?V6cb~d2QcL$c zG1I!Yt!)TGVPKFX8PyZY-Y6lA)dg*l8hZL;8MXQyOX>9cX}wksAo@a@<@b@9TO!p~ zSub?+j;{!B2B!n354gAP`_pn`m0bz~krSCFY$3sfKk+rwZ%&|VW-z4jLKnI@v4E^?w(2Cgi| zsUFin2DTuMO(GUwGm8kNmcnC^K#Y8B%r36Y$ zkIb>ggWDsYcH|^fg5)KC)ma8Icw%8>Hu@ZiWMDxPB#U}NOq2KqEv{mDqyiOR=8-j6 zPf16Kb=0&9)s{zQp-N2h_Ryi3{c_}%(HJWua4s?o4#l*+QLG5TAO%t04DFSZn#e-i z<@)+ah?)u&RE#)ogULq4aqxjg_9^M(I%Y@8sI@Rjqo>hQO2q*mYa*pqITVgL7D*?D z)}UE_zRsgeA%}5Rr)Po!!U(i=S)_y>e#eGXMws??8d25%Y4Rdm&{vGu;*%pYSvN*o z0VBptFO6D?jmB8RMq2fW5jZ8eLYSXjBC3SZ5g{hx%qVBj$)d;%dMpeZdsLhtjT(fy zpr^pGFfy)CMG_WAis;asPs>6)I^^5rFPd_3_YVkiLTO|=^{OyWH1)Nx3}j!RQmXLH zK$fND5gXNW7Ue?ouxLD#i6wx>AoQg+GL2b{j4>i*?v9~((KG%mPNte))(|N~&Tlab z<3=wgm1+lzIhc4u35LrfC!pf6$QeS1N6)C@@C3*O;WYCj1!z4&2Go#@@&OgZ8E7*% zG8Nh1BGiU{mWSQo%p!??djI0c6t+%EC5d8i=*QJYJWK(l(o!!kk4#3TX7M>BKl_EU zYC$`jB5-hUEAfO;tRA)l247dtX}#U2fzuDpZ*T)}4ZmfWd1pXNN9b4||9oE13}v%kuICHsc#!R+PP zqs>}4E#Tp-OS0OsO0!&<@yy#ZhclZqr)9bWZw79Mn+DbfX8Ql-w%u9gasC(mce&p5 zp9?1sR=|#czZ-vYJ?VSab+hjp-=`42R*D9t(jaT)`R;M)YGagegHD5}ZBpJU^ zVK-`0LS2k%DncKDSKr7?;|Ud}uJEMkD7c!r7>~PdHoPts4}(qo6r9M&+#ywdlqF`8mpi3^XM<^YO0&%C18TLh8WU`&9I7Y<%vMUzM93&%mwKQs<~-=PBY2jjexAe2+3av0>iz`RU_3V{hiy}-nf z2ltEo&9wTq`F$1HMXDumAzTck;-W{$Fuc!rj%_ukwV0mgz{}9&Jlp~JC^RorQI&ma zzMnevH=a>7R!;nz9J6}k>G346o_Ryqw7p5q-i@cmd&h&cC}%K3*C*=6lMn<>V&b8} z^mcRDZMrF0}rYb89IEQq$B)N)&pUWo(?={{~ zVZ{_KP{4GP@wy5i@9*snuY&(WzTsz$->c&H!=)PJKnuDwH8ikFe`KGTZ~RVm5HOI! ztTr5Mg9-=3^D6xjGWbR|7zb6HBpY~PFD2}ZA!wL9@CU%=y=Wv=O`uTWbEHu5!1&l? zBrsT5#^5|y1&%;=KodML@N6Tln1I^Ee8)uS&`i|>Vd7OIrqnB-5=E;_i}9L@=L87y zAOjFR5qd8hucG!wDl(a#5S&;^gf=k8ctzC+LXpibC<;~QcH?E#$O(*19ViaZBHE0X zv|dR%dMQ$~UOS8zae0}awy9t9*BZZ79X9E>#1Kn*E%BR_^%>&@%%60~5*&BNGJWJ5 z&l`qGdS~h46MYF()>S6#y@h?yK8tX5bPf(tIPQm^l-@lM0}abmIi!i=o(5 zJTGQuvlD9Ad-xb^ve21RllHvl%`DjaPKQTrMh)_2RJBxK^$9Z*PC9`75isDe24Bt*aI;*z2V?E$Nf z-KqpzT@P!(YfKZW6cN8b@}pv$C&mDFooSF0Kp@`O=>{OmQi(tcc0SHBz79cnJ{#A$ zMMp+vdi3>bu=k+u$Y;{b_wQ~rzET~f%0m3#Dg$`}`0yRZm#U8zU>blUuq;jopg%PJ zsVphdi<3|DvzZ~N1wRtXPa9t-8x@Rnbo4J+>gWl;zL8DF=c=64q(?{ZQp+AaLk=is zv+o791RZV_OiXaE$BC)x$n?h#@`Sdj&pLwS-AR;*lB#C z;>QQc>ABpw;W$axH?r0E>txu%#C9YMio}**$%Mm{U+&8k>_yFoW zoD)T=E#TQsJf z4ER47?K--zgd{4?J0<7NN{f^{Fo~XGysL~qVwTbaZb5PbgAz@j z7<_~A#}J%c!y2c8)3a119-Y1l6>OdH4q5-7Wn6CL-Vdk!W#>GR)0Q(T`PGuE&*9ZvthHlshI$Q$zx zdrLiUdM<>M1QYJt+@0<^|?*I4j_CG+RI7&y`W1RRk-sMIOhf0FQiW zh@UKqV_YF#h4q{0els8U@cu*J({`2EO`Jlqa6zzD>)Zu1sG{Y)@fW1OsTMan) zw_HbIBOw}v%A;PZun_XPNlz=sA?*Q`i*?6y8loN=ds^aw1T-*J^T;7_QciFhyoW*f~q10J2osb($)2ZCO^<&T77eKBb1y!iX&^uhkS60mSgNi6S;oaw8Gn8HshhGQ|@6M{62 zP3Zokt1g6pRgC6>7W-mjW8@603_@mD2#@+8F%RVDsD*)+&lT&6sBd60NTiNyq zL6I5}n4lxZH8z5L$R4W<+8bM}(d`mKOnR9e z*AXC{r!!xgBfDvs8S}6^4H(KLaZf5Eh8)tUN__+irzUb5i({c4Y;-aPsi1_YBMGjR z&`w=v^|<1M$dEO0B5Yd_WV+gT=B_rHMI5EEI5LQqD3DD>3!qFa%sEP>Ce)gxkpZh1 z^u+?6u)Rg8P@9W}%`hWOEG?ul##To9X)qucs>2+k)EsG;G3P7FUFXS>UG$Ct7KD!N zHI1HFph7AlrX6j0FvT701#|AiNFQ6Cpk|FU=olSw-2o;b(qPj5!iorlqe9F&3p3D6 zJwiZB=xv4Tq7p635F*pCJj*;g2sn4 zY&-%SxA!gT=l> zr!+=7P^^ulOATV3aGK4U(jLb4^ZE$f>O^Cw_575vG)X~eOsC;gzN6f(tB=4HP7tWb z8<;2$41l!rlkAfO7J-?DCV9z9zjke;jb2;GRsv;q>VZkeDt+M$+mcd1{>AlkBU{m; zvY@QdOv4&2WzG6XE4{0fMQV_|$aOABq`$O5CyMehIRvilp%0GoL?Ge(%i4Mr$GjII(aGN<>i;HkQZ?lx&X9wMur9%C0`b=N`7q-IwkaT;8AQyQBlV1`$AcuZ{$`QVvU%AJiu7{>)tc%XEih**8#~EYrZ^DUT zPUc`5M-@X4bnYq9*?eD8y3IxD($ef7l6!lgSS$Bl~NzF89u@!g2^L*0X2-QhhXXaL%Bos1-ahu}2vmN+~Fa2wPo0K?jY zRU0kik#x?tq|yOM+NKg4l`)Bu{9Hp5P!!JUmX4)a#RuB=!2} zBnvi13#?)&eudx2T^yZa<&$~6pzI_G6G1lN#kA_NKo3t^9Gz@U0V4T?h>*0*2x`}eItY1K<-Aw?rX~RDJ^Danb7X5kJ9U zj!!_~Zn{rQXo*hb_ZQYX_Gr``d1FUv`@(slz1~(6onYCp>$SwgE({RM0M#kW0^)21 z4aXJ(4xPC)I^HUQ-qhB~9C0xqEin>^H+DmGoK*s6EeM9tNXWi?GF*t++TR8jm=b+8 zG}hPFXhVh|Ek{I_4MxOA7OY(ng(IK9OH{=9lou&55KyGoDBvMT_Wh0v7J%IPlcQs; z5|Cb*CuO%wN`khaqwkpkt7rYPD4YSch?3Ix!1Q*c?0s>JEBZDXAa=!qD4hN@m#RZ; zg8@SL!AV5E11;QaM~}Dii(uO5;=5n?A2kOgBjFBM&=`K9A$lCWimikM)W|-WdzNsL zaz&AP$-Pm8j+V)IXJzzQtD+u6p%E0GB}@@HqmD$9W;5OnMUSE3=i@z)pKlXXzZ|k4 z??H^KDx-PUcrfqAkW4fH2>wF%3SM%&nn*qk3pw08VDUjqqoe4|xG-Im5ut(tjoA8_ zs%PjG#2_t*9?f+rgNR6+llI`?ze|fjS{6Nu*DRSw1p1^T9Ep&OPzptJxw%8~(ikQA zBTZ%&x6~Ac!;qjGFL6_>h*E-5&?-TzN*5uA-lQWYUPE}(tY|jXX8{UuQlU;MnOQ7T zUTj4)i#q0uc{V-nDP1ho5l96gTq^JR)zM6P%t1L>ea2gjsDdDc92N%?Y1R|rjI%ck0=j2=Y*tsgIq`kA52d6Xeml9)_MDJx-2 z#a{(rM!w25Vt86TAy20JukOd)``i)tCU>zr*EN#+O75+>7v;9)R^$fYY`_O{zLRrG z&a9k3_8ZyzviD|h$UZ6i=&VCo55lSbomumXZhFoi{RvdS9~{u|6rMKjP)n$aqD{UB2-yf86z3L%s4M&bw)Al zDLCZa@4e7Fj{*Q7Ol?(|RKg)} z#=sg$SC4um;jPpy^DQ%J818cjREv6rx1`X4llp{&Q%a$s3G(3AyqC;X?4CWR`-pLZTuQ*lugsM!h{#ze^-RkQ(8=I=F3w@hqhx-ZAj2_kckYSEG-g_+LEoGAf zT=zjJ;C(E-j^QK_Fl=oZ;~ft-WB~gAAHlCI0y1Sg1C=}8@Bqwz$BeW1Q+-1NgUaI& z0Qim>V}YM|O9Rs+KjZ*F*P2!1$;AUMzNvw|7pD{a$XrPH~Ssw{=NXD%^Y?BlgCYv}FT&CuUECf~I z=>(ni4hl{Z!To8@WjC(^+Tr{ZLV_&thB!3MO4g;4>6$zqftRfZrx6#WIfvbBlJ3G) z?e8BnJ3JIfuDP%z`3Ta13{%Y;**K8;HVp~LaJ~s=pp(kM zUJIY8en=MJzBbAIgb+zBaJ>4Um}mBeIXlgAcD}nnr@L&Ez2nzy{@Hw4r_XbQckv(G zKMS)<;HJWaJrYIG=7f)v2o)qCAElfRTV{xjxXyR-S@}fGGS;3n$0e!z%EBYwO0$Gq zK;kC8N;njQS4;Nb8yRoD2=T;lMF%9{V=fpOl{9?6Ide3*^a_CD?q2u>g}cc7E!%h? zU6(Yk^jDh2h2BCKp5QgVpop^oUO{nV5s>+Tc|9);Po~!raZ(gFK+gNS+`JB2J#?7T zX_=~7{)&oz$b5laQ=;(oE1j-Ta|UZF62ttQX}q0gk%JoC-GuLS0uKLS{)i19*aONs z8Hc~qoX$3Qqv_1xmb`rd{Bj2vwTwD}<9x;l5e6!I1u@J5b>3GtFyl?-U4~ zColWJvV?gS$MGkDEH$s0<}Kj##Qno5mlFfY6U-kLcuU~wl$7t01p0MAU1B~5CI*ai zX}(61_}2k>nfWYSok(f~8JC`nuR)!_+QhxTFnzm;OY@YPYj^x23Z&}+-3nA_Qm(v zSdu!{5O1hCl^GBm3x9++6WoWB%qeX9BueH$;=eQ}myugDNjV+f%OklX%}FYU?u7xwCZlJm2icDS|g zvFtOm{aL@wie}Bt{3vr@=9bKYz#D;!0t@_~`mgh^_Wi^66W?B6o%J{CQEOAiR~ffv zEb#u(`#o=o=dkB$&sxu9xH0fX_eyuZ>nT^4D-YuT!=`0CdxUfU#2o&_XfHkZ#MbYB zXC6T^!ovu~os4C4*^W)-$Q$F$6Qe!W7zhO~=J&$Gay#+)!3GS_F}*2XW_4bXZoIW2 zx|5$mDV2y!Ii9B5cWO0RF4)Q}s8YZPF|s<^P2+&dJd(P!OB8LHl!mgjUO1eZN55~5 z?x4s1lqkBwdQxN|g{)g+_qSwN*j1S78_m(}^h8(0tsJ=(S(&7`<=$U8S}Usi4kb23 zyZ9OaPc9CMW}=9)6tx)>*BYlAN4Z2)D4n@~l1%;${kR<>d|IJ(raN<5<4TSl6 za}=T+VdVxYgYygtJwXMermSz!pi|QG(48?r_2uH|8f!ePE>4tGB{30_N(>O15lpy^ zc62pgjpUK1{EyzDkXY5>=jx*^^oTvEW+{&P)D%a*lE#a_DGFx=!+LbNJJpY`RLGSZksfsSM3Lu)G&_i;HqeCbabs+Ws z!`^$xM^$w3!+Y=CyS)fOx)5pzA&`(lFG(PPv_PoR49P+Qn?ec@s=GIeg$JdG1v^$i zEMP^kPy@(=q9}qOO;8kRVgcp-&dlB2yLUI@^S4t7nu<#8?Ci@7bW|XGi6)XsSayzttdExX`kLds zH`9Frl^m$Ho!uzyp23eB0>PD;T%iV6R*|r;^uWxh6yg7AWN^)L5ws6w#DLF;v+euW z>ApVPloMkkB#MgeXIQO+$Wgoc`!ZBJKbk8TVny@IZ^}u>245Qj!#t1!ESNvim(IKq zlURMIE;N|aPcA(8b%YTIzmH(%1?$p%X)Giq=!ONh4u8W9GIj449LV(bX6BU`{hB~k zewg(@iT{H^J3~Kbe-5;ARR>=$^=1A$m6biCrIaKs_{|8w?<_GsHTwg+q-t(UFOSo>NoSQc42 zo4+;RZ|-aQ!}PvsiYdx?$hgFqEFYF1m8Zxl(phP@v{V{Mu8@tSl%$I1#TUehVjZDc zxJPJj_!UL{Pk$qnmZmtkWZhE@!4!V@(@$w?O6-K~kxELN-X{?1 zl79Dm%Z>H~>l{EvrS8g9ny{-BsS&dOPyzK#y|zweYO%p55^MME~ifk1{*&lHal+yPo`&6V=#AN}tj zUujQkkqy6gQtC3+!c59$959Dw!gr<#2iZ@l!Jx4$AK}-6IAVTt3;(XvutamW}xqb7-8Ay zkYChGsl~Q?xP(MA`Y5apQv~B@J_G@t1e88N0)@*X72K-GuAJ(hf$0h(Se>5eLdjnh zP}XYRs=lY{#HmR@W|jkVzaOo*SU_%g!iUnO=V;+{HK%KVs;ZP}QjqfTdbcVtD#X_r zxSj;urLJ^^CG<;1wFAG4i>RSukl)yL2GTI%pmjZwqBu+qVCh+p#Tm{T$VkAbrZ6Wr zIMHh;45azi9*fUX?4}OX>zw5)(ORK!5|s#$h^sQ#e9l9PYAX^cGUo`z#zbx&J0K*W z9VHoj!R~J?2xuy~4QgTn26GSx$-Jhsx++#vBW&k+ln)&HQeuUOYMMA$JC}o0Vn4;qOdCTqe>6k=)yFGzmfBCyn96Gs2< z#}UuS$6>qM6omMJK81U?BPloEUC0A!(B_1ZrpfHr!f*(Y6Mz)gFUMTZFHQ%YWgOI6N zKOchiplf3NnV1?3jt50q2>@Gz{jQx@i(Fv_|aD-uyQGqDd4v=?{u%`nwN zM=`Fl=xIT&>YI$xsaM;vr6s-+zYdB`Twp!)E+tSX(VuL_3~HHZBHzvUul=I9{%gM? z=%6qXLls-tBptL0rws!Pp9$g&vA@_<_=WuCN`kHb3Fl_#Qs)$BhO@rowBudJ{f<0G zCx_jB*uK`j%skE9O@2qdSJ)~%CCn3s2+^kFrq{`TO+M3b@)#)~>E=3y&q#e!E8}m5 zYx3>(DdJ^&XSthnLfRnRX}?JtDK(R8*^b*@wJi{zGJa}&-FUya)i}u*FJG6xaeWS- zgE_8=HpzO_`iga-b-Xp!@`q)Igx_?nxHY0p&yJ7~N_hs+h++|)zO8a#EvaK)K=;J}BUCkf+p*nQQ* z9{LR6`VWVM+j#i_+Q8BxqWnX`3p$)WLkHkrfEaKt3C|;Vb1S$c%pO7`0%4LHH3t6z zIOd}bh3Cj6gHsayiV$v*q8kmm5eF81E%fC!h``L%1bL=kQHkbN)GncqYMC9Pg7o95 zN=a09zL24sN&``=*YLXnguGp_PDoe#C~HulJ%M&+XAMFnFADE*!^7~C&mgA%7!_-h zMcAa$^q*)#TH+EGUn)?|3&P9XSWl&(9X*->h0;F}*72y_DrP=d1D%XNpIbm_WLj8aiBQ15jX+(nM!||?K)7{? zkk8{r2QaB^2>lP-=I>w(B23kh(>uaa!U>XJgy)XAA{{n-x1KZ)W+AdwA>FN?4cQx0gd&R27he-grbWVsP6!(xKR*A(@n;mkfhN{ZpWlWZeg!rr@*omFwC)2l z6C5c8YdUQzY^lL6-k6+R|Fs)w0Z4;fI0fGvx`P?6<0GJYOPY*I(V;+X+5ytn{M%F+ zh~K&BVx~aVDOPC`_;p73HYA5ueX7erlQ3V@6^@21e~_3_1QmnBBx%t9LO8;`cmiF@ zj;BJ;y5Qn9Uic=2Di5Wcg|R?gGqM6JAYOp#=fYurA3=aBD;q)$s-eR@AROXG(5f{M zmtE=} z^_eh``^RO`4~O0O=@%o^-xvmu2)FX(j3H_FH|%p`FMzgP7~q#+kT+ntLb=KC_!}T@ z6Z!{Slml1ls2?`NgrG$2SAe=x=+}s@c|x`t4wX{F0x{K%efS51>9sGK&6FD2l;QZp zgVJ{(^xh!dHjPcDYN3H`8hZ)s_Xp}IvucIz{aB-b`_8TO{6E$3mcg~%b%(1jB>&CM z8O{!l%Z~N%@2_v)W1nkJv&**CwgOv>^&mU|hQkJ6rDdF@llh!^J2U}Nrah*)rtZc+ zjBDVzFUZf!d5rk* z7oo>iku-3eu=dmojlE~IGSU=_Xh^WbU`i*9ASk8^igYR{`qr<4qF+MbG@aHvHc_P= z;;fyaj4;JA!-Y^qY3Q$jIyI5%<^p7y@|F5vXDQjLVlHCR9Pn6{CrvFR{l` zoqM}0!%eMFu^811g71WN;{(lN2WyFZzZD!F_qml}s%Qc4nB>(F0uu1 zqJRAQl~C$_{cN_9rP@a8%3*syHDqCUDSk_^FuH8bPHCeIWl`Fjk$`(@0N~vi@Ko)h z3^6r;b{+w}m<#IQ2nUd1BbTdS|C6l@R((yvrFZoWc%*I|G(1x6#S;TtihvdXgSDc! zGDto52szJCfAI4GkfrA!>KF()9|4K0X$rU7Z0fg=2pVyyMghSWnvasEu>{a~pr3Lp zJ0qmw(%6-g_&TWHC)@r;c%`GGVuRAMG0Ff_BDFvZ@#|6tq{h<=Z-OR!TK$@O=)}Ii zfMFW24abHl{Y^?`BAxZ{6LS|>a zI`d^pME6QVD%=N#^WG|*ws*SAuj^V8LTzGLCp+TMkr~j$(>(cOl1Zb z&INu3zMwE8JU^>+#(HS(wXsTX)paHy%?4&ANRIy1F5;BvU-htp`nB9D5jtBPH?&fE znQplSr<7zwaS6LW!vEwWl>IUvZJnv~G{xZvFJ97J@W6j+FM?2KEOm%$FOEQCjx|$y zumW$Es7y;Qob^8w6EVVbfYYM00>jKCYHFs{!BRNb#x_F+4Mq`xRv{HVd2x)=O?3qd z*8;JFUiEd5P=vWLNK~u-o~U$HeNwcC4NS90UqqyM!xf3)J1bq(W@`%wrL9gL zff^ze9IG6lAha>gtCRTQcgSgW`1y8V2(zSojPT&+Z}@(o(uw;Lh~f4Y;co)p79TG` zT|6_s|3dEn0s?IV654jLlaj*OLbQi7S~$?2Kvtxhk2ad5 zB%4xj@)<9NY<*Odfe{+hf{+~-H8TjYM)226Z=JBv(nU!!wdz4F=d>kY9ET7L?if@o zdLpfKQaWnRvelz%Aox$MHJqhyRgXpFj2@ySn&_n?i4r?{(pqT*jytt4HOnKN&T^@Z zNgy2rR}N4Tn7d2^QSabOKgpRn1-OP7fi`fhd=A^bYQ2N~%t>dS!iJ+0l@97>qE)L0 zH1hw$XQG+2C@J+bIoDBXuexq&3s9ABd<2B%L<{F+DDkTGs&*|>;gHUv>zLXm)q0g< zfy#x>N;^{vc#Q?T_6oor%A#OjC8%RiD^_7*`lOcLZ z+i6>6n`s+nYi7M*-D_QC^;o-DYg>+6Ubj4InP%x~X>Pt~t~Rd%@qhpR<-orj_?H9! za^PPM{L6v=e{+Bv!~|3cT(b~CT_AiEkH}rBof6DY)xD74P?ss%qg5Gbp;=hiM(%*a z=6@{+0_G1?%S0^*xV=cY&Lyxr4AG1?%&0r+kMXuGZ4WkILRHcogPW@h~}KmJjfI_6NlC z+wo9rnDN9;M(D|Spk<64j40dO_)7ajHN9$)6C=k{6A}#`P163RRu0W?kEa261r`Ai zin}t^C72(2sv#fzZx>Wg;+53L3-ni#;-ivnCMLkBh7paPT;TB}VX8tF2K%3yS4j(2 zP6*AQP4s8b5?S!z_^=F_rS2Kg8O3?-0HC3=VEH&2^O^|IBo~!YqZhw6o^~4a&zhI! zqZ6rpF_@=SJF9qHPmRxb!B}po!f=Au0heIz2%u_SW86#{Lk)OQg|MrAX$H+(Y6@vS znmU>uffLcMj#ZHga-obBK7g@F94Z)cX)h}`_y(1HdlWx$*Qsn7BD=qrdl~`rn6O!G zPxy7a3|;pcS*k};6KAw1^g>-fcC>1gWImcRq8ZqU;egYvqJkL}eruj`|L>^1+3LZ2 zMJe|U#P}~&IT><;E{fefyeVumMIk$Q-7PJ$O#Ny2eONvDmYXHfuT`en8DwiAyx&}o zX#ukVttFMl!U{Nhv-p<{lxf_Lw;aKs1NG3pT(Dy(J^wd4el)mVaSeC=>U`eWA3y&6 z`5IWC{Qzn^`V0j#%t@TY&Y13DTk61_}_xv;JelM0G z%0x8)gi0#t#}a%Iuu6kp31UL{EjmKIOpp=P{bGzVK@H@l=8unNUM}h{9QSjl7mZm} z#6WI|;l44qDdSBYV5_MK%FexF0-jQ!jyJf$88&a~ErObIc)b%6Bf8QIQO23#5t}I9 z--Ut8PJ=b)&5uAaloQO(_W+gu(+!UsT$^0WTz#F_o$opyaCUb(9Muk=Bi;U&{ZspV zdxG6$`_T4?ZKSQS^#I}kjHm| z%OqYf-|`OC!r-FwN_S3a*XYD9$(@Z2(s-xOYV;AB8$WDvXI^e=PAQE2rmc5 z9|*EiR162poD%pP!kvKJnb27lC!oZO+EOOF%V)XW^!y~h7!fUD{EPqNmgZ>O%xO*N zB+COu$za{`MQ)+y^XwX(?VeqMpr(jgh_98=7vC2@S}??&YLvZ6$YNPwzW0-mELrZ- zT#7u^9i4+~aH4Zq964s}9PQ4X<1WmJ9#lLFswlX}U=}DSuY_(BnpJ*fNA$R?e0R~9 z2`Hwh?wX+~D8|H#nbr4yEoMY%MbY#Sg3q~=gZ0jR|9>So5}NFPQtzimC!v^nyxv(U z|7$V*-8p%zZ-%&YL+ih4Mn@2)U1gbnXjW+b(-3mDvbX|0jN>rQ?tFKSr#v5H1@mnV z!mOhoqsxlv{TbAdm0c?Wg?Ntl&p<#cAg%t6^ohN>EojYIYa zL$Le9qLC6uS^bMqR(X!6U=C|iS=>-KssW_y-Ao#{v@Ci^PALr?JQHNwFR9lrPL}5~ zsvma2vKUw$yGHjJlNLQZC$FFadS862BRxeq(c?zMm*wJ)zX{Rla0h~u8muYH!H)Ke zx+Jxgs0l13UXl+^<>!>=fVQq$+2b-|WVwvxzkB3!A+<^`@D!9*OfD#DUtSD0M~@qf z@Ne2mq}Cs&{v;n`Um=%~biMenQQvVF3c)=HL( z8L{FMUxW}FjZdij##~8k+Nq^1k7FbzKOWlE!|5kWD;}Ne_IO}|nVu1gZ@B{3EWh7A z{+;L+vK-Gc4%i&Z&cPX@fDtn;vAHY{Wf=Whw+g9UnrCuFAzG^AaqHJIo6!%J_EE~o z&`&!9&B?=%!z^*bzHXkG6s?ZCjS1g{GA0W>R903{0TbQOaTk3(y{RnEV1?I7|0JZo z+4-dfg(WvGxWSsfO=Ni%qhVV-GK5Bdd>ho+<{ymJdc}#i_*rLb`*H{wY|YBu;jF7S zDxt9~52ht=_~VtILb7DzroQm@Mm0%mq>i2qzs)ZU$uS5^-|QPVxAv0chO#`875d-B zzl4y;pcl>+6w$9r$7pj@=LWJof#uqKI&?P8$SIwSX(6wmcs7D~=yQ^N8THj~aKoF^ zCxn!jU0gZYjfvrggF|?>Z#}h-HoVgE<`5!%r%sKYmH$uXllbd9I@XotVXPJFcj;P@ z@4@~gtp4%WU+r_VELX5RPj3$W+S1D4pNORkdlY;b#r)6|vADx#qWEiLJJnIY*$q#( zc7!xwB;DU&3M?(2ighfM@$uI>rbnqGe8c^6Xpd)scNI6DFyen*(yF#BcVbOgcrNs- z&g?rXu|wvl4DtQ=ORx2<RWX}H? zbCbI8Zpir~K7>qv?AywVb4zh>|9y+HyS0!cK5WY>)nPf9}Nznk%47I zKO^V|%dvO+TKzrPsafb?;XODsXZj7lw)kVtbc??!9se6TMU2kz{G%~<^isT8miw{p zNchST(v+d4SZ~X5Moz=lvt3dA(bD0jK=(EIK=)~Sa$sCvg3l8jge~Xf9NJSinl$3S z-q*$`%RN{XZgy@9sX{+bMJ~1IhZ6@z;#VUxWOa^u{qnZZf!MdSvK)IjI=V5%!9}EC zas_i+oK=vAUGcc#bY+L25x=iiA4#1kUO#=at_8)ju;uam1K#g>U?A~-6tAC{`b9{s zGl~lfG1CsunF=W^@5UV1{bY=&eu}Rjtz8j93!h@~RP0^~u!D`?rDOCP-?inF2P zy5l7D0_z>i9kU%19O;f2La^VTn{?^>UG`j$W8DX_z`&a%`}VHs=bVQFTO&EK0pF~4Sh5H|}B zH8(Z=V%lwb#x%<`z!Yt~Y^*juWt?G5GuD!i%WvYQ!Q16dvP=3-dQZAf%8`;JLcSs| z6E7J>+KPXQpNnh61>y*?g>Z%G8p?%%LQ^!;|JTZ!B1@1ohB|hxqh4c^Fs^y*UhKUK zreawv5?0jdel*sbEK3j*hU`7}xgIaqgQ+gB7#_DC;I`Y@+M6Ux7`sF24Q#B(9i3A; zC8v}Ujrwz28*fKhN&{k@wj=b2X@v#Fc{!!n!~pf$Z*9GaveXx-!j?Qe>L|z>ba$5? zo!Ak`zoo}`6J)8ENCsan@Pr|wfh9mkRiiF{+1A^EksVz9SQuHvWX{Jl?w*a=63E{l zZ|`j{OW5-Ct2a#2lg*$@a0vu=$XKWgGSp5o#(3jdJu=(>7{;^#lPjPyoZ<#2YW;e5 zthXIwZ>DKd7-s*djPw)fcEcv~{mj8BGl*Q1u@cpyou>>5`Y?`58(l^(Q@it|o)1Q4jjCGKu5VLZ2!DL{% zs#<%Suo017@$w2i=^;57kh58B$sMh{x3GC3eMG(RK}IzR^b@}6kJGKajXA*%RnO`P z4yILP{czKTd)s&$v3^K5w+?I6pkgeh>Hxdx^vpKih72|Bt#0eWXu7fT7Vxon(`O&V zdK<7o({1(WI(pQhMUdZc5hLahVTG$tNjq%fl zuODcv#~(s>)KjR+s=Syo+G#!2+FOS)I(6amVN6Nmn@!Ziap}o6-YCYs_K#cadb$J3 zit#CdEKqId4#j$FGw#K=nG=TEF9#bxHiRke{c~G;Yq9d%oh@vsCkq*|q<9LQbZiU1 zj`QBczKV8DH}26RQgJJ%FlUY%TVqOg;D$C{7prYMOJ$xOyHD}#N{{-v*)qk}UMH(T zT>YV83_}oY5X~tBO>^HEuY-LKZC~yk_NCETw8TA!PXE>)zlrhMIcBHr;iI=84_$`x zfw^~Ayw}Ehw{6s+5&C-4g`(2KCjUIPR#>+^9OJbz%CVn}2&W85q6o4oIAGmyZv(G| zsm`11-KBPupVDr9t)Ym3i6+O>}9{ z{d*;zwkcJY2Iaq(@U*vv=+dD5_li7iL&yOI+Rzbc0#AD-w6!5e6i7=j zHdx4$URWPmTmsm#fG4dEIil#8kN~dC=Sfe798n+%Oqs`%R$b8%1W)Gjq=%ilB(P)- zPg>DhmjsSf@}viP>XN{a**t0SC|wfxF^ebNU8G9_J7)5vs=IVa;6?>cy5k9LQeu}b z;6^!5n)jwI3EU{-NwfFrlE95po>cywE(zS2!IMh<(j|c#B|NFHt}Y4ODCS88?R81u zMiEbPXX=u`jY6K3Gf|fWZg_aogqgY|aAP`88oMMksWZ4SjVFzKUY7)J6!4^Bn{`Rx zMm|p(d_b23ZcOD#1J3D^z>O(9DbuJ+0yo?|DZPm<3EarzNj+0_N#I5#yFnT$f-*LH*Vue^;+waz>TpyDXOO~3EUXNlU$>8N#Mq4o@6TuO-cnf zM)4%mUAiQ2VQmZ(pS&xlE94tJn8ezx+HL;KTq0sK$iq=^y5i;&gqiCjZB_YZPX=!8-01wwkEnH zaH9`T`Y2VG1a4&Tr1yt}CM9<8BoTMk%Ww9K*ewKOtc zGVe4$VjgFXgI&PKrUy);OwEknBhLREVZc2{t|seRpXzpm5~QW!Mp;h?$OHhS-5E$ae*p4x$aWK zo*oshUOuQM4ojdphS;DzX!`>VB zM9iOtLt`4;3Y94{>@mK5M~2TJOE|S?*scA05p!hZLvWAIfxia!NmM`Yo3iQFm=|(h*Z*wAYbMH_l;xSybEM$sz~a->+wXy&A^HAs0SNS;BEc-6fr+h}dbK zIr(nbKa|EG#s}^MfX*Emw?d^>eVH6FXGX9mW)(n#2fGJPF>ZdsnJe(i zatm-uS>!GQm*uTX2YBaz98}bG^9DTokI27j9gR+963LK)dLeE}q=PhBPsjJt|k^3R5$X$U((yk__^HaUWj3u^%E6XF6 z!dsS`4^>ZYC5?x~$}vBZ=q+Mn#I~Gn{84acE8kFirbZy~Fj?TuF=*A0TJ z2bKs$_@>0``Egzk`*dwDmUtr8EhA7N@tV}rJ6)DwPGOt-)5(a~{c@m1he(cFh#YJZ6sYA zP|i#@CKV4aPUv;2qj!od;p|m9&?ho)vPIqUj#+L+F0Jlh-XvlaT3C`{js* z4bR6&!ns-jru$MHR;a~wd#QsrkIgvJo(b|GtryNcrWcJi#*s_ z4s9u2k~?}Q^G2;1wI^aJ!A8w0#R&=;mH1)2H;3xyMB$6H$erA`3~Ilesk|+-n|1Tv zPNy|dSl6~)?YxuNfWK}2kt)6Bp$Mp+sThk; z2~s^#y|z%EO=Jp{3^KD^kKU&Ms(PxQ&4n^BW=|{c1g7IlJTkJ69(6S+!ra>L|qKp-?{nXp1=ab$R$ z_cmEhqnT#3zH6~QQ+5R^3{5rF*a$5e4~+AURk2Gf!#~$!r+GBk&G+|j=N&^&K|#Cd z^VNBJ>@xSvpgv4!UX>p29WBd!DSF|&rQ`MJ)K*VRzFmC0ca$H$@%ga!W>kXR?Cg&+ zQfMCadYpHpT6xbqS=aRRhZpBo(CN4WDkq`YABl0^5q|6!GQz0mxyu5&JfYby%i4Ie zS;rS#do&C;!wqF3l)#0kN26vJTYHByOEPu zJluXW6I-Psrtxa{_2jnREOv&FAN5ceZdL(3FU`e5N=IqKXFqP^9m*;@b;tBDNLTeE+9;`V50GoG~M? z`G6k9)lU;*z5Q5S#(!2Xj3H?r?8@nWijuCkrG6W4CTrsOvhVDA(pj*l#8s;7{H5NS zs~x<3+2lNa(l;&jsC~LvDW>+Q{v#~ja`azqy}dYc?251vjq>S{iMxnb zqt5XdZ%;O(j(vE09X;j2v<9$fMjh(@yf4n%gEeoguUWDl(}VtIdkJbD0_-28L~nPt z1dg4azekUaz|fciDsjd`+lXy5%X2a*-rJ37wzE5B4$|kLp@QiUEUWNLVGX@`@ak6H zu58s9rpyg1BcBF6r=3{mNK~A+3#<9Cwzb;n>9X^Ush&z~G#K`d4l&-&j3ZfDGs8v{ zOn7N%j54&b&i!*@y`9+L$ZB{`xt=cMFuq%)ZL8y5*T$R5hV;C&&&^)Cz)eSXH2h{DsT(HRpVykbYqhIv;2^}Kz7T6uW!1?J)sP)J_%NSA_X63Wiw-*@TxzI>)X>3) zNewx${U4^w5nso{(*RHMaS2KFo3GT5R+6<4m`~uNJx_xAS3kqm^GXs#-@mSb4s+ zug2Cs#)ru*jcx7q+}CdEt7kV$@nL$Kz&7=5}Ni4N$8A(B$m)< zQbAtWIg2_0C1?SqhnBqX$F38pVY5;`Iw zo+Xfz?Uek}3%zi|gFES=RYO!7_!D{DOlb*;6w5D_ z*5Ngf2bp_q_Su!p6C=ySqhJmMi7u#J5er`HmF1%j2NsrbZPr=@q8XNlCRU9Jv ziUlt})zt@Q157vuL9EjyvMyzCWpOT3xq0BG02?gk0bPm0 zRZ$AnaoQuZJNe*HfVBo0YoAyVvE*!a>pHj_pZk_oXdbk>rD$0rN4rUh#Nj#Y98>!an*BNm$-93^QJe(B|dO99i%UvK?-WDQ6*G{@M!M;xDN!&Y|o!M^}{ zXcTE0Hz;C}nf`%=x+07gyb7U`N*nM%7a!aTptdm>{u(~IJYv>9&=0{}hHJ|MTI{q& zUAp+-OThA8TQ;|G#Jt*K5!)VD%u#hw?-!SK^TDYgmzI02_14H=R0c$9*pCK23Di8l zpai)WU+?aNgMpjozFO>y%wt#*(;-Yf!q`CuCW#`rm?8Vbn>+j9T)_DCTlPJX`8B+v zgnfr7l*V+!p~h^(o?gqcQho3+prg_7>!xLwBexmiFS^Q;! zetmJ*_=p(?1#-|473ig2Qy%T?gJS`!@UM68u>XV1kcFn=i|sWrzn2fr1Z;HunpIIJ zVpdIC;kyNo9Gr^aJO&0dpfL2$WFK4$pbmtK+RtxA9wORqhUqb~b?TDtgD=4hmd#VS zCt|^YY;cYCRKWU@o&cfgssgUp%};gn!LNV~lPklXe=H&q1ahN#MaF$HO0UNQu+;V&5X`4?*Gub)9Y2H!2c+PW7bla;?+XBC;U80;^tm^ep%Y(8|u8*xd(@ z0#?~e#icDH=HZnME|+dF3%!Tz!*<-}vxDtTDVr`9c%+E=16_~qrqc_K4VonC9Twj-O(!|X2i{c6*!}U z?_!OEpvQOdDL(ie;CKgw=FK`Bkq|r8%%=`+P|JRkv z5ou?_fX_o`z6htD^sC02iGPUiiHpV2 zu+qOEyoK8VZxw1Aj%eZl^i*J|Su9X_a(81xv3T!~Z zL`a@@{!Na+36mT0XGaBgptMnIMzM`7=582dXnQW$D7L`4=>d~sfs8KD1Ev~!OCyZB zaloXQWobI_*Trs&T(Rt$L{fL*V+|FPEX7$wgD;^Oy!fccYmey6zJt>S^=&qyzG9T6 z7$kc4Rt6GTQn&Vs%yic{e>@m06?*=z(cveL)uMIRP({LYL4z4kS?(TPp8rvbtEN(1 z2ZhjGHJ8Bj$_c&fRZV5D0Se4r=BuKYUL)|&g)Y!~`Kdk%b3CG@@9e2>&H%o_#54t4 zUuvsR8l78OfjuD3_&o(vaqW0fxdCL>)gP=Fz!t*l^zoJ7b!-XJVYU@)HKhJ~bYb+< zp_3t-06}lf=49VOzB8k;;L|#Ck)^HzWLl2n96^8 zMuba#)sXxWee?JRgi3x(b)`j+`Kr^FI1+qw{l(Ni`jReBxU`2X_RhXJei`WZN59u) zsaejehMX7gt5lr;A?N7_xK6^WhJ@F~H(T}CgM{~~uBf1FR}I;&i*J@HB0;v(E4=jqbpwV}H$Yd6cB9~z6sjT5CHX2;nHBQf3|*#(l3X<;xg=k?nhTO#16?j{ zQ2`mQ8ZumpuS{KlA;amv$r_}$YDjOXzEX7y2kA}EznbK>YRGLJeKS;!KyK4>L?gun zB(`cuYze*+)qNcj+Xa2w!eq5-$ZE;HVpZaStTtAcMZeGHvUD}1w2ru)e!>utd=g5rcHXutQwM8md}Iv#74JJzczbNpE)?6aAA(l9f*a3%f)g2 zMklF?DO2dXGDN)aP*c0=UKxM3_f1!|7ZCPl=&GX~2~^ChhM3pgH%*llu6Qb|YswH& zz^jIUm*Oi>#}EX(M|9b15bdfV+V%70tARuy*?pwT_m5?|YRGhnzNxB!1es1hs6soN zNpsbZ=2CrA)DaA6PCxP1B*#@lj!X2p{nFUwPe0XFJG3w+!Bs;JL5RtRS#B(&RYOJ_?VE(gG+;D_chL9H4I5K~lvNEWYoKo; zC<~M_B%uqs+WjvwP&H(rPQD4MTz`JiVtqAhlzyrq{dDk+r-7_!HR3b$b5xkzQw_N% z&Igkn9K9e%t&AL9#Y3!xt6?qN#Rpp*rrd+I@I5;0jG%R@s$Ro9!tI2sVJ95x8_N!P zU?;4f5kf44t6?GB!#4&yT4o{qj=q!|*#=j`Hn@dvv@CT({?u8o>GG>q!PT$|PVtRm zN1d<=F3@4sXb)Tsd*D{Sk?a@{_P}}`2P}cBVF{ez8^I1PVF|4Naw15>hHBUV_w~Vw zXD%}VPSjT^$lkv<{;h`bZ@LdAJ{8RNS3iI$vNX@m<^oxW~2C^`2{^ zoab66FLpgEuXH^oKZW=Ji(OT&d9HGo$Cc+A?;7D6)n)#~dr*jZo#7=O}l09C?oMj%>%R zjx?N5+=`wIKL_B+UUcrkeF zlckpSG4>($K2k$_S422$E!|{qY_DxM%bAE^aM|{Q+}-xA?SO5MJlpoM?QPq7xybgc z?NQqU#sjvyZ1ZfTwtUHGn<&>I*K8wfw~~vt-nLX*J6m&GeR9U;v`Mnn`Um13d}lpu z{frzTpIdj5U9y3EXx(hxNZz!ru|8#8XuhV0HIF<)9=6_Q%_2*znbMD@ zd#&BA9j$GwO-y%K>sYN;gXM~8rsYTJxXEKVZklZQ%CgtE$FkM(uH{wfD@0>_%(BdK zw`GB)+%nBH#&Wx9h-H*zkg1O)-O}08-qh8UU}%=4Yh6=7$k);Ro{)2=eK z(je0lQo5XFT0x>oU1BGq_?vi6JSl!H?vpx`;iNz5Df^`MB$>1|&NG%u4UPH6iPBBR z5yo5POk;0js$67jXKZe)Z*&?Z`49QL{2eq)hvm=Yo$_XRqrApKB+>T4;~C;|4m~nX zT*jdX%fzJ|`p;_d0S?`{U%a0|o7={TOE}bgocJFOH7OGpbEx5c;(ZMIsOeSlVGcEp z5+CA_y-Zxmpbyra5Fg~wb5Y_73PEY|gKV%62Co^lOS(=WXgFS%{$kL&wr!<9O<)B1 zLAplY*q*IDS9*p)&#WFOJDlO zEv@3v9ap7C8T8QQv(h6BS~>r$#M`lQ%3O)JW5tOr5^D!EQO9Lo<4^4uWs&B9y69b5 zV0k~PA17^L&<9V)Ngp$4GifA!#Gv;cAkv2n+H`Xx=>rbcN|H7+=$+}=()$d0>*NOM zJqEowW0katLxmfpcR5tBTY85>Iaj5(8MN__Rnl7=y0}|1lP zlD=cmi?2sXrx^4?%ze^H20hzwpmc&kPd;)iZbd*7F z+qOtQFzC$+Mf#pW8-KVeouLr4Kwrx;g9?MSP7z8xD!Da_E&y;wzxH#$h%^cq?BXyhVDMy<2-=i^N;G_OnCM zTK;a+bcwfeO;!u(CH8Jj_f-;akx6l`k~iB=J^0_c)PwE1zwWB=J^m zuDe>imr;5DdXjh#gWg-*NW7avvzLpD7__PJS@A9gz5C}{@lFo?a!9OV&^ya=MTJ94 z=88TBy-hBOUJe;-;vEcn>$h&=LJpmuE-v8EnN{L^2E92kN}R_ac%K-4QXz}bmqY8H z6WCm5+xV9v&Smd5UfCed;n2|xv64fF#)-2Tv|;XUaTbS4qQsdT^2CW19LgIfmUC## zYO#z%S^LFO2EF!unK*+($5x9a96GpPEauQ>L@eUat|YOLL9b3cD|$H8Z>~6SenK3{-o4ObwK#%7&wUstW^-s`nK+z7 zuihsP)JLC?HG!~q<7 zXt~&*L(A8S{W!Gfl9V-Ktndva)gl-Pqqg=J!Q2Cb^KTkOUm%T=)}gC4z7CU#-aBlpFLojJ6y zOzgyq(zeUg~Wp;H6JBn}OjGx~^@k!1|Y- z5eaPWq~|>Xn>*>@j&PTm5D`I04EHc#*8#)b4A_3ou!sR$j0TSLK@-EB?9HZBLlpzw z8e&iwuwjb9$ADKB7`zNvyV7uni4dX53+orM=j!bX*z?IF^VxINm3i#>uyZbZu4p}n zJs;><$)1Zx&1TQLi)OKB)m<~$^NuGf*mK^S{-yh zm_6N@MeLa~v5-9{%=ED5*d^21bL8{W*b`AA*mLlKeD)l0ZYq0b8mF*ldJ{K$_Ds!V z&#psq*)w&@WcKX1AcsBMue_Z-+peF)o~^e}WY6YDCa`CdE92R-k#ih-)@ywmdq(vf z%bu=LW7yMHG@3n4ca36C^2A8`L|B3m?0I!>Hhcd1-Ej82^w%)Bw=)N^=iwy-+4HOCZ)MNVHxFRXeFyrp=bm%@*t6Q0$)4Mq^kvVFQv0yy z`$IC=^PMT_?D@umH1>RLWpDO;d3`VTd}(`6_I&P05B7Y**`4lS+MgCW(`Vc3LMQr+ zsVAh;XNwL(3Vk;1CnVEnqe(&%eb$>LbfnLy`-MdMbiE)X(5LMKp#y!Iz7*OUi71## zy0S-M7y2L|7JdCK572iyw7&ta?QNm zewTfoz0{s>d&>5mZKZ9o&1ahp`-D8(Z6>EJ%a&>DZtG}kV{2loW3$=})+>lraNPQp zb+2_RViCS-J8XU4`j~Z@^=|6|Yq{eN$4uxHCOgJBhB*2-x;he|QE2R_?J(mGgv++i z>_6DQMFfOBww?Bm?Qh#Q+t-tK$SdSIvWhGvi)EsZ4Eplj!2)wGU7w{N34^cksiiv301I@ zD3PW}~Nxmlg$QIWX*N@QHd}TS}+6#TnyRKJV z&$}MOO%8Xv7C=Wc&2_u{BjP1~W%*p*D{qzGm0y*gmmiat$#=s$qgYTR3#bYSNfP^EQ!29GbnKG~`hES<-+(M{YSpvYl4Ke>Av6_0{LCf7_j89= zwIF;ycle=hgzx7LFV7}?KX>^4>4fj+4&SE`zMnh1Xcgi6xx>l^!gn=?+Smx+&mC&n zg7E#^q3CX;H>>@j#@U4L=ML4MPWXQAP#uNv{oJ9ORuR6RJ7nKL_#Wf-Y9EwRI`5bC7kWA%J zqq$@Xhw3dSZU!CQbe7~X==9*}br_O#G$keWF?1s>?RL#sLKhmfLj3R7@YCCmcI$^s}+o{hK!gijvQ+rntwvV)(+O>hOJ)`Z^_T7Z-4{fJDK0(-C z&~|F`Rl@dtwo{v;2;1Y?PQ4XJ*nZA-YC{IO+d9Z_o9%~DTga=d+#iM?BCl|0$R)C# zLj!H(We)XgLDq37qZ?VvpLUl3x-Ba1p4hHG8GW=clL(+B*h3aScyTlgK zHV*wi*VJIL{&@X#@o7fyEA-hJYkE;5P1_Q~xVL?#{BJ{iAT{FbMVIUye9(1@$z5e^ND z62IZl;5hLxhX!Pbhd7j0CVtJJ-KTbo2RU@?g!mPQzPT!X$)N*r;sFkQmLYz@pk4ho ziF-Mev0wazL%q(5dpOj&k+_>f$w}fa2JQTOwOGxemzRqlacJKrk&m36d-jXGFL!Pu zBJa1IA2pKH9PcNIytj_ObDzZPe5`4%#Or({F&F0pbjdvYq)p;=KE5qOy2RdnlCMY? zIn;NYbb&#;#$`z78MO1AfgT)G=zvBVs*CKe!9Jp zbeX@)OcFOc?lsi0T`Jv8_`6F*CkQWh|D;1iWO)0>T_OU5J~Ip?1_ph4EmyqGq2K0; ze{tyYa`8_NojD|4k()Ur>?d^?^!cA>Nfd|vAfz^jE+&y$96C3U z+{B?Da*2yW-_0dX4jo@k91Plj*IB|>i2Vv7e1+J*uo1EH)VWE-!l79MiJ3!Xxx~bw z;t`Udh7AgArZrK{uzK$7jk$#I19 z@4~lb

    (o=WXXJqX?ht&R4{dZ}IN1?R?H^!soE_6E+b(ADkb%pBzN$X4|>%HWA)i z=Z^0uytmFBIZJqNojXLxe}T8s_S5(zvYplMr!fNwpI?3&kxTe|@Ke@YvW2G(T24Mj zjy&7h>O+&xO`c0OaA@Lk@;ZlZTT5O8l_s_`JG03% z?A@8I)5+5u`cNT!)j0FsD#BNdGjDGoeAPHT!AAJ1ae8bE!dH#cBfAm4YMdUHO&(=b zPQ5aYEaK4GGIAG#P7d8o?&Q$G6Qqhm{jL&)Lw%x%k3+rVh?hg%Gsqnr>O77tDNYPN-pp!Wa0 z4fhyapSf1Mie0HLlXIVQ8BXR~IDSABfQ62Mjt2Hm>t0Y%=XMEiv^lUN^pLRE%xqGxE!FiQGxLCcQ5$lrkg}*+cFn zV@V6~xcHJ-ET#&-2yY9Mg*t|hP=OR>IBeepZqr8mmF>e?S>U}s&cEp$l6EyM$Q>#42_KTp2`5;SnBzDXXK1E znnb&)=d02m2C%5J0T$7?gTxj%)l}L|JzteRaLA-tVJYp1oHdfcw3~Xq zDj90tYs==m5jn56Sijk{8&=cZlyn%((sE%nUBg!&*?8JbJzteHI8D*qu$``f$2FKx zyQ$}^(p%-%Z`pU(z%Px_vEPu|O+8gf74tNi82Sv76d8CbhvUp-3chIy<3 z<@T@5R@6WuI4k}$Gix`jtdo_lbmj+LSXnzFS4}&9U~KKCF11P*SuSJQJeBSnWQ$~S z?WQiZN@sQa!Qwh4GLguJ*KX=kt8@ZOEVK?Vyq*v_`#-h6c2k#HC6!N)aH+ksh7lP$ zI;a)4o4V90De9*HBkUU1gBonH-PEO4NmdJnOKoA~hJ+SOEwbIzrB+FToj+v(46+}L zoKtI;?WQiZN=LP_mx^b+A30AA*4b|AQmZ6_?agSJ7Yn989yz~u#QakmZ8vqPRdAUp zUD^y6F5dLhjcIe2JnB-b;PTSBEaUFz_{bS=Xs_*tx%LF5J(?H8C=KsWLtoyod6BKQ z-7wl7ro@B3i_(YD_J1PR^nbA3c2oCNr5(acFp`TF*HGn}EV$j&eN~Brp+3tWpI*bX zsJG*G!;CvoK`atB`p(x%|1)w^wAS2i8v0p@Ri{E2bGM3|CnIPqth4EM)6maK8|Fg^ zlkOTO9<61!n}&W?Vq~dOprM~f)==UN?7Q7G^s~}hmimH9>a4+$sc>4M6U7jcVu(zs0wkhJIFBAlxaimvpM(Ym8v`?WUohmF9@m zj0v>vq644QP|ILX{H^)7n}&W?nt>bvxx4{248jZ@xrkQaZWw`gP@-8M*Gu@&>{j4-*odo0Xng&m}jkp^o;;9O*FhcJl_*#7Ac14K6=BA;a6DP}*4I$CK(sbD4gIX(A|!me2-YS?uA4t*n;Rk9sQf?K@RPyyqHBh0 zu&aghy7Q3pZRc{_`Pbjs-0>$)Xc$0ie{y=_IF2i|rYs3opTG}Wrl{``(sWG`oc9JK_EHact zi`QT){sy83OcYZ@yKq8yS6C|K3%!K8XvB^FT3030&&6ze==&rdaI2EWRKON0+8>Xs zOL9s=imi23l8Sh0;NKu71F@rucr5pC5R-tI$Pr;7RwH6^Vge8oRK%j1i%w4H48#r` z5%y&@QcOxr1Y&y?@zAB35m~F_Rm6SW{syrlD7NE>FkY(>F)^{DEv_m~7PAF2xllYA zx8%-bF*Ksf5s){!O%_q)DE8wxxAdTNaNHA)mee5SLvM>^~&f^HKzR zZeA5DODVX4j?A19MAU?NUWzc!O{=g-cMu7}Jf{VbMyLUvmmT+NdWZyp zmMep(x)94t5n{PT6=JiXWQ17OG*%m2`Tt_?y~C?2y8qF=&))m=b0S4hYC=iqB&1No zA%r4Qq}l*6BnJ{nBZZC{(@qYE1`r!InuVeQVnI=Q69j20qEZwDLAnSCcdeOq3g^x2 z_xru~cklDu_j&V&e%R+TGkeyQy=KbE+IJpuWCpRepM=3~q_~`n;yWQb3 zxe{C^Hz@(%C`fBQH>k(m;VikbcFkiECEyJOW+!l#TrH4Wz)f-`xJhnW0v=GH0^lY& zCcwGVL2@NHNN!mIzE0qlA~;Ci9^h5w8o9F8iP)$TaDL)4DBv2oPkY$6e0}baE5RLd(-M`vA-F?s9?0uXN63{mx3-NaQCMxk5pqx;2)ID51Q*DS zOAM@0!3Fa8KwhvA@jE}R1n0+%N@UjM!1-~Ic!S&?SAyH)h9wevaftu>ZXhdP3g`5RvRB%7@u=I^}$mOt8WB}DseR6L!%4@CPN6rdyp z;`~-ZoZlwJ(^#K?IKM$JeMf}fN{H|qQ9PANssH7Sj6hxwf>#tC+qV*8`!*?_!m@(c zzCl^t5!JU6qWU%~p3LS1i0Uf`vig^JzLgNqH==kFD;47T28kjN$+r?B`8F<|$ixMa ze1kX?UzEl0t%Ml95ycZ&P7uTQ_dub6=)IK?y*IoVLe#(q0HXIk65#Y=(GVbRZzaU- zZBksost9p=KMYXrh}c^R5qldK=d*W$h`m9yp+T{FE2}+M(5N_%wGYJVJsQXi)=d!h zfJNyAQoF{*<9SxkM8yP1!SQ)3AwF-T;#{89QxA_1u!17<0?FQ}IERrSGH=kN6BLuT zvfA*;QN`J82trKWAW~>F-b#qZ+q5`~4KRqt+b2+F(j9SlDdUh@nw*DVawAZD&5kXN5TwA@OFmfN^^B$Ek5 z%MBt0$H}dPIJx1)BUot=CpRLHl|MpmB}B+=T0ETfREUtfJwSmyk)YVPl@J@ZQSqbf ztspjTN`My>6}J+i;)WN4R|S|QAS!N<82s^YD@0(=f32JWE1`-Dcnt%T^e5yjvj0dj-rx52r&eQ|Fq zA?|Hl@lduwffsP9UY`Gp7cn@C(`tRGuvK@`9))*6=6mi2JLKgZGw`~qG!?=&wkPc{!UN5S2J1EyuB zV$-9h7?aufvvG~_SvW)9*;rlsUHb~+1!QYIwR-9$I1B%lI!S#%ja2?o_A5)3XW-00 zv|=*+#Mb?(hE9fR@+tXCd7hjl_mJyK7vc3KDY6t4S6th}fZoMIv0H z6%(Uj!>1JVSw_5aScix$0}3q?;R>#h*dDiMN%oh^JoFA>tMiD7;97yTw9cd^Cus z1XNxm!sTKiF^+9>f!@oAS67LND4r6~d>QfQWE~>z*@526h=+&k5V10#{2~!9HVcWd z*v(2n|7FBnajj$7JAx9-h?y zmKpI8VbMUuJ!H_C8L_)foFmR=C7?MoVyDhJM63*G&q#!8@IoS+NJ~J2X2ji>#6;F9 zK#69=t&Mev*eO7XX2dUt=n!$!9&~6%e1DY=5!)J6Xe7c7eIc`_HfXu8L@c{9U|5m)M_MxZvi1Ofz=vR zYexK3Tyz4fH7MAO_|Xko4MopW@E*m3)CA~=%} z65Fx1zK@76igV7eSJ8&ZS z77-HpjN6`wPlZQcFNaUCKGoYdCcJ8$R^QI4dx?%q~Ihlp|{wH2#m2zwdOlBq_*xFDy}vA#*~uUx@(ZQ)@&_PN^0w_ z{w;Oh5nG1T)?Iy)b%@w9q_*x#%GV*Hz)5X|+qxoRd$x=!CAD?uQK5K%h&htly7P!o zJV3;q8B$w!9u(HPeMi>ANp0Qvt+3WW#JPvmR=92{t_<6cBDEE6W9ksGGNiV`WlbTG zZ-tTC3U@hmh*)by8d}b%;0tklMN?$#0w=W2Yi;X=4hjwnY`Tj9RA4iU#SsjYCGT!)APC$)9k z@;N$06ga7^TL*}1oxsL5sjYB-U6^A66F8}@TYHJc!*^UsZ3T}J;vCroKx!*E^3)+> z%aGa%em-@GI21^21vj8NL>vmFwt|;X9U?X%sjc8dRELO7NNOwi7}X(S6O!5r4lsno zc&4S0+6o>@b%@y3aa_Lz2c|ki95b;*{8B8Qcs6F*5pk_pJn^gvV~F^%SUgMzFO4SR zDzSLtnK`2^5#PTgt_+*a+7R)b#yUi7nbt&H)LDm!Ez^n^B6>k)BI4ILuNu`VZqcNig&Z3>mvA!1u`t=qB5 z{$3)s6gMF=XO!MU#D?O^v}66THWBNIE5r7qN^23(o-eKp8pBHO=0xx`E+n#TrqY^3 zTr4gc7iU)cCvqLb8iR2HMC%)EeAqa^*u&V#7;TI+)-zT&nzdWnW$m=~i*``^THBy~ zqOH&t!72UcwK8p*mZzm_k7+}-`?YRbg4RlFq}`)AHC4T?o>zZUe^kF!x2fyk9RGXj zo9aAuruq!n^|RG9^-*=8+Dq-Cwo{v_4b+;dRh5*h${)%xeh>Hs1h0U$^S0ki7tL+VP0V%7{mk9X9n1yhC*W?ugT~K|D&Cf8 zukmT~5>qXc-DEIcGoCY^F#cfNW87joW%|jq-?YQN0zL5ApZEC>v_EG1*0#;I&bHe2 z9{3Wx!;|2@_ao@@B50nEegx4+9e6$Lrz}zCE3*}k@}yFrJfS?UJgD?jx+@)&HcAtv zj&hfIwqk_43>OWj;9SFg!w%C|rZsRnVu9%;@S#v*nqtbeb_d^y%x|LgF7SVN({j;r z%JP%hW7%)n5#&j6mZbzeDRMuG!9Ei$cJp22Gx168HPO5UygV8WUm4bz?lW~Y#hF@| z!c8~P^P=rXpC>_)AHk|T0tU5aNK04M8}xe5|D^Zv9>K48p#KWHDJ@xjo}krE+f>x3}6Oi5mT~*b&MNnoar@(O zD)*LgdsVT@y=B~f|5bG;^P6#d=_+*yM{n;`2XnOWxH^cVH*Tl{IhtQXeSo1`-NvZ{ zIOt7<=v;#R4BIf~w?-p^61<7yv{n%z+EcY2|+k3akOK501bP+f)lD>}C?R^k4N z&Q6@6aDPQ-^A{@IU(wl|wF>uFbavc6g?q_5JNAsiy=k3IQT)>!2povu#mta6V|R||%y%%hXt{LKvY1uVmE z-nmen%hA@g>Ku+X?o($oWJ+(TRwCj)n>adOL;0PfKUylxpO@Y6?hthhOCk4Ps=7Jq zvr$dssOMpoc?+`3NtaaSEyyl+wW-WokX`Q7SY_UV>~cb9m3a%Y%k74!+*{CJ*DtAe zv(m1<(O0d>(W|Ly4US%%s#a&{(v(+~tBCC8efjEN44FpctNfXEWTAS6^U8)O+?U#= zXT~Yl__HUA6_&zwX|_$d$)C+?tlZ$p+gZ8J(B;3!sS-z5ij~_OU3gWw#nIVS%0Gzg zrk;w*<{Z1)_L9oyoZD-MsC>@3`QZ)qFiUaeo~0`Ht99Y8a!dTT&vFHsNX(y21oauQN0``)m1AvN{m%K3~5JasO21ezgA_Qq3qg$eJb+|W!Lte zQA_x*yA`#VqaAhCXE@pt3wM~YCfbI+>eC#pOI4rZ=(DNnlN_y?qfTc?ee{evjiZMY zbt*?g>Z(&XdLUMv%u(OI>LiYOr>YY4Qni4i_8ZlFj$#k1c?=o$ z_f^Mpv?o=~<>>3FY7R%+=BU{mZCa{karD(jHIt*y53A!i`s9-O1VF(`&WOAm!7zxTx4l4jjf?vVCbT4 zoN}Hc^h?JPc)UKx5c5#S(T$zTABdndi+mqP=N8K^vR|(?sH-;Ms7|a}pQBoR)p{IN zPgU!3($j4E=TMuv$x!3_ak|z#r0U_zbTP$fp=;Te3)+ zPv|ZABtz!N66sY!Me=Wm;2OX(=@mln%D*ClQ~x!kmkCvqPauLb{_~}m2)!&HM+C?D zTS=^Lc(7kShR@*O{$*(%p$qa+L~umEp7a8td*xpkdTPlsiG4xvT)zA>K7$*oJ)|Rq zk_@azz@5}((vSEIZ>Jhq-+*KKc8Ps+@W8&z=1e%1ZmjXdwd25=zo;h%!)_pvgF^YS6~tj6J?5}R%DsJwg-pTSZ1MG~8L@ld>c0H1-|jIU*x(02I|LT>pT zhB~+TT$TuZDnCqUnEWXDcFC--f&YZn5*tT=R%+GRuMlug?oX({ z%=#a=OPDKN#%F+LYt;x<%KZqnmRX+!?+BZuOYB)u`UdSTLhI$eghtA&pN3^FYbCJ} z3aEt^#(vFQ)?B`yqotc=)_1}4!5kwhns*KE5;7?tL2-`PhWVQl#>p~*4 z373)C3cRuF5HUwGTYxGh^oW-D;@u0sS1MH!i`z!SU<5iAsC zWVQlF@j67kzRC$!rB)=yizLgk-h?C-pi+6gZi!z=yqv z*nwG@%gAg6F79=Rm?N33zyrPx5u1?AR^T9COk_<+W-IWYuR{cTYZ;lXz`ec>5!;%~ zR^WYKhlp)WW-D;cuS3MPCbJdz?$;q=Ta(!eT>I+~v8~B$1)l$Ph}hO-wt~O_Iz((4 zGFw6103nf?%*)7Z1z`nrh}eW=wt}bwVj^ooGFw5E3mqahA(^cp2!;+3n~=;_5F>Vvc0C`Yuc?p7yK>$!ztVO)Q@FXqPD?v(d;>cb%@x6WVSkVX{`lG*Cu(_-u?fj+1@6^#h}be@ zwgT_#LLxKkmyy}(fF`bWJlf#O$ZT~$7T20t>&t3z`xdx%7Z=T1raBR?i)+oS^<~wF zcu`zy<{PT)E+U@mt5Y$f*fMrb1fTUn zA~Wlk*@##y77sJ)msyGUR9&4Mu?a0ioGO+hv;UWwi8xU#N9O3N%tXX|u^i*r{AeU% zj#!TDpg@^M#BpLd#<9Vr5^?NOajn_lQizzkQHO|aZ6M;P!#YH4Ynh0{FX<4mttC!` z=ovyHKT+@$Cqi%y9U|md`XmvriRH+T9!w|VWw9LDb;iopp%NGNluVcwmSQ5#>066Cvh^kl2nLdnzPi zp}6<(!wdyP950q5Kg^I%#4NEK@i4=G&icQc)K)NdiGr=@3DSDkrt| z^Z=m@AxF@n%1LcK-B;Kbfe2rOa#CAQ_ZId=AVOa(C$;r-val}#5&B{|sja77!oCPZ z=!@l~wnFSHVXfI(rkvE)Q$LI4*a1&bmXq2FHb9*m;fqjCYAcus#YEJY%SmlLwO=g9 z4){?oC$;s|9)va<;TOs&}&O2gTliCWgNpy(V)}*$c`l?um zh;2=3D?~QYA!1vT+6sYBbcon8q_#p_6d{o5JNNo|EFbUH+AYf@WJ_7TgGt&Yk`Z9UmjEJwCFDkrt|WRh5p?9g*LsjVjycj~+& zwl%4(Cp#Y3A!1vT+Ilknh7J+in$*^l?P}-{v1LeYh3I=iB3m7mliCWw`E-bwBdM(r zyHAIRZB1$`g!U5?SzD9Z3X%VGh}hPownAV)9U_ivQd=QzpbinoHL0x-R#1nCBU_l2liGTshggnmVOCCR>xph+IkIEa<)pTr=pvRQUzm~FdZL3^j_eq9 z8L6!&;>2>~D>zbHPejiU%aLjIq_&=DwNQr$ZCyrcE5s1hAwpZ1k=hC&Msgo`&Wpau5daMo+TPBASA#SUX$ktnB z*+lFrmLt1_UzSD0PGUK-^;TIX5fj96Wb3W6aYSqfk6Fx@7MPfO! zbL(XziTI{ij_lle*$5)eU#e3y4%gvCd}*T&5r^xeM4WqAhlp+c2oayZq(j8EewY&> zES`|aZb+9sM8wu&@vw`}We*auxmY~x;&a(BA~qF^hxrsL8%o3ov3Qv8y0RfetS=T% z4BI{)OvHP|;z8ea|2gY_52>wiwgcatyeU$9GSVrLu%_4Su96p zZt;-X3df0cipI7kwG~dc>JV|AKx*sdE5$lQXzOxPTQ6UDRfh;|T~2E2<+H1Fh|n_S zq_)EOTp^LK6G&~nG)pW;zD^*u^^#XCN4`!Vwe?b&SdM(1Kx!+TD;B>a+v_2<_0p4K zIkI&^IjOC1wpk}fToaPo3I`%}h`1&swH4x5>kzT6No~E9eO!l#ZB1$`oVL^U%1Ld75W_k|%#qaAi;7r|Y(Y^@YAYNB73av-|D?8FxFMD! zv-Fgc+6o7}b#lb@KdG${8(D{lZB1(Hh4W%LGD}Z6sjV0OXsMGUwl%4(a0y3;h;2=3 zE8Nl1A!1vT+6qCPb%@w9q_)BhA0d&gJjzLJg$qDBM9h)YR=6LeL&UuvQd=S1w3x`+ zn$%W^My*4{y&h6q&yN?&k*z$+No_r!C6*&wd6bjddOkxeN4D}PC$;swdxp+CVq25i z3IVlsh}hPownDsZ9U`_hsjU!>TZf1(LuxDBsuB{}5~ZBf)^pdza%4-Ca#CB*T@}lb zEm6uzZ9R8UEJwCPDJQk{+&Qrv*%GCk)K<9gC9VwHuP3z?VwCF;aa<4L`YnVo*CFB@ zK9Gn%ozWp;TR%X=!-@_O+j;;I57pHnVq5no;=WiNBDQruPK29mLLytDl=mfKzF3az z`fvIDM9dM(k*#IQ`w(%QSdMHhQ+^*2$BO01)-vV2iI^sqBU{Uq_afp5v3Qt!?ed;P ze7LVzJj}e-gNQ>@b%@x6$wVADRfmX8*qw;|=I9Wy36nSxE(HpS>|}3wHzJ-Dizk|y z*IY#WUEIx>XYcZ^MEq4ON9NhPJdub;#d3^hDpwaG9udot`Hw2^OvLZSa%BFa$~zJ9 zfLM;qe^hx#BJN!(mLqHH4n*9wQHO|a-JXcs59<)ItrLj2`H~J1+d7^TPd_1$V@$`6 z>Qay9j$WT_R_ zCag(V9g98et}vtXrp4gA=se~8$$ZVZ-?_v2mHC`=jdPiEf%$~iTMZT6lbn; zjCqf9g!vukVCQ}2EzYjaIA;s<=gx3vEvMbQ(rGZi?zrYS=QsgT1ot?$I6il*biCtu z-7(kUbv*5u;K+20c0BAD;OOD#CI@ys^2lzOkB7)2?ghv}54eVTZO( zTd6GpzYepsXS5006X4Zhu+~fKq_qK`4z)C^dJDS9fB*g~f&Tyr*c8nG!M*Q~-Xxp+ zc!So2uxsyf?JY&WZyeLsBHN?tD?!0^ykT2XIpd1pGUSG(H(oQ3R*9cs7z?&hZ0H z366fv-GpGDb@7b}_Ks}Yh+zDQ))54we>)IPux9sN4GG$24r}0pEtc2kaMktq&(8MHYIW4OO!KcnO ztxm9Tlva&k%JtTF5gf6lX&AvFvzI#wcJJ8JL9mnZk)2@2_5E!G+ec(s3AX#@iiKeG zcMdbb245zc2;S}7Y~*m|<;_hsf+z1zR0$p*dq5%hbM-=lMbRvhwDQP0b^{XPcb<^; z;cY^ULY^qoN3ZtLMeuN4AposP1-{!#lUXvj=^K28 zK{yTU4lqR8>>};PXLZK?{;9@qfkyAytFc>_aD#M*#>$0&>Yr(>Gzf~mQe$PnEzl=4 zmUFFT^&Zt&ezj(GFlhH;eznREwbSllD6P)|jom4(71P_Q)xu{r8huZY2bd>>_QzXBbA(!0uW@pvbw>diD%LMjGr4P5-Gx zV)uP9zO8}X1&2tHo20MUuMjiRU}LEH+%)M+LMa9-B8UN5Q(8x;n!&=*GZAsp7ldLA zW`@S4e=U7ZXuH9L2%k^5kzBbB7H(A z!k{ozr=mdmn9z6w^bOSju@=*$HH1~1fFR$L~1#GXNrMFYFh3&9lkORMo2hEGQ0T;kq1{x>{c_zAe7lHUx+h!LSlEBG2)=iZuIte zCMr&1H<$s%$n5rRkEb3kkl4LtK;z}}m@~u->>@29)KUJEp`jmlkroo_D4%1f`lWu- z0z!S{vkW<={V2Uf=zIAOhLi~f(oclO8<w?hy@}5-44{05p+&F7NpBE}kxw&J zxO}ekI-yGWcZU9ZBOmYK|My0I!o>gEH}Y#Ot9wOeeH`X&Rbt~DkSq_y9#(5s``2XF z+hHD$lh}v{6eAB|zm^}|C9{5CE3MBWiH&_gZ^?t%uW5Y}Wi|p}zPC$k764?C2eDsc zdM%b&zlU!?J&DZ+fbNwC;;%Itt@%i1BLKb&c8Sdl7!BIMz9|s#d8o7tc^LcIz`iaJ z-g&O{HG2kuo(=3f1F@W2NjvcwMs+r@FAjumUM=ll&mf4ifqi=*P;;iV9iL&yW&`^Q zK}6l*wj$xKZ4>w!c4Vwg8BaDbvW^T5!8@>{5F+q-aqJW#N?1s+|i*}BH zh$jlT*~)JCM7YHSM6@zvz6WOVPhR4Y=e2Y*~)HM-dTqT+h87U zwn8UWIz-sC@^G`29eh{`iOllo;btql+(#@&cE`-a%~p1~r&x~6^624aD|C=0E*iJN zJlt%B{U8L}*CM2^Jczo0$ViS_t>h{|^b%@x6WVX7!@VE{U zn~=;_x8Jy-L&PQ|v(@eSHFSt5a57tgGfE+m85BKawz}0tEJtQg^pM%=RtK>hnL*J* zW~*CqVmUH{qKC{@x1z;zWCleKnXPWM63dZA6!ehU>Q*zc9NC#i51FlQH5JQ|oq6<- z*$Nz;iRFkE3J;mBZq-lLA!1vT+3ME4!*z(*)?~K2b$7lF5!;%~R^Vh!NMr^@51FlQ zek7J7Gbnn7IWmKyhs;(tqQr7!21O5EBy+3H4Ju^gE}(G$(>TQ_Qp<;V<*p0-4+aYigh*4Ax^c$cC>#I|ltM0;HwBDQra zBAR1$h}hOGIT5@Ciipw7py+8q#CL>p1S00xoQR8ras(oNU7Hc{O`#m4nL*JLMZ}kd z;sGLlT_cJ3f>1m_#II{pB325;14R6~HX-7(eZ}HoP1u--6{$KzY{EuFES;)D#3qa& zV$mEOA__d56TtJzb!SdJZ-GF*>{wZw8{ z*K0j>iCA4MM|Qo|Q-_F7u^id;TF<>iw2I}(;`Mm$A);}qSdOf%YZKA1QHO|aU5gXJ zZKMtn+xl)IUcaP6#I~-J!bUyT-v;MCjwRPu?{Hj|erXz&bg6X7!)YhHr*6I+ULsXF3x}%F=s6vh% z@V0&hsjb_-n<31Rb%+X5Teq#RD<ug*h^BD;1=+u8-O&Br;{ag4EXa_q5a@g2r4yYU`J8iHS^i ztRS^@og$WFG`dHqAhq@L=Y>s}z`j})q_(cTTbN@4n{6vdZCzU}R#ce;HrrN^+WP4@ zVap`6XH7_I>&GWn33KFaO=|0!@vjPrY@4Zq)Ydgw;vCsFQw6E5YchmQm=KS%Z3U^V zYf^6L6paEWwRQD%@jLQvMr!Noi{hf$neYlyTUVc~AuO7m;I1IGbya$@kjM@cSCHDe z>hXLXBF+?~wyqj6Lx+gsA+_~`zNtcD44WxPZT%p5jt&vWHL0yDwk;JBqgl(4+PY%X zMjawfQlz#n?=K|A^Pxa$>(YZ_BGXVRNNrvE?O{>T@qEmX+PZY@I5Ck`hSb*g1~wKF z*$1>l@D$3v-NSwI;Rob(63O+4({C$C zZJq!04beLS5kJGEw!V1zjF8AX1*xs`ri+PeFT8@()_G%uO&G^qlvR-0I`{ZSVbOdx z<7z7gsi>L=<_zY1sDi7l7{fw`h%*IOTkYnpYjud&&A8fXH*eghL&VvPtF3kjkRc@U zCgf@>#`e)6Vvb=leTs+zfjp<0AQrlojtiMU5B9(G~ZlS9O> z#p1yWySV;;P`V|B9SU0!RvI=UEH=#QJnHuqe*ie!T#NpRTrVrouyT1G)ePWC8w zUP`C%UMX1_nHedW;YpcO(%l(Z?!2h{@U)D4cS^oHJZDU}J0&l3a(GU5zPmu$k@(^7 z?Y)gOZ8*!UeCC3X%!UFR6J@!xGxAdl^AV5BcDo_voQK+aBQ&iqOW8X4(U6ow+!<2} z^W0c+PF|Wj4^m9))Y2QSX~`@FobnAxG0>e`kdYc*n3>Ahg<&1N4K-~Pvf-evH-w#> zlMU~a57iFO$bO?9ki`8Xc5`XD&lhCgtY3L1L*OvwUfX@sp<$ zy`a>M11_A(4B;lHXJn>@rxX;pvr)p~Y3?zYFsN3>k83sdg09yd(!*KKkn~B}?yQUy zDCMK0@m^5$K+bs1GlZ4w&U25>%bAb@BF+SXr=+H4q(O<&4sCBqQ!nU!ogp2Z3Jpou zGdCmCotr-yc)Nax_JZ0s2zYR2G=x`0PkcYd7uE> z3OZpL%2HdA-qH)|V{e0k=Uzj&$tiijN)1oR%X8<01l8ZFCwM`J9BEMSY-}hyCod;E z1v*bkUV%F=BPTyK)18--j~zq(&ePZnIwdqL1XKx?Pf~tCdKSEldT>y*7ZgemJO)+? z$v&wd4@csdjL~@+nVBirg&@h+qG&IumXHKvtb`;PSeTi`U&)=7n?5<;jio3zceVC{ zk_m$i0rkqTV_JRrum9~99 zFE511Yml0rlj%;KoX=Vtl9*p^=>=sJ+S#_JcWB2NIN6<{nVDYzd})W_c6w7UXrwTtZ13bg5%MO<{^AWc)ec@zNK=3}_3W__UhkCr zg1nrJ>;mXy8QIXr>F%tYyu9?3u~@|UH(Gi@MTIvvkA6C|Q`|Q>H>V(dGNgvNF$>sD zi`sfYPkjK`%E(S31tsTX7o?=ZjN{JBf)2#yEQ2GmjTaPFXeQJ3ray$FNGiz5g;u&F zfpte)FDR~1gnIPF!66BT;fxD;PjH8)=4A3BWY@2)yr9AMffNUOgw}pYE>5&K&(ZAXIQV%o`?>D$;Gbhz>R3!YiTzwV|Bjzo>ex6XvVzoBh^8o1;JERD z)K&<#C?xXjV^Uio7Nd~Jx5BvEYJ*UwA|hH`fzI!y56IV?IfD+F&*P$*{;WEPJH9#OTrx4d6bG2PJHdM@Eu`G5qCWv=fqdeEfnP# z*Pb=uC{CO=SXeY{*I|y2F(L*ttvW}x;ewrFBqu_wQz4OCdq(i0Arz{R$b3Ck4Ch3M zlqw`LUk??Ja^kU1g)P&On_M2@#G?&UtIiQ-idZI|hdJ@57%`C@AFFtX6MuX|IIcUg zlR^~_a^m-|6^n}Qz-NkKoOp1icm{nJpV*=~pLpbq(WucJB*47n+IdT70 zagN*$H;5DWo?j}=k$K^)7|4mce-_u8orSA-fD?D6y(-L+Z^IAZ#GSi^;sI-Tg3YQm zlYTd(NnvxfdSM>zuCQrgSg@!;-?{)oWqR4QYl=VfDkRsegoNhEJS- zJI|`Wz&^nN=XQ0!^9!YmVVU7g=ZDV4>Ne-g&S#xP>gUcvXNGg6`hjzhv!}D8y2#nu zFxTL5MmX6fn&C#Oig!8vD9&7J4UM` z91l9~cXU+;I@*DUfI4aqhtuLzq9L;VRfoZTRqbFutu!&8R_-zXWd0T++<#_XVP0UK z2Y2e9H0PPe*nhHrtG2RlG0n1nW?!L(+ZULgvCp%6)tdGv&5y!u`|johd!BuaYPLUW zZebr_@2=dmC)iuq8z|@P)$K;xb>)QZob8zHpz@t6q!D zX@~VU>kro5)(zG**7vNhTW4F#tW&Jn*3s4nt@m5ITH9HptaYtnN{Lmm{H08?oU#0@ zWLoxFwp!LIk6YeXhFTVy*1;~zvzBKp6D^sR6w^w}FiRihK1-r$iRl%?9!opeQRyb# z12=rDzSe7f`=`&|(jH=0d1d*Ftj}tyL_<%Nw<12qW*i#!z z*sU$r#&CT3*Po7PZo-EQt+h0cFV)YlucdN)vB?k9wb2a!e^xiVNq)I#{Jq)$UT&7l zDRBU zT2I2R>0Ye|;p)d{Yso(R^Ltu%hNatozj9hjB3$^|4_Y_E4{6_OF2a#3KhwGrHVwaD zOXT?0;D_?GE*#&SJ++S3nQ-K$V_GMUZ{$4lt=5s_YeV4ZO9zhsT08rq)}HV?J08^% z2z$0#wRpk<3#)5!gd<+4uElbE_0Ny`lX?%xeI63JCi|fjvmvFw`1{ZBoE9#(CK9(;9`HQhoyrJ9t`z z@oBjpV0HuFxJbT>@4RUZjr(LZaJTtC;RYGqCHr68kmhm)Ie}*bh~vDH$xO$a0dQt9 zS&BUv0A(B#F?cEfJc{A}e|RV0(zuyEWu!KPaO0nkXkLb`*>81tL95_6tIs3DG!Mg; zlY{byY2_Sec}Dfu${3an#Z!A~rGzK9E7VE|H!R$x6>}{A*y)J&4B<~pnrcNHODPX- z)}AKp_%mL6iec&Y+1>}VCpo^g*I8ei&hbAJHZRwvaeVXStzWgNJ}mvCO(DGay)11q z$2a=hHfxhOzWz+3LTw`9X@gs96A1VH`G8hPxO4x-S^?qc7I$m;gliqm((*X|`-fM* z(8d#famHpXm+*7bdulm^yWdXKvN^u?>Z{AOEW$C(mus1XqYpo;jU(K4$rbGhj{h3J zqN$caxaPQ~S~_!!VBL5iHH%MnR+#i>%6!s6Tp@FjBW^11V|2@tX78>9ADq}T-Um~^ zi1WdL@v$6EKRoe^b_7$;wdPYHeoj`)d^)qh=j4RUr!&MyW!|uer_0~6m$hW>?)bIL zr#ZyiW!~V3-SS@IZ0lMf^TxMiZtL1q-b2qfT>V?-9l?^h;pz+WH|%vZIkx$7J{zkA z^~Rr&4l_F9qXs@(s^cTeW=cQs=YT5=O*ziB4Bjt&@5g%$O*qcpzc5Yu&W}?JjXBPm zRyjgC&7{9QKWIppF zeoN+k9dV+(n{(jHYnS;KK?ZD*`4|BF;W#6w-M(dZNJRrCf$BW+bh$U1e_&rB~IkZ&t)z{>2~DGPh}db zfQQLjh+`VwPv-KJZkvYpk!cLyHa+^QyqR-AqbQIY`0;p|#x^{6$eZ|c&@}4F_5Ju> zna2Fh*;77}H`4RSO(*1fetcA>x!`8xrs?tq{v0%u{c>GD-Ye4_0nfAK_53+#EdAs< ze%wc*%>> zt6i?`#}=99puap@7Rz7I^MQpm2<t;{*0byPX1c1>Brk;n%AyoPIk+mvSBS#yCG+JPL?5)| zWtpZvcpfi*!k>d8wn?t;$Lr;EKOQN6OgO5npIpt4`^aN`xb#i) zI8pwHV^HY!%VB=JS9bexmb{v9wUakxryu_c^Gx<9^&)exHl{Lh11< zZRqi|i9gB~!h_o`f;gbuL)GB6Z^@v@NRNZwIk;`2yn>!H&sFgJKG2Dnhbq8b7!L7D z1<#wnbLMdhFsuauhj^Jn`+t)3u@v@R*uby`&cn`kV7-2idS4 zxpq_gT&vVZYLV(+>U!0y4pM6?N0c{|(Mp8jXTvvxyeV+gi^6r-Sa&w`jm&WOBslev%?!-&D)U=*^}@DA2Fn55xK*7) zz|x!tuQ3`9jTHDYn7g-=_fgpQzzlFFrs@nrM8QmfQ2N-ToxP7}S}IEn9@(l+JRl_> zjbvy_4u|6yV0q8ME}j_UXzzvnSvdBAF0^t+LtmP}UaM1h5*)+G$}MoGL9c>S7-?>> zg27m6n_rLuW7D|tx%S?NuwSbZ+e*13?R{YB%i)Japv+rDP+?f3`r0NV+jB&O1!ghCx+j8FrvV2~*gS6Bv{^S(72zU!GX+P)!44sU+iO z)g8%_GT{iq*va7qIpJVWbcg5Wz=Lc^wfeDE-XWUSlcj=fEm5khoXj+!FFP0K9Zc^g z!OoY64t*KUb@)qJ{8Ws0kfwp9SYn%GqGY4t)h4*JbF!2O*XnxByaP22Oz)5eHq-7% z)4edycSHxMFZW3FK0rhM8tk>*K@Do8tjRfC+L>T09g~umiW3T?uV~c5J3!NtuqfQa zx+8tRlmhppa4_|w0F{WYFP@3@_Se*hpf7hi-o7}T zREce{g=9Doj{juCDTz#abuixNrDxzY0mo1b8CxRSdhge?KA0M}}VRtuVEPu0y_dZR_XL-TK zUr1hk{AaIH;4B23pvenQ%_~gJfR+f)%ov*j2gkttZOB-5Pk(Q35URrRflWhUKJ1iF zCZ0rq$(l`WzI+0Q&kPywt&8*aqTY@Bjv?9gud4eGw70vjnCd^j7m}t|MqWN11_>@^mc4^FiC2p4 zqlP4*<3Z5O&^~u|m89~yt-ake4USbvxbO-+N-{7fb8;?<0a^o(E+x5lH1oP>q{G7N z+mNEb=I1*Zlr-{6M{id;zX$8D(DNNb;5;InbE>k>Ck>j{&YP%da99Xl3wC-#is|L+ zv+!nP;Fv{99vq`d>hpZ8w+o+DCEOAYNz?;Ax}cWu6LxeS5>nOe80+m!sc`c+Bvo)x zKFveg(e0ht@!n3F1~ZE!!D23SOeVuIH~38X#}>S2dPXj!n|V9I+mUoH+>#C{?IB=6 z*Gu;uX@p57+nqWN5U$7q@lBA!Xi@m}xd)Js(+Ii#Y_5OmbbKPVG z=^0~TM7bVI@92%A9`YCLv4xS3-gH$Ti`F)ln+T9 zn3s4Gd|gnn!t-)K$-zmgaLgDszSDCGGuiP}SMon?yzOwFg&c8fKP1QCo{*O@8s5Ks z$1dI&QW#-nxsgEUiThOba?IeWF zUyW-A_=$CcIJg`JZ5`@u4xOn6iWDs^At{5K9w!kvtPA4?=ETCR>~MBGHt2)zZ>X-$ zRngvNH2lzJqmwHgqf0#Bw3|1I)`%Ctv=fqKu-mt&6E`&UBk5fB1+WN(WWi1} zr|0CrQ9L@rn)t2tA#YQt{=HazShR<>>A$UhPGLc?%Hx+n;@0*BYu!rl!_4{HN<{dLX~XCip*|J?DEqpAIjeHmEC zV{A9!tbd$M25WVWwY}xKWtC;PrKWkmx!9a&x?$RGDlzpj9x>(_BeY%Gb6RJ}@V|fm zmB4=`@Lvi1r$``dhFvqLgz=EPZf9`V13f*b!H+XvD5M!(o}AW5KE>Xn!zebXpFqfm?;=fzDeH zUI-gOdEw&=Q_}Kaz0CFi-MO$#hRXyQg;`Kkg>`<$3?mfP8H++2dDTVTvB^3bmNu}n zN^6^pELcOprGe3~$>rbs#qCeLyhImKa`K?8j3d1}%+P2xj3)T1ivmS78&||!B$z|#qKjyz7s7Qz+zu@(&Rg?*Gvu{JvkRQn_$an4D_7tEeE!pp>S12Hh`(W>P#Ml zi)(D>3{up5$Th>j_eNzr5KwiB{%}z!mA58nOmHm*FT`QvLJmqq@(daGGhi7n!!d%Y zbLa=P44;4s9xNGPlb&gcuiqiP{&`j*T@!TiH?#u-vDD_O_!H}xc4Tk$aFl*w=-XRd52)ZqwdY^X^ZpwjV z@k~k8*?>kIF#o{*A-@U+Il?wLjB(b7yAA6e?VU&q3p|oibym<>3P)47?-ns|f_DNm zEZecT4o6q2PIE``S?*L=^s!w+yvLF?nu`Rh2p4k-pt2KSRt|?99~dlSG7Ist4(#H? zS7K~o25hHd%Xe$Iub;ON3RbY**WsK@)ddHMPtRo3twv@$ZvkyIT!)i3Rp-X9c=}r~ ztW8&MKG{RA!;ze-6Ty}NA5K_7n3ehEvTUq`eQ0}c9^I0?4(E8P&Y(NoFM}?h4R_-v zgW)U%22?lga2M}*+9SYIKUJsn?MC~pZ7?|VVTN>F&1&z>rGo#4gF;m&9}L6HJrQ3! zAFi*tv%nnX`nCH*-W-rSTh#px=ZZv0VP;Qt<2LQTbls}Qvg>%ePTp)9gnz>!rK&UT z30L{xh8!9-VIKenHB4OaTHn0Z(VInkK6t9B>cmWvVEoKMtJD&aeyL&Uq`gsjb zK~a zPG0$cyTh0}keM!FKL++}nE?}1hIjC0&~7cB)2ceZhR;)7zil(r>xMqa_EqpSbk#Y)M3t96e;h>Vt8c$*|Hl4~y~zHkJ=Siw{R*eyU$o`g`q&y-Z&>$Rm%}OcQPvLDYTyH4 zqh-FO&@upg07&NV%`43_%xUICb1jHwx6SmHX_DyyQqvCKFUV$wOZ6L4B! zt~O3f*6OGi)a~k<>Lm36HBz~y98i`kCCYFmRks0NFW{a#EOs4u)xZC)(9P8SAutV7+ z_g`^+S6%yDUYPA8Mn29m03!0FA6#Eb>4#@58}HhG>|S@veH(qes8PWg?$F8bv7iih z=wvuDIK%C7jBE3X-(s%4`Mm2pc)d0sZt|5JIU*>-?b1Qly4+4To~)Ey`#*j~XKJ3d-pBMFz zFGCH9(nqdOzdCdFdh#vTzOG9Xri4}cGK_lAN5re9I>g9fNR*-V6eKot&0G7@)??2k zxi3IEh6GhbhZi;2mmyYVrA}1_`H1Y+te6-%Ft{o!#Z`I0 zmmyZ=L!GJ&2&#$>FRH&UL#)b&;x~-y=ObcObcm6CgRAnPxGMMiGQ_I%*QrXMpsMKb zqVDr$h*jyYQFLYR3Rj+68E(1`H-GH)y5?70KQEX+@s)9d zd_6I;hrcSwi*oIIu}Q&@S(jW#o*KPo#q~T!<)_65 zXd8`fT(3}%+0<^wLvNRD@YCV~v@aX9a=mnO;C;2un_L?=rqt**V6mST8=$RC=;V5H zTFFO0ZgIJ`yn-)x)=z5}pnW``iEHkZqrF$uoa$PCrnJE)gZ}W-Vgj^PW8z$|y?C|d z6DJS2Hs>xpWKA6Jr$q;7?>{N7Y1;s8={#{w+XQHDuZVWN3gaeW%3ZEaum6FA$X{sd z0BzwGac->wv^Rbd=hiYnd-ZCJ>(w6y-MiZ~%C%|Vqow6@e)1REB0zh|+0KQN#J~?O zx;C4(^&Rh0 z(*UicOx&hT0<@=JZ|-{WVbrYlyEfj#I-Wnb#sS*2HR6ucC_tOETP(MT0IlG+rmh$6 zY4LLOI;U#`6Q9jrXn25@d#khS&7C-FTU=XkwC11j(;5b7S+(l8o}K>XeNXM2?ONv@ z|5L{DWIwGzfR@olTxk6O&D~4f$?FAZDUU_CW`EHop<0~gTHktN%yXMHf1z~)w2>1U zx#nOuJMxli{kTtOKH02^pH?S8dt_F)Yc_SHuTH&P|F>86`)T(EXv3D=Ak`lIWM z5!aV}f2ymWc29sdXr1`oY6ocj57u?f`eYDJ3$8CCSRMSi)e6x1oD+-p?f|Wqv7xJS z{x5}B|7qmG)3>dvrU`Wk;Xnoja%O5T12evwaQx>?DzX$&F0UnVQ*=H>tkyoPT{U^ z*({gqr&$BEWW!w7p-D=wA4jISemazo!`@G`_-S=VNwZz6H(YDKdO@6P@1*_zTw2r1 zPcsK-!)o?MVBRwMX|*ScE85f;pyf-uU0?JW^vt_+?5_Qf zzn8Y*S_gljnx9tVIcbsWgm4z%w&IN%Ae8_*T?MJG0pXD@rkA@ zerxBW;rc&aIx2;o4BH*{QP}*j;;?aHgTp$8g@>7(=bQ(fUpN;zXE^hmk2t$In>oWA zR~<(jn;c7FN8kxZcSjxjMf-O98}$W|%w{1__hT2-%4A$?h@56q;NNb$c zYB_58#PXcQZRujEVLomC%KVZ!$K2c8z;xBL%e2@u%{0{1(xe!FfO`Ywup1C(v}(U- zA8XHQsStzyF7-EcojO;|RJ*Hnl=I3q<#nY{>8ms{Tr+%QSPWhY1{<0iB>9lMLN1j@ z$g#2&D&+f%EP@pTEdOCVfy1wn+Gy7)n3iE?a~;M>tyQ8=5|Kr)g5V2912PA?mXNBo zBV}6M9|qM45ZMv}8$d&1U)SPCR_&Qqvc|Q2j_sG9zO4ul*%AVY79=LS7UJ)o-L7r? zqZ%LvmJmo3egGqj*ct+Jw1PXbR>BD`vIy1?yfR2^p+od9B9PczhsahDRP@r#LSj@A ztRiS%1zex~A8e!%ZT_u+wR!#aYR28kBe20rv%2k#_C6$KU&=uJ&8 zOaDrO5p}X;O9{671I*v$S+1}9%bjK~)LcJ2H=@~<4bKJM5*8EwxBOjJT^pvZytO%N zr0d|5e;;nN=T{#wst6Vnfr^*vWeLj(f0m_sS^C!#R&cSFDXn*{9bY&rV%`wfzFqO} zJUlt@wJm}Lg@tW%ATi(d!SJteC&u;71CEmZa_7KH;(CJbdZE)cy&Pdl;m`32og8sZ z;m%fhZnKP2-`IwPKxWZr(HzRYr>w_Bawum0q&h-sSywe;X zF{%jH82-YK=@pL441eLr^a{t7hQIJ*I)&p}!(aGOy~1(1;V=BCbkVgQJ}CFkyxVnP zKkCLYz6wPa;fljw_)(q0an0c`e7auYxa{y3K3%VHTzU8lpDrvsvIy56jA#XKfL-o) zEw+V4t!?{NBl2v#4w6Y26Ii*Whj&#;qDhOhwfXDH@H7U2rSpJ7Lx z3}Fr8&rr;ZEW$;IFT)WBbTWixh%ZAOUStujLwJVZAMwXpE)VSleBLPC0=*(2Ls*IM z40U;tMYt64XZV9ohOij%XDH@H72#@xcQJ6tI8=VXwe{PE7f;Ocy1u(}*%Da<3lcu* z{yQQrN!UAT$P_MaBa3iR!iWZ4VpI_>OZ+c6SnnlaW#WHHT_Ubc{4Y6J=OuA<;(tjo zF{%jHC;pclr1z4rMDf3*E)f?g{+Ar2^OCqs@xP>)7*&J|72iwFJFEASuvYQCq&^Xs zE54VUcUI>malztyNgZNT5iVKiB@gyEVOZ$;j;o`tpV(%Kf5jbH1gjQ$Ng&GKx%Pl* zqT9z$yM6>EJ?7e5zVQ`VgzFYowgtS1o~Z6Bp|#hicP@jXig4xPFZ-BY*|2!=mwimH zY+Szh%RZ)4HZEZNWgj)Xn-Q~JKV6;ME5GQwKy_dZ<1hQDe9*NAHx6r7cl`*O zHtdD@h*3qjjPYkVT`x;1D9h>MEF+)t)y4|WQa=~&Nku*x%==8tn;y*jRLq+e%o`@; z)t-txG*?=|UinABURisJ?+0_p50iaAm_mM-R`F_Bc3jW~<-w*gw!9Qg9e!!Os`k_{O&`Sk9 zuRYe60ADJ|KwW!`?+1LT;2+$+AMmAue@OHFfG-vNL#powe5s%xtS~VxGMttSx5CaT zkxF%CfZ?>#DeQ3AHrNeV5cVAS1I!3}Ff2JN8od8moqst`IQPPyz`M>DoJGzo*cIsM zjB(Zne|}dSM;*K1q`+cFC3p_Va13)KIa)jJb!her_9L)I@R9v3`?L1Rb~i*1NVGS% z-))y|XKmlxHrqb1y=p7B<=aNt`r6vt8r#C)EWt_ZKI@m(rPde0*FcVSxV4ux##+y6 zvRt$rv226e2d`TyECrTPmisO7mT-&BeARr^{I&UG@cj3zd6GF5{Q7k?H!+8quA6=} z?J=zdpLmt9%P`h7*pz5$W~yPlW&GW^-}t5RJ>v_;r;X!`4;qtSk@7zP=-7@`c-<$vT;@;-T;{H{D#ehLJx%u(yhtlLPEyj!hrcw}7q zcHfjIe^}E9b7OtOpcd8q8frrig%;ofOV4aEr|HF3!5B)Y1`E7dmz_{9eyMeqo z@G!-nd?7s?u=|{U$5(zM@Nlo6`I_%x%@+PGEcxZY!$E%Li}bKpn?C}1&IvpWzoA(`JY|z zKb!A=cHaN&Mc*@%e?zn8Z2z+?Kkr$3&+ea%D)Bv(vjY$PD^K|e-@`?(1!|NUco^eP zKGOHFaQR&S!{LF4mHvnS7klp+E=AG3drx;yPY!@ck}P`y3IYlegaRZB2q*|h5F{!H zC|OY0v-j*RCO|+$MWO^j$skJ3IcJHA3L=6cf{)6(s=I4dHP7ktyw~}1u5BVN%`8~GL=Aj~Ql8-O15`G) z;G=U!-9XroL!4oyz6GnC99tBXk8@ZUVI2lv|CEoDaLC75(}EBBhw*E^28aBbf7F6y z?>Y4}9;gzBEfH3*AT-0+jj%k2I}tv};SPjlIqZ%w!C;N@Un7ihxEf&@4!=ZLn#0xz zOEOqx$TEb*Ib4FUD2Iy?7U8fN!a^2=9v6=w%*P?VQ&#eDSP_*Ggh%%v3^CZP@hpS^ z4rd_rafqv8#ls=K$5q@6R%{r;f39*EK%&z zEe`Rbb=^d`VmTh@h6SOS29DG9D~C8v*EJ6LIIki+#K(Ds!HebaGjd(FAoR$XfJgt1 z!|@0&a5xU(IS$JqJj3AVUYikq!y(3#T}L_GfXe+Gc0{<7L3kOAa6N~3lXk7;@DeJ& z<}e%KY75erq6k-U_yWQe9QH=Ij6)sa5)0C|MF?kcSRLUE4yz%YhOomCgi|d@-<}}+ zh{KZzr&!Q<<6!0Wxh8Yi3Y8N$#5iWvmLaO&-Q7BU@LTu}6@7RfVyKk*#dbSS4gjdoWfJ*%z-d zRsq>(`1brEWOF`ey7I_oZe^?-vQN%1_8_tkZ!-1(vdIy~$|9Q(V=RemEXGa}$lhwh zba7;m-C})BV#u=6jAbAjHI=b4$VRMS?0#fJ_cB%**}(4^D}}88Ka7<`*0%s-C6M(l z&scF}-5W4g3|W^>j1@)JaWG@|A#3*zV?~g){*xhK-trCdb@DazRqz$|sotNwhrMgyJ;1xL_n?cn3G^T= z>eW40J;yxjJ@Y){J+FGYd762ucuIJD`gQ#zyaQOEPt;%2d+IIpYI#?}!zSpKzdW5dUp0b>NK+u0oWh9O9DWe_rFjE35|pN3U^Ic(+rL z&AgIjP4eS=TH&f&$%I!u9-UvmP%+8R{)PG<;UnCNUm5i_$FOM()qijdHF**LCgOaE zuZuV@;$H+j5Wh0&&m2R6B~JKA6#4*$&MtlG<-Fb(2564iI81YUK zs%{lAK8~uJIfiP+=)F?BS!xbqS|}IQSsX)6X2h8yZiRT1h+86lO~846Mm&OJsHKZ|ILA;S7x7Szp{g_D zmpO(C&xreo7@z9Z7dVFc&ZzDsVtyg_;26s5qPiPmS~eGPSB{|wF5>4nh7!?;JBpZJ zgU^bXUxV#L%&);`IL`ZcH}q~P;;x9F6mb{C%>-QcZ^Ta^{^f^%_~|s}80zez`f-k- zf-d4Zh@m6$TZoB>#~`jD;x`ai6LALOM-eYS6`F{+GRMl~j}ccwysY21{Hm(Jab@8e zEYETNx_i)suO*iS-)fDRuO*k>8rc^yUrR1s@nT2BG4x*gMVWgM^CjlecXe)3nyX*G z%1^!|$6fv`hbF~2ezX)fDavuBeZQl+2*(wUhY`cd(^@evExxWM;(Umg{BSSFc{u*I zC!g2|$7k~mLX!~3r`PgNhrNsL{nwQ5P|My$13ZtAEsA@;^!i^2*}G_fw-K^;(Y-F_ z;a?5*E*c$Econ(m+O^>6Wi4AJ?f{`-CZfu4NxeWQKt;3?eeJq`T< z#=z6}quz+;JI~kf)ct~|wx^JORo|+Aq`#s!)=Ro?y7#zex`(@4xZ}po{{^<4|Knii ze{IM{%5bucrir$}cUiGaBRSPbeTUBWUyme26iwZsrpQ>D6C zCQnT*0zpaVy^)!ino4z!yU=2pJT(=BOC*Mvno4yNL!O!n!o?CpOiiUaiJ_62YF;)~ zhBT8H8kwn72!_ohhM1TdD6qOupJ&M2)!XvyN_Hl@27dhlY(`+8ax4=QQ>pL;iO@() zHHHYn-V!0*F=yleQb*lU7|%5FQjL8TG*GN;Ci~558srpgdCL3IIX*~8Of_==4PkAv zbz^MQ$BkQ& zG9fb+M_EyU&CRd_zt4>ln2i1=x0ba?HLLHZ~ekQ>|+fgsy#L zjk!gh9Hw`H(g)aO5g%>jrdpN_X3H!gJC#{BnC)yC8*QYg8g~qu4B@;9bTp)^nja3; zIqr0hjW)7ZnPCx$A!M_nVG)U;k=)7*3rh?k*%b{7OAI0R)w=iHQ+ma6i6JDzGQ$bKLMA8*QY{GQ)tx5K?K;Fd#8B zGHaQkUt(xv+EO8m&@VAGGH)%zL$f7@kcrDicxbl7&`8WR4I$a3E}3Ceu!xiG;rn2V zTxs?l$QTWYx|X3#7aMKl?V5(4wOHm@HXt?{@_4PwA>U^$mPmv~VlQ)CED;)szD(Fm zA~X_z4IxeDalFDZMnfX7dD2wpxFtO{+QN!*LSB z&Z1#CiD4(fu$-e|d~`=@XxtNFukB{f6XXi5FVcS&IRphPpq2r9LROjE;q} zRKlU#F(KVKytzJ^`B7x;*;%#8_V?&g?@xZ{woIr|p<|_p_~>V-ke&8M*=e^CPJ5&5 zv|F=d)6?E4Iqj#Jke>EN$!R~ug!HsGN=~~K6VlV(C^_wxRLD+ygY2|h2&cV4wom*? zc5Hgu8zlS0n=>Ij?G2KB;?0LlkqMC(BXuK%!`H&w!XJkRLfpP|=vHWdXin($P@7P>kQO`% znfp1xj?fn%0P*=R1LFd{0=13j|IPjn{R8}s{Kb90LstF_-!NYbU)=i-MBu-I+J8CF zBk(D2HE&6;$8*JV(6h=j)icP`)Kgl&t?$?8=p*&k`UAS=KH*;E&Vfw(%I=VMLHkl0 ztM$}sYWda6>PGbgb%5GPEvfvW>{C8fUQ?b{9)!lvCxq7ku@tPb&D*pJdFKb5ZwM*A z%BJy3*EaGst#;&jha9%o0nA9@Dw_(2lEqLAY1Z5gWFI^+?3=%reJSH9zRCvS0huGN zvZ>I~F_tn`*~WdECcHadN*O6!WK*4E<)&E5SY$K9iq2JoQn<#Z(OAbaF0quc#x@LT zgx2w8N=C|9VpAd26({3p>7#xJ$@;F%4ql&!uTEnrV};EOt4R!v1-4~a&CxKP$=BD9 z!;3M`26ELZm$Ut@ouZkzzBYu-$ra;;&s=io)h72>TYm*V=uBK+t5oUABulK?0Q<)s zXkKGa6{d`3;_fe^vFT|y?oJkbc|WaaL-x>G zI@4}*p|RnNop$3|WV%)2XPa3wiV5SH<_0w5v>{K$wUm5mRD!8Y4%uJtWn|(in zgbjO{#^Rd(#e4T(jMX&#i~H`s7|Un+7wzu9zeFX1n${VxSFVTBBfK=_OO4+S$} zMQr|)0Q{w*I5cAoO#cZTn(Z&J=r#Wh9h&Vg#xj=;&Gr{q*YcqWe<_d&D_IT*Dwc^WS3gxc*20Qq;>uN} zLdo@qD_5Ng9j}3SCSSRNaGdOHaOFycva`XJD?OWW_mUi=)L>8Y6|HqwW+1yz0_sE&c16c|j*hWRT)GD6#xdtQ zdYQ0vH4UlGv8ZG$vk5(E`a?hsKadzU77RadG>m69!davn)|44!58VFY{W>{CDx!0zWtMdW%filOTGHZ#3^CX5f1;crchVjhD z@TBPmLD^4l4R+F0D7*bsXJb^UQgZ97#)LW*N^X5s#X)wF{q#O646=*tr?(0_HXURa z$79DbD>Gr>fkICfm7L8ZqOh<;_%I6TPRkgXNME-+(TQv{YRO=deMV*__8CfbvCN91 zVN1s!rHsr9f}yi6miZ7G(jA_X$Z>gQNOg|SCb7(NqTx=7;e&$VPKn_IqTvpSVOha& zhofP@eabaedDZ26(OuD91hW0FK(+m~+8lV=9;S8mJq z4Ev!{;Hl8&(8ACpc!SUjssL0E-5&};9luAkVwy+&MLn)=Q0J@fsom7dkWYV1Sr7Z= z$1AS}f7iR|&GagI3Ec;~@E5~7fsUTbo+F;mJfk81;H6;OVBO$@!2&^7;4<_eSR0rd z7#|oB=n-fUs2(U2i1=^$FZg%+SHM1jF|bddy}z!%tUsUcPu~UKPUuT8#h2+l2R#WE zc_({Ed3$+Vc&oyj2_Nj=Z>knkuDZ9nKXSk9ZUnmoCVBdJo`E_64|wj?@93BGL;4zc zTQN?5l_tIWN1ht8#`u}lyStKh0=)*bzX9hn@$*;98A6tD#j*W&%%SJbBRR50N(B>NRmbBjr!u}5!1Ps^4e--5z(bO*6 zS`RU4?yNxZq?Hql!n+Zk(KTG4Jf&+Oqx5-|9Zl&j(27VqGYW5$F(u7)T%a47)^$*z zn5pL4Ezpjr-O4@?ar5sG0bXX({_OJvCBlA!@)A?NASe;`7L?gc*-cO)q=hutg@gCc zHo*^EbPJa1!kZCo-u?}9(k9qAK1XS9+xQ98r)?awOSRVp{*2CV14C>av+}i|jlYciDH|VvyqS%MkvC-5J8V%Kz8rB?j$@no9j}Ur`R~9ZBIY+jp3n^a-1&W- zCp6P8Pk6|@e1x=z6XWXdoI^|RkC5-@9GYg&LjI+V&p^J^#-}4+XyY}J&*A)rxW(ap z&aaDU{sTC-rK30G+?HWpi}R&oZgWBFi=>KK!OA}Z?ZU>W++x&r>$o6Le(U&#QCsny zaRNPnzHc#VyUmOgD8J1NVU)f+M2Eft9gVa%Qt_75O`!ai)CnoP6hen~jMC>Nq}2t= zXQv9Iwwu~1f%2Q$5rJ-CzOH=&R4BeMhTWOOo8@2# zWp$vxUPg0H=Af+w{ECU!Y)c~kn&Z!};!J3(5xXv~521P$``+?JtFc67_^v~8Y&#^! zwnHNRUmsEd9KeyR5Y>LfxZerX>t-Wf!qxe{#cM-bB;xU?#@$hhE8n-{5HAqbPZ}nzjE)1nE%MVC1U;?mo4H!=*{<1-4TD`hH~{YI{$&|Ct|z< zX?;YDi#Cn#j=JN078gJo-yH?G366yCjsn~maX0SmZGRCl-yKD}v?AuaqijFGe7_T5 z{`=bsy#WtElcpl(zrGC+(+;kvu7{X*WJO$;W9XTRxHiY*UoDEbmWYcWeoVxL5m(3j z|6|e5G5`OZmH+=()B!u`XI!o{Kc-|o=N&~VtTpM>gt$Bp=Z=U|m!IPhKI z>%e<~7Xx(zMf}(OJK$M+h`*V?3_N8Y@XhhP2JaCb@G0Ko-p{>hZ%1!sZ^-klXSHXX zr>CcuC%=9LcH4ibzij0H-*WGB&vC!zZUfZ^bnP2$sWwLIqE*$R>P7WycsuZdT1PE( zSLZ)_{(nXa0#@cbMY_kuu~|q{|B_#;QIrrg7LAVMH$4Lx%W*FTwQ;dwY8X~Qy z$)>OGX49ULg5Z^DNOg|gq+%(a7zVsA4HIrUptX)FzU1R#$-kI&CAy#!h>&sBE+-O*^9fNH)+;TvzdK5=-&W8VH?}a5GXETBABg!+6RFtr^k3 z4zN?s^%*e}Mp}`BaNu44DZsy~Mr@5L4dHyU%F1LuNE;RQxxs|-6c4U}vXpBsS!ooy zeuNyPEf7^)N5oPXTr-4o$VzkH2svnmrkQ0dWdzsEPbOoa+p&~#FULF%XjA z9g5h;QbugeaHRYGT9G+cAF`d$FW|%3-?Bqzq>RuS6;hq!*C3WMB5Ta>4T+%%Fa5LGD2&Xr9>D{@z`2>*z4%r7%7&**qU4zPZ_Z_bChk*Z*WZ~D`=b92WOLm zP+%N>koYJexMl`t!BQfOr+9FU?z5DgI0o0`!g$IEt{I~QWnQH(+3`E=4U|nz(1yb0 zm+(vfqDG07vhAmnQ zF4L6EwgQhkj2&r%`KQ98YalEo5khp0IYRMe=P+C<$%aUaG*>3(%`Ss%nZ9#2R8)@B!Irw)|x0oRP|4hE!LWyk&KnT=UzC`qOvf zOOaTrjA+kASn57eSXd$~!i7+Z+cA4Q zBUKoO2s-C&rl~@rVM~c&LBX)4#IOJwHoMWgkK=<@EOoCa?CmIwr}9&w@k!J7n(9?@ zl6D6l`#w4Q_LFC8bZgH(=~(I>I!3CbLS-J=YxO-nRlX6V{bH5CSSlYowx22`caywK zNE6EsJ0_3CQhAtAr$WbddOQ^s&*p&oGdVfE%Xfct|A(Bt`xz=CoXr8{Q|9LRm$p7~TP6w6-a-r8>#em0u(*K1&!6DM3ra2J9vJrj_J4^ix?0rf3QKpn=$rb7$wx-N(z;{|ZJO%F zS8a(bx?VJ-nkjYsHYc;_icvSNLy$t<8P`Oz+(@}=Nek}f$$lFjzLpvf${bYw%NAqlk_ zIczoeJ-w0kyxYVFKo^gO*5#s7<$bdI+HqR!fSlaY7kYx?OTt7JT|OEEP))7lWuC}_ z^&@@+)YdWiD3L{1kZcA(I;JRjmo{}8aE7d#zh`RdyBHg5Jc}+Ntr?(7$?@qLQZRi( zVoDd0-1H5JDP2VhrWq1bx{Tze84^>vj%22^h>+uYAf81Rl9nk|I$qYvEV`0p7r^rM z)w(+;uqU%v!yv( zmaQR`*wVBuw1sj>GFzIt#cZimVoQ^^&=$%q$!ux<7PF;Ni7j1ZqAiqblG)NME@n%m z5?felqAe}=B(sIpCbKo95?fera$6`DC9{P!C)!e}#1>Ya+!o4B$!uZeiMCWKv4yoK zw}o<5GFw=GqAis=+9tB-3Y2{xmqNKK=iN40um)w{N2+w(F_p-IH7GZQVp)!xu;N*; z3`J8=I=)0qX2CL)PXLtKl1%_CMR5YC)NulmS#&YVuGytfs!L`I>ru3&Qi(0BNVzS9 z!#!V;tCKr>Zcb=$_j5`j3s$9QOQmJWmGIAy=k6v)%*KxFCn1>y>r&Geev@dF-8GIZ zoAEGgp*=?q*n6HQv*_B?I5Sum7+S|F8_6uXJTzh&X0pkJRVvN`l}aX;u2b1(Mk}MqY+?^heDzizx4I%1EmvZ0=O3Ak&D2^5C zy2-{G5XMTSj$@5w`N7uAZl`tO9M@bKSw8SIgjDDFswI}?6%Efz3_XJ3d5NLU4WS;L zes?IZ&EDF zMIEV<3bmKWS)+E#sQ->cz0Styr^+~)WIgI_oJluuVAe-0^%@fz**1=E;A5$gOsG>w z$2aD&)CeZjsL*j`7f-!Ph3vGuxF?YB=$@XbS>z1VK5CgcA5S|qTsZA6T3>S3d|)MK z|DszXhjQUCc5HguT^!TuW2vD`NKddqpLpz+vSYs_9J{3|Id)(1*exB89ZU6L!T=3| zJHAN?_{zH8R#vFNb6WYpkAeMxRq9?}KIofw!MoGD#5={C>3spZ=2iEWc8_wm(2i@* zdBdJt5WU|E`}Sve#&}-#wD;8Yl=bA(|I{z&JM|@QpEg$iSkHxeex3A2dL_LmbkDoy zJ_*nEpSvfAUkVopT~=0v<|-GI-JvpS9_3bWky=ZQ1*=AO27QqwktvbP$P4QC>Qwcm zNUKO`cQ1EUco)zp*h~FKU7@DcHj(P?lG@zBlaSw^;r~y#ZumjpBHv`+C|`>}9{>0L zS^l9=d$44%g|C;ds#ZX|rVS0u47?K<7U<^R?_ceI$KTao#UJq9@SX8(4^Ihah1-T* zp~IoIq4A*+p&sydqk1S3yajy-CI?3aO9p-V(|RpEq33h|<^JBi-@V#B%l(dfsJpAX zsk@51B=i8hp`FpTYfH3`v@~=`Xs^}N%9}4He5+jrpbWaP!I52PN?W92=3E~}>Go&T z4rY|TKtej!$|Ezjk|Q0#Cjvkk zxj$IkJTB+oTikb-{-VXr<8u9X7B`Q}`L`A~k9(fYgm%W_=5aYcZPW9l;Nvzu=f~J} zXv_Dk#;7f`^Q1sGvXQtB3v>h0y#nQ#o!c3;Wp=(V&{pX1o+EoRaV6(GLj z9UwqVrhHL=m`d5*8W()$Z94<;S=?)?kax7{`KX_< z={av>9%Cf4;}l#OCXbsZ8YzX$9QD8C16V>I~c&)=cLB8&QL^b0|Y_e9r1 zLCfg^L5uf8*L*?C={!M;_d?ekLCfi)&`*Gn3ZLP`e z#|8eW$?eAl{tj~CxWES^pN`{M0K5}&+jv|JOm6!GCxgB`%>P~AGJaP7%kTSteJbEm z0o?!VQvqJcJgV)9>`fZ~Z}0lS6+IH2AALRgR5TI!D{>$*J2E`dJaT{dkMQpB^zdM) z{#VM#{+}Ki5^5SM9sDD>J2)daB-kuiI`9Yd=9?ZE9B3LS<^KbA+RuR8|EB&@zMH;X zzG=RJzQ(@d-rrz{{Z#KO-bUV{o?ks%Js)}cdm4C(=-2ek`V_sNUQaLL{>8n;J;mMM zUEh5lJhN|seuMqsNxHClRo$dcR{N@Tq3-_`s0uJq=?&5Ud@$(${r?i#Mp%Zv2ZB5B zjROZ=Gs((|?{0CA?ne%Gs!T@wjNiOuwh@;xUKttM1Fp+ty;UOgNcOdUy`h+u)e$t2 zZ3Je}_JGV*jLg6g`pRsD$c!PCj8=@y&@0OIC0PxH<-DEylSBOumiYC%cll_A$c!O< zpDZ6fv`^_?0dm0pk}HvIL}utacI&6l@l{hIo2CmHujAorq_&Pp*NJQ+FhgA-F!L`` zBQ8Uw)^DlfJJm$C5tgA+>*rM>#i$HCKhXh5q()SRy26j=zes875Q|;h$os=zlF2fH zGSn4PJ3#uUL`u_#1lQXVsS%Umt`j9v2+5!;?bhWOpp0ijNQT8(sM0aPE0GNm8PT+~ z#1uj@f@x`qDFkFh(^3*s2*?Pgr6i^hkr7M>tdW>PP==chSR*los0=qP_DV6w*R6?c z8kk`pDs5=ycmc+*)%@G zTtV8CEQGMby!S$6k3B^>nN1@!f@>?8D~-``*H+H1Su{u^xVDsKOhKGRaBb)}o}VSIG+2YK&SNleL3)FljssLN+*7P&#HMCbDSE z22FRBbS}}C$f8jjK|0Qw*iG+VNG_UnEXf(; z$G8`pfkYMraByBhszGf`T7>ndt9Qr$5?K(zF-HKuF7$EAvHWc!i^gz_!NPAAl{#+M zNo3I|jv<9#LMn9(N+q%&jAKgSCxc2I69*GnG?0U{1q}iTnQm@HBiro7R^wR^%E4i>a0v;^%hN`IiX|hH=fl?FqJ72Sv~Eh8zrVaY^Ki2WL9@-YAxKZ zLt{kOM)H-}@`)TezL4(tS`|B4C$L>>837F&l&ERW;sSKeO?$VZLC;@OtlK= zZaGRL%)c{fJgX}ot5liD>LQv#TSmw3K=G{S1XEBt{|;q!7ERx7)lqW&brPk}|IzWg z63^-=93Pa9366=Z4tCQS64PgGrZXg_?d_)1C8q6crqd;+ZSAHtC8p2VOlwL^+lZ#+ z9`E4z+n&g3ZI`x}NT0S#+exHP*`#%Uca$cxT2ZO>UAYE5I@R&ySogojKn?~ubI@oS z#;)o_R!ceq=66LdO=h*Q+jf=NK54U+NRwI3?Y3QHw#{s|5@|B4sm-?T-!j`LL|d6O znbkzFrLXVwIQij~LVvYrRFHgQ?xN;%+nC!@sry;-Eq!QvXAC);@1^%)GXs}4qPBFA z4?jdy>)7)ok=2k%;g^s~A0=jQizmodT5P?@LcfK!g+2=P57iG930@6u489+HF<3j8KX56q1}g6L2-FBf{onal z`QP?;G2-iIeM^10zK*_%K9Bbl)Yr@Mw)Z~d)jcOXUwBfUcAjz`O+ThD)HC(AdO4`~ ze;o1yQto!{@@_Ze8GNo~YHhU#HB~*PE>ttswrV+5Q;sVOl}zOsYK+Xeds0lm&L^dqO*u`x~-yloPD(__fZDXy+q{(cW zKf}H=^ktGdogDl5PuPDro}7V{#aBijXWB$IEXU9mq{<<(A9lHBGzgM!>s;BAaH@uvH64^GQr;It@3? zCo#pf7(5b#X)3oGnGI_(!F9qynJcWu zxa)+4j;@JpSd8%t0NT(yZa0W$!)gpoLFu@{OJu`Z3{7bhd&lF)vtcd9OsUfGzLv;_ zrI={?vcweDVuI<*5>r@;iKYV_lX~OXuoe?c2RuSPHh1}uEoQSecBLe;#ibaWlyjzV zJX=_bQKh44GTT^+S-7^0wMEF= zv}n$*@nkJ*`|7>$aVAY>!%_@yZNGQ;Y_n33Y_eKX97}ehTdbKjkqv7x_B%|a&RN~b zY*>nkwi{)(uoe?+H_B{{wU~7s!VosdY#Z2YH^^-3+eh0`W?Ro@E8CZo{kUiwPd9b_ zNY>LYSaKUVV)jqrb6Z!irP8rv8Exv4|5b7T_6VN%u@;jiv+LMxo5*Zy+iaW2Y>C~r zvCOuX&9<@3wx-QC`=ZSDG0_&Jl1Zo`+CuS4&)ekZ{bq@%yV?LHva1WWAl3Jg%SPm> z7&%_&jYpr@I+xFFHD(K6a~iXB{-sZ5S7loGo*UXxWC`6Eb9NTl|1zy|@+tF8WIsx^ z>>CNbuaHI0t}g=R1IRvOH+>B*t-_>cLdLAdWY!KNR7Q5xDGC4RQ6^1hS7sxCg&B-s zhHMfZu}#7Z*(5y7Y|TlSA)ACsOlwZU43}gQDzYcgSO zKy$sSURn>iZ@SO9ce{sSq0f00jL-C2K%-s8?79l04>pkbiF{U zAzh0UDk>rUTA&+{u4a^$D?++Tpm~w5Knm4`kS-G_Mx&G^jMDl&sAV~l0ia2wpEE73 zxPz2sLk4Jh9i*S37HZ@mWjT@osGKtZ>0G9z)oPHkY{&r6E=Xsg7V66&ogvV9NT)MO z3&JpJW#3r0Jw{a=FRkFhsPYl2?K%C|Z5;Ekv>$E!JoC}c+BoK7X{-o*0FGLisg)0L z+)&d6=@fysL^_#KT7?BEt6&@e+8gOarnT)nVcFOLT2utJEc-n`+hQVp6CI$nCDJz- zrTr<9vb@y*Z8C{8n`vpMNTex&^6$rJq+*Hu*9F=b9fl!=et$?`5h&(uD+3s{PYh=%{j*J5BCVP5^D1bv?9_dr$_f74I}N=cox#2KryFN@e6c1YP|x*d`?A2 zTCrgWwVFT!NELzl8FjI&>p+2u4Q3<#n`!SUy%Miq*M9_B1hp(fI{;d|s$DEY8|aGV zsQsNejLHD{e{y*e7r2jJCN^UIsDvQKcV)s7I^i!E(sK`KG%-| z#jDTtgFx}>bA8V!ZEug~c2S_?k$x-CaY)Y#v>ej2NX3RIrvLQ*r=M*>iYv%y%f(laZa{6z#g~z;6X+$RYXq8&^eaY#bNlx} z`lUc$K)O<(y^$^#sE%|gQgN5fVu9lN$b~CN*n4vx9X=DZxHfX(s?eu(d(|rz_dVHp?0D`TOu9Dsj!QX?Pmzs zcKYBt3MikmG&&ru$LB01P(Ej)t&KGS_wJ7Pi}Shw@dxKM0pjn?NCD!{%?O0sUcu|} zRRQAVI8cCiHTD%CUW`2v&Tq4u%~clx?qsmD0CzChQGneUe3n6RXJ$JA;%(_^0peZh zNde+bsR=@1pHqDSmSsn;E5Ia!ghRg1=`nm3uyE5pL3A`(39_ntcr*HR=ue5Re zrBfH1@&D~K|9@WeH6#B2ABg|Yg7|;4Na^s+@UHMD;ek;7zgXycXlrOns9)&uP$77V z-w>Q+#Q*Pwu6t{t_J8j{tw4VNCI4Fgcz+N7WB$CpAADc?#=+Bh4d@^Eop+V@ZEqKE z6>q?E&a>R}rsp|N6;Dt9FsDJP#rTXl4N|Rl4e>5&yzzm%Xd32h~jA@Kto@(yIfS-pL}8F zE0VqN>h#%X2)}g2_zZ0mB8h6Ijrfe|N~O+G&9o7op-Olk_!o2;=|tvRWh8f-5gj&w zc-n~0Sf-%tNama2WU|}rPR*3bv>2TE3wo3|Pe39q1ZNDXa}lnz7@PrZ5t*$JoH3*l zTQN8T+QO1t@3at{F{F;U-pMouXXwmAuQi!11ZUWH%#b?TCej$2p|;Sg%{dPv4Y3&( zhNepAJdCsvnqgN#Z1V+)sS%m6t^!a>OpU+{H$5*gg}96`((@8ijLMj&KT=`}Q5nH> zq@!svEe2(1vreTS*;%;z1BW(sAt!beqglc1+D@c}pbV9|u9EdX(I9w7a>U-9A(_UY z42+dF`;^&2P=;LrR4TJIf->|DXWAZ+*+NuCustBN6{9jRguXIcAu2k{eW)Ydw$+wZ@*#W~|VU5rl_RXUzmB3)E8eRpJi$D(5K z^nHSdhvX3BCgZbxemzqzl-kO(fEL?b5~)X?~kD_o764k0^cUi|dYG ztzoQx2R^r^k znY}Hu_1kRUmf8A5+qpYCxPBuWtgTWl|5Ut-FuVtd%O*@h6e}x?oGCj+wv7?APqJ0h#Scn{7a5 zJHl@3mnF5oYP0n_C&L8X=Ui`V`CM8)Y0P_)HcERzds?fdC8C#MufW>q-01k|h-i;! zi)i&|nP>#^11>~%L*Kw@kui~hkxr3DkxG%G5l{G9_+)r<`1A1O@ThRFaEowN$PVy@ zu7!?=)`#YX#zHrN=R%D_6(Bdj75p){Ke#G5EtnhZA8ZSI3lfkSa4T>wusyISFgY+P z&@0d)P&H5zzG>I|$NlU5bNyqX*57mfM*a%^LXZ{kqi?@&71SKa_4W6)_0{$ze0d-z z;2hK*Smd4T9p&u>-3O|AOL~2f5pdkI-ZR%T)-x2|L^SeL@D%d6ARl1AzDl14wF~>h zo`l*^^DmG4miwG~OFakC{zXuQV3gWRZJ}0GOR7HQ8tg_`ugq1(Dnpg$_`3+Geh6`X zSdYMhplW5PKC#{W|9{Ng*^XWOn%jCG1G+!v?)V+KDsZ^UkhA{ORG+&oz_|L4O^-%ss9&db-?$M);*!0KV-JEPfq>{sGx@w zZ}d4VaLA@cevot9d)vJNhb(2(@3L`>J*hiv9HUR_HXHAVK3fD1nYzd~*?1G=8*IEW z@^vE5zKDE{z{U5@U)eZ+@4Vc`r=!moHqPgB9_KXo4fQi^{2=n_Hhuv4CpO*}`Nsl> zsvyWe6gbrNK+dWk!Sz6kcpzt00Zo1zIjf3f@`=db<^Ht72J&}oyfpH+Y`he5R&@~k zf9p434f0$;4|OS!r#YvkC6H$e9Ew9AXVnYAAL>iALe8p4n!F|Q*F~Q^KO-M0a43?1 zoK?%19`5>E~AD7iJq~gL)Rv zgYkg=4dkqzp~?BWrYiTL&3#Z`Mc~lM2l*ochgLkuALg9)(m`HP;Lr>Q`9lJSZZ^ov z2^`wdAb)^!+D`^~QsB@K26^rbmY>sD)PSNG~%=`=leqOd;A79VzAn*{V!_hYrvx8?|Q`rTwmv9v5hDq(>R0 zou`o=7U(df2N|WkqLJt#&$ozXL~cj+M5aduMH)wng?|fg4}TmU0NwwJgnkKa3QZ363DpVR z8@wD`8+;G)_a6)94SXN?Dlj(C4W7(H{`3Cj{xSZ}{)hcu-#1W|Kg-w7SKg<3k9t4z zzV3a>oACVYIpCS?8SZKBDXssZ?}n%CfqG-TnESeWD^&mM=YHH>NV}qKfZl&Ez}trW z>LqoZ`kvZbt*PFl{GhB+#wk6O$BgQKYh3XhBMf7_fLC1kz8(J3jprCa7&ILxF*RZ^+_ap;)Cj?#X*oyJ zWR4JlfsvkF;95++q`Psuj39@iG*<8oAF2_7VXkKvIG3`@!EG@C7j>O4bA@{Qls^Xo zFrw{cnJt811l!As#1=v@qU|MRI@vR~?Xa3BUMHtqy-q>1Q9fD-!U(pPlnB}Mu<;)` zYBuU&(qxVpgn={5me~qH7(*(tHG(i!wBpXs4Uf3KCF{!shiVPJAxCJ%&R(yuAtZ7j z3WKAi(oe{WDTiU_+0W!)avR(ckAF^%n=N0s)(FE; zEu@Cf^0&^~L=MDZa0pUqG6&-@uc2YID$0R4j2R8I8VNW`lR07>hE|Vto`hr$ z#9_?QniD3`CUPJUBTSe?n#_SXjA?65*hxh)VHk)pC+wtb!XOZ1&Vo5%Cmm-Ykz)j6 z=-iqU<}6L-KpcjD&7jeVY{D=QV@{Yvo5&FYG4MG^q{$o%#F!IyLN;L#h!L-_6RtUA zC6tcL`_VaaaO@q}>4__uM2-=O;aAuR$%H{5M!dqDrO6yI5Cdm6NHSq*2*ik2m_(aM zLnKDH!X(mU8Uium6*fpRVQGxSm{-^!$%LgL5+hz=gPbQUJ)B9+E6iD%Ob=tDg$G93 zqQ>(l`Ni0pU6iaa`@G{#Aw5)>1S;K3t{RQ4;$*vV%g3jkWO@j*r57V;U8l%8GdqDC zHq%>}Z8ANWX(0#I&>kUcX-DnvKO~12_$tOO;i@>99>lctYNWn9$k$ez$HQjjOXizM z52RXph0)0c?GUoa%BhN$r_2s#e6am&AHzYVDA{Z^7(4dVAN0()^d&X| z^J6&ZShpjY?rR^x0p$y_ch=kuPwz;RQ+I9BPxrBn;DAzuY&JIje@~7*ZZtzUN4Xq!lPp| zD>N+hWT;H=c5tsz|Nn_#sld&^Zm9o11nU2nhWh_|p#J|*e=~n+sQv#)zeuBvRL{D!|O;29^dwsS3F6_OprbpZt+$-E;+@0MIyZz8lZ<+Rn z)>(T5_S&CSm#bsc=hVt-P&ucpP~KF!C{+|l*5EOB=l_+=6%uFyeH*uH?VJk{&ovTg zj4y^EZAIp^y#N`YhsjP_8f7+52gx;-ZRWSl|C(>ip7LZ06hA#5_W39$apTAm8VrnGKSf-$qnBqze=Cp5a z=Vpz_EUWO*4tsgYcn+-8tb47YbS~hX1M4()1NZkWcYT@T@#8tLPD4|fGLd7f(yY@5 z(V~u7$Y#UnF*JQP|3*itgKs9U*vrXn0i!`eBn;j8dE6HlV zdd78NB{^iiRN-1&rJ3CdzjJ*~R>2Ah>JyQJmxdmO%|T3?$bnTFTYVa1=tdSm@>+{U zzmh#>L47X8RhrpM@jK_93pvIrjeZJNUq^`)7HQ@HtX7ZCxvx3GB8`sqg6w19i!@Uz z`517KrkYJ6Wgi19(#!?0`7vCOeGIrtvzk@PJ_cB&i66rS$;V)<(&*e;JuM}33yU<< z)oODoks6CM>S}eqlza@ZMq>{FbZ*bfJ_cB%3EzhE9?8c5i!{^L{20zlGRAXonPz?r z=bc}eCUbC^X7%oLF5#HSF_vj`7OZ}rj%&(f4zAMRmI$*jQZ@^)N)u*bq-++1MVetN zn*~^;i5KHY*(~5H&76givRN=zX?zw&I?h5O$5^CMDV>GwwZ=HM&W`868jamgcG;SyZ%9m^vYEaiF>Pfx&5)S3w3%i|Ok0Si8*l#U+A9j)za=G`E}H zmY6oPnckL|Hnp2hl$btYGo9#Yn#^fJP0im$_rRh9zEhTyefjh0@Q6!J4H)!JsYy@q zUysJrm16&dx$tvz(!d6@t*N2pbWLuqI^BsGoFfsGxF#{rzQ+xn*SqJs$3kcO=iH587k(kPOZ!pVudULiX}QqXzO7apvj43r zfzjM(|7hE2?PwyJ2Xg<s0<8>$^jgz^M$1jl*StNKd% zeDKcUxOcsGu6L|=sP{Rj1z5pb$m{a_=-KaC<(cNmg${&mJ++nTo(Gg&@K)h>v*4%#6xE=3Y3uM#ogVZviHCCphh09w}6%V%qKvkj6Oe z(g|q>ryU0)EyHQMcaYxCX=|)Q>n_b{%eAO2#c4C#JLxXTY2&M?Ex~E^=17ZkTBQfl zVw}ddA}z{4N!Z7Md5xOK#@jLd|LpIm@<^ph6)LO$*X{4XOTYXN?89>3hp_A&ghdd> z3nDCx@cxGo7UJ*$gar|nXo#=?hgi+reJ{fMI-@c_htDFs2Vub>2=j4>=@9O`2=Bq} zpYA*eqxd4l9Yq*ihn^9H-eU;E2(@1jhVc3iY&!Bh-c8&=&gYz2JstIa&gr{YBU-zso;ia^fyu_!7$ zG9ce1=<`>@ymoD)jpKEwZLo1%y=v<@r;B&=Ung)_e*xS-R-cI`=UrTnd7m2JCj)%lY}79md|)Mre6fw=z6g!)tD!5$aj0Kt)AQ^9Gm)QN zfO@_Uhi2Q&M?S}bhx`*8$CZ#K?ArnTCDaT1c4(Fv z@(%KBCCEz(914&i zFD`JXA%a|3pWlXpA;^nxJuUfxys*Hbya)1vHqO5<1#FyuU+xuo?nU&;FK{Tyfn3-( zLhElJ&&Tz&DhBdAHvTK}h>df9z8-VY8WgAx2zsatf!s&q|D9ZiSp2_jv_jMePxGrH zW8q1jL<)wlhPQ^Nh6jh6hhw3CLPtUiLMf=`Uoqqho(--Dz8&lqtP#uyJpk7S-VeMK zs2?cm|INSCKOJ%ap7h6je?y)A&wQD%3!s9}>pkOL?tRPqytleHujhNuSDta6o}R}% z`C#Au8vQ-Jw_Z!n@4oC_=bq?((On1j0bJEKYg6FOLqm8j{Y~AWexeSBC+^b9EoHAV zTX_|pxZ|#WVDR?;61hEmisGiPpwxhSew!VxDP$Whw^pq!Ieu=?&A&_GDnFLn-KY57 z^p%QAmA%P&NL(9w_#bkF)`fW}#U?6|+s)?LUFP|`=-J)TGoIU(dKw20&^na0$kGyH zAc(1u{fB7w*co>8SZ)`zlnUdy&!MGGm1W4Mv_tKU>trXqt%DYn%rc(a8I|h4C_AB2 zqe?$XTj|oPVUVZazsWs2qLQA_63Gd55KqWi7|(qcE$Im@k(^L_RMHcYDchlvp3oA> z3AIHfJ)y;t6M9BGA!lJcw+&j-6Iv`eq1LFRCnQrojY@h#izO%Y6e{TnHItlBEAfP! zh4I{$Xh~0~ndF38ppu@DO!*`#=?OJ+JfTExbE-7I>k8CeReF(AR_^jyv*RbfI-Aim zGNgu5C5OJt`272dx5??LDf+*-vMC;3rBcb^pRgUitnBbj#KV_WB!_QoJA7Hm;Tzcw zpOhWGp?LVD?C=e2hfhilUtc_Ya*OQn^@PKNQgZf>i-%8cksQ7*9{!FivqC9lDLJ>L zFLWL|NzUGU;DsNK^kkoCBDanp9ldv$@+LWB)&9Cm8q2K>Qq8z4-zmQHXqb$(njx+; zx}Xhbp0Qja2)AC1lJQ2{z=%k{=~eBtBhD~O+mP>c!Z2= zUSm(?xoydMvq>0td`u92Riz;LsN?gw-6woOwkXxd&(tx@7|X382v;^QKt80q;_AFX zHos#u)#HxU1>w>jdB}TKH}nl3(Ep}zVKqVc#cTJF_pQ#xn_>mwi~OaOmFq$h4WXapNqq z6*`l~zY@;6tRNiteO@xbtl>;H8qKlsi87X(6omc%Da6~XLN$o87U0(9NjtRo<4J3Dp3_;kXQ;56`jY`|N3zN0>?KQF7GJ>$?s0Q<8ct(EIST&Mj~mn>^v z6m~_$$$=-&*67y07}F(kjjfIJ3Jkc67>aYkMlS4ZwBrAU(lJ3ek&F8p!ITDI9Cr`} zqT^j3s*_y*KWq7o4!;n7I$SH92Q~qIps#?><-P1Z>|G1d{qf!r-X2ibue!I4 zH{!YFx!~FDSpo6=F`j{*PEgselBcN0qhHfc>YMe?A*P?H_tD!xZNIYcuHhf|kM4u+ zuic+Q*28djH+OS)Rd;E3NV}<>({{oRgsG7C@UqrHYoJxoifC^2s(M`As4h?^2{jOH z6%dv0mHo|)CBAbuO*b#uE+(~6q*kpR*%r3+66p|m~x&o_JICn@1j>EqA{9Ev>9g2)?IRN?cUXbcHZp+5~MC?!|I_sMzUF?hw_d1>C zKrxCjZ=Gg4F*+R`XkHVe7$4E^Ln?Hy(+dkUfDQ!(>PLDnr@VWe4*mMfqlw+?^t=Ma zSeqUdDF3#EIpy8!bf}AE`ikA_bf}Akl#kadP(EIrQ{KH!*N_U`>vV-tvCEtr>SCEk z13I3~gZs8X$07YgpyiPMj#TI}=Y}49mhb3Z8&UhSKsO-$L7*Lxo<}NlnRA~KXj#;r z5NHzVF;01xIrkByLYF!BA%R{-hXVq=gcNFBS?AVraW>LDjEY_6+`9z&0%~^%v^Uai z0>y8kdkdptH#qlFfmTO{#R9E{^b1aTH#qk~M#XM$?#~2z5*_9-Dt3c&&k<-V)Xo$r z-mBf8aLT*Exj#gDv>wKp-R}z&qs;F21bQBi_O3ujB7GC7(7Db1nn3wyJVc=UGaevN z{u#fBROsI3?k&)rIEJ1A-GQ{bK)WM-o>7PoEJNBwp!mz+hOWBi)dyPqWpFe7fncx8?gG#u?p@a5_1H4i9rWA%?UPr(4{@56Mp~ZJQB#qY<8;Idqz`gBbT85eI34&s(z5VGRDfP5?OyDK-vJ$J z`k7a-*m+%tntn*}`qMWv3VqZ0I)1%C2e6~*YiazyhwHd2dMvsinu3h}TG9I<1K?+< z0kAUiaU?U+Gtx9tF;XD>SNJ?+0(=J9{DZ>n!?nX1;Q&+wJRJHmG&M9Z)Ff0gcr&;g zY61)mHVfV#xEZ@hERxi?|r3E3B}1g6rl)t z2_Z618Jm?izbB2FD3!4kDl?fgJ@YK0B7~we@LT(wd)8k2eSc^7{qy(7@BNcL>vKP6 z?|sfacb&7=Ud#B~C^9}VCKw%zgnm`u4fz1i>yJQHKt($Mb@^Y>GPFB11G)k(3giZQ z1?mS%s6RnIz!bH=+DI*{oKx07UBDqqbETsHqJINClaKJX_E+{@_HFh}haCL2zG~1H zun6k#KjZD_y~XQ;$-rMclgIFa?B}J6xy0UrW$t7ll`(iNq-8=3FO>tpi1p0*uXk8> zZ=I6n_F{E2G9iNJ#Os0CUm^(+JTBQ^B54Ki>=Xcy>?e`5;&&F45hap5e8(oPN+cnC z$49A3Bq4Z*6NkpF`JckJlfUBDy@7^|R%X=@Go7g7BaadI-EfeB+ zsY{;uhOWeTCX3^7$@;F$v`h%(aY=V#Jd*|TxMV$vBt-JKq&qR5$s&0u*=@H(5<+<> zDIvx)Stu_h$=uwKnccwJ<7qAvzn5v55X(zRN{R7I7R%$32PBdZ%;S>o#CRqP=A|T= zgWbYh_yen=Rn{!}k=1>C-?<~DWkNJBB`GDwGg&mxmQ)$jHE0yiWZ^uU>H7~Ri|6rS zc90Ac0(yLy?!*VcOcvL}VZMG=GE5fP!(mF8iA)yTbJ7ptA> z%%gYinbzaPAACh2+{Xuc%yYynx{=j+zR5iFP~LBC`j_EM7VzT(Jti3_3;FSZx-%1* zEa=AvIzcwj5FO|Q*+7GMconXa36g;t$n^aOQ%9!N{=KsKVJhEegPoAUmq`7S7y0Pg)x1G&Qf{d#e^T-_HvniH0i}nJ~U~?O_lP2JY*w{~#u}>P0CN_4#G!9K{?1E`5n%LL{(-<_du?wcrXksHI zrm~Zsrei0Ta+5~khuGLp(Xo$26C0pl8i6J@K*2N|O>BUIX&9Q=0EwyWq@i?x#8Ph3 z5d07u;6ysW!DwOw6ikEA#0Dss2BL`#P%sTZ6B{5gm7Vky9U!qJCiS;IZUHZyEM1M8(=NlMo5-e~0YOFP;!ruHA zMkW1sr~o)ke_C&=SJVE|wrd|lto|V_3A^z31m*@_40MIQdzyM!U7%*EJ=D9Q2H**0 ziBhOMsWebZ`%n2-LKlDm{zm?C5P4tgo9Y|pYw5cQcIt2TPJ{S*8*eqw6&SkkmzKp{ zNQkT4ImTQK9oN4kt8l8NH&m2au<>jT_qD) zmJ69WKM+Op6qxH^WuQF0xerR=t(eb~rLw?>bcPAczUGRx%JYLg{mk9vw`$!7?{F3~ zkwsj{GPPO+Wtx@?Y27>+Q=(~kkT_1m^Rl@nmE*J*3jc?{c-=XCS{AsFe4IvxxzsM` zZ0-`@h$XU!2U(_8^BFQt%Y#gfv-u2H&3G1fAcHJ=SjGJ4@mWu-{uPmJbsg z$kZ?y(KQn>o@M!u_8TN%-XM{*+((Pah!RQeJ+e`jmq>#5$VXXTB565~&L|fxlt@~> zV``L(7D^lkDaQ`f6FEel-7)F>Iz^$|UuMLb7f1|^c!Exl0 zhD6fx8|}3$b#~_ri6pp@D7kZnMAC99Q<4xRcF)+(0w2?nlo8`umdBZroZW7LYbJI) z({ezO`GtfD{%Go9C0J^9yZI8P<)5Nv8wt~LS8XN>g}eIeX_?@?rl!t_t_jTXOv{%= z$;lE)aBaEdWQnBZ=%QqyMAGtmEhdbzP$Fr$!6;cnA_-nGA7u?!$wa2@BU^r948s4u zAI&pRS@@wpwwc9}b>o@fGpC+qE#^4$=W$rt93}nU=$CG5w6` zn*N{2wEb^q@~dT&2Y;MTezi|BdCNV=$*-179=vrj`PGuiTi!cPezj!s;Jl|a+2mJC zCQrO~V6Ku)-tyk9-)f6F*8F)WYxcgzJa`-Hv4CmN@ytGWcy{JjNhaSLnJQySCjSI7 z*_mJEdZ&wL_Ch9`{3^-hdorf&eE>5iDVZlnJ$s+EJ!9L zl8;cyq(rh4m7Kj+BH58h&R**(naF&YNv19&NJsK~ZEjBahX=$bytK@RxF#@1n5$0w z(fi-5gXSKqn;KSuNMv>pG*8Pk+f&Wc63upk<|)r2bF)fqbSgd8NcC2D7 z5Ir9~5M2|U2Q~d(hz^K$iryDZkCu*Hjr<(h5m_4f81ewd!drp1k-Cwpk#P8O`1|mN z@aNDU@VW4l;dbG=umeC3oe%8`tqgq{DuAqj$3rbcH6j1s6Z|>2J@|F-gW#m#kYMNF zeZd4||Nm)xZ)`9=H{LX!GoCcs8Fh`yko$jL->0wCKh+EL(fZ?hOQ<1G4l@6LhBpac zYaeKnv>{q&?LIA`m4Lke?*khGp9kIyJQsK}&@NCnP&uGO*8e_rrTVE_ppI4_S6iwz z)pDu_a{jj~Un?IdlOU_0vvQx3P)hj!gpB_U{?Gky`k(VZ>2K$+>#ywBedi(Hf2C9L z(D$jY0P+nUhj$P)edT-}@6V9y|F!o6Z%=P)R_!k~+504P8i#+;$|f3ARPh>!N1Su1 zL4_12BLgx$Haobw30`NU*?d;ngnydWInf>^IH_}@bs;#ZbD}*W;Fx=U(HVFNNS;kq`A!2;K#8sF%X=jaZ*V zD@X82>oGS&gSsflpR_)RI#B zR&wBofMZ^A0P4{>=L>W&GdXa8;PICqK>d9J-WqYJUxzyJms=qY_3Jo3@g(9bi|<^9l@s|zDB_LdM@Yq@4pw}eJSv@fa85But>m*P=A4d4@CS6g75X! zK>Tx#|2BA7HNjyTi~NZkKmX6;5yW34_$-5u|9OJHlEbgJX9S#IZ{r1=UvFatoL_IF30|W~HyqC> z0mu7!V1$6<{X8&?;*I&b4Iy~RCQqRLAOY`*_y7U#fp~w4H~ts#CprG>PgnW6^&$A- z4Tq8cIKj1d`1Sc1$Im^RorC;t0-l99@qd7iFGvE!{{g%@@`?Ym@L>2g#EJj2(EH}Q zh_~a%T`>3uetotj_+8|Bet_Vm8*f3K)&vjbbVR%*$G`k@!a&5E6MWHA8HhI}_-ECw zN4zn?^Ld@XzC4*NE+L=zOJCO97eSo(OJCl& zq57p;d9nom_TauLK>2s%I)~f${U!IJLX@EO5Dg<*eh9zo z1_{dVts0_g))Z7w2wI4!&q4ci>vSuk9)czvRK1GmO^+`?^dExGNA$9TcCYlu07TCd zv>&499Q6OaozTw6V1G2;Gt>hP+I3zdJa6hgg5r5o_aNH&*czPiE`qK?bccg>d2?N9 zM7I;PB%)jSbxrFyYEb9W`5w?Zj#?v*(|U~>`F_)SjoQ5|{@=rMl-2*66MG@nC3ZVJ z`yYya8O@A79<39NM1F`YhG+f0kp_{{;nU$&;WxsA!cD^!LKk3f|9hd4q5DHsgMUJ{ z|BT>x*vp?Zt{JtBvPlT63GAzO zEeDd8%|l>}c(?ia72~OIa-K1_?e4R!(Z%bW^Bm76AuwR>mq_vu7$dq$mdhroQ%zt; zH_4F6=BZO!aT8CSQi_{+>Xg5@iKkBaL{r%;h+M&Ye3l<2TFPZvkt#d43rs`F0JC`N z6dRym;;B<1aovNNd|l`%bM%pIx9FNcn>3M=>Ena<)NC4*62Gfop(cA}MY_~*S{ z%>(l$bQMOSCaCyP8WIWk7x0ilEu8v+R=<`J=~ zR3ghx`LYN4aM@EbQ9A{UQ9<;S*Htv0#e+&gR~Jg63J#%a-&4DsUX=~BH4sW_LfLCCX!IC z#kJ^NT2>=2DI>|aPT|x2-iR9f>QnKYTtBxQ!Um|%Im6Ytw z%(_#MY$K7pgGx#^ac0%#l2%n7bAF3?rNPYm_VF`b3ndv*vX(Uk$^LcSC2yya z{UwsO36lLJk~OGgKZ)e6f}|>uyoE}tu9AtYbS7#4PO>a`_uTeiaJT0z?_edmHaa)@ zT699RceG9Pu4tvG8aW%;9a$Ecq3(_3!k+((NV78$=u+r#Xl-aN>J1eD?g~{3soq!MX}zbfwXe3%3$gO|V}oNIV?TQb$F|2B z#Hz<4(M!?8v9EoTgUf@TK$pKU!JfhUgLeii1p}~)V4tzdm}R_bj5m54ZH>DjAHaZG zfCu$8@J8Wv{aNVq*Iuu$->iqVOVC$fJya5SOM6c1tF_hc(kg2H!0A8{^!a-~@N!^a z;9+>rP&Htv=Y6x`UBe7DM;-1f5Apl2f@jojYBTjVwJhWXoPt__OO%h4TxFEf9XcS^ zQf^TE{xkmF{^kA|{v7{se^=OxknqQ#_P}A^8sF?#$N$?a2MdE$EoTMst?G-;m8;)` zuV;jIQ+i2`LpvpW&8YFP9Bcb@9Cdu6T@ z9h7Ml#)VbhB`_)3_7;a>KR#;nHG#d_#}O{1>|+S$Qg{Nwct5swA0zxMXTz3Xghx}D z-vx(JnBN5lAS~PkyHl9o1-nuhFCV2Nh522u9fxV1wFfAij^l1c;UvP%2~0|@HHp3A zDQkIOLUT%uf7h6EgeO7|qRS!je?VMlW~m($a6CoYQN+Epd8EdZnY>=oJW}JyOhWTW zjVCh+%_B9Q%*61ZvkV#!5(>>DHE70}3K9yuq)iZzw2 zfjBhX#N(FY%_Fsy0zM1*%LRNU;!6d*8RClxPMSw*BpHh~kJLyq7U1}8&`2^CZ62wS zWGvb|QX|P&*GTh7Z61zC{6U{B;QaTTBwf+wks3*&0-XPvzfN>WlSqvuGr_Ms-h(xg z%tV_+Y9yHnnm(edr;%hP+9XnYmK>KfiPR=goHvQo#&MiBiPXjroHU8lNOF?kay%vQ zhvIqfE#TbY=+1H4BvQ*jJV=`j>y;3PCc#--9DTh4#d)(~y*$NxEkk};it}c}`t=+i zSmVM1BC<%!5Mi516FSv3?!$4N=J6|G&)> z+hfK5ABok7`J?-zpG7A|ABDPqTI5jV%SdMA@kpIWB>V$Z`7f~c|CbJ(4y_8k5gHh3 z5-J}&7hDs38?yPE1uGaAAdmk&W2AAvQAPhl->QG4kAo-mxc0BMQ=17-=$*70@N~XE z@EJUrcMIGBPvzgMi_~1Tms(GaDJPZ1P>a8}a<5Vf_W!Sd{r~;__xZ2)oq@XhZ}|p8 zXuh zh;wmCcVavn!dy5?sNdh-{5n-3Xb0@?>-N`N=bA~&hB%iaDI>E>B*eI!nX?2Qi6jKMxMZfQWFi}4T+aJ5mi^;dYi{kn57x7j zc@VmHKqn7pnDK0ga-{-2a%LhMqFh9@p8HF=cs9hjxTur~VJ>I#T_N{Kk~jikuGHkE z#CWz9<+4LUz+82|`Bk+Mtay^S13F2b--kcMY1vkg%VJ82iEJyzWxtPPSx@dYEaKS^ zrrJxn2SgzU0Xw@WkZ~cOD5eTo7oWNawOZe8&&OAb9Pm`qupk!pOBZI za}wtQW)%q&;#{Z+HFI5=Y1t6yN)3}0*LA(q#IqsJMI?txBq7knC5K8RAT(U?a36U<8EPH=N$$Uttt8Ll)%S)IL z>OxKEM&ll=&4yT)GfW`5dKB?&2z3$3_7X{mb#ck|5=jVkIg)LD?>E4G+j2IEbpf-V zD>IP|u`cJQjlCuE4mA&1KNIkwc7U-z-QLNhGUM z$s&nl6)wqoAGvon%&v@*Qer&&CL;Ml{LcF3{M4@P?W{d!AkUdkTK0`x5{QyJXC*&p`4a|14=TYYtzzrc6mXvo4e z_nKd%Dwl1y`#W-GX=JL5>DqiRo_!rMS(f$#k}IwhGX0F{UYH}hBr*ex>3VI(vr8aT z`446cnL1;-`YDO*C}ZN%w~{S=gf4w6+0uvc@NDT@-D7?M-5r-7{m9%t?DNWNrhd$q zK7>rR^sQVMls*4H>N#OQ|GxAMZWh7!3P=^_R#2SI};p2w|@;VV{)iBTX`g`GTtb z@B>`fJN2l!)LP;n&7ERP%R~ZsE9Oev+9u$}DwywJC16DGJ`G=hQ(B!!iE=z{uT-ekmIl(L)3Wp0+$q8m&BA10d zaS~aU5{0rrb(KxeVM$S{eH(!lg9xF&ym^kb_)aTVytsWbhvh}tWSi^z*8HW>#Zr5R zmpAvYjuv;S&PA5YVX0B}7}%8q!mdBG$sFb}+FW)u0N3^6P3AD4(dM$N47j(LvnIas z>ftvoo15(h4}1*FYqYtLy1}@v9%eF!B}v&_c9p>%Ldp7qc6x{fxU174)_pux6Zx{ft12i(ZivkN1-Hv5j}fEP(5k4YrKjpUNYB$D7oq9knm zbiD-Aa=?vrB!TGuIFbWiB$2!#kpwrAOI~r6OyqzU>9`XtA;4F{Jkj-BFX+Nz9x3*& zD+m0@lqbiS-aPXN^9^SFU>?0PtVOfBzdGN)cnAcs4WY)U;`rxefOj%1K+3$9>(VAowY*DVai;!A2eCn+rl9Ldxr!icVkw(%Tr zBb}=bnDr!*;6`%Edaja*9LtNe7oH`ScsrX1Ub)2=ZnfAv`m(hX&KYJrCx{DgF%@%H zs?ql0c|WqPaGYu2IDL%j`cs|A(HRpD-(GfjjUK+eS917(aCk|(i5wM~!M?D?+I5}M zaumLxK$Lus{DNemMAAnk3nh|XF3C1`yT1v}@t`Cly54N!+0P1+Nq5QYXQ-rm#kfTF z1SV;pN|towOEXW}og2&}jjbCQULV=xnWjZ$Oz%|l==?_?X*j!%`MvG!bLKc4ry+Zz!;s0ANwQNQdnhu4tVn?C(bKYr;Kd{*#;Wh#CC0O#5+uh+B>PiIcVaxdAD8U5qwK@34~FsVCk1AE zS7y-f^-S@u@x&%7`H=UXp(O(C0|9l2azKj&E(eZ6RlWIvx1m;l|4=k|DR?OOZE#kw zFgQBcU7fCm{in6g!Ir@rj5Dz7e>rsdD=@|wJt6jgr%}lW=)c1L|5f@d{Z)Ou-W$3A z+^yfJtJ)dJ1X!$1gZh1JC%{*+_q>S&>&GqxCgx$rgUX|N@{AUrkvLb#tl z6sW77RUd&G1kIJ(m2!&Lzf)@ztQGW!JB05ESA%^Hmz8zOXHcQwd8NPd5M(J-SEBHy z;(Px_w-*s$DbEr(;9*EeU_C($LN4qt#2{qPhTu#&QbOMFEGMrmP%NSNQ^x=Y7ZQqI zqXwEvkD0CZCwR)zht4PLV{pSX$6$Yg=O(}780=4Q!`n{Mp4FVgxtS}2MLy4ddX*aJ zV6z<|>-C-^q+lpN6hD>6B1SXzL z{j_7ytQ`s5Fv>B2l#uc?#4*^P80L&m!)37z_}X9VCw_uwL-lf&B?wuYZ5$!xAqQ3k zxV-}hg?_hfDa`XQ@24=&!)!@ll84#M86rI0!}Z56n(3l}UmH_J1HTBSI0n@t=588} z!6;_X9fQA^0nKOE52E{Shqrx0som@-8#vSdN^9g%Y_zCT*W3WfX z4gWd@dsN);k7KY$#SMQu276RIKlKmCV6PQ7Ty_lhsJP*hW3Z(#?O40u7;GtSIPVy2 zDQ@`HF(}rh&#%{>&c$QBdv~r^wSdDkHT(q%ZOn8&!@h0v@iUzrn0?zg+{sx4_H#hDEo>1D(;cC}deJZq z4XZ>$12ill24UL*-pAnJ!nTDc$R~u|3HMS1yq?2j+=kPG$J{3nE=%Da2$w_{Tt!TW zRR5wdu95mX!Yq{Qh^VtET!io^2(x$$!c!>R3Ss=oU`4>!IIwa7*}@KjUnsl^*(WKS zf$&j;g&hRAA%ZoPLk;f3X8I zHiy4KSh%CT=)la4;k(}OwrI7J!vW%L(Q1c`@JdI-YMqAg5Dr5dGKBk6coV|7CP8Rg zwh`ezl-(O)yvKldCAhU=XU)MNIKpR$L2#XqQvz+ zcnh$qfjNg%`L)JMW+6NQMOghRghx^Md4zF?rBz!6VcZ;P)jUBM-BGLMhyyFkvze{vF*G{U|yb>Ht)UT#jstydN1JX%VRyJ|A8iehaGqH4c{z{Q}+pUJdmL z-4luhPe3*QoZ#cIb6+_ zP1uv)C{RW{t*%gCRr{*8aeUgy4C40X*S%^Vjq%P=SB8?^)kNzPR^q zs3Gu?cMSCXtLnK7LoWW8$Ys$KJ3Qv`urkDr%mty*{^o}=oVL2oX-wv_cnU_+E?g{e zwv)Ly6{g(z{N97Vzw)ocP2{qG3YRT$RwBzHDqI#S8$W1%ZFllDcWhWtuXBl>Toz&~ zTo$Oc&3UX;T>Zbzt;5+6COOn(E(@w~StyL`%1z`#ScS_1)wP;ZGMB|wxa@b8r?|e0 zPv)`=9m<_7;j+*Q#G9+1egfQ!wwM&M3O=CX(jmxZ$1-OQzSDuB5QGWv4AUgDgIL@vZ!xGYdj z^UFcE&0kY{lezt(wNb>OCUYU^!ev?2Zr2RJL@vZ#P*zG!=0f0w$U@O?*RVn&7h*45 z7O1Y*ZZa2wFGM!CLq>V?z0}uzEz9Q|iHVKL92S4U1v?M*#a)Awi5wPzan1vyx&|zg zIV=W4Wv5GISrCTEPM65CC=8XICXt0W43(WGk!67xD%(IJ3!xY)+dv}AVliA6YOA|) z6FDpxgNp!E_tTrhqA^sqt3(#!F;upzM3x0)sB9OBEQDmJY!`_vi^&k##+M|rEGokn zq46bG+4LM1m%;nq z3(yc@2{%25#b~H-51B9v(-2_^H$8_%YKU;-e`UfDtRccOZhB5%D$Jfhd=HsFvQ~fB z%`}S@drju_A;OI7{mDGO&MXamsLZ1;j%$5$J#?CrIlY;%okMTGA976~Naj3&+|;`y z*Z5L0rx$YJH;@g&HI|*s>4{wU4P;!`>oS?s1G(^H^(!x{=dnao;yL zylm~gGxy(q!~4re;p28P=TRIlxGs$B`u$AibVV*K8E~^))1neNUC7)R)ioBJ%;{WA zHd7+|h$x#Wk?mAWwz@>NqbOTlBKt6vWlbMkd&4Gj9wM@g>goz4b2>{ZZ5Nm zG*>cr+5PGG`E4(7p}&MA->w}U0#IG^?UFeUQd!oXLL%Fi$TF%#wv8YQ-7O@t4^Ua4 zN@VXBWT82RM7A}R1*$~0l^_efH6*evsVq<>vMs1AYt12%ZBAqvRU+F=kcG}364|Cy z7N`>0CW0&^yt~TU&;P57KmUIS&;Jj=^ZzAy{(sMU{;v@JHT*49{~r*(FMNIIRA_l< za;Psn|CbP+{|{Qv|Bo2A=-2ce`p5cMi27I6E?dw4L$zjF`M}x0%D`)Zeu0L8QtD3- zuP;!afSvzg<(RTS$yB;Q)jh?(&p!wH@ICC0`~LQA^G)}Sf*OK1dVlk-_rBvD;%(+F z?>XmT?`N#PWG>5ZL2u^rfH9jonBSz@-|j4D?W=dbdWl?csPLD7QC;g`Cv#bf3zgj{ zkp+i}%5Id%fFBC=3j%QZ(kkqhn=mj$Z(uXipuQz_Zh`&sv2 z{vXeyZcexTS_);ld_}OBwuw1$6xq>fs8R~;cemiriFJ*Dve>-z6U&?WL7}@o= zGd&kvDgFb_UafiGHIK5A03D|mPfSbZf-i**oyDzY?s@S<^?5(mHjm_YOI%u=?_80| zT)~%OWcS~$T<%N3s{IF-`%-Y`7}xcELVB*{OF7;NYXIkY#av@m`#)mtwcf8N&VUoS z)R|)3R_3BqQYhPZn3sj|l=NK7nIgKYWxCXx0^QXTUBR0I?kbtC|2|YBCp`DM7ZiL>9a$D%)Bj3(k}v+e#t}-V~K>C6NVZipowrDUk(lipWkp=_;F^ zYdKSR&LAG-yK0`D)EhQcMa`n??rZzer~Dx&*Yc(;vK@f;y=tC%lI@*)$J~GH^UM$8 z9r)^UcZz+1K-jg{N-`JRsnp!q7ZbRy#if(E+@FGnC&qOxi;&C(e=4O54@8XX`eHIY z*K(-HLQIz}gym83g_tf|2<}qZ3o%`?5a3b?3o%`?5ZtG-7h<|(A;6~+7Gk<&AuOkg zEW|X~LRelEUx;bG$>yoY-m9R$?KAhEAKb5L-@5#Y;BJ+@5Yz55KY!F}bz*M2f88hW zCYo~_`Cvj$*O{C9<_e*?|(-T7oPzFYRnDNtI;TxnMf%PhP>-wkDMYY72AW4-fsZ zb$?m2=*PEr-Fol)4mFv3yC7Tgr+*}F(QU=Je@VDCigB+LCX2~dmB=PUS$AqOH(pG(ibOU|ly#>jbE}K8LzhWps|m6aYBKj`LAKKH zO0J=RWNuZ;Wj$?O-QGlQ6*2@VHJMvkkcF1G?r$4&Z=$k5m3(<_EGFAQB3nt6?I4k@ zSWLFPt8CC8_vHIac>E<|r(!!|OJX0za$}=n-D53dwPH6wEx`YgN6&Kbg21^-#8z+n{#vNV- zJ+JOpSF5wtDe45ZkNTimSFNH3mEV*@%35Wf@`m!9(ogB2+@n-eBL2(%qy7#4`Otmv zMgIVQM}I?j6LH0N96As#@V)DM8R`&rhW!fZzU#dIcu#t_dcX31;LY?7^FHdllSuv7 zyP4&F1ld*%=faf*9-uMFA21fwQ|Gu7dC}4nq|` zgfU^!D%poHrpZ|K`4B#gB0`hQg9r;HaCw9ma2N_+A^atU+ao+5VOF6E;m;`C58-(T3mL<6Da^;sGqzc| zBox6)->lpcXMczytZWgor*Rlc4dcMLftlNFsYAXG0T6gt54Iko9pym?xXE zR*VP_;v&#Y5n(JvZZ%Fsn5U+)o`wkX)Ku1&5MiF0%9;=&`~)77wFg8P6QF~v!ym#t z0h%@GL-;WiVSV-x?#5y0m4|Rw3iEN}u7M!yLx=26$Y%ZF5Pk?@)(j5eb`<6#c@SaN zy$#uIDcl}mtiv8;UDOb6jckB16yC#IwDO?-j1chrMoJQb1TM(|s;U`*sgm6^~W3IGXnZnbMeItc2Pg@dQm&hFyl z4pNwpTcprH{k2+wn`&Lt(r$m1`8nOH;W@VZ1bze-Vzo`ur4U zmdZaAo{aEc6fQ*gPYTyS_%es-o|)e%yc*f(D7*^cpDD~!vX66kz?@r=eTc&82p^zu z65)LWp1l^~JsfU7{|v&rD0~{>9TYx=@OBDMM0hL0p-+blKzK8S`y;%G!u=55Kw%Z( zbsVPo=xZpIy8P-Hn}Pe7PEetOU6@ETOUMmE6w8sr`x!2B9qMA`fr2 z&$t&4xq!3%8TAqVg2MF>{+z(wb|X9wVePN#hY+4a;R6WILRi>|^(lorAp0WEL}C14R9>Ml{xB*pQy703m5Cgt z`-Wb!mMK$p8Ni^8ZIfT1F~`FIf5i1H+B1`2Vs{ zVd#lay-*~0Jh&*B9qex9{~tEy8!y9i`|XAw_WsY&pVvF;>DpCzPX9z3ueH;v2mTCf z4tx+85oj5x2+!o-s&A?T)JE#{%4ub}@~YAop1@1^Px!y_=lXm4>-dAdqrNYEuRtY$ z+kHOoUhgdLv)+fi3C};CqGHe5&i^LzAijdJqkq!Y9Cr=sCi8fB1>Oq-_n2#fPa+S( zD^&KFL>7W8sbGaIJ3%4~!4)by!BsXr&x)-$uk-&N{K78J*XCwBx5zxe`hsVE;9S0m zJP59!F5`|eSEp)4?h&iFr{`I*6{5RCrVGIps=Gs?3!xPret3?vpo=PcA5vQ zoet0P@j`5c>K2VOS3{kl$L=!CJ1f@&$B`+WV{1qx)58Tx&vKxlX*O}0;lco zHleky#jBEeR%pcvDg*bg@f~WocI`~$S&@}g0Gd%k`*L%IW+p3u~);t26V<2z9`Sv99Ah3dQKF0NI zH@6$RUMrXWmU(a~%lSb6F_|X>R{ne_^8weF>B&4HumarH60Q(f0d6Y^R|u^9`Ou`3 z5-tQ*`1<~N`)3zizrpEwR%FGwi~M=}$Co@Wn`=H@_3*}t=gqy@bB2b$c->jFL>>*T zFs|$S^kkk8TKQwiaX!=I(A*$yY8*Lo1Bxn&yzq6GAJ%y(p2Tp%q4z z$O@qq;9ii(LTClANJf>&LS%)X2;k;QWFfRdWpgF65LqFzpKj{b*Icnyd48~`pSipI zR;~Ns9eiyew8CY9+T2`d7uq$8pv?RaOLscdWFACT1lg_3TT+x=H$x&@LXcfI!&NptFUDk@dkx#k>%Gz3 zW91zvrq#q_BUa^1=0%yVMYebSx;M*7=0$M4kX*rpB{#<~av^Dhab15=l6fKILL$b0 zaD&JN=i-lcBTKth7EI(g^GU|yum7Zgux@Rcm zDaB+|vg1VAVG`M~#bk#{WXFiILnX4Ki^)bLvQLY$ z5sB<5L3Y5H&633NkyI9_u8HG8f50=z_p8VEtFlX3rhE)l07ol5l-9}}N<~HWpY!ka zuk_FKPxg=VKjCi!PvkfKFY^RyN6SY&k)I-4BMT$%L|%;akF<}}jocIogwKX|K_7wX z;mq)m@FU@d;p&hh@LT8r^b`Cvlph)u%7C5%w}eUsuLQpjt`E)&z7`xG>=kScb@<8| z*Nh(_KVX3|)p)_^XS6f!Hf}Uj{fxd-U#w5lC+UOrPI?2qnjX?FYWua7+9!}3FjDKL zHG!@JCE?w}(ZD+BJTN6NF3>a3Do`^}R=uj8R5z<%s&A{$t4~5+KpnM`swlts1HN6p zC9wA((>KKTh_9iqx-Sen5Ds`(c|Y~$dq;UQyiHlzIQBf{@pxCK{>@w+=Vwx@;uK?G z_eJnP&~TGz=!%9)qM-{KDhP&+m(Wn28sL{04P`|GzRcFH7Yzn};yS^w4qs?%C8>cn z^o~&j-1t!{C>rqDUBhy1_D@Ag`~;S3vkW8Vq5;dbF$3Iz(SYUJYy+3VT3wc53YYSg z<8SPtz1l`cO5F%AkF3&)@CkM&ats0fx*ckLj&WcW3q$??)DB#e|Mycn$TbNkd6+Zu z02b1-&;C#}{3U)Of`&h-0q(A7z(RUV3U(Kv;dk*9cjqTvb}=8A^b&@hJ>SneqrW{ZZZXqYJ)s-OXj zxWVP~+u)(g&@h930@5|nfMsOi6D;8p4OkJB86ag64OkD(HgrJ4d*m3b)(;x6@T~QT z5@*ryHvI(D+d;#d)BqK8(C|7nKzSTAU^!BDjPEK>MgtbBwGD-6z$$gNfgik(9s{br z;3o>G0qVA(0qfc^sqs%^+$%7NegbNz;3r-t23Gw94KGmx)GtB93)BF`O3?5eH9)x$ zG(0OB_;+xEXyD($aiW2L2ggtYl-VKUk9UHJYH`6c{diqA_3Hq0|7C zD)1PCMMF$rhzFNKp1tn!>6p~NFk z?qQu4ko^aWux<$mV=Y_OZJ{5+zapD;EkO9J9sh^=|ML2OEusD&jsKsv_W$<@)rYPC zKLo$B;{SI9HRGW1x$%wD05v-c10ci#8C z!@VuM6+P!YYn*_;$CJ#5I0}D(&q|HoXMSnFL;4?EK=XMZ1zwp-xruxlNRd*L`8<#U zZ%i4tj`{hlCszM?_d;`9!Rye9^#^Csllgp)3T$0tT=z|q`8<-6D!uRihBu#YQnBmp z9*}T_PzsD;zhueyE){#p+_{N-x=ZChWce-?d&%}omW;?PYTSu%*Fq^^ck?*Yj& z@L-C)Wcwvt2&M>E*+|Kf@o0*@WbWKVK8>cplDSip`8=9pFWE@Rl0h^jHC%hiMoN~9 zhg0k&8!1@^2&bfU?Im;PrsrGn6esY(YMc7&nZIt`Uj_;Wm{w5f&^rFLumUQnz=y@H zV4nNUl@QU)9aq;5?DiM_a3}M5K!q(ZaNUa)=JS9GTVUY2 zCKM#|c|e6Nu$;>SDyi-i?sYWst$+$S89O|C%~a1`^N^haz!w4{Dj0==G3;=!UzVP4 zMO27zkxbYMsqnL0Bonq`DnxjoOxOylaN&XO!pVFgs&Y+x^nna>DU_*8J2l4K#V)v; z>pLrv$fr>iMwNW)g{TT}Tf58V(WnZey36JXQ5E2}axb8nN24l?>V8e;2~m}6TGx{j zSsGPgREew*Rk>Oet(0!g{JA0P@?~zeJL%%u=FzB%l$y*FqAIMOyJQFuRY`s0?M5py zE)T1uy0u7jA*{l0eg83r5y*wR!+&sxBNu)xq})W_FcR94Qj>W@Q5K$ffICbwwIRq& z^`?<<2O~Gtu13Nggj~3p{l^#vBG+Cr*?0#a*IqJrZX)j~amn1N$-Mq3YcJVQ$<+EG zH`Sa+!hI6C_Axa_wbs=O*%ci_73nP3Ap;vi34WBvb2!TzeU0+@8p_ zmqEtufn0kTWZcJ*YcGR4H<8y}Tn2Y)GVd{zg=P46)Y`di%&%50n^E$e@68ktxoU8t;#n#}7g z$W9(t(Y>a5-Xl~NsIGO&lX;zr$=)E5?I_CLAd!8zm~458>_eh#d5LTXQFiP?iEMj8 zcI-llY&$_VZOsYyG>p6lsVq?4(=hVd7Lz^hDr-OgZ(z^=pT@?=+Qq6zuSB;*r$W(_`d)pu{+#}>p49%;c4!}KW3{$g)xhPzroelFVS(m>^3ZE+3rbo+&zylpF32kK3tN=C~&A!x~bM&t~sU2eC|=Dx^+po;8CHEVl@eK zJ)i0MmP?iLgBkajzmEB9sw?U@z9XKZugW?;RWjf5scb*k=0?qPY0tges{M=RmSUC0 z^SM*yvwE8ybI;(;=T23su~-*#36w3b^7=#O&MkL++IdVvJ_hborFxAuGZ)&AT4oU| znb$z)T<%n*+K<&V=e}|Imi|BOER!br zpLUvOsljERzq8 z6_K5Hu7~?JrhM?MxGYfJw=v~|W5s1XCs&4Df3_3(;8~%pl$y*3$4Zb5N@T&aqO$JP zWPY1svW7(V0a4bSn#{jnlwC1HBHLP!l~9xUtpwRpKTMIxwxqH^b+71`-=di8WQlBZ zQFgLKwplURLWyisQMOPb+oYIm4T)@HQMQIewvi}%bdGz8y!`tF*`sq@)4h}VW--}W z64{2L>@10FgJQBXC9?O5vNI*J_Y{+DCXuZ#$~Ke8))QnSzux8Ajwz8}m&(eh>G^jv z+0>7p=h~IG&v+J_n?JLD{mcVUFLvq-jOQit>u_C*`=q%twWDr#O;%nq*Ku~!^Y1FA zds?P@r>J{cqI*X%-BXf1y!o|7-BW$c6{EVdTGr-n@ur`iU#pnzM44_)QFo%NZZiLN zrt9pVy>_<6?qTMtS3}<)*^z1PVf(ml`psFhME-457N||l1%LGZH|xM+vk0C(IxNEw ze=@&@AUpEiL+)?Y^KV5iyfcEhn>#m=e+wOgjGD|(M_D^WcgXb~lFUyc7hZ9(AxJ`W z3FO)#xT^zYAf&{v*+@SAOPp)sQ$2V5l1`+som6w#KpblO=rLv+y_Wy4GQvZkW zEI!oV*>C#OVn4;U#umojiM<%>A8Q}08@nkMh@Oq^iY|dS2ARKz#K<#78r`5SV7gIK|5HDzuhZx1 zQ}l6qPra31Q!fj(22N_5wJ)`|wdb`bwFk92S|z9n_)B0%;2Wqr@Je7%pkv_Pz|Fp8 zfvE2%-wuCC->1HR)GO)8W7 z{D^2%jt;qsXcLYOEQ4rcj`q6^(MBBY-5k;TINIYeL`{xnj6$>_N4sEuGQ9yuJARDZ zdpX*EIimM)w9Otw>jO&ii2i_0MUD;LA$vU6``CJFgB`H+hoxaT-9i6pWWI+?{{;l! z;^27%ry!^eK`@_#n2A*y`*6ZrV7BqqVQV+jN&NqWk@hK3siL$76MC?^=&-GzoS#4zFD)BF>qsiD`o8u*D)#4vDD z_cmxKK@Bx7EI>n)7~sVsCOhh3(Qq6;;TH{<2dVuf8YVcO(0-=|c)y1Rvj4++?S_Uk z;wShW^)xlWt1tY-&!PeIEj6-Z#ClVOpE$ukVZA>>!*S8TC-^-#Snqo96Gx~4UhJTO z>@l(4;-KLW{RF(SK?B)*V!fY1!vXOVc!_FcSBmxK1wXNme1g3@K?B*Y;`PGY4>XYN zDqb(Vzd!@ouHt2HAka`mjsb=s8n%fB0}WdQ!-^SbARAn~9(WQ*!$$gvQa|7h1#P`( zz+6?0Y>8n~`2Enn6+Urv4jyBbXqbftvWW(yj?P5GGVv4mJ=c~{13a1GC+M~t_85i+ zy6pxG=m2PR+YJ~_;V0;}8!${n!+d^l4|^0r1KoDRyl6Dg-8EpqEg0IzR0@(R@e}Wh z27a}_Nez(eg`X%C4Y=V*quV?nGph(cLAQB;VIUglHV?=NdH@Y{n+MB5LId6A!Lo?Z z@C+Rl>AsXnu38*@TzaLsVdJHIChM#CF z8u;z?0nxyJKUxz5tN(>kEky&ru9}MmeqA*c4ScN{Qv=k?!eiV=3|4WhRIyZz?wepW ztMC&I=qI4+6dLZK1}HIwhI+)nibSEIE;T@zCp6Fv6<4586B_7-iYriR2@P~Z1*?^W zhMMFUtS%B7ZW9gs8&yLz@Nd+uf??80l)8l)pq3FD(gnlEm(Y+T26#^S9Sw2Oa1jmF zS^Pi4v)+mSKN!0?`bYG;==;&((H7APQ0ISj7W_!jr>&!uNz@p%bC6 zL%E?Ip*o>p@F-OApA_r{`}0-fu(8m{HF_HjplbhFeU1K(K3uL9h5S`n)8Z&Ic~{ecISH2=T;UH;jy3!sa?reE_N z@h$Y__aF0p2t#Loi2@eMR|25C^TgQ0Lnn!1CdGEy& zX~ny#rm z*XrJCetYYTv7-l6oLJ&`@%&A)JH6oKBKMvtW*+ zIBAgNdW1+05?^{bW_}RJ{d)2GlIA)q?fzyyYZk|G6rX!fa%c$RAaVR6$vUzSj-xnw ztAq&g8zheSQL>IKdgCY#xhk18gl>>Hu#7~J1#TS0ez!^P6cDvRV(;dX$*`D>quArI zfSLIg`+M75`t;jRwfh`z%xMJ>ut8$RD9IRExW-ZJk|$AwSPc?8ek>ufNR6Y|e!1k( z5T-$5n>`Xm7Nl_$Tb+~KNFhRl#O49b%uU^UmVe#;mx(uGi|n)l7N2nx8`hB!AvS}= z`fVkrkVR%3#X5Z?cQc5}AhGHZ$)QuI=r+37J2d6ztuN2@hmX+0c&JlRr83r!=`!x zgk2oL3f*ruzgRSHLZ<=0o7+FB#I6f2$YL%j!3vLhPMSyFVsW>mc@%n!!CoVWSiOJ+ zTv8(}`*gawXgJGbnPl!L-}{!G-{PZt^#T@bad^WeE6oBeDc*JY5?&hT#XhNJF0R?J zc8~ED&7Dtltq9vr`1q=GUT8%{bM9}8p!n@7(<*JqLt@nns&SsSS8~PN%z6G_6XwFl z8)e>o|9Z1XEa;aks0utM9A~}db8WnrD5%0?VHVXj6D3(tnaZ+vgs!`j5(PIASw?lw zS}C}Z%35z2&G{{utJTunZeL2yiY5vw5m`oc%|uBSR3x(2`$<=BqM!nol~a=iH;A%N zHekd;uA1*NGhdoL@wz^)^*j4HXn zN(r*?R#zfhlF9;AB3pvWvUkGnX;B3+BFm`mX;B4HK^ER9OTG>fDl4O=7lfH?Dp!Fe zx}K0E#TJB^u0^&Ieoy#g=DF0}Xp3DR)%oru3xYUaJ1O>rYsbiBfq`5*DfWcx*0*GV zj$At__Jn(?c7cXmJ1O>rdpNxyfLuFO`-FQ!U4e>RJ5^i8RgkOOi{^T7N-yv;E;$*; zWhcWYo{ZzNli|fd*eBz-cfacoNwn8X*x$@w!FSQO9(wQ%_qFm>_FjUD z0Moord)s<%_FREUcs%h!<~J*rFQqEbp~2NDjTbV<*=G8r%tRscob7iDL0}&Dd~WV# zdqnH4GLML^S6U(X&W0_@m_yC2sovcO#mC5aA@iMWqQRJwaWdzb&q&5(-ZP((J2O$p z+-E+cW1e~D-qf3jBkN0imwXHp8PW<_aud$z*kE%DWcoujYxAJTddzq37V$#nK=TA#{XkqFG~$KKpXSWP5+-w~IrAF{leyHK+0m6*u8{fEiqFt1`Ge3j z@r?JVb4ipdWNx%=@)tKT&)GKlL{r&9aFz|*Bw7-M%ssYGvTB*`Gf(zlE#7CEM{cgS z@|Uw1+DsHO580*$7}fKUxjXe3bcB@>I9uq9GEvB!WSgqUspSfppUmfan$8v6;*^Qa zRWLC(n9r4%$`&%O7w1YWi9+V&^0}V&O6CeaZi>q0dRjJD=Hv3YN~q-u!NpCDnw{5E zbgs;$wMWh7Dwx27O_|tvC8n~4;IZ<#5=){G{L|E^*m*rAn=A8A?Fq2Cp7OkJ?uNTj z&qee8=OqB{X^P6utAtvvkh!P)yiTNZ1#dKEVsjNt%=_f$m6*yFGG`OdE3qUBnQzI@ z>qOaH!L>|L*<2^e=E_`4eqJTicp-R}_|2ZxY4aoI`i8UXjExnV`|Jt`&KD!C5FAVA zMhV2G=IYdI?LDlc#E7L1FA*``=vZ%Fj}7JUp9HQZl6{kjbVbWA;KOn^ICT zrJi(3$+fa6^&nFMresQwZ-nJ}f~TFI0$a7x!aFVw8!xoCc$ zZoLyP9u0?#X3xjo#U9`5vC~ikU^!F)m<)9Q`amUs`mt)UX!OtM@#yC0qUZxF&=;Y1LNAAggt|h7|Jy?4LO#g!-xFLJoE4lBd?xs0utV_PU>dwb_{%t9 zY&E_%rW-lNDC2RXwQ(oZ`PcP}`XR{o|6G4te+k|ybk-Z|x9Vkdk9Jzyr7hP!)h0ua z!9LJsu)bDJiw6D-9EV%2=pF&{nCdR8_+M%l_~EoBRv>@A)VBhxxntn?pXr4SvOU&bQCE z+Be7doUgy{VdxK#@RjoZBc7n zEkuQn5G9S%jcEkMoJZq*2ZjFVb5P-3g3d&As)N#|>Bd_GeG9p7I4EtIZoEd&3&<^W zP}(rv$R#MI%o&-8l6L9FM1u11zUZK|S-SBoLHT!Rf`iiL=f)Ubj4n~x;JvRmtbTM+DBIq}W_9JLVMEfF2TAmxd3Hk+cdl7U#qCE)O z2GQ;gO52?q83gT*+(!x85790JRS|szQPS$%c$lEIk=ucwwGeH`QQqg=Xp1Omb8b99 z(CMhqnxNAVZAnl}0yNmBE$d!ghO{_0*!C<34Wa_uh~=OLqHN1m3g!LH4Ys+;LTP(* zgKeX7P|Ptk*oG+w<=>XN9Ob>ujXDlWTbmnq5|od(HbMD#YjTwLH8*ZUl(aQBZgo)F zdE7`NC?*IP)d*UMt5cPrH4v?gDCs(G+(^*X$Sp_ERfv`%Xa=HTL`he0!$;85$n_BP zl!NM52|5wce;kx{1lRu}D1KY?KM9K87X30o@!O*RjwtB{uH$bvbp6IGVf{zKJ%%Iu zo}d#DJ>a0UTerTCp!JcvhoJQk-NjMfs$1XTptSe4zMY^QP+>Dc@&2oC;OOgTk-G*_ z(sx^5Nl?BHO9;x>VG%+3I?P9u^u^XcCMaGHI{uon*NHf?Hwl+t5BRI6z^gOl<{)=g zr%i}v5p*M>lL*=y(U%<*o~9Qd`Vv9$Zm;8SA#m|-ua6~MyxZ&e`vwn7m|3F_K`uNM z;?eNei9J{$+J|$KYZ2{{Dm)Hpx$q!@a0Z7VTNmMOppn`(yOnPuWxp;dbQ9l1+Lfd0 z&Y=SP%}H^;4ItW?qbqJil>HK=xJ&9F+KHoIwMDceN5AZYDErk)DSY+}q7QL&_UnkU z-?9|<6HE!#+jI28b;xDEa4GKlM-Y9Gqf;*<%6|7!+&80$w&CcMG(;cZXhB0n@8@Vv zCq&tAWJ-6^AVgbn^re>(Wxt#$?*HEeZEySjUu}X;ty!ycxRUkwN;VH5T9=~@`IUM% zN9(smZXJ%+>4WH99IeW)s5@EwzmI3PC$=XxH}*oTbL_U565SvDEIKjzXtX9g=O2oE z0rCHg$Q=;_;{OZ7+3-|f7j^)g3@r^!4vmIxeT_qLr~-H)xHq^I_UykLd@9&3SSMHk zYG<7^HW{B8Q;e}jccZD1G@|-%`abS}m8AEY)_Z&1!F>y)X=P^E=Z$^V;wBRq$X@VE9?_FeXE_D%CW?P~*_0j_wr z!87+bZ+maTa}_3&HW{LSsTcU*mP~d{IE_!XVt-b;KoFRP?n%RwA@s*33nh|PAP^;M zNF*UH$R%sIN+u>ll+bx69|L#DJJUSFS_>?gZtk)QD_3?-b9^#{4O3wTi`m=!$%>9m zFb^Jo;l8h)!w1p$WGiZDjniP%>&%ZH%KNQN|1#zVyWlz3w1S2f)5n;uY2xw8R?N_1 zs*LHHCmx?{g%B;KpE2FvWlgptiY#yv1makRC%;-U zc`M$ClV2^FycKT5$*-17-i|&xlZWP$=9$!4+SRvir3ouq^0NfdNPgy5dH)Z4ZyF{= zv9t~MzEoBB2qLS1h)j16J1Pnar69;IgMzZDh=8CdJ1&4LiYV&L^sFihvI=?x#2p2c zRX~PS7C|^52Ne-i6gR$zs;M`HUc@SK@&gr<$MiQlW`?)@K*i)muo7?kfr`mv>RTobhfLSWC-Pae zGV7kjja(Db6Zx3-W@~D|%uz6{aHX~M$V@4i5UmuNi`FQZB3h|s!7J4Wb5rI9-78l} z&d!HurSrH0;`OHW1iSPlbJvQiTUNS^UU?GvB3Ox%-zp>_SScjGb(hS8P$kVLcgb;g z$vg;E3d!RNNfD{UQBGAzLZnhiPE|-+flB-P!Pm&E%uno?in%k4f6I3|f5O>$R-Dpe zA~D;1ySuk_{%b+A+&;_Z5EFSKOsN5LghCR+l$lW?Q6VX!lqfk|Aqi1RAvs(j2{B6N z>jBB2LK0$>LNe$oSv}7RQQB!q@REFlr*v2`Ny`+eXtINln9LNeXo8?4{0O5dP|;*X z87-5)qR9#?S|*=ts+I?F#7vHeY^k1S#|^ENDli@9V~03lW)wJf$z%lvtxMt9C6g5i zq_ImTEA&TWmrQo74~KzcXQpa-c5Dw#vZZ>S70a{qG%y|FW4D5LG(gE@MeAsQlF1Iw z;id3ek_p0bnZ>{XGE=oYh`))&WtQrBR=kY{IGGR73b4@tC6gUd!%^V3FPR3=C~$z1 zsXv);fXq}auOA;Evn2BR;)m>~0B+8>{_bSw-9mp1N@61KW=XQOLb4B+bSEbAdP|b6 z6p}Y_Nq1r*??x^;V5dT|7n4*FlXA+&}&do_7*Y%ATlc zQU8f~1C29?RQI3zydK2#DVfQV5RKdN!OBIHMiV)@pBRMG);Ds`Y?ff;w6# z`a^VA^yBC}sO&c(dTX>J^bV*R`8)DWWJ~0o$jr!-5b5s|X&cFo#KUL82jCRJo8hAH z6o~WpfZBd_!lBR)p>&Id{3f_1_)c(U@JZN5=mQ-FvZ2S| znZN^im1m<~)Y@y%jp`05!iO2|q>n zLlr>|SR2ASFg$nOON3t|@L#^~(}D0d z3?HzFig@U)B%I=!`V|sRkxl(_2_H!Mmohx@WH-W_OL!N;n@V_R!W(mZ>QTZQGQ9Tf za|lmK_-w-KOZY6pYfHFT&uRky`RDQ-#IGdb;`x>(;o|uglW_5T(;2?o*O>I90_R=n zbsxi7Q+nMa;k_Ik?QaRsCHzm0i;nc#?+j-R>9yY&&ic`7XBf`f(Q7|Tcs^bCw1npo z{-cD`I%q#IoVB9YzGpb=M6Vr_@V%sel;K^P(S5G{Tf*r+*A6k9^{v+q3Y@pC*Y+@+ zb*m~dST8Fg~K8WzoI4&B-YpVs$ z`^9T38P3|pYacM2b&J>D6F6@cue~GT(`h`*B>ZW@mqt58uL$ji zHRca2Wv$#b$`a$9+%?JvgHOjBz z-PpCJ4wpA$*BU!0@5Qb)WGH1sXekFBaNAdx&|hW)hSnprzJvB(b?>u;)@7*p+pg`P z{ocIxYU0*ns94_`gx+#UJk6^ybQLLF;Glg=)>a|(e1=vcv=X6r-$h=Vmc`Hw#Em&< zZce2}gz5}U5gK*So;@dsH48ITtXYuInopBws`(i@nson*_o0ga(Ad?n^PvLZN~6daX|y+L>Obo1^q2KU-LEo3EwM z@E-QQ2O0K*y{)`)&kWgLD6VBh)Aoq7YOP zqJuoonA;$#b7OXO^D8X5)bxA76vyARhShJl&~;9Ud=^y#W(@@sqDs!rGbT#A*D=e7 zuu^6tN=Z!Qi^FdkFmqiuqO$WLtRy7eiHUsc?3=wmjw#xT1Pklvo5e(;`(|CfIQgal zbE85M!b+J@B2ghJ4!)t}28ATVoP^{Cg`^dMqKOYtNJ2nLNDfg*ic@b|O-M_3EfJNS zZ$+!@wNw!k`Bv~MGs>%)e4voD&b&F2?!-jCIP!+0e7~wW|B=f^uG!Vf+_>@P`A@D+ zIDZw{`4H%GCaxkT^2LcalB!TFf_>;)D zB4(MjY&mhMLJ|UKLUO4>(h8@MMAwAm5``qh+StUqDfD@^2DVLFl=p^${Aosb-%kc1eXGjX{1aD^nq^n~Pa zg(QUZm}F2P2{An(8B|C@NRK3+yE5Qf$|I4_VtQ5KaK=#c^GsEky%j38=8Kpf65Uf8 z@>xs|m@O2NBBqB#g`^eJ%Y2bf?QX7+v_g6o6C|4}Bt=9|tNPTg%?e3~=sBwnM1`ak z(94Vx4x}_Nmwk%0O6Hp7P?6AQ&@Nndz7@~2M+w9l=Id5D$I0dDBCC`tx#TOlyC^gG*|BU z3rZu-Hh0e2xbpGJ)F&uA--_hfqXeRBMaD$F2;^ySu18ZyLLko>B@h*oRveE;8Es>( zwDRw+HFrYMN+@_Nex*bh53U_;WWM|4YV6Q#ZhL4cl)$77-9)|!KHgk|b*=B(LO>H58IpaLIR;De;EE{dLsZiaLF_eXm~>qpK)4F9#r z{gED#OTuTvUxep`AAqR+C84vSFG6!d4~BY%vV(sGw+9yn9}e~oHVk?LUqW>Li9o+V zbLc*J08ZUc_uuYs={J0beee2aK>hz#zAW!iIANdX9p-K8tpWr8pa07)5UwH|Sa0tB zg%mJX5s$08mORcb5UwH;6_U(V1ZFFRq;M6H=qi~kuv|qux2ZiGiT8eP{;&{xXl^$* z*j2@yADl#iPEJl%9(_FOqa;W&%*4%6*nBFLu z!ddho)BWeW0G!2)0~$nTHFH6xa`oq!pMI@4y-*;$ML#lK9~a32@D`mt6<~JuZZv<$ z6n(DHRUlCS{$gfN#bVAezmI=>aE|#+#jM&y0r-oVf#T#lE2bnIMx4BgDN?|2@|_iv z7ak){zO(D(69wQgIv#y{C~$C@`C;Zu+I~Fi?3n8*;+$OoE@Q@dLEiF}!&FOx%Sd-8FngGvW$Lf*e)Vkh?)PaUJy9Th#t>fI-4!el$zOqg zU^1r>n4=Yo1WsdSoVZ9TrtlhlN@jL}@EVoGM1k-cgUD1Y5_pZ7Vd5fDN-3y`0?UoGsA^`i z!15z4CazR-)k+CR5?89ZVx@#5i7VyKOcq#CGC$5`e( z#j^{*lgvEy+5yw`7)7E09Ldc06h)@%wtTX{@+9f%d8(^l!mpmExO#o*>UoN*Urb-U z)(*63j zp%`YA53`11m=Ti1Vb)L#GfYezrivLNrq&XQRJm^>6$HgFf$09SUJ#HZ7b+zETymj8 z(kCP#;%&Ibe6{F%o?`DX56@_aDgf7HC9}?h+J9fi*T>(Am&6}|lK?&ASH>@jN1*cG zm$8+x1+f=m_rp1WPO)aO>M;-0{o881XS`}mGe*HFfNPATai0F0{xwwndrL3TAJOm9 zdqS^(i}Z;0qxL1#{9B;Cpxv+Cu65FyMQ25)N5@77L_0w4f3>J5ay+sv@?m67WJY8H z_Db_`~0acS4oF`QaB}7vYX@*YIWG+K~N!GW2C=Rp@o79WW_0B-A5xMd+eX zGo8TMhyUy1TYWtn_e(hZcx&MXUDX?7h&)bv!)A^5T zSgX$}N$Wg)B9okICstWkf+upgJHcZz-5ULwt{aZQaN2`r43yqsbe2Cs`5lJSp)>P| z$t2~p)dYiwx3<-tzS9{4C3Wg2#WnB~l(V2a?WHrH81Gy|KgvJBTHES}nBi~M5?0?R z8$?F9(}NhV0iU3h9Q`Bt6EV8D(*_tnAss?^ihbe?&*o-p>5&n<{WO|8Je$h15eR>i5qy1rqkybMKFbX}Pt)m)Y+ZvV zYCg_C!80-^a|2Jwe1IExPUd)S;7OVHF@uzqc{exkw9H}L!1FJuW|B`zl0&-o?vuQ2!4jcH3)u+V5s0g>5$P2 zIlP+KRXMzh;PW_40l%n5FdP>?;;aF`zZkz*XDhkoP`hv|_Y*+(!OoV0QhsC(xV--h}YLxC=+qgTrVf;bJ^FgnNB; z$8RQ`Y=L|CxBiOoix|FQ9o?Qr9frU8!yw{cC~(iwl?LH8C0rxCx`amwugdXH<`Q0o z;g$cLCcLtQ(@7}fJPFSueq6%EePVF@;9}xy68<{j5eZ*Ncu2y<-&cU)v6JF{W+%?h zoh|#Gbl8bA!0BnHvlC~4A9wgVJ8=d$J@0gO;_Tds>vs~Loj8-;2F}np(dQR01E(Zh zybG|CV!$6y`s}3GIsPVanCaXc+(!I;5?)R?JNX4VBME0Gzs`mGlk1`HWIEygU5LM3 z!aEaQ&hdUn3I9Uif0xH=6TX?@{6%JigpVOUJK-h0#(XI8W5j=3;D1e6^9JGU1lFI& z{ubk8C$RpU`?^@4MM4M87m$miFSPUj_wo3DIQ~^8{@*gL#}38bjm?PN8EX~GGLAxJ z|9oS(VHy|c-|4I2z5YJEgI)`2|E-7k|9FW1UmX1{`bBhZbW*feG!;1)*%etFc|6iL z(kv1Re-&O9o*uqEd__1GIuiOIlouKnY8$E&{4Ti4s`l3*SSxTUur4q&FfPzFP|yFX zf3ts%|3QDQKLO|QclZ|h9`)VqYwYuT_rQDj6W)H_X5NrzAN+#-_y3Y<7B)g>*S*zJ zA}zv3$n=~v58^gryidh`35m27HnOt3f=G4WgGq~oBi}zTt*DWu8AYb+K2r5srs_sCRDN#q>il$N*``$}6eBWs{IB^6VIjBrXzT(|fWX%RBg@a&ZP?pGQ@ zMw#e_l9)(a0V6vT4-Z}`Bq3fTB;ARLG(?Ls0TT^RZMl9$*=dLtWh9lvL|Vj(Q1StV zB*cn@q&qQ@W;sU#wpF`HvFa@62$+iF7HJVG((nwLYuD`TG=z#W!&DLzX$TZKiwVqn zt}V*5(-0{VlJ3Mr+6oleU-^Ir;{vW5o{2QXiRj`D#(5P?D^6r<;)y!f)Q#-46(+Kn zNOb)s6KNJD0_M{SNf9MNqC%2IiSR7no#w_&{_tMk_y!%ddCreUc3MP85vnWwNI7R3hqRLK-D3OwwNV6yrFju+Og3C^e zD3OwwNQ)?uhUXV=GdB!6^6QYlo-y}4VHMaD6Ne~K=EhVK6KNJC0%oNF=K7)!OV%BJ z%-n-{Rc*+3%1(85iy)EK7fw#P-oe>v2ogD?R1p(t79#@54GKvSBT^C*X%QpR z@XV%rj%XTUM43?{(LL`e%|b-LOerKqhzN-aNf9E_@U*CFzFT%0LPVKSB2n>ZWf3A^ z)>BA|2oVw$k}N_5eT2qUHebu+ajmzS@eUUErHBwA(KU-Uk!BGhY)zz)^oofCQ6cFO zPgd+}56q1v<5H8;}{bm&DDHxvT9}OMu-toWU-yAFpJ`SDndPCK`MDV=OC81dG zOz>cEeQ=5YQs{l>_5H{91=PlS+4qF+Zr=^jPeR{@-U~e$x(TZ56$Co@|B5b%=0VN> z!O?Ef%b{;yIPzm;Ph@puQ6xX|K;-tw^?|CeA5bIW3x5ZF`&K|rfcwLP!d=3bhA;FE z@;(op^HzB0d3R(@&AK=1X2?WHWmS&<5kC^&3|$Ccfw}~vLJz`3EN=V)6$w8zUN`cL`;FU-jz(jnivEXwSlGymao_$T|kISj?vkF78F_&z&I#D}>NLa15aehW8zV{Ry!vwahWtpAd$n zjsdD5N`d{);ZZ5u#Gcq^vSG9{Vts{d5SMv}8Kk&-1KBW}r0U9sS!Ado8`_ZJd}ffs z>y&W-bCjy}j13I(7#Nd*xiR>3+k%Jg?)A~KKp}QkwwJs&0+l_9r6y2dlC&yq*2}4KNo2!9~60xo! z3>}?be2(H56RRqU5JdofB!BTAZB!_8zBLCqq%{6kEU@64Dox`-99o;No9%82lhjoyE z2Dp;gQiy#yhno}oO=k_^7MEfMzc>c?1Cb0rIR^U^BAW1{W3WFV3_myq`xEr8tbgYi z>`w^8amQePLPQ|GaSZk+gyD!|z)$c;_t(z6@fl6GNaSAv=HckM92S3*GdWE0nMg5* zDLfN-fnX^d{kQ{T`WOW#Bab?;)l=R1Vj@#GyoBHfINY7!aRTO1>ialMo@`_Uhf^dn z#96~Yh3EcS*&rVJl%!;TLOk@}lRqII`b(TkTPJFqOGhd5z&b-h@Q1{f?&Y^QEbirn z1WSLKKXO?7X&&dW_|yD1hsFIu9zX!P#))V6Ys3av+%GS2Sllm#92WP>bIxMnP0jD! z0}kJ6aNw*;UluyQx4l|CqVGG92V0*!eKFe8i{pe$`Of@lVTkbBKRXm z#5!j}Fn#ydp$dXuC$_Y-b2u!P_GJ!>r7hyHSlZ{ErG>|WlqT4o8Ki8$tGR(^17^#H z+0OX&i)6zrGSrj}ZOBlC8Ki7L{@jz?6>_3r9#YcZLMA08{mtbDp7b}18+g*+%iO?| z{z{oaO8P702A=en#|=E`Zw5E;q`#-RfhYYv!3{j=Zwfc?q`wEbfhYZq;|8AeH;Ngg zq`!N(fhYal#SJ{^?+)ia3`$9VeKHnf~BOtP8`l9c6)*$7DqoI+LaupUkdF~ zf^omV5sA{@z4g*f@KIt*9?1?4cP2Jvo8d9SaRh%R*l-e%;1vW*Pw}N37Ekd-1WQSO zX%3$vZSh+xCH*~1Y&-`*>}do`Nq@CCyqee-aCjBLSsWfnaFk#vG4Bg@r${eT>m7sr z`bDd#uX7CWw+^2WzqYF!gZ&9%Sc&ofex840{C{y4*8j85|6~2XTjQ6;qp^dr%s66vV7y=qHLf-)>&NsJdVxM%H}xvociJkgM7vk(pw)_=j;@cs6deV*{52v! zz*~P&WJJV_oF6_G{tz`Y!N(>;2f9?;YyB%9{m){-6Cz6=GB;Xhr8T z$;YmHV5vep{bO@Ac)x>3lWTA?SqPz>sLi#h_06U4yg3<)y_j3)*Z!t#MWDY zqi{0-*L7DkRfv%vdkA>r0M|7%mnwwV51X2ri{T$JwL!l(KF^$$DY3TBa~GZ~b#C5d zAqIeKE(`&vim71;NXWvkuKO39#vl;M0@eKsPGcCzrs669*Zm7lLm-H)f|`r5ATeC< z1r)=DXpk5#P!+?)aF7@-a23OafDjw5ikp+hm{8CTIlwZ2hvHph{?NYB+z0Q!r(%7M zR2suVHaWw6)%*^tW!+m+v20cPVcWoe8Z30ZK} z6{~>JBb)2-U@3LQDq#G`roy8Pxr$YQ2ohTb6*rM)K_o2O?ixDGPKzKC5?wE!NV6ak z)_hk;4utvJeW{SBkQ@Lr%JjCwg7L25)$DYCAqhm+YbVnEB+0W1$-Z3jtgB=)eG5w3 z&slsK^ImEmv6?5}YaUoO464H1<26=m0q9W6C%sgWlg8>J}?QcbBBpVA=Jlyd3vIHf_ZZcHNG zlbF`wH3jnqV&aqrxw<=vbPr-`*d)O9`^-*vr!QVfOr*O>lC2byUAd$?F`4dylJ>oX zuj-yP=H6ab!&~#<6stq7xR*N9!duK&%$;ql=H2Fj`mI)ecY=~#t^Q5a@lE9eDOeZy+ab|wvwcK$N21Y8!nlrki1$*4js^^kzzhqNz9Zh6W{;) zde(Tdc4RHgnw*uJ)gbV%3ck#ww!_vj5w{+y6KE zhx+sSop7Q*rXAAW(WYy+YL`M>d|&im(I=qxezaz3BGAVLHq(1cR+ZcX1JUV<` zxO(Wj&?j(Ke^}_M(0Rcl!S{nRf_DU42KB(fz_P%!zyPTH7xeG(zu|w>-`k%9dH>se z^L>+iJ$((}1pXH9Z0`hb7jGTUX&AEjms1E%lW>f2W7ONmJZe<{37Q9>9@@#vb~}G& zsX}m@$T3E)=Nt2Ym6Ca_dC;n!c2aPK+XRj=l3l-@RH1O2z$5$zE~eU$7l2&XCt|8l z_)XyKo`MEUu1-s`5d0=`M3mH2q2x9JcdtU0yG=@Js!(#9PC@%8*A+_^a<@rIO%)2a z2^XPDv(*Y&OuTWtF(oxsh+dOTMOkP*|GeG(-78s$UX-&8*p|!vHLVc+C?N~2x?D4s zl7;9@7z=&`ci@mUBO&+lZD_-i6H=0v0&&g|u z3NH9o61T5{i|!TEZRft#l2Zu&mH3tT5jwbeHS^G#z@zthhMNcN3Yy}{4=xt{N~pOx zh3I6_z6_A>Pzi&d#f25zoI>=pxbPsAF#1}~h7Sxv!ObZ|Z;J`H`%5JZ4i^(vadQgM zM0#&Ek7W)~?8joS{a1=L2Cs{REp7|*$Y^6};qk-f0n0}Y3NH9vnJ*fCU6HJK z?x5>s-xTnxja=6qfm9(lUl}gEkN*P~{V!V=wy2P+_|--ajBd=6(6-ODQfjiWHLimd zpa5B*x~6NU3R_9C(DlzXaX(pjC6@)N>tiyf@CuZ5b{4T}jOS@{Tla0J7XER}+z+oF z?f<5DRkE-p(?zc9k)u@MLv>>m4`50@q}nmLH22d zY;#%mX@zXF3bO8-_{qYivTOr|Y!fbv-4$Jrk0c8lGg+j%X3D1u8%eS&TMcnNfR!q2 zC~=`sko(40VGbVxP~A7a3R5Hte`uJBpjd?@apAW42X2D6aNA%egJQVZY`92O47UNv z!f=tR815y+h2j1Kw?1)kxR76=81BV+sXpTa^tLsfyuVK(a7g!H0%%D9BUhE5P8mT z`m_Bp-_ORc#@EIMW2y0?@dWe>>;n}8l13%{cm3b`CVja+Q-4YyrT5j_=?x)!;4keP z?F;QaZ5HezjMWA}7C{rOn&ycfk8X>87@ZTH5uFgdE!rvCJX$mAk9;558TmLeKQa+c z5_FEVh}4P%!Y9JJ!k>f}g!94=h6jhcg)a}+35P>JhW3P3hZcp>p~<14p&LS1hU$g1 z;7`H*!8O4*gT;__Fg(~RcvbL{U@UM3_8-;73IU_;elVpCSChUI(-ULe@x-^e4Fl2xsux&+S_ z?3=1lhFp|NDp`eXiA|}k2rndyvLj6AgQ6vLNhxQClJcy=sw6_?nyf;m z1V2Y2JZHzrd9ic6>5zp;Vvklxd+*_V!ZuKTq;b7$IOJT|xJEWm)}ztN8Bx@`n3Zk1 zm0YGRNrE47L=dKou;>(mu^l9_CvjNhGd)Bw_HQKigB;E! zm?~UhE5l6$Parn-LL`_{imk?n1drkDAq0;SF!U89n95{fd%h0{zK65lCz$e*t!91% z-zC`4XOG~a99~K=)!Ndaecuv-DKQUWN}P_~P9oTMj@a}SYXFZRcmQV)C%7Mn>18K+ zi-4hF8?h-D5SocS%?YN=L95dl!8ZstG$A9Hj)GVn#|ZAq*|P}l z%wft}jb1NcXv#(G4jk49resBI%q9LBu4U|wbBS#dj7_QtZo}c41YgBr@z+3quG;w* zzq6d!bQ(m%rcDH2P9gw{aZ}nPvci~PtM99~5tbmj`)+NE^%gPcz< zqS2Uu?^)c4WWpTIAvnb06v06TFIq!zK)|_6z9-nv;cp4{a`?CdN6vA0D#3pdtS=aK z55a$Mcm%;`IXs-;UpX8k_!j~53X(r@n10zJ-*cFL*CIzbOuuRo@ij#J1Fxn_?jbh7 ztqI=E;Z_9iWblBU1aBu;N`futa4%wS=5Q{-8yL(^M6MAqKW({+!(vV741y*d*?gC? z#hOqqvKH7hkbb@*ZwU6Lf%NkgSCpKGO*-GOP>ArOBf@(Fwzvmh zG(gvz)WV zgXb-Rr9Xs`92S2F;}^%y#6FL` z5*r6q{%aejjI~CYai7uNs0P*lK7s82VfxkjdD>C!eeF5z4($p}kA59}J30+2`8SIO zB45IZ|A!+tMiSvap!eVG@B}#HUng`rv^G=IT@XATToHUBI3(CA7!Mo{yc>8X zaC_jgK-B-0f2sdTe}8{df57*pZ?W$Y-%Y-R_Ydz@?`z(P-mc!do}WGI#oIRiSE>lp zS7^T-|9ahXwTmFELi_DVb=??G6+uuXBb#|Bxb7aOimafDwT%zkE~x9i*(sgj<~!6>krYw^ZWo0t52+wk zAuEMcfZJIi%R?$iRme&qm0uE5k1Av#q$0jDpt{QD6hTBqMB>n^@GddGKaqFWn78Vg z+xA*ZCsqt%D&h|fxzo&VoAqunXwrq|my5B>;sb&!Vk+H4D)vImRxAXB zRiry&mTDm&u)-H&mTDnHV8vdDS&D@affaipW+@f|0xQxTF-x%!BC=vH#4Oh!W=@e6 zSz&iX8`VNUXoW9C8`VNUXhpgs+9(!6#8&KuXrow&Dx_=Q5p5I;aXxYFg=pit5UHZd z#D%cY&p(&%XlJg<9IM%d^|wmaJAd}cqDr_98Git&ipTnS6=b(5WV2-1Z3@|V1=(_i zY)qCdSI8O_WJfAwby;?#LROPxcl#PA&E=VvgXPP%PI_YbS7L3WTo$PA8G%I+Nw(6l zKV9parHaB8xW6m7p$goy3U06hw@|?iaPCjF$JTaD8A}!UIrr4x{e!N4WU|P|mP|=a z6?rAu)0J*=&!8#ta9N-#GH4#IAlu7bws49p+e;xkxq@u2LUxiYo2!t0NR~bCghKW~ zN%p)G3fTuF*%L<^H#a}XI1bzI>~|sf4s@3n-p^%$>i%#noG8ie?zPi(2+6_;To$PA zH(23#N%r%L(ylLI$-;457O3v86NO_d$mT0#$H=nz3fa*WWb+iVqh#4Uh3tJ5WE(4F z@0DfUlR@nF|Gocb@Bh{H@AZ{>8hZL&tyj{H!2ACUc>iw+@Bas__y2(qs}Du?M*ao0 z|8I$apA4P*UJp+R-xyAW{tRsm%?&*e>K?i{_)Bm@aAt5!@Or5He=_iCpaf#?*90!` zANPOk&-V}WU**s89r3;Ao8cP-75FsoLGLo}H17a!b8pbISAPHhum3Mu3_ce9^8K0p z*|}*3I9PnNlNGYUzXI7m?t5&< zKy$s_3E13o!@;ZW>{pxqc#FZmB3YzfXRd~}27&4Y<}Uo-akOQfDi(<=w(K^AtmR#0 z76D|pDP)CnWy_W;WWl-Oqb*m+3g60>9jTB7--^qQRLDxM)gRsUHSUk4VsNc8ZX*og z_es6npNz?3@U3VFNOe8FkSYe(iph38xYPaTv>1FVA*-UMiovyFvR8GV>zY8DEC%07 z$O6@UgRB@_D<)g@&`9^p!eYs{!n%m==}yJmw?e9Wx>K?6t-#GjuKQE8Sol`pzW)PP z@~zGmKeI;h=L^0Str$`jw~gdloqc|C2gUabu9c8gQB%d>S&1*=Y`b&rnfp1#mTTp_ zN&WWXi*IhiHw~0px_pOlYTJ1MgB>7gqHT~Bq_hl#o-%5=4x2E%c z>1uwa-|z3Zf1tVh+S8SHkF7yNC<5n-mI0}knjf|=d^B{)SLXJQw)dO*6h*UBMc`Wr z*xv09_eFD6-AE)F$S1iqCdds-n2 z&J~wEt&j!ZN|HULkOk+8%brrmf^Q|s&QQpLbH!z6C}hF6VzLW14!FWxF?iaL^uKN} zcMQ9-_T*1GISZC70_RG|0@c-TO%;J}CCTf^1YFJ4}|1 zDrASsvTNrmWQRzyYv;Pk<`mtDvd-h~*U@h_@GLNQjXp5^jdq`z2d3kHv==w-V6F?? zQRe0o$!CxG-!k`AyXA0=A&ners^|`BxIM>LQ9SMjRp3@uaBr``t)$@ICUeKVq2S&s zaqAUUcHOW@77gUf0Mzr%IX6D{Q}+>7&Gmoc^E51$VL%1hN($NjvTP-VY(H5x?S9}g zS=3jOO~0X#y+x9(a(4swU-hD!xhzoKo${hST=vY#cgMNz^(BjXGg+j%wzWtV-Bdw# zj6(KCS$2#no)ql?aAAh<31OIFOXZ_>-xB9R5H~a6; z2)LXOI2rpgwkq~|tROZiHYC;qY6xBwiyEhmea2_T8%B}wuyL1>YqU1%8;1Uien4Lb z75Yo{$Mn1PoAfq%ww|T^2Gs>NYRj~jw5d>E@Mi5AEu~eCo`pPvbSmzB0)Bzsq+6 z>_XJ`1-##Rw|U?9zUqC-d#|^*$Af7#u!1jR<`BFHp1H^4@vhGNAJ}m(ckWF+?j+y< z3k(#1)(vieePsHC#tpD(OooVT_?-+;VgY{Z?2-Ij>DXB^gk(b@8G_7!8@*%*FavJY zlEKdnu-QrmuWX=vJ?)%q5a~gGNrv-II8xdl+yI-7WT4Xeu!yH%+mH;u@=w6V9~r11 zIey~vi}J|;1<9Rk8Lj2R^A~ptc1WsERz^F;Ja?42StA zplAdczGeoj5J83mvf(rtzLE{6$Uq$);Nl=PgADulC!kaV8TN7m6k8y}m)roA709rQ z8=y7<8FtDB%5~JX%LdAI)XHT;8S?dCqRbH{1Z?+fDD^tLtipbw-ZaMok*M9 z$Ugxk0O%7NWWya~SSK3>kztKwX!jQxK4k_xB~Ava!waLrbKYe5kbeSBYLnr8X29dq zWO!FLOee$Jvf*hmP;(ZzI7o@S(6`tp@E9?D;!SRVGs9$9%nfjomkf)T0nfpbVLms& ziBmGX#tm?`lMJtL1Dv8H!;8!y6%{Y$23}OWfE%DdElE+4cUY2TPzsg|&+t$19NMS2 zVbJel9*=PY6dfh0N4NpXdy-)iH}G`a`?-Nv8y~|ASi+H{?&St3mPm#X+yLbc$uN`~ zps*kr#33jw4oI*#?SuvX2o|TEu$mvi;bt>+=au!?dTw2DB?xzYdD-oa9e`0>K4IQbC{CLHF3sBDz@HQuzAL_ zI81~+jY+#1v9Wv98oZ0sdS?BfE4et-lY;jmyICK&tj5<nHz)W2 z!Rpx|6geQ2yg8r#yxPBzp{Q*e_x-W57IB!BicUgP3> z3l4y{?Lgp5=%x2a;Ko40|A+qz{~Z7Q{%-z@d_Vg(K%c?Uz7D<`-XFZHy+z&;-nQQJ zJ;yvBc|6Hto|$s)#PvH}w>eV9Qf3Oar5bH+Y5v=*5biPeSp~E&b`~XB%rjGz)Ksy^ zOo7lNa_==aXCfkdzq=4ib33xBVi7%o(BnUFMQRFc&LG#lAa}78J^}7t#ngECL`h8* zi|~m(wY`d|iQE)>YAUXXpV(8|tC$+ZPeiN*#=A!`H3*k78;f zfMQQg#f1P$M%SL&9>vt82nvjMykcrRf}*6RibVv)p4xcD)F6VA8LmAw71s)(SP38Y z)W*9`EvFbFC?ec~2YJ1F%#)?~ugv^tV%gn2-=de=R58R*C{NeoZZdzcBhddP&`>O5 zC^%pcZf$;IH!CoA*eU1YuT8{Ia3QccmboGm$Jt>Ac?DO*P#_T+x$gO)#Uh4+3jti$ zE$&n?#85H|oaqbd9zQ6Sf+(Q7?ICmPeZ#MVu&TN5Ov4e!b`EpKn=Ix*6r}bv*JM&u zcVqg`h4dSqDwcvMz%5tE@*oOQ6|zzg1-K&>vOI`_RE4Y*L^&7k-_5-oXE6_=Ak{VK zlq!~jD8TKakmW%Xq$*^kAPR6hD`a^P1*r;IDTs0|-0!GDmIqOgs*sg}D1Vp7Yr7_x zCyRLyMM=#mwt^^5Y!&+yd7d%1<-ZoZF}u3?m7bOOu<7^Cjhj;pQIyP+0seUYiEPDD zEM@p>SCdo4Rv^V9|1(!aQsB{m!mg=fsbYwvWd4LR-IiP%KBtO15;xNa(UqH1+<{gC z_8wpiV^qs_9g*#2Qg*mwBp_=a3oMNJjwNV544UFe>ZQ=H|s|~&F}Y2^?mE{ zeH&NuJ&^KT&ME)1Vo{vq44TSCi4P%v!vrrRoo$)60 z5SU~PHo6$ijq3V2=p?XNe_MYMqW;76p86Gf9X+UhuWi>pfO>$_wEJLRp^bJ4oGdsU z-4k6IogaNJIv(l^w2$UQD@A^b9E_}uyb(!99*W!n)c~7Cs)hd!9}RB`FAJB29}V9X zz9HN)Tss_qt^?a(-{IBJQ=xl9y+c=r>O&>KQ^7BTp9JSY2ZC|I{=s&^RPemOuYm)8 zzpot59K7Ot5_%5amBRu=e^c@i?@CF>F`*Or;3R6M7?=CYxX3{8b0 zFz&+9V&;uygP34LVetAMf2adVrGx>K0P-Azc1pzhy}r8RH#-I+!9D@m8rvL$ex7Wg zUBLg%@38V;PMxll>#UXbe>=YeoOdf1#_OxnihhBO2I3n;1I4V3OJu_=XC6j<*+8K; zgDU!H9#yh&_1Gu8E7qmRP?sCt{DE8uqc$^mj;=K56SZW6Mur-)Axeg7lHrrN zWVnDED*ro8hVx|uCCM0-WCQ)-7+JDGJmF%J;UH~B7`kkDoh}}g4GYN-mJQ<1nI$cG zJ+YIQ(wH4zxk+F+P6mGOf?+Bd{t%<`;I=avcy1Ex)6w?3 z&U2H%KnW%KX)Xo(nf~SYzwhkG176@+4kb!4` zz-C1^GVm-A+#Dgp4t{ai-XOy^$aIT?7e2fnM4fhS^sVKf=2 z6jtV~hYUP>0-bd-@LULVx5>bBA^rr1nG8G^;!kjS$?!Ux2N-ISVS#L@L56vf;lbr( zn8OX=`jKI_Y#`-sCL6?kRU#Y2eN`kI#9F1f0nXOZ zHS(DOPsfpg`oY6D_)aVm4xD*^mBLmOrz=L08n9e?dN4Lnp6UXqJ z78#!4pMaBAWZ+pKcvOlEkFrnTxhOI`EE(qgLWU{KfM=7)!1G4HaGDGc%AXL|;0Y!0 zi5c{X3H%dqMu!aJWJ5nPjFAm}$uLSXY!LI{xhcQGSrz)kJ^T~X*3qw;&XZQ)6ZEU5 z-z9xwt@zG)HVYo_pljU8KLO`6$Z&^js7!`IvY`?gZkG(>#8-P8H^4y&`oyiWK}Zdd z3~3?7UK%{V!f^wVVlNFIJTO3pK1>P>W5{rmY#2?3Ua}!ZhMwF2iSuOWAsaT5p_^>j zK!z@|VF(#IaRU@cBSS}SfJ$U!xRx2P;ujg(as$-tB13E0u$l~4%7#^BXek>8lHoFL zfZA1LXdxTK?_e|8Abtm%NQS9LNvaVyKt&`nOM33r6=sR{rDBn_2(A zo{V|#_tq;8v8Xf8osu}ztxH?!A91(0AtQ`0z@Im0Yz#W0ht@?jU z{8RmX{f+$|-wxjbtN-66-ru~RdtZU~@9Vv_JSRP$(ux06i4|M1_x|y%_K2b@c8LhC z`0VoUmzf{ht)I;8$Fr>Vf0*Db?T2@kE{q8)M#fuu@AXvJQ%L)qrr-My_L#_8l5)oO+Y$T}`4I(Ri(I%@F4FW6DqD@vT8V{`C zqD@vTnh31ei#A!YXdr>N_B0A*jM--KnV(h^dgQwWq1LZFo?{>wBQZc=yA=B@k3$ zy0G)<%1xF)RK*#twMnYD%OR-3WMS9MRW?<^qbk-$oPrBc6-jrNg3H4ysO#SEGF1X$ z6`_kec&@RMWC_GoXc>^I7(!i17WV(#gK;HwxGYc=vb7~y*gbSF;!<)Umj$Y85tp2j zS}2=I;_%|$qvsK`yvCOBZTD?6_gjubFX!G(mDEIC+uiyHZca&!3c{L7xVkK?;O3N6 zs~{Xz30IYc72KSX3uNI>=Bk9NNWyCF`6!%uq=AOSRrf3vW*q8x-5He zv8&UWEYT#{gNxn6vnA0Avac&-BeLx43fXW4*@X((kSx1UAseh9+d&~4kYzh4Wc`vX z?6tc-{F5a%N1 zT={tA`<%a=RPnV&R0M5d#F6LAoOskPpEMy5Zo7B8hko*~A6d&axTI}7>%boXBD`3;6H z{v}H>vnGH)O#vTv4e=~D-(P8UuQj)~UDWcytUPDw6Q$?`2JjIZ@FO*8LfPDPhabDv zTz$Y({%$qe*-VyVUX3lPVXFn-pXR>Qtut#y%FKhaUxIYzTp@~SH8#~^Cd}={myCn5 zDdtxXTQ%ne6SHdU%VS4|M%B#eEf2$ifyU-XpDgKrbK6A@Gg*rMpSXOE>hj?JiOc8s z6qiTmPh37nad}Lr5tmP?E|2*%H2ak5^62=9%cm5VN4JkIpIW23Ja~O{d0;ALk3Jt= zKD9=1dCa7-FMrPSShITm>E_q)#rq)p{cHQa6WM*ve}+ z*Nl2?x7LPssIyDaw{sN#HAOLN@au@Us7Ntubm|<%`ENEeUxdG~mJgn1em3)a{Bsjy z1c#1@udP)mqBrL#zH&gJ2(BCvUp&*?d~t6sI@acAShuc#UJ0{H(UEf$OX4j|e6+wx z33E+&J^Xy!DaHt191+vm*O;@hjl#U;=DN3M!w=^tf`~qxqxeGGgjsaulYP7Ve9Byn z+1b_DO#u!Z5ufeT%6zr;A5&g9S8T3@3R$0SI4Km-eRCA2-Fv0^%9n2}dZqV^=2}}> z5W#mN;uB9QzH9W{9K}awrp#h2vDI*g`Du0Q#uSR+wh?jCJBr&3oi<1D{w<1i1dok~ z6eEvtxwfJs7_B%lYXN`y>tJXAUKt;TV zKhHNmmTQb$sl@uz@Znxi=A)_P|CimO{zx-4j}YCN&|^J{`) zjNqaXao~iD%>uj)zbY|T-TnTvQ<9emB06Y}V&CU3GOcbMaGS0C&-~g@DpC-^J0oK6 zdDYEl+E{n2xnjWY*gb`aCFq+uin$-VkFf+CGa`21Rm*(N-n=$Hfpl7!jZj3l%u($8 zgZqM)fKNumj-k3{9yBXC^Vh}ZN^35Sgd%!mj$*qy?vLgYaL0()x`$%c=!`jvEr*_O zPQ@qpuvz8@6>hVV`x&uGk>b)5f#|cmoO4Z%d0sN#$sAP>t64fZN96u!Jh+joAs0&CFU}k5!?IH=5DK0=$+<)-DB}lA&8>{vDR&#eDm$q zzg_Y6?90sZ`|+KjqafbLi2ePyng`}twZzPWRuo7)^-As)#A*}WC!Jj~k`c#xwwNnA z=RUTuz%X~*{`#G(f4fp#`W`_%|9Q_G^W9!I0p(M38$R(L62I#ucMD?Hd{2?N93I@O zR?Ica-+KDhM6a8K;s`<1KXE5EC>f4K`-=(ho@6e`^o`gGPm92}U4`IXLePKGGtYe2 z`ZbzlZhQPlgEzlv;Sf_L!+_}QYiOVD96Yk7xhNA++iZm;ZgjZGlA++DW%e~Js_Uj$ zs$>Y4oqyniS&D7XJ2`h`=f1sNUuTmggV_*}su;o@Og1_tGJUga(dJ~yAR()!rb=#? zWhZt}$lfN&DyXTFTV>h7D-^N=C0PYERWd-9?RmLEw!b8+pr%UtaaqiqR@^mxnJiKj zU)e2^EaY7)WN+rOKvl^0;j);u?aED-^k%Y1RqW>8B*{X~w_@-4MlP$O=9Kh8+01S( z2F8xKN9VM715c@My5Bebf0WzLGW&h+#UAt>_HFhXzSn%eLVdrUv8!U)u}a3D#xY}? zvBFqj6c|&C;l@o+F(74}um7bV)64Y_^||`<`UCo4y*p(4*VA?F7ww?70c!lctUaZT z*7|E5w5D1O%^y7x-5p&OT?AGB9*z!=-WY8YO+e27ACaSxEs=L4vm(z##z$_0tp7_R zwIkv1sqnt=n()8ErQyfJBf~d`uMIa0Ul2MMIv&~{S^?Gm@35Lo41>VC2i$89?9{LV?$^uX_ zu;x{8PT)QKFW#X(w%~#gys{$7>XpUjF?6Bx?2OHEP~HqaHk+Y?h&$6kd2{zzDMM+` zB3A66ytR9*kfD_D6DwdSW&6bP7&?T;@I0Zct$S<+Lq8zyGk}T|6)SM%*oCdqz>&m!&KWOsTyO56vGD@kwVBYd zgt89mvC#~jP2Bq!N(nr%kqo8mo!H%kvhL}z;SAMCcNjyXgbop?Xq_G#?4Z1JdTbCw zDQ7iy8$&5!H8xP7qHTJtzk~9w>9M{H72~~`p<=wf1u9ym$8IE)bxe=tIw)^y9_z}` zd|HRj49z3-dWJS8v;(26p?R!5L+J%N)`p?0NZ|^GQchW{Iiaktcr3wCx}#$a7oasJq4gY;_Y{xSW#|av)@JB%LTfRUUKnFF9F+I`j_C|-O$t$lwjvas!}e1y;uj6S zV?hTE|K5NS^LLRqhFV-Z7hh)chPyg{)sS8zq6Zo_GH z99YzCxy)(Km zo*{0&Kuh9;;%|C}o6aWm1%bXm`#J{x(r38O_8~6*a%NE2Da_rvy5(Dxpsbba)d&rwVjPM?#+v=%8B( zeO#aeClLCWK>I#N=%WJdJ&({w1e*IXp$`kR`z}JK2(j@kq zKx*G$j3%%awXiWp36NSj8}|`dZ6ayjE5NY?jwJB>=Lx)rz^wTM-c6uR`|!pH0>itB zIh;U0?KBzefP=L?LhNC}JJxV7gbYKN0e3UVz)n6``w?VdCm+Btu>%>{0S7P)UO|Ri z;Z>$8zNLTh_^$Y(_@nVY@rH44Y*%b??9o`CSfiNN*ljE}9y4w>8XG?SOZ^SKK)+ufsJGJ- zx}lxcc55HOnf)iVyR}^C1y~CbL61f^M*jux?+-?Ai(VH^MdMHva6{x3cyI3-sTV#2 z=k#ZVCx*L+FAn_{+7fyVx&q!1Y7qQAxD`(2PYUJ+6M?@1+XD*%Qvx>ya-bW*F8^Zx z<8UsZnLp(F3aau?_ucNh!WZ-Y+xwn(hIg>{N^cCNQt@A+3}bb6xHqCdbmH)6^DVm( zl=(#r8&nrK_ieHagLRo`GcXT%2b&w(?7`5zxd#Iefky=u!*w<_id4^Oa}{i$c6s&! zbEnlhp57J{Wf-s%*FU7VK1S@s^(U*Yk1;!O{mH89W7JMuf3oZK6J;2-vzZ#Y`(4br zb_FMM1N0xi=rcN&lU)XJyJ$vJMNE`o+)hZgR!BnNPDr{F6J;2<6OyeIk`TEQlJ3Mr z8Ak3%a==c7B!uorQbA0VVdyR+iLW?S&1soX`$rew6@^>Gxs|fZAa<9LR1y!1R0tKxTr4Z9|1`15r_udLQUDv$(h`AqvR?UAS$0<>Y zK|TBO(Ev~@n@?myl<&)N!el8%^~B{5t1b_5J#l$Fe&u?34D5-^A68r*BYWcVhkUcl z-6wu;|M!4=^T3&O$FYxo={!ghr4ZW_mp|m)Wp2fkohp^h{k5#D6Ni~B#ps?8ovadt z_?{4*>@J!ph3H;pPFi5oz>i$BJ`$xE+_Pto%nuYy4DAW#`wAum_87CbE37qWlWKZCJfuzp9)trL6k0I3RE; z`%^e}W~x?-@h=)Xvs5p|aF=btu^;DShv-(ugaedJ7|jv`luWr~!U0OAo@BxSGE=qE z8~6a3rFv-(`VbCqDj#5XGT{IvQ#Uf`8MEG?;B#^Ht~iiBgk9)y!mRTM`W- z)jbh8S=xrEn6s>)CQ7eHD&;J{t;kuvibORKU8s|F6UQfA6fEEHAwOzY%{d-Z$PP9)vo6Z^fp@ z`p25ZLeRHwiSeW{z-VDapj+SD`gHwvy(PT+AA$-1Gqk~4D=jN}B>F-0h3L@e)zQk4 zW03z}0NwaZ=mGF;cvZMKd~f)=aIMfOr~xoDG%nO7bW!k3aC7jr;Df=Q*4zG$!0Qls zzd6t(5b*EwFY!-AW1JHBUqgWzr7@E-QQ>wOO1_FH?iVBr6wf7xZ0Uuga1 zRK2tF?3>L6nG)llV{z59`}C4b2ewVyVs71p|0vv>T?T$( z<{b-}3Qf%R$~arVY@^Zyw@_%dQD`!+uquRwy>-pc><-N4ZhX47pg>TfOn8OJ^nB^m z0x);TGfI{*uMnu3N>q4-$W)11USVcMn_nOGR&{dC&E0Z3XQB+;!i=j4qEXKm<_bGC z+}wd*(#7TCYqH!zN3`Qyl_(~B*{ff*dB?f#qKPugFSKqF4MXDYS&Lrh9+To0}4$3J(mSW9q- z9Z3~2QD(Wv8OcRG-*(NCPn3bT?A#lb7xi4KU|QZYX)aMPEoYjT-4#sBx3-y>-{E@0 zWtV}gotZikUDK=+WtQVjlKBcr%MZ7hAepa_wA^x%%u`5OUb!Qgr;xOqa*}MUkhFYq zN3yZ2WU`F8$Ikk#*aAIKX1V0n z)qP04(VU;j6W%E2WhctOBhTDOL1gwY=V4cipM1U1@AEb0|!{(fRVWm4}CPEth7X# z<&D!fzpAG>FLR1*w4VC^2&s%p8fCQZQ4T zxoC|mGg+2IX68$Ryf|-xxoN?wn>I}S(cHTj&JeYuuzjK|A-*JJM$Ogslg8X7Gm~Z6 zlIXW8(FR=fTb1Y~lIU^obLOT@^`*Vf4@my9nlc0uW%aq}ac{s}{m|0C*Nhx!?m};N z>rv-!PL^FPiB46C*5jg6RiYOOQOpVStTI0YZ=qh%jplaye1>!V?6SHjYTcyB9BaPS zeR_5pBn=O4%Jd8R$3&?L&LBGp=Y3{D?$4bCRZE+A12n1@x@ zuR>J3{$cm)YyJy8dH#^c9}4UWtc17kG(_9)3iJwG9mo!x=l>mg0BrHU=b!C=)<402 zyZ`@V@6F?Fs{a4+Gtc{+dnHqbhNC1qTpgbwZ3a_5JVnef)m!`$xm`_1w?1*4oqB>-Ac%S4(H@ z$l1uA$V$i-Fa`1j^p3QR)QeP(gu{P@PlmUKKM&`JCx(ZG9|<=P-xe+#_GrJt3c`AA zp*CH6QR@$J1b1r*t$65q=qK1C@MUOLXi{iY=!sC9&|RTQp-}Kr@Vnp^SXsymP6!SS zb_+HO)(n;jx&jvh2LfvY^8@b&#s>NYIs_U8Vu51*Yp~j|)xX4_^1tlw@9zL>4wd~O z-ygmszV*KOka=LV?+ITkUu|DmpUZpByT|*b_e1X+-eKNuunJMtTikOEsu6DWEP;H4 zFMIlXIzU~3%ASz>5BCxGdiQ+yRER-%!rjVU+g%pw6P|OHb)182gkL&7gq4V4j&6>7 z9912~?bqz5ARoaJd&>T@y}!K!EJr}m6#FK~Iu7MUE|CD2`@yQn5} zIG3f2^YzDm2L^^mFc=xOa+F2(JX7Pp8$67$EK|Sw3LG6C%Bhbqpvw{EL7OIuk!uum(;7Sw4U}WtDasGcFG!%Wt;XfoCKc>UKNq9xG z)!|<$J_N($!WRU7@p@M`@_#1yZ`rtIGkiwE+av!+32%q^X^Ll^NBnz&pBI(Y!zT#7 zzx`h1A1Cj`*7d|G4svh`&zow?)x|@M{Er;er^4R|($pYBkguPw+b{iuSxj@Y}xq z6Zzu^Uh{y4IC(C8T7FeS#77GL;va7m_%j6mzK#DxMiJ6Ya9Fu{duz1QqA4GNPSMtjAxgM9?*e-fW_sr*ABd zXnBHWBU%>Gr=Hx3Xc>ZTMzoZPwo7DJMYIG#S})?N{ZTR7YQo3 zxDAe$wAap?TtI7K8-6xXTF_oQLr}aPv>y>ACfa00 zkCzeMOVDwM?nLy%+}en4A*krvdPIjWn2OxB1f7iNSBQ2fc@EJP1U-Z3G81jQwElcV zKPTv1M3;C^v;c8*0c2N5m{Qupw+cbaZcz~24) z0_FXG_`mTN_@DK+@mGPp`a6BIePetN`eIO*Z;yAL_XTf9`0{po4thR@Z|*Lh8XmX% zkoyz&cy~AVZEnBoxa)J*>re&YPM7993F{7T!fyMz&amT@V})aqqc>FJtLX69f41+i ze`cRyA8YSrZ)vY#FK)X6UEqJwq;PCG;5ry*8CO{tI7+kKkbbCiud3`QWPlrW zqPcmUMU&tr%B-w&rfol43Hik;59`48=&QVg1XH+){G4i;SSgwmZXyR~T6(^sN#Q1P zbEf4*5la#`5ilpKx+L60oT=)Pa1-$^O}>%6Y7}&5U+^qzm4}&~k0nXiRug!FI38qs zV{iQE{CF8VW~3c7snMhe+tQhg?HLkUJnhU$b`=>LRI8!DyngmCYd73!00o&7Y@3-@|rP)!Qzx3vACNq}Qqqd9%d;a{gZDU_$ zTDs?<+qeVBq~;{SQIuI+=FBmSN2feI`&G8%o*jH2j!BFqbw3em&Q)oGqey7ZwbYCz zg`X(EpPkmp+mhfX%1CmeWx~T~QjgfuS8TcD`wB@tU`uCmqNQXksXK{`p7W=+y^w8N zrbj5T!#q{r8r%#TO@fywbBZ|AcAc#?+^1~cefQq=OKsd?7)$D2A{4!-5(PJr5WT1p z)!jsfC}00liGrUfBg&a7QQc33qNP=$;3yKJrL9GyN$?Y87S;niy^3{EOA`DuwjiYKG)Bhs%>H)krIjNl?74ejZSu){of;Di1Dv!UQ55)JL?D8+V1 zqR^R#+0lFS7&Xx)@DY)Q_O$%@Xi|3)88_Xnr5-4&=o0vd%##Gn(h8>TBr-I4qMRHy zjYmP;{|H;FZ_vW+$2m#iBT^EhN!>?;lI<+tUO7o{5oN9rkhCU7lfpq1;3;}KvAKRd zRU`X`=PSM&OZwy_!9kRfCHF`5iXk}DLFK`LoYj3xt; zP-H2wwi{>e%DsiZYAn)FGM4=E(QRMMIlO?rqVtkhelz)iY^BoHk# ziAIwyNpi75(n%#3D=-=Nm?l(GP zjKu7xV2+lUeHF~-B&OSv8JjVRGmRHD_m$b#vmM616LuJ~Qf8;VGcV2PjFG(WI#p-h z%{H#h8JpXpJv(6JH8z>C8P7_hx2Z&*p`y3h6`~^~(OUL(YzNd$S6BmYowo(4;r zh1Qw@_kP<%dtZ-N^Ze;K>e=8~;F;zb1DWz#d+zX*^SA@0U?2Za{vG~h{(S!g|6qS7 z|K0wWKg;)*?>pZn-zUE5zOlY1eQkYr`EK_4Aj|)O$WM_Sk!6wm$b`t?NTelpxPd{_A9un%Gb4rr^jIoc%cS?y7+IqWegrP&}dU`J?KC_gkI zG&s~LbayBQs||laT)-yh7-uhMZKu<*%TeHX4YKcbb~JXx9ohCP_7nEa_C@Yy?&|Im zuIo@sa67Ccga0Z%7KgmZ@EXfAF+>fEO&*SmmFuEH#u85kJT^Uo#uVs+sE6+dxy6ytXiCfx&_NTY0oR30T3-v z-&4uscmJxdJBWV(U^tDXj2KzHaS`4>22xF$msHkc0_PRM5O09ERFpnTIPG~|7@?Cb z__kuA|RBk(qIMsO#59EVW-3)dB{4C;53CG2- zEW3n{H~Eo&2u><(NB%}!ul#26vzq(|4K`YVJ8~6qJtHO_(1o~vX=U!n@8W;~)h?pT zIjh@wH1J=*^~cCL#Qku<68wcnen101039Z`-v5~QV_OM5 zbR|HO0-=nAW(`E#_UHf41A)wE76cRxFo!eZG}FrIJBdv=w1dL<#0qUe7tunz{~obHT(=(y{MwJ#MLXvbeC9kcKC=lv z<+-xh&Y5`qSWPc&@_9i%$H{q-aPhl42`-%%2`A@8!pV7|I6W@{m(L5qrSl@;$XZ;w|A+cEh8T8^F#7Qg`;Nrd}u~>kM>u0j~UBJclLt?S6)^9x% z^-0Xt)tZSL5hpQMR}Lk=Li`n>f91W`Hz58p!QUQpFXAr>{I6tk0pc$ZyvD3Q5r0#p6d`~R1OCWd;1>OiFa_rc}CNx|O1hQS*GX9KGsGXJSS<3LHs+P~I6-9HfW{gv_k z;@jX$`iAlQUIwS3lNz z*TuQlOky-e_Cf*kHHD<^;xZ*)vy_abbPt!Y8pq?X>@Trzc*(V&$FoC_hY)JPi(l7W zTsl?FjHPrR7mC)kKg+gcN=Y4ZmE!v^g{bc2GDQ{4Sc-VLxBJga0sEYnP^>zW?Sk}JlXqfH+h_{hT$#m45LGZ^DdOhhF=(pp3pbaV8B6JI zE~BMD&9)CD=gLTOqGiUEXiDD) zg_3d0Wzd`y__>5++|mmhO@W)s?0DO@BPzFIGc%sR&HAeL2yuRhp9`236-@ARp(aEU zTDz}O;ONRUlZPDM!FX*^USe{CT--LA0zVg#9HNi}N0*QsqL2hXmnq3(7$0D>M)7!p z_t_Ssf~48=oD?{^GLoEFn!S;!PxzHl#M&fAQ{d+!l06lY;OG*PJr$DR=R!$s6I6G$ zD2^CS5l7bp+9s&1Y{87Bz|m#;GI&I$?Pa!j9WU5fg6;TN-}Y$sC?^H3u1q^Q)3Tkh z6nMIb=1!F+__~DVPD{;b3S3=g-`kYDzpQ1CqAB9*0%mCi6MS8$2@$52Ta9y4;OsJ+ z2}ElbRuX(&M6#W=WD=ZRLb9DglK8q>|IxRLF88|5j=w%1Tv%eWX;Qel zIMY6hZ8u5={*T@LN!`_@HvEF9)5V$3vPDpw7HWgDZy_Y++j-l~TQimy9%mHKWOa*rNcC zeYV`PpOYMblALH+O*fkCFG<$2F4~%Wib~e9ERq>b_7jpk>e@2uAt%`vB{|V@LK#gy zDM{8QtTChMm(R1?RBc&$Yaz z?rL-{#gb2;sDo2&FS5m%o%K6l+E;&D9rOB#CLhNxxjFSYwumREC=KbniX?xu5N0&l zgZ93Kr!_k_Ur&6%cE6%K&c)9^fLGmJ_9-5WEgJOgs+#Wy_~xH2EMh-JEF|0~brSml`@w6@u4}HgueI2p<3b?`k{EzyHnn zemY{^$Eg_*?la`Y!vn`3ij_eGm9@yw|+DymP>t-oYD(s(gDrA9==k z9`;oAINb*!{{I!I!FRhm;QG$B#PzDHo2w?||J(2U$oagpy|aqriesxI?HKB4<|qwy z_Ey`c+WXiW*t4M7|7U-(TprY<*BymT`Jck(KFh~yJeP+x8Pou9VZ)#0vpSZ`1DjA5 zs0sF-9(!Gxt$XnD_Jbu}H80#mE)Q+eYcjgHEbJGwtz%#46_X<&!=k3>ywr!aT+ag*jIt%)^|7Fzi_LEN2&{_wYc{>7pM8@f44ALSfELuyfjZ zhzNJFy+#QE9EubVb~3mQ=pK-5lbK$+eC2m+r(A_Pk>YbegY3?bEi*DEQhXX{ko_6* zc(zzy5*WpHK=L_gkJ*fPiq8a%lLr|acr#kFnP*P$y1HyLWSr@8;c=6jNb$HQLztgE z*rll$kA5=RW9^JyUpbFQUuJjEx5 zcz-O0ji%Q3M~VkQnfC{$THhZjJ~tHYg?*~3_VU>wwwH4)+Z#>k6GUURfNylI!DcMy zYcFHidO4?LPD;!VIni?QBbp-fL%vH^At~mEoT!i_^FzMH)^fU?lM?eoPP7a#j;6@` zknhh`NQ(I(Ct6CzQu_SRc%$>py{>8O)FFK|*)ct0uA+IzL{s_%QKxdIb09l@SGh5( znvZ42^`*H6f~n6CjV}#Ojk0$$pIK`^;Cmm|3MNbt%`Xkkw9c5A(kFPuEm-itmlddzl@BxW;xb&J&_ALCnl# zL9?fG06T7cF|y;=__XR-!PF;+*!iB8A?VQ*%nwQDdn!6F=7+rVJr$i7^TPn&fNeSS zIVqSQX1>`uu@ZYHGvi$&Kd+-HF+Jpxbrq5@Jrt64EhS?qm>in($Ud<3+wnU)l*#yY zeA+mkqFW3nOb;^yuQTsrd-ztPSJtwlMc46Qc9e~sbvDCT!DIS%t5?W<1e3!|-?`*ug=AYQ zIawk3fRN?teVIo8r&&&M#7Qz6mmUmli2H-x!&Em=;-QH%#4) zOy2oLmJjb}iXk(=(=k{sSmdM{;l-pRMpF$X$-WB722|3T7){j|k~|SaarR0krRIt~ zRU71;TW#JPIjMRmsU${IbtTD>3dy^uq%|>`x>HDY+f}lI;{4Q+nC%qII|vifT3Ei_ za#FRinLPi6;^lU`Bx#+pIVW`+mGoOm#!|Joq;U&%gM=EkkC?HV)1K`zTnFX}il%CE zO`WPU=dop({MWla*LN3~%vh?1BwEonhb`4h7S(3E3`dYjji#zo(TcX&Y^ky9g6%SP zQwwG_()lXGT$b;bK(M=Qxa&8Y>o>^MKib#J*T#1zMDqK+zj+UP*LxRu--SKv?bShG37tG0)eYPdx8?#(MgA+Q1%xvhW3e*1glc%$_yO(??)vUZZhz#*$o9x* zkyPZRNWVzC$X$^N5nuRX_)vIVcz$?V`1x=j*ac8GTqzv%&C~wSj%phr&%ku3H29?U zfL2EGB$aC1o z)y8#)tE|iEJm=i&T=*1bjYvd-3|1`nsWc4z!bI45z-LhVT)D`Brp<*HCye!e1f` ziC)(ud^d&h&92p>@ET;-rf_$Jt0T-4Pa<5B!We3#6{j#p8fn=S#y}%2j4&^*Wom~m zP#CpCKO+pqpQ|E!9)%MK&!%u3;SUK+YDE`hDx|u6HaYVDA=!Yf$!aAGJZervNgW`D z>oiPlgKQ9SYAcC>CJ_w(Z8la<`f2t-D?wpwk#+-x#n@+2Sd6`fFccQTw|eLVh0mHl z89HP((QC6womwv&M5n%z4MR++$WqyW>)??^=1=SCG)%s>ox-&c-h{B!{_iL(+JBJ3 zXH1dMZVHb_cv~qG=fT`!aE_Wyhb1W~f^si0NW-&6Hi+R_AsfW-ERhXjcoq_a6qaq) z(RD$qF43H!cakIiq{%gJmJNkw$0KEALjf9!%Z7$%2or;J?OrE_i!_5E-XG9hDYYH# zpp>g_CXwPxaORJPpU2b0zseErMd6+Z_dpn?flCl>LE%LRH$@oym3Vh+e^Gd+$<}^H z7~CDL5I#j=41Cp&A~;wMNnof7X^LDl zVLf$?32Pfom?u{k4ZMTGqJcFKmKu1S!lHp!DJ&XziNK_RzacE``&dcg#b&!h%PG7F z;UyGqjqu0jZQ?5O4(lKr@Qsmmzc9%A;4aAqOw$tiMK&BXe?0P&Y#5G)6VyQ8llV#j zZ;SNITt|)ogLr0sDI131Z+tEr@BtC|gczi!(|^n%)blBsLfSS8*FyMfgr(QPaSDrf z%>fFFcg-#ei+9ad@J^NFntC29sr~fb6 zAWr{9*&t5;S=k^?|M%2DPybz~ozc0hS|2fI++f zOUi}&&vjJtNuU@^j1B_{r{b8$83<(e@^7N$ODl| z;Y;Do;oR`x@IB#@+RxfbZHm?ly#JxlccD+A`d`;jjgSkz!WRU`1v>^4f$M=?fmwl( zfi{6k{>$L|&+`xUH-p&!3-F~q4Kf2X@I}1edq4M1^mg~w^131O-vZBzo{pYdA@YBZ zdyadIyPdm=>niNn|G@Q(>wZ^x=kLz1ohj#F=e^F-jth>pj&~jX9E}{s;JbUd{Y`sM z`yF;aH2DAMFP6)rYD^F0MaY6}8JZW*T<>kj1_J6wH!MY%LQ+WxE@s0crK5&p|Xb*vOL_z;6iIhKVwae z=YmUx$U@?DOUG<17rZJ$Rz;2Hf?GwBU8|4<&kB{brY3U1wL&g3NZW2(%k(wryO*)u z2NrM#g1E@Qy&^6$&V8MIx~?ZgZq8&ojf{hW3;q?+UY_^84$I4g#$`$xo7`9~cv!H# zN@_fpyIAm~{R(O0Ewl5)a>22+o`uE4mrkFfoJ)pQ#s}!#B;f)g~}ExWWm=$WeXLu+}T293ly^8ZlSUT z3R&)Np|TAXvfSfB2BD!smit_UY_+D{EL}eFT=2R`+%5_(cf3&D&I&HLUMRQ8pO)N2 zF899RGx}GkCg7OD_V@aGB1BCvUQ`ycd5JU39WdrITFp)5avuy8eoQ3{ZWt=8;3jgp zBZdn1R0(rm3~8}~o5y+@##|6+BPrAju=i` zF~;02V+wPwt1J6{R|S60vE#)Cz6VSHZ1{+{`D1<%1`Ydn@M}-YL+9 z5)!s)>@z(VYdf}6-bxh9P4I!x15XTYZ?*tZA9mmR1lz_VWq#Z%+7QP!K=9iy-qcr? zc`swRF)9mG%h;$yZj?5cuL?TqvOPwbKX!C2ucd}H>f^aN}v|yn`PP86tWeH$W~FvmX~F#C}hh~SzZ^!auZrCw=9w6RLko;k$V%DHLu;zR@d!i zvy2u`i2dOaUDue@)Fw~+^3Hzxq=UNKKbA4P`f4K8-Wr%mT+@cb2b+x_i zc**9v=IrEb>`XXs0KfNX$9C|0ryMW2zISbLEpknFz2NE{`O#V6oZuW3+3vc>Rn1kx z`H%A_=T7GesQ-6MBozKLd@TGm>>GGL{9^d2aEEZia85X){iU7IwrHPfDX1YZPW8S))o@*MYU@+|Vq@Vo@o{~q!*@n z+_@0VFv#7>-PoOQ-yrwc@t~uDqlzPJzij^w@(wPxC!zM=0DDKVB;j0PFU|u30(`@! z`63Nt9w`o&M%ZDlJq6m(Vjp%2w=>z=KM3WzIUz`!sp;ZE6o?f{Y942I+<%znMDEfi10pQ;Ikw& z;M#8{$R7=(%@+A3r(tgj_eA!i2=f3?gde6bj(fNR!qSRta|$m)k;Vv1<9S*9fc>OHaY`&AqEUS(8NjO^%;O#+}9sa7;joFjWEvwkJ>2;irQH;kPKf0^v6(yd2?)6n+Td2?C}SGhd-FdO)<7DZB_pUZgNSA+)gw^Sso^ zexAbp5FSI}z6j%UIRGMVgr5^^T6c96g>OUlvlOm{@CX9$+lKHk0Yj!_gojcXpDNm5 z3ga_H8%SY%qG_-@1N`Vr!n$1M`31r_;X{orrAER&?WaBF= z0BmvDKSJ1_e}?RC2p2oQN3^>Og+;qNQCPIQBY}5|cH`?YQ0#Oy@ziWD*dMiBf-PxF zVR30bKw)udwxO`NG+QGad1u^I)NV!LDG0Zu@MMJX{T%?2Y6v$IY#MfX4~5qvyAg%g zAbb~vyCZy?fcwv{if~m5ClJ1s!f}KX1pa6P!f^q&TXYWL7=_OwoI~L=2v?@?c!Vn< z%xlCWd^3gnAzYrqeGx88VK>5M1WZFwOHmkSOWKVTK7k^|D2y{DErPJm*}Va>Llmxu zaDc*f5%v+d8?KFM9)!JDs~kbLi^8}vrHPq74L{OwA`+0|qpqO{!0k-!&|d^5;YVWH zA_d%vNjktdf}!(5WZykFf}yh%#t{ttB;c*x@#Pizfx`Im3Z14fzPv)GD2y+!(DwqS z@t7wmj8|;vFop4o4eg;YUa_I=0-o1#D~{kM3U5JpBZW63yq?0n5MGNgOtkUI7FrD- zfn$u%965IQC>Y+&800xHIYNqLDG!Dx%p+(dODQniFAVs;qH|z5)R}%`NfFIQ4gddE z)BoQ#atq|@|0bLtemdMdd=q5oUk_3F1GL6kiO|{5s?a;I`@aF?<3AN#7JMW4Xs~wB z7dR65B=B;eQ=qEj;@Xx4u^f8 zeXf0sy`8WNuZ}RZ(YgEGE6`{gwRKmJfga~(634>dN3agg-^1v%Xh60kI+kRrJ z;cV24f6ew9$xFl-gI`1lbM7RzM6aj!9NP&V3CP}Jaua#r7m+KD$af8^dNAz$wlbguX{UheH4amDx z!d`OU>0E`dhxd*M?^Fr9W#OGRg|MrL@Bo#tQx+be5_U+!`yJJ6%h?LZkLK+$nC*tR zh2KuSZH`+!&rXFo_dWL6sAv0EdNROv$_W`+;@ zl0tS!5!s3g*}<}GMTP7jS$4=*3fX~@?2xY%vI8X9a!;4DOw$q1?N7NEuXlA@UXQWd zr$`f&)I@GSE^9u`F8-F?!S*iujF%(+3IaNf#2MzZA(q>h>H@b9TL4LM=DrhR+vFVA ziQFfP=(bns_K|hlD|CAo(QT&+fa)ddwzCX?O5{Ev>t>x-={_#$W}R2)J|^j&he(f4 z*z!zq*WHd#ixrRDVUBM+we-bM8xQv5_E&?Z}^0?K|xz!F`kq>-QQwM|jx# z<7|HHPl&0Cvu!oXq*so>ScAxFY|M>X-Ux0X;&W?DU3fl#?`e**# z-kt506G6q(`s~OYv;VXXZm>)^6HklD5sdHE(e0~Q<{*!!#pH-{p(uuRz*Jff9?3i- zIn^=&Ydo#bjm+lqni|$mowPnRGG&2k`P50IrJ2#y5+?>I;;_;%GZN1SUcW;TzmkTj z5njJK*E)VB4KpKg{qh1J)=}JPm>J=Fg;Om%7f-{yh{!_y5X&?pu{6w!gsh4hPs6N; z$Ts<>p=DO*L|UH}nU7Rns>BgsyLhbQ+PB$JIZ%5o2LXZnh$x2XiDU+}V06lgNW95*6P3r%D(mNkka9mUFK}9?X%5Fcbu`eaBWA zyK~rHzUEX1E7rvGV3s6=Id>xal&5-r3Zle~5OA}1i9DDjNx}h@FiexEa6lytvm{B_ zZ#&LbEj`2UJ+`;RtG7BrEzMTM^I)Dth5f3E z*^aVownFwHS$5b0g=_~&cGv<-*+kxhTo#`_P|?!*T94(mr@Fvx$7aJ47OZ2jE&2|i z7tCuRk=L$>ZnpIm8Ov)c>t?rQvoh)8w)Esl?#l?>2V~u;3skyoB;BbCEOp~~t)=0G ziky}q{;|APR2Ha~8x-St_fuJ3(9^OBvAmWpS z(vh=13r1pW7hlWsV|YU>uL;!!?hy9L4RaGUAG(cwtGx_4A>T2Zo5*WiM0bly_ikBt zi$a$b(cNq-WJ@#m&n{!3(riR5uaT^~c_90kJ5%c=*!J1KOp3|Q1H*-vEbLiPlE3U#|HZZ+rY{~*`O10 z`|S)Y3#0?D1O@~;1nLJW1^oVB{rmkZ{WJY<_@DN7@i+Fz{1M+J-%;Osi2I)c)dn8* z-RG|JjDDz=&9$a=<&IKff|Hg zxj%Hj?j8zt2=8`B-C@_Ct|QK{?1nKZBmePlZk~)s9FdO@KaQ!V_z{pb1dqU!WZVFGKhUs;NFAh^@rH^H-o@3pGFn3N&n@21qx7hKKfPM0K#7EQsyVub$ zml*giaWu@94HMDufoymU4F$5H3L4VHz;{cdA(t9pYcv{?)BszX(J+G;_|{}JOs59e zT8xHwsR6bIqhTsFz}8+gOd$roH5Uz&r~$UtqTwxSfUU7;c!L^XYbzQiQUh#bMZ*MY zfWk{?c!e6E$`Tr0rUs~dgoYQXfu~v8lI&FD5Hah5!3*6aL_P} z8laF38iwLKjn|?si{;+TVhR~0p6`{96Jwtbde8Ho^ zMZs5sorBdO|Nh>eT zbJerWlka)j)7(?m{i}PO`#pC*cO!SU>$Gc`>kU^A*X=Hk^N@3)a~!NT#2tS-b~-+E zJmYBTC~v=L-(Y{=-rvsbH`so#Ew?4olGEd#;km=@ce0J;9~jZ&z(RJwDEnjfGm#dd zA+T_+CdboyXh>%HM9od4MQjMH-s|L>*!l_;t36X|65D_OM!xDKS|Pk15DUi1)+HR` zX+1hbUr2(0G)}fm;1W;kUJsoM0clEZBCQ99mH;Csd`$Z3CF3UbQihr9ej;F!v zfh$QmcRjnHS5%6!BE?PfXERu=gfgRt!|TV+)GWP6OT3sX3e*1aBjDU#*-o_yA3$b+?C3=7Y?YH?uD@r3m*Jfi0$TJT3ele2{_s4ErP#^zkjP z$#|k8e)jaw?66U0OEg$_eduIecbC1aS>B25mrG8@)57;*oR3|WQDKQR_&&s{Ff@3l z{bRNr3NClp{0ci-E6-AK3n;dPy#`!HG0DKP2G+Dq(PcP~ib8 zVeozsVQ<$~whc@VG+VTu?dGF*_EWPJ@ih29gfQp6#g=3$gY7I5l%EFoha}umB@7M_ zD%?^f3=R-UxP>B@Vj5f^RJet8F2zI|Tp(1q%W0J`I6;UoaIKRxrojm!*0Qhf443Q1 z=Ec9}&H}cz#!IlZqMkX#u{3x=(1oa^Ceq*p5$)v}qV4V3rc8{+fxmzM{N93ZOx;9U zcZ29xJlsnEMg~7fMmbZ>LZvJ`A(=eoDl&LNGRp8&`L|{WUkKcJYH~cS`$96ew3?ep zOU@7=4^=f8oFSPe8zZMA3wMYya!N9|Lo&+7$SKLXLqzYNF>*>WctkSF#>gqi@ih2E z@KXM_!2p*?Mi`a}fILJsa(5!x7z`!34w8+*P?GOJvN0G+a&06VgP|bD)3?imq2MOc zx1q2x7@BG@Y9ZMe3?;cHl8wPol4~H@7z`!3I+BgSP>|#4YVu$xxQTRC6o$e0d&GtX zw#95Yk6aF(V7qy+?4~8=(HuH3Sn3>c>Ize@>{doPf!oir1 z6J5@=b}*)6T-S6kUYj{@z$0v4rljpwWBZ}mhFCgEWr5nA%`;rQY->keyfkf66X_hO zxl^7iYds9{bQLnb*ErX@D08}U5#cf_;agb74GnIqOeZhfAc(ab2Bjvt0wKb+|;jY!TU$3fY@v*^>&{GDT!h zC}c~^vL_U>rHaUoQOK5*Wye^`CekIitp1vT+Zckq_t*!qEv0+ix_ezuc5rh!o`2fB z*yHINxo+m2%emHp;fZwdBEq{=!Z*mmyHvu(iU{vi31`c~J5|D2MT7@f3kRG|+jz%W zo8v6_|L42jagB2IbTxO?fc$=cJ5M>kaV~bg?;Pvw<80%+!&&x!sp{tmpAYW|e-SPW zzXmk}9u7AOR|$u--?c;F`Jbb`t&PySYxiikLe{@4P(k49(8AEP(CEn z%l)Q%n7gaHi97Djf;sA5DczDa5#eA{Rj?2 z(D@63Pm9&#z`DJU<6?K#P-2*UY()VcF_;(zwCMa08U_i2|9RiUZD<%E8J@Wp4Npmi z$G<{DU&+w+4m9*3hB1eq5l8f*hQ}}9YJS$^#4un&kJc#FlNzdB#20i{57~fgFInA% z!3OaII93surIU8Rzgf zJhI^|8eFpB3>qA=VLTda)Nua3y`~{@of?Mc9znx3*?FrOIsH!B+E zQ3HH+qG1j-z-J>GX32&!X!uYzltx3LWEk}s8uFlRy2%)Z%4)7pkWkz?q|N z2H5|JhKbYwn?2Dmff)E^O*Fhp4Y1o14dbZ+_DiDSC2D}pk!To4419MZ8pcus>|{j4 z^RhwQQDbC-xT8i(h6$%p>N#qF-G^wP!5x3W_CYj^BuDV=e`t6{HvEQ$;j%&e2AQ|> z4S#Rq5ku$^u>B1UWO{Cc9cf+AK&I#1&>0P6dJcxoq90^>Zo3TIzwih$J?Dl18p!mV z8~kV>({nIv6c-$sp6k1m@CY(J*S930p)2iq+u_B~&{;NQqv2u6Fic!N4^abbx4|PG zlnp|von)9Qq#mFK*s_9Bt%-qeIzhwzvSBD1$duCtM+`y3eew|+8t$bA*n5EnGD)?; z297OgXe=MG84XM}^g=^J!~ehE%>UO0>i=>7e+s_kn}$nhXSJ`iN!ko z9``QsPVjc~*6=z#`#keJV?6CVl_AsqHg}Hqr~%dPl>+P zX4GUIW9jFL=j)D=%o-k_@lU*ky>pcB;rWTJk#h>f^2xRloobogFP=}gjd1R33R$vk zM5iib^=%`hwN(_d`mPaU#gWTaQON2J5|o9n8|&J5`QRTh7c%t^A*9b1V>R(n0S#XU|*=d%tiG1N0$$XdDKV#n(FXjd>G&>A?JS)EYpn0Rk z^T9D-8~;{p|I?+J;r_yDT|A#S zME-@F$k!brnMHg3b6q8@dqj*y`+wmk@^zO85%#Nub)Se3R&W#fx>H05ubQb6*1aMq ztmaa;2wyyy+Mg}V6vW)#TmLif`B*-2i|Et_tRS>_+L;rJ*v2b|EA2S_s7a0I>uwSA ziU8Ru3R&GNlDQ%{RUxZ8MTqQVg{K+jxTg_57kxv~Wd^Kgh zZ4q0}x3Tsd&2~rl6ZK(p#A5jo@dnVj)(M>Q!~8*l7Xz%)sB|@1cb-BwR77{KN;fF$ z&Q<6Jis;^}()G)__gd=4^L_MzYJ(-Fo7h{KYj+h7g?xL17+x=xRZ$c99@1QWfeK!% z+l(|I>~QcqUO>~-jpw_$u5qs!+$^^4;YN`0C5!DV;+oHQ6%jtG5_ZbMXYC4MM-kyO z_5!wTPN$I#55B+-+nzl9`h1-D$Mfy7@ELoUt-D?SWBZ^$Xy;FNn7vEn+lmN}R|uzH zkcG!9gwxMU!mvPR`<|`lQ;lXv*j~MeG&;88=`mE8bJOhe8G9g+>3O!xhzr9Or$9JHEx4BnT*>Z%dv>32O-xOH*0PpJrEmVjN3ugxD7zE zF>VTSJl$U&Hw8D5ehP(+aXY9Qw|+=A#_gag9K0_llW{w!7`G>pYmA#Umw*3vwH@X0 z|Fa5X`P^sMr{ z=NaU=&r`vD$-Uh@(>(?<09JFmT}NG?!5)CeUG-eqP+4%5^Ihiv=RMAw9KSg>JMv){ zKpRID`!)M+`#k$NdnbDhy9b)B{>v%gvo$9lH1|K{r-yH3@Bh?@r{ZVpOT9Df%YK-6 zC8q#pYDk=#Q-US=EUNKqY&|c=-4|Dcatin~%~YJ!r~> zn4=-_jgDnmfe~lSzLrDEatini%~YH)up~=$e|$o(sUNcq_Igtw!J|-w=@}AVenmm# zlQUCsY@Xt$VP=NJ(Vr`N&F5vN;aY%o`zXNc0QRYnYTFao7*pY^o8?%hu{O zmT@^Or+`n%OvS<1ONlfn5VzeYADyB(1uz{$;(!u2u=g^ho!9AkNO5&9r+`n!OvS#{ zBW#M1T!*bOrp96%VIqdaUd=Q%DU;G7A|Q}uq$`}}W)Ao2;Aso41~MH^xAg~W$uh1ujb^|#$IrxROk{5{4}3#nTmCK zD->a>g~XhVe)dXcJI{*ouktlE^QWs6@OhTQxUZ}K*ob{vVWQu0%+7Y~=KCd%2_8(b zOkU!jR%~hJ+Sz4fQ4~Bry~^lCOEzbp*ZPa6RAswd`f~z#`7pCGdAHQ4$rfaC_iTgg ztFYiBczjls(Yxi=GA!To=CT!EXS0p1^r(5kg9(+%t8iZ@_C@BYvwKM)q&LKnpqzX@ znR4*St^1z}P3Gj>%bVs^s&DROW|o>d}TR%X+N!u8Z^7F1@^XSM!H+@?j2T z3f|P!{ysa-2hg^Q9lzdf^3FC5Ok$OMK7q;zmVBle`)umRd^ZT&DM!>*$>(z?llS!F zX7v)bXQg&N_QsDwk58L2yc^!`$TDY^?H;%P@E@=KEqHv&l;K5Y*Jhs>S<~3J&X0MP zIKku7r3^2)swrE-x2%l+mF*m)&$b1R&y+Ge@BYSYi9W;a&UPC0(FG4CNhZ(vOB1%F zOIg^A6lFUfI9~sWF6B&KJYSz6>96B}O%J|OthB)V$Xrv@sg?nc@q95m0$CoqWxZ!7 zU!NUizCHsynoE(?D<7su*apsR&t`Wz3E`1@*cM*wVx~wCn6FQcGF{Vy!K$+vQ0k&= z(`x2kBXbyH`TE>Q=i1cNc)mV060*^aV_S_!j>%2rcSd1{Q4`tr zC0mh+!k!(1>PT3Z+W%`2=iea32 zb`MO-OmaNGBPZ+krQ!TK^#q%rS?J$pBzqU!hmh+tnygsq?|@v_zj7Z$uE*e7r%=vs z&$;A$oK&5UcJlc+=~0}IwkT|zkCUqN@c@#I^KnvjKH4DJI3Fif=c6?zlk;&>aXwlh z*Ek<173brAHpN|u&^Kl;v8|UMMA{TjnGb9`5 zjKaoPj8Ton z-AFdZVvO}z1hgDm8(-4qONz{XzQvf^uT=P-@DETAU`aR`elgrP+%|k?xO~{Hozr$} zE3^V_f;LF&s5R8I&>xW1Z*6F9Xj15z&?BMyLN!CBLyq9juu||vurT;qa4=*GXcD|N zSUm7|;D^Arz!HcWcrnm7&^AyPvib!fcfe8qM*qkD=}|Bk@_XGXxxSmch-66}o;ZdUyq23~8IP1rAG3_XHy zli>@dn%^en_d^9{plRmw(Bx-f zP;TZs1r4pl5qhE=(-1j84ARzy4YC1!3Xzq>K-2ez|27-zlg7RTg>if|%;m+|V(hah zTZ}zs=kmE|{qhsY2KcPmsn8*_iJ9~yrXjLkHi%ArB^xk&AhJ|8h`8ZJ=1+T@e3)C? z`~_`0g=-;<#n8P{`!Urnhei7jq6oleOp(xT3Xey4o7u$7N4;st!bt4Q*CiTSiX(JC zxoL=8mJNr{@T+V%h=wz=0X_GTlhi;r1sx;?>H4__&(xB9A7N%S#rzGEUj)v=(DcmL zzRAyOBOiemR~E*48%N;fm4%VpneYWuDsn|g=}`h`_)Rv50r^=rhygi84Rk<`5CbnZ zg1>>AX`xk8s`EPJ2-pXTy9gr{WJ4iJm6i|&4AN=(hZv;fzx#x-x-BRw%Cn((0Y-;!sgryvm_fdEevYQ|*CBy!n!Yxd;b`)VL zhdJJgZt0D;3fWctBcDK#eD446ZQE;$?2jyrjE{7S+#U&pPlT6+-wyWc6=AqU`P|2F>z{*nH+ z{v4Q6o=ga#~>fz zT=!e&+p7wj#0o|eR zWykL-H)d7yvF2Ds3&5%8H>jKmb%ip{BX*>R2MPcU6HM;bGk)I9sg^G0XaRTZnGIDj zV+Gu^CmMQE)lhKmiH4q3HI#ezL_<$18p{29qM_EzSONF&iH4rAH)RKSTE7{4*zwx? z3VNQpEXE0(e4?QzY{%Hn@;q#?0y_d#v|INpA(-6FCmMP}(NON_6AiUy#tOKrPc(Fl zs-fWR6Ac}sYABC|5)B=rXef8}iH53}+|g$+1Fo&zzr2}!kcltYWQ1XeVd6nhg1JJ$ z%BV1>k;z^T=B$TS^sxvn_KFZ~Ix=3hrDp4&rT>OyEn) znDluPJ&OCzMBAmKz*Uwp@wQ7Q?iw?W;%z6Uk_FrohHWR7QU%=cWmtII&(KzYpDSbH z4U|mWuO%8NnZS#cG4TdUChoKn4J4+L1>m9*4J4LQ1>7Gc8aSRdkb9pD6K|ko;?5?~ zK*_{?ONNOzP%?2>l40T_NK7RQz;h%TNG!1ea1+5n##>-s$E~&*>}#I)t8OQD;Je|M z{;v3sc_rr*fS1T`+&C^^_GPOfRq3;PuCu+oE@zFGOk%8ndx(VQ7L_LWhlJ)9g(mk6 z3C+zaO>hkf&CLo;?iUi8y;Pdu7807hEH$GA+$WTIy4d$NUSb)clT*MQLIzVwj23Wj zkU?~FW@R?(u2(v@{Np0q0^3j^2+th&XaRQx8BE8&Fu5PdU^+R|a+(k=;7%Ze835*D zMTfuzBsyeGj23|VhjeJMqC?#IBRZsFa?g+G&|*c07&3W>7AZQ^h<3=D7%gaslKc!U zQgo;RGWi)&G3z6fpP@yH4%I^@?@((+hw9P}SrelLccCQjP-{hp?nEZhYuDp z`0)*@pTCv-JTMi#Ptc!_Z&3Vv9Dn{F+lw_T+COFAZ5Yt)>ik3OIP5h3ac>{ zvz0jol?icGc}1+~Erj?*9Yv6HB|==R}ocS zo)Bj*w2TAIDJVyXA8b^NV_8B>A5#p^O@x@dWZ9X3BhQv}jJG+)Tjln1Y!0t-{O&mB zEazC_^o8ezr-jFcp9*(`{Q*_OCBqKwJXHBxr!Cap*Iw2JYMrzuT2-xtW(%DS?Fp?6 z%?V9`e1E+|ZK2LzCY4RHE<}fKCmz_9ijsI z2Ra5=AQmX*zvlnJzr(-6|Dpda|Fizb{H^?T{5SgpzCV1&e4BiWeJS57zQMjOzI&kJ zUn!r%d(OMhyV^U?JJtIMQ{rk;* z#J$n|iF=0oW%oc>b!g(Q>Mr57xz4)wxK_I6xTd&9!^%Tj*pX1#6?XpRJn7u({M?!E zoah|pe8kz@d7HDWqrao0<8DU+Dg$1(|771~|I$9oKFL1H{sb(n+~|SFayi&xVqXUT zayRKv5|>P~cV&$3#!KtZH}8||9R!_==ynsWSD}6i(X9l1AJHu)dgtu1e;~SvpcfI{ zXrgrvO)87%dV-clbS}31?3rD6R)*zd}%449Iqc1N^1qW$MrMYIV)6NuhT&^V%v1p3hiL>nO5ZqYeJ>k;%UqIVJW z45D=iIv&y5CK{YGxIdz|5wstoH3`}m(dqw596_`gLD8$0on@k~6Yq6EZkV9$5e*Qu9ikqAzIz@~2codpZK7G%35tH$ ztg8e)f!s?36>hTM5G797tkVR=bDVXIpm>h64iFU2an>$GVXX(-u!Epm5ZzAD&4}V# z8di&XA&PHl_y$~pD88iu#WzFNI#U-=d^2RNBq+WaviRGSPdVJwwV$uFPoN)cL^M~R>0^lU zw|7Q2c?r>^K&OWhogvVvIf%Y5&`FIDoi5NfIwJa>Kqm}D^j(3z{0gGe1Ufbk(WwF* z{W+rV2=v+Qh)xmcupbbeEYQK%5uGH^0VNQ9TcCZbBl?y=do@G!O@a1&1W`WQ$c%6I z5s2~`S_bX>7NUF(l0hGuh3IPnZMPE92?A}s57Acz+TsGDe7=&=t=9(8@dB;W8&N)s z$#8QvBKi_eGppl1xvUovOyJsc);I*CCGqgF2;Ncy!50L0D}v7>Sm8bd#|W?~f};_< zsRx432@p3DW{pCy4A`2ofMLI`n zL_Fam;l<$z;U3{T!a?nXwoH3V>!sC)4E{fbRzddu{-GwJ(!pPX8-uCfQ22f?4>c_SpaYM`aH)yOFXZ`m-w9? z&3($f!adpD2kHP8hcEBdu6JGiT}@mio#&nFp!UEZ=e^D{j$a)c9Vy39M{`Fx`|tM6 z_OyMt{eJt+w#(3T@fR)BJz=`vKLE4dYL>proI-GnWtQnV(Q;KNR%p1%bk`7%3UvIy z&cSZU2QPoiitN&j7J}O>vka>(N5K@5@-x*W(~7u@5sl>Nh{4XCx7tx|2=U^m9$izDEmnpPSBf za;D|lS**}-!I_<3tLi+s9eCLJwTjO3U0xX% z33Ps~qVvRo2h269&g%|5eF0u)j$%LYtPxGtv%}SSO+$RHM+qVwRuBb{HP z=)CU1!_Kd)@Zs^xzPn}TqlJ7MmoZF%2z-oMFMt>FJzNHp6D?C4L<@xvk4q*L zlHkJ=k_m+*ap8evTp=l3c$}z^6fQhyQZiPkd+;(B5`2K$ma(mm z&U<3*Uw5%Xkg@KQ*YeFLSWY3h@Jvl$4r6OhUGDYw#KUZ#o~aF2Vq%5h!85%xk#>vD zsx-leCp6D0G<6pqw)2ebbGB7a{&S}}meE4ty5phurz|sTL<@D-o!%ck+PpfO z|NpS}=J8P!Tl@Iz`%IPzvIsH=$;jZHh zO~ivonSy|dCgQ@QOhKeV6Y=3urgjK`zlk{UR3=OYCQ7Yj)4oSGfsqst{Y_pf zNhUy@((NPVG{(|8{<%zQibqKy(ccuuN$wX&#CjAVZeun9QX|w5B(?g~kO;x7L;0yc$(>W%c@uYFL@pWUnafNY-akjD0 zI3ng`%&>or#^ZKXGn_{Qw_z z-U@RIGn`|b1DrjaCdZeKj~p8vPdHXM7CUCaI)j0Z9u9;3qbw)1Tc>o+j_uo2<{R#+EXXIaNv2U>er4VIIzE8r^- z6>yuS)-ug9+LCOEH~(ZlYTjyo4q^hXH(zNkGLL|j2oBRX#`BF1$V9l`u+i{@VTEC_ zVU}UMVW6Rh!Jt10UjJA0P5RsPwOwKM9p-rCRWa!PH-o46HTAiTYlrEIZc)xxFS=FS zdpUC~v)O}p28W}!!8?t^(cj>`jKk66;GM$Y%w~4pNes^HW#=uR`1fB-$-#0?VDK4F zZbE!4hocA3o5SJg1N3HbIC=rSnGEi~c>?N796lcLksO|j_=PNf({aRyGdQzA$vc$8 z(I4$i=Wz5$d;7y&uIy=nsE#jG^|;*(dIC}OBK;lfq10Kj_haf+MDG-!)PMM#T9Z9S zy?~y#xMvv@pM^N|SpgTHgt%1<7oUT;C%F5Gu>{^kio^DhyVZN=?akpk5%0y}I}ksY z!z&T*&fp&!QV{P-@o%eZ`yn33;pZbB!{L1pceD8Xb%;ADe)_lRX2fj_{!JX-4X=g6 z(aY;KaX8*5uYtv5Poch!!B2gP*Bk#EgMV0r-s$*X82qMV->W+DKQQ=`h3L1A|C+9;qY0A@8a+f;yYM;^sk7&PjPlh zW&CyqKlsi;wM!ewhU1Ej4W2Ua~^y3B2;K#P>juquS2wZ4feY6^BENT z*7zz!&9~i)y7L%xIilq%I(x>H3lN>dpg}~#i1xnX1w>03bTy(gRkWnnnF>TNWzcd& zC#&e?>rO2}w3tCLMkIcsiq5F}%!S-M2DKx438Ezj@eLWD%bahQqFD?| z`;1H#o%VDly>AkO()%_N(aVl(Lfs1)bOWNpRdniun-dTn%Aj$GW*|Cm?lwfz8FUMx zX(~D~Iqm{PQy4UeD2`7Hdn~I*)UR>@osVduisrxfChp2nW0YtxK(0z!0fv9moJ))m6=zK&!QBiiSe;h`#0osV% zkCDryyotm3Hb@Jw9JzZH|NmjK{{N|%8)K%$q{mo22R+YwmVy6&h{xqV=6)G=0Gtgu z{=5*;zg}MdpY7`5JneiNzS8TRmpFZnGmdSJX2(^I0!Kgl&-NYmcKbE<$@czsgY6^R zGqxLT(`^H6R_g)l^RNqGi8aIOvK+O%Y`M!a+j5b`Yd&FKZ@%ALY0fhDFntaC06t=> zH;tE9`@d(57_T-?GzJX68TJ^SG+b}E%#a4LZ3pzv>2K9vt{<#-=nhl&|DXI6XqK0S zDQ+EzMi1$yN&BB(I;G;f-qPVa9@aR7nxh-%MRfMDi7ZB)F8Qq&Cst z%y^W@;t0Rg9?d@gZkIK%tHWINNlR)5j}n#CCioyt=x?U}Bu5We zmZ81#L^Jr4R7oHT9&*N=1d`7QB*C3TB?aE3X2zQYlB)%h;7y{E0=H8$<4gj{Jb@&2 zCK00G!Wn0hyc9)RJ@)B@#Ye_TA1LYi=^dxeBtjHOGR`DmUO7x#k~)(JQ6R}UlYm(+ zkfhEeLKH|c&Lm)(1(MX6M2MP_fo9p6q`aukf#o;44bt|Fcg+ZV|EBaY*?1}ugJF}J zsW*u*7fBmCNC3hvX)hm85ongZNvJtcq)FXLpgB;WDZ7(UGhMe{+Ws){q+KrUhdc?X z<4(|<4*sNQ(*(`*tE7$cR$5ikUgdw47-*K=Nvh`F?IKO;Pdew8z1uZ4{ms;$xwlR?2zhpDnHA6jnQZx9I)M5g$uhbH~o-MCjo*^y4P+xyD<4yv}CV?b% zClR7RlDd;fDOU<4!JR})xl$m>c#}YKq(G8-lL%2$GSDo0lcM(rmRjlVmNrApoLW9t z`UukBzp)zQfs>kbw3xu0BfasKsj*sDF74_59*K@oYdz3(E%8vHrbD3FbPcQN5NIyt zH0`>ZrA^WOKt6<>_gv52ubw`sX$h-opDDct+k7OQSS0P{gJS|sSF@U9T11+Q8O<>* znwtKmMd+P#kR@h)q)0R*YKxrEAA`G-nyx}gLeyNw>u*}fN%jy(E?^~l2qYUg$?gKl zdRDT#K(daNT)RdfS<6VST_cd3PbJB+I?Yy`)Kr6#gs43fZ>r`b9RkTJR?;DmtmGu^ z0?7(i(k_sk$4c&M5lCLiNbYJ8NR~5_u#`|UmNKbnE|nA!{Y`Ti$tMe6&|II-vmJxA z`cJ_;z%*Mr%mW;Rd4Of|Jb=UUiDfOU$)9BzX7R}D0PZr+HeY1+noh{;04hycrXI$x zjc*$tffe`TjXuK{v|}s3>N+f40RdFi2_L&>r%;y0!bL^s*-u%l~-s-E=QQL zE-=eAnSlt5b=CJTnV!?nmk!j+S@)#Fd?2Ym0;An%Xg^`<4oDx6xZM4(NC%|jun!nc zyZa+B+Km>}OsJai!~O`3oiYfSfe4ItnS$;R6%@w1w4ggg1%=@*Q_vlPx~Jh&q@W@u z4WDw1fl17ew2o|jW_(uK4SUJK2N4cFA~4>K-grVBBs~LR!{2;*m-ODN559f$`b?GR zkHBbGz45@@A&`XOE|uINkfhO54l;eJy{lmahPzQoA<-X!(XLv`Y?yl;A+3%EZht_w z#lU;V{h11|E2S}!CZnc*bf#EKdOiz#=eCo-^CO4l zy&Wl29_`9=i)O;q+<4F541?XMCP}$ILA%8@)6uSxFg0IV{$?2MMl~&jso6ID&2+eH z`U@ruccYp%!qgo71e)dXuJT0!%v@2`%L87SN|>Umrz2ic^|=>H&%w@)uOE&`AJme4 z_i!nyzZpin(Snky&lOZC9rDWA?lm6{e=`huqnf1Zb2SHa{$^&(n+3iL&Al>{n(3IA z5Qj?7p0&?=`5)Iv@9&xYe&#n`+Lo9xFEIBBBt|;ZjANrm89STgk*j=^fj4z+hM_7vdE{KYrCYN+G?gt5FwJKR zD33*D6Dc5Pk_Vr%$<)~dqfMrO+)?uQQa*|lkTG>_mIsuwiMIrr8CQM2k)5fXGz{M_TYok!EpawkX2W`rljV}u*W8e zw5Lh0%Ckp3rCnsmb8MYT3^ZTLX)YIOPGL2d3p6J)nh;;8?<4Ic>j*!4SUMy-uh8G^ zZ=OV}i7>s=p24P*c|e9B3})L{ErBi&)VU+M@pEi9}R!Mv>^oE2MQw%0X$j zvWK8rPf5*%c=3cdQhH8VVRFdS-(q2!{JOL$z zM1S)ooa8?RlH*xPZDOD~mq;qlCduBV+akR$?_xV&`WSNl&3=D0t;}(#Ntl|;#RAP^ zInC1|%`vRzX@O=A)g+n2M4H*CNtgo7EKak#NOLr+*OP&ikF$IA=TaokN`GK`y^99eW+GJ6augLQa6o9b+7+h9@28*nfju ze(%}W+8?#wY_GCUv0rRYf*t;TfJ}ayZBN_ow_RhKZOgX}v7KkLSigikey>|wt#|6H z4Cg>*z0crVf35ye{ms?|*2`o56Z1jLOEHhf+-e9Jat*05H85{6DkcyU3#$;W@q7Y1 z7rf(n);bn;8t4vD{-0ZRTh>`xA>QCBO9*oR4YKsKn9X0BKZLl04)Y50)#fsDo_UD5 zx7lVoZQ5^o)3nNTpXnOY9LW4P+;qOl4l@uR!WxJc<3Egb#%ab(W55^#GZ6<3n;<4( z5l%ZWKX~4W#`w#7BCAhr!u1%#rq>-`Z%2F(;->nZ^YL>!VH}4aLH-!T_4)%N4kAut z;r04;ZwC>lvG98R(_e-Vr?K#)JTAm(EIh#-h-ct=<-KhYuQhk0VZ+396iwyaA@mZi zKwS63S1;D8eDAFN-8c(=G<%sN*zJJ4`_x@#%#dgiEN;|#JDOLJ7})Jgy!DLX2X-;U zMApErhEO+dAyV9O2zA36*}$$R$Y7*kClm}G@uu;Hl~~*$Z@^GVZ(qj1?rReNJ!9a4 zaJMlAE~<7TV|bno4{c%%Y+UF4YKkWV7YKPR3uB9lUxe@+HoUQhg(s?49AAkryFE($ zEEZmk>=_7?2_uBnJ+aL4^bEr4zD#EMi&ur?enAoPJ%sSL6lR05{>{SJ6ywy*oy;VQ z0R{ucO+_}q8&SKMg*PCa$HFraR`-S>8<#Mt*IdX37^CvzY%Giw8)sr*Ci|L>!fg6A zS|_ks2|l{9KeB9ma$~<^;iYQ1W51>_n}Y2#7CwpW!z_FPVRd^cxOhn2kFdI@jakm; zj__s_;qs-ao4d(uY(BB-=58{ahaxXh5oR~E*ymX|8QIUWFm|x9Pcbl)HI1${u~%&T z;jF5XK-W+a{656TW7h}$?i($L(=|wXUHq|o5l>_I@yAvmp2FeF5%1687z3UVWbwnR zkniX4ClIG=WuQEVI}q>7@pBOG!{F|(G7x9h*8G0c{ zj{$uM6IK3i+ET{>#6AqvhGi;4M$k zdRWikE3WQ|I?P&-Ushb*194_82;kijXV!xJvSRTX#9w0clQ!YF%)6GuvB&hjz~R_s zdY|KP>@&U3QvB!Y>+zN5eVW5*J6Xlyw4Km?Mh7~ye%dMjrzJ%xcwNj|ke@EhYeBr3 z;SWgeg7`{`pWXlPI>aAk@CR;x3vp)c$l1G=<{-|j9XUJt_mPM*Ye#;3_+i=}?x*@c zrnP>L{JSWA=G7J7A$|vke}nk#9DW+{WgLD7;tV-^Ag#Hp_bhhfhU*Ba3gL z<-eA}Z+#ob-QJ}f?m(TZIoyu;A{O6F@8d!SXSVJ0HZXXf`{Gfjg2Uqwzmmo8rT1kn zgD1>OME-1w!=Sz%@iN36mAO+Vt9ZhVh{Jc%LTo1q*TJV$4|$EWZEnxrpb3B{LwypZx2GkEEjDR|ziC|-GMNgm=0 z7(C_l3y9ZK96q0xB0i15-?{iU#ObPSd&N5!FGIYD12zBO zw3q>0{y&%d=%42Qqx=75!~TD#qx=8mI(pl`v%hO!3Ay_7?fqaa{tjCkeAiF1^_Tbm zdm8rtn`TY7S}lj<{C^?z``<15{o_pkHmx(=V=6aErUc{X#tp^?ja88U?_5}U|Bm5N zLp^-$_tt-}->P4!U#QR5_tX8P`+)iEh9CVA>O&%1G=>BYLFz-Y6Q*X+yFWsGNDi{Z z>s;w^W#ctz^BQN2|J4C%eI`Y~hZObm5u#>{tv>=DBz0~In8O8<;6b92!!;!X5!r#H zOdpc3Fa2fG{#*JRT)D4Ehi{hW_|; zE)Y>%RkD|ce3=`Pq~prgjnbjf)4nY2jUACc0nziYV(7-7(VQL1k_#@!wir#c1VQOw^BUHv3nanoMJ2U~{s{QIR7tYbRI}$!ih$26Dk&uTBjE93 zBo_%J!Q(|GwTb=+IJ{KJ89Td9(%k;XA7MORz?>*xg2xLrVd1Q1+)`2mTwc*)k`=a^ zM1KT4UW}w&lbI9&mlu`PCi)}b@j^*hvO7_FDY~cbPDqD4<0l+RCPl#IrAms3{s=g{ z7|A|`(o4}epPffP@0oQ04t|p&;PIl8+C+Z@{9P!SSZ~sNwfQ5m!%OM4XC&6^1x)aF zshVT~vSx%+QUn}c(P9#!KoZ20iT`

    BmT%Bj+riC4rG|Hh+QxMNyiGE zDkAzL131Yo0?9O1Qk&?Hq*6(;d|umMA4x$;LKKWCF5o1Cn)^d0Md14<+BiWnD0ovR zQ^~@@1^q6No;+U;laRJOQ{cWaPfzc8kYn}{Farz|k^yKklOldBCdnG0+0*zVNu1<- zfn*{pIbR^zk4hHI>sr=JT1hf!zqwU<`?|rEZ|xmUue>kE3<;R$Gfek8s|4fnJ{+?{ z!1PfjNtci%y%1euw4+)M)=?C4_dB;)%|&}&)&JteXu^D$^Mo- z&0;d2GVe9NVQz*=`e$Mrd-Hv7U zRrYf{`TBQFnZ_UVMb2;RhwS5=vz&vS7SBDNC7!VH3d1@>#8B(8yT5UN4A}~wa^LU1 z)^NLFs{T_)tbMV2u6v?;guAcX<@(-r$o01CS=T>Z*SqGqCP8+{piTsI)tNaj+gX(lNdsY$pH2dQulkha{ms=@75i^5I^c*9PD;oAstS=4vqImf z23scsy6ogkmg*Ve%<75d%#jG|8JKZQqMwzB6d~KroRo9dA5slg*;`L12@k3UC?*_H zt4eu4R1L}z)UcN~P`|?mSX6NGqI)FnXBI{;NZdCFbKcy`SeSZqi&%JrTFAHwEIbq8 zF?Pz`Q(F4h2y6q%=x(ES$GGsJ+`}a7IQE49Hve!&Z-(n(_;NrM%AFSQR>iA zcVaXvQq-VRk5Hr<)FOC)Q4NX|HT;A{hE|HMkXUThr19cBXY6TYa~op4&BD*ACym|6 z!dQ8+>sT1)Tw`BSi>O=_Eh0X8#K1l=r)_+{SOPDRJCIdCt7-%Cg zsMo3(Xhr|b8rX{dmN9S@{V{K#6}_7`U{!eE;|;W;-(d_8h!asS&^w4XG@&7dH=sAc z>*oz4@rXW*fs4?=z89*5i_qD^9PvCGZ*#ADH;i1o%~FJ+zd*l1{1q&WPeMFKqR0y_ z)MCb+MK%}wg6{!21RmMgiU^Dq9d{H(xbAWa3)AkhkcDY?Ii7`ScbRQFtFsZuk6Js> z-EfgxwRjx#6Z8>ZtMVZ{i|gr7NHNeR`J3knorxaB$Ft2>4Q3s0s8J2ZPKGMgVCiJ2 zR1Kz1h6>eS>tvXx8Vs@ly~_!6RfAG0YM7%Mlu}VcST!i6qJ}cnpp=RlN>zhWDr%Ue z8kCBp!x{`sBHP*1E_ywCqp)GdzDi|C&Ek6@p+q$(7e@`3s|Mxbs9}a`Q0fWaB?(hi zgCa!@m#GFtiW;!(TA^d4{UvSb9Q=uTX@pI?(E}<>#%mPbufl{)d)K`xOxP6OjWG8f zd`m64Qu~-$EWxW9l=m_<#Hj|QFQ$fA)u6nvsUb!+D6dIs@Tdmm9Q4*Z)WXWM^lHBm zA5vj?agqwh;VWKVB7*QiWRq1M2xGO$;mZiWifod13*na#=K7>dS$HF|C$jJcgfC%X z+9%~8Og8>Nb}|d&a}wugVQj2%{a6?qUR)m)mY1fX_74birwp<%J!KLL(^K|kVR}j* z!qD*Okl`c?(?%8kH@(SP{NTh2_ScLTdBaLH1bD+pG@Q>ExIx8tjDZ_eyvrE4=-y`5z>YTVBmVzsx;NDI|Ch$3#27vM zJkNM;^i21pdu;AQ?lsZ%|8Cb2i2uLMRpJ`tvN;bpS37TVPIaa@^^QG`4#yJ5L`S0i zCy4NGvM;b-V()GH*7mmTVOxzY+t%HB3bOCtZ=GkAtO=I?Ks5exm>n2li7_8DzhwRg z%mieZ?WRMf=S;Vlrke(sOvZi2r;Lrp$&mT)SHliNE9BeHH=M8k0X+YY>gVfo^xbq{ zK%sTIWf}~&5HF5eV#3w`TROT~N`RfIq{BB{ zJ-+X7?7xC7#F1lGe2mIyQ!}U_*aEJcC>Pp15!UoM1zU(WN71z_T+P{}U<+Boq;R7n zUd`##U<+~SC|n2VLbB*7(knOJa?imBevo!Ge)#csxBRN!xj+kX>L^@=nkl{DyvjJ{ zz)We!z|fL&_fJ%*!4~4yp|X%`T64j1pamQ|R2Hb33$v43h-U|H8wsk{eJAaVE@3-J z*7-m45-kI9?x?p-<~}C9bF=JTkoKkZcIYVeKX}6M|iQY5f@S#P3{NdB3 z*W^{*pGmuZo3VUH{zWP`&_X;u>Xoels;0v!*g{-BC`;0h3uKAUN0lX1fh=+QP+7=c zE|3Mc50wR~K$iG@s4OHu7swLN50)0F0$Jkwp|X%WT_8)mKPU@Sfh_U=pe#wfE|4W2 zAXS!71+v5kL}ej!yFiwBflwBx0$Jh*qOy?qT_6jdASw$~fh=(aQCY|vFOVh9AS^9V z1+v5)L}g)JQJS>sr&as@bMa_t`@OQ`iarj+A%wC(6})(eOGu%@i-!zo1TPcf6jHeG zLi-CYaSJJ2=yCsoOB_QA7hY1&L*{%zLtZ{Y9kA_bj9+LmIGwXoHW6f zbC63~18_APZ?L5ca!D%#Zhz^C=#XWbvdtqcLjrPPC`7oLL0`cZFLFsMgZ&c(^&8LD zFHkk>H`o%#%98CD1hTP=ETIZyV>nsZy+I)BVP%0Tkacsiu=#`FQFF1fKovY{PEHo~ zju4dA!O8+vv$XyeJIF>Cmy@k0G|QUQVgpfyNr;+bAb*RMlRP4jw6Ky#1d?V(5;nci zY=TKGCMpR;?Re7`BPV%QAZcJF&uU5rTJ%Ix=?BO>gCSP>R1Pz>ONTmzy0qwsrc5PF z{hiVwl18WHm~{AT?bw`QU#ZWZKXNUWQ(n5N`O)H!T!Tz`nnUx7{E?-|l&9yl6BI?3 zAd>`_mub4{1Cgr<6E8j_xcJCo_TodLi(iDNCl?>m%q>p7|EKD<>tIj6wwSA9@?-jX z&cHr?k9!(Cxt{aDAO5!cVRwx?+uhxD%C*sTzw1iK{^xc6$N8Fbxijn>;q*9;IbL+! z?kI5#a#-yj+n=^y4{Q6AA?x2Ri2Yw;E3_qA&syKJHdz;1FR}V8-&wX;9_(Z6Co_I>dr^1R-l? z$_=)XU>h7U5N?vxR@V)J8oNqc*WVCd^}roemyWUE9YMI7pC`dq7-L0s;T=J^nvZgF zt31e3+KJ2^Y4}Y#b!!;LR~~7HcT|3)oz4Zc%A+h=5hFzv!40#Z5ZWn&gROL!1usj& z6;uQrW+@e+onbiGN{3lWMU2#}h+r#;z`^kl*{rQpdi}Qf5G|A??S9=&a_*@&BhX4> za1^diN2uEK2CdvM3%EN4vLp_Nk=-efC6PF6X?F-@VVK3r?hwerD2tP=6v)Cbiu7C zKMA;WjHPhT3b@=D3(9bxfD2y#m>SW zqy+|ER2HZMrKd?|xe-50@70kR;9FH{u!W4gs4VOpsmTqrz}Sn*0#!5lQm};#zNqZG zzIz4V)-d|wxGMx)GX7$9mkYR8b>gOIa+6yY60SN3AYLKEaOpVgW{~2UA{~6O>t#o~ zhiRQHAoUO(1Q4$N3F#Bq`KV9ILh0}?FZXTw*Hx6;fQ5h;J0WYX(+RfJBNtxmgsT~! z9c-yXE{w7WSF;ldw$vgQ1_6Yt`LqXH<|7w+{?o8CsOHyFprwXw4set~Qi zFRM)rwp4PmurKKh={04(K-vu%a_@NQRrO8;S}Isspi0v7RjI2t4csby@Qs`OjktjI59vY$@ktVOLbmS@S^4TvisSnr%1OGKZ7BqiAM#>Cx!p{uarP z+<=LKgDtZ;E^NT6`H~2r-oiVS*G{r1~e0rD0TpW`a$GdX>rK}x*L|*QTytE7uHmlpT~6nB&V!IC@EPZW z&PL~z&SK|9&P13yIOF)lvBmM6<6*~*j!MTAhvW!2;vkCPn0=dl4P*+u#a?5dY99@I z2`0d5gwJg6+g`G*wB2T_v(2#O*ivm>Z93}->rU&d)`;~E$PHLx9S8XZdRUE?FD!d3 zuUpzIcUu<0{sNc4N`zh(3(PotWZqzY!hDZ;i8*Y}HxD)YAoAcF)5oSwrl(Bzo31s@ zHBE#$h`uJ5@q6PT*m>Yt<3Ekp8|N9mHtaKOgnWPZ8kQPn8w&n7`S3prQG;~IVrmTU zi=U>#4oIAiD|X^_6lUY`e`DcX^{p0%A>s~_UmD@BC>wG_BYcX&Y{2yAEKGw}k0VU- z6r;#tH9p4PDHyYwH(=0J!ff7vVOI$=c>@MsC15a`g9~)Sut5h&GmIs|OlSmNj_`-H z{E+My;XN#jv4?S(H_bsZ?jm~!vH|Wu_TGl?Xq;!sQ6x$HM65 zi@S%yun!)xm$UFdgzsYEbcF9<;Jw=szMaCbDICJfSQw-G;%;GKjO~lNiG?w;FYX2k z!yaj<-N?cYgfZ2oy2rpz|+Uy$`cu<#W>bVtXW@;=p3K5Hiyv3O!ZVSbOW}%D7a*L)!pR6{vTzV# ziGiPd3*nIzp1Ar8gfC>_lL!xI;S&fCW#O9;&Oq4NUQ>baAQrw7;dB-*M>vgz%?PJZ zn2plz&%*fjjtj6bzPsZRSs35kapxm!n{^#+gS}apw!!mQn6|-QEKJ*APYN4nUWAu( zE(?!9xH}6EN4P5k&)9=-7lf@pB_2T7%fkB+jzgGBJR8HpMaXut@I-{I49p~+HBy*e zvids<T>iiPpT82bf<*;w?? zSs0&&Sd3hEK;$|;4Y3DVHa-opA5!>Srg|{HQorS{)zl$)pjARQ7 zV~dU5#KPEOW8Yw5Y_YL)0HtRW=B}aaRmsU%lIK`Bi10HE%p}ZRMF-FPicAc7he@!rc1762M?JNkF`gdq zg}(vT!e8l@++NpzVE4b}uCQx_%k4bsT;sgWInz1NX?E;$JmqL~Om+n9zt}&pH`^D= z(f{AUo_~+n=G(^DdRV`*zG;2XT4BwE3;`$MtNb3z9Lq(PSo3l7%jP@Hv*0V-Y5K(U z0<8L6 zvaqrafh_n_SXqZamUE{-Y3%}8aHp`cc7ZJCO*wPx<`#i0cvBeJ%`KX;$*tf^p%Z(g z3(}t_?UjQKOp=_aWDABK1zW+Hf)jg$tDO)i*h-x#;CLZqZKp>o=S(47&6&txD|M!T zljbkDoHON2VMBsutX8lUoGDCeC~Sxqa5--Z=*9`S;7wt5>z@*EId{q#NM){fv+cvCppEdp6^r?9eH1hU{w;bg-CS#YPYvSEQN zI8zu|*wsZdj62W@&J-#ORP8kgt>8+D%EHi-j4(C*M8Vb~GNSO>QkD zT-B-c1MEv9SbEl4K&~z7RFb*cOV3*Kxk7-jX1|c!n#UG`jHvaGNQX(%z{wAH&h;8> zoxl`A=Ju2J-tcMS)1M8L4#9W?1|@1k54K){g&<*qAS{T>8joBOekkVVBA3K>0$20J zn%p{$ySN!oZqnT%ZIZVJJS2T6M^~8C0tZ^hGOg!(;O0teqj{FeF1~l(R;yBzTgP5a@wyuXx}!Vk&J^ip^13rMb%U*=h^~@A6Yhoo<_SxrH+$a( z(Y<qiS}R8z9Y{r zd)$vxJi*o>SYGk~fw1Prtijd{t`Zj<(F{vUZXHOtOhq(_Dk7b)h$e%eA_ia~l!|B)R74tbm5OK*R75Irm5OK* zR747Lm5OK*RKx{@%T&Zl?TT<12J2QBdg%ipk+4ZSwJLC~~%yp}4zH6E*%XNXPi}N?< zzn$;FoWj4HH$Zg2MCUMPZ`eoh6lCvv)zM@;XxwCc(y`1@o`AwD49c9vu>gq;NMgH;Emkfku)*3J66^)u^s>kHP0t=C)2t%cU1e7->A z3gaT<71r~tW{4NqWqHN2(sHY%+A_sB)|hJS0<#at3|kGW4G$Ww1)qN&RMr2iKkA&3 zyal`Z{KlIs6Lj54k|u~9Azis@@QzZasuaU`G+fLZa?x-RXSnG&8b+`N=poQBj5p9p zx`DibPSRb#8|Wlm5@R4s1MnO^-mnu5=kbOeXz0lsD$&q`F?4DT{~P}) zZ@~UH{wQx4iBg}i1_&)h1Ez?DEB`trYZ@9b{ib4=iUv&JBpXIkf6GVgIUpJnkJ!r_ zW}#s>Z=l`DPR=m;S3Kea#=!Y>-eV1r-Ug4rl$221uORCT8a6XWkW4UW*u)!dL&FB% zunY}v@Pj~Spy^yLBk8I0n&h= z;W^d-i9FEoEMs^cvQVI*oi(sq*|xF<$ijd}tYi(4asdsGu?EPmfQCm|17t`*!y~K# zavY%HVb;L9>;B0aVAVbzaSvl4>+aF8oHfA8c{JR`8er`^8tz~XuzDR0w_}e@R-hxi zjD?RNOoN%qVI?@iG?)os?1MIc@`zs-PE(_CP4UH_~{HHX8h>L^097V|9IH-LY3)5Hl z6oknhHOQXC!ix|tLYQnSgD@sqb&wro5H6r>*aZgRd=|DNJb}Wn8w&6P z2oIq!Y?y)YU=~hCco6dl!tfnuQ@ogo7J64O;2rW}GH%%rdrFn^Vlr-GfW>jDA^vyv z9I(6%4ZpGmSj&cnpLxRyH2kFa|KHQa?1|}!xhAG4#_##r^MNPgS>(y{obUeLy~X{A zd%inIUjM%yV*1Nn7rWx&YyDN&6`%~h)7_3EjSuX(@E1Cu=C#>m|2K{_5Ux)>;DHEZH5Ez{e6>Rsv*Uo*YAP# z|JUe?^hvPq-+O=dDIRR29+qf+dF|CxZFIp3q&y`FAq8COVu9(Gzu} zs!W?3Xag?`I&c1>8mN;6o+04Q7hIa`WMQg7#04Kq^bRZ4AmUOVi&70DuIyux%b-+) zHaE~FyI5rIUtSvZuqf5w7E}ZEuqdrT#HAhhWzFXaffe$`Y!!Q@0J=D^!;3TdnQS zYytGvr zS2)=o0$Fgcu(CY_vfy3eWV;Jw!M(!Db{EKkcZHQ*yhb1k?iEIM@fv|FI9C{1*fCr? zBBKqQD^wP!nx5BS8}+TgZm5r296cfCENwlMo3-q`r(MQ zm*3+pxlQ(~FuFTMy5Lx0b$1GM`;%&5ba&`pl(v!V2YI`s{c?_jYiW6tdEFfi(ni>} z_wo!$+MBbIBp6bu$!)<-x|Jf`0IyrAsT*wbv$yT%Jm*`Qxvhe2Ni0|1SzcN__UVMh zN5)AXDEkPj&MB$#`Haw659-X=M7-+6(`_GM*(s<|>c z*mgcA3;Wt@W*`W(^X{VrTJC7*>p=zd}3%2#* zWFNTwEy1JKla&Rk;69wo$=7{wpsfchE20M5x^uFlf7gzr3AA-%Wr3<$+T^yb zL{@#!eth`hr}SNWs64cyS7x?Gegb@ zOJ&`RETL+KI0V~Von*fe$U1r1Zv?WAPO_&3vUXnfv_RI@N%jtbtd*C&Lm+G6WZSpS z&<+}JGqbWl)eLOL`2XE8?J-MZCdMRre)7EUX@+(F6Fhz7@Be>6{=Y1DSJz3`>#h~9 z*%1Hlf%yNma{PaKH2(j3Si7HW|INPB-fCZLFR=Huow2=Zdkog;kG1u*er??($N!Il z?Efd2?Egp2FPd*NmzW2dt)~5^XG}MkE;C(V(i`^}pD%tSXpgquw9N+kw1oH z**97QvT~q`@|_2z6;OliG){%c#vi*^APeIuT3VoL=kaT&VJeF33V|#Pr&!q)0$Djq z1uG%`*m8j^jHX!GeC76wzSY>Ge@hElBT;Z@p+@!DZ5#mF9Br5W!X zY-fj3P};*!2xOU|luQ-KvO_7t?GVT^Ln)amkY$HbgqtIfWrk8RRUpd_rSv-YR~ef5 zqyp_Ql%jPjq9(V)NQ%DXen0!r7rIx}ZFHsmO4eA~DZp4t)zuO1TxorDV6bNZNh*1V zN=C;eYNZYLI6pbGbD6Z)T2j5U_qS>p0_`xEqOw5E zmR>j${`I!~uSh%Y>~nw7I-KGUwsT`C*v;+0DCv1+Z1#sVr|ons1rugMZlE2;QnUzS zSvr)0z&s+W*@pz%<)M^1u|>Gr0e|f_hT$nI|Dr?ZLvbJlGt5lgbH_*0}uQF|Fux$y-Dpl5?U1e=oBUh=i2JI?q zTZ~+#${Mt*tZfl;l`7NbCbwNhxaxNn*^JCMT>9$0edoY>0ZCqwd0?~JM+Vy#l6r`K zoXXsDr7v42q`@{%(iSoqwB$?5U4Vrk^$Wt)(gu0$>U3#O=S8dy$R(8q+;VAsdeVuj zcK;^r8RH;lpt|+Qg-~b0ohZE|FHEvZJAZqta>h?jQEnY_Nd*H};8v(bE~#MPYR)MH z+vX#eRIr#^gWTxu)|$(6lG~~Ym$?}`bstI}kOc+T{3IPvUiS3js`#6+Q#;*Sa$995 z;TBFgX=p&t%*R} zT%xOdfXGzAQ$MGZ?0A9fY+iP}KsMY-Hdi})W?LCAn=5FOrM&F4;{w@Pob0sY0@)BN z``ZpruVkqMcEW)T4Ww<#9#OPzuV7?_)L>f)CoA?=UyfYG{j2TShTE^Z#jrycb0vKH z4~yv?WAU8w?Do9sY4R-d)OarSTL?Ad;Vk|t*)amrgm0(!=HMY`qszk!IV7Lkmg&AmA${3b@ypSGo zHESsS65~J;7BPm(TTAj#Y9VV#IgQii2@Q+^w%`2}kEr7fN6~O4Z#aU65N}wDhUu)~ zor^J4F<~-qz*wJzV%~spc?lC)!^R&lDmVesFJdKDZ2SR((Gv1-qk4y~Q@zuB3I?{` z83SMMtbwa{#=zG*YvAggG4S=y8<=|M4NSfB2BzLw16S|7fvI=iz|=cy;Od<>F!jzG z?!(rA8>KpQruv@qX^X=&EQ*0%;8-f9H{5V_4oc;)hD8G#(2&g~HtZmU75{8dNgTx%6KQQ7T8kj{ddi}b$gJ@tDz3BB%e;Gmpv*?A) zOJcNM!Z79>WNs6Wz?3!7*-11E=8kxy1r5wH8JLwhh9P1JnB*op$A?GY#XPw?BX3VkAntw z@eUYHqJdq!1BMf5U>EOz;U+Y6qotDPJ;D{Y)U>6L4p%M-3f&nr*L<75E01V^Nz%Cd7LoOPQ zv!$|5JC259jDZY&&~St`z&HmDhj~LS8b0C;^U<(_H@MM&J0-*ThlKZ_0e4yl0}0SU z!<&rMFA!pbh7GJ?#nnC0@CI+_fd)1L|Cbe4cSi#of&a^j#cR;OM&LsL2==1h7uj<_ zWC$LyhBsjM>V2L!;QPb7nlX@=36y$Pg-}>#Bn_K#T#Nqm41h0Ru7k4HGpdz4Q!PES#WNnfsOJ% z3+`z&uu=ZRzl??lm~#+cG8*pV4fKh+mp9NSid``9WAUxWQECNy1o(f^z^)`94qP;w&kjDaKyK|>yEfJ`4~7{?nnqG1eg*nkFR zkg9{EAv4jyj71%9?kTNQ4GGJrl%ws?D|9S+3uCCvojMthxQQCz8|Sv|Xt;qhEW`^; zXjJ_F2mToUPyGKr_jm4hVEsPX|F5g-bMXJ)0~!4Y82J70F*>6``M_fE**{{np3 z&u|QInCu_fpR`|VFSh$_KSQqmCffp7hku^+8|!BHey_5QhWvku|37RQZgHEBnAezZ zHP1Asn=SuE|9`XoYJIW(0=-Fh;Lqa!c`UJm_*)EQ>dN@LwdQB(ljMIAU!L>{pGPFI zgZNrxp6PdM<|neq zGF3A&FxWx8D)JP-ZQC`ufe!GhsHK%37)@%hgF01Y*@Zcp+&~97RTxolpsc5tbnLr|XX(BuZ%!KcE=7G`KtgYDF%0+m1}OSBtUJGfL(mQb}D zSUdHo5LuXN5y*l^g~|d|APfE!S_x#LrjHbfMhtJ^edK|5@TZ_Gp=xg#)=u3iP})kE z=Fxr}+QFSdWkuBFcG;T}^-kEyB$085^wnxPkWqS>FK)0M+$pN7Na4mvUy?3sNzcw3 zt_RzxJH?>vZlSqTWU!sOQ_Koia{@ouF1u4?zd&@?4DHypcJQV|Z-r6O)%M%9%ia`O z*P?JW;~0bO;7p0?n*Ne2J5yv`o5I!Xo08kXmx8V$Qo%<>Hv^n0?9Di86xE1wn?b!P%FQ?`xEbJ0iRvmhS^#aYQ?W zyPdjJl$&v6s`M)CSk~wMVrkd*jP}bGU97&ZgY7f%;*^_lBu84KI9jD0BwyZ08|BVG zu5vSu43M6B;D`QK{(Dd7@+P-WCtRi?mWnE38s93HiYj6%7DB0rrGkpM47o~0EEQD5 zrN~t(VyU1arXW|Th^3kp5p17~TNG69uw`ylkRCwt$m`X?o3!V1f30Ru-rN*}P7&X9cnocv->jyX}{BlD$tLJD!)- z-l#XZJ(tKv9|_sPAc*L1A4hbRzTq#p$?ao12_MnDE4^RfzA;aKq4Y7?oAj1n=|en* z7Z!4Jn2L}c9D;k1&2ho!A?SUxI4-zB1iGU+E_g-+x|yB0O#<$yPTZ9OuGEP;Qoy~K z zeHbfC{6m_r?LhlbMpj5A-~ZiQIl7pSVxEPa|3WdtW8yp~JR3a^!43f9Ap^kA?p^LD z-8Z*|_w8V}?RSq0uz`K9g&5*X^ zw6vAan~~VjPvwDQOvLM}^1u%Wyyj8)k@gLfr5)k^yWR|W)#4>~oUigszZ*~fJSwY* z>{apRD97?0`4?^sCAKqljHxk?%iJR3ys&w1qgKT-F-E~doup~vig2)^-Oa-}+}oav5V9B(?7LdN|7#OR-6yVW+t zX0*O%O|txKsev5=ZiU$TZLk->FyqI@YmJi(zZz~gjMCo)QvZMcX&jko^_MnI9BCSt zQ|v3Q373|KD(V-FtFEgluMbuDa%#%!s>{N@;`&g1d0l;ZX&oi`0{P>LgLCWaYeuA{ zEnK)TwJcO0Dl0FoFR!i&)hCJFfWauB@|8z)z{aS&uXX-*QHgaRffu|O6t_p zmXyM|O3K2ip}HEWZf^C$s?dUw0|pLAAC@v;NXoz=KCY04Cy#DvOzmgwIcWI zm{mM345go28mbNZvZ^a9tE+s4wbiBJvIZF_E3ca4D_&GrAFlKTvhujHS5;J|R+Z09 zom0Iatu|a24%L>3yEs7tFTFAZ1Kh098-tLnp5^)fiGs(N8XxNJ_iuDYSNG+dWD zx4yE1lygA(fOKDGMa|rhFTbHOTw7l1lMCh>Q(h5<0zZ=5*WxYcA2f_DDjHi+JqxP1 zC_Fn{8?Gu1!%sEUb>;QdwTpa#Tqqv=_0`l?*VLAW>!Cv75Fealc*=nEl=PwA7i-S9 zdK=BTy-Z^ZbMwMwM9Yr~~V$wz06$z@x`tkT)#sk6dqRTXJva7QbuLuGJ0(Hu5l_<(fV;qgJArF-9? z&ICm-3)dFp6%>-IP=B05E+_XI?nB zy0kR4sv4SHX-QdGSxGsFUX?}_9vy_gzRAVDKdUm3%}7sA9}YLPA{?qC_x-K3UY6cL zxW=6Nxu98Izev7J{x|kYUk~-PcuSx(Ig_$-s^*5EeU$ko&4rq%2{*uV=*y}I)z!g$ zEmey3zfh)C!E-I=CI)qe=tHiQNO|DppRqjGIvYJbtbH1-^ZEmMZeCHQFLP2>W>u)Z zx>By7PKBwS?JJxcs;vx_%4LNbjJC!)UqCsYy-neoxs|n{)au$fX;dK)s-sE;YTXl!G&o{Kofl%648evJ7_tM5benWO) zwtRW&gPjfi>MUqozJT%^`?5k+p|X%#v(+`>s?<^$g8$@RI4xWy|6dobPn$J6BO^R` zU?^qCpwd|>gEKOQq|BOKHY{cE;MoI*gfl{ehRhDb8GQpYQpQithyF(QZ`gZ6eoV8g zNw2NcH~o>V<98bqyI8xFG-hNO$}0PpW#c=+2Q5Rcx$>%Toi9`cy+@eT8ng@bT~Y@x zlk&Q<)VXz~<)x&~$vdRJwxMiLT0>p9HZ9apKbQ1q(C))!Y4Y7l8<0jitF-jAx`tWu zPXh--CoVsGb)*2kDbVYYhj&QofYbp>*E3|mVBLQPC0P2VkX9s@f;O1Wzq1$je!ADv zr@wqqsD3Vc4EHO0$Qy<6(6#g*WXR4e8B{HOgs9wc{H z>CiZa>$WvId?RYI=?@3>lM%wU6>&B`sxmYW5s zTX<0q45gNq$#t8yKsl-|t-M_RTUQS^B~)8hhZgx=Tw7B=vUI^!M2@_oeb9n@gVLd8 zOn{bQJKSwStfkk?rCm%}4YlM|wkQ|g47JcbkdZ)zPetL~TRE$`0xq(+z&Chc`cSp4 zlEDLvGvqD+{!g1*T^UZJMJbJ{%EJTsT|02VfMM`->}c#7W9?Gj7)&%}6;2wgoTnb& z`Ecq<;aaGU>Wb<)i+l^BjbN}ZkeQdsp8NmM%b)4*|CQpA`+GxHbzMDeBm8gJM7%Bi z+?FoAgE}K2$WIpjfF#@DiPa_UN6_wI( zO}+9aiJlaiCWqkJ4No5HGsvMlEm_rbt82Nd;(uokI{!kurTbXPfF`xcu-#t1I7OEAoQPH zM}C41r+?m*!W2@3{!r1Rj{4J1tw2%orKhH+E4@p`fPn*t8eUtN+Gw>}y?M|+jak`~ z)aIED-B+ik8OY53zu6#dhc7O&SiD1L_Az8-=S6R|JUk{Zkvw>!E66aObPsdN>*qGi zN-eFfOe+|dU7VYyjH8hU$NLt@-RL#P8=YormpP5zpkZ`&VP0XwEEp>L@U^6N^>Qx& z9ei;$`L;+Y4ng0bK78c;l~Pt+RTYLeVGR+O-w;l%lwY#sElOUx4GU6d*QV7&cU}r( ziaB9|r`F7^A?Ng^4~=$0x-ZI27H?%%nh8cGmyRnSJ*zxA;Rj7~!+$nlk;ihE{OMS( z=(7BRqCEMPkuqRdN;-KdKh;=Zw0fss@4e8JS(uesIg5-9Nvn&#`~NUD>-4Sh-yck< z-(v+0^~``mMN=r8QWTyO9jVr(KnqUEuZCA8^MR5wK2+5J9}_8=W$&#e#1uj^1lT6twn zg?yjndk;ga=w}k#MeL4K;LQ`RtAo?|;CrSxr;v;>zHB^C4-dS)v1@-*=IFd)80#!3 zhYtbvqccr2*~ta;WR5Y7Lh<$B9#OT76L^TV+2 z{$kVjrcI`?u)_W^!zsfWLx2695Uaoa|Iw5{#w3e3v%k)mmzPUAf!eC_#pDxNz3ILH z7=rMZ{R*`mI@4$^wsy%SZ{56b@i>`HYQJIDmGBKnzADLwHW|`Q$Ybxr|M|D<`oSt&BmJso8!oU?iYEC2Q)uI@f{!t1m367`1I_>ta8_;gLNeg2 zfsbGq4po2j(y>T>MD3QHbB#cwqB@w)yXeAA5#8w z^v;Qt49FlY#JlF|3D&NS=jL@WO(@9C&zev@NB)d1m<0`Pf!t{_^EP$9{7_}|b14fR zQ>boeG%zOxb2Z`FFcyM&xqA56RGUjhb$L~(GOme!SHdI~!3L%d$$(0FH0=^gilo!o z#^;YOnN&2nq_Cv8Fl)l3sgr6O7KG&~vre7v*zuN(Im`j$iZV+kPR=Qwlv|J=Jt#T^ zD=M#>=gX|CgPvV(R{@{~eG?nPP{!)2y1}`YzL32F&kWZ8!tsgYV8Dt;qZs$;~Ob8$C5IVIReU7l2wqMqaMK&Q9j+p*_I4Q?IG6zDQ0%j zWGLZ(shH&Zziv>LB}2V?F%nvZh|(DU;63(F0vE@`->e_E89KQ1#rr&zvE%8$zYtlV$(7-mWA z73DzzN+##$P9o=nPo(@TDvI&EHDmc$|Q>bWgssC7el~{(k$s}XChw$cu1HF zApR2eMvN&BSCrLZO-xF)_HTr|b+iV?7MH*mk9sQbc|i9VpcCeF>=I-ypy;Z6m>|b$ z9hYKBt7b*HTLa%6^3(;qMgQ^!&A!0WXL?qODHow-P>8U|v6Jhj-(D ze{%lG#-#r6I_{G<$C#UyT`-8BUEn98$@fNd@~%!Ezp4G;1@NI+4&Ng=(V3Y5e1ytx zWb%bn7Y^5w$yoTfkf)K$OUqKKQwF8Ur}Gu(lGm=JHkm4RAtSp#37&OpV86xwO zKCs9>95OP1ammAtGlRD7jZ@+33<~-G*0rU}Q_lnc-(I12?Sg=%*W@}sxpnCSz*`Cb zr=$;{gAdZJknTpqMJcHM^Z{wIZ%cL{sPbgeVmQ?6n#MH0_1wnc)AN)wXXX9Z>va-* z9QrlLycXNY+W1ejpjt9 z$p5Pa2A5~_DO6^@Q^6&e3XefrDd#=IGFDf?GZBtX6xR`d36yaNJTs~v?*;Px-$%Dd z7qcSfJWsBBjl0-wcYWmQ?%eIX&vDAp=;&vE)^^lZ1#X*XtmT%kElIFz-_7Q(rgf%t z<6^^F!!-uG{yDuDB>q44-UL3b>bf77W=5Jt8VNA_`YZ#MK$0cffH4>(OR^EMB_YXH z1W_iV(a1BhHZ&5pA&`#Ne9|;c6Ov|YnxteSG$COJv+p~Y&4AgQw7=%pG;Ncnzcfzs z|DWZpGk0uD?_B}ydrq+DE%$rZbI(2Jd(WNUl|F95zbcttp6A)JzGgLanj|jTP#l59 zpKgJmN)EwtK(!E&CjeZ8;PyZbhUP3|p{Chwz&6tt<<$c8uc|(<2ZHH;EE(;ENooZp zX>wVibAghq!X&G3h+kWsK6%`K&QSVnEoZRQ7{`3IjwQDxhfP^iXK_&uF{OoNjuRE; zk+N5{B?X=TxV$`1$0*2|kumiz(E5|=$_c9ombN&HfDD^}nW-OEd0+#8v6wIz1u)SJ zr=mn}NL{x#H3p9SPo3fGXxr2Q?y1-~ETut3P`&P;R>h$!ZNurvV%hEQBP-boQsq}P z4}%F{h!%XU!+dKZHdMQM7#UebhNfn}`Qv+w9D z`M^7Q>H1OsX+!DAIX+#7W^)91Nk>)54K{_*(Lr1!r8GVUt9nMesDmg=5NX1{s%dy^ zWN;8yeq?-X&~0f@#k$K>d%I&|l;2;`8QnQDJTkOP^M7h|4?VL`_J`7|M__jFrzS~am+T9Lz#Ty;MW1S*wB?LAf-sh z=oo0CsYEb#)Eo<)j+wehel&juvm|;xEPIl>zdjdB0S>b0D>QD;{M)q1`5wu0hTkkMWZy8NRCpqWZlq* z8+gi=r8g!6$8@AC(kH-|(LV5PD_cGS>FP@dtz|$5xum0^xxt(}2l^udf_q=!M z_@vk?1s-oG9bUD{*-B%5XZ_~pjbMO*6lofz#cx4P|8Pgbf6QfR?=oLI zkU8-Gq&n%m6`oZ(z#Uw^rDMIN7@CWjbO4%H`mRc?z$7C2=Mfaq@OAZQU%yr*kY51) zZsRugb%L}|30yekP~9814(02-v%kM^$@$wZ@V2!z*AEW1_HRi=;GfVTR8OK-?`Q&6 z{lwLyL&>U$E3T|WK|OzrC0@`8CO1F zZ-X9leC8HQI|DsXj4#54ozEPR|?2d(P1Fjbi@+C_t1>p zsTC`_;=N!(ibudI62b0;zC`RtzztxrgyQ#mW4(pPU3Tp__~i5R-u2xZ0gXZh47|HTJOKBp{MZdCjMM$ zgUJ|7J;JXupP3VRHhtm8z;juVKKpE6%a(=)z0JY6hB_V(3K%g%L&@>+xIWGsqM)%r zb+PqTQ-n-n6%#Xe%i#&&G@>_?7kuCdzj$O6YknR0g@7RgJ!^RU%&U^|9qXdt$&3xg z&rJ5MtF1Zj%x2)d;y+hGph%rji^)S%Ke*xw<|l%`*u)#L{xX;MsY@;|Jf^v#!q+k~ z%u-p`ZLWq6wpDYNfp^HNMqC9mjqYv1<>^;G(G4;>b%v*9Lqkh^2azqg{0HX>!n;)) zpk`?mlFHx#d~1$yw9>+X#?lZt>_J|mYCC4}YcDJ_m5Pb6 zt*u53vC4}O;J?KOM@CVRuOA(S-WeUFA)QLC*wU~WDs>I4Pp(dmW~@)XJ+{?)__|BZVk9K;MRa! z18xntHQ?5OTLbT34b)!C`;_#xIPW>k_-R_y|6Hm4r1}Z6vkW5$k+qDUrcd@ixBQyI zfi$6&Rul6s!3>V>B>oq?a{L8xZrNuZbHEHXrw8i($>4IJUQ#Px4 z0dr+4CC&*w(&@sE8v%ZnK53`_m`|loSnk`>uw^rvijrVFq4hr)jfj|)Vt*DFlX!G23Sut5-J;j!545z^G9f*kACI}@S1F| zjwZ&gB=XBvuuY*Ysu6ZICkIm(pUK9+bM z%3s@)K1uU0kK;xS1x$kD6Di7z&c@YgabSyrhpH7xbN(Ej%UkuHR{;id?5Y^43M`TF zYk_9xSr1lJU_S3EQ`RcighRn#Sp#gC7#V6Bi|V(6WoSsjhJ>wh&3$;krV`%`mTioV zHb!@)@YX8rUTc3pyhm^0OV`4GuEp2Oz)}n@Yj7ktj6uzSTOQxJqKBV>t2H{BLjMVF zSfUiw{HRZ`k?@1EruO2z4}VYHEOOA_}nAE$;voUVBT~(B8UPDNo@xA?hGdCAj-N z^ObO@T)}LrFPah{n|R$-n&EPn?o^0CM~Dwas~cKd8k*WVl^w7PJ8sG#)PYhC`@PrH ztXT~ugkmbq_@4$U>y|d~v^6Omo#1E#!ZaAr^~$8@VXb)RvE;Ikf}w9@n5qH#-q<+i zBwne&b{+L!Bcl=X1Ndn?Lw47A1UA0&rpY)YgB6Z7eI-yENWw%2D-{k=r9qXLYGgEC zZO%!xDKqfM42y5-S%M!Kx#By<8?c=sG7Q`I;$!6%%E(n<7c3t|3pL6jbV9-VIu_6| zaMustH87R>j)n^C1@IVo_|Q#&NmdSD3QCRdaSx#V1baM` zCTt9-Ahnycfgok(KO|~YPn(hBN~O(GIc=u8$*34hb5Q}>7Mg#|y|ww8%vox(WU0x> z5|&)OEX~ro6_|+SZT0P)&FB_Z)^{tW1eMnIMtDv)K`L>-#5Spfx3pS;wpAO)1kwr> zXzXo>Ks$qz#ngwXO|6|;{E60`)DN_uYDZ{VXg#X^0CP-ZLGKUbApn`FX!2L@5)I~x zZm8}9aUY3~MN#fq`bdMN4H`1rprO8_vmAxzp}T9PIVpTyZ-a1%gqO7^Ko}K$JXOLE zQx5f?hWOKO#ntEu;7Xbp9>?3;qN5;pcBPD0pqQpXi8(QeDKnJTK2#;DtRV4A!>%sY zHy#Rh&>)&oOov0z%uN`B z03(=K8yR~-h0+95UyGJV!xdeondC07Tdqz7jdBW5ql#A9W_(pbGmKugk zn#Zzo;W}kxRP>Qn;h6ufOPbo7kmmtJkj8Ro!OEISfHD#FBW+FX&8>|Qn4H=>BluOa@p2{PZ$t1XXRQ zg7#_#n%4x88rvtpZwGoOaLhnZheNS3*eVcLfCvEhm%;4M@2PX0Qf}NCgD-KM^6XF< z3hLv;xTT3R^-idQCTn#%&>mJoJ{LSyheMzoji@>8i}zV4WfDVb4|fEvQn5&S;RLLf z#h87Kah*B!V)Ni|!@nu7x=MAKJ{43dml<6je;CQ(FRicQzcZ#tx?w!;*s{4iHWCFw zSS()N*4ow7UQYAoN|Vs61YIwyi7P5$z|-`f@dy~`+cE20h-}qJxs0D~YTD4LkO;`` zQ4qZV!T}j21nFWbFAeo(y)NjX){va`M%b{_hO?>THHPWK291ph3>aXS#uCUxrBEp_ zQm&~{mVz9-_Tp>sHFyJAN7lEL9S{XTiNeaRH#rW{9qC;P*Za!KWw`9qt5dfX{L@X-!2{Ey!zFj#L2MgSJy?f<*nP>t!TPXpBOM zVzeGpU^<4Gi5F`qA*fWb@pu~z+7#%GYKNyD0=+nxxqQ&yV8#sh0rOZTeP8`bf4NfO zxmKG=&E4MmMC;<3hK^4=G04HVs+*fL6|V+y-2r61=Eh2er^$~3`DqJmSu*4`Z0l&P z-_+F6&{S@HMH9#HscA-NtncoKbZlvB+tgiYecwnD29f!b+T1TvJzA5|U_q7#4>jql zrJHm`sNZCXBCw^K({{kVa;ih{tsS3+rQ`k!m9vRwV89 z9o49iYh%o;gKFbVlMeV2h(^*MGY2`O8xGMFVAZdoXLpzZfiqNY9o@#br-6Z)F>YB0 zRSjeq(=%sS|41tV%4_kQYaSOMeKciXB!D(Ix0J`LwP7j5P*+3C3~8h^f)<9erCJa8 zPj%MEDFlXT({NuSs9#Wt_)J#@%o58acB*QXv(Wn0w6&>4Q#@fAq2&r^r3u)_0(&-L zZi37?7{iX^< zumIMRGnT(RkE>Q0GTV%UrL7W;JfKIbi7D-^T|oP8S>L*)rLn0|X=`t4Xabmx6`)J0 zD<)&9jQN2NA}w1suLt$!aC4HYfR>yPAeIay8Rm{BeXya9#jDsN16x9&qLUDZ2aL`n z^iseohWQ_3U?@mYCKRP?!$UDR|pvl&CR}m3bxK>rb!XSiKUj+?6M3o z4;`93utu!Y3EqLaiS}80d5V=U%_M+zW>gI4xDm}xatn(HkR zgdcz+SKkEy_1ZWlna;zQ)x?z`8nh**Hk4qUUTyBcpuh6>@HNizjZKDb1k;B37sPvj z-&(G5y$vs0i)6GaC#oyvhb>m|JID%1aQv74J>D=+5%k+E;!&~1i3-a=6P7-KK`G4h z8AvRy9k^-CAqseJcEn*Dm_FH=o>9RwCqbG#A?8O*14v`dxNme;c-+_yMhw;JZ+U>- z82YQ`(*pxIMSbHwmIC2{i&@-8GYE4yKGIEPdZ8*+v1hesYm+g56+w}sPQ~RYsrr*+ zsd06J) z(WcaB!d1mS(=KAy=PZPaXneYY+Vbi!$VsMvqIPO)MdYgvM@>nk>H-Vy9byia1Kyl?Jz+PCP znEMHTW$0-z4mn*bieebiv=BWkYSx{k7v9Ly$K^;a^bbJdcTz_hNmEU!`vL)zVgN)Q#Y)hMAQbqz=3yV9LpIacK9| zfyowY&8v)38$#fNpdimEuY)tbNcMp=GCR?==P(FqADrg0*6v%7z?7N|0)3F<_W__b zd01Af>PK2}!SJOjju{y2{}Mx(s?F%}hLBX)A8k=0z?`Ml>@~H9-4f@zrj5-lYZWF) zKu73+0SV(V9D-n`ahP~Ww$?#-0}R5H)dXt(FtY#17!797yH&q_cI7~~$|@zz2apfY z>9TVH7E3j|%9+4h(Cw|^kd;~{d14M5K@W^wozOzNm)X3mfkP<9GVu=w5rLHYbaAM{pDQ9Yeu*(r*3}ht=Ye6pFFf9G}4S>=6 z*p?1!2P98=UP2Zyyaj=g}rLcN&AiJuLA*$|R@ZjDP5Z$JB zg)x>i+Jhvw(a`jer$wZ*1cSQR&RIKVZxeh0GYl@au&SZ6!g9;>A*9atP59Uy4Zn=> zhLH)Lo74}DCWKePv8hRiA+$ZC!$e&+0oP@%QjS9|1u-2J68-2tAAx~{cU5`Co5SHZ z1ZJXbi7>n|rAh^&;qq}F`o?X1fU^XI72DuD_vt}(>Zz!|8G^kw*i$xfAbPGoo zFBn*eHfzpOrFjVA=Z|w(dN>sU+&bz9kSLsl5d&eGYMALidGDdHezCdDn1T_oP{(`1MVe*u21YFbQXOW7f z&Y3D4nY7e`^CH=5ls5J13}Jyh6T5y?5FjQ-l_2}52j-T)igIv)0HZRuK)?Z+Qy`dZ zE;(ud2Y(KSsH)lRGUhq6_fi|l-1~7!yDbW; z+1s(`DltgYfyYN6m_4k6Sqd#|9E|bQsp&naf2z*@PE90h{a-L9^p`vIdD(c|oZ}{( zIy*7H)oQM@hm)B(f>i;At+8-uFy22-))?z(OJ>isn0Me!(Ev{BDn(YV4>eF|jh;<8 zNM_GmCgT%z5X+=xe zq>;ca(aHwuC~JK{@8=||=w;`g$Q6YwidBShbS{5!qi4% zcFfi?h}h_A;;>f7b+u@2N10*BoQ3yyR}y({ejfK=PLkh=-=&R zMWb0F6I$>%JB>^SQbryGkF(PtAY*q%MiSXivs2Kvxo3Q8x()vS4etJb^hLS*|FwMz zy#F6!_SfLEMgRQn)!bj#daQFYm z!Dp&&FcR*nXKKE?|KCKuBi-6OmfijT;GRPhyu1G&B(OoCtORPmso&5~jj(w*6R^Ag zUyH)v?*Di9{{s(BbKQrvp!Qr4>IY0 zNcR74boc)wJ;uB_5}ahVV==h<|K0unny>)&lDq#uD-@r;1>Up}*8?b60~}a(rn~$9 zBOLbOQ2ROr6`X6QIB}vZwT#;m;9^C=*g35xUf)cH5eCdoG0jBn?*Di9|GWGD=^P7OF{)7ta%^Zd?caCz z|Es5E7<(VH;uN_1|K0unQEgM0!AMl259HVaXnGHv&F=nxcmKb;|KHvJ4+|^Rm)9m6k`wA%b{cuyxw{xxXGtlGg|e*7Hzm zb0x|r&}ttYV*hJHYfB>?z8-09XxP%;-qZpI-^50c&cpGjw9cp=a0#=gsZNZ7gUU!} zU+SkRVt|&c(=cI`ka-$*gVyefu(M!BK+yvSHDyP*ohSP=YsEbo8xC#-emNeut?h}z zx`&goDVk#ww2pfWwjsQY^KZ3dbWD5dO*`$3q3dpg#p6QUW3Wf{6JJ?W<%s(Jzu*{b zJdz8}p6JK(yS3m^C~j2mr4ggTG@h`|;B56c#@2;%6-{Th)>Il}twOm7x0>ry8XR3Q zY`GC1gd}o*4Ih#op&uXB+|t>qEYmW1u;X|^t5Zd$dlDfW^;13y0bW?QgA;g6!QfF4 zXf14n(=i=^M?08gokWP!StEA84)^>&9ERFSMdny)rb8~>^Z$s!hr)+1n9S*%Bd)v5 zyVk?+T>d{FH|O&IF<7(w^Z!2L^8a1_Kc2wI3pe-tKll7UWqmiCCP>~N^3S^G|G{yK z?)iUJbVz`E{vV#ClZqwcL%A9Fwg?#R`F|QC`2#~Z%5>PctRtscM+@)tF6&4;b;Np< zmMO+t3LShnpS$P(eQ>EqnKDKu|ER`2f5bii4^H-U&;KJS>7M_mo?U7=ztcVckIqY* zFCEZCjdJ<_sqyla=o?c*{~yesJCE(SCYG+Ni94-{FTB6Inz*KkyZnFHGm33B5nMSKL0Na1^|!$vw202!++e% ztpT?N+!}Cez^wtd1{S>r(w|=DDb8P-cYSI4kIMkv)0m76j`YWeqp@p%eo_|e8`>Hl zLswpVba-35Oj)axU9|3;>YD1BvPyhG-Eh+|mK=w@d{KM>KMa;>cQz$c<9PQ9yc?uv z@U(GkVq4Rg@j5&zQ+H)G_u=a`^m-6Bc)}z4Zx7-H%UXL=@iE>$*p(da8`+^lQf5ZR z8l$^XlmfjEH%C(A`aMkIT23e<=bMs4Ny;c^v8;2~C>M7_atum9AHsj=W5_D)3G0ZD z6BLzA{VvJbSHXv)L!63HuT*bPkoe9~*kO!SYm^{Z2GuxZq-oR`e4uVjGrdi<)(X4Z z+Bzf6jrgFpmd?;+ba)K4sy=V2-`s?6l=bN?tmcGXgL61q8tdB|BkKF~YRAFeh&0r< zbvC!Q@SEeXH!eEXXa1nMWo!MW=Eg{SQ+YQ`T zFEqApu5WHpYk|6#`RUfyhWhneHr2OxYj3pgY#A9FGQXo$RKuqFjt=d$=HYE)@xEky zn0o+L6?Y%1v}CGjXKZi+wp?K)^haUGhMwm#b+c?^JQahz8qs0yD&m(mM@L6ZiC||# zB>uaH{-PiF9~uW`mrXzw^(W(f)_yDKw%lWz^xk%uA2bg`$!OrC3m?mO1tY`0gbolC zP3ccB%`Xm~ri+e-_+UIXvNPF>1Hly>N|`f)L$6k~uga1ewQFkDtk!$4KyJje_B9Wh z51ZJiU0rj|n)A#ha0LfVT#F|->T&&_U(lTg|8p<52HYBOYrw4mCu-n#M|+F&Ps#gI zIQ>cyr03n(tn?1X<9$*UGCkIX5$Xb!MP3cz`eURo4!ft-Rh_0_;0lUEqu@GA)uMGJ zn)O~*f9b!ZdA<*8zxu&J+bch<73At~=dV2XyjrbxMa#a8QP>(j0`U#vsqy4+bWnl4 z1S4Z(i72eeP0cEE8LTRu-qXylWG@IiT3R)dCPzgw%*m zM7p=Ug8__U@lgoN+Q(a&wTSY4V1ENs#5lw<$an?f>{1{lHI{|xDf3gW8i_@FCkCTq zyCSfMJW9a?)h$Ts(7*^6V{uakp$?StT9QQ&7KsmQ)%MlIO!!zkhYb?Lw+BFUDRqa= zQluWtVI7^V?GShQUEH+5XmOVQN1Zjq5=#Fej$aVff1oi*M?% z@FOEve8+fWY-C4dcw(qGK2~0#j9ir!c>~_pqo^3+HsG#-snmBgn1gP>;DBkZ9NrO> z+C%}xe+u5fR>$D)N;$+DT_4{DT`V(zlv*im)oPdzin&5@6|i;Mj2z<+Bcu4sD0xQ3 zn8LoO1!!An{?*X+SP(U*P39~$S+dk*WC=e|FH5tuZp}I}+mxW`(ClhGHvkBm-5DR;WNU+=Jn;8UEj@lXG*n%!jRHAG(N!=z>vT4m3qERJ%|{6hl0S zI}#s@;?x4;$PiNvmfqEn*}EDrKs!!`_?61V&e7bJ=A`f)y?3b*UaT?U`%IFe5`LI+ zsQ)x%yM7BiE+eUlvA7!a8$R3?9R;bmD`mU_#WY4S<-`=q&})|iO$GGm7MQ>=Yxs*abVbp#*a%DBZDY~V zL^5WQdS;y(7IkVy%_2rIR3fz&h48tfc|z1maDggq3jU{>e}Rh;25pn^D;(mE)ZJ9y zUT&VbE0ikuYF9iu78&V}^d`r~6Us&FlvU8A8{1pAv|;FsoY{rKH(?|(VbQUYKu^64 zHD&WWzYgvhdIV|4#sm+!hNoJSU=n&ROlg=^0(|F^`mN0^8x=liQ>*3*NDIbFg|bl} zFqz$`LaA@S?A4oQCHTtRacLmKb1h5!So?*^x6`JmR5%10x2A3%-at~vk?}Gmo8qyg zt+9-!6u%_Lm}D8g%rqonop3>@vwcfTgK2$fdVWF3975Uh0GAo6SkMY;5d_90c6dQO zwdiV86gP&bNeRGnP%Roe9+e&&iGo)=7SDM)87#M{D)n9PApIb+XblH4&Ul2!9pD&I z7sc7a1wz5#(@jkqI@J)yMhe^^m1Z0yrr?Dz2r`GTDViZZ)cOslt&d^j0hZh}w_IjX z_uw^s?MD@4?s1kH!}KeZTroszm8GD%Tzl~~_!FeeNtpg~(gh*GH_YGE7jt44-X zu!zOKv74Yu2~$^49pAbIM}I?=Bvd~0ScTl_QbB*YQepL2Q-00uWPPGFsHQyN)6VGF zw)nUaN?6ZS+?co^hIjjxjgh90wzYO_X>W=cI+W>zW$Pj!4Irwzf^( zmDcx-Bw-Mlb++2vFH${PlhI&7j|h@BbPzpVEe$E_9H`r9EM*i&8z}F3E#sVH{DS03 z88D26F$iG<)~FO1!OSWEqF-9)`0%v@tpD4fmwd3>A~iBG z7Q>aIz5>f?5?VyjAlD}1ab2duq&seO2hfGu>pQA(4Xuqa^RiJJZ-*1R7t#&0>TOlz zp*B0rfJ4dQa_i_e#yt%T%#3l%I;d(O!>B2~d=x4Hy4b6>XzW>f-{WkG4J+ z382l*E#>iQtt$vIR1@7YLmEM7I0RLr`SU;39N-kfkzmoM016+zrrXAJ#oJoks#@hN z(55S!wl=kBYd;XdTCQ+bniw99_R-t~#aGbKsz9t@)W8{lS1|l<6y0#Cm0`j((uevb ztj_MXrb-k>aBZ&tXgQ0y*7nBcmikQkgQgzzY*G>~@$R_#o12?1is zK$1lucRcCi*35Vnn}<_W(aGUqFcGuROO4R{52nhL5(SR~zZdUgGco)Pje&{-6`z`i z>y-N^mPT!qAhf00F!(-|o8C`V!iY>Iw+*A(5mf+51yROFlz23j-~@vm$buVJ^k#sb zlwyaRO;?X&js6f0kv6%Xso zs2W&s!24KXRQKw@09zl946HZM*`OYypvFaGaWqrFVJ}Mm$QW7w!C^Ow-;N=%JXNh` zID6EXXL}f=)+*4(C};(={oP!@m}xatn(H&F0ZR;uTzwY+)NA9IWI7LH*6db-Xwa-e z+E9WOb+x$zgZ|3j!`C>=H<}jppcj~bp^vFamv^{|hnKBI;%3BBbE3LpZdNxADpv73 z$O=es{FnYc-Y`!Q^xG`rQL)8|3d=wfmM+Di6z2I1Bo@~W+%)D8r8hplBMwpQ^~uik zj0&DP3DV@5x&AfeJUlk9e=QHN8$*9}1K4M|(M)T=_cwt3`du*h_ebHdHS}TQF}O;6 zXL4MLjvKOiIjF^>Xg?<*d{B#qX$@{xp2TY*)%Ofj4EB;HNFVh9Hj{%b3WPR?=rN43Po*Rp7Sy)9i~Q_{o$=XH1EfZDHdnVKGRS1 zH^B`p&p7+XO!Ft`D*9Y)N(F?ca0SVUsm%(HZVYD1am!>9q2SCv# zpOKn7Lz~d%6MZ!ehA&ldG~plyyR6j&U^W8s9vwWGVWKxDtv3(b_?MZ5B)Bis+P%hP zw}csHebdI~mbD6V)Sx4Dz<{J~-v{djn0T1%#3zcTvYJ87AJCG(?@fal^lp_}b=a+N zn4$Dd`KB)#fW8D7j4H74a8%(o$ug;;(w`#D9eG%&wF6ZKm44mCN|sk8IW!uD)ln4K zAG=aXssOcJh^Ir|5$!l`oWx-)(a5zt&}Jt+ZH^+Vo%Mn;Lv`5^!$5T~3KIecOFJo< zR8*vF8mb5U3p5c}cVan~V+70*BEfWix!-dIH zy1-+_k*+hjCWFMzDw%TQ~ zb=|0=PDdSGc&En&7dUCfils%H$?WahqRC;EfT$_&<0Iq1mbEty#`x$QO}Ro1S!F16 zYAX<}{|m;1{&Giq_S@zhH=&l(iTTx{j%E+1tT1j$ax5GgjQ5Wdi{Cohl9^6;9BIY? zPU;@DtXv;zps)kh7-2M!LFGj2rfH0W>@!)+NGci(2zY4Z00H%NmmuG0KK-zT9?g_7 zU;x%zI2D+R?!zFpYjl z;!@RhXf9EYU12rCkbo*VsvQ(D65*H}n;BALmT`)zA>0zpZZM7oCKi6*ibT2|yv|H5 zTK`+3vg_G!UlAcLp3qI_W@DIv!j+<6$H~%jeNxSPaQW!>2@`7 zr#10~_jgwl*EI3$k+kTVc-9zkm2hJ%qlqqB$cCR6`*u)ob$09v7Q%=WZpUtRWVZmfx6pkt_uvIUvk z+8S8kpyR`8S<|fu8`M{DzXQHz!M2Ji_ElRnS+d+6-e75KfKA5Q$518ZptYLwWDGUk zTJV8YyP;k_RBAWZGrIOO8C)iLmOyvC;t(T+6HsjNbN7>&R1*eXm2`zY>okpfDCnFDn$JuERkg=sCBZ=&% z*(qo-Ofo(--KO||g_q{R|J=*10k;O+8gOgCt$_v9K>CZP`ik=}&il%7lYfzd?|pi( zWCg<7;U)y!YcSXsAG-#)6mCpvHzqZ1`UsZ677I(TdrRzjpzbYhD0??1^<^6M=`dr{ zI}ywt$yF#7pgZV?G}MF8puiehFhcPe4SFm=*j}IojLbgof@79K@}|%mT5t>Np%_|5 zFfWh=BUU1HRyYe`g6_fQC(19~Z5_qe%CZcRJ>C+|wQOT_R6Aiq%cL8}5zYodf{3=;8(9t7Ug8f) z9LHKZ6M%vWxDgF8v?2tZG3`RCL{_vL(GV-fQY+-@%@NTMxc@Ei|IR}NgyVn{R!?9? za3OH~fENmPsZgjPEf@(J`qazPJc7N{rUZ?BI1qRVHx8(~Uk*RAp&S2C-`E1v6t;jH z|1VXhi?2oK7UKwt< zW0lRKoC%|WtKra$P~e8fhcTzgx2uM%L4ky9NBmoj1f=deG&9CBsANWRL@d)3NFbSk zI%|Ds(QoZ;0ik`5YQQ>cWV(az{BYy{x$*xvLZHeU%5cZR{sVMqs~z7otz+Pnh#vgf z+_SAu3=NBe2O9xb-1vVGQCM-~|CvHNE<6q+tp71eq!zmAgBgp_jsNGy|7&TaK=5w- zKVb|TJp`V~cBThVv<5h|M5c4&|3x_LqZ|LvjsNGy|I1>J8d_%th0yW(z+{@+9#C{k|xKP{rV5mJyCqZ!Z~1r5IHb2s2~Ke zhy7y^if|a>)$B{WUukyqUTO04vMONOnWbt1!c&Oo7+#E}uSQ_h!v&%HxLr>b z{(Xqk156(p_Jei~VnjO@Auu|eD+=*rAY2k|_re$nbkb{8IB)qZ=vaQ8a|e+5fA8XX@KLHv!fD$y%RPwA{1su-Bj7oTE7Xh*;J0I z&%r)2l>(hjhEj&P%;9Hu zA9y|i1;F5FrTDuq+20SRR6}r1N~uyw_Q8)N#OKtHjnHBg#YP4vhK9k50@`TJS~_xq zx8u>B+O-hj9)=y=!jVOH)yS{S`Vmyk90Rppje!bhQK=uGic8y#VYhL{30Kse=DGQp zygz)rm>d63l@T0XkZRM7|3`5hlZM!*`N5FA-O*0wg?yYc_jc}(BA@5cWF9m?R0WQ`G{qi1Uf zZu~!(nj<{@LgYU;{vT{UT#m<9#&^czqZk|f0~~*3zM{}Z{1M#f`98-Wu?8)jcMOtD zN^FJlKPeCiRL+Mg5Q(mjgMxh++PD_C;9p%$s~H%CMu(|d0GKRAnd9^tr6 z77{o9pBw)#1?!jWvsu8p@V-Ujwg%P`27i?ui92hIxbgoCV+74pV8%3plDYB!YAaxg z1&dC>yo4@c?UZ-4xw5?g&vv)m)gs>Wq3`N(K6H{h9yI!)(ZALN?=(=xY-{B?I32BpWv)$e$TE z<5BjvM$u@N_+JqJuQ{)y7x+)vyZaBIM=0k;O+8c2Wfw1VRNdOiGKL1QvDIMN>< zj>g>hf5~wpj#!x{NxIxq+Eml36>@M@QxaH z%!rd_)bqgur6u7^StCtIkdwuf)nHgg9^ocrrM0D@sjV~8+=vfqYgevbRb!5Nraf<| z-`s?6l=bN?t_5PlWHRIX(W@N?d*l6$0Jv(^Ip>&j*VwwbzPUxM1q!=ne!8`_p?>|A zP4(^F+8gaVTSmr)%nQGbzyV8L}kJZ&5 z9Zbbd57DpR7jKNGfTY+L9pJbg2x4x1OiKf`KNdwmccQee7FL1 ztvTo1)hk!loTL3+U86^&Cdx0&o%Mr*-i^%)kXGY;%S)GDuo)P{{yPic>Zy>G{KKVm z^_0s3cxVY-JLl(gOMRfI?E(_qk5M4dXWC7fZDta*3Qzi>w zw^~I@WdYoymOzmOaJQeXp3`Ij+=YSyM8zqx0PdjVPnMPZ?UejUvXZ|IrEt%QvXZ~` zzyY7H=LA{F-%IN88MY$5UJE*=xH6N0d{I{v*gR+wU7Ue!5EBSAd zr1$4a-fqMG4K!?FuEgy&?ANJk3S=e!RZ89`EBU|11zSK;La2MWGXurBYrzJ0!Hd?$ME@^1C~*7JE! zRsK`?+wy%5uK#;B3d--uTK~PH;EJ@1l0U(gDM9Tbei;2;xFVOyg8&JD9U;;t58@jr z!+gF-t2_u2HBgEcc@SSyD{8Ym2#{#h+?(VFf9XiLde+EFe$O(vdd`!T{EIYd&y|(@3)FMYk(K=Ol>BO0 z$v=l4t)5k~l7E)!ex3H^ z?LF0VkLRQLzsvtZ{t5?I|MN&HGAgPpXIAp}qL7PREf3)FFkO*d@*p0=GC(PI%7b_m zEh=DB*&z?&5w)VOk_YjyT8asI5D&5SF)}U>;z4F1L{jn~9#DJKm^_I4nJ5ssQXa&8 z=zJ+GjEu;G*p1B{8I}id4*?9x1GpQ9U1U%m0P!gz+vNe=i9IPYAP?XU>P1O;0JjrB zLLR_v1h7pW0MRxg{qg{AK~_s7E)RgH8$Erw0PLGzfxHokt6 zu%CY*a73cHlDD6Kpm0F`KamT-e*XU+@*l~Sy#4$GM+E#FAD0L4BlOlpdgK8BPXtIb zAIk+`zXg5(EpSDy5JGMZ4qy{2i5Gt2_WA zr9`&K0{~hIG;*gr03fD-pzFv5V1JnX?STXA|Nr5!rGHy`QOR2+pDZ~kd{?-u_;5g*%TuD_|(h-g!Y&9s4D zfiC^7w20a7C__ z2k=xeT#--819+0;>NWBJo(M~jG}a+e~>kE)2WUA|AQTl<&cXc~@FQA-9?G-Q0pA_PEWI??RSQS6W0Ix0&*tNPz50 zi#X#pQ@#Vak6mdIUEF5Mw{yxOrnt?NZ{yk!k;HALd@E9iy3!(kxXqMr;o1;U!)>Pg zGtRS!6>c+SpkH`AU1<>^+-Ax*qiMSTi=b9@umvWWFGxYn=H$rv6Uj#oLtPH#m7!Mrpzti7d z_f-1jHnH+&a*_j#}Op6Iy~b^!c7|10_DM$$wT&0jj72z?$Sn(;wn z^g-S|5brPV>fq9)hl5aEV?+TwTnu0;62{JKj7Xa3?T3TBK-``*vD-xmxkv2bmh2YT z-JK?CyPWiaVc3%9+hIfq_DcZsN>7^j@^aD#j$R~9ba_$w_G^g3IYrXMmzRS896jts#Ag>F z*lzny#+2h`w$!?Kic4BI2&wO#2P3pNMGd zHq(B+hOVx(h_P-n?Y&yQMPzlGX}_lBTf|ehnf9x-bakag6m^?vzoL2mMC^2%X}?@Y zS65m@Ot+c#OUvo%N{cw@Hq+j7K3!eucIQ{RFRr1hD}9;sX}_S!lQ!qme!haPu5_#O zX+Os@miPaE^XSrV0{?$s$<-ythi?ye7XPOB^TpNR{U0a_guWMQ4DJv9S@6`r?!e{# z-}}GpUtPGTaI~33*`+h zNusOE!PtwoG}z`nNwjr27_VvVLG*Pw7_VZ_1@_S-ZHbYC@d|owii#qWM3t9=@v??N zw0SugFKKl}w01cdFVfEVNussOL3n}Nn`rHF5T55U5UpJf!gDynBa=tqTqXzMS)yJ} z60Kbh!ZTb3qP5FGc$&*Vw01cNPq7Rvme&qXqWK{*Nwju3Wq1PZn~_PPwaY-!O>tz;KslP|9<~<{u2xD zEbJ`!w}Q_VRQjIEd)e3L{gd}A-j$wbJpG=${IBJo>(KIlfyqQBiSwD+vvBi`omSDd z5Mg+pN#aY(LVz)T;6QYec+(;bJ8iF(0!BG*YmZJ6gIX2}jdY(cI!Rn=Stxg+JV6v< zRm(!TgZ+rnN!n#13k60!w+pejWuXAKg;9vnEei#BCg_fgP7=FY77E1U!m>mriH|Kp zabna1rzJ8;ylhzr7&dE?_}Q`$fHxDJB%Zbi!3n7X%o&s^#MqXFLHy3hByqPz7*4b{ zgwTpk5{Fxa;6zPP46W!SvAJbo5ce}WNxW`Z7{CI>5l#$mSs1|8K@8%0%fcYGPGpi; z-y#erdKIu1qmwlvjqczZgAeV|&}MZCdKH}{9=NC!PV`(ljx9P#jBr^PbS7JLlGx$0 zFo1c479Qe>i!hvMaR?q1og}`v2*HWgAa+w^l9=Nn3@1tf;eMi%#2^6jT|7!ft_!E9#;kODeEZAExUT}o(ro5l| zHhA9!?*GxAAA2sz-=F`<{9_lma6hciqLai-%L((GUtnCxuL8r%>Kzo@Qgxy zV_6t4a(fW(SQf?$=sk;068~5h1_jTGP7)7U7RGZt&WVpK3*%YFAYQU8jAwY96F*rN z#?v^9L??--EDPf)oDZXu#8;Mu@g&z3@s?#_Ji*!)@t0*`JkH~sc+9de9^<+qKC>*0 zN7+tHyk=P#k1$4yXa(hz{_`-m`DU3I53$a$NhSs{RHBm~k%<8u74!{UDiecPD$&Vi znHcwRIWCcjaW7+Rl!-xH61bzFA+n_bKn7x5RU^ zr#=5a^1qzF=CGFY5?|_`5-|`Du}|fYs}lbmIOe;jM7(I*X+Ml(y`-djO2mk^o%%zl z?Jil;Jtf*zVLNs8w7Kpn5!2ds>JQ+o9N75SCjQzAyQ?X-cd;`Mesq=3%MVw>XX;ZYZ?#Uf8*&_vBcvlx=vg{B$5z*W{JC(zcUp zV6k*hj^;|)POgc)(mgpMBW+@>bWINDO50A209ysu{}p-PKXzX6|91O70UUrI6mEh& z0N3Yzzu;WoUf+l>&-<6&GS6+m0eCBa)Zz30x~D`$N!vo{J=|=Wm}08+s`&&e^fkl> zO<{0~v&c=k>G}u1x#8y5{iV`~mGx_mqeqZd+gw z{|;9dB5t_t)b}$pqAe7}xoRCG^? zIM=q*-pl=4#J0Ab_G{b+MJ#LEX}`*CDdJb#PWu&ZOA)WycG@rV*b(umZKwSbp1RaM zC1O(BPJ0iYd(}N9;!xX8`$g_2BKEZHv|r$~MZ9U-X+O_(B4SM2PWw6TCnB!2?X;i8 z({#G0L@a6BX+MK!v2;(JCPT(Pjc3zzPn{|w?Wb6toFXIbCvm~lJ$15-w4Xrjr+exo z8EHR`e5~%N6J@0R7|-)3$VmH9uJ7Yzr2Po$Y`FeEJ@41WrC%yNtK`9wt>J$T|5^B$ z;v0)EE_%5r3BLa?g(`y&!pVRC9Qd=qG5#C<7Z<)z5gfg*TDS` zd%opamH$|Nw?uco14$>Qm`!S3ejFm6;NdSn)WCudVuwgf@iqmyP>*xe9WwqN2nUlcwc@J&a=-%}&gomJ6m*J`z(*ah41A z0C#+5I?IK+AIZpxDJDG2g}M(J5Q!<~JDdt4Wg}Mt}!HFrRM$3hwXhw-CW=PA0x`Ru_L}|HDw=)#;rR751hNi{D6w{{V zLP2B|pD!`R>}k1Bx1cLHF~uZmxlq7gL3aXksRd9Dx)XrTl9*ybwE!r$VQb!M8nIjY zrS}qi^R}xdqxRwhAWELF0 zOuUv0MbTLjQyXY)Cl?CnDCo#)S_CLMS1B>oxCl_+Mful1)sPFy!2x^&4&e21hRlf*O#BAa9|2|&--(S)h{$=>O@RH&m6t64VQ?xDg$IxGe&J5lYYzzED;OaoB z{|5j0h0hhn3VvVk7X@X$JA9kG@8#|Dj(NSF>pf@W-=4qGfknDwNhGG3UzjnraPN;J zT|?WR48GfeX{Nghpd9HO8Wi~2(Nj7w%?w!Ca74%P`39z$6e}A}b?*;MGf!4F91w!I zGMPLp8xHsc7^iMvn)$S{;fOc{Qh%C>umU(o2f>#>LQXR;HUsM5FF>)cjM-<1osm&X;edF4XAb}C$n zDJJ*Ig?g2HAhUhtLcM}c=)@G0f8|2GjQoPc6tjWlLcN4;F8yL@dC5H`E#ddV<6(dC*NUr(9w^!p`lrw} zp_1U=1z%(;11yGKf#le*eHo%u(!%c)o>TBd!4ujdDgOB+Kqu}A7RA(789PDicu7PPG*UoXUx6s--FfC-;ISxi{+kt5z z-_CKcH&H+hObZ!zj)T2{_UVCXA?MC_zk&4@|FJ6fkn< z4osiFC}7W{(R^Tf&7y!khkn+9>GKu^>{*tL9EV2s;_eyTW;!s zM>g0~xG{WSnuFrV278jFK1a!s4fX`GX$Gb_Y>sTO$Jv2XvnXBvF&@+_76t54ZnNq| z0egh2v1(Dk9>$V|^LFQ*nb)L51%j-xYaX-v9LemABIKxTiP&zw^J6zY3Q8 zz0)ERl5-2$+mV?II6Hz%m*!hLw-BVdW75o47lp732ko5}Q5Ky8 zxfiwF-f0n8(K(RaxLD|&7SR-)1GxtmcD>Ugf}(REcjE-uJ1wFnItOwWZZz+m7LgL2 z1Gy8qOuf@0I-+wRci`~soffeJoddZIOM+z)F$0~0xs@0?f!=8mE6_QZTd>No(nO3v z=U{%Ol}5w{bPfi5zqqxgcUr^*bPncbbf**)^iGRdfX=~y$CpbZVgNb^^J6Z}C#FU0 zKZ0?@ItzZ@0|$Di`vgjcb7i@S%hEd?lM3@A6qzVAd!@qMi1d@f!rtkqR2bS3?D2eJ zS`>!HxefqsW9$H;@H5VJfbVNnCW^S^9L)Flh?m}JQG6TcV7|*%|K4d)Y#ZlbZqO=C z6xYT%7;+4Iy}i?-m^RMAfJ+!XGriNIcs9<#d|T@RqF6T0!F)@T&Rw}=fFsfw9Kbj@ zx8?$I!UgRArdDNJq{6^%Wpp?8PIpR$QFkf#PIpL!`MTDf+oi&&yOMjSFOv%MRqoE{ z|35SDUymsLdg-|(FP03J_`}}`uPfeLoGLCU`e9LH=$+8jp<{wK2R{<{$3Qx8vi}Z$ zd*Qzne!6g3!F>hYzW?z3W!}HS$$t-eFZcY`^I3=ia9@5WB>6$TdS^s5Fz1BCzSVHW zXPC`-j^#iBs1j5nS^w4y1KQu!H3f~y*x*Qid^j3A)QJM#i?lzzGa@RdbH(|&Dko+{ zG*0JW_T%ar*4Hy40;h8@?^V&&J0l`*ItTM^HC??kBHE^NFz-~-)jK1iY&r+?_FB4n zXGCO8=V0DCovz*)5p&Wxm^ZNp^v;Mllg@#>f$iTrBjQRr2l9FiT)i_Qj-+!Sd$}Yc zZlrS{uW?C4oJi+DUaf_zcSgj8bPnW|m2maWh&YhWfxKJ?SMQ97`{*3VOUvQvoe^;! zodel(K3u&sBDSM*ATO?gt9K?KRhfDLr~Td;zf_RtE8yy#DU=HG9E#!InF6UG&+<4C zh23$k;h#AJuHG3@upQ?>p1uIC-WgGxDd#|*!d>aTGom;?&VfA1)g_AH;~dBnH2qGC zV)r-)@;H)$dZ$HEdz=G#40oURPK)C8I0y155+r-4KPh!EKEj^BYovla%x!YDRFH>| zDcd`}ODf2NG#ICMN(FfU!;|z*?~n>|Kd!l$|G%fW^b4hBCAXJs3hxi^3>O!Ft9W(M zQ$?Q${YU6Cp;Lpm1}_b~8yF7+z;Lv(@UgRS!+{{UKpk~7TUl#KNlTc49NOyQJ__9#-Kii?vo z%;A)briR{6&M=8nGTOszU{B64i&HY%Lu_M9&M=KrGTMV08dEDJqutN_pP7}CvF^i? zC1;peDH-ct^ui}+m{%zoYd4pRX_b<(?m=68a)w!zlCkdQzQLqQ$yj$W7IP{kV^JLb zpX;Xm7FP7&c9{6y~g;L(xX`G3xTc>TY-xb%96|F^rOE&L08 z{r^PK$3p)WnhqTwyeU{0csY>p|Iz<>|LKKy7H%qdw_v;=;QNNJ#`{R#Zf~dO7oMv; zg~0tUU(EG?a)!BO89f^}YdX`jwUB_YZGQU<^CbmX&h$793wk%w1d=mMoD|?WTQ=b6 zVCk4YDL`|!bTp!{bWEfa;5l15Ak$#!m`^D{bGCF4;UC*>`wUYnrQ@klBa$;re$2o- zc-;MYOAJ2*TELcL2Bc)H{b;92&M*y9GS+)Ya!JlG7g93TyId|NL`uebhgZhTij<7? zHnOmjGfa(?jP({;Lz6Sikd%zIkNXDGBqd|L$>n0Mq-3l&aHC;zh6$6Bv0mrC!K_Ki zSbKSVF?CWh)@$5eZ9;7gbP#9e7Sh)Iud+qHbuqABVGC%>Vqm?@Seq9E>m{y34ihA~ zZ|q?#ju9jo>qQ>R91Tk{)(c!N4n`yy>v=BMC5zEFo?{usp@<}x>sj2so}A%GM3S+d z;c{^xBFR`!bGaH9qrIMDIp44tSWhBlJ2|s{F|eLsk5K($U_Fldd^qpEyk&W9YfC?0 zs+8PZvOc^g+*|yc;>qHpif$-c9eO0RHTX}#tAoXXZv-m+yZxIA_Z1En{ITG(1*iIc z4Br3eydTeN^Zc7<(sOkF_wv`|x8`T`Y!R9{ z0>DD>9#!#nGT!!CCi@)*@`5=2OSN(m?)F(`{YgiA1WUPnmg#@e(H_Q;wSAU(fYQ+( z!rkKAXPFQv9gV#4+h>`yCmoHv@jl=7S?2Fa$GZ>v3G|d1rt(S0yH~?wR-be{^2{UW zfC+vAJZJ4x_pqIcnSKH^XVwy$OacEqw;q%Jq~no~9(v~t^Z%sd-HDbD#A7O;bi6w> zyC1UxrQ?CWp4*QJg3|H8lg@ZoEzaBy-gLI3PAm={9E*VEOU{hv!gF@CLv#%EVWk!a z4HyH6Hnuou5Gw=Gu3Q{6;3%MdpF`$I9|yow;BmmwbEM;`K{S#x9861q=WM@(lM=8t zIc$#r&DmLqj!Hmp3CHh|j;BV~*gnI7e5B(+m<^U<9MMNQ9`Gd?k3;)N$0N=JdW1N} zj{wiv-U+-3?48?kNfu{&C!J@2y|aID@Zd-T)>-0@9ly|1XrD4*dU1!f%8J zi~m&o`QoyoTZ=Y?_J#(6e++&us04l%X!O78PZa*4@Uw-d7TjF0-uJSv-}`&-XCVH6 zndfd#Xa29?{J&Ed&;K8t6|s^RO=X=?n(1H##fg**RDi z^76-KMGQL!OQQzjh|Y@mbqy!x?O5wp(0(x~42*sO?G=OB*i#osxS&oUZEoso|A49gM@ zKO-IOX`W3v4vloQr&v=cS{ym~B-dnUanPRNxjVQxXpgfj2`moUV_1_M|8LI`rC%#u zUGiK>qQn#aMtDu}p5npc!lG{#tqr{#8io@9Z-5;DZ$Jcq68{hU>wyDsRpAi@Hx@Md z-uCUx+v7XJ`vY&CXRl|}6UhG-vH;%CD>f@)CpoxYyAS(BY*xfEbP(k+oW+hfA~q}H z7dnXZD9ZTK(%7tsTj(IpBdEKTl*DF5yg~%e_s+=yMQdH@A(5%jY1x4wwE=OD_Rr~$=hMVvhcQSRWfh}e1#qJXy_Tfa`A6*!1O zJM&|+7t2Mt75R;^*^A_&0Dr*ijm@r;i$bh{=&UG`47H0hUI^d{#AZeDV;pRIU_Hw#}k_sMWt~N-)L(XY8G`#Lo(zmVaE}I8R_nF#i+}J@I(FUL-yE{h9|=`@6cPAwC$7jqFVJdQ#)j zv2prO{!snkpm$@l(mNQB_bo5=2mFEHFOCh=P2|V;Pu;3JfBv~OKmT;yd4C8$ar1lo z6SG8-%z&oggC264<>hIR+TVu)slnPo2N(J0t zywZ8IM2XBq!!RQDI;FN##QPcVXMBIS!gqF6-cR^X-Kw_d|MPbZ=hvMVpIv_Q$(Nse z`E|3zl+4To#ul-e3EHOWz0P}`@0a)Zj=3c7R{m4By6j_*Z*F_KZp~l)^v&JBdKUf{ zn-#Gc9h{#jPC;yTNUrqUk5=#4tcbhlU|HT{+nk88=pf3wcoJ-ER>V_u5ak`V$cWg9 z4x+q`huz0!MVv$jQQpGi*<-UJE~0}d``7|3Vjwz*@+R9cMZ7}?QQpAA(POiHa!2Ls z7@avb8%YRSFN%xfAj-=;Dn(JD97K5ugLB7b zMKO0AMA?JKx5s8h(RLg}d6D~=D9(<9C@(OID8i0|D9>|^iDK(Gi1HlwF;P?<2T`8I zQ1-D|Q9K<7QJ%r0vtzSc=wBwPq7^9l#B8t>th{qQJ!GkvRy99e@p>~J>aBc9Y!1n`n{#X11esAGd z3abhpD(Le4%9r+?n0JHsZ@e|0hdo>Kf0_Tu{8H!F|A{$bj%BS{U_tH3qWXa&jyU$+ zBmWVXX^At%BA{2rVOH&%yV@sBtbk?yS)4+(NDGlt=l9Ho+NBye? zMjTCPU~p(a>D|Q_X<$Urlm_;2Y3VUzNByS;Mhs19U_dK4>8ule$zVI@h@hDpY@voM z)tdAmcKjnK=1ASebu@76n(DjOed>~bzvSQh=7>Ql26w;?b3e9W>D`GrqE3oo9I(RN z7YdbZD*7W4F-$fF1nhbh%_k;YBvpl)eJ?9Noi2`V5x%J8H(tV(x8BW z5c2rx1mwhA7-v6eP-4qeY{MIU+@hVH_wCL^uGu`WCJ{ztncRrLZt? zy}ys43Z+5;Ljg+FhEUt)3UWeW{n<6)15F`+coib`%~3obaZ@?aBao~B*89FW3gjaV z2G|Pd`skbUN&}}J_%8KbnwX>bKw=mNdI69Lpl@%& zZjhLz&_L3lfKdQ_8+M$c$B3c=iJ=_maTquN+h~@80ZD@ak3Yju6d-9Z5GJ7D&VoA= zv)APA*ba1s?_yW*evaGc>fBHcw9gIdP@UZ+6$T>$P&e2q6$YID*gk!;JEX$k{(mS9 zuK&yO-VBs}sr0OppOmZ)KNh6OA~X%E6fdTlb-VKvB#eB{0aY$E11ZIxuI-U@H@vGb86wy{n+{H z8j5QkF0Of`?jwI_TlL7}-%iXC<1jb0%~HO7;)$pKZs}$&B@qvEL)k3lTWI7u`VZ8W zYujGC{+xd(s;kdG>aV}*ui80BY(#0$`%XOZjLMVG#;p!@Yk$@9$gf)NtE<1ezwOJj zGl@B(DCUN?S;22&+n%UaF!2;~L)on0H%>a~%&(oMAicBh+%?QlyWr3M^ZvD8Tc4OC z@?vgio27gm+xECt>_&+>VlYaB+I#G=r;VTV6hd7&cXn=V2_WzO04@=(*Q_x8l0ek^xBBca|MK_ee`@C(#kGR`Sus@{JY;J<|qVFZfKjb z;RWo`%H>?a6n`i;l+6l$9-&V88I|%p96LWHmRSE9=%J z@!C<>&~jA&D;G8HoTGq5(x9J0FJ|~P5`6U}_-?Cfe)O5d|2^p=iMdk_F8FMAnp+XBA`?10_>-}bL5e7>;1;J*q!U$D$~JJFIMEyz^Z9 zpBT=OcDsk&W<{g@bHuun2t}S$|Cs}GM7$FNInqI3Pj~U#p+T&|fjQ#eNd$xA*8|rV zUdUiX!;=VhJ9YiN2-ZJGY&sOAq3%v~nZ1st5ez@h59H1B$Dr?%W+jnTZu3U8749soH4dh6n zAR2tZo!%W>DvCZMvA5#}aVS;)9EG2e2n4&g(Ih`GM^U20K#o)&xO2fl4GssKt|-`z zL@;pb`Yz4?7j7$xc_RjMWDMhmZXgp3%u(1IF_0rwcmwf_p5-c}=rwky3$A89PS*TzziQxI5&_Z?F4(R!7&Lc6H1GVB!dBK1|)kEg0cVqnEdCtqf zGrw8J@_jyOUOgwI92u(8g6&e;JpZ<$R6Vf#`(z$kQAc^JtNriqU;p;-+XJ5#^3e?N z1)GO7@cqG{?{B;$4G$c+`qM&QngRF!v-ckGQ5IVt@b+HlJrF{N5Yh-qKv)P}ItU7i zY?2Mxu-Oe;0zrbrtFp-^>T9p)^Q{3mK%Pj~E?IHAKzvJs#2jrOJyb9Y)sY}!Bb$qhGe zxVgm7%vTfPqt^CRyLO2`By`6<3PZxr%v<9Kcd~8U#7`1P?lz7{^W^x%vuw(7oB~9tF3Bi`EV5XRfU{Uwck8sblWhL3=9|mD$W5ra< zsGlBfCx7K&$qHuDnFtX`_3+2P0F;6I9H?Qk1v+TLR6 zcHFY|&u2?kFf-9a)TmWF(xOHCw_ClADweEZ=A&^0JB&lHkQ~&b7UE{*o2$7=!P}plZKD0-h{HHdD)vZJqnVyGvHE*;hhG2&2}V#5Oxs z)K4s_KD2z-gl9@tFj-eP4xRULGrJktT`pO{B0rLG1lx;2$M$)&LlG_)wo8HQ;;7BK z2PfIiGm*~IGE8&e_{(*}Eu;FjO8%co){+&3;-zu$sK@DUJgwQjHEQZvL6}||2a9@! zf3JP}ZtD}C!rluhCe4-|Zhq=i$qK^!(l~0=D(*5En)hx-{KJwJga9UnU_0@1(ryLq zIfMtMaj>X+&JN6B>G~j<4T3o=1BZ-Rn6PDe$qGUb(>Qq4X5Ef4!DgALX~_!05)(tP zZDjNlqN$Pb+vZTs2xm+T!M30o&A-tOL#SgK2aCGHY(~wRJx*ruJjgFy zxV^Jwl77tRE1JJqvZA2rZ&%bEW)lYNG;dS0=EoQeIK@p93@QXe|G$^y*%sjcrCs!^+6x0rMK3rPlos zgkfdh@qk%JVBVxKbN#GLI{_w|EmHNXXf*sM-_OdhlWz+G1S%U^M z)dbsxmEOh!2I8!+^9uXqs0%BxjR(lf7|D>AA;?@mD}_w}iK^)#wu&*dd_OBujfWO5 zk$B9%Q46b|m7+#LaN&R1F;%q~OP%ZQ$oLTQuoPUZjYsnH{T&(yh)Rj)afZ}wMoZ=U z+s6pxpP0#^UW_1f{p}hDiKm}_k(|^|M%5cxdqiovY^hS==i;0EA#_zMsXo!oy4uLjp6Mrag+q zwZa1g0;mw^PNEpf#X(k$Bx)zp`S8K4=9r4FUqqe=VTjY}7`)EyXC-2V%?y{jiKPB8HFe|@SD8p8vJb7f zC0Y0W>@(kOU*KnD>V<(`?$)vT7J=VX!WoE9K?Bwk>to#=AmogXM!bX&Wd$U=Kk*X zvoh~^fF4du8*Lh#Kr~ICt8;%h{XWaU*Ux>dxn=YMKPv+-4D_EEM4XHv(oUw&@Ow#9JE;GET5Wzp9M>3T1ZG}xpKm8^!>*egZ#lBlCd){mHkapX#fjqf+NvQie|b&zX|Z zZa<5Ch6m_-g9p!;J>ntcj<)1DDk={?nqsjupQe7c^h>v&MN-5AbQd`R{RLT(gib&| zerD>i)=%a8S;RMCpqD-M>;&_kNgInR%LRTG=}j2OW%rmJxE{znhu;mD!bd!$S-$v; z+s|UY2}8T=iEcY4>-7Ge^q7>1_Y{7ZWw)fwuUY-p7Zcrn7UvBQ&~11Gx>rjw5(llo zpIXaRSuG!~o7Oeo&tkg?1HJ6V+ltw(eS2f$x&17jn=p{eHs=;hWb2eo%o$o~jM=pL zu~~Pz{VawX9-y1C4ZGb(RvLpx?f2f$cA{m3ez`Eu_hQ@@L`%}x)x{Ve_(9$Kv@Y}j{`o*81pzWtFkLlzIs_a`^~^}Fm&@(xLt zg_sA9xqeN9Ty`gU8`ET4k0+W1`IamjlOJDuv;~IhyGvFX!2eG$J!{G^ZZ*y`oHZ2d z&+3=yTLb@Jp7yZTuKBO#9!+2MM)kF-Z&kOe5|nF|S1V2^dHap3>Yly};orvN^2_RUFdPaiz~;uRc9NrH!&WS0!JBk6fDgnOH8FYcz= z75N=Fdf0GWI>}q~ED)S;@{_E*7(zjo07fq0n6aOv$;A*#U?(r}lax3%5SOk`PSh(; zVQUrnNlF|Wj7wXs6Ha;hNje-Gh>KRQlHKR!R4bAW#|Gn~6&w#Ehh+UE6)uKA5Emfl z>-;3`ErvjF_M8Hdl(!fH!Eta3WR3AG0iSZ(M)P6}1n0o1MmNS7=y@7|Eb`BdF%YC0 zP>l!~OAI>$9L+|c5J@h3Pc!RVh9B1iYX9bdx;?sM67W-TIMHgFAag{ z?ZepBS-!qYh<=RWG$!V!H*?n&uXG4aky{rC$urfgelq@!4PF7!wdYAng+dW zyPix=9{NSvDU2z!w+vhKk4L^Z^RwGOv1zo+w(E)9+-a|l{gJ5H@BZe`ykSkX3>g1- z-H#(J)c@Z?`TyR4`2VNIa--Jpgdsz}OMipzJKYLh2kk4`k(wjG0Pwr|E_E-}o2rS* zQ%a9grFck@EPq$BMLtFLxon9{FMUFq7K5OD#8;M7lhmjNgIm}iz`@NLV}EgSqXg?8 zW8$5@f_z%5Np@ch!7w}HF3Ft;1|QdIlIO>U!vwz z(`vP*tBSaQs2R!oW5aRL>=a}&l7EV-Nd{mHp-u)J_L6Fn2gruvV#E{VLc8~A_b90* zNqaGbJ5G}K$dQtgY6DJCF$6n?<4l`^x|LLuB)%AeeT0Y0jAtnrN#=_o*oUOm$SLfS zYLe6!L$ITm!mFA>H6zJ=F$6n8Xc=cyFp}gKL$JemT-8KKLQASivR@3r4&eb5qZ&0U zswPQ)Y%ng9)jG1ZLl z)5Oq>`%p9UVG2grX<`WWJ~>W25W$N4H#crZE;KUGY7dfmkh?>8qwYstHTeI}Yb}~Xnj-bj>RNSI)jHMH%Hzs~ z;Qv1Y{{KeF+wvK*v$ArTR{Ef{Uqok}V*y7s$rozav74s4`HQ}Bkavq@2FS=!_u^`j zHOGdFaw-bKk^BG*{5q;h_8c25%I+NmgWjeXFZ(Zc1GuWBnk3M%0Xb>+PB4P*s3wVX zY%osRk?a7KGN>I%nqvcU((Wy~r!RFDSCizqn1Vru01}hJmA=&^e=Vk9KmbSkB*|i9 zLvd;~V6lO?QZ?<7B!7(!$EnRAPk8Zd5FT-}%TiKH_>CnzB`p}4wF%%R{U9@VOM%%Oxl2uF3V z#-TWM4Oo0a*Z2v$hNHS?%;5;9gOd1N#nn9;hvU>efE}Nqcit|nYEF@++@7zouR=G_BQ zF=$UDyfQJ>3KB8shlMcAu%S5hL?GmWOxc@g*C1RoY&cF`5YVvUIB5pN2()_;8k(3w3CSkK)$L;5>A`uWTD6Ti)I-5pqfN}Akjr3*Y)El+ z>zG3UqX8Na&i&=S%2CZssp7gR@G;qrH{l3& zR5R21xWav+Rx6Jxk02ZZGE@7w0-n}rbkntv+DrkN>3v)QPZ= zI5uQbX1X6&z!TVIn$HVr$j-(Ku~A2nuoB$dIZjemz`w;V!_2+os^2kU(0vq+m1`G) zzvL3PdLLw7Wxc5j%J9n{B2!D30pEjepxX8FCX@7EPv|KR4!ZGy{N)wc_fW#^E>_ zas#%TV!TnZUeZ%CE7$ypIm@))xNcg;J zRu&;2h&Sn{qOh8kJIKdaZ(!4FAeMUJ!n|r$)*v5EUdOeO;l#XZRtg^<2-x4CLtY)R^@iAFgS^%1im8!=_ z8zCV;>YP{2O3~v30$U>(_L3c+SItVz;{zfj0iY&jjITc*5D5QMO$w`Bje|tDfKtCm zav49s=>@+n&X@tcK(e2wQJ{I%rHuncIqg4Bb51q)&Z}mz%MX1-ZoC6TX||_HPn$@4T46Pd zzJ`z4Aa4M|-nRvTSoAe~fFNrCIzn1-?69b7__Pn?35#vXxSDAzg1F`n0obb$*Oyfv&ezc76+KYpn`M&g!# z)QekMem|7B^v~6QuJ+cj68`uAe}uPJw|<^**IEe2%+r=J`orbBemVEcId2Us{f`gu zhlG!NYkfZMjdibow8XQ-#O0`dVqiuc;KTuMwm7_YVMwAeCYlDqEdvpvrCD6DB8 zv(9t``)ns2_F0@!SV@6l8b+}rd>A`Z+v|crtdu}LK!?cH=f4DjSP6lAfDYo|4Lc{&o z3)^2s#$D(dm-8z<-79~s{I#&AMbp4h^vZn*-0^%+!{$u`MWNyQUJ;RCb-b0EyZ zvDJAsEHWJdC`#{mJIz{Y-n+0y6SMZ&Mpj%`2iu25pu@*(Td{qb!?q9p6xOiFbNB#l zAuHlp6lh+JvT@Tz**=>Q2>&UpQ8W$`<%)O{Sz9DhZ3=7TF$3C2BA7P^fn+fQ+CY+e zKBGXG|KC-zL1nHmeQmnIc-H7M{As9z+y9=@XXrNSCTl;`&expR{7qw2KcMcRTB91S zd|x?R@tMLY|3!YgyqWA_$p*;%|EDw^J?!}ZxN2z9RmP><4WJ0IQ6>(bZ%Z6{RbobJ z5YlVw->`n zHwbBvRidY6XuR5V4T;zk(l(`OaB`h(d(iRg=?rC*rH45H5GsWXB5;Sp6}+$1iN9NKxhd2?7+rR`L-uSzcKy6RYTce;?QRyI!zHNB}^O;$(;kr*F80q z9Epj@w+B6iQ?2|C+Ln}!hKb6zEmzUFzpI9l(!>D~BH6Sp2gIwtlCZY&byp3gr-_4( z5Z^`}JvEf2hKb0x_du{4W&#LE;!KbnFUty%Z%+;7tcio3kDz6xZ&5udeGL*MEwG%SKaHm@hY#8*C>9Qqv+RP@-O<2 zC1c9_Kb_CZu?(`^-s|N~v#Yct<1^;-u0 zX58`e=}*xAPn6Ut%r)j#rj@2-<2vI2!yAS?{T}@+-D%wd?RmKU;TO$9^#%29YO~6( zYM~4$6^c6)YWZ^6ufY1RkkmvE0DLp{>DbKlRp)uQ%rVQ}mAQ}1g(3#?D`sv5=T zXZ^z%`t8!41ZXk_w|r%A%jYavU)=uKlIQ0_HE8Bl9I9~$<3veG_2NXCXBfpz6 zl^uT;S@I^eC^|HBBvgZPu*9JnyD&~=JVNH(;m1nX9V>m+GH&bc;(vF%+EYWRSsJYc zzn0&LE1q^FAI?)l8Cv3ix&x=#mNRL8qeLxnK;4dag}2*DQ7K`nl>@N z*=r+a1~h}a5Fo85bRYfjSy$aW_IpnarFMyf@*A)g&Cj6nt{Ten!bIh}ZSgL>4aZYM ziC&n9e77yulkhvqD)H2eZMu#5P0H^OmaZjeT~7_AeTjpvZxe2tOhl#r{}~0u|NmoJ zYCLbe+3<^Dq5gM$wZ66PF+4;5V?YVc{q)9;exN`=J?@4{7Nxi`VDEn7nPgill(-p*CI`KU~NHgz2IgwK3(Hh|Aa!B51xEN;<*BARPtfA}|OkH_nLdq7-6ANo78Ae<%$zfF-HZzerAB`G=pR0MQO`C-G+y5-I0VV!u6qa8boWu?1 zRz)~!EP001&4$!1maBi8lCfp`-#s;y6{OKx@KgRohYsD(cO`*WXnD#L(kLuH)?0?ZSv2MT z+i#=(|0#vJ7UKU;K>Yu8qs6e>FhhS_U#R;|w^*mp)@oa69@X?#zpTzyZBPwTzN;Lg zcwaF~zE?g|c0zW89sL)-J^W5FVLMe%$w#uztm_}&==l~+s^G<;}G)&SlJyB zNYF1AcQ1~y_IZd46Ra}OqiL0S^zWd`dlC}*ly{z~g&)f>&4J@D*A2If>f0*$e8)9ZHP`R;av`2yOWQV=u>%(LxxkaMRGlG!bE?sUkQg$Y}h`vR2dqtSZsH2ijQ z9S7OY^aUt4LR@gSVKkx{$#nAtC{;pSaJOQEx6Q%9?h8<+gt*{tAqOvi6DAqTl+Y+J z&yKbk6>j!8`F`aAf5F1-oh_5}V?JNe{7qkg5+^iT51t)u6XDH#n;M?-Cd37o91S$6 zC@!T@hzsrpa%A)^#9bJmtO`tA-Y(I*lsMEEpacs{OkVCuaQ0r0N$iUIsf{V$LR@g) zK^wOshj)AdO1BUf+_wq+ZyVaSlzoAT%e!sgqUXPnd$n7F)kU4vl?bFnZBxqrz{KUZsb|JC2B zm+Jy>_g{^+h2~*RbM-^&uBr!BiOOe{LlnCe*UP__FO?f)kIIt4|6ebi5~Z6SGx5>@ z>-2gAqKixP!__MZqrz!yLwjH}!{Ze2IJKer2|6CtJ?#M&Cje(OA*dvEmIhc{3!H5U zp&i)%PeNOk23QOLobkd!I;8>D*?-P>kBGh^9bg()t1UU-Xm1)Zcc*2M-d5`ReOP7Tjw0Ei9lNy08l(h$M$OcDSQn5W@SBqsLX(CZnp zg*d=MRsoi@-=Deng!6%r6TACok7GOB$6COJTCa7kn)QA-<~Nf8hm++#>T z*JTspLW47z0z_b*4gL{E#9CI8vp2&a9%ihVY8my@qwVCc9P|a4+yP=ecsBTl7`N#0 zE*fB2fXN^r;_{4A97V%-xDEAhZ?SYcZdv>1v%Ub6P(Z8zPsNYmUTUk?QE^{@Nh=T= z+{1(o^H;=$9>-)C5P^C2xI=j4wEZM9#bl8rfHjsOX}SZy{xQWDVDb%!_26mvgI&80 zNJ)`X!!ub2VuO2t9JwWQZ(w*P@qh@-)9@bQS zA*o2RaM&@m?AX@1FT4vCVKWqPO#=z;F_ZI-ohs_b;j0fV-!I24&TGtfnY)|TnnoHA8Ve0S8vKS%`WN&=bo+Ex?f2T-w5>HyX$Gpds;^Of zsj5(El@BTVDBe(vlkb#YCpj<8e6>ykNhV=Rx|!o23W}^VTe35-bm6+_SWy-Gh5mBeZA`I zRh0o2%L3;bY#>L=|4wRb|7TtnS177ahyO;uk|C9z; zqzYmB@@V6C$TIFl+QKY4g)lrGE&MjF-dc|*eL9%WWZ9Vf_}Zf_N&_r9g)n>``o4wB z^j61E-_ih!H-R(Wo8%nnUW&&eNZ^e31|C8)kVR5yfJKGC8SiyM)q6M9kHvw&8Sgbb zc&7V<;<3mMIODA&cyA(}J;0(h5b$`7{#Pj@acO|XWx!dtwHQcMleC}G0E@MNGu|4s zrKyIt9gDAkGu~>{Pe<;jEe)`k3OM6I@CWk0;j{?OEi8%x&Ui25Myb3E@$3N>7lDAs zt8c<~9v(|94X_voIP3Nj*#!PK>gEWrxCSU5#?p8kMpVNWP&kBW53ooEIGgeX8hYG%C4 z*w*ljp_l#{eJ|Zhx)kk8+7!)8niTbV^-$GT)hOjwQzEWlnW!R#B zJo3evpDSxwEDK@4JWPKgH+R~rV}B&3?{|OmXWp=;S_X`Nyza-5mhxH_{XiH#55+(3 z-aTV+?=E=Y0XFa@&$YSZ)-9E_EdGHoU>=Ge&&(Wu?T}2gxMg6k{PJG;f3xH^f40x> z@4Qr5%i<#7jDM_uf6L5VGx7aXT;-uIZ!eSZ6~%32mL0cZS=Qc{L*Nq>y?`8FeV zTn8P`^5tjUN0&TM8DQ}faK`^IHFe|@SD8rUst=u@EXlg}XP^0Qdu4#dQ@|PjDC(az znVhuAxN9|7V1i}PsxS6WyCqN=U~v|3#y^7kXOARgYMFG^Wq`$9 zz#0E=TH0vS-~^(7`dpp+yXp5?2EKmoW6dq2%L6P9gD`v^1OHHZ`k1AI%TRwfUnK36 zcUTIWnk*uNFkl`7|DeS(XZh3&GUJ6hUP404l~d-H23Uj!VfZ{Y-468XHE2@?In`Df zV38Sw;qlP-gPfeH%kq3=qRW_Y-GMgVot8l(I4UX+KAK{&G@qt^w)D%&0E-cUGyX2Z%lZZR!iIQRA3rno zSnH=s11xrgFnk^p-A=IonY6L!7L^BB%m`t4JUZGATv277!!H_qQARwZS-$v8Wq`$w z5C+Vnqix4jgx684lSL=Y})+TtUD_M zEDi+D_?xl4yWK~YPJ>77_ukNUqGg1BxOdtUL(u>4DtSv~USV!)y2qq7RvLAN2Mpcy zujq4in{^Z5{=Xv451Qq0|KG#vUaGZl|KBda245{)`Cm9`|lmS-n7?9@&moKG-D(luy8#xaIirNH~x5Q zX^KcZfFUssfD3}al*=F@|QV7HY5(rEwBxMhX2P7Oi z#mTQqQ%l(c8er1<@o>bjyw6KsX$tA*(lydGGTR@rmeca!$C9$=w*<$@N8q^C;esC* zoUT&UQbvIWb!koRqvKW=!Uib~NCUFuWa$@!bKu94e0=s>KWLw@q&}N-;3~zcDoHKn z8K_?qa8&VTJYF@C50wv9+}&4xp>8SsSo)vt-R^}qI$6?YTapfMm{D5Gq8$ix%Xw@= ze5zJUJ4ngKdU>s;>99YK{iaV^wKB|v>-^xSw`H#3AM$?%o~8c(W|g_x+`{y@skiYJ zW3FMlVT%4^eGvqcm+F+-yR{uPt2F)9>(s+kyH(dHPblXrzEe~vWby#<|2NBeL)XfU zB4!_*sJE6Lxv$?{B3xK?$%BZ}n4TcFM7&Suf0~6757^UcwWh0zcoyiM(sUFiFy}A8 zDag7Z|CH6zyp(u=o}}KQ@^x=5r8i)L;zYn2g_qf~ACsFnDrn16&WL!x9w(_dB*WZW zOX(Hj0ecL!)uvEwDa%4UU_U}4CgWKOOUV}E0sA2twd4q#x0Z4)!~^yyrmU%^P;Dvo zLOfuPVB6|uQ&`Ht5D(bHNPlS}1Zv(|O2iNk*h83>Zd9YTWwn%#feFibVmyej<~O~y zl$L=B$$5r4Kn%Qtwku_2hzINk1eSbzytR~*As(>%3EAYwR9i~H5D(aWsIB=hg{2G( z@qm3FwQV*KVasYM{{j=1b1&YD6QgN@x0X^ZFd;ej;yr}#a17OyGA%G+IcvH*s3|2` zU_x@%^gYzHh49s(6btcy-9-|m2T=o4Mg=A;X9Mq~ypG;lN~XYs>QqO*3e_ zQli=(4nd{7LOn(Rd z|JRHo40{aM>QCxRbl-#juLl1=0sQ}d;QtR-?NCitex$U4|9=zs|8??qvVTZ6%95q8 z{IB`{<+bx!c59kA;gWsCAcF&teZxjKL0_sVB`k;!s1QLeucfR7Oi=Ef305Z1nSR2~R9;Kz3*rMz4gf33(%xN5c?_7q z+`tk{QGYRJif9yq2;WFhRMuEyP&iOAE0%Y+Fii5FcPTBn-gMAh5fZ@*FUM zxwkEZv~fOm*HW^B_<)jtHiA;dgZO|#IGgrjN_!9=PzYwz&mHAIV1jb*#Xu(kX$m*d z&P0h2n84gS6U5P}wv-Nm3Cdkt7_BgLU@?P3hjJq@fw^l7q|vlPQG$f{fC@o;cP(W} zhz}^_0#i*XT|#_79}3P)ls6$hpbrA*5ZMrSEhSHg4=AuZqj|lxltG~ZsCYRf$H3#K zK(>6BTdiO#Q!%M#_A8~ zXX{Su9NM3?%d|>Ot)?a9|MyV6pvq9bsT>YB0E__czbUdKvbmCPrJqWRqYL53O}e~} z=2JJucqZr;1RmXazkLAiIV-DC;_ryJ(ZTFRynAK>>$Xln!orfdrF0p5inchip) zn9?Z32Y4qj^+pOz`4r*JivoONkViz}$QEb{c$l*HZR`_<(LhGwWpKwUjb} z3CevKZ4KX%q+AK{0fx06TuURTZA(cKn84iIb~BCpm)BB)1STkVGjAd*y~%V4QD%hr z0Mp1R8N2RUN{PS(=5FQ<*uEH+qC5!k0VSt^m9LlAQZfW4DEGF7urzGy|Cjb;N`}A$ z=5FG5sENyKDFXr%l)JX%*s)4UwWZVtOknQXzD0LBjFLBj|9@hx`8Ko8bf>A6@gZYp z!#@nY^>66M>yCl{|GV}M$p3#qlcV0Ho~8OswNNEf-l^=Qcu_G_{+|3=*_V=uvZXS! zbfq*+Qc~BOv40_)n&72@T8MAKp1~q**RIm~=3;`Sq+b3xZ8d~RapVD<58+DcScx!9 z*yur>b*%K42**$^b=N>07LzThVe?7^5CFLlYbZoZrOuK%7Wo2iIC8@-Ci0ck zv4|IV!wC^m)Q&~Ez#C48jp71>MYzBlPKb)ihLqH?$QF3R3Gq;=v%HQ;vJj)d*(YkX z@~H9%9TeqtOrnJtL7&!Wbkns!aDzYPbxg8_7(t&h7|h*_ZxLjGW|A(%2>K-M(CI@4 zXOb_(2>Jx>!!{=&4Kz5Dgds-IACps8rl7$M4Cggg5!&Op?X8DoWBe(v)5j6|7-{Q$ z6dL3INs`lA^F8Jy)2nd*-w|Vx;a5Ygp`-qv`W)R3-7M`Htxv1bJfP{RepNkIbwpL9 zJg>Y}*;4VOB2E6Xe3;}k+ygLHdPtfdw&~k7ztBc?*0B5f zH8G3cgE!zFye+ebivqG(CwK$y#;Xk5kT!MJvG^u<1HOkOvQ=?5k z3drJ^;0?Hw94#j9u(OWEF2Ngc2d*E?BvesS$KsU`0J&{_Z>OmN&N>#G1aIxOVS-Dm zt7-eOcqDiOZpHR%4x1V{ud)~PoSW?I0j^N#Xo9X?K&N>!r1aIv&;rMHt zNX^OOi{K5okt{54rhqJ_2;P7jNG1h2hU2VbaYXP2e3xWUbfg-x*dcfWu17$vh61v9 zA$SA6V=}dD*If7xvREN_1HMf<&3@Fdq>jZ0ApmllL*Jt3N=xckOc1=m-lRz=&N>$V z18-Blft^JI!8J4`i}``KcCVuoYdGPoV{tz4*6uabPHm^!vDhAXYX{Cb?piwQQsS`0 zhYcqDTy`ACwe+Se3rWVFKLj32Jj) zEN+liA3R^!)4wke+B_&hi9CPApwx;W2O>~edj+n3lzyWFGgUa#FbA4;ST zOogA|%WZDA%RSjS);_;D&*gU899FO0<%D8hw=Yx!kJnW;**OY}!e8oDuFP#G4+UJP zE_pJeqRa+GlN{DEhqb_#B*4L+%dKv^)d`Ps6Vt?}w#5YwUm-pW)(ncycU#Mf;gQql zaEL{nHmGa9%U$ep6<+j5pU0Nxc6mHAtqyx3Llt;yk;`3R8|U=e;6G(vctf~8@b~)W zE~tR(3ClcFh?>;4)bLQUz~%J1T@HAKs6E(y9K4!9V|%2Dwgw5W%K?8Aw72z7%@Wmu zmzCSx^KJ0Qpz%QeLc7iB4YQur=XFiDS=|L_m#`)xdO6S@X<-I*xE9&m6YQmSR5LXt zHO%0?vNG{c>0vVS-S)!iURxQhyjZ_dyEAX*NUPUMl@k9@P(IC8X7k#y-w+}3PfnNJ zW1Cz#O?&et&R~cpA)N{ zE-DW_fjrHFKcW2xihr^?=DXZ>Z*eI+PAVuU40|85_vHy4twH~@dA#;gE7T2N1A@WV zH0Z(&XABT2D4y)RXv!#nF$0|fUY42?)FVlFI34~=1~i!2S!i_^!mLu5=y1)4t|jP| z1PV{Xeh)7Q8a~PDfIc`4dVt$wn~1pZ$8gg}sA_?$w9MzVO)s{(ZH0L*GIw}wBdiV_ zLru+i08@XSt8dqaCJ}I=LMRAUZ?xS3GXT^;oE03_d@=^+Bn_W$OPud^`O1=#6O+c+ zoP{{=boV)5j&<5Z1$;R!4=$?iq)JVopXf^oYdFWEca9=`gs${wEXv zZw|~%@IO!>CpA6nEg_SRBeTRD@*zk}${v`Jo|>8lxb%VWI5RahD<>-l0WvePGgIkr z>1pW$GgI+l`oMt$2W61oQq!_hvq-_T>~#1q`86{&BRlx#>~!)hBP}~SmHd{Llb$sw zjg-sC8I(SV{+6DdMSjaj%gW9YUYH8?pfAkG7?eRCW~ZiQlSfd6?96PGP0NHjklz3{ zbs$s&9%iRz3$@M|IEdCIGks7_27Q>FmYqZDmz@S?A}`4ql$n!Bs*;wGnMu^d*2qYM zatz6uGUXwu@fkb}dSA!XNOv zIS0mCdU7I+Njf02k`o6dCuYOggHZ~DF)b}@1d?eJfy1XWvh;D_yFxP@S*V6)Iq?N_ z0b6e}Xz<5|WBdmCkwd}C(0l@jg|;HA&w(G(IpJ@B=MFphjwX{;aeX=Zc`0+d@*Osq z=AgoGopyMU2;ZL~yLYnB3-h0Cq6>f;esS6)VflMsLuOV3wBw52h_;kL2@3g1DZ7&mcmy#mBiGECz=G(j@^XX33 zM4PwRRft;<4Zg!3udlFTI{N?cN8+W1eTm^uqns#J{|`lWx5qnbahc2GbK5369To7g z44b-OYAbb>+eZ4z9N>C^2kOf&fo%Z%<_dpG1lKkM0~4XwZ7=Z7aOJs5OI^+>HrOvh z*Qegsdy&;s4Au($F)ceIxMHZcT?cZwZ6t2eh1N*ZZDbdZtYm`gq$IDcw9JL>V0}28 z#)ZF3w=MMH#?r+lMuM8;V{R|-P;V5Y*i&0S75T>na$#$ki|9i&TL)JH}Z zc3p*Ua1w4$qi%MQx#9CN55~fwyMY6)4 z=nU65`f{jG_`Cz}61La>0&2rojtXte*YA{`;0O`s-3pwO`e%f#FiT-cVi{TC`={ZKF|5ypeZkP|C<2hhR*??_8uU{#lDd&0Ck#I) zg5wx;HzW9jG~hBFzd2J}Weq+>tj|h#Ti}xUGQJc+>ooOQT41x4HTWpuCoK5ong#pK zB#I$8wDmhJbq|Fnsu-DKdm8g_>4oTP!~&r&U2A0JPS#}xbV2# z!@ZMii?G794)BJ0?NNU<-f&;|ivJ%B%U$vR{|`jwf&&k}2v_|7*u~|Vo>S`omFfSh zO%nL`%Fh)GT(Q6v3tX|l6$||T)B>-}mno$SKUp9nxg)SSk_hPtWu8RHL4m9U!R_-j z+=?WzI>t^UO=@Yl6M5;crXI$Xtw{)^GMw+QsBmZlvVqqHa#yw{uWU_1URR^rto8OB z8{OBtvNefg@XFStn5zutxUw~QWoz>PlUtK;u%Ox~RZ8+CkK~$b%-5I`O<$STnW{_^ zOl^&y7+*9lHjXeF4Mz=DL$dy7{U&{#{#t!E-8tPGx?6RVbsc~k;AQPil6~5dTBGK$ z=5bB2CQbdD`WE%o>Q<_cRZpv2s%({1xl4JE@_J_^!< zl1F5I*>qWF>6g;A(wn77vM>H*4Cy4*N@e7M41P2k@oy~?WHR|5@}csfh1SBGV2dNj zwV%U2+3JOmIy*Jme8;WLQ)MC) zkd)Mn+z4X-Wnh6=P6V+FY_aSJV!yG)21OA2l`WPPLF^Z{*uV&4KQqOAnM4dvlBscs zBAcdK7^P&0{xs~%dyc98HpnsTRMnw1-rpY?_QOld-}~p_2R@0TIN$XN#po5c`fT)<1&Sw`{TG2x8~hV*MhB zeZv;(8$s-AwpgDCVqeKS$UDqa&g)XY-Fin5`!^e{R|K&ynPT3aD24;4kuemjA=IPk zFQtL?rG#0qd(&e2M#Q=`Ev9QkEU9TRZ6jh`n-+n7R?ME=`N68WBrqT1>$b z%jnd!ken&hv1uV0Q>a7JLQ$Y&-(!t^F@ zxI~cuH0(bKz5g8TdT7{}XLZF3hEE*!>&69AujJpuPCS3@x`hjWAGR0&>o${@AKagB zT9`8I-7O0@PujnI*f#gS{^)XO*|2^2H{JT>23dHcnVPQac~)IBj7`&7z`2qChXs|PYg*`grjWL2q3@VNnx=)mWeTaA7COfi zQZ+5~4O2+jw9wZ~Aw|Y*o`!RVb%tez(FT+Lu>LW2PoxGOeA!0zr?zq4N$7G;>l1 z!DUiW>>~Fa84=#Cs{jgK1eHQFDeK+jv*{{a8U0jRn?EK1nQ}2{_H!WFt%d_K# z4tsCghsJ+p*@x|Zw8zUo4EQc=y`NbbskYRYtY6#ArIDnlE7?HmrbtrMlU!KOlgwNa zNs2m>4X`RANl`ztfz;wiQq+xXAhjrx6!jt-NR>yDqE2K3DPJTh>O(e=@J=|+Ow^%3Nlo+QZ4i6F;xCP8j?1UaTZnUY$59g%Cqqa^Eun7EWs<7*?-nCVr5 z+^h(4Ovf@Mb>PhUa`jzH(3I_40^l|E1?zj4AjottL2gC_Ii`mRa?>NoF`Z11n-)Qi z>1Tr6)Ch7+R}M37^8n;bn}{ zf~$yzz9%jsVl<*M#y7oZt}rn7%rnMC5Yw~8#zqj+vBkzj5Yw{7Mn@2XNc2VVYuI2P z6+ukR78@BsOvMz#^Z(5Z?#|}z<~tw*pp)rS(?3lMP1(jjjoXZM#u>(rhEEL78Qelp z@5+C!Sm25Uu2|rT1+G}&iUqD%;EDyVSm25Uu2|p_ERb2%D#Av$;Plns=+3Na8A*&f zef7n_C$4G{NszjI7YjCzBuE{=_Cjz4t9_TEzRv>RsB2Z4ceDjMFQ}Kx>k={g5 zZcFsKDCcx;;%K+EzzYOZiLRnVAn^xguu_@iVDQYqq9j1Pnjro>#n*`o;xu1b5U>n# zP#j38?FEV%mop3)Ho&_gv=)_(1GK1eO6uZ7K%R(7YfJlo|27w;fu7FhbONV6k_o|$ z1onbNcQK*4_tevRQ5VEUt>c0nuC^-ypsykZk7e%?A-$c{imGv7XXy)lGr3rKy4MY? zU#B#N5dJ7+Aff>#PoRCfSsPgs* zOdB=!z@oy=c7U6M3QHv|POjym@MvV0Of0m`ciU`<`962}d{NpK@lekg;)&{&wE;Lf z6aVbr-inKQ6X2Etdc_IO#ol6Is}Ae7uGWZ18ZwrMqKb}I0637$f{x>JzviOiOgk`Y z0>!D*=YfOT;WOWYmWYPxX=8;Zs#eqj!1~b9I7@k)i)zyuO4*tt4jp{laYS_%G=mv! z5U69WD&EaSnc)R+KS*M}8(0*J8#Gjj8NooOn1O{UW&-eQQZ zJX%Dhy2ltbOjS)t)eEj$_)I;sitTvgOffWZi4WV`mFTn;EC_37k2<7ktWiZ(7pees z7-`i%rp;Q)rBz4TfzsD&uXhVin4V=ygd|NGQ%F%sy8@;|oT3!lJwI|$ak9s2a{+^A zG2CTUufG<{5ek%x5tOLZd>J4O0HxZbjp4JlnT$7?c@mMm)*9AcMN$L;m0|)UDun)j zSIJ?O`5to*(@Ul-<15B~hBby<{Wkqn-KRRQ_E&8sobG>Aqf;+ZD^+)^Qj|NDV-;H! zljTR{BpJsx~3c;g*DFpf-lC66Rz*lv_ zjZ`tn37sD0+hw&sN$b94{`yWUgoyiowyWO z1Z=wDE@DcmeK?}wSc?%_xN4qZ*p2`e`*svztwRB{8`!f$)*?Pz9K)Tq(t4wN-c<+z zdU1vjmGBLLzBmSykVw8;QOjrHFax&0uu}lzx*e{2^Wg6boHkq75bzF0SWqkuu%fb6 zl3cK-6|`+rIF665d9c9uc|0)G5*GoJHC#RDA^O7j@)X!zK9AGp2_O46=U@#$@%Yw2 zv_U~ORG=4_K>uu+m&+`WR{{4u*8kAv4?+;ok~@f~$iggKsgR!g-@9+>&PA2*tz5X- z7Oo+1g!kIAfe1-@ZA>9WC99fc0%Rr8^84|rySZrD#7-*h#CSC$*%zZsh7CL(a|Tw4 zSmA%ON}`cm>CoG-Cn)wC{>#Ne(~50AxKPGrFU0ToMe9gs8Ulg^VhSiKxFi)UK9zKW zpBxo@zTKg&?(yY2e2d9F6|66L#Q?-6tsNh1QSH(cF!NwgTO+?=B$sy0g9};ElZV?) zp?MojT8{n*2b#tZPE^j540g?<)SFGWALjhc0>ZsOqTvyRxU^5rtWPA224|EqhqjN?Ip1 zN8_=JvNu_wjjthXy!vcwOR0Fv)1`;-^IVG(OYM#YiR0#vN*tb_IOiI;KHW2*+~x3< z+HQbd!Nln{x35&TAsE$PVgvB$6#V1$Pech`SY(I2$G?i5l3FDz1bFmgB$Cyi&OaI@ zJl+hKIL$hL5nOQ}sTQIMpc>KwtOm70e5(;^h?LZ&`PdJrE#lP=!mUs-5AY`w{I#x6 zqic&<#Wt(=uQ$Qs8xfk=KR(bQvsY>700y{7ZKQI0-`wb12(y8_`}u0#mHP!}5HtMm)Fot=it9stVa+d6>N)@^so2 z)-9M9mD1B)75O%+^RKJDO8HqD74bZQnpSppcrAF1}dGMiw>mk7t|LZ-zaw_7Jc3&Gm z{E+%phADvWBl^E8eK5LJ-|$k*G=QlNuHN<7V95%JS*4dW{;Twpu{y*Y|7+C=8K-g* zREAE5YxT9)M%6dQx}3I(#C*t6i?AjR8yFK2o_3A6!H1Mjn4pq%g?^zf%Nsj<1R>&NT^=-%$hQRTMzz5q&79O(x=`q!w0Tk`~6|Vt^D5R8*w_ z%k>A920gRr63|+ zV0SoRLuqEcR?4qZA`WQ89Vc8JTNNf-^#gTc(7Wp?bYm4}Ky?A65xy56j@odOtYvQ3 zVw*DzV{R3uK6L?;aYYc#m0u+RfF7Vi@#oD-qE;af;>kXT)d_BWm=@NX5d)OqjS;5D zGC_@^F7w`uT8-hQuEjzh4p*a6P=hyys7B#ZfWVaVycR!9i(ZWao7Y-uce=`8o(WT= z;3h(W~Mqv%|C>ro;^u_oH z&5v&HZ#vZ7RciCPD`etgelDaCR&|8>^92Yk*9*$w{g}BWk$ijhkME-LRc4UWQHhXG zi%0Upl*soX2vLGJNJx>zUceyd>?Ggc_GxsRFcZT9C=g9`+pt?f4g};f7Wtes?_F%7 zMIJ;Z+QkJqr1Fh!0H&R9jrF(a_8`XEFv+6;(uBj>ZSFz@Ae!+65EUp3DX{uvi^WlO zK2X3l-{H!K(Jwa5Tvtc|o&X^QZg9f;+mg|<=H_#~qf%h>sF`U4M$gO(tN!(+_u~7L-EjA{lQEGYpLVGs6BWm#0p zOo46pOWK3ABR17AKG>q##UZuVwi>Z7Dz&FWa#v~DU*Bh{m>*I*PS_!}Zz=+48fRG@ zr{~aq%r>8cop3FS8iyj|EJ!f`&d_@YolGQouv6vbGs%< zyL=kGK#@|WcvAARVwn7xe386`>?PSa=}D$C&W%-=%ZFR8 zd_n3fk}N3FchI(fMy<$1dm(IhIIN{%>-dz^8>{*Witq&qSLDX3zJNho^#QkXP{idf z173#u4KlZ?4`M)rjNpk8uEq^jnDB;P56=-VB3P?>!u!!{$lEh*MAYr=u{yx*fwMu5 zum+!3)dMlG-}1!})yS{HBsJXC7{ zwW^EI9=t(BMXXhwh4!%j_u=T31~!!jUnpx8QmEkg;0+=wVy)^Rw8!w*2Ct4q=S z)Rx<2@RL!iAbdxFxuL;QtFTIsIG{)ja71-SH#L{tYy8Z(!T6#q+jzI^2BTee zi_v22WYikIHXPPGAv_Wsp8hNSQG)~c1pm~J(P!x2)jy}dUw@1C9lcYRtDmiJ ztC#A|={}M@t=p!1ROi?EbXM7J-9%k4T}$mR+RwBjwfnSBYwy;ZO5IxZ zrRsocz3N%jJ*rAoiE5@QPc=Z*Nu^PqSDsexRlccwMtP5NxzeG$PB}`MuI#MTLUzL` z#cstLil-EJDV8YaE2b+fieyE5xDBJd{9E~P`40K3^1sXPkS~$Xmrs{lwF zmh?%NF`*~s7D_pwB^+EIdZeb0I?GoEA4&fdN}VbXJ^Hn!QVumwcXQv7*wS@kvAxp0!qdfj#izFl z!i)EYs`59XnD>lW>`|eZ_e`kRBSNvVKg42h3&qO*2o-xvC|24=EcSu)1EFAPn^3|1 z()~hFdx}`}cA=m>B~p_py7SZt+G%r-hy>@lI3b*@c_H^LiI?ib(iweYO(OX9Ol zf@t5DLZTamVm-Hs#STjk3k7>_3l%&hJtP!OIw2O_C*3C$O*#=O`o8pip=jry#G<=| zf}MW~72K(LG^kF(&u2o9zZIlAnndYy!n3wL#b;}UH@58=5?vz{YdKUbc0zhWDA;mn zsNl!akACKS7{H&kq^_Kgtm z*D0aL=LPAX&xq3B3D17`Lwt6x@Wvnh2#MY!6#K4?SZsq(?7KFhV(;qoA>gf@LyvzJ zq`yuPrGFBheKA^mRwKOei_sy`YTdsiny#{h&xGQi%?%Zosf6O6%?%cpDTPNnRl!Hn z3xedS@{pwTH{sdwJH%(J1kvMnghc-#6g&E~SnLj=*wLp$#p?9Q5@lDqKInL3@UcuQ zNFQ7ul9p+NXZsF^o=H~=Z`^k{C@OtLD7O2YSnLbw7ec|^=RyU~O3&&KO4MK=LE?=f zQQ{Aw{2N7~^1lnkcB;f;{}rBX?JPd~MR>L`OMJFOc-_XV(CaFMV(&~6i=C045emLD zDOB)t>F0*Np|0`D{lP!TnM`>0>ax%?>1Wc;0LyzQb;d6|iVw_Ox0EHeskU1^AIZNxC zayBF(>qOt1ayD38){#C@9|=8aO~v~DDT=i+E|n-~LGv@Ag6(O+UTwvK?Tk+a3(CI@ z73@L_b{ilT>}>oQ>)5TI@TY#_pAJ%>Zv8^?2k4WQcZQxcr(#{kh+@r5^O%OR=a|Q<~O#)m0W&8+h2l+(yz0ABGid-U|Gf zuCg!}1qyZm->L{7h81iN&!%;ih4pYKXn=?CMzN2>Gd+D{m_Gv#+eoM~YF9`Zxehdz zCP>v~p+^&%p$7#|g1A?M8hyIT!lY7CprSe9nO1mLY3NP$;aMW*SdVWwnLJCoA*z43%`m+>{@KeXFq8to`qf-!^m|K|-S;S9lQ!y^X2 z!E2a{`v`_a-QVF%!72T2{W`c=pjz+NU#}mfPuF+WYjof1PUv>&#^_$vt>0Ki%;~~ zpB4MFD;DfNA@+{qv-jRfuqzgR=j^?6X6{|CkNoy--ur`mKCdwMyWj7enYlA_=FXgP zBpgpl100t)svYwjV;%h+Sq`WD2mAZ>=j`{|ud)B#zS>@9jo44J=i2?YeYQ_+yKVon z-3Z?QM%z-`Y+IqNpRJS4YHhZ@ZGF;um-TW>Z|mQz3#{X;1Fc=HZp)9B4=vAI9f4 ze?lTAn4TgK6B*F7hkze(;5Gt&M8Ml*Agq#~$$?+UKujdy=LFosffo{R3jzOOtu?_& zg;|2dxa(ND^tM6(B}oL*80O?tPQtqWxqBlWsbYtIWR^*I#Xi8;)TuwH~kV2 zrU;OoWEvw}tq8-1c!HU3R`?*1;Y>HlK=`zCHv!FxeVE9AW(xuDBB1F~nGrt>F`(%Z z8F<{aCm+dycgsLbB;a=YP*#$CyWRaNOP7?Yz|tiG=^dFB68}kwrVnIROk}?{y-&bv zIPgpYUPHh$WFYQ^;lMj&ASM#ROZcwU7A|3<)l1UyY*(=}(2V+ud}dis=smzRZCy6Yyn{ z->m>$t1CJ1D+LIN1pJbKOF8gj0xl)sMKZ8Yr;~(2e?jD5_I3MC939MwbW;VNV$5;#9fU8bbGZCFYi zzFAhnShAEjQqDc5F{Pj^1xbQbrBo^B9+MeTS|%-XJ<2j*f^m|b{9Pu&Op%s^{Q^`8 z-VZ>DhshbhH1^|w^4n3_u$Du`(t@{HgBelchLlc_PHmW(degU8&TdkboLzu9Ho}z@(HoOg0VE80}Eyw>Q?-5lk8{ zjaM=N$qXrtlg7!M7&nl>c`_%aF=RiP6Ou*|Oj;@}l{qn)A*BkbLIztuyl5T=A1@s* zgE5)F$4SR2;MYcf#lZ`ug$fvw34Drlikw@FT}j{pa&9q=A^ZC#VBd`;N-*fVSC|wn zFA8X*+khi#}wF;e6tn*| z)y)d*F}~t=lLFf*ENHD#U_1G$k??R;em#_1&N7QQNFzFvXdLaS%y>lD}x+j!nqD6kv0 zQ7tqmuxo|&tP2&`wR|<}9}4Ws_c+^w3hc`Fi0uIdcG*uHc8&tO>?eY;7ILwl!>Se7 z#eA`=N@2U8Cx_iD@Be?GE%^Nf{#X5Ve!uS~Uy=6%?>cX1&jX&B@NNEdcdo0^wZOR# zyzL>5R~*Y7KKo7f(Y6n4Yi%8^cbFcqo@n{Vvf9#7x=T6{7V0*dyFf$E^j~rGB-kH; zTWS~7f7UkbeHc^g!etQE9Jagiy%7teb3h__o)i4GzmhnZ>je2x=dG;f^72oKo{SP; z1-OBRNtgwNvgmA3I0p8s%-dF&{`Tf6aC017z*P;qA5}Yp^YTlhvrq_3FtqZz z;aWJqr|Mur(FuwnMvHJmLecS{flYWy``+`?Hl(nsqNXgQ=_re%<4^-C#9$3>#-iw0 zkiZ^t2rL7oZwBm0*7Pb1qhnA3j4)Jzn@}7b4Fb3adFs>^z0)=!R2d25MPTBYgGJFI zlmHuymEcB%qIfe8Hm8%89iILc_rj`5IO(UUiQ*{U$AituU=40YX%uf$!Y+66Gh5R) zV=``Thudi3Y67u3N}_nz4|chRtB9tIfU~w(BPMI*1Jk6m8`kuiQaH_04d*XaqsIxT z0;U+Q!cAEeJs!#nUvgZTP1}&E@Q&9kRvlVf7(EUZzzjnbxCx;sUfYAUvE->`={Kwh zoU<%}@bRj-TyYdH=E1r!Sc98U8f91Sl()MmeKV$3VB7&Ynv|+hvAcH+SK+3FqC=D# z!S4cTH>wHsHE@m)f~1KrdU15HQX>Xya5GAxgFpgjR`~HLZ8J`)hJdE^5X%N`2<0N7 z=s*;KmSwaE*H{$AD{$~7H}o*NV1?}eU)?rvX<(rLd4HMjPv1qp{@!Q3Vc4&Ksb`RT zx4R1B|8I2_IA3?xJN*y=aH9Qlhyd8#w$rx2`iu1+rmL;_mS-)CEoKS6f|_@mE6g?n zo&QjD1vVEb0*Itl`B!y$FiyBCSQmN8i=r5<3#S5b{P3H!HRyz+=!cg^Fl+$3|0|M zDULQMA_l+nTqG2YD5V9F?f#W+X{mzeQE3%N>lHH$*5GC=iq?Sy4iIpV@||?e5RPh+ z5euWsQ2{F4Pz7#6NwgLOaIl7nf7&mg+PfetLeUx&0V|9a;f5@VRx5RZ`zidLWmG$~^xxDkt^<)DCZf^gefy0tMn%7r7T(uBKV;T_XehGiuPPK*-{!^gfdVq#>M-JhF?hui4vWUiaAU&J1yE#oWFEIprfW({0CBRWEIJ=`z?ux`aC6F{^OS~$ z`!>@xM;%FC7$!@jbCrf>ybL!6{r~Q!mt29%1H=3;`)mC^-*vv@y^nauc;5G{@^o_F z=bq*I&J}U~=v?L4=cs~x^rg1XY>Ta*S{GT~u*{d1mrY)J`YpIjhjK7DFMmU<8)gDu>sHN# zIuBj3BIJT-y^4^;Jgkj%fjr2eH6g0!uJkJ7AVZ2$2G+znqqKf5?>wbfa3Cd&^qFz9d*argZT2~YXFx>j!3WS zVfpy~aib;AjVsm;b0fEd|4wcwGizgQAur1Pjssr&DZP?8$gBQHeNC(ls>>zOO6nxO zE_N7*&ypL(y~`G+XZpe3ZAtQLV*!+xZEr1kQZJ7AK^=EBCU0R#^NkSic_4{JF&|1K z4TPH{jFTXRg)uKE93j`>#-^U>)gX^nPXedJJSZU7k#PdVUlzlQqLL0C-c`|*o&nm+ zDoCa@hPOl|9X#V@NM&`*2`chk$#82#nqA4{gSoJRv{%I(sGY2+*3l;E#W6cbj-(MhaI=@fc{jo~;;Jlzj9>F}#NjS51wT;2v#h z3~#8y)j8OQJUU$?H2a;&j*=MOQiZE?hO2N>ieq?F71oEb-=&3B2K4{CnjSnZu+jgA ze*=8|uk^m@o$GnSGtd3Dd#>wM*C6M4PKRSH-1;}uw%yjodYg5;ms88OB16SmXhYR;ABB9EPHOad<>-(J4 z5UGX#3!(h8S5(wjMC!ArgzDgKkct&>F%Z2yQEv?QeXUHsrvJSRQGW9Bi(|(_hLS_Q zYkg@`nu`(RC(O>q2-FSrg3+)aKXx37pw-5T2!@o$3P1zDgqYlqy;@qGURBQsuWEoB zUf{L_yqqCY0o!_bE#~Dfi48|FG$=D-f?>t6VXTHsa4S)|H6+}7B#11E4P`ZCtcajd z92-K0!0kjU(yJly{v$zTQEV_7VyK9q5$zHi9UqOTyWq zx^O5vw0Lp2G!ib$E?J!&E?ol^mOZN$HvDDd*EtAOA6X681D8}(!sb}Kg=jvmcF#FQ z)jp%0V*@dV$v5tQCWm4X`eOs2o>nVGICV(Ii*S56RF(~wj%QB^mo7VSq4{F{F;7aN z{nzp&7Lz@e4_T^EifQH8j2F|)x`t|<;<3e!#k?rR)9QH*ay6ke9zE)*EslFM4kOWqq2ZFbR6(RR>=JdHJhj$Dq7i0Ief07{4xdG^ooP!!0Qia1f5dEG5h2p8r~wghE;y>j4>3)_~8prTK~+dWs) zE9ndJ>ti_}e=-ihrn^4xkmfpNQO!zd5|u6JCiC*w#kyk-@@;arcU|Z@-1$#uzT;8H4Eu-nYP%UCchAK<(lD+zHT|?Eec$5$(?&3d$ z8G3na5h&wDEim%!yS*trW#x81m6lL{wK3c%bVAb1yGt%#oSxWpbWAF1YRa-p!O+z(Yq$`Nl#Bkft2}uhxDk^BMh|S0PluNZ0>XW2Hv3VejTdbivJNTbW zuY|`{Hk8)D08$w$5sI`pHWxKy;|$dxGgijtVEM@n<;N@1^vMbqvq3l@n>=AhnkG*!nl04WoY*YnmR|uwxGCGqVl#ny zpxofLJ)7>Rq+AQCS365%Gf+)#dKpq9(`sYWK}_zgwqM=TpWeGP3l~(XE8tw-l5n-2 zeKoOZC@I^QNl7xYGBynY| z*9EQyf1wP%Gt^a-!0nn~_{xg1NO|`B>9`0jF7mC7O+@*m#do!qJQ-gZI}z0727J%y z-@TV!11_vaOP7Rd_1@5Bu?Z-bG&W;$WL#NnJgCVZ-nWk$p6;R>F4R_rBPo-l(%3kZ zk=v}%GGt8D8XF5TVY#na+xx8as%l(iO-Ta`>)G=sL!Wc(ikixXs_-e8pfXm7 zdU6ZTm>!uIJvufL7G0Cy0A1_fUb!PZ`wHvA*{f?B;JsZDhR|==w9CT~CZ-%(dp(9M zC=J60!t8pui!-|>QV#3G%OL1kHhdjcV5RUmCmS3=cv(`u(L{U2f|yqX zQv$#EKJq;WvH!2}o#k8Y3;U+}3VgY~fOntwGw*Ki!`>Uc7kD>%mw9Jqgi4aQoj<*KAjzD-Uk}vpM%V-*G+#cmG}C+~RC-E^>}{4s>QYZH{jouR9)b z+~T;vvC&cCnBh3y(aX`s{;T~1`_uN@?Uz8*f-3vT_CkAadk5Qo+n2VNZ4cXSu-s@n z%eLB9YMW>qU^~)gwti`S$$G!_O6wMD1mgY|S^HT#TFsWPEw5U3WMZM>5a*#1P?vxl zU>44dKgh?&iq%v$3@xsnWf||X=3&{*?_7J#Xk)4AVn->!t9uPci4pT-#`|{}rb(9fEW$5L^ z4SOR9Y93}DM%?g#q0K|hL+J-F=i)yYZyrxSfCu!0aprOKg96LF{0C*`GWr2LpdXZ) zOX&x&2*rP}z`THd01xN~^Ud=iT`u>b-TCz|Gs#>?W#}2i4Ij)ncVBZ~;u!GaFZ5tG zaX>2Lm_;10tD2zZwv;|9@;>~~KFalQ+FQhW;GU9~|hy*o5PpULbNM=~Gjd;86 z97*7X#0#kmdkXQwet3eK+Y>J&GpxBCfnkx1gXfv&5gZ;6e6D#e`vH1U{0EcFlh_aN z0sUa2c_Pa>d=KC`FJU>yRE7=_H!R$9?i^xdd5c3dXh6fC79&8>=-0$wVihi(| zxFMCH!^92W8VPDXnwTM(Va>{w1GuM=Lrrq8hlvbm+Al}ohBO}j+;jy2DfqeRas>#N zN)w|=xv2*4fhI;JEI)=7;fX)VjF?EkA7w^JTgri_%0a?0kpVX+UYWgsRJ@Bsw~;W|0+c?AfG1bj{bLZk)`{6+ynA_2c9AP+fj!pjg~M1c?t z6mZ_8+#`W8PdVc*1qg}6_yP=Aow`dnL=g}|m4BnekXNNk-^lV91BJk*A7oZcB-ZaC z4SGsQ<3ZdZus7awgJ}%6UgpD)K%5V*)O0g5wI->zC^&b1bk5jVniDbgp2u* z5fcgcGXc-zz^e#&9s#eEfv`7t3<0IDB;}40OlDB&OG&w<1UC{B*bGzEl1q#UwD!nhgPhcK5-}DJV zDR92&V*>KX`KEISNOAK`$|V&TfRp4+kIO(zWa6gBWJV1A%7M=+Ku9FuGcpjvEOFpI z8HkAl{FQ*h`}imU`TO{Y41{PB?-HZ*k@S%a#bm}QeJFiM;CBdY`i!9OFsSKM0=~t8 z=MnHN0-mb?As{UWKCJ*Dk$_LhK!|U{FNTvok(BzuWCoQ!mXsR8U^tu=ZYaejhlvbo zY9>~pm>LPli)p6}gdjmeF?}W}wqr8mls=Ud>oKAbm;X*?#Y6@*eM_uDFPPdiV3T*AH zUt1ryZnZX8CtG`3{2XVYsY!Z9x>njC&5;I5KJypmN6nX;SDL4* zJ)*z}kBT=$@*IOZxQV<@Z9Cb2c5N zP^F?MGr603$W&SHoF!(Z|M0;>xm`J%a%HLmpaiNMC07%g)KtR;i&Wi}T&1D}s%(Yo z+1ErWD4<~?RX2qy6(vx0Rj9&aMXLV8hYt{`vJ|RRlt9%*p^AK_p&BAmbylcSQACxq z=?Dds+UN+Bm!G?-lcG3RQ#-?kbH%*;oK1%-bg4KMT}OrP+9yQ=ps5SRigXTHs zuDwi`_5GhBUH{=j2C8${PNq8mPDR&N$=$RaYPw-UQ^ef0QF51xQ_&r!&|UVENC(CW zwS{y6g)SARqVvmiS#M}w?ZFy4pG6?qyujj=X`E)}Puvnq6}c4_D| z4aK6+rQ%d{l0x^Ss^5anMnh*-=u&YiI+H>-Vu(6-!-Nh8sv@>gp-aVybg>Nz-S)*I z9pp|!w_c%3#R+sdv9$^;bsQsDZfuRLne~Xqguy~<%89L(sSbb=s8-2TU3YfXWM3Q< zVk?zgrJ@9?6$;f2+tgI~LZi%yH7Hc6D1j=XP~A60P1Rp$kU6n>g(?*#P}M0^52?xu z>PMIu) ztAsCg@;2A)SMOMy=9jbj+E5)Fn}Y*QRTb3`$sb~4FNVWP`WwL3#g?JI{H3tf^yw4V z#@JGjPljZ&nFk)TEj{z6manddjo_8p_%2seFR90Gf`uhz@S(68zamZzRpMDu)tSN# zu?oxq7C@`!fQn#gtQ<1XU*0A#u4kItSqdvl8ldX+J`7jHmY`U&y6?`67#X%9wivXO zlP>U?A-%elPr4*O>nj^zPo@p9*+*A~81AS!& zKYXc3uK)_+dp3UZKiD^WO{^5vW$Rl>olIXED*z0?eF!#DnX+;+jFsJxo3hW$Gy+}Z}%g1E2&dW#*rC=Y?vjLE;Q4 zuFU%nfD)*bS%21T+cZ={iRQ$WIsXAr0u`I_Tdq)34G|oOoK0-LpNisCo0Qpp)&r{9 zKC~*qL(kcy%=Hg|5~!3FtE^}2>Rb&L9EY4uia&4wlt9J&fe%(_s8qRP{y-{9pi=yS ztS7o^sQL@-YLns*8~`OyDgHp#H+gERAu1}xA2nLpNWcOU0?^<|%YT z7OUxo2}>22ySWNoDo#Z=N1^jntLcVl%I;)^E)}Puo2}6G)YR-yVZ6fJ%~I%6aVol* z3SEJwWe(Gn-3)~;6{n(`uFzF=R2w^7)9$7zbg4KM-Bg7xN7IQ86-HDv_9TTa6{n(` zqR_3oSCc!TpFz6G3SBBrMK?*IJ9D;32P-1NaENph6}nWMita>(uIo=CUH{=jHDxzJ zp-aW7=*BB_e^a$P$epHU$0>BFI2GMknJz1J-pTtN>?%epxc!-s$mM%t{q~o zVEIw#uyQsHRj5)?0@VVlqXs(hhI=WH6RP^F>-szD0X;VLS4J5)6|P@zgi2~-1Q zs;rk@6LSS0C{?-YFH;==B~axnxeClyQw>!$hGUgnrJ@9?JcVjhS2fiz)pVnuLY0aV zsQM~Yw{H-spaz9kKW9@Pg(?*#Q1w=*9B7 z-m};<)id0a>+!mOa=-6>7WVyL;Xcj1+&#}d+TG9H$t}6+U0++?mm-c&U8lR|x<WrV z#QvQ0qWx~z@n2z|W*=tHwfk&8+TO7}E?o`r3)aBCgbB7mwyrj(^;?K#@T7H{^&i%a z)^h6%>j~DQtX}C1%a4{PEZZ!XSTia35@4c`;=j;ZTCf#I}F#z1g*w zHkVjvb1){er4Wmaftwv$8wo7^&i0D__|5F`3@m-mz(2e$<#X^}mb|xL5#Prnoya)8 z-SY`;3zsfoJ63T1TK9(^+BHtt@MWhJhzy}O1)l2n|p4`U`5sgPuPF4{&q%!nM z;)dYI1U37K8Il>+>?7W3*Z-5ieTf%R8J70@|1|CTYX~ZhCSFKpSgFW%i^#i%UI5TTyV?t#N%Z-$5e)BHw`~t&!HSJmUj~mR3uv=?9;__a4v4^V0M519(6`cusoG zeyQn*?r_*c^(Mfs+r9Jyctz+3%~CTdye{#>6Vg@ERl*PWTXLmzC8Q@?`1dt+eJM+$ znYozC=!+OPB=#n#v_;y&xbXo)OQ%bxvmbo>U7LCQ2kWGD><9ROey~-dm2-*1Dv zx6!lfhzeeEPIW0IzdoIBo0p!Jo+br&KrBy5Ptgya%f6KJR7=(L19(6`sFJE6Jy|{w zXPTeFh_Ld(REDl6ZU~1>+-4^+Lo&mf9mIQLK7Wq}5ig`N>_Fl@F<*F(R!OUf86GgS zv{G8>Y|D$W`Q4{^i@JxXpl~UR()F$yQ-5q`s;)dQ-(rUcu;*KTz!V^zx^wtJ6X$tU zdX!}eAFv-tk4TR&;k|#KzL5XmS?O8&0X(1|JR?2B%4hFsXY$wkcve1`%FxFV_i1Me zulK3asl*Kr7+TsWZKQM*Q-sj$d^}sh6fu=y8<-+SaVKlcZpMqr3~P3|t`cg) zv2_P~B0WGfP)9@~-3yb8iCE~Wu@YYT-{HXk_JFZK`freaq>{dac;LZ;Hvt|IVMmSaq1*prACqOB3s+>g`X5EX69ik!!Dvsz_luzwSOh?Y}Yd;5<6Bv>SyaZBZ^9FyyCv?-vJV<5OX_RBQ zNQ?7k6E7q)thpP3AqENuPbDxU6Zj;`MEg-M5xAT(0jUhTgm~c!CxV*05HBP%thqDs zdd{3f;3>olsSG=rc;Rv^f||P$FC;UpIg5jPZ{y$+4(`2;z;rGRgO71=F#}^VffunH zLxjv)0xw`W##Dx#&oY6*Gzn_%O}voIux9EjwnJzD4yL{WlL<_H#de79!of7%!(;-} zWN-Vu%Zdp+k8%vD3`?i~0J@N%=EEq*kj${=0F}h;JvtG14)H=N!_v!-cR3N%+=+N0 znPJU`Q?WsGB@UiRU`QtL3i!+Kv@5ZdJ{Q(Rq^BC>IDoNW&QA?dB(`hsw{fc;;{if`RUt&;7+`-~^7YENvS{*>_#kM4 zxaG8Z!vmuUw?BxdgTTRTMUKw^{VxU!w$g{Ko-`<++Y6$PIX|Nc! zUT&}%R~AjKibIfkIogt|@|}fW8B?>flW%7|8;(?_R>mRdyc};SbBdygmGQpto(zY^ z8;F)0)HTbUP)S`)HT2Hf-e+074+=ud&77cUU|k#o#1|&t&OfK0yvCS191Y`pU8Dk| zq}5@xKe){-tg6W6aSRM!n0!GqD=QkiB#r^$@e=Ng%$!sfE{*quio^hd)~D*fGp1Ni zs*i+g;NU@dou=JX#E(KTD9%iY@nS5G_W&*2a@?{1xV8ov7D0outHNa!A)yqP#B)&! z%*u=uH>xs@QPAaZkNX=g|Hv4#rq)!huEnzvFx6F!P|M;N@>~x0m?=4KTy{Jg_Q}H8 zU`w<7JyqG7+h3x+x!vO3MUpI;L<=F3?(r^msSo5N?{gIi z90DUucDyrSU{`MnMt~eC=Ou81ie?aJ=@vgi&Wjd8B;DhkpLcpEt{T8Kb$m`u`boQh9sXl{SNnQ-Z}krG?DU-Ie#KqwcEBF~o)Bv< z=y<^~&;F%-rR`7Ho$t1uZS`0-!}ZWcd3ixB?Iyd;`j5`<`^$oS{YhVQCg{;L0~L=c?OYLS#D}x z{_;2m!k0roXS95UQ7|vRHjZ)YlOe;+rnVnnYD^K&2qRB+S$IiZIGkP5P$w=1)Wk7h zeKKTtMkRUSM$PfrFxr>m#G-71K@NWrOtKpwba*n(Gz2!Stf@~PRs_rIODo_So9b}A z=>A7d@mZJ&oN}~oCU`-tiev2i$?`0<=UtB)RokKZnrd*FLzR``x+N8**>&X*+g9y= ztc+tI{K?5_`Tkar=0>lKV^sX))eL6Sr;P^9D+^(Lr>1OmJ^IkF5C+{BTyRgqU#$xkkeWKxlvSR2Pk z`SM){xRJ#e6DQH457uZo+<7QeXH6Uf<;!;+WKxnFxjc?>^5rq%=f6E=P}5Z#87Z$= zA~xFEI0na;$N7wEax<&r7!e-Unq5*Cf-}+b0<2(b zeHv-Dh1%}(avI3@t)iwWlc4&zQF&|I_t)CBG998iVkPDnR1g72jok67mpG2#n zu^(vNy)u3R>Vef6)Z^w=$Bzd&oHS(ev$N2!W&eMNGjM+3DE|ZgNxt2_S>Ct3#h%YS zRUVW3Ja>-kPFI2RQD>oJr(=r!9eV@pq(8^j)_Rq-AMB2|ns!KMOI^%2nlU6^tN+!+ zSHo*5Pk3;DtugIE+tb%Xcm>tR*FyzO!1hpi>i}c)##GfpP?_Z2?G5$N^{|g4Ts1Gh zCcX|VmA@q7PFZ7=#l?+K^)k&eLv?&DY9>3q3~GvI*2dRhg(kO+r(Fa z>c*t%x3GWKn8Jmt-^10__@y?*?SzY;px4DuLrJ%EMX0Vqjv2(uB6?VSC1y%4{r_gB zc%EwGE1>b?a+h_tcb_q(G`&2GbB&q`xWN4YUw3Na4JZkvkXcD?VhMh|Xf9oz>dw8k~@dQ?x=dMl}O)5GyPC~W*j=(*?iw#FDf4jMl! zJXDJ-m}T+hr~^i3K!=-C6R!msbWS~QUbw~>bL0=$rR6o1;nGz9raE4OifC9S6}gEU zdn&5bVsPAUAMXyd3oK9y9CBvkmHfXVfPB*aP&pOXEvW4Xn$U8aHia z9HZ4G7kW+mf4%fOV`@*?Qv($UO%-Mv2XbRp#4$`=a-p|1l)1^P;uxP!_St`)+Hj;X zCQomuW#8l=*dkn24O?v@;p#HgMuU~{Qj|{iOsyf!jb0tc$aE)Ruk5Po_w9qm82uOX zNnrx9Djq^@w7PY)x!FtO#qciSMiS3U;|%(UHFb3uwvU8s53ucL5sHDGnG)lMEsHN? zUD9i#zcQvad6%Shyq3mKVO>(D)VOJG@YyevKJ>!*|9`{z|LX(i2G$0`fhmDu$@Bj| z_}_<<0Nedr;rxFMoc|vM=l?tS_WQo@z3h9)cO9GwSmg`(Ci({Xy1==BJ>J*6jX-v@ z_k8bKZ;5x3cd)mc*XjAr^S0+n&mC~{-zHBr-26An)5p`n{ipj2_ipz??ti+^a<6ok zxF@-XxVyRCt{+_Qxt?;}<=X1n4ABGUxkkgSe}}sy=QqyRoI9O2InQ&hbB3K$odwPw zPM_l!$48Fm9rrk{a%^!#9H%(OIr1GxIxP0D?JwK^WxvjTwtbbo#6HnJ*xuFdw0&!P z+xEC^o9!Z7%vNceZ426Z+uB?Iw0>^gZGF)CPwU^UE3L)W6RiWSSrDggujNh4W0qSj z7g{!2DlF42$6JoF1f*YDeVOBs;Qzk_*nyf~-@2@k&d6BUVMzC5ua*jDnF^GnGs$E+ zIx}41aNqFWgTk@<3m6!a8CW`>fvYCWrK}b}ZOc^|wV+2rNCx zz?jUy(i4!1C#7)sTFa8aI+cREFW!QGi zINVxJP>E^}lNnZGwU-PnONid+QGn>%(7v6SYb9x-5PjXmTpzR$z%qWZed{a zI|UyQhefhT42};N++wzvg&({}Kad&)_D^9T&d1U{F6aZ?8ev-5e$ z9Tx;<=ksvK(N+SFS6W9hm0{VPm6#|5E?@_hlgSJ#oeWvS)(old-%Y%oIPd#+Gb}r) zh|s$TDzPK9$z+C==m;%1GCvTwr^1U)#t#fj2dmNNA*i%iDYT?R!mv_UDKyjmJ>&TC zXX!fvLo$KC6~M1?=4%A-YXrVpDG3woI{t*fe#$YVGOUkyVLvoMr5xggWQLXKYDYMb z$fJa`C0LyHPScwhlrhT!T6&!pQ%LFD9_)f;WZ{2i0^h&JrHeoV>S?6uqm*1NotF|~T z6bl6(Fu28Gp?pJnN1l~klod#3aOnk>iqktv-On-zseB?K-6()*A|c&C;ET?9n)EDI z3k6U56&^5d3;YQ`c#?h~Jx=Two$(}tOOFwF)cz41d^3R|nZP$O@GqBLCbaaQ7#NcY z{G$LCTKYc)FmLJC61e{{0{9LBLozYnPT>5v&*FLBMqo%L@NEP>_WGYV_+JEuWCB0L zz<4l`g9k7$CKI?nfng612UFAx++;&wikbmC!rBwKBYQD0m0>#&FKk#Ns6;mc%eQj=W-tW9+xa1P}dQW>^8@xlrkL8UU{ zg=B`6N*Va4=KI!g@Rbl>hC z>U!EW$2G_maPDzF>zwQO+yUPJ?dxpc+alH<26EJwf{em!9qK(GJ5qt=37 z)+9Q^8ke%q5n__n*431T;n;t85gc?+ez_=xU3D!F1JEEZD%QeHE-Pyqs>{sOa@Qrg zgQ9$e4NOd4Ge~hl^-}pLI(`a_gd-t{Ly#S+h9&r#RTb4-J}-ZDBAYEKVgRr_gEBCq zp#+YFhpNM{9Xz|Ds;U7l^ntVUq1x4wsJ<%EjV&s+j=CtmJkb@zl|81*xAip2^jfIy zs_gJ8yzE5&`Yx*0CbCdfUOmpFs#>%Qh$?%AGuW_ImAfKwB#2JH)oK&QO*E){r&i+D z!8!fvAPxt#ZaT=q?QKXLfx^im&b%^^**L?DI+P^Oh_*Y}~C*v_r+D;kbI3Aw@1&lW5CKG@D_K!Z5+oP#v6GE`<-}bz#`Z z!WF9%ZJ3FfROEu$iNoyHUS?O8DY|R*68IPxuFF0ldvf6D7tFEF%`0Q7i@St9@ zPsx}b|7_HdaD$v2@dG1$8e^XPC7bV-3&S^Ub)23^!iBm?Gc&Hs&899Dl|nXVMY-!&1eyB$clssUUYd<3ISdX+D$MMj&I|@40m-_ zK-DFW!zL$ZT(}{=5rx4xIC+(EVXhmAZ%~?P<~NoL%@qCrZl({Vz^MVR{~~`j-1OJq z`+#?}XP2kU{i}P8YoBYqbHDQf=h2SM_K)q=wqIYPs#^JGpx!* z>k}AbQZ^OC!e_=*d21V2txI5hN!ip4t8&q3x5OamSUO`zoZKX1kgc;SA)Y84;HlwN z8~L+xl2Co5uA-qzc(0>f69X}e*xvt_ zvd9auB7u=C9FUa>x&dzXO5oIyGZ%DHt+GBDOBv`s6(FdilJty}n z87;+)s!w1ho7$$5GQ5TlD>q27hRhPhkmU6G2VO4HwLjvPjj>Gyh z;b(q>Of5`C2wI(8UkZVt;3CH*@L3MlHMwpiff2~%6{w8sa@mGNPcj#8!!gKQ&D5m4 zp(8lL=TXa1FONV2cyg#1xE?+GiOZ+xNB>)}I zL)RxT_@>+ox7vqgp?=Z-?`7KCHn16P`@6*7)3?d{zIU$YWzSr=oo}kE(KXKb0^GT` z&NkX={` zU+m%IF@zZpS4-y0+1h_`0?(A?LObf)?e168(|{$^l2BD>4a^&>!(1XS|CGdH5Wz|9 z*t~DvO;2P(NdxpJi&aMC_P(d`II8g=y-NA&(&upzq&xFb0NO=w1b^s@< zVNrpqA}@bYq7+5I3S&jo8YQ674GfvGt0~R8D6NDAk}?=#!<8yK7A8Wd0d^RwA(|0N z;Q1|lH>UM&GdR8am{I|gz$KNdAw+$J_-^Fo7bo!G7QP(@tB9r)C-4jviWvNwbCHt7 z0+7I^_JVH5U6)>IjbB{`Q)XB)gGgX-Ql5*167x|6>@Zq{Ym_7~t|z{RrsVej^h_yQ z4K27Hmj9r?QW=85S@AVAT7(<2ATb9D>j*GpRKsnTr)S2L5cG(vR6XMS#K}kxCKyN0 zGv6~Y+b#`;@X&|Xhn9rpt85Cgvj^s9_k;f)Bw5(#a#Ug#03k;7fq{hUnV2aP=JpW@ z2MtETLBmDD88YF4fdb)lnXvPGk#Jy=aG;8CnoM|Lpg=fPChS%u5)Mk5JV<5oNiyMq zfke16fgu;=^VPU}*q}+WYL{MeAjadU*t}_f;EDuBUX;&Qw}LVkj(QUqfw2MKUegb7 zW2j*^!{XM8a5e4=EUB!iDZ|Tis_PfSTE4ugr#4i&EL@gd3Wu*ne{M&t9xIBc;L`3UMtVm!4N4Z6`f-*NbYDtU-<b{jd5X{sF5W7dGEIVl!N# zfRjo`P0{$m(K7}}mebg?y!=j^UGNlIDSIkDT(Q{+d6qY^;3+3#@~l4{p*+KFf}0&E zoqT;VFU?CUFMs7`J606-xXC-DjWJrcq9jqfX0sKvlRJ4$cxuZS?E`dERMOR(EvU%4 zsZ1$yBUf&gSn=Ynk`IhAQFl9wP`oQPn^74}Z4G5^a%3~^1(Ww6;5k2IOx9cJr>d<_ z;7%}k4??D8xv}dK8$fkd^7X-!t;QJppUx(b(Q6ayQ9jw8TT7lBU!TAzr}FnJyz$%^ z<8?Nhkj-@ojB{F)v^m47+|=3xk97Jo93nKv)ENgj)I@gHBzUykOiFSi>k=4PRsM{F zhpCM*QuEPD*-t}eE>B?KRQWSbW<|N7%M&X=Q$C}Hr*w@m^njnM$j;hC18OFlZALY@ znKcQFjVh0?KYlZNyfJ3Z(4M;#2A%2z#zU3I*9~F$9G%CaUIaDF;0T zd)FqGqkOVbTT7lBzba7+>TK$eL&G4dVH|St z7}^}8tUkEoa8v@YaD$;#!&n5Zo)2CeixL=56+dPz?pFM8daLM#Rd9|OwnkT~z5y*v zVB}Q%lx3&_UrP@qFh(kV$eOpUa7=n8Oo2P!;0Bs%_&}rjpi!K_u&DTj$zTo942*<| zW*Gb(S@37cALYBlcbxZ0?=;Ulo+a+@+zoD%>kOCQd5N=!<90`Z z{R#V2h@iLF`YoLNcUaD|WJx!gc1ius51NZw?9pf72lZV$x?K1k%YVIk_38lsak?a{ zjk)YoPMVoLW_IDES%ovljMo3h*un{u^q;Dp)OXhtb!JX<%;@@TJz2W{QI$>of3(0> zknN@?YtN{)S$eY8%*obw(G#UlPWq*)deVX-uJ5cTO2Ir-)cXHuiRh7fqUH=1?-6>U zrVNU9(h;@n&!FhxdZK@3P_(0-=pPvr?Vu<6dj>_@>xurBLD6=4q7=eN|J77IX~}!q zR!{WT3|iVoPn71aDtq+*(Gp7!(-ZwUbC#|Rkf;Nu5X$_)<&rG)r9b%Vu50d#zkI*G zk*X(C3unwwCFuX7-cRB@9_ zP5d+Hy z%AlxSPjpWPMQwVb6p2^WM)m*ElGbb06a6}amRj^gDU7hbajGXRu~gC%{W5cwt}&yi z8NF7aJH%0kX=ZNFk^TQW?SV4_9sO7P`}%J84fj6go$Ptt6LNp;ZgA~)o$hMq{D-rf z<0jbme~&$Ad&V}y`mS|}GO;29mnUZ2|QRx`&Ygx~duU57+f4RiUJvF0i!~9K=XIscTC*gC1h!SY6c& zx`>fHUDXWwh>?D}su^?=BYkyMGw3Bo`sk`=&`pf=)>X}*pBOntS2crq?SOX|&{QT}g5%jh39HD@k6Y(ULQDCCP;}T5^W2B>9g#AnZO^l4wRn4HE7#XXpn!#Ppkukce8QkO?8Lg|D!9C8AB3;!CZeI799)bP;lM3kj z|9!qu-WR-cJRf_iA^!h*x5IU=t20CZJl64mqsab({bbvRwq@2ItsAXo%NdsT(&eT} z($VJa<`E`ST~z7_i&OAzUhBZa@)UPU8aJN%)%U(h!KPzw>U+UMHw0g6GrsK9BVPW0 zdhoE|upULbA4rsz4f67XhRd!so9m)BeTzxlVClN3RbP~QxW?LB7q#e%av#@dQM0}% zcR7s}9W%NvYSNeGZl~e08}(JW=V`R+nhm6?_C4X9<<6&8^^dV{?maoX-Cw@DDRYCA z1SsnDq^@>9L7n@bTJ`jL3{YLCugYCe!&TSnt8y>YaMd;Xs@xGZTy?d+D)&VVS6!vA z%H2`JRafe(a*xz-)fM`x+$l9&wLxE%`=y4fM)Xy=YihV^y}l~KU8*ZeKC1De6}qD2q8cw+ zt}99&s_~*rbVX_Bweg~hbw&9;3+)G)v^$5et|;xfHr!JD{vU9;x&%%SwDn)+@8P@6 zH^jTsJKnR~Gtd38yVCWeYlF*`&R6|Izdcj}hf3g32^=bcLnUyi1P+zJ|7Z!+MceDT zz=B6;tP5NhZKp5FJwjteae=$7zAX0%jhAhsFU!3`<7E%im*sw;@v;GZS?(DcFYDKr z<-VcuvOaxT?j0I0>(!U#{-N=*9(`HvAsR31)|cfzqVcjWeOWqmow7ie_E(yyQ(u;E zls4X4hpw!!RoZx2yS^;nEN!$b`u~GWFZ2z37`QwzEnxFM;IHy`_r2;n-FJfbTkmz= zxn7^=5l@5X827vGbKPTHzq)R7go;SVVNH|8=o9$QG;o2YDc3YXP zgY`-4O6$>&klE-8m!RBvfzxv|M zyMoQTryTdf;2VR@PgtWhrix(mKce;??;aa${^7LWAIQB{ve4@@aS)Q=pF)xqY`T8Z zv76SO7;GBy(brvy`URU0pYzcX;l9D9f@7Xqef>SbJr5lVGA{+29(?Ms=Z;wpT5Eb$qa?w&1r7=bD1eBd7fH#z$ra zo6ft|Hlt^!U{m(vmtFVq%wV(qrwhi`$JBJkYUlv|;ka$>*L)akT6@=@PgI=}Y#zVy zx$_Eo>y@dRE>A;uc(4gb7VNt%*mOl_=cQ6ZusPHY@^{n0(e=~NbqqEm$x&m2O*dm* z+!JiB7`3V7C4huFXGu0#5+!R9;XpFHB0A;IP~t15HK z-N9yPEk*x`9voechRzdgR(e~d=7P<8_7(lP;Jje-#u98I!RCTw*TTAbwXxkbbdZ}} zZ+1Mbj}&aawmR?5#|H+Rk?q{w!RGTlVD{<3<{3XDBG~-z$DngKNkvzbjda3*;|ex^ z6dQTpse^*ejbCHF4vwaqhQ^snb6}&@xyjPd*n`c4 zFxXsw5L}%!Trg%2+YEj8x4}J1^)|uS2Ls?ia2>AUg8p{S>J#4FSQ>1yes$uR9VQ2x z;2j$=YQFw}O*VGaaKUK3IQbWBYIjrb{8&i=mO?sm>adpse!BCAR?tO!% zIZZHgdf|$={!mR^?KNC5PP6jCm!ay(VAFf1-S-_nSASq7u67zO7^JUDb{xT`d0lRG z_U{#J`Yt*69|Tuh4Ht~SkIZ}~u@~AXc15mNgUy}*&c5_VXv$X`4OfR?(~E`QwSB!l z*aY2&cfy0gX6#42Fiq4Oo{8%)4OjbM6E=lO7t>U;`Pd_`+_B;r{jr(20vawDn9a!^ zFxa#++3^OOMQ~n?XcIeDJbm}@Ir?KAak(^H zFbrSRBQoQx?}N?B;SxG?Fc@YD2f^jkaKRY7)xYEYe~t_`*Nq!9ta&gDj;}$FHt`_1 z92zbdfH4;hKL?w^&4Af=u=)AYZws>*=nueTqg}%Vqc8Kv7$?r!w!F>DQ9Jq)mrcV3 zL+{(@%)uND9g`m)W4_%%a9K56F#dkv>kJdkVDr-xPXY6S&B;kXAHB&357l>~MZ@I? zHh&rT6^cFB{OV%pG2s1F#!IqY>x(iQM@h&<(+gJ?v;pjKI{hAO{um49@L;pvfX+Cw z%&PI+mE~~ac+MW9|3A?5Rqw#|!1;kG0ki*Z{}TU^z88F_`UZMG^IqberiS{<0Qgja8p1*QhflkN81 zCueP`15Xwf7LL41Z)za2<>gOWtl@*{f!=Dvf&F<6Us%HjQv{s#T=#LX3EZ91Zd-!Q z-L|--_sn`z1Px!Ah7YC*ddnBA9Mm4YhObn^2UCRuJI8uD8om+@A50hYRvZqTZw+5a z!v|9am=leD35ICJKErcUEoZ&z9 zvECFy!?!@g2h#|hbq5{KUc)zE!v|A|U<)e;=iO`gPS)_jbU@F&Kd?Wp;hU}DgDFAF9C9_^ z=vl}o51GmS8Kwo=C15s1Q%@~4JTo;sFeT9P9M~n-@XXNgz;rFEf*mZr>Y9_|KXPd8=DnOJV`^=V#i!0gJ}g@P=~C$vRdq!i)52EWG!~hMY2g6 zvKIU1BH2U@S&N->k?cebS&O}Mk!*s7ti|rRNH$(W)?)u$Bpat8Yq5hal8x1nwb(-! z$;N2NTI`~WWTQ1?E%wnxvLX!`jIb?p(nYdS8nPC9=^|O7hOEVIx=1!sL)KzHT_g)? z$Xe{Ei)14-WG(j8MY0n#WG!~pMY7{HWG(j9MY7{GWG!~qMX~}7S&O}Ok!-kzti|rS zNH$DE)?$BMAS)V*WHkF|fx|A4bRD7^>Sd2zcs_A3&v9~vzFV;AT>QK}B-nItE~v1a zkN&?DD3Jnp1WNvc1AXZ6p%OS$0*6ZAPzf9=fkP#5s00p`z@ZX2R04-e;7|!1DuF{K zpj!fyD!99zT)78#9rg&jub&j$gBuN}93O1jb8dOv9o-M+i}9p#4I3<`!`94#-!=xD zU|%$Bj)w18xZ(S`gJH|d_nBvy!e&oF;GMwzfeQk)fk}a*16KbB{(t!|_DB3v{eAsT z-zUCC-&Wr$-%MY=&+Gld`?&Wi?>g@s?;!7Co^Q;@dY<%LB;jr-5z?lJ>$bZ-a6Ra{z*X%U@5*uh?tBe)4Qz3iIY&4~IF_<|{GgpB2e2=v3sJMTZU?>UX5PVi4T z;iA(-P%(j6!597dMrGypk44ZT0{yhgP{h031qAx_A6N9eedx1|6K`7o z#1)qf7eVt0wC}P@kH5FT)HwOkzyG@Z*CRyGJOcf8HSGC5en{g<-@Lf?mOYz9&|Cuj zo@`f@jnmqFT6b!vg(7GUf&RGdtPRhNyryyb@Ytm{?kN;OCllz;?OQH*dDI(?GnSYN zcXoJB1kEPU{s%VS{N@;cff`N8c6?3atT!(Ev8Jg}1kL22k9IDr z|L4COPwq1G={X(m5J58tWLBE`oW*yH%&QqNZC%%ALBNdQvv2^Z9j3KC$^v=sycL{Es=@UUy2&6RIo!bXJ z)#lcFPZdFv3G_v>9mRG&`uP*iSNp;CDvIZqJBdIq$(_N@mrlFkhqJC;DuO05&`t(= z>y^7kZ><!y%==zp;Ir$%og5_Nx^86Y7)X5Ozu9VZIp`wEIP^m`|vWl#a>y$+!>hJN;J` z*Rh29AlVz--YA`RQ`7G=V9XavHIGp5$dinn`;PdtWyUgbH>iSzkIbO zf0bQ@>Px6slDWTT=f|t=czoK~f2dG>2*o;}-Mg1O@WI*Y-1jEb(^KEwUGzrpop=5b zE%^CVlgM@CG0EN+r%^i}U;fyX-A{>6bB-pC?OUa{ZvFJdo!6R9x$v0%>iqN~)aAQQ zdb-bNU+jFW+n%xAuiU5N>d8<$&-?eXx8^@nx%1WQ-+$}2jWE#?O7kc}-SO^(_lLb# zyYu5y{(elc3HnU|)q_wE+wOnrt!J;<*|gkSR5V^?TTU*a9>1vF8zbf~*!h#UW1INK zuT)$)gnIUtiIdKrws_~Cc{3iWeq7yRx)Vw%^G3_=uO9#7SanHc6H2MSM$gCvpWZtE z7nNc+LMd&bvCWU?f6!sRRfWnT6l;B5Hno4(_N3T@b|DOF$K4l=Ipe%ng}momBF)+f(~dB#hovbyVcHUg_0=?cCQKW`uwI`g&xARQFe!6q!UPDzMi`np6UI*% zHd4{dnJ_-Wun~_Y&V=z2hK-ywZzha~Fl+>-X)|Hmgh`n-6UIdtHrmsqnJ`Ymq|BKK z;~)&1Sx&Xx&dCX6zLYoy6C z!}!d{n@UW33j%Kk?hTw9s0@q?Gsxq0e*)hB1@21sXm=Oa53c83|8%W$&2;s3 zS)K1V?{=OEzW?#g_Kt5Hk2|(HB92L>y^fv^ll?9G-S)HW<@QnbF1DX+FM;PDw=J{{ zgIfl_fk*;ZS=U%+TJx+<%SV=fSuV8HT28d|kp7fDkRFsSkgBEeQjYm|^K0fi{*!}` z&vT>L?IyP&?$k6sVT(m>RIUPWA%d)Hq6q}~h(H&Sxw;2gN2p8<1g@l~U&nB)Q&lDh zT3ju|u?||99uO`!iu3Yh{{KQVH;NN;8Ktk78^x))jMCG~ADkP-$+?WuOh+hJh{EZ) zjM7X;R4AOF%P7rsM1{gBx{T6HM^q@Bq{}GHbVNXPj>0tEDWjC>i10KwiW7ACsb)H& zLg5r$Mro!aDip3C{U3YZ0VP$@t$R-A+=L;+05bzfH#vu9&X6+#Dj)&^l3`{D5+yYm zQ2|9nK$1w3oTEJ?2`U1DL;*!m5D5}hlvn3e?b_#b7vq25Wv%%Nl#f(CXIomn)H+vWz-m0s!2~-QD%*Sr5fv$6=k&OSf$D&hE;Q&@}dlv zD4u%TOnFhpOB7Ev>?tqGfQjO%#y#al88J~j)xg(y(S}SEPc`xx&uGj<@l->f@}dly zD4uHUGoI0?iQ=gSKjlRkHc>ok^y@AH@p_7%;_7%%!(Zh=`}h@=fk%yhl_#+qQGQKj z;86!awH{zR_*IpGN1Xtb2lIemR~dNJ5m0$xv+ye`1CKfbDi3BUzqT^)s6(LgV9xWa zD+7-@1u73#5Wl`M@Tg;;@?bskD=Y(#ItMBbRyU8Z7QPV@YJKX_x5=oUHs}3t6K$2@Yv~ zuZ5(MoD^k8>M!_5a8i^RsV5ERq$n#=PkMusqKrsAX&5I(*^oL?zM&9Lz#A>pY6!0( z%7WC@kT{r=q6|nqX%LX2?MFRnASXqck9yMUoD^j}>PZ7QDav@%llpT~lI8cHlYZXU>JrG0rZ| z+Rh}W)p6Nzz_Ehd3#2+)ILedv1RmPY*tgn0v=6qwVo$agvdgwBwgV(DV2Ul(*2GrQ z=C1e5GDQGd9ub2;-my^Fu*vs75T-@w6 z-7+0FZIU0FJ}?b3wKi2TGaS1(kX6}yC)F2*joE#F3+bqpvkJwTliMxEEo z>rrPU@Zw8IaW-NMHH_Hns5Qb+xFc%KL6lqxwdN?4%z|1o!_KJnE%_E|tz$rW={{9x^S~Jw3^#IfwVJQ46YRy5EToJYAD3tW0*39fRYJF3_iCXIzP+q!+ zS|g0I*UD>AYb5aEi&1Na8no_@S|bdFJD}DaM9CFUYmP!mA8O5<0;ATy%DE8q^vIy!gkcHA4+r_d~4_hQjSpYYw91@~AaOp`;geVlI=aHK5XO*kpt` zx(M6EP|{>T+o4nr0_MTKW)7XPuW!gVuw6O^l$YrKtL>l&qsFV{)!1+(@Zt-xuNi9S z>%OQL!ch1X>}w99z}bz;{ehQ7XyO-2~XN(-<}4Au2@Ta?N{DCxq!W=^)T zuYZw$!FK5wP+rn)aR~DxMY^Ds)`kLM?2uLRD%1-Jy!QDx6bv;CMLMdDFcf}S0P==4 zz;WUwu~}uY$2bbrIdC z8`xxop{z6)+r&^^U$;W39E6fK-q&!!XYA{1@-^NrJp;;1bjhfFt%FhHPvuW}!*v8+ zd=BqxKn;DJ%JtI0Q1~U@*9fBI(p+mqp`=x(6TPl9^!0UJlQ|4!rP;bRQB>F0FY2TM z2qi7p*X(l9*w;VHKV!Re3@9(rq0ssoVbpkqyaF4J1YZ0@>}!S^`nnJ5g)kI;0sESR zD7h4B%~2?6*6BpAat(d`v#!Y;hO*KuU7IMX>+6;}sQ^Mr6ZSQ`7&i9xPx4RLE*%5P zOG21$snT~^X>BO5GuLV~EzeQUde3{F*F7&1|39z$FZTs^hI^rVjJvbDp8GlC|KD&OajkJpBVPl& z=&Iz(Nv429ECXC_#$b6wP#qfoLS>U^Fih8lJLTmBn$)-j;GY|&s%XM|Db4AdE6C@gJ6 zof&G-c?{}|FceNhojHhd>!8jYg_7~8GrPz&>in1d7wW8IKzW&-M4HYBqwEOkj4%|I zHlWT7HRv2hoe_q@si-ptQEqM2nWIp$0P6e$O(r(#{8)aBI_nrvUN&j4rZd7Q`!m!T zVJIxEN1YjJ(0MfKj4%}LgF15%<<>%-ISM87qt5J_-Kg`Q@}H=)jsfLm8FfY&W$!|r z5r)FjI@Fn=2AxNt&Im){-l#JNQEpAtnWIoLA8MrA9RZak)Cgg$c_(UwFcg;7qDBlg zXfzTvLKq77LX9|xa#K(vjzY=2IEpO9VI0NZQDYqrr6t{#jWD-zq)XT#2xG%`V22>g z>t2H$!caqpjKB^-7z+0kfV^3au(x5B3&|^%#5W5%!i2htd+=?6p;n zFiPHz-GMMKyc)ZMp@!}ljv6Bjg?pgJ97MUvs4+*OWNy@$1+I)5>jDQl97;=ctJgF} z7$t8*jS=RBSE0rXHE8?>YK$-x?v5IB5arfDjX4S>bD_p83TM=q#s#!UiVla;65Z%E zjS)u4TTx?#dEu3)F+&X+4?~R+hQi%YV-BL+5Nga(D47#AX4w%&jcH6k(^!W?X^C$0 zn#KsDehD z9S)@>dJJe9BaD(ap~eXF!pl)(h8i>;j2a^hgFpl1J(Se$qRs! z{2l#ONbLV-Uk3U5zpt->uaNhV_o#On`D*}e$hZFv&n3@R&s0x0PYq9;`xo~f_lNGj z(gAl1674s;&bv0b-f?wzr4Ud5H|G~5_kV=5m9wjWP zO&UXUVO3ft4NV$DlVMd_Ce2J5L$hI3S|*K58bi}zRT_&K!&3=*U6RJoZ!J_BOEbt| zd3;71O`BC|Y>H;EG(IDZtUxxzY;|Uoq*;7M8d)ri#`8mrNwlmCn~H8YmdqSF72G&M1n z(xMUojWjhcmeQh90F5*?Etb-vk^qe~H7l0VSntCJtwx%f6iaDrEa8h*BTdbTr8G7( z;FDG(O-+fVG&aw4ACc$=OZ}dU(qPu&S0p-`nm9{oum^oT_O--()G&q&nr?N(xnqEt3EJp-h znK9DT1Y1gDNfq$UjFG0M*istHf`FH1j5IaLmeL*@-W)#e0eKVCO-{Mc*$kavp4C=(p&3FK{00 zi|DrKc`Z2)wpsRVPgMI_a31X1=o9GcYtDIa2%uA-=RMDPaHf>xUV)z1jPu}#LbpKA zYsz_W;-O!l=QZKHSjRxmYs`7Eo`Ig%i1T7y13j-H=Yh4rzD$qm=LVby#s~Wb$iQ=% zJ4!v}V%5xvBm-c#f01dTzl*<~zqsGy`^EQ_Z>8^TUz(}AuawX0z2iOM-R%9qJIGYu zT+3VDo6GZu=e%c^XRfK3r-P@aC(&bZ|LET9Uh00+-N)V3UBYB{U3VQKUjR&V^>@AC zDkuNsyzTtjxxqQpImG$0vxBUxVRknET3`|V5Y6YO2h7I~uG zX1k_E|KGCpHeHds+dS4AM%w{E>hzao~H{xsyHsY9rs2pySJS)9oiV=5W`MtOQNdG&ryb;IT zIAurnK2!51G%@0KEWdK{!QttT8ya!U_fiIT{p@7>1!f~|<>ezw*0wp2dqx8zjyX(` zJ;UaWS=Lbf(^ESA%~<}>M_Cr`YtY(=V_puNJVso`^1}YbNSLnw@fPbV;_}lAR0X>q z;V%)!-beTggt7AxK1^VidC%HrxO^Lj_iOu}l=L+Jda^#6-_ZO>idUbMG%3uBA&SFl zmiF?h0X0-TO`gVY_H+a&K7va|5S!gn#zZN^p=?P@RVjgd;ZfM6>rfofQe{kTtyhTi zYhXZmIh*A-sW9ntLj_!VsWS3cq;&*0mWSff9@JdasZ-^ts5ug#_;A#mgIu=ULTI$Bt*$HtHqF=0Sh?tgXXw97&Lbf2GblFyx~N1+(DGxT?Xc!oWGet^S9);P;*Y;70Aux zW~jN~CQA0B<_JUkr3h-yP@U#OQF9JL$>PqOuu?>a4%s7U^0FG#&>c(I@I&$;Y&g3k zGYpvz8;&rDmp;RWGgQ~`A=q#ZLdoZFrfo<)KWT@zouR*{$WyStIRTs9RBr0Z0-B4C zQ=+*|Q%utw8Cb)SRI@%?G3A9E6g^Q1fYxtB0pfChx!D zT$SIH-$czh0h`@KZsK-<<|0FZXpU)fI#U9xI3OS3n!`<|L30n+Tn9t@rJY=JKy{iA z;+i7}C5v*+BTJ@@n0j^kUW4Y7<;h%gBw(`}%Z)w5nC3zgh-j`$oS^ldcYmO=AL@+8!p6R_Eh?!G~9^|M;OFQ z+pysb)irzoHk^Y{G7b^V?cQs4+9vK<;&~+&3o9p$UDs2lH~lG$lHJGJ#TtC zd#ZV|xv!J>|7>@E>7cubyQo{@FaI}kB{~0go_4NxzUA!ZOmXIQ+;bdpEOU%;v~yH) zWU*f-um8=n53#qjmmvQACEIq}43gX5z?MKV0KT=Zu}-pfvR1QZCvX4lx6HE)wludC zC&$=1^G5UA=5A(%y!n5}blCKY`8MecbA zkmpo+e~{i@sXYxY7mn~5jFUi%`>)WRJ0S!%SdsBHmaf11M14M;*P{`a0g?4V@aS)ea2iaAZlyUSoUZPfir1o z(pWV>Mr+BWok?TW02!ra(#oW<>}44uRBa>q`v=&|s7%sW_OuM4v2a`D`hmOtAGaFp zk)*NgZ5cvi;kL-#Uq35aehnEjU2S7V@wTyWTjbBJ1KdS&=QPqravI!tnO=>X-Q{)i zbgjO&5u64WX!hYX=03h)Y}=UOoCe`GZ6MPPJ?h;)*UBWy?l?nE2|f( z2FPglLbxqQu?9odzdO=MQv+m_cAEyUGjgAvx@lZ*@>aUOHumNW={LB`%>UK0in*^1 zH`3UvGlT|LqlL!QlHd3=Vx+NmX9x{$S`&7Szv(-%$4Fx@&k))@_NN?*NMmo%5E|UImy1;2u=X4BWV^n5*()@J23PkLFO--*r0;4YjlDxd zXb}0TTI|Ny9$&;6Y3wB$xd0Dog=VcTS#zf0bWIw=-l8Eih*PBG?6a_L&zi>C*lRR| z20^HrwFKXrzlmNYQM{FAc2roCW(q+2n`6yxI7B1FIcp!RAuBRi2DL3!F8u zUg0c=Ym|8Y(Y>P=$Ya{Naa5yaR7Z$v6z?;2<@{mq8(32VJ>k7(7fX z(Gk_}|GS%)B>BJh@9{72kMno)HzeQxdwjq8j*#g8G+%$;OTJ3J+}_{4XT4j=UjZEH z?MVI(K%&>;x#HRDS?ZZg{t`eFPbrVzecOG+z1}^;J;>eKUDch}^{4BMYnN-jYmBRl ztFEh<%i+A{JnURXZUxeu&7EbP+09GH&A@TTX2&eYFvly78jk$-zwGDi5&J^>SbGb|FHzxRgLT4n&uk!0h zMB)Cg8qd3chmqC&hSzM$ZOW~Q*3tmj;i%t{b+QbuBMn?IDvU#jOaksdbK;C+DtI!08~Y_nPp&9JC`XJs;y&yXgMC$Mi|vT zBcDOFkpRV|Bd9h*4QkIpwGrlpF`NUBRO{7lk81O>P_zoF%?u}_+Br=*QEeRq%F6{% zZG=(n)ADIl8wpTcQqy$UXfxEH_H0xeVP1HmhH7hoqbM35+k+RmakML=+RURhs-44> z1J%|sK(w46)kYX)pOR0Z+DL%nlA3 z=As+bjx)uf+Byc5m+9*ST8|@)YJV$#i)teQic7kD4~81lo`q^7%nOg#P`zxu+W6cb zyqAunT@lsBy;8TOWjAF-E$2n85C&Az<#I68pw$Pc6~eqQ=8C~SuGi{i986vo zidI0am``RL%xtD?sFjWZ<>fpgmxTsj7nm+8T$iAETE_ znI3wY(g>sMW2iL3P*_rPKA6%BH7NZaDvdBNJQ|heC<=ZFN1CHhvg+XnQD+?k%FFb;({x4{Wq*x2BMgNlH6?@T%us{Q(@|%Hq3}r5nS&_z1srFNLdjC7 zGrLhV>g+LjP-h(j%FFby({x4{Wgqd%70CDhSF8EY_}BZVklg zd?kEV?*;D`?=){uZ!K>=&pppqo+X}9o;IGc9+&&Fd#C$-*-NthYZHI}j_V-t_6NC| zlKB6h&g0JI&e6`+&Qj!+|MQLwjyD~h990~C`&Iic`wV+;do6n&+imHp?T~GeZLF=G zt)k6m{mGhP{m|Oq+Sr<8`HSTBudz%bUVSx7cJmGMe)Bx@U~_ZwqQA*>&a~0=wyB#* zG3A!;$cN>R|H(s38mr!=YAzI{NkmTEKh^K?X_@pV?~bIgNra}2a%^}CZ3rSQoz_;E z$ITkrfB$CdgmU`Yv?PI4AWH0`qI#=4kBiIRHip=n5%~pBooJat`8KE&lG$YAlDRbubcw=qs3o=4u zc3no{X-)lszn&Or>;p1FV+Kn`{9tFz$8nF1H1_=%p)ms>BX5ED`2GDx8ENeEF+yX9 zVn)um@n7V+7dFz^*JFgnPMM5s9lkEz=h|o^jeR^uXl(1v@cwbM>!@Ao_c6L{fqgqh zXlxVBuwSlJ@Uv9ONMoOl5gLT=Oha?+=vLEVq_Ho@2<<3)rQpxuXPSR--fE<=561|N zCDcdmd$+yvMeu=<#=aXPG?slHxp^n|YwN&0XjjVXVTa@ycU)%8CmeRYyUJUs_AN2jn)F)n(<)QU%PKbZCGlwjMCUxMlKKf zbKcaTVb+q%`>|@cj1t-0h};U4ZDej^7<84Wa3Y&)kq7&~-0|I!?0PL#VlpSPxf^-X zV8Y~$y$nO85^HcGtOd)IVXSC?*oCs?*OQ9io+nEf@ zMis3F&1j9<+9!W+JNwvgo*OxNcyx_w)Ql48UNSHvSNVQR^9-^?6Vk6jNDZ8O^j52EAj1pn*Ed1D(WzR>oqD8BbGfITLIH_~P;_r8S zC7P&)&L|P~_M+FqL+4f+5=~TNXOswMMe%7fD_AeQ5lvKsXOswMPl;B2MvVRKxoDyq zJ)=Z8%Su=MdDX5(Yom#3_>2lg1`+ z8jLj0fYQ?na~jMXo&u$(72-6Qi982NPa`e~vyowD^CT!ejrb*u1}lYULFsA4HDWYa zc{~kDPb2OXqrpn%c~E*9aitgyb_SjZrKjcPG}vi)CX}9*htt5S;;B%2T5e7QtBU7B z>1nw*4Xi4j45g>#6hFEjBeuPjhfuOm38(X6Lk+UnAhp~#q*_SHF*uNucx`E zf+wf@k^78$hkLGjguA`FraRGXbzLPl0?S=*x_Y^qxyrb*Iqy18Ik!3IIEOnsI2C6h zr{wt2@wsEUV+wg2u$iMY`8ME={g{1|{R8_@ds}}}&X z7UnAJaVRYp=PK)9lzf@1tb?JjbcU-8s6pjVxXL=17p7q&Rb@m`aCfdUqENIps?1z9 zqsoO)WgQNsW%bi}I@JQ%y|u8rn4@LvE}Gw@WgzKrC@rhs+iQNY32whhag_W$_6L@R z!qO@14~820<74a(gn8lVs4_=Ua932BqfoS_)@Ds5_K=vWGN5u%Y%{`uN@~gn-Hzc= zV$x=gPD8P*EQV=Qu&0@?YV2v6Ql&LZheOqJ5$tJ%QQ=G2YJ{P%bP{`-p@yDbgi0aI z3s2QhZE|rG1$RM}ISNG;RGInRMwMwgm8P-|hte`Vlr_N!qvVUIGQv<;I)N%P)S&W0 zR2gAj_#IT4qbT?_RGFhtG#OQ9cL+w6X)2YbvJQvRGCfu`l@UhC7f@w{p|JD~s?1P> z$_r3sgn41z<1-vZ!JScMjzZBIs4}|`F{+Gz z993qhLFM_VGQzyD?$sHNqTo)bGDo3k2vufxJ4TiBYC377tiz$StUGoQ=9{_nBlZZw z*s$~1BM3v?(lP82h8lWg9`*>ryzmrmPQu%qx?H4YT2XCo@}k(Pj@Vrsg?g)Fcd)5#?R*?z*ODnBIDFdC{+eNARv-aWSknQqP)x`6d9+6swj`S z=^2;_g)J#EPK{M*Jn(HZcp{Wew<6=zU=`&tr!E82ll1kGvzPIhCzOHtNqQbRCmD~~ z@fnz)r00>-mhqVJn}HchdY&4vqU~cAV+N)u>3PI%U_54KWnhkyo~MSaXnoAS$iO5e zJx`5UQ64+*GcZd@&r^d|lm`JdOjFYH)TkBZK|~Gnl=M6`Y(;qxQo}?gJx`5WQ69w9 zFjGm-Qv+9&2SGJVRnqg+$Q9*5R1I^L^gK0mMR^cb!(=5rPmNts9>mo!TS?DTgIAOX zfi+B5((}~l73D!>4fB=sJT-hpd6%@Lpf$RLB|T4#Us2w9`T&nEV@c0b16Y)In*MoQ zUCNT4r$(?S?}YZM%c2a-S<>^=5EkXJ@LB|umh?O|hDCX?Sxb7J8pNW!*t8`*PmN+x zUTofyo@e8{*u*70&&qkRnM-<}1$ctgB|Xo?d9le!$SYN*$T*oZp$9QP$;gyAlZ}Zk zS=GQCJBl;eDC?4$jLeao$>xnNo5{!=!I^9(>e88v%;B8L=C&@M$;f zj5A^VVMddYIg~SDMPo{nkvW7jV{@8}%)y))o77}v4&uz%tR^FKAZNnPh-pnm=IfjZ zdoAWQ8JPn(6LxP*Y%((Yb0(YznAv1x_Tx-AVKBAH$n49RaAsj{laZOunQ#hXa+8sn z#+h)gVs?{}naY`PQe%3Pk=chc;q1r!CL^;qXM#0>2~I|4FV2k3a56G`0#lIUWMuZ> zOt7Ia$H~a-&Y3Kdmw`!6dS=qtZW@!^8VGDeetA%;j90oKwU)M5Bd`B&^uI&?{$Dx2 z#rLgmt?x}=7hf{@?*F=XpLYrQ`+qIHNuCFugPz%*KAvPx7WWVCjqVBVHturLcDIkb z{kNIK`8&AExopm}&ehH_<{dR$*X_;$yfb(Z8u3wf2OUM zE!mdMdeyq!`i`};wUX6kxnNmunP6#aDMj9>`PRIGyy4%{T-5Z3>4<5OX^^RrDPI0f z{#;%p4^oY5a&aa*-O5We&?=O;9e;(R9s{H=C2QmnIrpDIQsIrGn_WXMFx#Wk5hzW;9Z zkCcNYvp-(4HY3nP#7*{(z4WM-@FrM{1sVvrSMO%abMDLf%H7Tfeh5{Xsr-1myj0}MPl5U(?t+%; zs#ET_uGpbb*PwE#-~OUi8(t686LHm{sMJh(xFN^gl3SlwuDHLRx~$;*KwSa%${*^a zY@z&~cKXQvGdGmWEk0hdKYTP$N5owgx8~agFDbu&>Yelc{%@2E-M;ws{SO-jYKyop zssGw2kH#Kac&X4)<-4OlHZ8Y%VW5_XYkHrwqMh>K{?shrCx(^NP0MtUpL7b;6mWke zEod2eRe6xUxni%}Zz*4&-O^+1&J%$Y5x0FVG8%1_hufOYF4s9txmdYKs7}{Y0Y$`B zmuB(y%I_PmpEREzsN8<1=FnAXp+K^LdwGjGAv!64_`0>3JE^Sl+rUS&Ha_1jP(#Ee zBSD5kdHDU<&DY9QRIYCEGAIRVDK>k6>?|BcDdelf#eo0p9PtDOOP+7z! ztD^3)p~@enH}4tuXpr*rl`IuT4*ok(NyIJu(awDnURVC=e6-l*sa=(8;k=J}9EuNA z6mT!8+e7uiDW>){Hg-L+UAbBEs|Ohe_6I76xWfzDci(;^#nE;2CwJmbDi1er?bGwg z?m&4Fm+THHpNvfL&wjD``^O8WxW-MN_NediKsf>TqRQN4PRTZNuGyEpT1vj04c+m< zj{;>yT+)K!1zjoGr?il3lxdd|f9AXXUw5t^C?nvinhl+tH6{DXPfPV_@_9=30}Cg_ z-5D4tE#Q7fdTh|$+$lNcHUF#6lCdea51TbEIAUd>l!&V?i}nRm^3L`bFZ*fLl(@Wg za$cHRHBeH(Jx@ls-+{Q4f*0%6x-jx!N~x?RPcH7-Jy1fx)sB|3`BDlsTvqdsV~bNN z+!~#y{fWbYpopuTn+Yj-k8kP!TaCn&=j>lSUuDexKtRAfOV7fTtljH=eZG%5#r1R1 zvx9%A6eup>o}uSkioCnglSlS~%9Y%Q;*Krt8F)^_WoOon<7H;Q`@$4u^Rlnvzj_e2n?Mzn-R&5w4D&U@CXUm3Tm&Ydf4l9XWUOlxu$KpT{5m!4e znkds>_%6NrsUgW*em~Tx;%QqTNx)TizP8~Pl%AV2Tn#^(n_S_;WAVp^z7$9la8GLc zdILqtDB(ysQnki{iW8=9?UWiw5OKA=`gtWwqfpAG9KVIGcP(@JXz!YV!UFCIZU1eR ze6E7;`Fp87LyIqOs`BlXT!BI&F5Od;7hc)p>0itm+WLF}*Oi^0lT5i-oAMjFPbPQ1 zbIJO8@#KU80?u)|H`Vy2?;*>=d~5Tq4dfR{RnK3t)6@umx$0bMP|Ec&oz?ZtmB z{wt7Az&@(&AERrOkXjwOlzV(=PtJQk%~j?r^8^~iuGiwcF-^{cop|0geg@?s#jfc=%Wf^DI3jf-BmvMU&x zwsP*fpVhF}um^Gp*k96h8CqC%&bS>Dp&f6%Ry(w5^`_Nvb(53uEhi4rQ-4 z;|7I3YxUL8Tdm_-$K~}?mP60lqs_UF-8&}u1a)L+vnMUI_4_+}M~-VSu0g;nXjg>I zgExQ97Ww&j%h2+3hre(C_~_%K2_8Y6JK4xiT)A`2hhHRqk(l5Xu(q)=TK7c#_xQ=< z1ebudMeFUlp&e=c9?b9_@*YZX3RoMperp@r{OIXqOSu-0omkskVZK>C#m zqjHYQ86e*iYQCY~zgnZ6Z}!m2%DzP_-{~3JcYM!h{^4_m&k5KB?Bz_0^H#K{5eqFVyp>e%B&N+KB$H^Q4i-0|!wPf3vZIwS>_EBin zOZDgb|L*X2hXgZY>&JNpt2?r`$mxe2TXk#|FbV1$$5;njolHI4@~hB$gFh`$Vatgv zC-TY~n}n3m2M*0%^kUt&&Bx5gymGwMO8TOj|Ac?7|1EzHf5@N3cf*(Ao9pZAtK%y~ z^8QbGS9r&J+jxVXzdgr1E6LaYZ9OGDlKUI?YWH+^7wLC*MYqj$%C*cDcC~aRI`296 zJLfqEIh#3)k{f^{j(LtWN3z3bzhGZ&A8Bu9k0<{BXSR229c-nfFKm+axOFkfR)3g5iwmzmD&XYR!Qyz ze$r-dZRI!V?9C3dUr?@BVdEa_HOCV_H8++e7~!;eOAv7!7wp#1Z?ox{=753$bfUo zhKZRYV1wVbvex|v^QJ17+LWDL zzfiegm>4<&Hh6B;E11qqsG)p!>(tC}$-}`gF?9rN@ZCmME^u;9FXh|U>MZ=Q^}t}5 z7(21-AGP&Eyf;(jmzKT|r=0A1b;`}1If7wg?g-f6zqKgm?$Gq2a{26lixa+G5DXK8 zN5BRT&QZ_4aq+v#?TWVNBE^;j!^Gr?WrGj*d%-m;XI>tv+@3SA$BozT1jEGW5wO9F ztF>@W@#DvpAO4yO>bj~NYjJOFVztS^Ffn{$+2G0D&-3K( z#tSMbCqKP#c!csO7$#S50ygvI9xRxApj4~H%H_O;d!0%T2FcStA~v;{lt)9pxqR|$ zd*$cy&L_(@tq6vR;S^gp_vdcs9GIor5asH|{v8*-^=mLp3?~7bd31lC`fO%_jb)T; zQ$HO1e7iQmFfp72Z06HFS+Jy4&x7TZ+ncWac;!-JFiZ@mST=Zd=6Vn74QbXxxjSIZ z!{j?Bf?;Af3E1G*4SZ?MoYvcv$BmwUd}Yd*V3-(A0ygvPd?V#1qh7M4xR$5CcXdaJ zV3-(Av25_|vaWm~|As{aQ*sx$9{=^D(ZMh=oCIv`%yFe;i#$lp>RgtR|NZuznjMvb zVPZJNvblfv+_2|{yWUTU8@6EH{(2RHVPXo!vcF?qTkgy0?nv84DRDV+H7?z2S+8Zm zFfoQ=`QW(~NPD+)!gsk-o@+NN)X1^Ru`3uR=1?qOJBo?-7QZU-NwwT@Ddj3=oN2o1 z(JC?%iD4w*g9kUWUZoYs(o+JTw|I5Kp(TgNiX)~{EFZkMY@7d9UTD)lB}dbwSK92H zzH@poOpK;j{uyc;q*(hOU4G!?Oy#dayW$oUd{FQ~FigxQ0iStu_qxuKg2xLgKmB$( z@zD0`+ph=1#DI$BgGYC1={rTH?;E9j(P38Oi!UE}`A9HKOsQBtcy$LyR9h8)q?hth z-M3~pe30iso?w_5RRTWq?A9LnXnvtBjg?m_CtUie`mO4>f?;A_#qz?UJ)g&S01rTd{oR=_zH4ymj&gc~FgM?~OjPvC1b^J_&}2xh3GU{nxVm zrAD8WwS|7!I`o}7n>udlm>4Dom&P|(0pRhS=y=|L@o}-o#S+8B2w^x#NFGZ;QcsYh62%7m+Ho%_0k7L5~X7CrLvXE2Hz0T!6_VjxW@cnemNcb_DPum z!>3H1GC6S=qZ>v5yu#$8%MUeNyL#>F;80Pm;0`W*>E#CA@5_efBsTktQopyXmGHI4h~`XK+bYkHeLyBUf*cW^=cQYT?h^m(ZM6! z^i}U{+bZk|ecJfd!PgqqY*aJ&x`+-=-h25|SN6`bC^X*G{N|FCqw@`*Wa8?f#i=k~ zFR?$X$pC_@x6D?f^yq4daFXY&$(x% zgyzgx(R%Q`Nx^gxc^mVT-rwFMz0302q3KCY8awLAiD{y?GPke#;!7t&W!k(OOcm7# zUf-M9U3HX&AB3jXU0Zlj*>GYXQH|jIeK=!O?R7sU2YZWZ1mADrfr5_Uk;$RyYu@>& z_>pgey+mYi{dzAw7)YynI<)HS+E4xWt_6FF$l&?CJ#oudx8M0XwBEGi&F$H;2YZOf z;P~~pynR@n&ND+>H9tm9?9RxBVFkZ$W2Xn5eh+02b`#YIZr__jvVKtSo6VsQx)-=x zf5+0qt{R!dfOWGdwD3UDT1_vv3%%ZXzJ=K430*YL(5a7(hSrVyY4DQNnV~h-Td9w? zH%@p>;E~>nt(C4nsFu({RG%7{OZJ4eo7Nf`b~Xp`;FmwLZf??+*Ehp!h}}@vVYa=rkpkQ?7F+~=e_=fwgS!# z_3}Jh-emWT@vBpJc1(C##L@0$3M4oGPU%!<*SCQ-f_B{~sCIJUg&>xE8x6yV6`QxT?4cxJ=HUoL@TEIcGZGaCUUobq2_n0{0we9G^Kpc1&`l zI$Am^JBTAdUJLxfzSjP}eVF}KdmVdmyU%vlcG|X!ycsyr*2mVuR>_u++#p=B9wvV` zaE5iLwVP$BWwNEWrKzQ~C9CtSM)9n(X_C_9yh zh*5S34;G{B%pD{~*=^21G0G0$*TpD1aR-P|cI5UKqwK8hCq~)f+ERI0IuUST49E_njs%<^ z3(`~QRRU(ybkH}ni$E=CqzGb76hW+k0tlKXf>`535Iqq)2q1P4wiiM4+-oO-=rQ+- z0Ai!{brD4GWUGlFYKBx5KfKF)Z zt5snUL>EyZ0mMx3f&%C`o!ABX7Z8BVy3Ri|zW`*mb-vO0L?AV-^G?hw0GVZ-=TRO3 z$PDY;w%h`c+10t?atT0YR_9E}DFB&Oouf<+0mzK%xa2qi$ZYEDO|lC>W>RNsn@s>R zi#ltMtOAf3)L8~)5rE8|CK=`ekeSoIG@k%u*0lGLR{%0&+7ssyfXtS5mvIX~W=fMk zO(y`ECGBkM6oAZ-CLgs6KxRjiAhZBvX0)x0O#m`0+S=AC0GSbOv0DTnv!Tsx%>s~^ z(CQg$YHP}>S)mT6-dtAS|LbD;!sD;zkN2B=SBcNR+V`$+kgqMt{!j4PNdEs3?|Sb{ z?=Wu%@)rP#dR?BIp5va)s{ACR~uJ#SG-Gh{^&g5T;Y7%+1L4kvywB9vSzi#%1_7Zl#?Kj&=+g95g+elj{TOC_5n~VJQzoX=@|IH+xemkpTO|V)mKU==g z{&wNVl~tHZoQ08_JA z${?k;31Dg(OA!KZiG`VYEPY1cO#+yj$kHwXZxF!LOqO;McwH>aOl4^Yf!7FNYA#FL z3A{=GQw*4Tl$p1Qw1j6$I^#Fkow2cEFnleWa$GD$b4jJrVylFvh=H2ybxqdaGVI_!7LHTLs>$Q zt(C9{BAQ84t^VNC`6k!mq5@8Um5@8Uk5@F1>?kB<^OeMmYW1TL-m|vYH!kAl~D#Dmo z-A9B$a7u(RpSqU_TTFf5o+6BS)ICHPbEvzEuyM4`ZrQbY?am`0~K6kka{-gc{ z{=WVclKp>)eEmP#*PP`3-}YvZzx>z3o8ryl`PsA8Gl~4&zvsw1|3}>m+(X>W$+!Ri z{`qls9$2Z zz9^R)GNuO=+_vb)RSi}(NDS8#@~GJ#>e=A+&9ClL_9?+|UB=T(Q*KfFKeXZUq_sOw z%nL0zQuq5gxjxGEQDV4`s9wmL?pz|Fb(_CF`HOrhQ(IIoWKQp2_T~_`GcI94U;O_mOuWMuvZK;`K z!tB?Izg9dLP7(51Hub)*JiYgoTNZjda&OAiz3#p4U|13I>BW4q$F(p^qf^g^J{vr@ zeB|oztHTq+=k$13;vxCgu7;@I8!W?mO07~2+ci2B8dqg#{u*r; zv|W%G4hid}H~GnX)+FxRdVaw90g2)2A|AX%cDK>IZCPuRf5C7yk$m>vms0TCEN^Bt zRSz9*o7&S?@ovSt!EjX}pI-SZb*5DMd~JoEHHLN^)Vj~9Jg3MPVO2zY76nkcK36*1 zxLM1Rvm__o-tlnN!&SjBc``@qH^cn9P6Go%#m`SjT3^td4dl{)5&$2ybD?d8ER zc|J$Lrx68Z$DF}khp(umghQ9#?KHgS@Sedic|u3Pr#FAf!CnoDl%7;uS=RCSW`BL3 z<@+qbFnLBNmJjcOeY5@aFaCKAmB{(s178bvApaL8Pw5EwG!&tH_x(3nMvtqmeEz32 z!Mq^%g51F{c}_>br_l-JO3=G7OTk3ti)v#FtuHvJ;GkfbJgF1QX8{Z4mv=3V_vOo~ zoN>jMZ(Jv#PC_tDp4AcXX$(WT{o;*DCuglwev13_K(mK;9^O&?|3vAi%Rk*8@B7qO z#e2ZpioEkb#}jmKb=P;Dc6E0?aE^7xITkxA*!S6Av|Y9hAQ|^>TMJlLTB@55n_Ejq zNml&;Q&D+?obo@v^{2&WE#Q=8Gs(Z8{~UHm+&7uxH*`~G&;M-D!HrdwkJgv;wX)<< z-g|v#uaUo>Q`S`P(l-A}hw`EJZ?-aTYl~mT$8Y8MI`y{}HzLDVI?5KkHdJ9h(-Sp$ z77$0Ct3`SBO5HfCyu}Jk(j@(%yqosH+s|LD9$ER^{XJ9L73cVbi9wU6;dYKggGP65 zdi>7v#~}FH(DZ~%MCL48KQ1zaiR#OW!tYEZ;L$&ojl;gLzdG)X$Shhu(u4jS`A5UT znn~}V1%A0KR0KT4% zC5&N&b@=kf{R&`*X;VW#EhOpA_{)!Y^P@YA4Lrv|J@~npjS@^G_A@=dCQ>{TYi)n^ zO=S#gEt_c|Kv|=$h&Bon08^XeROvR#f-4 zOWtBO4hpOt(2y-!&I5d@t480CPq`v&{3EPO)ADEnpR$>Bt*6XnYZf+*X>`FUYuQg$ zk1~S}nF9DCHWIK2&H3c=3lEQ+>6crRr!6zVta;G2d$I!C1PmstGP0JmzeeB1FclRx z`9Wla4Ps;=o$3(~nJZI~8%EtM`m9B!<;<*CQ*-jw2s%lqUY#F%{)uwI5Y&-9N1-j z*_vRBKGl=S7$%lh*3&`Z?Onyp!A-;_d+z>TZVs+xJ2~L6(}QKerck;&6a6gT*1692 z7}jpsydoel`cR(6^x2}#DHF_b*xdTLG=Wc>G#kpC_Mwin3l+9qDO>2gQP{*L z=o08>&Q#>zEn5#)_OkIi$aZ!Z&u_@NTKoMlY+nl7Rrq*=p$1Jm+@Yenx%V^ulgMGu zT4buMi4-3`_EhD2)_IrN1UR!@ZR$J}b3NsZx^{2PQy31Wt#VS^AonX@ z(V0#C|64BqG=D*o`TrV;`G4ZADJ<-Y13L^Anjx`NIf&IXRtj-K}4?Qh!i*;d*@ z)-SE?E!Qn?SX}1W(k*i_(`Hj0`MBKif8PK9hZdyQ)OuIEFs1O3p~^+F{gX35xybh2 z3+in_n=A^fiwo)zZ}KSW$(^6v7XUtsZd%+1Vf%MlJx!o^(=2e}Ggx2zgoaIQvASn2 z{DR}~-{B{7cEPrR^2FJ#n~B8u!{2fz7Pb^PX_!PfX`bpqFwY}0iE2zF*2zR-fgd}7 z4hq|-`S1UrBe#QD3!!iK%}uSXNqov8>8o7Q?rvHtmvXCZ9Hm^MyDHzVFR{V8#7=j> zXVL#2VMauR310pB@Gp49S%o$NMt9*jddz-5Q#>r&&z*Z?vihUC1vkn8UzD!jb`p5pZze zpv&3PNDXD8VX2?^nM}{UY|4i6+CP34gH^IxJB)e&9s!49o3<4-QkZd?R$UV(-fQBw zG~>nu_*cwei!5Q+81FM{h7A-LbP;G57%ObXq*cpI-tf);D32{S&V%+aIk3Y-*hN5U z)l9n6d<*PUZr^TXb_BcK;rLdz`T=LQJcvZk+;`Jh0vX zUqSz$2$(r+{iasVL|ndC6>t>5blI9ko#!heAPyV__z5^H2QcW^ol{z+%m(lCn+jY$ zfX4$S63Bze0)q%R9F$BgI7U({W}==wog2JtNx__mfF;hB6yIEC(m5N+peH`J;Mspq ztB{F$1-5mAdf?pTzk_AZn$Q0`{LV%ju6nsYR$i0$l-fgP`dOn*nfOfIPtAC&$6GfSJRV zd(W~46-gLC7wV8?Dcj}QyecRPlK`&fp%Cd!MnaPX9!|YdP zv8llf5{2y@JSxRzJ6J}_LUv;Zi%~27`?<7|naL|RlJ^r#G3Zy22mJ~C2l!^qIPM&Q z{$#5(y@V!DY%cYsE;O#7>|i(35cAuv#@U8_ufR{hVcD== zh_K;oSX>jQZ7wl4A(Hf<#gfIa@?!S0sF+{B=ddb4h~f6zExEb=PgQY|Y%)Y(jNm8h ztcJxJiE&X{7=c)@?Di1YrT?de4_5m@`HmbG|A z&q!cek|t1W!xi|s-m{jc`u_>iBZq$~iT|(iC40Z{w)I^14E5OD@3{-PR=KK?@AhAG zeD6rJ|7o9O&p}?^D{b9rZD{${@{T2+d6~JQ^vJZ=)Li~f?)?wG_y1FHzb-f_1?%8J zpP|R0t7F_&xUYn{6ZMn3t;1P3gB?C;Ju(^E_)Z=8CJvi7#J?aF0S*DSuDGMlEHdy` zVcm}WBfWbjv$tEpj@$V)LPk$G_uIJDt#1Id6hy9-)?{o3y} zP2y9GJ!wOyKX?+ue|hr2B{-a@EMn8IbEYEKU(AN~Ues0u#tY2n=%32dM0Uzl9HfiG;4@c+?W%M+KB)U0<&w4rRXD;%)&z|{7lHN=cDR$*7D_WuX z{STWuj5z${cOzi4vV%IUsU}eDS;c4nkB1TDz)ybX!tQq9ZYsS=CJNSiG1qUrf@oug zdHsOL{9Mc|U@#L{`F@Qv9mFTCt!I@C>Vzo~7QNg}^By8_uN7gbpu1?&t^zouzreK& zyQoNQq=^(?yVy@D>sg*7OZOf5)HSx71hByVu*&bJ3IP{?k3lo!zy-Rmr)}+0t=I^ZzH< ztJ`kd#@nh{Z(0{wTUlL}xt3B=EAt-nAalTU!PK981+ZOiCYu_DX#&jCZme#Xtlb&9 z1l%hA`z+%f5Sg(Z$s6CYsIF3FOeRVCYta6+yma(pimj~!uT4wsYZ%t$-^Dl`|FznC zhG}9Qc!p7TDY#y`yzwOtaPFEKinD7f)IUJazKQJGi84Y+@9R`-!um9{7ABa3+}4c_^m z_7>+oW&SRITz>?Lis^uyT^g?BRs6&BB^@w4ld7^OY)SaftLpcLRuwEOW5&58krdUH z3R4NpOQ;+|gz$UJPwg}%UrT@qG>aauN z$rKx^iF}F;zSjoI@Gm65-h?Cs_#N)0;dij>z~*Oh%8gaihGZu35h2eoq z7Jvku6=pe->*&FmNj&lyFTreR{yWnVevkgiC9`rc5v~nQ8(^#W$yg3&pf zD#5>XgrF+mkm3PX?#$-AHniKoXoíV0adEJ}C$Y;_z?mNcsSX#b zr@yXA61$1S%252Imwiq8SJN$Ipl?ja=JN`SH zuRME%_h@?mO!OrC($lZn|4AfdbHGwzgBkZmTEFN))a7#&IQn!0IH&#tg&!k)3%lh_*kx|&R;lIQ5i2Cmwhiw&RGW!|# zMrxWSQtT7wdqugRera%bvvNUAYAoqfF4C_tz`R#3=GB&=a)Et&3OMw7bGnG3A!Jic z&8%0KuIBMb=tbDNn2LP)v)~?V7myFff3n3&B=*Tn;*cZUZwCnwo`K(CqXCJ4vkfOQ zoMnTs$lS&1{d#K>pSC8+=LSFWa44KQu(yB^7%A8Y7|t&v;Esb`zqGiK)+;kLUs}Q? zveO0vxDg20LLe9B3Y<>tzeBPM@Z-0p^~_9SwPyb)5p;*pF_Rc!Er4t__!;+x8vjp{ z-t+i3`WyJplfU*?$9vq{k-YIg#^ZC(b{BQ6cO^T&a&~e2>6qfkWnW^iXgg$UWBtiG zz$#nbw&XW2lio8|Fzq%qlP}3>vYFm5{kQ%%HB7UW#49M*V4lpgk==uBqG_uT|5jL1 zk^-5K42O9RDTNWXOLPm<+&!>LjBZAOFK@z9gChcd=L_R0djx!QfxVp?ra600QEh;- zi+zR$_ivCQ$nG$eUF>@#-~kTTPRurd+|sx=dWJL2+EedNR)aoZr@`;M{ZG@6%{J68 zEu2~6UV%e4sQSMu3NCedq8ZyMO6N-pXPUb=%f~G@*nGg2gg%A;4x19-V2i++&GrqF z;}E9ldt#%6e29Knfvi=?kAMg+tWS=!1Tnzjz+)RAq#_feBurE4p0)!%e)kRTZ$x)4 z->cFe{r~TI{x_F<_dT;_&05oE)~r%j|5O4?olYhB{t8FZj>sOTP#GOf$Wb`keuSl_v-&hBa*luRxEvu?cMlG8-o2`j3z}Vo9@heJr;;xK{c<`zO zx!!hTcDGf$u)zcx^y)^fU!1^Bip71YhnsC;G%@n>Wg5CX!sveA;^sBf;HL!1R z(<)@!xs)e@EaInt=`9<-}u1wcah#(4N9%K z%08=nZ+~Qnrg(GAR}&v&k5_B3}X3NGfWt!1_yK;S{plUi zq#rTicb{WGfG=B>6X6=denWxqO@wO+BOL9|m#+8H6N-p?&UN2FBMpwMKnQ-TzW`^1 zV*G~Qk8%{|vz*ORs3GTA-DU855qqYB@ygE9ef)-gZV)#B*G03tKfTwR^s_^fZe4z^`+kvO+rk7H51YN>?nb=X zx7ijm;gv@YoZwWWHP)|qyAf0Tpl6OAuS`*Atj79{{M`^~`i57gs8h%Ke#PNUXw+zg z>XLJA(uSFOG!v&NI~>64`?I9YZf#kP-lIA+g1qVxs4lC!KXY1Hns)`s+&k~z*Iu?P zo)1<;Xni)ay8GWSqD5E2bG!`Is-)(d=hLB8-=8UsmbQ%$+Pu3sFCzn5PI-d^68UhFL@`@ESw zPdyhszkAkrW_ZTP#XNmI?L2ioZ+Y@~%GItn{7*`L^x?fdO(>@)0R?EUQR?e*+Y_PlnBE!B3+mS~%2`$m349wEor zKDBkRy@wv#%AxbB(# zi7@z=Ws7AFYHBWJ8D|+_&Sq(EdS<$0sbl)xwA%EerHrYNX}Be)MIw<0$C&$?+nQ^e zTA1D?shQ=caZO?x5~RxU$5y4}>Smh`VSohV}+k)CVW4?jLfdL~F-JxuyX zkUZThJrxwbyYD^ei7@?+^jMo7_N{*^YL_k4mT7S;Ww}TW>7i-3)Q7Y@N^?y}P0dPb z3n7|2ZKZ1pk1uAY8a?&2*`u{d#2$VX>ZDCCk@JK6sG~ML`-WcesDmJVOf9Ag36hBeD336?c{UerqnY6)|Ns#WTtdkn@$?|iL_ap zP8vABv`LUo-uETHHl4oJOJ8WYB zA9<{@bWB?eeNX>Pn7klfkW5^c<`*Vs_G**q1N%@dE17Q|$t-QvW~c5Ub8E9xVV$%@ zkexh#e=5k{WceLwy*4|2Ns85GCo5_V>5?`(^#ElRBojYjEQddStDAh=}!!8{rZ4e|coFv^BlreWnZ$av;U4sNg{FEde6=eS5 zL7X7-6tA>Yka=R^GJ@3c)f|E%#h=KbWLSJ>YxL? z1O>-Emwpmt?wvimAanQ9(i}nNPwM0nq;_iGO;AL;0aB76xz#x7o}i2tb9x9eH`yZX z6J&09G@l@I{Zwg|Aafn-8-mO=BBa%V}z&?blfyGHs`%Ls7|XcweDOvxfB;_h>4h9LRx?9xI(88=G5DM-Cir=TG9 zV*6Tx)N=!(1msSSlWq$#AK6kzkb3ZFA3+iOQ>B%Hz@^v+BV%XeFT6|Zcv|pRm zcC3LQF|MW{G4`D-N}D>;u0pon+Ki@Km7L^6I~i4$!mf}Afa}A44jUcTC#*HO{TC0* z?0xFJ=>6Th#yj0R!W-lLklg!=c*8soJ!eUjfTfnm4(S36fNS8>-H&WFw<=T7HB=QrfG-_BXfS={-C zOl5NtAvFSkHld@0MSz&q61i96A>Xw z^QTdF9mq*(v=DMBDGAjRk)d|o9fT;y5kYR>d80MzCWPF) zSXw$QgbX_OGM@6D;Gwx~KZN}Wq9%f>8=pcpzMC>h7M$}bX^D`4++v#5rmo! zNF#M1snYi%rl|*+qC%9BV;7;WLKNajppy`Vm^HlWl?1z1H|;djS!`5%28BF2+3OGAgU-Vj2QK|7NWSueuOFrQHW7~D=|v(C8)dz zvhvB&RP>Gz^60ZTR8B;O8sdK>MEPUv1N62KvgL9$6eWbL>DdvzB_u`ixEG?K5 zl@+28fthRVCXz}bjvci2NKA}yYBAU1Le^c z-}R@BHIP7D`X3)ox?09eMY*)a6Ro<7&P6^XbO2-B1#E4N!(591^XQvU98ok&E zG!|L`L3Ue*ljsd?dad7bbViv3>66=DLt)xhdwma1TACz2NmJ>OAl)&R~3 zV{dJ{VH;+1S--R9vn;YyHt#YwHk~o`keZl~{FR&wEkl@Gi(~wX#}u*RClT3!W&&1e zCUEUJ(0WjRnZ^aztz_!Agyv_|qF+Ri`Ui;kDT%9qg9QvIZ!i+N@S#lYtueE?VP8UW zh(a>PuecWy5&s_{9qm_~3jx9O+ENk05#06$bOoW=pf2!R{RMbGMT5AH-`J(lzqU3_ zU$ra2lo2d85*h72eq*0P4>wMD^15k8`xU1`It^+Y@yY~M4I1ND{Q3Z)^g4v$i@7r2 zf1Mb5tw{_+{fb{7G0BK(<++~}W@v?(US}dx)#b*OP#1tR(;2R;&EQuD_wg%!ee^U4 zANE<27Elh9k4G^bFclZDB7h5V2=K@~ud@|k=d@VA;@n59Wk)msrb5lY0So^PG@-_N zH3ijNrhb05N^ig7;76>k>`LU`{lR51_{;=~tC_d`HO%`yz**ZSf_VXN+Zey%;YX)C zn{46T0Xp)m2wrLUt%d_j9hnk8TbhSG>El;C{OENjk;9~NC3jE`25Ua(UQohh-OT+_ zZX-d|GRI888(AnD=1jZr)jod3(T^Tg;>zeWSOoDeQ>_OzVQyc*G}_@em=<&8!8oPP z#BkfMc>B?5-mxvy)U;VMf!{``7%0($1rfl(EBQ?34rx4)?Cw|m{Xj+2ujZ1Ycd6UD z<|lkssP{?O)S&s<$fo`@>ZIunYV{#0HGSPsn4|xJT5Th0#9#c`6|lDQ&HGqw8u zT4~g@I+4=9kEe2f1{qPK!(It61O1YIttL9jwrSjsKcmuk9ieX1nDG;vgs}Nt9o*HQ zKFUn`(Lk?!ysU2NwPyeOScvr-MM5Gg=CoI)Wl%pQqz$an>FY-|cV3yMW~|roE8%QH zlUXw!!Z+(G5v!YW*pq0#5~v2&h4gHP|Dtc<@SjIivq*;(I3S zWAFtyUk$qYtA=Kbm=@JXdwsNG{Dz@v!dgPdt4(adVhiBvFF4=hD%9+NLcAOJ4WrX6 z9fqeUbBO!E2HQ(8p@IW6#8d$I3S|{fT&AqzY1Z4ZekDK+v}pQOgLqWA!_QmLdvKlt znvf2?25>lUK`(Ywc&96s5~W6Or6L~3PC}z`*V(X!GpYcGF9tZ&9IVzDSM*@11gn85 zk-nx8<)itD112V894zQyXmOGNr?J*LH$05N;D~Ld-%su1FQ2x+YuwdH5_$V8t)a@A zk6Xt9H(;<2aM-Bf48bQ!jQ^bwRh^2~h`4b97cLr=n&8H$00uVVjSOq!HE(SQJI9eM8h7lna+EZtpuwomG>+Dr*u$P57SU($J2;) z<^77kDIL`5UJdFr<;-$*a6Uit8s%^}?DW6nFRh`>M4P|wy?lPf&68O#&z-(^y80Ez zOmwZZYo;@mxN+y9Y`snU%|iD=R5F0WOoBC&2{N({`NXfdWTH1UEv+IsFhqaRe3j@n zcr7z51vpzi65;#8x@hQ%sb2~PTUGeN(%P6^Dd2_%D-^6qupUCdAwCSE{po!%k%9Dr z8=r`UllcAydkEZ4V5-1x^%vlbHR^-F*fSE*S9rj8)hTRug)fu_T(A+v^TT?`8U|LV zK7Pe9lHUII=!YND1ShP=VXkQA4y=Og3%2Xr&jstp7{8%sq|@U#f!9Q^k6&?&q*F;} z@A|Fy2}v_G)eD5WlB}V*=L|NY>iZSfNFkb<1F|IjTX@AzsAonr>-!a-M+RkWf7!D7 z_!W0XI&DF>zx^*;7S9JAuG02kl74xzM@q91o9&Gc`93c7%l?#3kEs(*XD=wj+bE zm)#xu_&cP#Z=|oJBvE~~*G)6V-#$cB+^`Yt2JrKHh-c!xlzn+6*?AxQ;cz&lgU=7P zrFZwYOIOMCV^fkIj@qp&d;(_>ytCD#1}DvqSft9^3L}5@Rs#F@NDuVc%xCSjU6NK2tx~8d^fp}FDf#bTUp?HbgDWK{vQ=GdqVj8m&7`D)9;5LKRuQ#eBWy+5sY{z^2peHD!KEH;SMeoA z*opvBk2X~(Ho|7IL><~hwK&cQTXBr3OPlB)8(}NHE_Jbqje41E%|_UYOG#a9qTOtSt$2sj#U>iiM%aq;Q+@2h2GY4o3Cv5RUaJvJY9rc;zeio# zM5$VX&DO+WPbwua=Z$)_iGH;Po2`j-ek*Pmb!iiYY9nmsQc;gKQMxw5R-7a1(k6=8 zM%ap{LtSj5ylsTd+!pF_PV~5quoXvyy0nRYwh^}CRZth3sA?NwGZ%q6oKtmfBW%Ul zpB`Pm4JMn@6%uk8VG`wT4JMn<6%uk9U{bwpeasxjn3?r4vm0Pi9dCWi zY{rvKnJ*+m^SG;^$0!`lOoV`rImB&BT~g{aTF)xAzJOijOiKOrnXc#!O__ z=?V#o$1yP`)z#Ku@_L3Dv`{Ug&8?5=HNdP%bg!}Mo(H-Q6%srKnAEkBK25g)CUw4~ zkLfbNr0$vYF`dSkv-L3@2AI^vlRl>10Fyd_(qQtDU^Bp^Zld%ttp=FXk(36Lk0FZz zCiSkSk7+i*q>k3~F--=T)D@dPrfh&oowey>A|p)V&P^XvGQuPd-!zzP?l?_mX_Q;v6jqE+R`fW8Y<8YM)~F+k4oX*{j+M z*}b-hwsW@MY%AoOwjXRkTQ6I4TUEKA{Fkku%`MNi-m{*z?zAqFH<`*=Ct8PEKeoPa zEoaSZHCt|2j>v5-o8(%S*~A+_KTBInElWuvkNC%Y(Y)WhibOCBntPd>o2!}&n%$;* zro8f4(`nOA(<0ME(@>My^s(uExt3f~&Wip)7twyS3Qa>n)Dtz8$5N+lY2Jp+7HVoB z*Co!-dc5ecjHFX1OK2rA6Qf?zxWfPnAa0h>3SzTC0O?CQumw?{Wt#N8N6{Kl`mR(o zSCqcPimr*$6C==1qV$dB5%pT8p}V#bS|mze8I8UcrMqI}=Av}dbh()zoygMVrh;@L z3YMuEothsaUzFbyr5~Ro_ok*_8iduuWa`g|q^CImAw5tehuqEdzP2a(rO4FcOkGSw zt8wxtg7omyg@XJMgASlGB!4}1{uJ(+6qdt8=~=3wEu!?WmNIp0sVT=cLar%DCw5nI4N>~j18A@){b33U ziqh{sm#MX$nl1?jAyfNOP5O<}=o?Y`l{$zz64d0s*dDDGrJoysW{J{|Y(Z;9=?9OZ z3!?P>sd7P4`fpY_Qk1^Akz7`kzCIfLB1&JpM6NDMpT7(JDN6q(NiHK;mP%hniv`KW z|3%XT$py+F>SmENX1cYlKnX;RY1PU3>Y^V+$u(tawyDmYrvsWNN^XPB3X*dSl&Kp& zbs;(W$^`_;S-wU~1<7G^kzbJPN|fIfB-@T5>R?Pw(iVqSiIQW{98q#_6fa0N-9ifl zcHhn&e|3pLeMAuI>sp#9f)FL1k5HTrq^0z?0OGjZq;E?k^0DC6^iJV^$$iO;C z(ALctQGAB7O&&|4ZWf=HLPW=0}E3&gx8c^c|1Xf_I&`j)UT zVv!^LDu9HnXQZ7vkUP>$A%q0$kroITkp3mn+Is2$E|`U75rZ%3Hz5j%YX6=Ph3KzI zw{#%erBorr)}}cUx|5*RuF??^1J9d&IMk#A_*52Aq2bDqL+z3Hb-04}_4RO-rL*LP*)-IZ-1WNOsgv1bKY& zhpp&+QG*i5mi9sv66sv}N(Zt_`auXG5zD2qA_&zemF@^3Z;@q1IM^PQJv9zB5HbCz z%$x_2qQa;xvvgR5LIaHU6`~L&73qu+(q~Cg)KdpiSUMntH13}l^`P!Cl-jB0AU!gEh|9ozySGBd*H@ zhE@Pymx=1SEC41jw-b&_AnNw|M5%{tZiT)6RQ`jPI@Z8Yv%M?`)f{GhJ(ubD103{e zc83~3#@ntBk672_Mw1)y2}I%EsDa7$b^&iE9FtLjcNIKSCihQU@JhvY0RK6<0*Oxb zH|E9*V9cPvLG=h9WMgShNd4*w?N?$FV?>s2M0f}5&poWkpnngO@mcdbKVHfDa}^5{ z2XLkxg#X;o{vA9t6|>e^RVhA!==^6u_S4r-HYS0n{S&ex<9afjY`yV$){x1}c>Dz8 z{4Y$SgZ0HHs2$m%JNWpej@3t3cpo!3M7qL9vxb@g9~cla^7tszTM3HRzeTuINTD-7 zpN4F7414lc0#n`B!J?;r5f)Rv7h{D^-6AZeX0L}uPUIpircf`&3LO+hSWG2ej3qrG zo4yE(DZlGr5$_L0MOccOyH3kX56Mm?!ctV)^{}XGQ4yA+p00;QeS3AhYbS5dju#~rAvBU33s(Vo@E?XpFmuA&F4kK5Ql>rc^W)xiy2 z)%EGNG-~J2WnLe*MMk)~dK#4ynj7NMYrj6-W=6On!GH#r9qKA2G&RJfmwk=;_9*3m zP${8_5w1iou+24e*_&>qgvN%rE#CO z+dZ4#=C;nXmL>7=`k0@azclAE9WVu?pG|IZqi=wYq0Un3YroDn2oO~=xPWNy#v%Kp ziF}V{BY^*2RP_G#uiF-b-?0IryGIJsyWB?&S zyaB&~9|tIB{y%X6VrM{T>fDT}$5ycF0UuQ$IYBBKokx2 z?@z`5#o%oWE~ab0`rs^yuM9#8yqdII(fd32jS=AU6jq?#U<1FZQcQqoDC(2UR~N5q zLhsN`xjFqtdLyqsI+1k}hATSc1NcnlaD{DGi6IUipL%?%L4c?>5|Sdj-H@z<*vrl4 zoI)e99tE-hCs*tM(RYO6R6Yqp#Zlk(kX@K#_Gwy#P^pBxFSv zn1n3#Y|0DEpbqr{Lnn6Ws8ap5T!^`l+IKMzf$LAOXB%5XoA-!w#CrY6)=oa`*<2-%2Z$=K z5z&<-;KA!A8XF*5zy@vGJ3C(mU`2*m4%K9CNO(SgGxFrlb3O^Cyw z=Dfwg^c75Amv@UNGkqF|!}I|7YUYTQv6L96bboAss2v+r@{8$w;bF{UFj-z6dJw9` zT~&kMX@J8E5F2>ly)HID)RpxqhCfW+8W>rmvBXR{{;R%dXY8XF+$(FPRjSoy{P(+~P{1$|NJ^(F5|wk5$rfY~__ zbIQt-O>}^$RTGNvmOx$tU)(^#=JLlG@YDC>(iGqyp}ve-uiI` zz5nNz?%SFFzjr)4JdNC^-9258U87w2oJ*Wl9eW+E>=*5QiGBSzTOJZ;uY%=QOEZhZ zJjq;msW2 z;GzxAzm1jcBtAf-G)Ak#3KB8~<^^VBhX00D6vmQzHHJeH_yu8OD(jHA0C6)w$m*;Q z#6965PDF<&z|~)V4uXZ6)i`2ZY@k|*sNUHtOEoA9XFyZ4X2C`VlZUk~m9r4P2Kp7P zLBh9lqUy6dxExV21NjqSM}bv};SYNf6Q~j*3VVxcU9uhHUJKz!0BbIcBG^M#FyG(+ zhx5=F<#Y>jmbgG=qgs-fGEsa#OkhRAn1N*+)+^Xo0nU~_zOJ$TH7-!eh$L}C)|!)q zqT!|j4W}Ni0EeR)kY=pJ1u7bmBwne~YWbQ-)(un$kqix4t(-CZ$QC{t)T3wiGotqM z^FDyb2Fj^;iQ_^?C3&cI6IG6U!#fWsyR7v4BHslH=GG5jKzT45FMSj9Wk z0lu)EB=%#cIrfbSlnYVR8~1Ve9254P%SkuZ&+$1$$%ktYoum3F)rB2k3iQa zK2SPDQ1@U(qvJwD@q0Neyg(G@D$GfMgX$dAlGQ#YP|B#5r7v^MH1H}5I{^@cwGpIP z44%kt8(fUe1Ou^wk|Bb6d+ypsT;4H}O=fm2O`OBz7;uecmqSo=Oq|Eg#;PjD21*!G z9J(e$il9OX5*FZyNhe`mz^h73ptw<^nr`7WtSWFEUd5^kqOdhgNCanafWu2lM<)7V zyGnGRn3^DWcTDdcB|y28Upm>?!*khroGE#7y+eR6QwZ@3PN1lo(2JMUJRSH&1|Dvh zR%9X&f>#s%%|t0I0C5_;B_*-~e0?-5ZTwOVOBW0W_^tl383Mll zK}r=LC>Wxsx6*`6R`5oqj0u8EMed!6PqR%#fiZqrB;NROYr4>3fV1;kB0JZ?78x5T zU|7v_1E88P7GM(riU5Z%hqJ>r;3cwI5g*8JSj~`$2``KtQuuE;!K>Sp{l*~ZP~D$m z1Cd76j3~YY*v3#2?2QnA2bOMD4OsFM*>MW?3wU6R4ZLYcabjVv>J6uP5cI(vkZpl{ z_5++PPkakyn@Mbdc%~tD7`-(-F@mqCQ`njecdrG?!or`3HE=qV3SY&rz_IPjX&Nnk zhss$|w47v_M||}SvUD`{F|{&PHx)CzAwLeg5_T|bUDynH7qJhB3;QU{7gm&52|V(i z^X~C3^-dzb0Y3J==Z%s(%M;}x-dtYEb6KwMIUtwytoBTkb9e%t9_ERjCZ39(d>*U& zCh;b?(LBW5**()e+Faiq=l;-L&0PpRce`D8(IwYOwBNPOHP2ku^|fmN@f=XgRl=1S zt&|r#A3M)EcRQD$smSmA&NKI4q`1_G|V(?5phG+ld*Ry`H_4Ju~qsaN4%bHpjfj_N6V(*1}fV zmXCNYylOpQU1{2DonrmW+S$C=wA5PHTGIN4<$-CU<&=f2HNvwXiNk-Mg$=717vC%rfy#nSm2J_Lja(W0_5(Z z_FXthjuxd;3;PE$jj2l~+KZhSF~uvtDN3JM7|jr+kFSP46{U}DDOVDukBX6LI9Uzd z;0U=65jMGq=$P`8JCr5#f6GNhm3@aCG$e_t7|TBhK~#@eo+<=UWnuYyLAz0nV0nrF zK-GTb$pQe??Ug49091ij{!Rd(TDtN?0f4IF%HN6rMBi4PAOKKH9r+t!6{$9t{Dlxi zp1z98p9_kk@r~tSA^>q}C4VLWP@h%uP%$90JVXGX9;amC@c3dn8ZH_JM!q6M`KgZz zVZHxe;7FC7Vh~YbLEno(BgZa4hs2;#H9Mn+LJ)}n__yrP1EtDU#2^wtO)e({5r5MY z(G)$<1i7&gv>HvBjt&Sxt74OnqTj`!cP^Gj`^BKFH4dPCVvuWWOSD%AA`UfU&~IYU znx5^^9x-TX!R%SNB7K4b)9c>lNUK(vrep?La zfqoPKXgCJBjTq1xtrq~uQoBjcEe32r#{~cy!CbZr05rrnx+DgaL&wB`D6~NUXiNf% zqk94XjVLbL1OOURT&C8q>Rp@q9ha#suK;jTt}gTyW4Ur}W@ zB-*d&`y>)A{#1zojSvv0@iFAqV!#;ml?XuMT*$4&fN64+7%)|?CIXO$3$$4Ppt3o% zOaP#vFXWE|02)A0E-e7iXn%4k5#aMVE6^PQfE*K#pxa`=A@sKhK*D3lABq7z&{zQ= zclm*v&@C}wgKQN5sE2g9o(S-9{Y5BM3|N4YMF67vhlFPo@}iDJhl(uu*XBnz1x3-w zmhxKy09AWJUy1>H<$NMQljZl&bur+MTwDMkr}KDpP5_`mMC6tN0JYUc14RJx=#4~Y zAo_@i5(OC40vCxcEHti&+(Lvwo_5eW0pS0KKGc>DlS_!seRG$fBvJaTUFfPPoqDAc zrT_2%ombxf7ut#be|GQB-jbfRo*M4o-5x5>&}bA+t}y?Tf3X2#sz>imp*J=9Kk4*%BIYguy?GE^ zLu6{uxrX0dFN+CdL9PX2yu|T}aJFlJ7(2c|QKdN)e()#=wKM`m5M(n^6we30;hmnz zOwU${4G<&A7ig(#_rn9OZ3aRlkh{WfCidhaAO;5!GraXdIjbtg1v-Xk>O88^r2`lT znHv8+O|gUEzoBC6%LB8*Zzgw||4(#)SZR`q!t;-+QS-FH@MxAq6;w)j@mXe?z(~Sx z^%r^>#CMNR#RiD?2ZJ^pbO6Ic9Fz^Q%i%Y`K?V+Rc%%U#C97V1fS867ih2UzknbCK z)!_1OCfDZ71lgm-P^FFGIXDr-u^{K3t>lXh5SvniYPOieDKa@DXkCK*8h-OInIKgJ zQ8PRfvu5ZTAeN{vP*n9{MCC>=O%W)uFMqpZj|;H@Vz>GNCH1uE)Lz3oJUg%{#nsG zpCmclm*W~13>D@hs8w>=_ZN%>n0GLc`>`>_;IRQ>TWip+g?I6XP$-c}j1$=u0O>jB z4B)KNd{JeUj1LftTtZQIYCPyQI87C)o6=c)d4YMyss-ur<5U2!&Z+MCROt*I_iVmxd_ln4+PKyv}7{C5U5S zroDcm#2(v_C=t`Wexk&X+mI*`0KR^r!~)!qC=o5bexk&5+=wU@TE2dw#OBHWWmv?g=dS7AQy@7^w++n&!o9``JFS=UBaoU4#? zgYyH&MaTD!Mh=sGlD(L1lkEeWZ2it!kGzG)Sde+5w8mW9bksD`R8js-ZjLUacx3vY z6a&z*8w6jlw9zW-N)q+42~DLr>`Y02w(Jp1Z?>np%t#V_;?gS&l%zOZy%EEuoShMg zo_bI**weXRP!T^bOm%3=kQh7cgY^t3d(8i*TTn6B1EQ)rQqle^6BX3Z&{mI#bvL{+ zF*yB#{A85Um&2a)2rAZkaJ^8~P;yew%z9+O0FT2}y~xkMycZh;6;r(sIl%~YP$$T| zI8{HY$qjqbAgI{k=@l1pLj3Z@^$03Pc6yBw@2WVn|Fth$9M7l2eUE@*%%)51G4U?T3(0_Yo==yUV#cOVjJT!ch5R2A zQ%u-&i4nhgxnCEt27woh*97xHBDeb^FH5XP;L~(Fp?WS$#JAtcmo1Fv)9I52fx&6S zM4aC~)|79%8SW*4L1~4BB-H6-)I^PEfkSsMQ7;P_ao!^^Fau&lZG#u`e>|E77!xCs zl(MgnSbt+;M1nHtbrGu<=ocau+8eb4fWC*nEU9{dzD7kgBCp#oUsSwNQRT_Q?8_F_ zEzl>eDD9x6Pq{B!6wjwKnYsnyG9bl8d>Kupj7h~Bk)n^syomq9v0pC`lSWEALb8*` z<(DN@FVNelDEfx{vPH!QdWDLD^<5%TA)S9iVB#4Xj0Rc$ zxIoV|{^=WB`bW4h@;(hk;Q!j{VBH2L6YQ~~YoJGnBnTN*yFtVbD^vzvwz!fs$lu|J zs{R6;JwC(+x~HS0s$9gZT^UjW%RG2|0E*0LClOu(m;^F5(9MwIfi1i>;}pR@{|#bx zn2G8yJEd{ebM`wn(AALQ#`64?bOw7$fRdnYkPb@k0H4Q(6st2l0CWvRr=zIuztWR5 z@>(V$U&}es zEL7%y`qrPm{P>_^z@)qUk(Yqd-0=;(1c2lp9sx%wW0pTx0(_2QM+Pr?i7bC?(AeZ{ z=`g-Rz}f<@^gt2b24RH&II~cL=QW^sb#PozF?!P()nv)Nqj{@i)qq0ysE5%FaF{^Q z3~b3JzVL#I;hS#jk~>u|dTyO^;@c2n|i30euROvao1C^TKmGG&8GrkDy|h z292v)5y{TocHv%VJZ^jiji=MNkUx>BBqTB>VuOlJnojk?_oo8pf2IUy1hy8!+87g5 z4AMZuL)D2n`r^&ZIm>3nX(qRD18oX`gC!hT!08Z-4;tH}QE}iBUQ0H{;WuwDXkYag zR!kUBY_P@#4eimwf3pGwKFpzH=pp#6`hvznB8$EOYDuv{V|%nIUcQU5-HIzJK*K^h zEIzPE!LbC!7VFWtpkj}vxAgeC?d4H9z$z3ZbZo4r!C8O}fWx|{YSx%wL}(Ax8$1KK z=h9V7qk*~a0;MesCcbN!DKNPAVv~^{!PucMJ{X?1gKJN;l0@Su>2)P2p8#C_g_9`v zpTGxC-Vjl}N%?o$GnHz%W=L_i(k%Q9n=J$J!92#*{FlV*;_R!4f^H0lt41uyNBKh8 zQ8^{W1r-OaI^%~b!1E$s6Uq2s22Naw7o|)<6sziyQR9MY8P~d*$TYBmij!iU?u>|d z@cJn#PGj{bb}!A<0GX!;uG+A7T}fP;B4zfAFYqWG4DO-r?^OVqac2JEV!vW8(n zVGRYpc|L%{jtQDkY$uHk8hW9P7!{+|<>Z<`KoOQWSjO2B2#YIb?i1kF(>17gp@oK3 z?adMOQ+XX2@4T+i(4*LyQvC&v7+!o(aXzcppfu{<9k{piFKZas6CjMXDMYT{$e-PJJ~M<;$6K1u^X$!-j_JIb^&k1|&$44w#Q9XMaH{INk}7qxev z!zAQiwj(4$kEtgqz?t?gzdiD`)!0RC+;cvCfmgQu!D^jm*3CQ)0vy}|u=5;DmDr%l zMQwVaNJNgpynEQj3U%cs=juAbZ!jQ-vBVbE_@J??+E6e_AgaE0X84QcWiHXb6X!+t(NQ7KWv??D{OV`UVG5qo#+S*vbM25a0HwKtkqmO zozGm2TpQdI+|R9%o~h<$=8EQUvmACQY;V}ou!&)VEeFHeTUJ}fht(t=20WI&-aFo7 z-c7_NVT8A*rKP2kC9nBk^93Szm}mad+t?iQGXDunR{oRA7D*H<(u}=Jm!+PgsfD;0 zLM?0ahH%oXutPYKlLqvXXN!TMxLxurJs=6sCC|(qDmKk|K&V(^-cIb^Ws4Y-(rhVr z5(7h#faUSJz=3t-uXTZ4w#egjfsM<{UkSNYEQe&XX|-fUNN86{w=Ox07(~vQavm{= z1cpVYg)|j^1!%Sqs5lysP2#GAV(!Reg_w%(0$CQZL%f)rT_Km3y&_;JB(D69jC5$y zSUvKWdO#AJSN>U4Y{+v8nu%uWVxC zEC4F*PzaFBB=zgR=YO zc6y+_a$DEi0$Pd}86g&xv&rE?5Piy#iwHrtZ(b}dHxz@2;tqN&29Zb}NVvdI_(<%ohqT5bbVGh(IAVS=lTGmAbu2uBZpvAXgBAs1#Dpt_QkCZxGrO)_*!MbDvxx zA&dBW5Yl*+g?A%%#22x_ZX6;IyKm@$Uiq>`-~S6rx7@`4e*y10ZzHeSv))t3eaao} zy6qb3D&xH1jB`A7jBsSN&$5@bZL~EZJ^;S6zGq3YbT>aV4>xC)Zkc{Gy(Mpw8=|8m z0^tAMe{n&@7E0$qf;g;6d(>tkI4-J#-%R`nl2?F3yelr!V4@rUx34NF|D9tE~sC@GaOmnn*G=_pt=>I z6WJKz&xGtzf~uP+mU}uxsf!)1PQo4=G*bbl2oPhxp*8t{W&<`hsMzg6o2sYCPf7e? z8?rH52fUCdoZ~<@NFkE{C(_8GR1}o7{BUfW648|S*4K>gkLeLUysMQTB zmU^K!)vCfp*hcV@RfAPsy}Cig{7$E&@PF65Y)P>}#imZDpTie(DgJ-1{cJYDKuLo= zt9A|g(!K1fnmnRfd9JJlT0=or63iy{o4;$R;GjzoAH>G*1@y4SU*tgnZWLQ}fjFcC zQGmm{Av|)jPL2yIkzI6FhZ_ACPvv~8iw2VLRn?cjAi_%{V~)cgxB6o4pnnd&7racdwmi3HP_$Jd>w41xHd5=uswD2ak} z8a6`yWslg2taJEM4mAciYkN4uB(mK-HmC%X(V37DV_T*@&N59~=0AZ`oWasz;RQGh z8|d|pO1=g`C6-L6n%ZSaa`Yzm3|LP%yRdV?bYQ<51eGW;Muly7*}~$3N}w3M4hUTb zUbZlv4>)K0Q6gKHU`vP(DzReph=wj2ys&O;wSYoZ&B5~lT$iX4E=HFq5zBE+_l)}B zWr=nRrVkmTT8XKLPhQl2ttU)5wuHq64MW9{RdL!YlhSF@dO;;rOlTq24r}Uj@MTHX z4Jt8U^tRj0jb65-uE8?tR!&uuhyRlFvL*3+FtSuF-Yr-!T`$xjLxS<+(npVrHw4T1y{QF{;%^)wVEiCdEWn2bD%z&`@PFqhe4oc-29ru^2R{ zoT_5Js)I_SHDL9QGgP_IRtz#@RPj)x@fcLB--yZv|UDOpOT_ z^ZFa!3^Kz>hr?l~|0RDfgt4a@Kz;AM8B|Oi&AOTH^u5zKs8}h|tX7D{*B|4}WBGOA1EmXDh6v=@hOqu4(E>&w;z$<`*a1y@kSWY~h28}Hc`=x-? zhJV?m0ykzyfB3C)>EJi)e#*@{>yX%BdK*Ml^@u7MHQPKVzBXW#k%#0M3FMcs2f)yn|xz)Fn&Rxg37qYJo41*sw2U}(#BHaaGe zmoQF)jR5|e(Zq}voc%bQ9gn!(AM4$Sb@9PYA)0zs4JqkCG3sSN^IKh2HmE=;J&_IY ztV0?E6&JlBvf5+5B#{@voi9t4`kCpFRtuftw!eIF@xk_K#c5ZKkRjXtmo1LxgT66n zly+%kMYXt1bQ5@Ss$r(?3)(1cGc1mq8E&Bm>TQ zK3!t7B{5}SY*k^wQ=OfAz2(>4=TkA2y~cs^auy9HYq5u=Xuc_A5a&hzOK zs~c<{BBmn=h;YU5GBThw>`B*Pv$V3btrTIJ{<3B9d}MBl!y*Y5evGsg3t$4z1ZjB|hB&gA;jHOqamTUI z5p*=P6?5dYC)=0U2it4e!)zyQzx>~=0`R}w{cj8WZwvfy3;b^j{BH~VhZcw$&fEl0 zxwZC)AyJ=%T-^vx8>IZYir`v{qzJA<)-RA9z67oIi)c~9nZFPn+QLGjhAVzQEP6=P zv<4``H)^=zxX6)n_HC*w4 zp@$?<^Aex{->Bh=6AN7=q9;)lGQ&4&xZ;LFABmWRKxX(x4bQ8b;dB~8qIMRL8NS1w zL=9)I8T8O->{rMRUy7zUSI}jV8bUyJ_);|HAVH5BHFSXN@E!J~>~O`!fmw`3tsEdT zd?}LRr9cOXnkztN_);Xr(SQyTwIG1Z@TEwKqW~Qws-6#-;Y*PeTYnuSsxc3l;Y*Pe zvwa;Ts!I=<;Y*PevwJ-xqGb=6;Y*Pe(|H{vs(%le;XCX}<>89;yXdWqzGa2%;?zP5 z@ZWKDaOL5ODZ2ssz&b|g%r0FlT&L8#Y%xM-7UufsjmsOMGh1;T^pKUE2Ay5mXwxyP zZ#{Hsho^aXWfH?mA5|XC?6-B%GoM|hq0WR{wB;Ra@en?b5=kF1y3?RDiSXGfm51An z(WzOU2K@!%@94i5xT_~om$yx&|l~{voZQTVm7Bif1&OsV{~d*XM`?i zh+fe`0(>fekqVjOb7@b%T{82Kge{%R8}5~uAo{3;s2#Se`LGHf10_ zUT6BHVE0sjm1}vSsdqcf^mcnY^Z-&+M(3Jg(wJd^tENm$^hcpR4}8 zpU6LdWcG}B>|Efy&zTut{QR3~iBE2{K)nc$Z=!PVRK&*?=eM7`v4it?toEP%+U2N= zFSg4;{~zAI_u$Y!-q?t*H+=8h{wm+#<2gfrIQcI9yN9o5Szd+w!#hHsEI!l0Z^txQ z^bNk8R5)AFsNFv2_{%5S?6UhKvt`8N+ybqWY8Am3XWzQssa?6|sCS6RcghhS4|b^j zndL6N(s0b!8UBn{|XJm9QYC$ zm1IC_cs%xY=nr3v4*lV47fP50S-!$M2R6Ht@9OV9dH(z5ZiUaoSDxM}lbHXh&zACM zzDm{q_D8;v0gp#qA14+0tPj3;vURro|0aEa;t7v=36E9rUjrOblPdf0mFx#T8G5E7 zKEme8B|3F#|Eb~e=#qc7$CPT1FV6E%-*dGIzV^pA@8? zF7U}6503EIJL0R&;w=A++wHSeoZqlu>7M?`unc(o%ROiPyIqUoOYIMR(yIKJ+Gr@@ zF&BEbB*sTN{WbOSn5lfu910D?GB|~d$}eYL#ffk4jG0j@3%-$SWPFK-!|<`PRoZU7 z*%x2zdZEcrqwC;n%TLzHR3ZZZT5;0l#Ac&?@-JU)9ocmezLtG^^_#6L`>bd4MK>Gz zxj)jI5s#&w=JkJB8efVHuJJsn8HK(kJZ47q->icVuE<_vPb(L`vQa*pN%Veiz>)E6>7d>+mt=3h|<%o`A1)J}_nFoKkpKzh8fRtLytdxj!8wb@27n zlH(_hTPh^7Wa#HOF79 z6o#)K_wQ&meuB@E;@Y2M%3JYKwQXedZc#&y}Y_8#TTeoF*SFmS3}eUi)D76Y>x5+SV)kwq7}W z^424}hnSk<8=dp@&EvY~vlN_Azu<%h{zz9wJnm}SoCI}SdwivF#}mwustbMUoHj-+M1 zCg9zP$A?#IxB>tBamnH1S7gUGFYo9!ykT{pv~OgQt)J}lM>;d$@u;a<``e`h_|mbz z6FO}CJTLl%@MuRZvNp!s=C1FQd&nft<672^H$&@WPQ0ky4`ip_hf^yTey>FJJNOW3 z74i?Koa(*iRPVL;>h)%g`s6N*_cUFxtIFhV_(}C*7c)<-wkr9u*`{pT=dk9W(##V3MH%D$XH^k$InF)^%&7W<{7l*H!o~5sH$#N*aG&$qlc5~sY?Z|#=t+j64$As$<0YK*ss+T~k(wdjx{ zA67}y@HmIf>(q(YV_O_(i~nj7`oovl_v&N%_XO_=9fxxGq;7Q0x`tEZ=Dt_{Ni84p zg$9j3(v|^_r~4&V-qZg8zA`dt^Uyg*a-anv9$SYI9{V<4=PyzYU#+}8DYaQO4UfOj zBgK{PaVlAOI`$cWkJ6PY@?(54>4(Fg#x}xNpG}$7?>jr*p-^srINNWZ>o{33rzdLFdzH)BE+WDmmW=9J{Jht%?9;b%}5Wf2U zqe;Vi{G{P=R%l+|!>M!y%KD9VUZbe{2ae9fyPuXTy7QO8d|s#4-28UQ77m~3NO<)l z;Whn{mW+6u_0O!;@)>;PZlUd0`c}+}7KeCj=O#Qp2yXtlOgDVB&j8EH?>lIC{Mr0q z_mgHzaO$mP-+s}07d{cv51WdU+1cWnz4fZ{DIen9N#B(z7(Lr(IrpeqSl~QP&CxP> z-mYgpTdmNaKhm55k4d+7J@Pg0g0FTy_bi)zS{Ae<#AAC`W4xn4a)T0?67ki*s?80S zZPoDj6Wa@KSv#E`^DGIUyfb3c&r6Hq3!zUhe9d*G%#1AoyjwXd`)tbj8>gb?@$GxA z^EpEMReyh^DI*>qq;&Y;Y$ts6lM1ztk3NtIEhju$Q3q#Jym|ETAIU%7j?38|c$1xb zriIp?z4%sm7J9SM+;^`2J>y{Bjt}sjcZVj98(Ng#xl$LTeto`bexLcvGxp5~zw$@Q z8Sr?vP+aQ8_B-*_e!aF%Xml_PtqAeh(Ls1TTr*G0XF=YMY97B2tvx|}E7YFZG<|*b z-rHBY9z2NmlquW3X+YaPPF2yQ!8~D zf25WJts^{|P#0?pymaB0=bHD6;5`1!+A%eB?zw`$VdL@Ez~l9|mg=Hidsut#37y;5 zv$f|6z7;cI-Vj{VCx!NTssOU3{eT8@cy~&%rR%pj)rei*x=&{42Rg7w9kJeS;s~uj}ZHuSO=wOWvJ_Z|3jv z;rW;Yc+HJVzI&s;!ngn4_qBW7ZG7U;Q)k0BO8Bf*is!ODNbyIO$$-Z#RU2)c-S8Sd zx_rWCUv~GSp|vTG7!@Zx_Kqh1j$wMoC%cK3#~vNXr2P`_Y8glw^wkl(Z~C)Fh1UO# zujceE8t_dJ->fj_UeXUo@EW#!-wB&OxrD7~UOJ1<Ru;XzZH&)A1k&edG`*V3u@W~MB^ zeK-3vy!P`>E1RA!fS;7wj1pG_@ySsOS{9u;%ojG{!_Mt~?CLL2G9xbI^G=THvjHEE z=;sYAw@SC9Lm@5`r3G2=DY+HyzN`?wFmgrzzMIczxgjpaD02Z?)>LBKW~LkhIV|P zFVn?G?sf4){RN6=z~!#Dw&6_fX86qae|-^#%1Y;@bA-#9(mrW=Hhe0&>WKWU9^vF_ zg??^5cLu(~F4G5?aN;z%4n&eY^ZfJBNemzM?j2G6*?OEZXzHf3r~tmn#^*Zrefn3u z9X}l1fln2^Ip(i{-}y3qGP-p9=l%T!iememThsr;^ffe>7?QE)Vw#yqWu(KAP3vvG!s5td8}vG_eXF_=k<^Ct|V6g>%NNz zdnMwvzs)!?bgBpcQ+DPD5BmO!PhQGdx=F$%U#4HHHv6?|bAN%N8F0CKanEVLe>W2+ zo%&|xAb&;agmi^)SwlJ`P0o%_t=PTen{wxH^1>feFTH(%&s~_yC#guZ+dX{Y$KKc0 z?;C*+4=kM8@bomCQmfaf6K|}*Hy)NO@Im}`ye=e&yoLW+)}-UiZME?!f5j~RidlV` zl;8dWMKa>@)ROisqFUgyXy>C|kIPHPrK^O?>XgeI_*DDG$0oj$f|I}RP@z%Y1bmsz z?SrB1Yy;MCS)={I$*T(E6#6N26W=)Y(esoIzv1<@E86!K+lv3G?rb*NTnwMyR;R|T zKT~{RectOgpl}9U?kU#k!oIPy@Y(A9!}oSRDE%q@O}NC;F=;|Be5&woD|-D< z1ScQN)1EAuTqprTiW3(qG|ulJ!dmae4^y8y@Zkn)H+Bn;#wo35=YQ{ZLwsWa{ac7P zguaXLKTRi?$`)9SlSVfBv`Lv9KF=~&#Xo+K`~?bS#ATId-$qB|#Ah4-RO4}ScIkKN z9^vv`((~i<;FEJu;z!l4rg6!x(}!7`o?ut4Q~ zMAm~3{Z{34%O5)9lpi|3ab(2@_(qLP!AN@zy!qCUq=%bt;it7f8#A}W6nwsOwu?nO z?esZv{ZsqRJ1hMK3S`7(%g(pUSVPG+KtL*HD<_t#f9amrfP-`OfTFo+4ZvX$t`kq_rC z=v)?GP(&3zYx1KJW9lM*{`@a+i3I1Ny?-B#s@uqo&#leZ)4S(8X$-1BxGaY3oyy>2 z6=#L_9TSBwZCXbpQorLf>@0YmZIpBq5BvTCz8rnH>7%#9@L|*H{oZ3`amuhlxgJgI zhOZZU8aC^|G`u6Uo{hs#x71ki^!f>Wx&6tXI@>%x`FV$YT^8>0M@EL2486>dW1IHS zwr|(ZU!AR#51+S2uUkL*VGr~n;jt(xQll(B`EmVAKdi}%FQ3a?Z7rGbXV`{wo}F`d zhj=4$Cn}=2TNNKKJiF3^mUnRSjm634BO~$k;onP%ZuKw`Mw6Uenl)N|k!I7u< zQrk@H$3A)2=h;2gE zYhm9epK0HhwLUCe3a41V?mTY$bf0_sCyDo`-1SH1%Yer}77Xj;jSS!m9kxwAaBO%- z)G5ScnaWZ4WNgE$n=266HGB6^^SE<-=oEyno%*ZqWVaWeV6us1_PsuE-s8b}>*MW_ zZFA=tm*lg25xwr)`7Q9J`GNJbFF){w?Wk2a|J3>Z$cPMh{PT^3PpbTW9VZu^I-*hj zyB$zx!eb#+rt;hP#Q93CZyt>0??)%uaqNQgS-X9sB5s!tI}*PtQ#j>8wIc<;CX3|v(J?mz+5C}tGvM)1nc1Hww0Gg; z!ws`7I$WwP`h@V9pYT{7A1{?a|KTg;L~>zw3Wp-|e{9eLoNDyjpv&wb%L#@6R>#0gfpC9DSf!b4~Wf+&S>t zFfi#@q!iA$w54Rmip$Wjint-UxJdaNG5@v5UavR^W1gn7b$9j);8>5tY#qO^!)!^$ zDLRPJiMUDs_>X>Pd`&Ih&B8jY$Ez3gje9Lu?-Ez27i=tH{*`|}NsxTO%?!mO8N-^Nr8M>aWo@llwN#Simi9(8kP6BTP#;}esi#C zA=ybe`&5o7a2GWhbY|MZ27wAGV<7w!`O+Or&rO+6SlMRK4v zKlaE}=WEc^O9JV=EzaQ0{OoC>4Xxi)ORb;2#aX?Rn60*SP)y2VUDvIpFYsMpF$?R( zl%7Cfx&`{nEK&vT^6%5%-wExHX=EN(S)BsBSdlHGFb))lcy@<)eudh=S;qrsoq(p_ z?3m0gm7fhHqM-F-lI>-t6VA%WP2k+tVyo#7ipe)xE3eb>`WiZ)#Ud~jm_x_YI^ng> z$b>1{$NMlNyG=G$uR4lOL7(?B3Uc87`jbBxeP)nWGxjnk* z*DOd^k|%zlrR%DiX0-Rpz~uXU5w#R=go zK>|~rIcyy5BP3lYty%{5|6tOqEJfM7pjG+)rz00~;U34QWxUsE;N`qnHP@!Qzoqc= z{5j>{9Uxufi`Z$2)i~pDA*Oyt2Y7Q0hVDwW!kI+e!_rS|wZ(&BmSz6>GEVdwH0rkP zG!2;mETLXZnXv>W-*~-RjD5>w6h!`x=@1$)Uu6XFN)~>;S^l$MU;(#lU(l#;vmsr5 zyxHEN!*Is;#5waa%7Hh%*8iE=44gHg$VI-Yi>PPd2sj82Sq1X4!lNdy|r(| zp!hU#c|dI}aUomJ$L9}Hj~s{eDO%g=Ss!ucLmG{^nueQa3$9j+{f#x}Kav{V`H0=xHY zwfTc$PV(_c`m`GPmcyslEqbiWlIX=$7)@YW^*qT-$OP^NEd}jZLHHf>&S}B({u>Se z@5@nlnHYH}4iC`eo|y%;WP^MR?OpZy3=K%1qh?e2(F|wW+blCz8wEVG>}gqrGC0fq z-G#_XeYV=XK{5H>pPa9*;d8BLu%ro08K#mdtqT(3ZK~>?J_PQTxm$kiJOs~2omlB9 zJs(6=}RQG-CA9b zGlM6eEn9(necK*uAD(svXC;UYrzOU-)$l{01?yc|Fd{8GX;@)2GLrW3Xo6$&e3eKg@!R(-SU9nL(Y>?4}t9@_}2V zVH+ss1?l%qtv0@Wh0|UiOqF%&Pwwm5xn0>A)lX|K6I`@ez zg}1?j%*VbdZpY_5{}OUQAUb0&@oz@Lq8TaP3!wW~nyA z@0d5(_OEhYtVF(`PeHhmw7H$~3DfzGGvhqrRy{X)2 zIJG#z88Vcxdd^P;T%OnwOca2&u+~k&VL`b3HDV_xZ#Rpi6h_-kA-XUfiAf0~MGxY) zppXf<-K;V**ZQoF!V7A{>y5I*Sc?fr=4=e@F$3BI64b20kVM%7ZQZ*q?w;-jZt&ao zA=6ADV`Vx-PJ96EjPw~rN|Q`=$vr$>2w6FV=tvp`skfki(rCgo8tIsN@x*X*(bH9s zt7mk*dH)405pCho2l9K~9thOm4;iv^923-B`&w?yE{etR8WWWU6&8TBpH z+i$e_qwus}Pa&_?<=ci|(pVgm=$MIZg@REEZNUewL*}fp+$lcDP5EFJI^17{Q&c!Y zhEZ2mz&vyl9@AIII^KkKElvXZ?3y{qH^$I&D-MtMfqeZfXIOV+u@|DmH;Q5#puk?i zuvpF#-sqCi8fc;JbujZC&KZ%Xc2wUy2;7S!x47RJ1?|UT^%_(IcFh>%8)KEczO5|2 z0r{<3uACbqv1d}mH%ejVP~aQ!w%S7u-acqrbMpIT|pOK9ABl{yFUkxq76P{7d;mieoTOH-mcEnMhFrNW0ihN~(KNWb^-cj@}|3WjQ z^zQs|`SdfX3pY$kykt1l_oFf(AH$#^xXkTN=pTGzFOlW zx2C&nyuE_0I`uyh|6qH3Io0~E#p&lzaL#9u=(n z(zE%{M&98?KrSwF=uT5{di=P(%u~*z)4&65v#btCOdbimk;F9uo>FbcIOuecFNF8o zh(kITmx_tE_mNg+t4+=&z9i5)g1CNrLdcgy8s&kiC|c>aREL3zkliC*6SOz<%~%OQ z*(058qh6qM@rvpd$Mln-kuQK>M6fvfo}7 ze|}59LJuQB)9H@b+XYZ|Rho$SgW4mTgUdOl&_Etmj=_6LGkorP49aH4e%E=D12xDh zQTs?9^46QKk3PN}>Q|ZMjMlS&7S5St8@|4SsIvP%gvOtT?-P%2+xlP*ly%&wFbXik zrAAe`yFWb4R^K=%sDn(1fldlk8mu?(bk|1JsFF$06#5bD)nX`%h_#4_wS?NVvAXsv zP$C7n!FGoCX*(B;h!%s=HOy%BSP`fxaJ|3%o(tsN48DGNW*pQ{)zD7ls6tDj#Qqyb zXCd0??DFZy{ownv<*kCro$$eJiqWap_i!mi$4K#PjIF+5P|z5ywfPZWq4Mmo8B0vg z(w*q}B^5saOR6IK)y^3Zojsvb?EDJ& z;qB30B;Db9M8Z*~8iDmV<)w-Db91cUI18q_3cVB|)R zr|L}yj;oZ?(ls(ruc?T(u$v+8VWy$q_*qa?Is=)bDuFYEF#C8zzT(iI^V`IsuCt3) zaT+-x&+pMqZ%~8Svpc6mrPjiaSKY17eoLTo%|fi?vL`NKCCQ48%db5O#^Wu}~&UnkpbCW#_5Ub?2agJh#k( zf=BDFJX&`Z>L#p?Kp$xCBBE$_LIN36yA-GSisr1de+M=3ITFVOl5jE06Qfen7qG{! z`%ln+#LbBfOYa_*?>(#PnDu$bg*BKNqn!jj#@LG7&u5^ttnuh&uMN;}`@rN?Wxt?; zItW$;#wXqTB?=jvCu^CN&IIm5^6UadHDgw-Ga3OLiB_}K#k-;Ts`=Kd<~EQR;A0oy zV~;aT$3MyZyaG6B98N&iJX}0AaKHIOL$de?hdqeX^)7n{6=-z5*h)oYRSU(%eNn=kwRBtLwIc^~f>9WM>Wf*XgVG7NEDEjE= zW+8V0I0E{5xqEe?`H*VlMWsV%4?zA4&e(q1)VXOi)NLEDrn%%0E-tL;!V9futFIjl zG}q#wn7zLo)D~aa_pa*zHit(voSHpmc5c*w6cwkyBD*&k*lM_(0j8t9^+j zUlG#OimVJy05lQLY6Y^Ku1E=vpL`2yOGap@*oHy#-lKO}Qz9X0BIeSpI~r%y1gMWBQ*Xk4^mj+nc+ z3R`{6pr99gL%d(C0?vsTcl_oPOo2I(0Nu{GKzl;-gA(1=mFCY*K;x+L@Vq5CP(r#O zd{O8I;m?}_$vZA1>wXn9QC8{V8{$EhEfr83en=z7!yB6QLR5QJh`?*sf`f`##W-_u z*rJ6xQc(XmvpL+!4;Q;_@o3NaJ#2N8K|%QmWVh$P-sRhg2{ZKwPQ=XK+Is1ozfysOIdfo9Kgu_alGQ1W)0&Z8g5TcWVMHW*_- z^W?7SNCN~UhfxTKC;zt6Y4Yf*HEB5M1@VH6NMC`dr|{gJcKEiQCC z(7oFdO3#}qo;Op1nyCCeQTa~D9q8t?|8&-+}eHBA{86zU$its)2-urH$vxMH{z zv!e2v{w(&GRsR8s{b?QT%Y$0ZyVev`MXO@k5};O$xTCZnC|P=(D>)LSVSbU9di;JD z6rs%>GDic4@a~*k3~@h)6E-zy!RPEl(+bK^G6(S{s_A_bA=m11`(e8;A=hfI*;Cyx zTa;X$^uG+H|zP+X1b*euT9ON~zSMnm5Gt7MgAxyy7z= z2vU4TJi6ww4i|X)t18Iq95ik6Doy@+6c-J0RvN45z#d~XC?`K3YVRS7`1Mn1x0t~M zryjxi7IKp+TkcIk(S%K34$0V^g}0=g_X9L~lbff0oFzo|+tnVZC9>b99Y>4nlam~E zFG%^kw9#>E63*H_ai{j4CTObf_--Fyf(yIYKRKq&WREc%l#`zmb+qu!_~T}@<4khf zJe|Qaq!mJr=%seAVaT2%V|V7^s$j^VW<2*nrOh>09|$8oP$QugE%|7t4<#J`u`)*m zpjP}z%Rbx{nl_7YO`Y-~)hT~nz~m5IKsrINyvGZg?|sVB45-6}&!t2ioV$*#wu0mw zz=>PH&x?BaefMXFAr{OQVmL=J8M-tsq*I=MuBzu~y(lk8FnB(1Y7PsUTXNB29}hu< zH&5_9@Q^p}%h6NtyXU`2Ms+p%Kw7YKWUzA-&e-_K)OqX;XgzdYA^5C2&JyxuxXIbF z)eHv3%>D3DP86lVJsqM`8NS+x*-c=MV2Vto@gQYyeX(evH*mFrVhWY_LF_v1h=8IaRx@Rv{s0c1y=8Bp8#FO=){Xyg8PYzEytejS z2u?5b^m$>7JXj5;SB!_TaOSw%{-5og*lNoM!|co8N;%w;v2wT}vxmSOPGGh{a%#D9 zD#K|% zAabgQyGY8UK8HsTdB>grkMwNTfsYe$SR4&)l((yZiooj27JL6#;r(MpNRKnR9%pm| zr;)2W6WUakT$_*~fYW-jOxdaj|AKKG#aOPwBKKn=Om$fdgJ;T5-kF)8q!`K*cV9~i z%~EaPp{>KT*jBhq1zNO`febq#zxO6XJ=Jnw7pxH9vKG?YgR(Mr-i05hiu@m9F3`5i zJuGu24}OYYF}6uV*^37TW-JfCdg_WaGRfqX*yd`^%ptO0iY<|2K@oSrZ6GA?CPYXm1jn{A25BJ(oU4U+U=9CUWMx#-t9o zNbM5awv~Kl-_}`c3N)=M^rw z+aY7VY^KzU)&ETEc3b=Xo9^JWMa!jEC$BNz)4NF!LMQBgekRgd`C{g6$r^M>&B<|2 zluQm~Eg=|*-%y}zT(<0&IAl<9N&J@kgw}bcDBo#!Z`Zvq_TOAhWY^K+TcjSWeh7Kq z4guy@f>?9NQ!yqg%A5iP3(X7+H+e#)X~vwqgR7y9h#9JhgcH zR_TXH2`06Dx47??Q!6)rCC^BlKTDpW0Ne{9yAS=E1w2BTW$hBUOXgo+fp*KXbTap}{f8<5FRQ?{Em9Qn#-bdPy<2zd8x zT^GOm1`nvffOhXK5~+`eLYn-u^h2l5a{qGMC$F`M*Hf);q>LznW_SypP+O znN!!pos8W^FH2`bd)DgRRxckx;_asonyVk+BiWUwM|8Wf)wU0cNjcQ=f7R^yKK4Gd zZ7qo@w1&~ZfI?aFLJq5)k8Bs6>2p={UDvIIDcU(3o>PX&%)|}&-h^?$H41dB$wodk zDwvs{pxL3}-D8aMXOhe|VKOsg@ev;Vv;_SKYC62 z9Ba1EQqF!j#Z0ChCpj4|j6@+QTyC44^{54Mbq?IF6dzA#2-6MhxhfCep)&+aH&fZ zWr{@t+3I%xaQ@l56F2Fyqk-203d;8an!h=AO@zw~qTMDzX|#)sAW@V$ z8oH-*+zOPIGf_1DVj1wLcjN;qCasx>KO8w55{YA#yDVhwzITG>fD{2nU)zwp6$Qa2 z38!ChJqOR)p2eOR>J1$+?i-zFhC<$@+t0C;b8xY*p$WW6o@{m7!9e@+TRo#E?s&ML z=|t;wn*5}tG4_c=k@C|WJ-fd_!M?|O+#y!L+dcYF^0@{GY)#)Bsd@pL2rJ5=50FL% zqj|%dGv-g?SiaC$KK`=TtLwlMek9>~!)pJTJD9p3j?A06W5fJ@NMLDwO!=+D-FW0TqSSN9YfcTZsrV zVI@L5WvHm7Mzq+Mh&Mh1@BM~{?aa1^hS1#s>DQM-D^f&2vIr2C(xbWYVk&fHvNnI~ z#3BE}uiE&bIkO^xFC|*LT?+C<%Z{WRJ4A>j70{c=Q~|ow2O(>$tN}&nZ3QhP*+o^2fH1 z(M*HL+24H&Z=^s^p_!A#(tA+S7ICtpgN;j8g@-IQM3ZUDprBN$Yf;zb!y|qqAxH2Y z5;TXdLubx{Qj~Fp(ypM!cE9+72k(GOM9h_WLl$+ot{^6T?n9_bKK$&u>|@Av8h+#B z&#O?Mx;tEe76Gk7zb5(yCqZPCz!{Od9q`rY;tRDSdr(TQQK7-{GF&p&JJcl_xuG@> z2HKbH`h1Oc^NJVrMEWTbG@HH*>qIV1Do?N`-8tjuhfZiDg5_<`!5hlbUrx*+nHZ=h z&KCPdLvE&@=r{i(Q127!OxH?;R>4ujZkm0C$kaBAF}OB-qv4Tf+fXtV5Bls z>4&i*Y%2N-{~uiJQEVg%hD-$1yQkkayAJ0W`v#;?KCr<7_v!>T65Y5 zcw07(HLU9p3g|UCu3{?#si)P~sob!GCTg-okiO+D(7KU4ltCdGy)hCv?ZnjqP17Ey zO2o%OnwCLB3MPSL>MhIPTr+@{=$K6$({h}lw6~^b|6aB#Te|NsL8QL@ewZk*+G(MR zqD1QUo2x2kcDgX%5Re*-=2bNG79nloO3;{a(&jjN{UuYOuuWe`4>N?TN=c5;N4F1! zk|S#_6qI_b54=(abwgrTO^6r@O`}dH(1FX{1qi7fzqP6h=i^L+iR_=gw_%#~CFdlb%ga zL6ArpY*0uC3UZ7kvzdTYWn!~wO^|k4+bp8cAGng{Q0A-K_lDuWark>*9<>)P{6reA zfJ10P%}<9WaR;x9HnotJxhn3(7AKspaZ5=F4};dg*ZEl|XX1<-{y&x8TO&v$4K^s` zc0Qyjvx9&fK^Sh4MO5(X)YtDq`|S0i`RmWzQ9lMMmMF)obf=3^?zZUA^pDRkw-L#6?)e9*&oq)VS?^x=EOn{W7 zz8@qRjZqIg!jWWg4+@oih;%lz1Wom}>UoMr(qg#ZgD~U}zjTgmr;B6bLe9ws)dFus z<)*5Xg*biorek48{1GHl2OD4{3oTvu?)%1ty7n;zHL|x>GQadf3QZ#*1E-IKJ?nt0 zbg0OQHL{;&IS|FR(+iFOk9ubpQg$^C<(}bw^Y)8Y_zvmP(QKvbLvYM>{IF=Rd%%;m zDU}_y4yWIU_n!a#4uVATU;{zA3rtRr^@DomoUbK$YZtNT1f)DuQj17up(M%pR{Gzw zZungmx>;@2cGrWUov(bI9+cRW42T)f<*dYgF@b+ zAk7!D7`>1vZ4E)1jd<&|6NMCO#|qrdZRnSC^LyG_A!S+PP?~VucE^{W1+GH6-aN4h zb&qf?(s0r>+hxGB7_vBWL^@7?{6(&~B>_Pqfv^D}i{zTmE_XGA`X!#iKQ7-{z+(17 zqNFthxm9!TvE&)R)y-PHox;Cu4Pi+wnl=^u};V*L5I5cyPK( z+7RBN9^e_@oHHbdi!)S8Um6}o0%2^V5H=8Gl(*{>t|ZiZjo;*^D@LWP$uoy&5Rjyb z8H%MPR!QBgevtPmn=dcv1~G;DDTHx5OVF=UNS}6{_=VGZEiS+_82e#&k0s9VS)jbv zR2D(9281jb`pQHxD+3zTO+_`GXU$^?^o}ITt3!}%&n&MlB)>&vDgORU{+?G?bk|w# zuCoGgCe8nZKEVAXu}0gX8_7nc22b@;!5NHk+CwVm0B>Q`7*(G;I8));9ee2*1j!r_ zvef3l^%V9|bR0QfIZXKB|DCKlRW=d{8{l@AmMOFyzUYHAeywcHlyCmu$*EIiBbBfL zAj?+XS#)IieP|SYV)jusmddD;W1_^rPmox5Mt}WAbl|6~s=ueI-6P$u|0Mnukw>6c zz(Fb$NQweYoD~nZ&z%72vofrWM2&IA*z+gsUStAqP2`fBosKwjTFj=qMTzKkWB&zY z++3Cj@l47RkSGIeLIm0wYVtcnoY0WFW~eyw#8o8 zUD&Ee2WEV(@Vv5e7c@>W*YNLDoW&9+267m|_yywG-OB84mA(}yobrsd`Vhy5GU&%h zhTI+o4kd@ft(E)4y@T{9o$hFwyGG%dye3B9s0q9$PjzplUB$8dP??+(^ujsv7mU04 zj8wYcFd{1vF_OE5wSD8*kMXzU$--VeS>TYevgnP^S#fUOQf)}znUVRmY&wpe-(yvu zbPIR^T5XZ~bewMDIriuneYUFWfQ%o;k4_HV(E*K?jV2b`Td7>XAxwESS`WO8$Zx}M zAl*7@C4WXm%(fQApd-!)xJ#PTkX9a<0yLz*Ze7_@Km7tUYc7_!eF!%0bC>Wc#<$NI zIv1xE6!T6#yuwyJJTRlwDk1r&#J=?qP=A7TB&0xO2BKtpJ^MI;F$4R zUiP?CY*m*58O!HRxo-WU2b~3vJ$LJTIfW%lJde`M;VJ~<88Z}kAlH}W_dBC6=?QUy zHi-#)rzmSd;WSdH7dUlQ4=1tEYr9NX)ONcXq+cq_wKj6ZF%*lz%vuP%%Gi^$vP5yL zW<_qtqwl@ve>0loI*I2J;^H=9@nZ6#yG1fZMhhPnDiE3|=q^wtpu_TFHZtcieCQwP z2G|4IPny{v$A9){HWK_oD=%@BN7w)KaUhRdM#0!L-8B=TYWlsxTgQ*kB^bKI4^MkU zFT%E3L)ntGsuyeSK%K6z{wGN!G(pi9A+Se23Xv3>*)%E8`+QZL;X~`eDH$e6ARd+v|AmtVLk+OcDmLW`}_%$fz zBntB=#%1){=X~iM*zz4vnqV3#^H>1tF8zqEy>z=Ts*xY%m`8=S)l)Ys|H-?|p`0`% zt|IT#C4L*4KaH%ZTXYl>CY{)8--HgzSgWch5?`%(w;_E^SS>DM<;)(d8H6yAL=)6<@jcwOB~do01^~*4W(2} zNiGqCdE^SzQz0+;MJfx6R2D(qWykW%jup_{u>H(}D{M%h%5VQ#|HeWSY0uOS5xE$5 z{VCE7>D&#pHwY7Hehq+`we?=9h}c`Gdg~%{XxUIKli^BYUSSAg)AvKE;pR(vNAsYr zCg;-ZPQ`lLMpR3{Atr-b*SDTWKbN!(?Iuu6dfjiU8v(ABp$f!_hHs3 z_~l}3)b0!QOY3hY z-Nc}ZN(CWqIpI8bA3>Pw{GfqKY%Q30BkHQ`FJuD@AN~9j(xxZNVXTEj!u7h?52r~l z%lEs3R*W0--Fns>!i7Hn9Qt^*5nGLobie+&>HVyBz0YO=HJY;6ZAK7@>B$(64W+T6 zgw%5Gf%={L)~BJQs3<1&!!B@-O5FdcA;a3 zpy-CdqC=OHfun6+zF@j9G`qQ9O*UwN#Lw0Kyf<5MdUveP+~R7en|45^#H|(=yF1<4 zLhLKTL>ge!ZT}PI+kjya*YX)qeQVd0}Ua8L!Wn{ zV7lKkEQ|@e@=~PiPNaf8g`#(2hpW=w0Y|bV{QUV(QGgnJBU*>2g)W)TY z)M&itXIJcGxYFWjx1l(LOs@bwW+~-Cs3CSxLs6XuBDrGbOK2jKE2N=lvzyAQ2PMEU z)N3o!8V1cX6^a@450GB>b-(tlJ8=5*tBmxnnNVM3bmWfk30!1aTwUI(sR$E^fenPY zUv2K9SR^mmP`__u)uv9sbcWjb$I2HnYlRq z<>zs(PjF~hW1{!eQ3@9h3q7{pLK9&kJ+J{V^X9fH*)ZjRvsOMi)!PLd#?&S-H#5%A zp3wrK$aHaJg@hV3o&j#KoWv~56?G%Ji|G!gz4%up(f?qALhQ>8B zKFuF;6c_v&KVL$19l}JaV1r_wqA-OpCUXISY00=u3#5fW;o5Dj60+ufDN2QufDVVu zQbQW?l%=ehkf5r41ceXmO&{2s0q4oG{3pu_psBp4ezNI0NIorZs~2zs$1+wpf7*kD ze{;nSbX|4D1$dhlDK4NROjLMlP)v6|Cas-mMqrvU?$LaZL$~0?l5kvQ6*Ll=3R=#P zf16m5mOI$5n5YjJ_+(>54SM0*c5D!(--W=tPu4s$<& zxr7l$^Q0w1p4_94=z~P{;)c(zYJuK$ND3OL<4^+9{6H}a&`f0{7sQp}&04FWPIbse zPdhV|slarJd$0>qzVM`l?QxtIQC_V1<^?o0l`;#*7vhX^zryU5rU(;N;2IPY?E%Tr zyg_@zbRjSoF(Qy6d@AH7Y_l+`<3b}TLA4RyQ+uQa;^>cNd_1)`Y9YkjW*>(FR1t-! ziBhLUUeI*t!^@4Qu0pE(ISF=M5Kg-hpDwpf9h#NKtN2-LL*6cdBZk7mke?V8;p)Te z?}5!u1P+D;2%k^wb3jLbc>Ja})bXnDSU5>m`GO5KWLbu+0`5SK{v zG`a#YRGvc1J?FQ)UlLFtLtap~kG!Bs-)7}BfgzAuVG}>8AsT))mOeiF8A%S$4_=$Z zS&Gx8>b)#(Wg|*dhHC)I0*$D35nl38XCZF>w77xh#f&5da}uM>ituJHwzjJ^9}11G zxoSyS$NPD+UyuS>qDZ`+T#q21N|>u7(&vz7Qjx{Z5j&1(fxMj+k-t+%je*XU!u{beVQAd$<5mjMlp*$f?!IJ_N0yEM1pNpdZ zZ_+=}S6~5XpSgCB^FNX-W+Q1U>Zkvc0U+LD{gKa$44_DTi~ijm0Za=TnM*=zr{ypl zl%Q~y$IyHC6QN+y_^LDevw^P!$X5pBQpscKPu>$#6td1~2PS+#QM$v!WwO)jp~aN6 zAwnFX%k``QI&ySEuP;o2s&pT2WZ6iZ_I>^r>qqMm=DfeaG^Q{EQ7RrOx`r@$3`2zZ zob8}5`y2}W%f!M)B5`agjD(Nb*h6k#;f*4>orO0`&$0rIw4t%}*3T;~+Rzeb*7!b1 z0AghDXy=ez=-hE>xx2hOlsk`h+-n_)GqJVHQtx*lO#Ck}O)1P^=2VOnwxaQ9-He4J zpfK_QhqLNA6tOBZcC0Dt%XQ&fb0=H0&vokw)IInNxS!g?8(C2|XAIJ16j^HWEdNZM+Eo1UOqc&lXU22@ZmBU>={ zHX|Q%A|82K9kznrrVd4H&+!N4??b8I+02dAA<#^mr#GW?S}Loxo-lQ3+CbhTIh3R` z4c>AYqg)J@K;y~ynO2%SXo+gwaQcoc#OPcRjrp|_KE8X+8|Ik?ZAehcf%4-kxlT5tfFHZTkLBP{`FBNR zoSPS9-K za&tlNFY^&5lC~NY(~83MV|Ze56y_!RBZPTwyI|Rx6ey4XSh;PRPk&76nJhwanD(!7 zAv+`f(oyvv&?xSuq%s4Cman;e6nCKM;$lGXmS7b@64)}nwsXo|s_8U-Ii3Kia1 zOTOAvpqR*{a7l#sN-w{dbVeXiX4MmGPCbB@?xO5-hrdFU?!4od<#ph5$;xP%s3lM~ z_Un(espYuvs~-$Yn+22|41}RWb3;&~WJJw4NRov`|q-Q3uHjzFe~lKQF_E zvi+uRk6hN`qOPV1K}Puq6KPuwgn7Tb=W)#tDAw3x`BPqyF`BMMVYbr^5M~tNrgej= zqWNy|*2q=xJ0{Y)LTeI~Q!_nhRDARG2pMSDc}GP1!G37z3e+r4S_4tbUfn<$(eNeV z=qk4llb~#_|ANPQNXEGS{fkMT^${l0#TpcI7=pb1M$SE*8mb4T>p8VT#ck=$j}^b-FCVJpBB?y=V`p z{<<=%LolTuW+j!DP(>Mka%rL4UQI@7@4p^q-D&VZGo7fsG#;WHG8H>dy@H!>jlIrOXW+!^eoLkM}<~YV}8G>G{}@?WYG( zlQ$(E7Z8W9_8-Eo7gj;p@E^K(;xk-QD>>ln0i^KHMj~JXV5V4^_H-0G!H1|Imi9eY zdJ_F4Ihxt@r5IA0FPl9zZD;ags3EMojET?=9)s*Qc_w~DwW0t6lhp&7f#cwp|tS;({FTZS6oUfFhgnbON5Dpzy`ofeYzt-;F1WGm%jZR zS#LlOqhBF0-w*+!NS%n#!?NN+4HdusyE@VD0iwChU*r!zLWMIunNEqpcF^)sXWWtn zG>Ed%i%V(v4&N3ocr+sH2b67$dAXnn$0aK{5k8jL2os5c4S<=hdSl0lv%yd)b+>9C zO}tM;DT{86mEur#%54IYZ-?4>2@#FemC#6P5ub#2R1|v|QYLzz>bYN4hjr|Z#i|RA5|xyK;CB7JDcselyMU(-r|HX zks#PWm^)4!&!IqPG`-9mfn&C5apjP=V{;u-_He@4l6>@#!oE2 zMh*+XrPzU&-wh=&Q9Z7KFn7hjQrr@R>Wy@s%FivM@1Ylv&t@Fm9g8r8GC7??XA?7^ z_U+7*Gf@4V`hfh>o5uE#8)mvJ!+Zjiy!oNwW_b}wJ&;j*khl6KQQ-%TW|%?s%QhtT z^KirW5sx6&Get;wNF;ohR||ht`w%LP)kjxddXI~RPf-5Ix{EMTNv;7fGs0G`qwnBB z)i}9an*@ZQ~ufO-OM%vQ*w3}_`ti)za#I@F>B zAaoRjJSXyk`o-i0El1=b&Q$_lO6t*v$sye=%lO3;U6w=TcgyD0k(+R_jonqx8v+m} zs>(GG=3CF2Yss6TYULYyjn%lVW#!RRz(w2B6uZD{~FUq#P zJPTo>vRs2=Zly4peF{&J^Z@Lt36!lj{3Pt%0UT0A!vN}damduS5%MWJUlA#^*#jKv z^q*I=yRvYx9n?#tNe%mu1uX|VYSS)^gqJ$Is$aWHz>g)KPv)SqY*q3X&)LZ;;o^!# zd8Uu@rphbJL$zb5B(V{q2SxHkCJK89%L>H_Z59#|v=(@Y{>cAc|2qQz zI|BbZ0{=S#|2qQz)d;L%8!KYO3;RzR+H~ZDe?62a?kx|M-Af!cI7M=Mm$c*e*d0*~2NfaW3@rv=pDcBua zHtJW87K&LbL-xef@pC`C>C+|S>#+0*IBdK>KTvKG6cDD_oVyg|Y-mQT=mX8uwURW% zHo)r%`d`f6okp7G7cT^>%R)O@O+^aYaw0>pJ@XOes=uI=a;GRgY40&VM5&Bf(Vpo+ z=KAwO?8QjlEqe8J;SZ1c#Y+}Ylyxg7ZV3Lgtv{vCs55phKjAeo6jCDpP%*(((>RKe%Z_o!EoviCMTh00&V)%3Tw$&78Jh{^nG*IS+TQa2X$+BKF>}?&1F%dKoCf8tGd7^PT-7CZnrd97BD= zAYan_UHTOP)+BjiyNC(PGEo`Uf+crawn_hhtSLk54nE)7Piuj%=fl_c$+!@Wy>t!( z?k(wfuWA!$rL>45sJ4Cj>2T9c$Dzn?NR#rk%{c4xmZX%RNeFWJfRM3so?MLBZ3y|L z-?Re5wy{Q&#z{;_m8ryl0?RqYQ>L7RH>3UH3|>J$r3HTZ4}Lk2jIa|a45PWgy|m$7 zyyletkgL?D`AEj}K?*2lsinofMUbc()c_+IdquEVnkEVb;$^(46{#$lspLosPGm|j zq2S>7tVF{N$p7}__hGKcOgZu7haTo<*a$s^36wVb@* z86~pb?z>(2!-^WnrG!ev9B2L^S~9%ct-5I0tq^!BZiX>NrQ{Hv@7cS&JE6 z0#FdN2K_RHY)gIY#E_5u6f0Vha}_ysAe1Un^ShpY>!Agx2<#lWQ`n77wEE0niPc~Q5C8IAmfZ@sjhKSghCPVyFKO`nKfI??q5+U$@i&)KFDO5V@HwB1RGeREe2}JM(UuM)a4_}}K+&xPc>9kFU7NQy@-2-B) zubi<(vH@gr{d(7swp{FD^FEG1v2GE$sYo^2iA`|=ljd0@6=W9@WwuwM8NY*g%XQqtQb9Ou&Z?A*I zh^fH*#N2xVE~8PMkc_Z7HpkyX9djf$_rX-?xlmRv@?0Kaq7qcZ9q+yRt>>>6oSHMC z9O=)Te;l+R)0w%E)<|Nu)7~;1k!M+B`1`eid!c|j|Nrh;=2B6{=|trAyor$I^kbg( zA*4t)nidkSdKX&A^2|Jl%M!}_5Q>W0zdRsji{xsmhwu8DJZU9PyK=W{*2EU#{I5m3 zPm>Inw2_pScqy?_Vu<*2aa(a|R0+UQY=~%t=vt9)A`e8C2y=zc2u~NP5^@uoF31%; zBd8^iEwEcai517PWl1xWnT||pMmS?VLy{g%-%Jz>9d-Tx^jfbafoco>Q(m@r zGZK55KJmWED;YY(rXLPSaoh!yodowPdM<_7yBh2B#*c$oN>1nB+9<12@>Zu53^d8^ zQQZ|Xk)Ns`6Wc2pgnIA&p1*C^PxvEjZ=Dl42E^`RDR`VUg*h{WAI1*z0)9CX>igi| z+Js*5KT8d=`#xc--m!?OF0Q|S@4h0$%8v*cvT7QP+w?*EV9y8ATnb(;RI zy-#dtXAda6J%K%suY(X>UCshsTHbPw(8oFav{$YsOYNS zXjEwh{3=-g))HF5=wmth551Ra=CyfGaTcUQ`Il!yx}V*F3)}W`@pZ+(uSr-=)qg9e z3as%Sv<-r(S#2iA7jI_5ar`)vM)5s@MN~5(?A;L_S`*EPxILYa)J?Slt8T{b4Rvv)rJ7 zQf)4vRFVI+?L7pTjQ9gHC8a%75cpcvf7?h~Vr3Y9l{i%2JC$&Fxqgf2d3wJ%#SWy9XN1l84qzXVDC0?KR zaP+#0g<~O)l3u5HfZx{kN{m`6{-O8W#y0P>Tg6#)$Xhh!T4|Iwn27yyT&kl8{0hW; zE&n|H5!3nLJ;>|j>1(OtXO;?o=>2{7bko#MI%3c97fbYLy$7dXsp+dK?FN3m?Y@?( zZOyMAolDhdrr4Ls6TJ%y3)0AkMVOo<{MzUI`VD{CE|()o|9NE+vzV$@!2*7#f7x2f z{^7@_s@tQ7I4j1D?t}^itO!#`9hGf)M9BYL-sEGKbGLk-clvX zKz+?$w|7pEx!oqiDCGZKBQnR|{;=5g(@aUElxdw&nBwr)EvjfIhq7BNhyGz8(mkW% zxif>%+ajaMHa*BW1-74bJ}lydie^w1Z1@FY{;lP|HHQ4D_wiOWS!eGv=#Xw<{mrEG z3@o2~LvUnG1EkOXami++Jfs_Y+%=!D6Vj=|KEJn=(aci%54}_6mC(#cAHF!i{Awhu zF!azh>$whT4JFULg3C8l4~NmAk8O3V5c+sQT!EG`3jAM zv?mU?-d?%Kx6fHf{HgOPi6A9r%!1S{mB(qmdayj`{fVRRA|X}VYO|65J^r`Q;_ zw^2Ey_EPZ$l`O>m(0Tl;RYe|KR=U)6lIzW5ip!#j}L-CwpQA|&Yl++9%;g}MUJ*DDsn{-JC*=zqub7Nj>3 z{zI>EZH!ahpEs-&1il2~-?lG$#dDSmk-h#O_TB?LimLkq-kmM8eStJKz0pYsHS|mG zEp!3_5(u3HLPuJnK@^Z8q9`^H5MP=UDI&cFL7FrX5Cs$!6cxLCXJ*cw%+Aau$@e_p z_k1P!`@Hk#oZl&P_wMXHzq!T#iHWDbaRl8L_d0;b6qP^wxGSg6Og{O1?kgiFoF*w1 zg8wUD6J{qY=5F)1f{>`o^wx*s^Qyye8=R$4twn6dKN zj%T#e;qlUHpSA!Qql^jqY<1bYZQ2HImxbThj;$GeLWd-ag~)!PbTzO z(p{g2{?fj;l~oW4^?x*XNY5`W3a<$ zUu|z?yJLIaR+B%^Pv8TspI8T4dCL|{iusZGWjF!$OVf*{8r(&08W&+aXv{R)!0rDv ze<^)Ez^oKjX#zEM^4fgQ7j2@*{${~L20im8>6NgtQvH*|$i8ONe?8H%KcVXl7}x%N z1eb-Bm&|sB7;?){;;ZqJ3Nuok|JRQH4pm)a@!y5l{Rd_n|KWd1?JedjQ$XNcVov|| zn#d>Nld_$rrlgzwhuJ~)>!^7`_9AU5(ODtryYPx%g4AAG-%Sggt2gJB<;dP8ZPLHr zluz1C+_m7s#;RnmsCl03oqFllK0lVhSbxxL|tipN>Bs4*&J*A^Mh|4A3U{@}MmF__@{d_I~maX;}S_ znrlX1Bp;`B8uIA5n|Qs4A@H{$F~89OlJV&9{{HJ1;!C2HM0# zRD;V*zIb_PtKAhXWOcua@Ae~~Qj!6tw{7?BgEcSLcfNRU^;gr$mjRVFynFNqf{D?A zUs^{!_edAG&E!(WC9C$Oa%4=k7reVNz9*mKSv4A(LdAVtkO-22Nau_phU(EY1ot2PPZ{!Yj-ypUOB=|KJOE_tI4y^l5QWzjk({c zW3d?uAhesDvR&-eRxfL$2%1Hen4-8TeG}8#=w*Ge^$P?)_U%ddT;?r@!yy(W1rk4snsGE-2P^$OhQm9 zgkCQ?hu)|(b3DPs$XU$3m9G1hd1Ob!Mji{f@X=>|y7#w|R!ax{`0!#99Kea($A-5T zT-f?jAqPUa5WHRz3BsK{TZ-=SD^HJGzcB5Ei?@?s^^gloW6x|pGK|!FtIe$bWfRDS zg?DQvUf{_EJbh1dmGT{G=xp5+#uH=-Jmh@A!(ee|P<7Ip4ig$lFl={&r7|v}Stl&laSoytsZFJO|Hxe{a$m!yJHS^%J_AXC zZ_9vO=lLQznbSk(JlcJ!U0Nf(Rzb=o(m_uC-Q}HbJ7$xN9%a9H?M^s3v9E92S-wt$ zMZ!=yQV*RPitY=`LGhOpxfNcfb|}SD#5JvfZn6@$Qx4ddVc9eCI;+Y4!BnBNqaVa?Jc%#_Llyk_rFx_%>`sI61Ps-|jnM!wOlE zv`@(6O-(ga3^q#7x}tm4V-VR7GdYsHVBv^wcac`ztXC)eW*|p=fzQV7IVsC!PNwP1b}99$y&E$v-X&o9y!h6jNq zCS!Iy+c4e71_B@FD%WRKsx^(xc*8FnCXAD?mzFK*GdI_U`%pyC?fHNb}J(mYli?-Y0yK)~M@Dg7I0`UWu5rUn3(g z1BU_?laP^d2c@Y$Lj7NfOE7rf^S1MR?^)!j?Y`ok;f{74agA`foLihd9e+4hI-1$P zvCp$tx1F_3w3X-g@`HJ^^?hq6%TJbNmip%F<~ing(+Sg5STuVT&U{ahzTu_+`~R^P z=sDX1^LPut=!z+}hO<#P#T2INic?LCaSae_nx3xDZ86IPZ(wjKofElpz)Kxk;ws_YgU7qn6gZvxsvYq(`zALp0D-wDJIvHsc6pMZSFD%9}4-c{_Eo#`ova@dYs8ztq3isfx3*^ArB~VSt?s9r~!;UsIb9dPssvap#RaoL2OL`b!3PgW>vQvh&U+ug#xBBHE>AE8J;4_NaZku(>`#ijFZ|6v?Yq@8wr81p~*iWPI}c&%?~+o<|M>k(PB{DE2 zyc7w|Ofc?j#pxjT*G>vo}fmw$^%Y_Wzei z8^HO{cRpU{YOYtsgUCCij@9@+f5_hSbMjspn37TDQjN)7*OGxJ-e37_zL%VT*x~-d zQ;>h$_#^Y$0bS8}_>%1PT`*<{Udt2O-ea`B8}C}brtt@E3pqbHb;j(ZQzZTIvOi28 zt|sS24NL{4S8>0+cyeC6Rv_n>9e+7|TRS3r?{n*J1;rdNdw6p0`hy-{ z0GXrhWf2#x%*#s*xJs(yo^r zJgZJmShg>JPY*Kw@$pZVE!&LyVRGd3*no;FmhK^^S3fi6@yoXe-GCCalAl#0G`^*s zR6k2EOHPfPRC`U0SknFvviheX1|n(B#vop)R zaIHK~P7N9NaN&*bN!{FcE52I04LOzc>y6C)Iq2&&UO&@Z&r5`7>M)J(lhP*2Fx8@< zYUb37i*A$A?@n7kI_?^gGzHA-DJd&T0jFkaeT!?7D`$j}lb64!;d!+ssa5ykTKnxXYA?Z^-Z(?G`mlmFe4lO%cawq;MAdxM-1H9p1_PRN$BBA1WO=yP;N-_&%i z@0Jfgjhvhu2;_$prSY_^J|nh&lZXEf!YfRp!F?gr*WFSvmpWMETiTby>4AwSvG*Qs zt9*%Mb?q`Qdfr1KX!*$6=m&R?{YtiCYzL+F`VAC) z%Y-V72M>z7vo!Ot zr{s#^&1aI-@W?;j-@X}DgYY_}@QV8{VOnJ8m_s4(Uuvp0@i5QiIWO*S4g5;=SKoU6 zQUocJ8tQi6IZF*dv@||DYG=cz(P|n*3hl zzu_0&!uQr2-j*SoGf*8o>5SAr|ZdDHnn=QGaE&S=Ly z$7aWij`5CEM=M9X!)$+GKX2b`f89RUKHlEc?uOL^J8bi9y=>9^fBbF!B)^4U$dBSv z_*%Tn`j7QT>zCGb)(O^@)*xUOc3PgdWLR2Ts=?}lAI&Gto6U>NBg}owZO!#ePfP`- z6{b<9Rwf594%@gDTpl-?>%djv${Bxy{lz{ut~D+;4lq`QTVwuJA8Rp|ZOua!J0yL~ z$c&uyi6gVK+Gll2&l#Q>Ju+)zX3mhzaTE7lu>bJN#YfeX#sIoA1D%~QAv0%k=FsSz zkrPH^?Y6ttXs}3OSd7g~&x#(GlR0$c5FsqsEVx={$JM}5U=t+Rv>uy2m9%|zZ>xyW z{{@T$X@DqgkVJ)nBV=g$NOn#p{BQc0%%M#W zHktk6P=hUO7+~U57;>O_@B4LIZ4Al;CD3^-dpGaZt$RyyIH>w``_T$fLqS|k5I3k> zA$rodap1doukKx2lCQp9HKN`}iBUt8fHB!qWWe>%sGdK19|dI;Iu`71{Pv0t@|GCJyCB+mBfw!5_&6up4RthXHD(^c%icvftR}#E}_ni zYY&D(Uj;)=C#2r1w*!#SRrNr!%l&_!*z(2M`Rfzg0$S*)fPPv>C0TzQh@8>HP^%5# zg^sF^SM^ho-pZ}h8f=7qs&B*Srk++{C3I7;5_+k-CH!0HrNX}(BzamW)X+!co5R0_ zJ_>4W7u}zE;5V}~-V)IaP(l~=N5KFhmg;QegHulHOhJplDzaChL*6;GXa4ft zWr8Y$w1Vnq-RKOd1mY^1pLI*yxQZ4#{H#k)c1?G@G$Ji3WomZ43IOUQfr`~5A1&HNVeeIs1#oi)SawYczG(M) z;tyvMV*uS+LO-o{?%Q%F^Gelk-mDc3_|8ncZU?Os1vV*68%-bW`0wN|hgT1d1gjv) zO6;avxxdC{d_FoT0^|WGhn~9joq>PmtQs2}u7Hc3^}z1~J6Ctbhk?AN1lQ@W+kQws z7tuRCA{0<@8WcIS^FWJsmgEp0s6!;R)N3!5oxi2Y+SM`TK~YUos5|bx3y1Ab%AJe} z@rNk;?ww78r|q>Qg#;_z3*Gnb!LkQoIa>K3P*l+V*c+XpfuO0P_hWBq8yjG;!;iiA z@YnR=i%UOxwN~Zzb;|(;`Y=3?i`9jH&dzN+t4o)9Wx))(a1my5H{1VOnb!lZ)(Wdy z2JD~*gB`mA|2%$m(mR{iSMvfEI!3a7p7>Rv%cfG$BT^RLU zpaaCvcLgzY-K|yM=)2>qUxMs~V4>%}+w-?>j%{<}Y#@f73t*j&yCvwe`El<&AI<{^ zI<7y69QyRoTaBw-2)2S2`YmYjVf$a(xBq;LkG6mux-G~xz4pk?K0QZ{jW+usl%4kL z@7kGGHJKM|Qur1hxtE@7e5S|rU=HLJjDm0F5TLKm2y*DLAom{u7!L~dzs2h_crU^V zfE;gQ_v;|6AptJ=_TcETBN?V|`1xj0>v;|6A;Qv1@5R(J%AK|r) z9yfmU4P)4eme1E250G90q&Pgz0fYUUf^%Qz)Ex&_@apF2R)uWK^&K(GzG_srN;a4g z!Hmh`957fu>uVozv}zVW;q{FURCaqH@LuAsdOyYr^?wz^B7=9Ox1r~fXQHQ!dy~6^ z>pRzTt{CUX&OVNx9Sa?m?MLlH>?YegHo{-$pW%Jh-PQqC&a%eR0p83nh4=B-O|wj~ z++l7Q>>s?r*v0S&T>hW=ORoa6wiA5vW`A%G&Ef6t@SN;P;~GZSPD-drgA3)$-A;iM4lo_ow^Bi8gzyju-#el zW^>E4wFguZd<*GIt2Fd|OLyQjmDGD`#iBA#N~lvu$b6Wyq`n7KC@OQox0Ly;ppts; zA1`Ju&&JoZOYOP|wZ%3!ydGRq=V@_b>P0x0QvW~UJ~g(8Ru_Av(CRUklBPZ&rifNo z_juv$yWHD~iqW?~p*D7Cr>( z&`us@E2;t1`u-78+D~;YrCq_QHZJPl{lcG~x7@|+mOSsUr{^uYmhw(2aeMa-mGY*G zQPsUf?%r@vc*)kL^!F8!cH!e37G##t`9RpuuB`YNmv;a0`=O8@;pHvl)Xx#mIUZjm zp9Foee9`1Yc@q(73SDnpnkmw(Q_Hx62^v} zmHQl%?}2^}(iGodoDzPCh8PGt<1u@Z-20n5VI8$|M(dho$?nEy7p>S7Ms}q{ZD|ws z3f@9nc^ap*oZthxylOD)jmPXsiU)iz7df7{Y*3SbPm%2hdVkfZ`2%^s7o6^ilYTeh z9bBb-HN6b14OM&>q<83wM?>)b^4ci8agubx{pYiLiB+r3k&!1kWe z_kvpt*+%z-83LQ-Nh2HS>!ur`@EdV^>MJvwbs~FOv^cfq0qpD}?SCu>qdO$hy+d)! zmJE-0A99D)1W|q|3XGSzXDmOHJpmcs!Ht%aoo&YM*xzKXyx5p7n*Y?kEc2Ipr|51p zLt*bcxRIyFP<$`Gm_4sso7H63qRU@39W+i89=p>mH*8qJM#9dZS`jxc`s(VtsUJx z2oa>a80aJg=|>vwFME{itJvk2-|IQ$jqKDh&aJpGViO$Wf-wdQ`}VQ#LjG=y4Iw9d z4{eLq&nF+f@b7y+ylazpu~UCF=mUj5NQ6!N*mt4$W(*A>$L}2aI^z!;+4+0@i9h7b zCA(Ih`~1g#uyb7FE(hN0e4iZp+55Ot4YT~2V2r`So_oXPuJK^u*+r$8~r`yE((WFp%zjww&@%9PyR{v z1+NNtX-=}d6*>J{9BMNuV8xAY>vp)rK|pLeGiyl;COd9HdUdxG3s;h&{{ zr7cj}0;Mfb+5)95P}%~eEl}D5r7cj}0;Mfb+5$zjz@Q}I4W{sVQTp?LgDDf!!n?(A zU*MIdbx6hE|J>GX*|x&>m%f+hespV+|Atp^JS@J)Ot0~@SEOP9nPxcbbG#Zp{CiUQ zmGWO17vC)mA#JZ!_;3GLrGpZmdJmLk5Z*F|M|AqP^%zp2_v_!cAmN1$X#ju6@;xLx z^&SdI2JuznxzvnWCqUvbC5X(@r7XMn#}Ld+eoGQLErS4 z3|o59>)vVJKHj?C0M8@OInQR#LeFSV zdru{g#r?JWp!;q2Om}~G19yn)H`fK%hpt7gv96A;DlVJzE}Rpv$~nh5(An4-3i}0K za_n%t47&hybtE{PaBkpn`x^VR_H;Y3N7(+hUA67By<(eS>uyW3dH5grQ~Y}Vc|MbG z$;ViqzzzT(TUS`8SbJG(TgzG=T25R3XL-Rg!qUbPZ{f_}m`|HOGQVwp!JK36Z*FBy zG?zCUP4`U~OnXghOfQ+Hm42+?Zl)XpDo~7yp80^LC?=3kXZHSbNq=tW`59VOnN-PS7kA*RWX!D8w^S zoM^HRDijCK0I?mMBv=O*N`sz3aCM6{Qz4#?;%ZjwXoYwhimP(gu?q226jw1@$1B8B zP+Zw$ov08`MsX#xb*e%<3B?sH)|m?NL=;!xt6W<4_!JwJuhOvr!ynvMy7Ivrrsqw!Wqik413=XMJ5E9)sd=-ukXWJQ~Ge zy!CyBcod35P1X$x@kkW=cg?KQE%UG$yt9@h*MGQ;H`fv#QjigxA2BSabRC` zZR3rFQdsaNeIjI*ipoL{~x=INZ`fR73=hymSy15P^d*9Yj1La6G1ih(iPp z&2$j4h`>>r4k88-IAGI3L?Z&nZaRo4MBp$^i-?K@gwUkYh)xTLjzAYUxYI#|BLc^H zI*2et;E+!T5sC;L{plclh`@oM4x&6Fa7?I!2tfo64|Nd1h`^De4g!ub6pDqKIB3*C z1R?^*k2;6|MBq?T2T=|YII7e^ltly%Fm(`R5P@S&9fTJVIPBCxco2ajP#uID5jYst zLAVfs<5C@j6A?H>)j>EAfumI|BFYX3p(9HJR~>*20n!*&3y9`11`cO+5LQIs$W{ko zK?DwRwTLJ)rXh`YwSZ_7y1=2Y4uV4jj)HX%MnvF%Sc?$q|2f7o2Jg4tv)*0acf9kw zYnb-aCdOma)-J( z*L~M{*cEV}PCdtPBl+e?hsk;lOt2KVe)2lQ4{;BtY&gDvvWc z3+2JNGeItp23#~}aw`=xs3M9pd6kN1s3Oc_3REhlQ$;9e3RWtnQH75)l~*dJQbl>Q zNf?gF*-in4co)H@NTqx-l?R!Gu@~Zlb0<+pft)EushCI=0h~z~i^&!fsG^+7R8gtO zp^CC5Qx&CRJXMt8Ou~>%b~TPFyqqbaP!W`y4GQrtJf_4#d2ntPHE^0tLRBYw8cP)p z&LoW3WW^Y&u$fKCg^Hlu(KG~a5{758!6<5A%wuTburPoY1B<; zP9RUTjTe(UfV%0#ar(7uOm2UQ>Bw>C8GceJrh|!N)UUbyXgck=OS*2NbNfr(Z0`QmVshJ2 zH#Ir#v96n#+_n^xWaj>2VA@bj4UYSVfoV-Ki5&MI1JjCP5;&7U>*?KkONyy(GMRKS z(YY-EBi?#7lbHc&P9arH7F|e8ZZjIGqRAvMf!b`Ma|v}L{m|<{no@}Lo3Dk$@lRz;zT+zc+rx+Z$Xfe^b)o41>AVv#`$*oG=;CMz4Q-xx1 zXrslH%?0X380Cb)mkP&9LAl7bgdu}2%aLOVL*87LBeN2QY&psUa|J#HS~X1K$YnT^ zC}GHq%W|Yn!jKP_Aqy_cktPX4?pu~4ITD79w=5SZ5n*JHJhv=ICL|2mZCQ@| zM;LP2vK(2DFl4f2IdUCg$Y0BHWH`c*wU*_`YlIaN9H07 z*=Sjgd_@>?(6Ss^iZEoJQ688pa1+AECGpKN90`dqWSM0-(hyK6BNr^o zku3;A23VFOM-Ya*uPjGqAPm`FSuXGaf`8Er&{NK9IxZii@xre!1 zxFcPExh}c3x?XaPa7g^yhiBGKOd66sB0Fbd zU>0a?pp8;WW5)_MAptRP&_|_=$?)IU?5v3+z^d?h89N3sPI6@U?Uc7)XrqG}jTi?x z)Bnys_)iBj3Ndz4ARb(^K?gGuF*b7M?5o=={Aky~j6e)ejym#NyxZ-49n5gVz|!ZJ z>VN%G{cm(I!w>`OYE!E1DEDzU9ZV)-%;dABNB^uo=w%(uP{hFTvHL5`f7Exs4rT~q zIC5l7l@8sPt7YhGr{lMFO33HyD*tWL%ck^}Hxhut-BPXSU(6oNK zP|R8O=hc~FJ|myiuldWfQT4TcI#J9S@~L$CjTY09VosAYyHdW-kKCojbfB0|$-z!x z8~zMDq{XzSm{a6z>oL=2UR=@ ziaAaW54~Ei^UIl9KdmU{7&#Lu{6%OnEh*+G*~RM5Ehy#)yRSBXC|z?tHFfAEC9|XJP-G4bg}UMU$Wmv zF0$?!W&lW-Psk4G40){|m;)eT_L8%gm({)Fo~FgXGyn* z29WHx(*p~&7?=(qVYZQ-(m|$L3`_`+Fk9Krtr`^bAw9uF>nD+7wvewG?Hif^7_q-> z*4kI6_M4dB$IxnkfvvY=_>CI-(5lq;28}MZ3ibUza)FUsEL5XXJA6P7KGXOKh3Ztw zf4x=*6{@6rU!#kKDpm5mj_ErVDpm=zmL74-ucUihql<;oSMvQ9(|0VC!4l?8 zX8y5I5=)qs>^=+Sv4nYpJ??>0S;D-|_5)?JgjvDtyRlG0OPJT#exRI|Ft0N2D-=p= zsqJ3Tv|T)u*BtK)h>7V*PV62Kk#T4I@XV~Cnf@cxcqq0dR3mco=quCyS=>VhRbHsQ zp__M5K!7d=GkmKLYdKLcDAcWFgKvX72|M}w9@}u8q z5JC|zAS#hh2XU+4`8Q325XyN0QIVXyZ;Fo^*-(QJ3VQ)jfexWG2%*Fm5b@-A-3fi* zKMg`C_60;7IawzBy=|638iY{x3y4^9bl#wC<8m%*5CQ=pAY#Y~=_gr(5U2nFp(uX(0>26)$q!^YoTkRtB0$WtE}@U=V#83oNvPW{{GGu&MHou zW20k%W3;1#qo$*b{h|GgeWQJWeYCxUy^7stduTgj+h|(=Z~Z&is@QD&J^mQKhJTJ9 z!nfdKc!Tw(b)WT3>kMmuYeTEg@`vTJ<}v1u=4xh# z={wU2(>l{!Qzo1W7-!N!#KdB=$FV?|6nInZFs#&Uc;tsmiq ztcZyt2j?Bhs9Ao279+fo6)~}N$g0H%Z)8Ob)aUw79qE;2$T@rkcwh3?B~?k6%A zN?d`B@oCr?iNlG6_plN`L&Z=46t|)W4G%*BP}zzA4GBX5P}Yh74Ff{~P}7P44gEp^ zP|%714fjF;P|b<}4e>$&P|At`4eLSyP{)b@4dp@sP{fJ=4c{UGBH(qaNVfRYWD9kG z)vHg#v`_$+u0CE(vrqumtv+7Ou}}aOtv+5&uuuS2tUg}Nu22A$t3F;$txy2gsy<%L zt55(Isy<##s!#w{sXkuKs89fws6Jjzr%(Xar#@cIrBDDCr#@ayq)-4>raoTHqEG;q zr9NIwp-=$Uq&{BFpHKi6q&{9vo=^Z*qds2EoKS#JiUKv~DTs!b7~W;`eWOHLoJraLGA>rEf8<~k?W^ zd<6wSp(p{=WCaC4ohSj+Ooapp&V@2j%AV2`)Do&g$x_WxP)jHdB}+<(+N&q!4K><(*N&qz}K><()N&qz@K><((N&qz-K><(&N&qz%K><(% zN&qzxK><($N&qzrApwGOp#+o~h*A)eB0AR~So#8dI{X7dW>bWgdyo);vtZ~byeLJ^ zK$3>f6b6(aRdEieoq<{v-+(E?-1>a9%}_3-gxgnnl^50yU5pD$4SBDwkF#%8ufw zBV3Xw8^lrrX&s_0kD+pD@u4h_rgCY;p)8N0a%q_%%7gPFK`!0_t}T=eBB+71pinjl zrv|u+P*#Ld1uh+w6`@pt>jmWyJ{m$=Bq+k;jpX|s>9pSP)S>d4y zT&pK5+*E-J^kjvLDsWYvtZ-5VF2$1-4ywTQcc=);vx7ps3u)1vYyb=NrS5?%?PLW{ z6}Y@kR#>S5*VM@h3svAkI$2?+3S2!WD@;^@OXg4!l*fTW%vM?_C(DggE-j9e9T})2 zToH!~q5dCh_|xFM4y*r{!P@_J-e@o9`Nnh1^S`m8&A`|92bK`LBij|1x0zzew2s@0w$;W4U7-y!DTV+5cDUTkXqW z_J2Ejtlez8VcTU}Y8zu~V~ghh;xF=>_<1n*zcC+d{mEKjea||}+Sgjk>Vj4N2Q06{ zyZ$bg%CPU>b@NX167y(tYjc$8Pgvu>(e%72-PFhw#Qn>C$$i4T$<5@_xF%eL@n7SY zu(tnA<4j|ku?fum|C8~+jmd+htRnBl#WW&^rq2I&MBjLMN{vL0MC1ueSp^1*OQiFf zq?g=OFDzpf^$FynFw3#!K!3fkhE>#8C&$HUkS+Z6!U9%NUyU3TX5gm$;I9`JuZnur zBm^2?ShyQ$2us9spGD(Y1e52#*PtSahNlMbj}Sg0!MRTB=VURb3n z>Q$2ss9sp1D(Y1e4X9pNohs^8lMJX{SeYv7RTB)TURaeX>Q$2qBz;hxup(99E$PGp zNgkKiLa>8n1)Ph$_8=}#Scod3oMekM%T>GlATCc>iz=cV!F0TsUivv91Pv>oSgHH9!gl9DxzSE+z-Wx&RSG#9;{Cl z7k&Upn&hno#pS^YRe=E$Km^nSU3T2a8k@b(?GxBL?cAV3{hSzM_*^bWpHR z6;Zdy2F7g9xI9>@im03PxuW9>7ONua206f3brF{b%T*EeB{|5LUmlkS3swJu8?!$*CR(KA}n4-)Me(n znz%ezzKW{*<xd! zWR*BCbhwT$7+WLiQ?iM%q9RThX(Q?soeZbr3x?f@Dj)@q=I(uWb7dVA48jq0l6=Tm zj}?~(BXUHYpidKxudqBAo(u2BVmSV|MjMw0V|4U!>?z+J7_lSj=u@5#Fn&kW5oYfT z%Y(r@=5tsl9~jc3k3&!C=PQPL z6d>x8r$mGj0a1II*@xvpy@2iXv8J8E@}Ouy?H-LbE)OaPjIf)TZCD#;6Uv*jW#Y1st$~>mHE65 z%YzaGeSE0#5tava2x_ddvsx>|7jwH2|IP6_5+PJE_a3;VLh{z;&PvnQSY-qt=#Eyq;)!xrpZ3mGVdiW zcdCq9!|b1Nxl?46dai}y6Udz`=R+r46l&vyy}z(+-(^M$%bh6upi?iDJ|@UM-eR_1 zSZYt7i*@odC`P8?b;M#kb=t!mfX}tp}`c zTW7-T{|43&%WswomJcn9EMqMlA>Goy(iSLffzlTEzpn+No`oV*;3a%oPDo;nqMn5U zR6=O@Ac}zEQ$lFCAc}y(Q$lEXAc}yZQ$lDsAc}y3Q$lF?ABuotQ$lFCABuoNQ$lEX zABun?Q$lDsABuniQ$lF?9*ThCQbK6B9tjcoEEJXk&*RhZJk$l&ls+xTLlIa{0z%F2 zPz2VJfKYQg6oGXlAk@4LMF=&dFn5`Ql_!V%s(gyTIua0SK8GT(h6IF~%b^IY9|57} zaVSEl9i=?f91cZb{RlqP{0&85?Fa}pcS8|aHv&S<+fW47jDS#cHWY#NA|TX!4MkwB z2naP-LlIaf0z%ExP=rt;O6{TMXedIc6D5S2pP>k>6(Ne6o1qAyPLzD8c^QhpS`mDx zIT?x&>O{$hnvbCftQEnBnv0{^`GQb&5ux9p$3%hhH@iRBUF8o zhVmj*19cv1C?`TSP~D-1@*$EYDi3Np%tXzFPy|$Th*0w&)cY{mJLN#ACR5f>{)2iQ zDtlFP9~3b}MyPoY>ODjDPB{;1n=ad``3{O0EF;uh2Sp5$5o(@;#vdrhryK{hO_Oca z{06lhAlp)IgWC3&ZPmO6wM~_6DW^d-{bUX0GpMGotf5>6)%1}yl*gc&-m->r7*x|s z)=>UJ(!}KT1dXt?LyxN&Lm%^YgYAK(yQQ`z&{^I&&e_eGWWQqm)qK&s-4_48vfgU8d~G@8JppU_H+gS) zy8)Xp&pX0%#hV1X3H;<4?AZmo2~2f=>uKhR_88pb+$Ug1!FjGf+}+$s?lLf&;EHRP z>ou3nH5k?pL^~HdzjdB)zVCPkScEH%U5?6*IgY`OX7-5{}8>9RR z2V=e=G{$E)#@DY~uTHI6Np%yGCS;~h$j+K-v6zO%z_?ALX%;7Wm;%e?jQWUB2{DYy`$1 z3-QJKk5R`TLv1x08hMN5g31@#bOliKUy7s1hv&@X#C-91jZl6MqvC*h%erM zlsf)UYOB%E_(RwTjGw_qVElB8#US2)q&og!YOB%E_=DI8j6aZ#!1!sld_xVP|C!YB z2Y@C>_;&eeV4bNkLMfEKtTd(mEIlTa%F<&x{a~4@UGPt{@po@xsL?wIYgh$qyUH4! z+bxC$aI2iGrjHuKGEgPMy=qnBjlt?uxM_uakbK|cw@A{Kzgeu)L3u@}-u0FC_ujcrxM zo<}WJ3OV-kEC7u?mj$4)^J#30D)w{KQl*e%Kg$Bp*m*1fjh#zln^m#r&~J`PL1WKm z=`r*ymL4O|r21h0z|BzKfa)D8J^Ht@^k{E^1=;Z3w5z_^X857LAUuD9s9XA_tZy(F zV}$3AMni8o84ywW2u!LTAR_b;m{wgtgbDEj)$!|q#wXZnG&Fu~K!oTZU`@L4xF~#Z zN>7CWRIX~_#>eNmpr*W&X^cc4)OOJ7@ z(75IN<5s42Dmjf?iKWN56mN6s+NtC;ZX8RGafQte#W8}~9^=N)xMlp~ zMpHYLoW_k}=`n63OOJ6QXk4#<+;D2AlGC_hEIq~zW$7`lkH+=*$1P9oRB{?Ogr� z!7M$-4We<~{&54Tok~vQ2C(!Pw;W54am&)UF8{b?sGUkq<9bYV;o0k1<(cCd z=xGcm{u$gi+>0KKegM4rzisPo`@r_1Z4{gW(A%#TFa1Yp z3zW7%X$zFLKxqs7zq|$LZ?8-qOEmocidCKvtn=~OS1f2c?5dyqZW5G<6f73f$;ESu>_M3zccGpIL}oQ_1EVd-%MG@Yf# z5zsUmSJm26shvtr<4$4eG45phDnn)AE@gX44on4&M<~6e&yU7eeVP-gf0dlZpTN>% z{2WKD6koQd@h5^tj4$;M8ei30#!>$&IgOvq(qsHA2j0JIPvegRjTm3*e>A?TH;$qH zRdO1CG)s^1M>+BSWqTTb3~0poQvas$RlR)#^{Pc8^iwpX4nJZh8^J+{|vdA1B&3tOzs!QbZ#;5@*kd=B58uLUOp{$;%evkX>Q^Q;+gCSX;o!*btJ z0H*>jwdBBzg@%?;^Ivc-;34xWbDlW^P6n(BCjs0yoi}YYErqiIQ%wy`q1<0^I^ZF0 z6_>}2;yQ3uIfwBPv`mTqf?+3Wfl#;0jV(1`B)kn2h(?2&FvO1-f-Hsk0d~7)_yC&4 z!ps4KMniuZ0Pzw7QRsaE1A!d~e7q>emxm9*Q}IsZxOgX1@J>{6noXpz_oZ;BYCYx> zDeQi!r^if!h5avu7L+r=xWdktf}Kh(#})Rz)YH?r!tR%PdKy>Q|5Au64`48EHrlD= za@;J2p2i)^(9^hMFs?js!MLN*P9>M)j$-I(+>s1DjXMJ4$^#aRI~?s)ayjlWhMvaF zWaw$!p%_;ls9@Y7Xs43PaWfct8aJJxr*Q{kTzPxap5ouT|JEpXHkIOZdVO_ zBH;)M(M~0oS5M=@ znG<4M)j%f_j+zkdRB|~koHU`Ur*WGz^fYcWjH?=&L=v=9$>q3B8G0JG2}6%@BjM-> zF>lo`I`wZbM8eq-x(JK_hz1M<#xNLy>x&4xUG;)IJ1a67ZB-gY{CW&TVf?xbL}C0o z7+>|G9OBnTTa`u;zZL^g7{4Y1Q5Zi7<8%H`Nr(@}MTo7d(kSA?c@esZ!uW7tgf5~m zKAac<2)kYN;vC|`Q4yl8N~4GmXGQ2D3gg3}5xR)N_;6~37+>`Q9pb}r5u&Y1qlgdZ zMd%_5H~-!iq2!uZl;BfDKS zK8E;M`e;VZSiHcu3#QVE-c`1gKn;e|AV6=ot6rK%!XXf%ok~vcEE3Lu(ADF8MZ)Yo zT|M4aFwT#%t6rK%N<|iLP|4-EF#SmMtJc%FK@2^O8z}1ScGXMs$N;oc$>q4^7ZN%k90VcSspN88I0r&kPvgQd5W0Gd8w9672-DN#xuMcP zHUiFm5N4Db{GXsSY6P78pr^*55k`GA#uV27hr7ns^WO08^}ddC075-aJl8$DJRw%lA_u5_ zbs>rz448x2zq*DTW}~r6qex*E15ud4Oa`Jb0pS!xq2^aji-Y*W35Y`3uhJ;u3#TCJ zAqwM9V<6=CZewFZJ3~Q3?+Nd6??7)2&p)2So@JhNPi6Nn?gQ@UVXwamt{+^VxL$On zxXL^4I5#+FIy*Sa!VLe-j>(R;jzFWy{dl&ZhuW2*zr})KuFFx9O z$GY7*+uF(+V7Xyg4e#umz;6EM%qz|5<|NbKh62;4rWK~arkdP;+)-{htkth-{M&fK zxJdi(C`yvt*lFx+H*yg+_%pRjpFA>ac=W^(nbAYCC#UC(OrMw;ojojiWY)yYoXiOm z!%W}N4?H=tB!=Y*4I!f*Ld2M2MT{&oOiTjPl;+fw>pE%TknFLU6QV~Zw<}353YRt8 zI*o!u@$MB4v!b)$ZiS|h_Ips6B(!nb8&Q+yW5z^hOKC)B4;eBkCnqy&Nah3uJh^pA zQZp6aZOvB2OHE;t(6Z>%6!7F0B}pwpky`WOrKT`RXjXJ;3V1RpNowJW)S4DAHHAq+ zlcG~oz-u-tUIfKgB{3MX8qzN=x3CWTy%nd2FdkGlAzBo z!Mepu(9bBLPSFYa86?*(NrL7560B9c1pSN>Y8IWKpFwg`NfHe4ORz@q67(}lNGv)* zKZE3ik|Y@HmtghcCFp0ATn!WCIL^#?vMLOWXN1}> zmoG_bWfZA}6fZS}NkVYZsVU&eK_yAet4J-dc&RB&k^?Zcr#!+GaN|wk{|s;bo|s&& zBuRP{NtP{Mk_wZAGDWwa0-o$GNosCIYM$byrZ7ox7oC~{p6n_~YA!`;&f=w}Fsbdp z)Zkb<6XVxO0q@+ob9i9aWP3>xbSe_G6)!=BNdjMV+bQ75){>;=P^4xlUTO-H1ar}; zDd6=?LTdJ6)})1*C2>M#X!n$AuF#^MQAi9dp7MPyL>GQt-F$(e62GLO_cM6=KggTt z`O~w{vk>0;N4S4*?{v>_cXS84zHoiun&fKevO6z2S2zbbt2!RSy#5y)T^teiZ}}zm z-S)Zm&h|*#_qMIJXKmeVAw|{drTWqqC~bk#7AS3j(iSLf0lyYV9#)dkjJ5DL9lUfd zJ{xT>G!)tBj{aQnMA_XU);YOHE;tFskU( z6!7GcB}t7}q&A{>sVPhnh8LZh0$ww-co7sG3dr7}MaS?nNFGv>2Cx)10Fb>I#Y@o7 zC?UP*1pN$>2bUy4vtNRPikG0DQN4kfAPmb{wU)xb@V@YWwHvKyv?4jJB$-z5%XC2T zGW9b`=wEbG`WYmrmL$P=zXbagFF`+}guX>5=x31Jrz8o+`6bx9cnSI$CG;vfK|h1! zo+U{z)-S;x#Y@o7D4~1N3Hli%r<5eY7{3I&6)!5%4#i8*&nTgN(Fyt)2=o638{ap0FMBt6^SuMSwY?6{9nS&J z8=lFY6i;;z@BRvQ|6A@J53Bww!I^(w!Y=(wU1MBrV2}R4fDhQ@oafANHg*O(esUBz z-gC@y^mWv7xa@cB2kfugC)&H%E5m+&*KHr!7Q=3Tt!$C}AN+ZK13#A^%s1o%tq-in ztZ!MTSi4!PSUJmW%OT4u%QKdqmIRB{eAB$kyu>`p+|nFw`ptC4wAM7s)Z3J3;<;Pg zZf+?znrp>H7#|xygBuY4V&}rVkqC>~C{BElWbnT~7RrR({SAgY*}c29N&MmV6SDBf zi~R-$!9Kf&6AaKbC8$6T)Uw~Np3K-0sVZo*=U@(nF7uI6Wprubp{@{-{ zy!@z9d_K&jVZmOMVHNUWLJhz;d193?couq7i}&7aVH`s4?d-O_^K@&4eAr}xg=?b3 z!KMo=Tw^5;HeX=j8W!T>^I;PPz)AgI*-Mhw<#KXIj?bUSgw6R&0h_>p)w{O1ssfh7 zhQ%si;~B8(_GvkC6UXO|W5Y%%VA%|qH+RJOGUVORB;((G&c^3wv0(*e$*O7>T0Fn| zm-zg#44C<=S2F_1n!$Uy=?O>T^T)7ZsS4O=7VJ{1M^DHL>)LHPI{jpP{wOx=z6^`V zA1T5LH~6Q0&U}2rU&fme`6Jl+Uj_Yew*HavW_xsqlm**RwV|Rj3}M4+$*>Cf86r&keKX`G#TXuuTU8HExAi+%AwQjk%RMvA@FThT z!A$4FPP60k2Maip_WKceW}n=*;_?TvPz9Hske8cGy4-e+B`zN}kkI#a?17iOV_O)~ zt7hG}{4^HouvOs;Hj~izwLj8L-Y8gjrFFL--9cyHgqBRj?A!`2h}sQ)bwAn$ecgV6#A%jn-qD$HWd1()yF*KP3h-4F25%W_4W+~ss{`8#$!dq?kv=69z{!}uu#h? zDn7?uPB4QU7YF?K7rS7HZsoik{P!g&G^I=!I=qsLVEswr|Zsr4Lj*0a~$8X_FNZ zTe497UQ*m+3l^%^TKP#Am*1R)N`WVn{LE>_LUo2G6aKKoP>ooq*c%E|Lk241I8Fpr zQME~Iel3Qput728L+N)rF25$jRak$+eR8wq&0l`{&m5bd#BdcdMRpaNUxNjjAg3Oi zpU40OEK-0H7$EPuB(i&5yM!NNX2j-KXMmjhE0OJ&?=P$rIypAK8Uw^%jwD;8AK}>i zstl0nVKws6-$@IH<&UeFUqt{}{CiaXw{QP#u#dSu@CO%JxUy{dYOVgQm|yv6!23hU zzIi`iTKQc6iusjTK*N(sZ+_z-^ET|-Qn&Hciuo0v2E5&jZ2M&J$?^-ERm`uz2KKRB zFH4sFne4GARH&FA|1{vWY;rKN!9Qmo&vZCu8K!fS4c_kFWN*0F=(+1T<=NtS#WUSA z$kWPG#p8i>09V|f!2bWwyGOgbx@)^bTz|W6x(>V6x#qjFT|FEbjy8^}4v+nj{gQo; z{Vmw#f0(_4J<(py_84~e+h<#4n+uhH7h5e`F#i{SgFnQtu_raYl5|m z(3EBBVXAM6FmbN>t_TU^BLHGu(h+Q)9d)faoO>)<88;Y-fv)q!v^nS z??mn{SHNuo_F%H}4d*Opy0ewDlG9-fbo}Tz>)7U4&eeC!GCqJBkFF1phudGhn#%nE z%5yqO7%T7L?tpT;#iX%}Y+8@|B+MFP*VEM-#_eV4VsCICGj#AUUi#CzOs zhN|ilZWlvUDTLd}P{q~YK4Ph=aXT2QsJ7g8eHG)LBFFv5onYz426M+*y397*F_tcU zAa|6dOPkCc(a*4(cOAEpp>po$HZWBDW$u3rmFXe(L8S0`S^Pe)!Uqhu{%Pv_-1{uG z_%PwtJxzU^Tgz6%gM(Z1H1##^J*N7c8BKIy+{Wx=YQ|=wM zI%VxD?ro;}w;y`9;of4aBL;uKy~$Mnod5M>ZY5Lw@ZNt9xHp*U2eaodo##SSi056xMx_pw{LLM zS-LkKbJJM5*F4-*mTp-^ZVF4cxG6W8rCZROo5a%1%i<=obkEJ@Ca`pK-r{mtx)~pF z<5{|?XSi`J-Nd_GHcJP;*;y^ppHwZq ze~49CX`@*>7^ID2>0ppH zlBMhS5;uaS>$R2}&eEmq|_#(BIBgriNX^xUv1Cf9&k%zQ38@Z)bipvpcui6}2;M zHboG3x7ZcwOsh>1#N7&;B1q(0Y>FU}Z?-9dM1HwV5hU_An?>B{)NE}>+phF=r_M4> z=0MJk&hh*2*|;LLgupC=JzW=P5eTTmgJ9lmR|dhn%dQN9d8b_&1oNO>83gkVbN@e& zdL$#W!@twdkL%3XlaZf(kMFSW1>bt#1n*Pca?d``O7|)EU9eaGOxi-%kSogl!9B#~ zvRl~2>_qAjI9vaDW&?eKZlm_Vk2(JfmV2|^Od0K=E}nQ;b7o`PQlY0{O1lsh`KYEQ z;*~sKQpOj-{|YwgpYO|dbICBnUdnLKwho6?B_bJ;s;m+ zUDZT5mO)bmXsXx~u_tC#nC_l#27G;eo@eLMrVT8*@i}5!RXK^MWInz!B()r zdA3YW%|Do+8BV38Y$+Qovt_dM(M$XU<5fo&6MCj*> zO3KSnQzW9@d{MD^P3JXH77S?(w2=xmkBEJhe2t)W3Nc}=7?%{09!PI^xu*oFO|epg z>0y^6HCb4bkOc(}%%BG*4|lGfi?p(>v|zT`>O`waRHU#Z%i!Wx5R1IpQ*2)`n7wXs zA{L6NeIsh1HEnZG&|a&3r?SzBRW9bW+1sdE4g`3 zuRrfZt_i#)tX1RvniN6(y}!C6Hr>8@@GjO=Cwh$%_^m6U35ubby_Mg0T$+aDEPE?> zS<6vxRjc;(%Vt=bBUwE&I}b)$uE1-NC7J7DQAn{wjbFgm*DVb#sSC6e=9>49aht4-f$cT${B&w?iklvW#8l&ja9E0n3N)|l;N8iqry$?oZvBYE&i%u}z+~ik>&Kd=jt^cr2Bw9SsH8^v^|&nPl3<3WZm2OK+)WLI-tzch zz8<2svz~RHY7gt)>wdu9=)N-TP}-)nm1()I6Ru}nifb-+p4-OV$=$%EvHRJL>~eM@ zGt4~6bTTvOll1enMwe5+XYS6tFS8*t)BlnGF@L*1XWY?oPs1Anb25I-*qX5}qdJ34 z-qx9U^6`Fnf@ct;Fnyq-+Id zKOkkV!|VZ4b{=NmCuPeq`yMG}<@wMamXob~hlCsxgc94|K$LtPLb{1yeBxPq}_6<^Y24-I; zWv63yJ1Luo*=?k3E@odNWdoRfm6YW%yOos9!R(g#BV$?MGRLy1CR+mEcf&yV3aK!H zQv=~ zeoM;UgxMpc?2VZHhLl~5*{@02MVLKI%GP7{D^j)&vtN?3wV3^al&!(+Fe!TjW$LlQ@oVJC2>xacmO|P8@6}5GV*mTE|Lk$&utFhHy9s z1WM?)1WL;sEp2Im6as|?(gNisTs;EG|IN&FJB^g%p zJgDNFRO1`?LD<= z^-NU|3SMY0ta6$?OLIqnr3OY9w2l?E&_Ipd;wdU(w@$}M27G}?S0oyTKYihNEQNF= zVVc6kz}mdgzA(ZQz=XPbgMP@?ACpkhs`|Eulk3}NR+N_)BA#q1D0POyA>7!iUNo|a z6hX-IdwGu)XgRIs!(iaazdZc6q)G=Zu{k%}FV@!(2L*cbhJLQ`#rCv(<=cv&}e>4Og zUdh_G4iHx=fEp|simmr;f*}fx6N8$>mB!IBq;R6~u?!660901VXJ$n;1_HzkIQGJA zV=WfX{Q2yTg^5;`ixmTK!ch6XNFQ!ogJf$87J-O?kPOUlJu|rv8}?J;FGx35a8sKT zcT?X+e|MjxVAK-|%Lym7wASOn(c|Bon&jUoMg41~)MP+19P~$nzM!-bng|@DSItEV zhWxs`dwmtx7wOIrL-4Ct~`Nf=Ze zH)@DjUyocnSPHkw5J3 z?vI6H8ixvFARzU|)tcK2x4Hz2r?8OSrqn2*hAX6{Oeyuz@-nVYLRsziiKNt;1S36u z7yuwC&jPr?kPq<%{r$=qK~6zKLdDmF!v1K#qBOGt`;MMaECx={*8>xO%y*s?jc5ey zg*)c)7EfIrdpR$+a8L?#`MbNNFbu4y`aJ-n$&ewWpp-^z1b}HZWAR9@FBFbTQSb{& zjkN+2@)u;)L!7K4lssu9&zEX9N|{2^iG^X5NSk{jvA(F}17{OctRM!NWn)A@N;q=F z3cxI$kkuC3ACF5ty@|O%%j$%QSjk?S9_tGPq*x+1O`G^qa?`T3xoOi=a_bF1pVBm} zl4HVQrV1$fX$7$1B(B!HVg6bH!~C@ZYW~o9*K!t5b2EE+v)p-81#v^b6desoFbxjJ zNKvESnGhlC7g#7rzDQ>$ zEUbo=CeCYES!IZ(x2;H|HLY#LL_w4DGZe`z!!&i#=B$)7y=_Ip&@@b2b67kPZ_k%| zdOQRR;CRF*ZIr_CfG>&UQu=Zda|E6Dgt}0rVkrxJva69TrO3ce>sJGd;rio&a=6|( zFb%G^4CKId_kahkI|eLp-P{kCo-ka_^2256a=272gv+!-xQxz*%P0rhn{(pFaAjVB zz4^!P7u+|ygYH?b_g(k7&U4kd1m|y^S329B6C5u&zUNr$D7GKA-)}$PzSwTEJz@KX zt;06SdeAy(4OvSqA6kYi7g&~9EapF$uQH!*o??2%bh~N2sa*J2*ehHlGzvEUNq#qf z2A|Cx;_l#jxJve)>@V1@>{8arJjHwq6$5?dHrR4)tfz)$b84&S%&x2~uP!a;J44Y} zyuK4AJulh_dkH#T=wBxbFnYZeB{1L5U6PsVQj4lupPA}OCRKHDW~xm#RkbcN)kf87 z?IKy#HZqtRRHF+sGrB}II(I>4s`Z+-nV*^JVtb;%wevEoYF$Ee?%d3bF5*&P=sJ(BQ!Ur1&dN-+%&PXL!pu}lRhVjL z%Bmyuhb5}fg3OE-YpOaUGu0wZkC>jB>MTvOPRmTSP}7C;GgFOGBr*@|7%#7x0nsrKMs$NZJnw*(xj#|~ZlQL7C zs%h4VnW<)L>N+7a)hU{0^<<_xS))2WGu25Nn6ffcov5)oE;H2$8kojrrs~lQoH3cH zj@R_2(V3}cX&P>&=8FHq~RBdY0)C!qZRfTshpP5mM zrm9?Ks%DKUo0%%?uwNcPJO6_X=-w^d^rs(+07ZZzKoOt_Py{Ff6ak6=MSvne5ugZA z1ir)w(Eb0HxN&LKC;}7#iU37`B0v$K2v7tl0u%v?07ZZzAR~bG|K+9!8S&TRe(AWx(dHOyf75=qJ!+o^&j9SV z-EQl)HQGj5U$lPD+GQ=Vyl1)3a*<`J#RX3RTx~wfJj3)F7@!}D07ZZzKoK}$2+SSIzIe`!OPKNzcQh=haqD2(N+7nLE&rX1EPG8#$tUn`=KfE0wMcUuF2 zzGzf}=fT_2X%Zb$v?swkw7RMk>Cexyrs&_;80}lTG#csaZHoF^;kbcre{U~5O^uRQ z*OVZor3{y>#67l5@}mcad*I2uHa|Q^jWcM8gx4agM|ZETDF#KhdOE`-m6mUmdLnD1 z{@$)oAXYD{Y139ODnb?;a#Ad^pCqcHR#UN;V1eP zQngH4p{96OI1~uQ`?ZOy7tBEAtV>0Rc{f5la~gnc+n`S-Np}Nn;=uO5nGAb!`sLJ3pm7+(VjTCyJv< zJG8oZD$>l=S=dQN`YL}cps`byjid{7(mOyp+70KhV4yV$RZ~ELElF)xLEAWO{(z*V zSI?P@tjwL5f)saVa+gnFg$DwlRXYjkRi~oBPt%O31PYq8L#r1|M4I)fUX0nFsEX2g z6Z#3xq16Qw?723bw={5;3q43M)me_%S5}Tk>Z!hx9oALO$wE3hS9x4dIcFT`={)7} z9p%EY$X=?W9I>CQ8H3bQhvW#{Wc6sIsB@FY^O9AgKuzZ*wY|~6N!Eyr|5#y1imCo_Soc_ALn^86aaiv- z-HKFFy(6FM9BV8%=Tx_FeBW4PMvAGvkvDdYr6wet>Kgg9p0QE@d7Wn*-Z575$cD}_ z9?vhpkuX@4p4gIuEuNZUamG&{IUyF?Vc8skL!7+m_@U_9P{14Q!iU|V`kwZ! zzNy&y!W8S4vpPB2GpyQCmEp8VSf%xV+2;S*n2pWWC7b>9s`ICvaI=AKKP;xZ zC1(HPJFe=Vg6%dX+dUH5`r-+(dwN%>7Y>=|g1)w{4-SojUKf@E>%sInS$&g@kpAb+ z$H$!z(=D*lijs5L0PA>HXl)m>zwVr_0sACucWrW&KmOWXzds>%n__`37)XJxkRNsG zkQa?dbYNB-H9Y{)35VgpX>rW{MSpViPc(x6!$`FFgp`F0ZMCCIPy%B5w8uLqfN5bM zUkk&eIh!6lF^0oZPsq>gH{bWlfXRam`L%||2b=FcA%+^@?6p2PdJInA+Z2j-dAlQU zh81=v;aDI9#}bC&P%CD?>48n%<8d*{l8RBW^u%h;lfd1 z*)*_>6I9ELt*7Mhi5aCUBnVZ7(VVZkh{RmTg&xa|ir9X2visS0n={%;NU*H60pPt3qcn1tir zy8AXKCSG|M)n$EmvmF_AS``wGae)S0{R)ab%%PT+dsJLC2{R`c-16DJb7Y35nVB;@+Zo!E* zj@Ja?NZMt=Bj4;b;gZy7+eaMeIx(#yZ>?aqhUFmMQStvO+8|(ybCWEd_LGlJOxVg{#(P$T(nGCCh_iv7J z*!X;{aVvjzF=HpAU;QG-H^!>vfZE*cyMO^55JVg6kVwo8kJ8t>~b?*9Xw)f3FP`!S&Sv zB=h$!xcqGiTn^=;{r?ORodw8dqx1j7_ry2Ezro4;&xucozY`x7ekRSS^-`g<`&#?U?2;**NAZ0jOxj+L>zVtLqdt7W@I zvYccouvpD+n4d7;Wxm4PV_t49GmkPIHa%^+*L1ZhW@c!ncLZ!fIij zkSkdEfAGKMf52bPujfzYi+CsZ4)+J{N8C5K2-nJ$bEDYz*{9f_vb)(B+s0P1W1!+G zpQ&3c5Ns4!i@I`Ive$RHP&Y8CeA?-e?@m2m&mX*T!G^jgD;K-w&@#7|7m?`8I6^9iETs{FBO0y7$uF>`g}O4-)K+I`+Jr z`QKC6Q~PwrYrcQ+e=K#o-q~Nneiob>*YW4P@IQG8es)ZkeR0muo=#*R)u|WT`qw4u zHg$uJ4_mjrT-}CAP|c0|tx=c}-%hIP4vZ=RR1p53EYuUI-p zQP1wyvBlj3*D36&>vg#!f14=#)OAMuC&aq%T6cL?R#az)^x1dcU8!WB-KA%Pb5+<= z*XnaW?I#~3tY>%X)E$3XdS^mi(y7DND$3XOfB)p^D<|*t1Tmkpsl6WgS@xhOV8nQn zJ(#^lXAn6@#bCDIh`mH%Pdyj2wWCaU<=Qh{b=N;}WogkB8>jm8{AU~AG}m25%A0cz z=4(fp@ObPaX0YzhZ|wT+bvK^jIhzP*Dg*)_um`7pO`r3ftDa6EG4(7RpZ#Rz6;Z*#Zx)|@l+0s~L>Gw;+Lyz>IF z;N891ry~Jgi_O$0e`%`Qaqfd-@0fdc_9{L5iD&I~*PQ#{v}c>H&R(f!KlbkEy6+V| z0U!G{x>=k7nqSI#ccvuFKCWf$w&GaggfMS6DL zU)6fe(zB<2lF*(~h}lV)O?D>=K2xvknV~8d=#|GVN+{3JD~qetNqxGW?Fg%RPt)gZ zxkSl(O1_Spee8aPo1Lf2I{V0z3CmM*^~(QzEurkyD}Q)YEmw|S`Tg;V@|3B1?%Sma zZnmELkCPJIDSGbT&r!J9lQCC2ab~}~QSG0T^z0X}R7*WkpZ9^=6M0Y2EARhh0YGW3hVBBW7qc{I_J+* zTsm%kSyA2nN6NqV^0>AsPCd71LfsF@B4mm~$IV%qQ}^R4%LSIalxy=tua%E@pw?LuV`u2=w9 z{_7{hmAm{*xU!dZ!j;*%8TPTqcB1|K(M!j{^|MRz;rc0#9~{}<0N?+!4ZQ;3-&;{U z;9mn!9_F80P&{CPu$dA6DBdLYzz*K-e%^hj`#kq4?n$mUU3=jPfYq*<&VM=|b6(>N zI;)(V<0;2Yj`faO*xx^6zr`N0FR*>K=La`mNu8byxZP^csS(#=P_z4oiez#MOPP+BMUB&(gXl zEIR*5xOqb7G- zB3rn+J07dJW5UombC`KEAWO2rC5Qp+AJ2E)oRm3 zm!RABTC8<1PhNh}n~(jq?q${~Oj`U=SxI^Y!BC-CRY)Be4ofe;sP5%Qr6*o?-B5S% z$hwH_R!><`dIgiA!mRWPPD?L)5Cy8vv##D(_p%`7UltWg3qb+(Sg3Srk&NWaW~Mjb z0);@`!7Fb1!L3gpsC(JuJIwmFlog~`uo^1NNUvZvRG6M#fiqGlorV=yqdL1Sy<6&D zIi>CDmJ5Db_cCAmoxy>Q(){%DHY54G^zs%X`P}sKyn%eV7t3S+s_&>h{P(%Kzy09S zH7}pS)g9PpK6BT&73DeUH3W;1M#a=*4OZjBot7SU0ay2CebsYI|MOPeU$*~ht3Ui> zt~?u5Wao#9rBz9zF-0{3oiAy`IY4D5U-$gJabJ7B`LA`)X3bqT^ZUOlpPXL9WT;Uw zN!74{32mudpfQ%Kd-t}#d{Fw633Y#2*m>29qiVQ{iRo3iG%6F)t5{`~D}Qs|);mVk z{bd6C#;cB;t zLxpka6)c7dW78|}h6-au_|>)H6luIRC>xzt!FXvXZ%Wry|3dsML{G-f$u+wX5AXQ2`c z$Q#c>;J|g0R+(AO9u}A>4$yAs&B{z^6^z|qxsa@&@fvBoUl}h~K`xU<0|v8!yDZ~W z6DiKm*!PvOX%&oJAKL$O=6=Sp2rl$P5ugZA1SkR&f&bSCT(*R>vAI{xwQ3 z-|qG1p?82s;1||;^Sqt@?wC}pO>CDo^r3SKl9>8uL4h5Q_7PPrS2;K!9UndCoQ{`x zraqlO;tBR)1@P1HS_$~kDLJV@d45@WXnI(o#6!+nDWk{K)A5g+f#yU9Z61ju6ZEGk z97oL9V$u-_MpaLKqTDc(W$Kv{MmcEM$5YoINujNj=7Dr0I~um3ounu5wfUl>0<<)F zuwS2o9`)CzhQfjFzMvFrh>)L2OVF1B@LWc7Fa~00osEZ%PAG}%4+b0I_3v=Zgg+dQ zbwrv;mY}WCQ;j?Qq9 zP#+dI0+0HzBu7VmSY|%V*n^?{{}k6OMtlpN_unht2EXs$B%TAm<v@YPn9rrww#vv2}z=hESIAn4MG>tHS0dWFhX@q>5NN!mS+d8HYJZ zdS>A8Sz{4HOe&(OgBv#nCnuFp=$J5CpFfW=@{H2w&jE)YCj!GJCc)Fn!xIEHjJS%Z z2Jp!)%+>x_N5y-h6EOjARaJr8<3KEcTV)Zn$J;T(reR>P;faCNVra0QY{gt{F;u8M z@Y@3nwQ7qXJ>HBNS}hFpI1@?-pj8FHd8~j_wIvfeJiIP%g7SDymp2A^EDPxfWHs+r z9_|0fxyu>xP1yfG2>bslVgG-wc(Pb2P7*oyo9_MY2i>>3uXJy8pW{9W1nGw&KoOt_ zPy{Ff6ak6=MSvne5ugZA1ilgoj2mZ$NI+8Tz`bS5_^~LJ<1`Tr7aL#$_?$ugxTV_33;)MSiG7N44o3!cTL zCX;frkPIbJcmJp$X#dZQ`bub1B0{{IlJ`3Gu&uK+06AA~V&9M#Lp}6Gp z_r)Wa_W8r%NZcO}{Vxn)Rr7hrw-E{ZxL zY-nq$?`ZON)Guji@~Y|HnOp4+%jZ^x*IJ>Enx8Ke^e$;$+Pu8OySx?tt!!y2w%csB zKveR_rJ!$3zqh05j5N$h*ig485)5^QKpEbJ6Za*AaK1sQTSECJr>f;Ku(qPDd0Bni zYVWB{t7oc$Q1C)~;XsYu;wdU(w@$}M27Kh56Y!@G-Yk?tI+8F=VR~l*Ha2gxFN`1o zJfOJVAiRucjXx%#q*e884JX&P&8#RdFGM`qQc&s)g+uWWw5_Tajcg)CP%`S3qA`%b z#X@ONa=*>uDJfyM_9d4*D8>DuZnfw#Z8t8v%srunmn#W zM*8A`NRO1vfI3F3q^lOnb&SdHLJIhlZ?=?rDe0f1M)K>Zl&pR00CA-PsKKJ4*m~b4 za0Add_^nDx<7gT1iX|l(%YefOzWlQ@#x+Q`reKkHg_KrT24=XPncRmB`zaanq#G-^sm+PIsc)mdyH8TU=m~}8 zgp*oY>+#^|@o!E|@^6%){-^y%!@c3rC=FQ7DqB`y9Z26Wk}Bn%>lp*BRUuSc$(EN1{F zRHfBK9Nx;*s`#Q(r=~WDG^eW&Vt$S~X?luUZnZjLe^0_=pswW)`@8#Np_s-o!WcmB zic@QDFWl-9ES|zbcAHY8gc`1pmNKQ(N6X8&ItgX9-zSn%YZ8p~_+bEmq&y3t>Jk4C z^!F=c1UUr_2^C)x3j3q|iqgyq>^piwu^7A%&esDIf6RBD6pd&E?1ek#@fJ^A9eX)1 zw{TDjbionaQWyqSRQ(=+(PYRFQcy}GHUhx3nz4AK*B1)Mr6~9XrN&wT3Hb{=xMe4+ z2qjM%$@8V!jZ&tNbYfu`CDP{JNUSd^`M}x46f1~9X4x1KkP?m@u>vrQCuFt7hPU>? zyFcSfHdw23bzH!Vw>n>IZqx86WJsbQ5I6Am*~K+#VtfDI>c zwdM`;*9sWsuN6@9ht9i}vv``D*~^>d&YLQT8v>^2Xb4^asqM}_l#Q0lr*z}ta{6NS zWqDD!UP^e7Sl^m;5_Ev1i9y>X6I~zr^cpE@)H@R*ihqLrPo%RG7FNSb6X!LotTIH? z+g2pfn$|XAqM*t78H!|Rjhshc?{X zmt|W#Wo7J6*|7wby+#C&i79`jWgBxY|t$z$+#3d>$^V@O$uJ*dao-0Ml=#DTuCc<$Sl zn}RV89H{tWa(o(WNi1vx-CXWbFsq_PqrQ`><78N`IdYF;+=T(Yh2w?`EvM95+dpw# zJ@)^wf+r`3-MT&*wuIt1W2i>b`Q$Pi^&!Bg2ZD;I{y4gddk+N04MMFrWR}te({#1! zF=kJ5e!2mxc=t$m&{v@$vbIhVEuNYhc3V5fKoie}jYu@KrY|nV3=_vBVPhzQ7gA`% zXt?@$$lKU-QvJ%74llgY9d(`I0^OR7)Z!W7reu5TbVrxo*NO!uXLCnw9C=e1{ z8;-={p#TmZ>3d{ih#IoEO;Bqj+eIr0i2b7NSkhz$Emh?-dzR*oprthTeq8Pv z_JRNAJ2zY5J!+o(e0JL=+~}HNtNEJjqw+MIy#HVQloy;o>~SG>qP-s@$Cnf)tUX~G zk^2lRMPg{#tL}``Osde{%cht;{`u+JJK?|~yPh71`01C7NsOGW<&*Jk0vYKv`e~A< zCJnbVLZmH*9|(!wZ8(UIvwp<4#mF44TN0903$%kDB0A_!oS}gXR*ldCum@~Cku9)k zB3>r$$V#4zVWT52_*GyNNmJ4wpAZgJ`DqX6F6$!1*q_EiVx4Sp_GTz*9nP zet7&m&pXeXw`gH?X?baRUNI6_5e=c=yEa7Ol$~hEj|7mSEl){l3B}?l^(>TX!#vT;k;6M0!HnL~SYlWZd!V~D|QJB;5Q634CxG<4u zqrX3fbHMVD2tOlFq@gS>AQ`2Uyd~5V!UZKo%(L zacm0LP1XyM;>*U-;}|#>6<3TKR0N)Wg(sE}v}z4(c>rUNnx~2wD9A@AXrwV}t;-vl zR&@B98xf|B6mlH|(fDf%g^YT^oEzONSILD}67F(5`pOoDye>dQ0P>Y7vMpBEas_JU3Kx6B& z`sU>_3b=b|xvN?m>X)o+fkT88iMGwlBhenMi~>|cOMQF0BGw#U8-?>p;5XyA2Oy|O z_rairVojUjA-bT1+q~1?9g`Ae&clzn1*JxKbPFCw_QPpJ2q|NsW&Yk?O(v+bAxq@% z+4v78&;^f!ywmysB6P-5a=$g`wxq{4C3@Qk6`GaD1KZ%~K++?L<)(139UMi|z|LIO zY0F8tjs`f`DG=ElT7w1xbsQ(kaU@`s`|AHIzfnQCKGJavrYUWeo<}poY|F?<<(;Z zoF-VT7HcAn$7wu!kUf}4<8T_M)g8^6Y>=N;mE8aTIU{~3{$2dD_?Y~3vf5zX5$j~`T0eod31w6ISKt50HhLIeT#K8{uw}061x8{h`(Uq z?Eiz}lkkOpC;}7#iU37`B0v$K2v7tl0u%v?07ZZzKoR)wLSPi$;j1_I1(aa5sR_I+ zk%$3sB9=(K|3AoxZ-`He4~T>RT@|FIp$Jd}C;}7#iU37`B0v$K2v7tl0u%v?z*h%> zEWwIz?pw8Y{P{&$JW955smYuoo!IrG1OKyFMLH>&-v9sV^dnkRiU37`B0v$K2v7tl z0u%v?07ZZzKoR(YB9MB!pWOe~JnfI~|HBUg5?g+9|6lj~|J{uEmiVl=PrUmJiUch- zMSvne5ugZA1SkR&0g3=cfFeKs?1( zSG#68_c_mWnjQB$&b5DRztld(_7mI5)|agtt#-@JmTL3w%$v;9Oi!CGG!+Xk2$u=9 z{6F{$_)**-Hr%9XMPd zZb|c*{+zI7#Y~*1HM2a^WVmI_TMun%D?mBI0g9-MsFeBw;uKCTrEqA&kt01l=-&qY z$92z!_8B-&CAX2~d2HBB7i|blCspSVoSb~+^dCO)3<)nBYheSK{m1<07#j#p%iPq_ z-I*Bz=_8l3fpz)V6q`w{j_!Vi`5?3Z*abggK3JcJZ7J9h9Q6QlS_Dyt%(P6r>i$|f2U1^9Bmo7zvFqowh1`POuXNr<2k=B56Tmc!zF`uBt!Re`o6C5 z8C&|Ct}m2@EoI{RKCkCnHx8T1#PfY_$JaGBV*o#=-|HL$mcXY#r%-EV;Lp_uC^`IC zC3>_nlmFI^Mt0yq%;R)Et(`-e7(lYYt^A_UC}b#;Ue1}0wPb3EJLOq0C1!5w=%dHnF`u1`Fmz>Ju>*%QwRPcbFY}8!oX8Z5JUm(= zj$oO`@i}bI@*_uDTF^g(xdY~nD+Wbo~J01sA#2yH>gCT!pT2&STCuozFu2;7;e&&WoJuoGYF6&Jw4` z$vfV2yy$qsaj)ZM$7PPV<7~&tjw(lv!wC_FSD*m&LlK||Py{Ff6ak6=MSvne5y%XI zEDPCbD|d=aXidL(EJ}r?xtcn)ZahkZn@(yPT0buugOXv#kVxhhVr__gs!4|yjKkX6 zv|}yv^@&G!&(qn#!P~id*#n1bQ%f(P($}PxUf`$BNzGNjTk-1AP%N9K^ulaZ9~8D# z3NIY0Lis_6R82b8QmIQjy1N3E22L7N`fv%Ww%bMtIYqQd~iZb|{7+?N~`_ zt$7Gb73&j^?k>Vma9VYUY0gTmHje{9h58&09G2o-6I9FFF?vPhkDDKd)9Gy0ItYxY`@#yYsU7_F(#w$~Fg~Hu# zvOb3chbN`>5&qCb+{)V4J9KOUPSf-o{#c7gmv(gbcx1z-Z8|7VR%&O${dJs9{lMX| zsUwgxjX`2CDieK)GaVY8S`!rE9Hmb@x?4Z-*k>lX8Wlgd9sT`K$IGa*GTxgg17mSmAhv921+N2>0^vKF<*}q_xt=| ze|LW@6f?+fV_niVAkyd!w)SPi$|iG z)=-iP(lv)7K-xp0j)!Cr`nVJh`or<#N%p{i?v^%6-7#OJ(-)I^{ZT(28oI{r@oyfX zq_!OmN?hzUEFLso(=@YZb=9!wlfjV475O5idnk!Bx7l(np4?n^$Jr?@pbAeh>QyD9om6mzU z9{>DdmGRJvO5M2A#=1hi%AnRW@~^PuSUmIRv)4{n`-NT%cM^Sap1#NEg+?+h1tM54 zjSmb&dhig8M4?{~C#bYzzoBO)O=!%E^{rVa1>!M7MPT{@G2a@gGZK}2X@sIu;P^sv zPLc3&a!D^B=iu**OVQ(GGOSEWog~AGr_{+ z1dFrCCSQEGDh(@x^O1bR%HZ-GM<%5_#+^&9m}1OWC?zN3>ZjynER<3=V{<8$GZsq8 z$=F;YI*d;_WL_A=ip&pw}iBrfUMNkkS;S zRIu);Fzi@AMv3L}2 z$j0G5QV4EUdb^~aNHp37H`f{>;a~{exoKbCx~!?Op*s`~1wi5?h!BRtYujsP&#swW zUJkc=KiXlsc(&QW6?r@!aWrI{f4Di^3juT~9QUpY#X|9vOMCMQqE%~h@Htr%bH$0E zHCo&rkl@B`WOHauW3+E=+veqwXisx^ZBz=PtlBGPmsi);5X~CF!RI2)ETmcR`^He9 zJJKnI{Q*POs;cU0qPUKC2(hfO)0un$5cttEaaGgX9tno}db~B&-epU@jc^a3UkZBL zpiFSH+1nb0%6Fh!%W-64d1FIGMM*HUHWc^5_ww?Z+KP&r+PUQwwLJ|N6I(vcA)KAC z^~3WQC+g>|EH6h!aHb9Z-dJC^+~$VHit>hKvr7V9{-}3Ns2iGjEkwS8(y4PRODmhc z-3t8}H8A@9zeRkU5&tMYEkf z-BCCZV3oTW&IBlN=eS3^dDq9T*Im!Meh()D{KR#u>l)Xku6{Tj;A~f`tKL=Rn(i9! zvO53ceB1d~=bxMpJAdZ9-T7_j<<2e6u=8B!Y0d^`wX?uE(dlq}2ImF5;&{gKsN?63 zA2_ae>~dV>*x(2_RyvkC<~oWT*$&ac+CQ|vYJblDTl)j{AKGuUf5SdtkJ%;r>Go#( ze0zyK$3EK5+dj6vZhPMLJKHa8_tTDIZd|Q^yV*Qu(4eJZm z-&yxs@3P)t-DSPd8nK>hJh)4QgFrazhX znSN@z)pWIKhiRi}t?3L?vuU2G$TY>|5{?S*2`>vz2@ebR3WLHm!X?5cp-WgToFdE@ ziiK>!$$!Sb%OB+b#P8#O%-_Oa#c$)|yu`2Km-4lIAwP+?b4R$hxtF*nxnFTV=5FDx z;4i zf+iR?Z2d!zz)0da=RiPKer+CBUPH*iH-eb-6S83FB21nu3txfqat`D|Zz2#Lbe2SvG19O`RIk@u? z%spA*ZpYlEGWY!#FnN;9&A$T+HxcsT75g!_k&r{*X~$%POm5kMg_kJ8(=fN5kh`Wl zj>*M@9K4#?ts`W?5E(9uWbQQ=W8sB_96C%4Es(kIeu%mAW$ydWVY~BW?$u#T&Q*j_ zlRF1$3HflV6_YiD-1qGgEIfyhyQbWLxz&U$_+AKeXA^Sp-DfbjN)aZ#wo(?p^$pCe zAmqcXe*@AzP!1$?hm*%V2qYR2WrV-)+NW^drGy;3#tWo-phOYBR~9cO{Jl?$IQJq# z?hzcAoJGi?ojsT=B;+pdTbP_l$ieIWiOB+mOUBa-Lhh-28FQ!0!dLIc@bfR(+3+!Oc~AW!*X3FgZyk*K}jyiG&>bkhJOqnXLH~3wsE;_oXX150`5pvheTp-;80+879wLl`vyuvTRd2n5~|>~Uc|dVmMlLBQCk%197LT@sG`T`BfawowfFw}5wD+6Lmzh| zYBQk*hwej?n`G)II2U;y9{l+b;>pwS-uo{=dh#qhIOIk=c@iG{F&@tH99(dlA4$qn z@KF745hc&Sdmp$IQSt=5_Xj^llrsPR{ANVS({I6TcOy!keFy*eEV3t0zQtGIK`PI^ zgMT_5Ny=02zFik0NqOeo)7pr5^2EDq%4|f*^KQW)9?bHzyXUM*#0$zuJkyUTWzPNK z`9QhRl#5&V5ul)jz;|&8Ojsu!_t2cPo7tY9{ml{lc&`OSD6q`o>d=~ z?m|3yQr&y!97M@;>d;Ly5G7Bk53WRh-_?NKYuyu9gQF4zr#zz$-H6a?h zWj=lPGsKgp(}#n&pz>_G@A7KIlPA-`ckqHqo=b;rn1>3gOr>|$B1w5BEx0d+c=AL# z^dw%Dk$IF|eBP;uN2XDB@%bMhJu-^|4-I5jHLisD7w;o)YjKiE6f;3oo@`8M1q$;8Pn zjw9#pl;_R8523lwF$;=jMNZpWT93GYL!Fj%>>_=HPd*Gb9rxdvf+QNKKwE z_wL2(8fChC+lBPx*>dQ2XCTQu(p!t3$U~GoRSv$2p_XUL2Rn9yo+AevpO7;Z3Ch#t zo>R?;l4r@Ge_w|vd6FD_{dzsq0)< ziEEztk!6(mHTO6%D%|0EK={Ga_YgN|d)$4p{aXGx?nOrxKi2*`^MmHAO#gDMbxgDb zEhn3PDm-nn3)cx(n7(B?&$Ptxi8I@Jt>cfDS766p2mAF9|A4^qH}j|3erVfk+G#%1 zY_?o%;mmn%i*=tZ%d!gg@o(A7Y)5Pr_FlWyo(FsVce!tI6S(v2m)i&JAMkzrHn9Sp zaJWX8#l7i#+uUXTk$I8xQOCokL2;UBcmGXzSCmAL`+f0tYqj_tdo$N9|i=!~fP<m7(SpV%l-~B!NFWt|Ii`)-7 z;`Ud?KZy5QCt4ommWUULXNV7puk$8Tw>{w8?CP;?;&!^;wP)G(b5FW+?W^4Pxcdai-&X;eO#l_ZsI_&T||uIuF`^Vp_p}$p4Vf zHGgE@E<9r1Xg*+i)AW$#2Fqub_nc2V*E<`Xy!Bp}An+VF_y@FoZ4X$!7-;^_jvu2~nTQJiH-eju2|sq~9Ule+V`B=DUdcw^QJGZsD(Q z1y9WUOIEw)4aEAVtcGJE%qN5*Ara>3P$Uwz;$(1Uqi*257G<^Z8cz=L^C(L?bL z=2=3Ka0l~enZnTyW#nfez*=nZj`n=1+toVGibxiXMt`Fi#SS z1UZ;L$a*-&!Tg?3B*ek|PSHaV4(16$kpKttTZOkB@qQ!oaCn1xT;}2E2J;x9NN|IB zlu#tL!8{^UIJCk1T9KTF@_d+3B(TBkBNT~iFb@%mgf*C7$vhm@V17v`64YRRA@gud zgLzQq;gAONfXu@Y4Q8(*iCc3Ip-4P~86p%3XD~k}6p3aq_Y;Z)Gno4bMPeDu&lJgv zP>p1dRe&QI%uflA1TvVPU`mc-Fh3?d62xHcAry&WFh5cx(NdQAA>onu1#>r{Nce)e zi%=wb!Q4qG61-r3KqwNsVD32A{>X9nTLZC%w;l# zV-n0xOvxb$=2Dr5BNEIdgdzb6W(SdMz8%FQnC%J=t-qOV3WZ`3%vM5?Py{m|^Kc}B zx!4I)D9e#Z#6^T4frtwUu?xo`E>H**K-fYE5`{RQ5F`k39wA5!qMr~X1hH8ra0FtL zOyB^-MnaJIL!Y99!Vhtoz|n^oAxQ8cN(d5r*gyypdgzr29C?TkVh{%&!h|4khaQ=O z!w%hqAW?_)G6x48))9il972THgF_Bogdh=zwS*u6hfY}x#~UO<4B~J@kPt&S+7Q45 zbQiQfSwlD^(%>fq2{fE5b8wu&M+g#TIEN5>ag^a~LOh6r3}2IVaE#$BLXZ%{nS>w_ zhSf3$2N=#E1c@)4P6!fSSS5?$=)y`ukl;cGAxLbYoe(6n&_)OnSvXA*LxF`AgdlN+ zRzi@l!g58d55$%cf&>*>2ti^BrxJpM6iy)oi6}G^f&>&!R>bat+?Eo8gcDAZb#OGH zN!G!^ghmG}(^wKqXpp6FAYqA2;5b4(AqH_6VKE^{6rqj~B#5v`7Q-=wg@hm>gatBz zBM9>eK>`T#WDbrW%*BKpKB$!m96hK}I4F292N#;e4ysi~!S82df+KN*DngL3K_wwb z)S!Y8Bxq2s5GZC)CX3;aK`AEWh(QS>_f5iSit4*$=R88}){NEkR+Fq1Gy zte}A8MM4ELWEC7Km`;cx94MG36F5$gPY4nw$Rh-a666ws1PQ#@CW#T`5C#bmOeF+~ z5M;~xI6yE(5kv8T$%G)`fk`q4M+YVnVh9HZCdeEd8}JZ@Qt4!cHfJN59VF0tN15p6j!7q@fl{X%RZpgEcGLNJvD?&(_OHvYRJ=pnk z;=_!15H9pX5ugZA1SkR&0g3=cfFeK@fk+^2VCffB0v$K2v7tl0u%v? z07ZZzKoOt_Py{Ff6oD@a0_b^%$!u~ofb*Cj4q($q0nqvXCVm3ry4BHSecgN+e5D_X zz*ioDOTs2AYrQ0teaU*hy{VRyrF4Dhj&w#6qTSL z$}3B}p|E#m#oWp{H5G*}`^x3bt;^N?HTIF&5gQ30>2+{~>`02_tA~=cceJ*71AZ^O z?kx$Jg^*Zk_$EJO!XFMIzVc4K#7p|%l{ZP%k|j%1UMvT1;0*V5cf0H^d!e@(T^g1) zd*LuwDR`FMd%oS9C*zbi4^uLRzUD?q(0>Su#r8Z!Zh8H(CXmb<<^a|_5O43OU*1^X z*65S#97taP`_kl3%qMo=91HZlQL|nZ*Nz0Q%(ua^V%FyOXckb6mq z=?gL7Dk^7Jm6yYaQ@fse=J4m}d=(@^Ku~E?rSk<7hajW&`7i2g==fz_KSPHc8+I{r z@N>E@rXC2Lapy|udB(kqS9%vmdl#BUe6)9s%yo^ZcX7CP?GfX z4k^cHw0|zwh4V9TU5S&?|I0iVIdlFC;=9gdtu~k$p?A^FrS)92a~)^ZH3HX#&i^-w z2O05*_zpY+@DV-x|0}=sr2tR_C;}7#iU37`B0v$K2v7tl0u%v?z!whzv%p$e-h}^{ z1pJ5N@gIQ`1e?`{?*ET*t!2d5;0=IxiWi7$#WpzcUvR(VzR$hQz0Td>&T@U|dfas# z2+)&1s$qR|51N>q$Ay8K$4h39oSRPf(I}?6V8;J&` zXdz@Z!!Gbm#u`beOt&c|ORcGzGh|n375KAB$%bp3q^u`c1g?nBKinMd^~Xa}IPP5) ziiP5k+gP)}=kRaBa45VM za?IicKA%*Dv?fWOzzXnsINbfb$sGsX{~zO8#fX*e8rS8nA@ND^HMh@g70+{j=33=? zRlLJ}xBJiTesP%?I9?~Ge2M@?fFeK1k#G0M zl$c;INOX?B=N?^bg8lw5(%PNlD0t)TTq2yh4^}qkVyOvs{3Ji)t!UEj*Ii(OEq{9R zO17?vCfM`Ka!Gq`cx@tV`Y|W9OsZV+t{=VLuqlm7Qt9k!>C)#7n`PT<6YTp*=|;Tq zw@xy_#-BCX`CGC~u=8hAw*KbvCfNF;clIUi{Y{$oHbz|Agu-+aZ2k@5((L|uc*;Lt zu8?;7&p|U3^62S*csMqB|Bvqfv+n;e@IU=f1SkR&0g3=cfFeKkJnO#{~Uftdwj(16ZZw&v9hXU}641agL%c~s4B@1*c^TNSX zelH=B+zR<^`NhjXsNfOOY*Lbzz-}yD<1Ji`r^HPan(w(HwtFZ zkzoPv%r(FXN8&iCu-L2ox&V~`AC~2h#Ug=_KMtq(%Y}==xgF7944s$d_ipq@LsGoo z8|n0RMxs6bc&xO1V|8h{x1zS>l=|f*6?2m*bpM|fKVsm2`k@F=1SkR&0g3=cfFeK< zpa@U|C;}7#iU396ON4-f&$cNc4|M;(#P$tFd|mvNc!L-fo5d-j!~K!_755|VTioZl z*Sj0t)7_lwZPzodhg>(g*0~nD@|~YJ4?2J2yxFT}E?H=2AA#3`f2v7tl0u%v?07ZZzKoLlffLJ1UJS={c6kn{aVj(MwT^SC= z(Z5mIMZ)yyY)5~u3pAtwik2BctLR7!lYw|h+` z114@ow;%5R#Us7mHozqkPNktm2m{@t^Twqp)Qa3Rgxhv-2hw{ox$TJbF8ph6jwx&4 zbeyRs9rA!z+mPqR;hv&jMg~ewZVT!f(z~V~=iTe?m!ie+x|TqwI|K~|Hxgw|jC7j| z|1y25P*TEz^?-zKB(_V@jiG>)N_!i#1q|Vzm}p2LeYG7 z88i+wA9U(?8RVKmD#a_G+8a5Z1EW{wvMYcNwSjE1i!7FA{mRrOfX3oq}1{@U6r zK|hW}HR358k9VAqTc**`iB1?jR+u=ET`Gm4&yp+W8H0LfQ@kr23WVbQi7&#q(Zb}( zTvIPRNgtHtKNpF)qlCgj7QMAaEo?G1CtDPIgqfOFm_6N%x(iO$6fl*pa=FlW zL&@l$Yq}F_NvLaSET_f^8(p$a>9ixjbqam51t+OjXa|07Ooch-;ooGjDlV)F%?@i7#W({r?izTt@s* z{HypoaY(#fyi(jDZWepQv&H4&T(Ml7EV|uC-0wj|;92+M?t9!fxUX<;hPc2v?iTj~ zccnYqJnVs3+~c~gE95%c)#7S^tm%g$KoOt_Py{Ff6ak6=MSvne z5ugZsu@SKGa-6Qj%98+H@hCnyG*{$+_pr-BxLHnKjiD8K_$s5w+05~Lg+YL<0NKJZ zuo=jNHpVrbB&boXX{aX+tU~{xSjOrwJf<#_)xhRyW?`5pYN( zB~X&(=5saar9l*x^-L5VKR zC2@vCXv&F-p#~@%s6v{sgdG)&&^BaAi9A?QrYPoMLDfs_&DC<55wdDJ6wZVSucn|9 z3du>RkUT1+Dn(3lPCmz$NOZa0X2!DpjQeS}-+jG!is*6HIo`Cl+RfGtR_RHaMWafEEMxa zrOtHe4Gr)n?2aaHNBxqPCT}_^?@YVRW=rG;?+kBV-r-%|3jbENv=k>X!~P!0+tGAJ z3O^X>@rS}bP}TFGh-)A)8|^pX^@L(E2y6O!BnXxJ&Xb}MEQD>YXlq^uZ`Ssn+O&G6 zrf|jHgt0<<;Z~u@;(@T03Xt-U3Dj2kT9yif!XPzQDC6QMxQVLc(xF$eM?<~%UI3~y zPK2uVz|c&zjX{kyZ>HZUMPuj@mxQ{W=L-aTRK6CGM6p6a1jB>{7Eg6GyAAFgkbV-C zVv+8RQc!snd<^i=rPZebqmv*A1tMLMXdL0Qq+8o;e!FtK(?~B8Mtw005fQst( zeHAGQi??1l&*CX6Vs})j$g1)w(sg<~RapXMk~PEek|dGnbjjlpI$9S5=>5?^S117Y zpY)?HD8W4`DF$6J0O!&g4!$Vd@reRVNd}K!BnA33&8cm$l$_BMT81VOLj_9dvZVd$ z=bAk$%Z6#cNVK=hA5JKt7EDfBv~^Xj#Zy+sZa+(D!(;)S#=_KgOqM?pgF@3u4O;Iw z7%S{Rqz{hF9d=Cityw1p;xR)ZZBq?1wlqc64m22B)iq{MbN(=GgS;V9$Ky&N77Rq@ z5T`v|X%B@3Eunm!pV|frV z%-c3*wgoK=cGM^k8p;8lhUs%t!8Mdp`Z>Nsemw7=zAwf|AA}K_zPAoHzi41K7%K8= zAYCKMY>bkDcJdHVDvG+fT%x4uB(e6u))ExX99ns4mDzJvb-Gp#g#+DvXu|hJ`=HlB ze~HI@75^W5-vQsmmF+z<(rDBNFklQAi(+hJWLvJ7CL7xr2VAgCaez3oG}sEVBvb&W zkeEP1%936-y^u;EOCY^KLLiNFLP#ZT(?de~hHUuGy;C%j3uM3V?R)Rr>mSS*bUg1DA1n|mZHJX=jmGn$2K6^qQmt0;>uWOC<=3ce*t)nQe?)#QIp3$>^ zSmgr!i_5(PSo&B+C`S65zht4l2NrcDtC~Yx{mNRz@~CIHiMAfjLJNR^%hF`HqkZ;D zTv@16y`FmKF$VZvuiNkd-)l-`^|b!R5~$xEOLb}Ony~DjQ8e)wbF_jBYN7Ivyow3B zcrL)csY(7U2;`gKT4$08C%AekonyOb}kuivaczUyMic#e8Uos z#D*@irFPxVb*N;kk5NrZl}pe^vy5v`vMp#6==pzY!2j-09PyqYKoB4Z5CjMU1Ob8o zL4Y7Y5FiK;1PB5If&LLd*Z(ZPjN(7$ck_4f=K)Fn2m%BFf&f8)AV3fx2oMAa0t5kq z06~BtKoI!X5g5tpQ)#_M%P{ihdn|kuklFHjL^EA8eWW%qRSO>yWHz5x#_2izNKIm@ z2EOLUq)dIEK1d%N$t0#SD$OI{I|qh1yDG)#{ePBUNAX|quka7@Hvmcg2m%BFf&f8) zAV3fx2oMAa0t5kq06~BtKoIz^Kwub$0|RtoT!2kXkV696!~{7Sph--S0|CrX4hI30 zjsK+>0D1oZzoJ5kPJ#eIfFM8+AP5iy2m%BFf&f8)AV3fx2>j1N0Nwv5@BjbLsuSW3 zL4Y7Y5FiK;1PB5I0fGQQfFM8+AP5iy{$C@2?*HqoTPb+@|3>)YUy}7B_(A>%0t5kq z06~BtKoB4Z5CjMU1Ob8oL4Y9e-;F@7POo7YIyE~LUUAo*u9?otPtAMai+9RLE4&{3 z6TUQ+%PJZ8wblWgUVDrTv$T46N1sluD3af=*T^|wlYNgDeK{@h8yQ|tEGgi2M?)d> zg_1IjXu7BfUe-r1>i423wr_uL8gd!Md9k$0-T{4-HV1YXU>E~}M=Y)EdLQ!W{=d%p z3dMKw`>nt8cUxcKGyl7*nAj%>5CjMU1Ob8oL4Y7Y5FiK;1PB5I0fNA>5Xj~_#a12p&|9>b~MDe@$bNNQzY8hzWWj@nfW@<7~#+}9sjCDq%;Q{?_ z{c3#)_Z_#LTLr@8k03x0AP5iy2m=3!2$TiM402Djg#?$+8%ByU+aSdsh+tOML|af& zjNGxg{2rSt91gg>0F1{5p7Z+_LJA zx43n#PC+VX%thH2a-+=^7G_vMXYQY^i};F|VnKc#qjkAGosEJ|0F$UOh;6FKo?ld8 zhRmZ=`Y#k@mRbQ=F353AHzBW&VNtB~UX9K*LjH_nAPGjB0@09LI4&T&PccAi%sp0X z{QsjRPSXQ^CCSIAG<-ia(%^D0bF~Xn{T1Zo=M>H0AbVEspUGYk=m>-&m0nl7KY;pI zc#aNqq#mORLo39wqtPZ2wnDI9V9SJ&y8s3>yQ9b!b%!EZXP?SK?ae!9dH+7SLhaE` z7#_mqYFBFfaCaDw6(_*hf11%SCKUD8_}#uJ8n>Dvkc3?xW1DP?grdSkm4rv|h>ffw z0Jn~Vk#K@geJI%B^7oP0?1dfJemwQ#4`Um^HFFzUxX z6rpk>WMUbL@I@)uBZd8FM=$&$H>ydOY89%iVuNVa=_5&V;G7BzRbttSC5dF z$pJ<(j%_3s=rSI^9aTKla6DBcJ|LeE5YitPa&e&~ZXy&a^%#YcLqED%AUy9F!p9TW zVaq{L^)VFn8zs=@frj*BXpk=Vag0Ed4H-rpUj_!rrYal#_dW#4@c?xHU(5fM;y>eG z zED;0<0t5kq06~BtKoB4Z5CjMU1Ob8oL4Y98I|74sC?-J1g#@$`GcFpSk(hCT0A`R5 z1p$;N15gZr1w#gYFC6J-`6K+#{CE79{3rbT5Dj>Z-)sKbe66|GOquRBEjH1{`;2Rh z^NfQGI}B?KsrrZYCvv}Yw{Wv`pXkogO=17RZe;6OO1o9NKx@!EtZ8AsXYOMH%mn%^ z`U<+4rl@;+FV&ym))#QOvw7a3t@MV2Hcucd;CJHS-8jS${9$;9PR+GtHr3VFR#j%@ z<;`-1ZJxMX%wsE?8}qr`xspORyl>}$mm}Z>KT#p<$N(>pL_w!Ip{Gt&M$q{er-RFy z!t>cor57I8g0}*_5dkYy|LUPdNlZF0Bach3;`t0HWyltewuK|A?C7Tp-pBz~PaUE( zv+2Vv^|_qAp67G1j$kO@PH+RU1Wz<1$oyWEDcL~bu8JHky;^pvGXQTR#hk)F1HM2z zeoHYC^Nysaz# zmrBFDFuVg~Q}XW>vblogJYS@#6#M~r2?^7WNSPrm8=45i&&|b1-eRJw->MBHa zSeyJircCKsVp2@o7GUi<&pwy7y!SCDl zXx47@+L)wb^&_?8IeQK2u+p1www11Ms|(6oHOBLPr1q-h-IsD;L*s0+h`gsm|0sQi;zeJYd%BpKcWEB#AgWA%# zBCrv|Pc0zf*N2UM;FOhMIFlBR;&K0hTcWzx(P@yuSh{ zs#f3UPT?Fdh8L)9^j`?Ik$#FH+Q0?bK4ln}UV`S;iU7P%>qp}>8Yg3P4;-W<7`3;~ zP39c19)e!%^ZH@w;#IsFx&)Yai8HxLj~8S6dGIW7t-DVI{T{t;7B8h#_s5 zp=PTfoGA+8tu=5~sOpZHW-c8RW{3*$;x@2Ur7N~1?y&{|oC7wL4tk!dF>x8NRLTW3ECcR!Bedm> z4M+t(CgcGow9Ivr^xW7Yo=?}72cb|dH(JW8$b?KTNeJ4@?oy7+hOTXA%KhP$0=iDJ zWi~X_WF`C*FSlHx3>H}Zs6)r4h!WC8zY(O5$xn#bU%XWjensN`U^lhC&q$A(~=}P6o(S;IV zQwC|WQzQ~0Q03PjTv(;yGT>SWT7a^AMF=WC`drJp6cMPgP5BHS`T!9(EWE;4g+wIU z#{!V&##&lhutFZ`s>UV_mv9Zg=j;>V`1IN1;J9l|0FF19%XFbec%(wFn-eCRAdYko3>mqB8WwoWwaJ8Y+ zGRmSge`$Wwe2KZ!>@+8tzA!y$y42)0nTuh_S*r)bNGjNiNS&X-Lu^(m$); zs9&XT*5~Lc?lo=`cP`hWJF5Fo_oVJRT}0QY%VGb?9%Q$(=dugf4DB!4XS7#n+qG5N z6wOzf9hzG;5zQ=3x`t)mVjg5RFpHT&hNWMp@1@t!b7>p(E%hvlAB<=1=~}wED=64H zp}oTNf!0s8t{~o?CjxwC)5n=7<+1QB1|(){^ZI-RFi6R?d{(gvR$sX!K7%?@&Y)JZ z`ijLpGRzFYYPKTa5fnnDW%Xr?CbGE>4c#1q&LVE_gLWDUEJZyWTBVAqKX}rKW7+f! zC}zk7D+suE)(dqSd+1f)vwWx{>y`*(v4(liY7XraRd&m{+ zz!&i~6_xeK2Nf5w^aqO&tF%CHL(0s`eXt9dlw0QD%iJN(||_`+J0l71(>)RfKI zbG39+G}MllMQ99@EQi%RF#AGd8apC=fz_hQWlneQvaAchRqm@bfG|u)YrtQ z0$vY*ikBL)p%#&fwo?!uut^iF^%Z++=IUqaMYz#!F!&NUUO1ksKX`K82sSkhtVdv# zBWpx7jE_5NrBXsA0QPd##weqo)jOQLRsf22AW zTCkWyzAO~u4YIt73oU-$%v?4X`iQ(rP)2>RR^=I2WP|?Ks^aCne$-O|j(B;I4f3y7 zivGy@<6FM0UgCoMGZiohKx>ud@yw1^Hh5K_UgCi8^D`!}b~^}H&al?)y7^|Q~RIP&jiD3632*RMTQyw@$ z5cAOj-|O?h#rklkIQ&2cZ%~TWh#IBe0PX7OVq>U+5SkPZ#3Is9F#Gs4ar~$Xdcy%U zkt-D|#5hpS%~Qv*SBma1aQ^xz+m`-###wgB2qC44!^jy{kB5TJewwTo0Cj*1N#KAHq06pVe9 zjnx2jZIc}l!g7hQ+r*zB_-l#S;$sU9>1q(`RaPH}380-=ECL&omK>D@LF3M%@i6Q{ zNg;$CfQWKzmOw#miK9O_zfdw97wMJ@9>)a3%>|0IDux}CRxv^PFZt=<0s}56v1&zB z;Upb!NQF_wu5qd5-%yw>dE)Sb;@fy+kwWCMoWcXyUAZxR>T$yZdF3JF-kfwcBMa&U zcw(eC=2$HB`!~DTqT)lviSgly&?bri=Y){1tT2HMk>2b~HY-=kpoB(nNkmzZ2O--D zV#iGk*!C8U%@W(0Br3;VdkM5=X26um&`Ml2HtfZRO*1C4cIfLBaZ%1lApW-$avD5- zBI|$=re|V2M+|wU=dlhLOXZ|klrfPbX}69Ohn?P%6M15&a;%-TLobyR<-laZZyZm6 zu;ds!TcC2j@1P`(KaP&~J{HuIwaXmI`$4vN@72kPS;WX-S`M45@?MF+$vP9N<3?t|dI+@>NlrB!DS|j2^}q;mDT5_p;tj}A zK}Dy+Tz%hgJIuS1R*{{kH^yDPJw@!u>e!a3R29$~CeED470!ae;g#e}HUoK}ia~{Y zjY$nnVN+lkrHV+&0jMD`mhvDQQ|qma)ne!WA+UY#}G+ej^y+bw&7!fs-TTB zEX5)+R&klqV^z{)-2z~ASj5`K!m8CHUfW13$EVEVu#IKZV>=d-2ls8JEEwaU-0>k2 zgb|jL)>B|}yD^zf83B?w^nnDVc!xn;l%Nm?T8FOVBT^ZrG2oNe`XL}!zd+A}#2x5Anm9E~ z4XjgO^Ffb%^A?pAtz8tJ{@{tU733cq#g0zXGALbK&eqB?5b)MXJ%Qf;XZc$w{t*8T z|15t$kmQdbKoB4Z5CjMU1Ob8oL4Y7Y5FiK;1PB5Ifqy#!16h{VYf?4v(Lnj-{efD{ zV&Nl)3QL1ojG6`a$swaw^%1}UG;08sii6(&XZah@_5U9J2L5gSzJGfGi9vz@L4Y7Y z5FiK;1PB5I0fGQQfFM8+APD@2Baj5|`)g8Z^|e1M@zfXpT8XE=`qxN2_2oY^5H`GdSOJ*Uzg_A18fT8eZ!x)!QZuNH3zc>|$->oS$qF{6>b^l(h%dXRTpPl6o*4p{^IgZvt6Er0ue(m+SbN)R9j5CjMU1Ob8oL4Y7Y5FiK;1PB6g z2n^6NX*2|bv*MyQgE1>EJd=c3 zaS@n7CM`3B7Q-t8c`cnr$Koji25JrIu+2;CVw=Yb;({br(YshM#A4AhDYP8;FykC? zaSoH1BNomuiay|&g#pXQMJM!FUUQBD8i!@#q7OPzX1yZAii~v%LyI%Tg$^{B6&EL9 z1_JzsxL5$%|9=2~GaTvnVgLW1_;2|y_>W;9z&H6<`4{-z{0{zMejDrxcn5#8X`X4M zali2v<09DM?_I;~2DibX|3m+vKCGY4{mkv+Zst0;blsb}OLdLx5q1xI20LE+5AB26 z4X~Tv2+f_EdggQHDkhKqgWgNuNS{xiNIU6qw1GNAy-qzuT_4w$(2tZEti}#sJa`yw z@gS_SbwLnkvdvLiI7ydME+*Z-Iw7e+&YC%o4Epz1m8f5Lqd})^Khd9fGZFA;M^L!M3nlHg&F$;Ig@vE``1D zV2=ve$X9TmDs;MRa{_43P}qSC0#Rt+FFV?X5w^h#fvH6e9fE)15-{T*dUt&hnBhb- zE35vjndVT`zbsDSZ9-wpZ};PWR^dF@QSx~FzG*=Lm`N7>ZYcV*W@ZU453ZX!!5#1a zwafECF{&!V8Sku&_rDyz;m{R`LJdPyT!gzrfL(<;pshg2Pu#8;b~O&5{UReBP>^NN z;$RmWnaxM+?|wC8CR?V1Wv5_^?nCytqRgt9j~Y@W8iv~H{Q8{gJeKVONtQ0i z+8ig@(9s3^7(?w!o3x-kPHp9F9`MDF+C_uQ7nE8TUH$t58M(-$hN6BJ+NZ@SY6^N` zKTjbN>S7*uCcRRY!?K-7@bJ2ie~J^VjkRKA3qI%oInl1=UACoBKWx7m@H3B3+ZWEZ zvup*@@a<=Rd=sakxdXPujo92#UjzcCAbiT|c@qKsAxQfEcg$DBNza1KW07*OH7fwN zA}*izR9vKRc6~I0N(Y_7w!#ZroP}+5t`OR3b_J--*^peF&9bLqtvgF0GOGk=C)+9) zmfIR#9&Z%(xPiKw=kvR4i<<3WcOWDzvCV*O!eLu8Kd1yaa?UL+n8314SkZakzZa*d z+>bVjYlm(9;Py(iGZ(5k-06Z$UCr~dltR&0Umu?fc6x_u^V>QCuwac7BraYZx16Wz$<2T}zEr2c*IW{Ve zw32Zwy9ldjyFR|E8&Q`_?x;AIh?GaVfSupHPYpAFNM$_-{Y@x5^iN zm4}0{075(O!p_M4fVjgltUr2;ME2iXN(M`PcH7P4EpY{yht@YR1cn0e<$(nF?7!#F zNRnFkwu{*K8gBsXqQ@RE?7wVCAH=dHxCmz+itp7ktL8g$XU?x+9=HFnwF+Jj#vNf> zw3UtXaRCMx4~f#qvOpPGY?(eGx-8)CiU?Vt=DUAp43H+?ZLZ(!acXA4x-AlLhhU@9 z$L(M1X7ezx(%7%Xd*c0S?&yL}6AA>;*xLI90qaRygERx#zuekr1!X)|)^zFSII~#U zD%7kqn+vmGPg>~EJ;r-+z*g)0e15h?n%B3@D6NW935FwrPk@&>WaV`4z+F=;$UxoZ(9`am%GyIfmQLMMl`d-g@*l=ft6Zmpt$d| zAqgc2tb`?x?>MmEd+}_I+$rw+xc!YduVJ&xP8ew$UF~oc<~cS3FWi{HNL}&1gM*@- z0$iBCcfJRX@0>ptj&Gk=3&*$C`{DTJdU$Sv-hXZ$9N#!+E*xK9hxRvoZCw%^UtL=W z$5+m7gyV~64}#;~HFMzj!Wx*o=;ynO;P~7O1}?L;{2n;c@ABWnm;d(jd$jr53EDB* z;Sf|XY8lOMn(sAVTF$bpvIH$1mXj?DEe)1gmNLsEOP(duVzUgh46x`el=)ZlcjnK{ zAD9oAUok&x-f4cw{5SKR@V3C!=8Mhi&1accnS2IbxO*fgYHeGC5Z#v7g$`mwpm|9KqO|_;< z(-ipPK$gj7N;X+FA8=P|_H!FFd%3lmr?^u!4{<@w7H+9#Bez&{4cExc(p=0<*PO!@ zYEI`SXhNJ#)4>hZoWz+m%^agSLHDbsOm|3AtouYWQTMiHjP4c9Fx?)FRri=itGkc+ zO?M~ro$dzaQ{CmvySnq4*K}tw&+1k%Pw0HQHr+y9ok?r_&G?=1Q{%hF*No2^pD=DW z-p%dg9x&cyywZ3fd^2&C(Qot^Pc$|dXBwv(^NpF@J;qVS!A7HzGW=}#+VGL#fZ-*> z(}qV3e}kyXb%sj~>kX?75yL5llMV9?a||;KlMFeAafacB0S2A^cm4PJ&$(Ol@9X#J zpV#lyKcK%ye~bQV{RaJ7{i*t(eyM)3zEM9*KV4s_p8#KU{EGj8e}jJ>B01anyI_xp z%lP&D8GH!7@UWPl%g^Me@OgYXKb+@zExh@0$ojGMfb~V|Q`QIJ9gv%?S6VNCH$kG- zQ>?An7+%=?3X^>~HKLE60As?q{E8pJ4A}Z)dMzH?V8i z6_(%GQ`nQ(Ms_AUnayFxutQm+_7Cm%+E2A_YhThnrF}qqxAq3@rP_0}r|L)P2kCX( zZ`>j7BW^$UyydXguWi%Lw|r`O$MTA0x8)Jbz1kBju*0VOXV7Swp^x~y^n6U+GqQ!A zhp7#dXu26w=f3Hnn=s|6xtVUnl%v`}&qY+ym%N4ZgQ@P0C+XRk^4*g~pMa^kTfd-dFy;K#K+i&y>8&f5)76-IrTS)iCZ_Jc z*FaZc>dv5-uEf-7-+V|{AWGkM)>e83rZh`R>2gGAKfG!#U52Usl^@bhOucG8Oi#zu z-X#yy(=hc+_zQX}rtY5q96be5^c&?{>B*S7XF?WT%4rxT=QDZ|I!`!Cm!NY-GF^<$ zV{_>ubWW?L3((PsFsL(|&k6oh{P7cTf6+o*>aLmF}gpFikUqOE=P)B2E2$rXy+Lh(&Ht1 z(8rh4=`wxr9(o+6siXh6=4*PaL`ScGmmVY03)p@1Xo((w-($2*qPazL=roc3qj5om z9wpMhUwYa|I#r^_Km7?kQlyUr*6gE4i1e>b=gpyqi}Wv#Uiu@QBGGp~znC5-(d(Zv z)5#Lu5FJbp73rV9eK0}~k!WAnUV5-Z&%OORI!UB|TD<9LdXPkCoHK_WDAB1WZ=?r^ z^p8Kjx{u~1df;cj(^irGArKlzTSWSMuTM*xMf&jf1Dk1+M89CWoHk1I=_}u*4HDg$ zyOGvQ^a*)S)0{|u_s7pa(mIJg_ri@dE7A6f#k5wU2Ud7!jYuCl^MVU$2DP@~W!v}C zG^VEHJVsNPDqgvrI*KUhtv>1xOx-hbG4)SOZJ4B`e#g|gZx&KVFy*P)Nd1N>N41&y z2cn?2j--A?6!caz^$Vu{ZZD*M#?+>U?bJ_*g5G*L^&_UbJD#R~z?AQviPZO)n!ELD z>M*99-jy=LkgOx+puQD0-~v~ND4zCslA*6q}nn9?kn zN_~MS?zi-Jsm~Dw{kEC<3{(3nKcPOw)T`znslQ`t?~=!;PcZdN_-pE8Ox-%Riys z5$WaQ&$*C#Tcm@A#(mUVBJJOItA{!u(w(PYvY2{PqDOxB3AJCOeGfPMPQ4+~cT{{r z?L(HlzhCnS^*W~fXZ}vThNzCe5Aaa0Vk+q>5A_P7+MikGpZzd4f!tsnk=Ly4rm?^(3Yie)u%C6H{52d#D|VYPovP zVCo4>tr=ZNJ&vhm9eb(A5Y<#Na}M<=qUN4`+Ft4rOidU#k$MS$czq#tBc`I8FQ;z6RCDsz)b*IkUAvLG4paK^YpH7yRsP_Vd#Gy=HRaX? zgQ>qFYI53?>!_;{ReJ9$6RE2ZRdUB!KT=mBs`%}TM^aZ{>df2kp)N;M&h-W}bs3`U znWvhmOA$5ktIl!MC74RvzL&ZfQ-&@NbrGVnht-dyHXv%k=CXIGzhJ6l&qnG(OeMY3 zOkIGetQVU%Qs?V68fMf>Pf+J!;`#m5dQ9v&M4gL?T{`LIW&mR-kbnF z3p4%r>^i9vpO>ug;d9G|W%xYr_EYeA?h{^ouHD~(&ozhI@p-0hDL&5_CE)Y)Vh=t~ zu5;sa@zOSY&R^}q=bS4~#^(uJTJd@Oo|Eu-%==65dDPE~@p*)G5k4o6KM|jkrnlfT zKYt-UoBRv#nLB4bK5K56ht8=-A85wsBQG`K^Dmz^;`0xG%*E&LhBn~y*E#k0{Q1l} zeE#I5T73Rs#T92 zt^%JQUOEGx?_XVx&s(o7!{^OgocMg#p6U2}+xye-`3CD$ora+`-%UX$E;t#VI!iJ0 z`$#bNOS5_6tr2FwgnQSO35J_~qC|@GsK8^#E_(n}0Ch@J7T#-aK zQ*uNS-4(HmB)a7>Q6k|!MYcr3orVb#3AYcjL=wgPGbIwj_ZboiG5GNk2@&*kiG)b_ zIEjSV_E?F8AoduEgy8gOiG=vFO(G#`oF%cBnr%qlt_rUj*v)*oDP>r z2#2OfB*Zs|NhCxmlO+-&jYB080*FIoa=c}*L_%CINg^RUH%KBO1UFD3A&fRaA|X!3 zOC&_OtP%;)DT_ox?8z*V5JECZBt(OZ5(yCNbKxWsuHMD@oI2c?JB{7~ zzwvx6Ue&-aJQtfj-+8v?CisQtW7CskKh_>X@Ba^^KcJXXm=w7ByWLW5{t~WRoraZ$ z9Nl5|5w=Tvq2_7L1@s5>QhKyuoqnNw?S;?!BC5Q}PE+_6c6hlDV!ExaXe5Atx4J#8 z_`X-GTm1A}t0R%quy*n+E;%cUUY{FrwfO`{M>nrqA(rhG!tuZADjKWG;RA-u+sQ>m z^cszv0e!Pfh_reHxW|a!K7wpLc!fA~m94pa#+)i!ZxXglqYeHNb3!q9EO7Kw!l28& z4DNZi!p+w(+-t*SOyJF5RnH|m9CY^x+2;fS@F#&YFVWwGbje%UD14i_4Q|;qS1oL| zH8j@LmN&N8W>>Wsvr6i8$+Oe@alg|G-~2<-vDSR>LiyEP@6;u`r}dK&MFRs67HoCF zmpI`rZ@4uiEXAeoHKlURsOentv}yF&^)d*(%7GKT@+%Sn=~W6~F&GSrM_!1y)ivAd z>f!&qIddk)CE^b#V#MOo;oh{%>u-guJ=36&aQo2(w|jf0b$a1`m%qIg!him7>#0I0 zfQ7J4Rh49_oSO*W1eT0tK~>crcU7T&q*PT?chwv&IX#_TQ!68@q^ac^6A@ITq{f7r zzYT((a)Vgvg|Cn#HmQj=yB&p8{q54XuHXYpaFZSGafjh1KV(3#;+~YKE)c?Z6;<_N zgRcd_*Bd42tnO20bIBPQ^w~*rIaUPRF1T3>fI~rIKjtQuB$gyLfY|Te>rs{7M=MZC zK(mJDD&UjovHDb{NEl|dzL ztVMvKXAb1Cx4s8v>QoUn@fo3B+{KMpQP)SA;)USOW<+c}alH$MSM-IrIg%KagYzt$6{Kcm;LDpM>S`trl#WoOl7ziB;ZzxH{fY) z6WZZ^S!H>1Rs1j|CBsu%y(Gc|3XtFmwc_s;!q@D3(GPbfQGY}I7lVuDsCM+CYm6n% zvaJ#H)!d!~8hp|Zx@_+?)o(R|>+pVKD|*VU*J@U!Ljigfk!-h$kE@BD2bV%Ne5{n1 zVw_FZhv4i@TR;4mCSz80wJv#4(eX@*xT*A*5M^#{chyV|uVU=-P^V01vJ7zY)+$|cxb}Defv3}4Aurs4ZH49<6o?ZVtRGt6vA$t_+4`Jym-TVDyS&x9Nw;6OMR$&FiLOXzVLxFXV=rfy zu@&ra?P2Y6+MBeiwDsEYnm;seXf|usY8Gh(i>>FYr~})wQ%=^E^zMNKk1y76Mk|Y z7{oqC-|CkI$DfQ9fFP2i-gfSwI^Mb9p5@McAEgM{ukVuOGFsINpYKQENh*cU_oHx$ zTH$lF!?}CQr;cB5y4ZOD+{@Yev}}3&VwJ+@sQu0-f|HM|zJzk_d+@BnPAFDUabbRb zUQxy(wL+mEg(s>M3jHW-Q52&4R&eKoSe`Ic_nd%44Jk}Z#4C@bt=E@OeL zki|E`?sq=C^Q&)utN6qD`t(i3r}CG`3Nz-*g5n*sJ_X0mLxMEao(5^mbYA)B)z5si zrri0|`_!usCbuXGn`MPYkh`y+qBNRV*QI?tTnU zi5UjDzM-D1GMu%$Z^Nas;iJ@=ywRHTogY92GtqSC2jaw})XAinVE0R1n$^yO&mDT< z$dLOJ1=CAFP=kiAqobbRKiGMWGa6MM9H zvh$|X*WUl`9;b89HORSd6tVo6*n@TBoR^>aVfB{5r#YYeYTc-Z=6icwokEcnM1=S?r5QQP3$gL-TDD@80VCe}H0xbrV( z?3i`t3zs^dIDh&3-pv(?*r=G8H>Yo-sWCBOX5Wo`WK7I;(rD+Uk54TgSjak`w6Anr zw3}6oj);jZSuw_W8ER(lUG02w*~1sE&K#$R4UdVnY_K^ml^W8{&+kb6^qPH&SV~N6 z-tEJj7fi$L(fRn|-|l(q^XZD%u$b7~C;Ij+IVM)Se}r?xLvzuv;M_49mqF1sG$vMa zsBd_O#KdOm(wvuE_d)dMe~xkP#3h)hXd4_8n=z{IK{Y8RHo30vk`9WA6)#P4u0tbk z`_0Zr5*pILm{`u0eH$GBV(@4s4EQ;pQP(*iKns5R2hP{fYIWg9N)dQPY{F6MeCIZC z4dHw>VQ{c2Vj0Q(XtO9{V{@sCo!g}$`qlV49cM;jcrqHBJ!7+E^2sq~4IvI`=Z$Xk1(3kC*%$tY9 zG2lK}Fv|KS5j;70zb;D)Iy8bd6j=D?7!BKn3bU11* zUJOV2qBG%0T{IqU%m1+fJ=_2LUm|ck@)z)*{>Ozg;P~qW;3xg_1+Z5i{p0yraQxvs z^d$e`^-JOS?Rq^N51k8M(O;hf_s8ik*PRN-FV@-M_}NlYw@)NB)dEUCrdYg5<^?U1FYq4dwHN|qV zHD6e`%R&KHc1Ao@sj2Jizpm>3}5#QVyHnGe2j(-+Z(AFXk?@ zV4iE9X3jDXG1I1ROmCTX!;}5jnnI>RA%(Q(O<8R=x1{;adUM$ z*aPfl*2iXR_i4|7D8S2_jhZe^on|caEAt|Kjj_u(&~TTbTwlyR%uUtZtv#x}Q#)7l zn{k72yx|GMeEn!{BbTAOLT~0S;s)u?GI|WZ8!k6Y)P4canorSu!u`UXs{5yIneKDl zeCB4Rl}V-FF`Z+YWilG~vfXSMa{*JsaP)4|5>uM-L*uQ+DTdb#%M2R*+xo5g_4-zL zLS4|kt}E9~)WH^}>^JOF>{aZ1c8K-~ZM$}W=3&hSjaxHGV}W?ZgG`hupbyjc(rd*v zVB&Fz4lYnr8KddWpfY4r+Xm|(YLUvsG4E4EPy6N*xr0z!C9c7w=Kf9M>f^Zgsx&BL z3AII~A;#UT(h%d`qtfu9;=?ADh8Xv5m4+DiE|rEe6b*N(G{m@fs5Hd5x62yz@bImo z;Wi1fIOax`=wwCo)|hCFd5cQ4R1v*7CK_Yj6cb(ih9Y{SBC2BEAd8~MgB8*1CDAzM zbt=)f713*BqA}(*vM74gSP}iJBpS!OS`uaBxK~MB{H(H~;7XO+MumGtOl^#Lxk_z} zdzngYjC-j{t#X-5T@q6pV_vLM8{=N2QXAuLh^f6&x!R!qqNr6dFN~>GaW9CeRdLT( z)WXBt3JB-PYSqm3lBhwe=ANrk5bHSS#1zDs>r@J2+_fqNv3_%QOhJsfMkN~SAl)(1 z81pP(!azeCweSGCT&^=!%tvJAY8CTgnR$kaIZtMut}x+IcA0sa#MDE;RbiegF*!A} zOJZu(%vBOoqh_v@n2egaA_)(Yw3-){1dYJ_QuZh!F_A|KGb}NYM+!3}F_A|KbGgJs z9x2SA#6%t`%s|W|h3A(9kw;(19(77gWL#nTBqlPhFqcV8WL#mMA~BJ1h3SnMS9l$g zATqvAHr_5Vk#U8&RAM6I3R94n$hgAvNK9m0VY*|+6<(Vphy(1hahEIz!E~8-vP$rI znb{f>RCp(;1fP=ym&61W-eQ%YAPX*v2`ao3WkHDYZI=aGBtbQAp(Ka{)3V?KiHU>I zGIPGf!~tiSIZtKhKAG7Zv!n2uRCW|*qsorLoU5{2{AhguSR7@Va`(7QJB>#I|_5AVh3WJvYjf~j*3?)3F2U=ELfq+ zJway9h~-vz<*M8YvrLscOU~_#$}-E!`!O70kMN-TGbIay-jK%$(x zRAF|%1WWe3VLF;-QyF;kjyei&y~$!pKSN@PoCu41c)e_ik_gunOwmxt3Cl~?Sh*&{ zAtwz&7gPCil3{7u$x3w(I??#~G3jJT%ZAl<|^}T6hx{y&@8DIl%;C0H` zczBJP85i?EJ`n+#EEQWj6kcnSvst8E zE>#$#oD?^X>ASnoWiu-kP6KZbDeGdxTWcVRfh1a!%4m+Jey~E;s4sx)&0i!>&LYMmIirt%)v?b_5`a7v;%+XPiPvs=-1W5Tj z85UR2{teLCQcu2FPGium^eI>8!(A#5j3Vjo# z{9Vcg7;b~t0pv6WLJsstLt#M#UQpDpxwro$Cus&k(uXi~piWo;?{mosbO=5FKi1Gh z@gMO|^S8sj{bl@A-eP^vdM~{7J=Z$M@&mkgeWm3@%P8|l<~z*G%z1E){|LN|Uu7C# ze8+gZF=U)(v>Fb=o9k;p4f!Jo5CjMU1Ob8oL4Y9epNN2cEKlnhMh~~i^yn{D%LO?7 z5$6SU-P=DOF~#}x{%g-WtL1Td4K{HMZ-^7`SK2;0K{?9>G}DhbuPieESiRv4=kw>D z_|wHzAIr+^wghpefAO>gaSa!s4<2#eI&H};8_*;@PJL*Y0>1tStNF~^f>ctR$P=1cmZ4T=;!5Dq@Qsmxfn{e`J7Zq67x zE=!3h-jLyg*-4gA)?Z5x$Y@L& zCZeHaJ?@;P$q7bT&0)>-WbY?sPrSS5<{Q@kSa!c@{z+F~wPeIH-E!-<*+Zs$EgLNz znvj(_{;We1vT8Jkp@p3CK-ps-Z!>0GcuCp)Cvj)p7C1X)lh$XxH`7q6TqaE(jI%OI zQMH=yIQ>NLjLXYjxMab3n_m36?9wf7@aNu@Rx;Q@6?9DAIqfXP<0K4IEbsAWojfSP zEUWoWGkxNm^4rQ@ID7pqZ=dv2*`*hceRjdiw-g`9`@Eog@{Vbz%VsAJOvuapiM#_6 z@@h2S(Fg5?%oY zrpVeA&M-y0!b(=OE3Bc4c7-)W(f*yReXy)u;Up>A71kg{yTTf%XjfPRWbIr~*3Qeg zD;(I+99Is6Lu4U~tUbmu%i3cslcHUDIK(JxS2zYGpTg2hEQm752H{b4>;ps+WESkN zF18uX_cDu>kx@8WSyfC(BddzBn1NW80U`jhDs=zf$lpQnzrvUQKIPx%_rX{Hp5`Cp z?*k_JBM1-#2m%BFf&f8)AV3fx2oMAa0t5kq072m2iGabVg*_pR2M%Yzwhvl(zr~P7 zck1+7+Cb|^v7DCH>p4yb3AFB`qk0yEY4(rHKGbP}rPqGMX@H~G9GwH7R0o3j<1!ts zH8A=Ehtd6iBYgjl{~f**_Z|Nwd;#!%{s8|P>;$mq-&sIniy%M{AP5iy2m%BFf&f8) zAV3fx2oMAa0tA6$A;4;A+Gs>ac>5oYdObRF96G|++2P2t=&04Aqeg>{@YQaO!GP}n zQv;5rpQIB62m%BFf&f8)AV3fx2oMAa0t5kq06~Bt@V^-Wbp5aA?G*nx|1y6+e;wb& zpA6sfv;S`{6Y-rOKoB4Z5CjMU1Ob8oL4Y7Y5FiK;1PB8ER|pK#>u4s0PG!d)o*^s^ zgoGpVYxKz+q$J~%@}&_Wl%pi*#02fw!#E);Z7t{E#`v0wNfGMLdqF(-QZ5-Xx(zy(G_uOgPSyfH8rl8>V zx_ptYS%GlS8*%w;RY7k!;1O(15m&?;j(FYSn2;^AZdOxPMvD*cRs`v+1Mfx^u>H$;-O4>b0{f8Y-G*3E+K)+Z7UQ6@kvq zfZx^-3b+MN6f-np(l*wKoM_ep|KR$7Z46o~S!wtMP!- z-lbk4WXoI-@IkCCY@6+iu7uwrT3NBY9;jkmH&BDNpv%3?)h>W?WVHmGzh&NNUDE8D zbWL@2BZ3zc3m#i#DB5nT^o9ht==qF_nKkNG(dJ(2&1n;I{k~ie)Tl4u@<4v1b5dSu zoxv?zB2YX%#01CRFT{KFUR$XD&R#()uHdW27 ztFQ2R{a!az(ab=oGwOpL0I<|l+A?QW&d7rQws}pq-XH_DMGl9f6e`pwxWcI3cju<+ z(z2k8Rgn(R>5X*ZV#fbcm-GqONL^AZcvIC}QRVM&LHqF7nmYiApb&+AXshtK!eOXa zx9HZt;L|->BXlFuvnWRDu_##H@7Ssgga^*%WdV&73F?cB+!Wg zN^mBy)Yj193U#{N*jGSMYK>uArkGz{O+v7vGvvw%gxYgsD(&$qV^&eaDW-myl%h+U z0(j!q*W48pu*djU)hg&lsK+a8r65of4|Hb_=h5u693ky0ASYKm`NF z?V&(4*kgEbcZTuMfcgp=UUFr^K2s3v5Zbmk3857*QrH_@U8rN^mb+nytMLb+df;b6 zLzBp{D=a%262drdrPMFvVFda&w99<(_K|LVGMBWVdvpd<*-(j#CwJ^h7+2e%b=fk- zer&67`CT5DjBFq%_;cKt1t&ZT=L&v&4hxaowxvZyLSeqkUR>aAvlkW>72DgEdM4Qm z3zy~>3q`Ji;-vyuwB;AsPncH+;|=v0d_x*{)5-uEwMD#Rq#ENFy3>bnLt49wDi}{^ zwx?2=6Kv2jFmhhM5VpDeFnS0GHE0*|ToQ)K#2fbHbcEerH^LmvA(2qjQ;-`C3!z+B zG}3`aG-&sNCl}XNZeA`Lta2T>;b`|IphJl-=Efp8?& zM&f@dO(f~IaTeW>v@A-41aQw%2t`PLaBihpmsJBTuOi_0c=2qc3~@15y<5Voj{)$( z5|b{&A!>08!H77MNJgP)#&Hzu%%+b=7Z}CfQW59~gyKpS|684D%oKwzr5am9LUV+6 zm%Gb`t<9>hu?0f5N;tW(M$A=Z{%BkGG`)UEx2b!|6m3OK)trieFWTAWb=l(Emmm#* zb6jl!SSjH3lOj6L@5L1#>56p$?=o)=8Xr4DVch0m5)b-ZU9diJhhcdTiNHcJ8#+Sv zyfC6*z{#$i-(W{BWCPF$qwLtARxfI@IdU8hadaul%g--i9$T5y&2d~(EwoQfMP;+x zJS$=NN@$vy<(2=H4N`w_dZSL4RI+3=Q&CwfRW)87qe-L|dbAHMG<(sK=uK4Dd|> zbZud8a>3XjcRnXJGua<#BBSum>}jjVWe62EBb5PDm%;I-WBUe|Js3+w6|Yw?s} z&zod-ph4DLgw0I zY1WS%ynm(mf=DDX(oV zkHTeu%jbowiP&VV9!WFns%ABd4OW^`a{NL^#D%A8S2Wk#8T8?L!gUWzE9o)`YEc=E z?J)BQ;V_u9!Szg2RRdaM9O@oLLx-okle4wuGisY)t+T=l7Xs>w&T@QN1-{J)z(l32 zD4<8lm#s?!duhS(3c5JHzrXn7Gv6E0ln zJEL%z-VBFn>FD`?EkBpy-{ZIPX97X~2m%BFf&f8)AV3fx2oMAa0t5kq06~BtKoB@K z0u!~GC3LN~9Rha{Ep9EeuPA8EZ*@Sd7sU%({jN@-74Ba8JUQXzK5d>xBdDYcMCrWN za5RXdrA+98UVz{cIoY((fD&PM*z5)^{f&f8)AV3fx2oMAa0t5kq06~BtKoB4Z5Cr~bBGC8u z|7iXf3jUElf&f8)AV3fx2oMAa0t5kq06~BtKoB4Z5Cs1JLV$za2n%xZbBfUO|K$4r z|F6m=r6C9q1PB5I0fGQQfFM8+AP5iy2m%BFf`Ej8UXyIV*Z*k$|1L{59O;K(|No!( zZ}~6yk6|~!H~Clj7x>-$4)`kIHhwdI2YegwTK)?DBK|!7Z2k;>CBK|s#tVEa-@-TX zwR|;S&QIZs_*_1VAIqom$^1ax#Ix3;)_+)kuzq9x%=)4A9qSv`m#xoPcUd2|K4{%) z-DJJZdZYEP*2}Dav7T$~ww`8EPuBgw7g|`-SVR48OxKFM=keT?zP-yxz%#Lxg%YLgqEfyWsg@AKts; z9FQw6o4)w5;KH+?R`f*_x#4B&@4qX!Nh^R{QCV5=<0~XB4Cjx}W$XkwM_GG`MLYkQ>t(r=fPtm~KgN)nbOZ$Q zG@r{!jqc6&GX`P}9sDi{0|e6aj3aU}x5MHF+cdssNkTt_bLniTs^|&Oh(SuJYN6hNX%C z_QA0;^^{j5d~OymaxV8TTjxZbg7a z0+V*~U;o^==lxq1fi^_|Ybe?Ak5xZ@|G~CT6akkafHf5F95nueE3SXYstBB{2w)9G zJH8w|<)5dPE8j9rYgGiWhQghLzOLB2^Rg|9hLaQlRGY;GI|m=W=d-J~El~uPC;~bp zkiT=}+)utVY%(YUixmOvgJZ`J`oBE-k9Wr_0*m4W@^*am_Ywbxy)S`}qR9TA={b9@ z=1PV;lW;?T1PI{}nh*j+IYI~sf{v3(CmET{gqaBtFASF`-nw3^uJ`Tgdh4p-9=f}( ztoN~py6d{Tie$XN1JwVk?w+pKb0qj%vi{wz`FtoU-}mahs&Cb+>a)73U}J}-aDt{l zT$D}U-@3 zuy4M7Y{#_0n!<8Tf%HY$q&>Y?ZTrQhOOu*Ht)?K?p>+2@t~~ggyoDi6VVR~NyC~Vy zZ}aZ6wmv;ZQ>f7th=nQB_Xv~ky13j;J8P+4VcMR-H!t|MZFaL}VToR$d{6%1X>Nev0h>79%JD4*2&F>HHAf*0%_)yvONR+p<$~Z^l1vmX$o>Br|hxb^LfL8J0H>% zj@2tn-qSbo^FxS-Nh!Qwp}t`09_vjvcl^ESKuRHh zfv#YQhR?_NWa_9&hfmY==jrfr4X@PUQ#E|94lmR23LUOZKKXNW_+(9A)Ztpg^JnYu zQcZuB4%gZ{$BMPR$c1mcMu6Q>D`!s3;k5NrbU1DOWF4-xK7SI%VVO(~t5O}VwRcDfrDOWq zQ871NqMWCATV<#4UhJ-il*(bkXG6{D>$*5S1E<8(M}{a77NTR%pJ z)7Fp1cnNL&C>^e~zGx&gBhPCfV`XK>ox}T|eRy#oEKM&NKV2(ZG=l1!a$~=HhTic3 z(V12Lh2i+^ZOLV4|jGsz%im1*_mIXD> zx_1(tvXb#-noe;c&yhOAL5xwFb62nWf_D$TN3^DtjGr=n&gx&D8hHBNp{af^_G#MO zfI0UaW9k@o@gbr;xn%t0>2ppV`SWRuFVns`UQ|H+-}h6~AOE=g7eseb$#@z-!-o=` zK{97$$+KhYE-xlJr6ncfODW?;Ly)C=4v!dd_iRNAKFyJ;+knB)D|vm1CAmt#dP+2W z5ELJvbWG!^7f0uf3Cx#Tz>ThJh7Y7#8+X0!`TOf7ik7Z(h7X`xJ7TZyIwd6(mP)ur(JjaVJM`x?>z?6+n$#oz4iBJKzhsX zy^!Ag+-yj1`dtXp8-Hhl^oHLKhV=U1jD_?k&(4DMx@Q_8z4n>jkY4j^V&})dYJ&9Y zU-g3Ys$Y_tU-=8-@rqv%kC#6^64D>-Sp?~2yJL`Ex;r1zOP(TiyZFiDA-(8{jgVgW z1i>%(Ice|tk1v4qyvI&~bk}19Kljn8ke>6%Qb>0`OxQU4AyUsB4|yQn{@`>-w>{7R z>DC7bvgLkKla8MSAU*46c1Snh2WOtfGw-d1^o*ajLwfp83m`r19>UwHcQ-@Yem4*4 zrn?Bk8}D2U>4rPjL)vzS6Vk-(BOs06wgl4HtqDli-%5P7-ZC80=*@(U$W6q4%Z-H9 z@QtG(U3bHBNKd(*AffAth320S%T3o2%Z=BO)=AeAZX2#4^$%V{eAWMWBBX(y7qFy&zj5Kke=`((%#jVt%P*drLB-2f5~Z(uDpcw%ZiJq zKw5XviI6V8$O>ugg~a}{3kd%;=aafEJ--OjCFfN@x_B2E8;f=kHjX=&^vJR25az3Q zk~%NkNou&@Y|^^%5D81ox7EcrHU=2r{;8!`imRM{eJ^ghy54> zi~+^~V}LQh7+?%A1{ed30mcAhfHA-r`0r)F0!=dsA46)K0{8z9%Gv+k=CYPC1{ed3 z0mcAh;Qu=YI(81@T*g8}$Khd@2~ax@zR4YqHcF8|u(GzQqOQtUS21@{m2X%jeBqjW z5Xd*$?eNK8u!q0kgFe1cB;i}Kw9dC=#iB*UicJ2xH<8tcny}dI7~^)#bUWOR>Ltso zYU_N}OX`+l(?P`v6fFi9DKldn%c~YuRl-M(eStV~4Lb0V?Ua^pe(lo5zR_{=k?Vx~ z9qLd7GS%rSZpUaJsivxk3^c}~ExtJ$qQL<98g;DQ-vD3sCZE^#$Aj?E>%fG{rAsQS zYU+F&o28h9DhM3-MwgaOnlibh1X>8q^i`9jQf}*tnt6oB<#iQx)ywOuE0@z2%W`+B zdC~^>EVtZt^{YyRhIk?XA7z4?NX0(**tD99w)(LE{-m-Ep?E0aj|Nkpum_8TaKiNZ zHuxkpd*e%i2ssw+e)k;CAMl8C~AAyh0OR>>o zd{OwKyl-?XG%iFwTIH*6_kq6V3%+VkzFDoH)TggvdF2=~3P2o+1i~-`0`bIXD4C_z zL{Axka*-?=q}9r>89&}PSAxOntBHkLpznQEq%(jZb(qw^*RN%d#3-ewhSs>)SED1R z262-{jIO)n2Gsmt>rZO0@4hNrr7B&Os%Vu+%hjK*Tb8b@s`ZVosi>{1uB%?U#5Z@f z4;l0=t(^z*xvSyOy{Kbnq0z+`Xj4ZeiM;5hP(7PCzT?DEI;~{d6gF{a^BkKvj%1$y z;Y=JbTTC=VGL}3`GKM4f|1HAbwf+Ag%YKXj#sFi0F~AsL3@`>51B?O20AqkLz!+c* z`~VpsJO5iOIrjf|HX8aGKQjnBgbH|*ex!2<{{{bR`%M0H>kGC|EFIQ!On4G=w4z(x&+Oa3~@918s?@{I@^YzhF+JJLV>2&yGT z;?WqnY@dkhDuwW-j+ON`@AT=$Eep~sg0xV55Zb7(7HtC3@r{PdzC7Hykcn!L8bcBJ z>N~ktGq-vH+$5m4avZ!b9F41VW|7v^RxhroUF|!rYW3)B28(IwF^(}?3r@0mCr>tR zm(m&rH)#}3Xsa|xezP@aZt$F<42>B`K{!3Ft`0!C9^6c6cPmxK4%Kg+t2q>>a!^e*^i)$k$I6(4_3VSwcM8lR zzPhSabu#(u!!VVUx2AQWd*Zk1p+3?&Qk7E_9Ctg|>^^#*3<>^|-2 zG2R9v6&{7jIBeAkq%Ack+q^Sp8n>0F#idS-hNcc~(06-w-)exOc_rIqlo|!uItg_r z?~@Pja2;tVJYyvv;*uF64O_Ws zsm)tjYU~)4>Z>$`%pxn&dn>Jk+FdE9%A;P&42uR2JOc;~hfVqn!Yjh9!l}Y6$g&?} zfHA-rU<@z@7z2y}#sFi0F~AsL3@`@%+ZZ^;Vl!3@F`El5^j$l0S;9BD1YT?MMZ<8x zqH^itnnhK0RgIHhyN>)zZF@PPWTx3>6iI2b_P$LQg|F2Y9&550hmgXi1=T*dRUtJX zN7sO^wwd~bl48zgEF`-4l|Wi8qJ0gm)>xyBFCf}ltcK(YMHenF3}RFj2rH z1KJ1ACX{d51B?O20AqkLz!+c*Fa{U{ zi~+^~V?bs=;4DUafx%J%Pc+P)1rId{Mj0?`0J;Cq32z&Ok04<`#sFi0F~AsL3@`>5 z1B?O20AqkLz!+c*Fa~~z4D=$W`$l^H&j|$J>G?mo|8ExVHVFHK*Mz4b!+wkb#sFi0 zF~AsL3@`>51B?O20AqkLz!+c*e6I}jHCqdfJcpj%x0q)4HOZizKJ!mNE?v`Xv-dTo zYXV5_|C@z7$oc=P!fwd0A7g+qz!+c*Fa{U{i~+^~V}LQh7+?%A1{ee19|L(d`P|>A zJI^;Os9lemGIilhpX(=Eu%pWdfGYR@uQ3S!6!r=a3D4f1B?O20AqkLz!+c* zFa{U{i~+^~V}LR6zsZ2tY%et0IeXe2f75KQNfqet`h$SWECDC^HoMoDSwa>l_y4aV z=l{-ThD9|G(KFyf3^Y{9L&CdulCn%NSq`Fa{U{i~+^~V}LQh z7+?%A1{ed3f&Y01^2mGtT*gxXdF0K1j!S)d9oP+i~+^~V}LQh7+?%A1{ed30mcAhfHA-r_&yl$!dv@rHjnP;!~TAz*=7aL zdUwHx`U$&F={=cEu_t7xslQF;;U<@z@7z2y}#sFi0F~AsL3@`>51B`+H6a(b_ ze|G-=pJJQ&VGJ+^7z2y}#sFi0F~AsL3@`>51B?O2!1u!d+5evxrfc8-6D}1_7n+0` zfY^^Qz!+c*Fa{U{i~+^~V}LQh7+?%A1{ed3fjr()$Z;I~9G~fH<7dXbdG>Vppz&?v z+kI^S8_`4jrcW0y&a#GZ z(AQ`w?n=>2(Ei{!i}zn}u7*{(mnEPe6wK7z2y}#sFi0F~AsL3@`>5 z1B?O20AqkLz!>;`7|4Tr|7p(}nEnON8ox!_|xP;O@U(d7rVy za67sGZx(J;zW?_)WY~`}z!+c*Fa{U{i~+^~V}LQh7+?%A1{ed3f$xEV%tr;jCMW;q zOk6(uCwKqh>>oWsU?QjgoDAc;|0enT-vTWv@w^Kuw^KMI927o=Hv!%g-WJ}3=K-D< zo)w-Jel9#D+$-E6+$3BpTp?U6>=L#Mn}v2EF0{Z-0Rdr+utHc0ZwyolvxIV?R2V0W z5DJ6=LSMlx*aV~JkmrCW>3LsvqUX;)#>W>H@&&xt-q&vL%NvJqP>($FyoAv%|LDUC zG*>BwrC@YZs6L(u#1c}Zp&}eMEvWX@hb5_Dlu$TxamAu4+b;$9`A7GhgJ1N8pMO-( zIe5Ak{QM((&cPnp!HAx7u-geg|L~r3@RS37{$V}m;7J~S{-U09@PtfJVb3}Ex!eL@ z&pCM920wp6&pCL^0zd!Io^$Z1>|jXGIe0{NFu3O&JS;mH)N>9VBD1l7V9z;t@X#T% z**~D?96Vr!pTB?4Ik=y+;6!gO2R#4pu4q3ybjY8d%lyB;VBUA=5XYUEm&?JwU;lfd z{{3>9|M%aR8^3XP>_W(jDg)L%RKZ zxaZAnJMR=ox1LuG>6Y_GL)vkk4broAHAA|2*L+CN+%*!?Gj>@aJ^kE9NKZSL;HRED z0@C(#jgW3SXAPtq&zT14hI9Hs+P1S5(!|b1kj8h8g*3L)1nK&-1CX|!Jqyz4*@GaB z?AQQl%Z_D`hIfpEblnb8hf}sUKpNUU2h!&4gCT9&Ml>6@)j%q3BduuIW`{Jmm1x#) zC7OY)UPw>g(gLY}3#sQxTM8gOv122oYdZ)7YdVHOdcvuYtgeM*)fn>pznfcc;0|!N zd-i$mcAxGZ$KPWYY_FLgHMg1ea_e0W$tUfX$?1P2G5->nHI;h{3XHp|69G7{54QMY zQoJpk&@ze2+Nz4WDqmg2+(lJB4fc(8z^RTe5DA3aID-}i~ zl0P15kQ)35RI37sD7$&XtYm;C8a zIE)zxghTZ}BeV$@3o39~#OkdcW;BE%4brCg`fw;A`2%fZ!HpcIKi|G}l9MBHB*%!)U4tgN?rr%yL-S)h!rtXkR2HtNS+){^QV zRBO~AHHIRgL?{{|LuYRFg7g6yj>e(h(Y8n;i?pV;dT~YVYTt2Ht4C)uSWHWgag6C0 z-eU6(8)n=hq{1e}CgL)tZvtif2!f|UiU(t%R?-^Z%8J^`g%!1AWYRVw6jwb}4WIz3 zSrN8+S4_;=nJxatXgD0*=x=NFH-vy3G7|LA`W=JT*}M}c8h1&lmg*HUO0=f8TCcCR zy$2=-)bw0)QA;S|mt$0$Mbvt<`b$f4NhXzLm$XO?p+HW18td<3@B5V1Yy;rp!t5 zESvf(x^+;<<{dG@xV=3UR+=W6K~j2=^kC8?Y8=I-^=(olDET98E%j0?W8mkQN79!y zX;W)7-WJQc=xPLI7}pV&Aw{fZ$SAoPB1CX^U6XLUg>Xr6mw+hr^EyEUfRXEE;OB#iT~{@J620GY9MFNo8eY zh%6p$i;><9v`8s7G@07OY^#;Jz@gB}Wr41hsxn#9VSV2iN;GR8OH1U+fIyW-8yn+N zY8g!xggZnzixF8yAsB^Cu_!D)+IlTFIfZ7eG8#F`5>JYxz;38Wsbw`B3`;PZZ-m36 z=te|epeYp;#1Z*Rsd82uP0&m!bx=$6RUoUf!gIS6kfWApw@R^iG!lpK_s2rhSTv-#%4s$YZT`+Y%*AUPstinn@^L$? zY-&#RlKL}c5~jadlGVFx+>v$wKKLiRg|_r*uzAOgGj3gzjqWs-o4X?Szlc+E{y*Fn zH3+Z4{rrVOZ_htGTRba0L*1Xa&v&2f9_2dZy4)3VmAEX<8=P&A9|ZM%weoj3z`=OHb}le!Uv}Y@r19`Cto{) zzsb>gM#eM7dyP?o&>=>k~bMr$nZ~*786QGjecHc-}Olpa4 zfI7orS=<+j`0Ar@KBgSG#X(#;ZL(6EXrnJ$AD^Ij%kVPJ=ipOyS{e&Ah2VO9%1VZE zdBKr#W=`X5=n-;ev!|6T9?}J88QKkldw{bHFXIN~<}5>b>Oh$@9v-CZW}Lx0p=g+u z50EL7%XKr%^aaQDml=}_W*KFA<)Bv~Ox8YngG}#aY`)Bw>?3oG>2=HU2wl9a+jUs# z*qYjpu%#61k}aEES8i-yLY7i4gRC^&`aUvOit^FoD$U23-h?W}MLJb!s^z`ZnBt9v zT{c+`V>GhH32I0|!HhPiD+fKPhyv}S)#!95W8G>%fsgc7r|Xuxjr~6k zYD{<6WC#q@&tpt#NM~!YUNyj_BKjycSnp!AQ4Q!U?bU0N_y32xnhnASp4Gy+?mr77 z-6wc9Uo_wAlf+`~P)T-OOVdOU*YzQFT_oA<1D zZFL`TCtRIii2WD?i~+^~V}LQh7+?%A1{ed3f&Y0129j$loA}&o-I6%IVA^Xx_5cJVPmb5E=1yp2C6Ah&zQ<`W96>({z!L$}>l0gH23;9x$ z(W1W$HIPcoddUDPG3h1!sRRW0l+@cFcu@T41^N8}*D8QcV)Li~{3Ag>DggIL(3cAI zKKgjcd#7@T>k9NH)g{d@G?Ly%rg~8c>1-qssD$)2l6XiH6>EBdn-(G6iHf+Wg!Cqo zIH`nmCXzU)8@+&s=0jWL*65mPrvg1;HY(5)W(C4jQ#wl)uiROR3sfgF#Z951B?O20AqkLz!+c*Fb00u4CLF$X+C*s!o<;w5#~G_xrk6`gli8J zHRTayURI_k*O%z>`uqQ6|9_)!2vTmB{NE3oC06_Y3I?ujGFteh4+-$PY72QuHWX

    3t3y7eP5u84era9DE#n_=ce4jj%G?DmxoRz6@_hZ;FppHqZ2>Zbt2DV$q<~0K2X&4F=m{F|xZ@&X#1+?VX6H6a%p{Bifssx?W2xFC%4>O%5Q;R!C*^=w2I9dC5$tFcZiDS*D^np2qckYBCaN1qP_H>r z4S9&W49!fHKtsbk*Z>sbHV{d~>!Q_)aWI7E9k3;BI#RFcCaaW^8SRLtB1D~c+e!7u zPfkr);FIha+15gWNT*Ud4e3D5=fM`aP!xe-HB5EICQmJ+)R5f`{lRb`PD&PK&W>rC zjcpO4Cod)Qq{aa3TddJfmXji~K>2)Uq^4WFdDxyfE^8?AqF_uSGcj3nYND-aOHsCE z1@{Fk9{-n>BE?Qu%hEbYYE4^|$kq_4mFsxesIP`>HL+CLHyIc~Gjx%>3xz6L6pgN{ z4+PhN%5?He@dDd%lHRIF)WW_NAXHX%($#@YI)Sbf*#zTwdAmHhL!q43nmAdrD{9>%MLbB~(rp zlcSro&X$jO>e^f7BMbNfmgX6{80MqKkd$!<&=!}pp+^R)(Sf>rbLranWk8%VR=GoRVq*G2Vq&cQl7`;Mo~d)&1{ed30mcAhfHA-rU<@z@7z2y}#sFi0G4Nl+fW>4q!tMYj zo+tPJIpF|FFAxq12RwIs+B~y8HunqetK9YOv93>DPq->wF6XPx>zqx_633U0UpRI- z>KsG(fAIJ6oA?UeVSm|vja{-&uzhaZV>`#z+xkcAP1dlr%<_%pS<6M1)s`ajKJ$a- zGtBc%&zmkc`Aws_kGaRWt=u9m&-j+{He;)Cx{)(HXHdT}SXMb0UX9>nzG0ID&JLeC zO#S*6avVGYG21k|A<%FdT-%_}H~MB()4M5lD0{JK-4y#O zd$ICvihY^A*wk){eUZIbSvSQ#&suEb6uFp<{7B#!jgV0zhXju4p!oi!f3j{Z4~y?~ zy!t@m>mQ4s{`9Qp?tJhf@#Vu4+JCd~0&$<=v%vZL-yr7eudDZrn6UfzcR%pX>C!;) z_a|TRLG-JCitk)>#~ID#-{`w=ayRuokhQ*Lle#JPS@vS3-4y%OG{H2XK2pC+U&)eg zihYvZ+r(~)eVo16gl>v`l)c#aZi*$d7c1_jSZDTPUf=zm4vu*az9Yjq0Y@`&o-^7)gqez{wFqJrzPD2EztGsYTC}zUY}t6Z+O?moH>dO>$;dDN3o)=i}5*%6?R?Bo}-wr>tePX#R|GEX3bG-XxGIo zIf@PGx|lgfvB6yzGvz2YsOw@}j$#A5E@sS8Y(Uq=3^|JR@3NTb+Z@HbT^IW%N3r~_ zi+ydK%e`ZG`T=s(fdeP6>tcsFH>AKjLIg0h}y4V*viuLNc z*yq`cZ4~5U>WpbhKk9&kj!%Y+{&s%!D)Ie)I-1v2EEd0fdYv(0_&|K?u2m1OU;nkZ zm;4_SWb?1QSnpXsLEQbT^}k&5;L-`*RetbY1Mj9L3CC7u#puWg2Ms-I?UD15Xg9u8Vz;!yDIi zvG=nV+h8QcQimOxL3C7O2u}9T?=VApUM0Eze;Ic(dH?@4*a6^9;WFV&p;@REjuA!* zy*yue{_ff9dDL^G=RD5_&&i%+JySeGJ$Cpy;Gf;kxbJgc?cU~&xL3L7x{KZUZiDLs z*DHLOU%}7jNAbPvU)uj>f6o4({aX7Dd(^(lUSS_=?`u13d(XDl_K59zxKlwwat2xb%C|S^_1&2*F~;&SH0^v*A&+fm(`hczTte@d8hMI z=jl$#xx`uS^f`IQCyqZke&x8wak*o&quH^{F~c#;;o=YQZ}HFa_wiTpTdV`DM$7w_ z7cGxjZm^tVSr6AFDlB6xz0F^m|7!lN`Df-U&6~}Q=EdeI=0Rr8^uFl@(<7$qOxsOi z({j@cQ=!SuCArtQCxIyT`;RlwpS;b&$rpaiE_&!|xC{%NNN_0@IFR5HEZ~vgVl1#D z!9`eLLxKyjz={MHV1We*&c^~X5}bzxXp2w7E-XOr_ZZH_0wXeY4i=zIOAI@a!1OID zaW)owg9JOU;Ag=3LV~SW@D&nl!GbT5paToOK!UTp%3v^(tAL+V!Dfsf zr1+T_KS1#_F#Z|EPsjMD6h95)pHTc%jDJk=c8q^S@l6;{QhX!EJ1M>aJr!Z_gS5sbnufM67CCnFez znjgU^&`v@y3bPXtjDl<}f>DUAK`;ui6A+BzYc+yVc&$P(imu}kjDl+=f>CU(Krjle zIs~K0T8>~8ShWa7akUJ=D6DD_jG}5Of>BT{K`@G`#Rx_rwJ7zjrY@q6gFu7pK80{U z1}|>MA{a$fHG)w@EkrPis09c{5j7vdD59zmj3R0tf>A_OA{a%~Tm++tsz5M`s5uBm z5hWrRMbvBx7)8`X1fz(WfM66+;}MJ^su;m2qQ)T@MbuaXqlg-V zU=&fK5sV^g6ujpQ%MpnkG}cB!oGB5718M|CQ9KQ&C<>=x6h+ZgL{St>g%m}xkgNE%8}6i7oTirO}qq9}|8Q4~edK#HOu8la&#hWb+!g^-t`D1!1SiUKH)q9}g) zQ51zwUy7pW=|fQzJiRH3Vy72HQRoO1MUms7C<+`mMN!1&oEFC|=0>|H@c5p>Tos|5GT67V`c-iI$B0{|&wV51B?O2!1us_8+uctPrf&hh$91D?m21`aP_Y~? zm-wf12H3n&+7w?O4kaW%*@sd7+aGN4H-rLBk!U;tyNmndZ7nTTYe*tc51Tt?EuJ0STv=OHQCH=wtC+i}%9mZoHyU>N<$bBW>HVPwU-gnY-;$;9 zZ^fcT#SY#F+tI=%!Pz9iXiIAV_7084vPof6cTkYBiD0YKKz$%C%T`v@RxYfl)wzV- zDE;w<7T^3uODpO~9pbPHwbbCxz+nsbP%GKAld85f#A5U>ct;oZu7q8%{f)6ekYuO~ zHZO(UO~av61N9;3rS>f5p^j9)J`g6mb)x?Bsg)l+sbmbQX7`F(y}K|*8q$TBwv3La z^!jA9Ft;jfQ{Gj}+9LH~7{Fw3kcO&%`eAcgKWv2FK(>MP$J=4Uc_|)>t6DX+)r%`? zSNo2uT0I&KuwrdM73&62F&!|)Xn>4yj9IYB>RnT2%pFnMX4n1{^(3A$&@;C?H`=^q zWyW)+r-CU%CtJBQ(gP`@lp02;+NrM4jccvt89}CFB11}<$q*r8Gi0=y5Y}_67vzZS z7AX+%*GtfsXt1LSWtC?IPiQXWYot;GLljMz;IW;SOIe)4D0F*R_}@BM>MQ8EBbMrf=};AwAsAn<;JbH z%z>R!(v9pCcv|kEol;T9Hm!V0kZoqqq7@0WNU3Nbb4M4&G0#~ng&K-cVPLR4Vf7w2 z;)od35qIhqN8IKeF~Yd@_zb=S29l9BgtSs&YTi;mr<3YwJR_xv)DjKw;ejmL7*;ja z6(pN>x+olN^5e$9aX~s1grlZxiV%~5N+Mnm+C>er)K6_Rd{rU@ zUuKHNQi1Xv;|E3GkxccuhDutvm9|>FRRvv4S}4SnY}@uTqBd_qfpJ%LDy$R%gp!g; zq=%0Je?K9k8xr3w5~2|}jD*9<20t1GKe+G+htXjU8pJwc(!)VFTciuWQ>oY8V?)KGFlD0a-6asDcoLUvveE>ufiD&pVzbvhR!w2Dn*R^E#-300f#=1f(R|DJkDoXy zjfM}tNs&k>5GJ4JfiH=Kg1#7hLJv;XyXp7)EJ+ddE&RwDS@k@x@V=rkBEpG4u4CEbkWO#_H)rE`1U zHEwikfA9?Zmlhg~hCXjUcvKoapL{LS*B~{;B*|Cb7SqpGQ7`dG+S-F2aT80e54RIrn(WpN~rOmS=5PQ*Yu)3C5%D2{);w z7tC|z&?KRw`S(YqK^4Ka1cY1+zLMCS(P3eMxPx}}m^)qLJiy{)rN7#){rgdAUQIOI z-bw;47=_Os>H;q8Chn9@>lt^raUC`nxNDMIcVO*ZN2l|u;=yM45-#*yfHW}VBZrG{ z4+uUI28RZ4OxOsY@PZo^x^{P1ounpm!~f$o!IW%pKs~AyMuwbx_fhF@WjJq;C!toj z)6*Vl${5vcJn^fvzlZ(mnrqjZdnmf)=uAh)H;3RugYjnQ>QmZCzejx$DY#D8-)%On zxjpR{H#cqtx1!v;-_#y|`cdiKd2q55gPWag=h z@K516IMct>ag1XmocG`5yxw`P^DF1yonEKW^%vK(p1V9hax^)Xk-Y*PA39!hZFRLc zE^(aB?cx&VW#$>C&rR=`t}<=mPU03=iY@u(GtEuhqudP^qj{h43}d75PUEFqDL0UN zkK1eN!yPh-rqRaNjeE?mnfI87o89KS%$LEAdn-7zalg#~`vK-zzP3%Yd2J`z=G&gI z-E56p*Vs4NPqyD?ztHjz%U$&!7d#Qb(owMz;z06PH2g5#skJ(?dKV>`L z*2Y`x`&}ztvn@LB=dlZtu-G}zSqyt3p6+gT*SLS-zSDE2r_u9MVY`z`C3JJzRmwfZ21~RnZQW-$BJ^rBQx*E%2zAO z1V+kNDayrs`zcuYN=2E#NcjpydG6!>bFuQ}iZX$b@{iOyPxw$*=gZVO1B{d}Rg{

    q9_v>DPOE8FB{u?60XKYiZX$b@`Z|WC~_8ul`l|~35=A_SCnTI%)Al9=PAkr zM#{VTTP!e;4Ca=>AL;t=T(89fLrD>!0_P~!%WpgDD{OtIVx7Q9`D{hGX+Y}TN0YkGH@31yWC>)Co@2<0VQ-AKuZ0==)2hZ$tiV$Q+0nz{ehvovGtQu>IA3iCu-_noPmj4 ztEmG{)z@h153f5JHT48d9dN3?T2sGwcz>k6N>c}%svobZPx`|bNPVTI4med`p{bV_ z;=0#q>VQ-AtC002DRqKV z^~HTH9LxkZT<=AFEF8=NHdN>1RJ9gl@mN)@g<7jtox>HrcdtRJ3svVbPSqEr>iXGd zFa8;+&rj8r;8eXTrT%F&R*cl=rPK*d)hm_x(0u30SCH~tWj-V*Rjp7|`|N+EA5xv8 zs1lT_ii+yMsT-d_sPC4srr6&_IYHj=o~p#*OHLb(l&7XDL2#;GmQw%t*plBP^(iTJf>ZU$N=3{sx(*}d zNlHZsN>xi!mJf#8afg(oEEAlnPgE@1O()JnmM18d2})JRYnGSYdNWck)+_@~)yJjO zJ2&sT45^PzsS}*4k5Rkj?AMP$%A?h80hFqaN?HE)%d0;_$|F;j2~O2VD3*m~Kf}ty z70U#rs>4#2$vsA7xhQ3s;8eX(RhRFOA$6asF5^_aAZ4B0VM6LdQ`QMi)rTncCUiBL_9mcIRnRQMB}=62(JTW_)!iv| za-k2YyHe@|r|M2k9j=QZb%&-7I92CU>g2i-Qn#nn2~O2*DRpvb2C2iT_;ny6hx3Mm z$wyA5B{;an&iy!5?18icC6N6{VJ`g`_cb^t>4tJO3Np@40{LzQ=u$JMLcLp5pG~ zI_P@S^|b4D*Ez0`Yl&-;OK|RUzTkY&d7(4pJk~kZX?6V7@iI7IKgIxKfHA-rU<@z@ z7z2y}#=ucxz+GbI1{h6eS2hP4;*&VnMEH|W{W)xcnX57yzo>~tgAzPHDlH8L+hXv5 zWKde(9E~OFBzR1)XgnzKT`LVOHghwL#%t%r+L{)Sr%|h7fu(T&H5_Pdg@;nPA>%;K z=adg0YvvXhxn~x`OLO#3DH`vUHM#D>$sppSVovpR90KO3>@?B^Q9%zOy zn%l7NYVykR;wZev$qgC+Qa*=tP=8WwYev!4@Hi_s&`YYFT{tkGbPM+s8edw42jr1% z$toM%&&-t@jo08&O*>^!Uy$-Sq=WjHxiX{iYFt!vIj}bf`RqbxFEf1j-Lzv~FdpI@ z0{p=%e+=>vi`*X623nVaZelUJu(!($&$^m+Dl@>!Ks?CxastF-sGq~kjWU|HgHkLE z&y>nt!u90=<y%)t|&C+Nqv#>HR@i1}RNL1xlu z({L0|sL>|U=SPfqSyvp;k=XaiqJv)Whg}t5wo)3j(!b0Ik!g-zt z;A+9&J%1AZ1@8|$BK%a?CYGWy4Dxyuk}KG`s|F)Pg%3H&B+_2FQO}x&HE>RvBUx1zC=b151-oeHp>b11-eUap0iv&*$G z+Y}2Ya8|{_2^OWma1P$dAU=khWWewW$H65F9etinz2*n5o zGrXPrgCBj;5576i!8?+lEb6Oj+2Cie+cLG_A?-f9n=ef~amtxr?cSvSU)-txJJv_B z#u01s&yGHVO?-Oe;*%2x{^Y3*zZIX_@S6vxuj(Z}dH;CNO7no-7d*Ob-}a%8rv4V6 z*ne?z?7qU3-fr2|mwysl>leTD@g0YE*C_wTdUxlupi+GOblI5r+MD@jkKoXfp z7<{)~{85K>_+KUt5?{M5c`Z~!d`+#Bs<-=Gs43J^y#BqDE6yojl+r(?m)uabXPi+fa_RcqoEs`r%MqrHf`JH^}8|L=ss z2Av*rX0$ME+}K*gccBMA-}|Qc=Hn-oiKlmpe?6!CxMyzrNPJZ!gE%g}xr!M5M0`UX zld9hCR2^RHCsQQuRmSo#N1sACt;sPDaLP2Wj#rhmu*Cx!l)lR>kTFZ7SUF4SgY|aB zS@u~1oE^y|@#(`=H~j8tZL&}&lijMT-K}bOCzRo`-qwxFBbXyzcg$+N>2-(rI`jt2 z7TR2rnzz)sQ9NCVq4m~oTpr03L1xO|JSe`UPL1kRv6}=r43X3nm?C_=r5l$=GE*os zy7-Plpf*!nsm}E3h~IsYB9EIDm)U0u=*uIUD88H1^`>sxc_i~hM2;8nW|)$zZg@_M z^gES_Ww$zTM73ArTsQ4JqUk~yL(Y^|2;?g}7_HGi5JB zDB!$mm3i9fP-R;S+5g`x?1PlME4BZ>>rq#Q^LNhWjz2q2TBezwHXmzx*|ZjR@{1Thhu!~q!zEo0x+9mi73Ra^7_cd_@*6d3R37}Z^PCx7 z9424Ut6EvHXa#(QZ(i;{=2uiN$}QDN+I+d(qARw#61o5QE^Z5QxwX=s%I!%f`7UmU z=5lN4QMW^Kxi$Bw+rhcqntIgjpj>XzZXdcH%>BoA>Dz(1+@e`7wY%dMeD zN$#J+t?Anyb?eRL_M0Aco1e?=*FEYsFPGcHJ?ge!F1Lqz)NS8fZoleLw|#QC{jx{h z_Ri%NZOo^e6mtLZU8aj(x!iuC8o!&#TGpQ78Eh?%SN2`!urA2Ch2ex&QbsZXLPYeoR}P+mlZ6UEK1y+uSeaQa=AqtldC~HiEKK^oZ#?({}h8!E)0KQ=!SuCArtQCxIyT`;Rlw-v*DfafKXbwwPTsC=8cjffETX z#R3NsT!IDYQkdalEI`+p3>RSmx)Nl#5DUA5Xky0r@Dv22@CzXr1z$6QQRp=x7`3ty z!6@t`1f!s9KrjlqAcb+j)gu^%TL8f**iJ?;3N=51QJ|fKU=(I2A{YhPS_GpITZ3Q} zU?(6L#n);CqwrdVU=&@)BNzqON(7_WT7h5`T6G9Uk+mGbD6nb~jN)n;f>Bu2AQ(l} zQUs%*T7qB{Q;QLdLTXVSi5(JB_|WdSd>eoeQToO0SOlYpszxx1sD%hd5w!rpD5B;g z7)4YSf>A`xLokY{N(7^bnu}l*Q56VA5j6+FD569JqllVKVH{Dj5R4+~7zCq;nu%Z( zQ8N&XB5FE;8%0sXSSgAE#zIjPFJ_9Oa4}I7 zMGM!L#D%d?cV&UR|9`COUW0Hz_yBh8dqw!I@Raa?aJz7=aEWlXaJsNwXcX26HSkq{ z8Nx(iIP3=K5lo&hJo`O=^Sti)z2|Aq!|+|e>peg6oa@;P-w8OybCRdlGv71AGr?2j z$@e(i-@w&^f4KkX-V5K)d)R%a`#Sd}?j7z^;krS+d!_qW_iXnh_el3Zx5v%F*91Or zz2$nz^^EIrs1*A#1{ed30mcAhfHA-rU<@z@7z6*y4DiQV;aOwY_RVZ@R9iVaoX?nD zkYA|goseIk<{glqujYBkSE+eB8oL`8jHy_!ZSWTp4%F zR`YNL!ZAzD8z6s-k~e(|`I&0|8_3U4^It=Lx|%->`DtqY5ai3%{8x~ls^-6he3_d6 z0`gPT{O6FLtmY3wev+C$0Qpii{~6><)cmKApQz?Pf&2tD|1spptND*0U##YnkRPY! zJ0U+-&F_c&7&ZSPS@1Sc&2k(+K+PICzQ39^ zaJ*N^n!e@ud^P(G$LFcpuQ|S-nmx?%ebwwCj_;#pzvB4bYW7Qx@1s#$Gg<*XB_WTv!8OjL(P5y8}zB!k2&71Wyj9J1a=b;&?&o;3 zn*EUDO=@-@$8&1-1K0^r&A!i(`~SzfzA|_&a(yLy?%6Kv_na!c>xl|)dK!d3cvcI) z_AC*8?x_@h=9wnk<{2+s>nRd0^>~GIJT76g$0)S94+`tt`-Fh|9pQNQtHNUU?}SSC zZehCnL1Ci%4q=4*I$@CeQlYndr(koR;rZGf^L*-V^1Sa}>v`L~%=4;yzUMjjOwZHq z63-*<5uSV813fpn1-}ccnf*J4NmBf zby#3Cdigp+wVH*?2n*FLTt!%*X5k{jd^HQ#5USKHTtb+qX5k7#rJ98c2y@jeTtBE# zv*2xxnuV(eqMC(^2eZ{ITsxShWXYw2W7I5MIhd(t;ljZTH4E1brmI=FY%opD!c~KE zH47IFrm9)EW>BVP;gZ1=H49e^CaYPvU@%F|!u5huH4B#uO4KY|Etsfg;bOrAH4E1Y z#;aMlR8XvD;Yz_cH47IC#;RGkPB2Ez!exTdY8I{%j8e03kzl0VLY|Q_aU*y*pC_Hd z4OeqcZkU>La7Aj4hfn+|dUnpI=4@PnnzM34)trSJqUOxpU^Qpr2B|rY8>r@t@ZnI! zo`LJH!;=p!KVZj>?^L1n){OLt>(Vqda1e3IYG@G zfXt4s$?x0zO%cl^|28*4K9a#Oq3ulO( zWLx1w{}hv>Ncq=}%-p0jbA!ar=dauP_YwDsoejVEqWr-d#pJXhXY5{hme{$j=Dtr( zdqCW;?p)fbY~QM{U1^%Rfw|3{`Q@LAUU*OJ_%ncAb zUyt`cT(eN@Y@KoF%!>_Ta?X;QZ-07)*m=oKmgOV+i=95Qvu&N2v>v={ete7G+{83< zpiVa9J@v0*=V|wU^Xrxq#pJ@x&s{QOY%Wgq<|d?>^NO8dWbIe?h@ICBvR}=$iOE1; zsNWq&W^R0%xqLB6jEtBscHT+);vq2^n%6XK$eCj2FMr$l+@XB2bM>*Gee_0^m?Y!n z4|nNnSDa=pFSoh9GMVW;t~WO>&0Ie*Ig)G${h8LoNp-L0P8iJNUjAh|r+RZ^)6Df1 zlca5D>=rxK4Uv;q92|GbKVMA^46#$)V>L;FW!x)zb7RuX^%0ZmF2hNF-DBsSIa*BK zw&NEg&$?Djk{-GJX|eO+pPsQY{F#_s-*!Ra<;(TvMyHwU4L$ky&!w+-iOIZ&;vYQF zEGB>YkJ2x$zer4$Jmua$`h2nT&410FdqSs}+$mjl?^2K6+^95jy~Lzkso`R>@Y@Ls z|8<*~B)b9c*_w+4y}6NT<^(ZG+EDwXm?XxAz!dQ0ExoUKXG1O$^yWsSne&M9Ug9gw z+VD;OaoK>qHh(S>^yY@AnR8R>AvW%Q^Iu}}owr`vxwrMm%neI3=Ms}YTXX#EyQYfC zQ#XZ+njK;iw$Fy$!H>*bQJOiYm{ez5wdcg-{;w*(S$m0?++0tFh?txqPc35d*XE9> zA*63?VVXIp&0cwnb}@NVWWvvWHCap&YZt#LCNFhDv(FKeWaH!fv&H1gzl6zQsm@%L zkC@|Oxlq>%UQGUN%bZ8fnj$9m>?8F$GBX8fX6%_}vNu{^o1tlDY+{nkGk5M4lP@lr z`Fz>!DNe+svJbtO{Os(*j}5y?Z)QlE8LOC-BfE*#>WzEu`pJqPi%DfScQGjk#Za9Y z-(Z1!1pt0<--E29rrD<1I*mnxh$Hfo+2acf#Qk5N`^U!)oFMKe!PO_KO_(`XTDs6K z8klBnsMsl7botM({EfJuOaV01DyhTh7>G$pvFRu}k>cVy+rT3cVv@{9{SS*t`C|}XF`4TyfLbXq>W%{V zLYti&1;E+!0)!r^;`lw#N1{Z<2lXw4S%7nm#4w` z4}PQdbI)SuUfyqg%QMyaFu%b1YfpjmI)0+{Zjar$10L77)cvtDV*l29s{4=5mG*yH z1MXisXWRc^UFg2s{)qcW&XM+?K$F;yF~AsL3@`?c9s~XDa4JdOxGW$accbe}ND~av z3z{{-V7;J86AaP|8a2T{y+G0g1N4FhP0(L22xPKF`HmuNT{g%n?`;bag}e36EeF-Y;_G@J}UiXW@tWCT*YTEoczr1(M&C*zOe z3pAVzKZ?)Sa5DNRUZvq=@KJo8hLf>J@k$LRLyzKfHJpq*idSej8F&<*qv0MME^0U# zk5qrQhLhn)@mU&9MkB?K(Qq;tDLzxf$ylWL3=Jnkk>b-eoQy<@Pt$NR5Gh`sFONeQ zZ#sA?sLR*Tj0L(YXk{8cM2An&@WDEKvW5@R;gd9cpbjt9@Buo!M8o^*@QE7k)!`E~ zJYR>8*YG?YUaaB$boe+8@2kVdYIq+VK1RcP>+sPU-b;s%(r`hCkJNDeje-#x?$+rK z*Kn5(AEx0>9bTm24jo>o;qcBhnwESTZr9-j8gA3!Lp9v0!-v3dQ^u7J9-J=^H!|zt z^UFaR3|D&Tm>sCWFbF9;K!afnQnd%38w#PxVW;m3U=rB)m6-0ROL%k9vum^NX1ZeOvlO&-sT-P zjN7tawpz2O#vhC}M`MXN${H@xSwj-vXrIFeKc$R6)ZnXLQdhO0s@7LiTfMlVcD3)g zs@1-V6?IFimw=7MRZHrMedEXL3N=WLp-3nZibhEJP$c0a8%i!&v1pO3nrN1MfkZeE z_klFnECtv3678)Lc1xP$tE*ZCrPPv+G4nd?R`2npoFNoxkT$6V1lkf&`EP$i0NNXf zOa2xq5s?4#mu6yy3%ABPY&LIcDR;J8CMZ)U6ER$%qbpOvHyUcs`+^NE{&=)47L@#Q z3szRtRxYflEq3Tcf%^KGv>_BA1o_fbnxo+cDTYziUV{`5#zL*>Wm3{;u&qUkBxIZZ znA9l6$QZ(QNZq7FIJ;0a6O+Ocp%5A<`R2iBOVvE5V1pEkXK98C!^neLv?kPHM67Ly z1_SkN;Xth2pQWtEEQ}158EpiR(k+2a{%C#N-zvpI(FVU1Y0%Xb4bjoa)ELK@l^s^A zH&mHx@C2dXngcPZ0cyM<5QDyv{Plrw0BY|q?Lufcf7@vt7Mr)SlG}NjJe;~v?m}cZ zPdC82&{RhnYF$>M5`kEgl;T}SVKCa#8i)lF(U{sRI%yyh2)D;W@oX|m4fM|3>IE<{ z=*qT8fr!6eYK+Dt-~2^OE9yv(sTIj8LsiKtk0+peLye6YMrG|lV*(;2tD`hgx}P+$ z<|YkStDX{5SIAzbP%YJ!PL5$(taVy3DjjMlMx6qZ)c6cFz_^~@VYYf#Pwrw|x5lEa zQY0QqwEJ744N_Ph&*`9H*Onz6CYyKiWNuqUY8k;MR%Y&q<2kC2WRyLXLZ>%sfpSj z4?@(yV2>x%{>dUSoU_%`VYGQ?&EmFuX(wgTlzS=*ZrGXGU0KxBKI@8mjhl>K>AF7= zUs>m^R&DK4C{a2_H(*rP4a%U_dJc|Qw23WUhI`3p-OdYi+!_g*x zOr0xrToM5-MY;UHc5k#T0o@?|KlZ)^E~={UfA)QG#|;<|O>{sOQBmZAfQlk0;F4w2 z00WE;49*NHl_hG6ZMN9HSY~Nui&<*R6XcROCa7D{MxhH_0lb#m8kOYRQQSkhPkU2%!8XUTlatC##d< zo9AtUz8^-CeqTtelnPhX^5t2JjWJnSnk%e);VDQ^b_zGuvW`Wkpz!UcAJnYzwkRaS zB@}KBE$}b!1{6id1D-%tbgWr|NvaR;SM*2#WdW0LY2Y}u-iRmU56?rHVMmr?jqQN^ z>)Kxg7s&t40%u)hh?!T^i3MT-B)amJjfSI9QPt9=sTUe!ii$ML=I|C7mE37StsN~i zYB1PR`Siiquwxg`L%~`POa@_U5{~dD5D7K=JkSmMsw1AT{{rQ}kr13j6eTKcEBJU} z2!&G*|0nYejX}u;h8RzFCq+@?_trHA!x4XV*b{DUXh2gJR0srj)e?06U++8$-@a<1+Ge`bw7@hK-rKJ; z9yV@;=LQ1C@kW>7XTw3mqlPOCRfZfxFa1gV9{pPVV*L#LFue)h&Hs$6#NRHIWLQg2qTRM)HX)qPdpopG~kpw9#cE8rCn z32i4mFPz^rU~Bs*SDepu`>(P~fCknGv~PU>Sg>&5SM8&JPHI#~ev#9v1=_dVA?5b5 zzwSPGX#X}jtxBMMH~*#X8|MR_> zp7seFwyquYVU3(NN1&Zvxu(ndtX1vBYr6ip$puebNM6D@@LYlR(@l2|dTivL_Q?+} z-g);O*>c)B0`2EJZqL~~TGc*f+ciIJ`UzGVrJ>ChXusSGN49fDw3mJH+Jz5)xlB$w zTcG{A?uPmuxqx0_~5dFMH^nB1e1WopF_KzOqB76{@q&C` z{lS9YR9-o40#9qlvbO!aeb3E*^uJn0OB&D8)S~+BlUB5(xNm?aMqJ-bDiT<{VNC3n z|E_23g)&y5z~YUu=%Kv}j@;8KV-@f$hOYnx(~U><&fjIMaRQ64bot%QRmXQ0$XNLT zi?8To_m2P4Q4g7vq&`nz@vX*~Czo4CSB#Lc7=gt%LD}n`t9^aOH8NJNz~bApk?ZgK z%CDD)HCABpjbql9QwMg$50{0NBe3|EHuKHM@?z^w8EcHd;+yRZ-SPXU)kCu_$>V5& z#rFYeg#%CKKCG9qvIQ33p`;AaxJ=GFWvo#Gi|?J1Pd@Sbo-F83Br%Q@SbSGE=KoLuu!ak)6R26w{;@r_ zpysh_Ka_`+DX?&DYwz9i$4k$LE=XG>+m%Uj3#@}|>esX#UG(^lX)Aw|g*8-Q@r~I2 z{dG?tSt(Eb5P|j5)I<9V-X7An@we8|KQ2*8!|I>Rw&l>8Fl{^LZ!g`yONu597Q)zc zr{>)a$6jl@Pc`S}McmW4HlXSLn%`n-3~*&S$m zsRj?ohq->y#*HAKESXqZG~>*_6KE~sjz{MhUj3UZCqQ^ z+@A62)S8z*lh?yu0*h<6PPAtQd%U5y!gxZG`kn%dZv%zlzJ%37VDas#Fxr=}x(h76 zZ59Um5>_{X#kcdqSYN{GDzNxILm28ySX~4b-~R|BeF@7cu=u`A80bq_4uQq@i^4cx z!mr5NE$ zSVn=xk8gwlzJz5ESc>tzgr(9WolMDzcx&O^?v&KsRU!)WIULqF#{{jbg` z`a{lP`sbZp^{XA<8CU9;INs2E9b5F{9JlEQI4;!d9CLKX9E|QoM}lshLu+i(U12|_ z^V@gnCfOg<4YgmTv)LQ8U)syGd+q7k$L!sW)3n#wPHE@c-qM!ap4MjC?$GwIE!Lc} zc{Fd@@-MzgdIo!`5l)HfyH(9&1l^tK~;y zcXgHJ9d&`_S#^@-F0~%+5%gLLECVe@!}sRn=9kTnm{*$Tn=8y&@XWv)aEIV~rhk}L zn_5lPrXs^;(^)37@pI#=hFet7?y{2`HG|t-*&OL&5yp+T3|=h4xCfBI7l|ZN8GL~V3!SxOcHAPuxVM)1UL?Y}o0h=~1(@%jW$*$K#vQW^ZWdwOBg^232;;6; z28Tr$_rWqaB*G-s=8G^%^Cl4{l~_=ON#)%r!nlK#C9Oe(anCA)10syOR2e)^gmGUg zgXfAc?nGs9%HZ=w77-{j5{?Me6|SV-b@D15@Fnp$>5nHjQcMcJVSu_j!Onlm%v<)C4(zP7q)Y> zCyOvC@JS*}N?Nf93+5n+d!hjI>qWA-C&0{r9W<*&)x`0@co7u}Ohk)B6t4?O$IyiW z%C84W(EsD%36!%@a|fYKkZ$qC&kE(OeM~8U+y@E22V+BBD7W zDio85juBCzEfdkvA}Tb5BAP9tLMtkwqeN6_f<<(sh~jk`X(@~lQM^7QMYBW{uggf$ z;UX$ntr%~nhzfm{h-QeW(BX+_x`+zBrHH19sL<7l=r9o#`e_kO6;Yv+7ts_EJ;<%A zNb~C!QK62Deus*vFeVexAtEXa$wV|+M1>KVhz=G}VL&FLX9=h{9uv_)A}S2WM0B8t z3ZpR*O%hRIFeah{L{u1yiD;sT60}MXQG(7c5havSyoeIYH%>$ewh=3$1iR`lq6C}l zC!z#KT z=+`8o!hnlMoiK-PfYm^_%+;Kr;b)TY9Fb(criN+uW>^b^M<@{omxkqPd7f4S438t+;Y7?s74^q-{AZ-+e3~fT$OA=JYz5nkNn*Tq~?*C^v zb&fY3kHc+#HI7_IZ~F=R4*LW4CH8WA65P)BlI?a|z?N(4V*SYar1diEENh0XW{Zf6Uevt08ZjbIxU862f*G>DecC+>h?QE@E^SfrBW{oDI8L#QBKB0b2eXaU@ zb%xreIt|{VDaIvC*>?%|9x zEi*r#I*6H+w`x<}!1-fKA`2$Z8Fq`ig3NB6^xIs0GBfX?NLRz^q_N-mnCkr(?s1os z*{N5p`Rth#=JI(pIgKeBbC-<&=96dj8uv6J`}liEj5OvR$ID&5Ij}nSn-wub^RE2W zJ(bKxQX~y$o|v|>?u(1!nc^L1Z7n?XySt3c9x>&{ns-JrFYKH?cFG_3Ggp@_95Q`G zFLx=C{n^oLM;*O(472y{cTdc2xte+EsTFh29=E_fh0MNg@8PO~T;}bP$j{VCbTl zHV^YdaC6q&-d8iPy}PA;*>eZod1UsS7$~3F%#Tk`xjmz*k@;Zcz??$gTW*HTMwK{u z4)fEKC*IJ$-^`r6HoxVO#vFGpk$rRvG88ZKv!iy_omZqY-!`AV^~thx-DAmYC>tms z=Eo10Z9bls#eA~GR&veiJa-P6jm%_XJ#(u6<-KM$CNl?iRL)v=)s5~kMD|C>N`9Ni ze1G=g*)=;enZ08_8u`ev)$Y+`cHj>gh=;=JQ-;!pfdr_ee4uYEIGq z7Ut(+o3|}Ly@2`bSeM}!FZ|s-g3M01>$x45MVQ~J_MLTfrH?t@+V^z*?l^ZAk$nU; zCu0`oY37W5(s%F~=Bt!fe`w#e(>gXwmph%z zhICvMZ^`R^)im|kv~%;~-Z>O{t!j)rjmSoMY+2DYult6FQv)S0=5^n7?`1u{X?71I zvJZiN3%=`}*YobFzXcvxmS?!FbaMRS4enGj8&#b-@p*l3cP6JloSoOBZ(*+^E3@4x zME3ho?(=u`$cz7A{J6sxzm%8SHRX-9zB;#?$YwjK^nQ7+;`RAI?_ZlY{Ocus<{aGP z9!h4jeQ{!5-ve7h-;N!SH`w@U*{G#E-9w1%ce&m*uWMb=YwriNd6v%xy}R(E5$5tRKc;;B|-97fN^ScL=*|-P%;y~K%H&k53Y+nCr-0PA9Y!$gK@cboF| zW{$2;&dK=t{WH#H{moZ%?<>Wop^V^&gzO=XZ&C7Qu5ZMRW_IpO|d&3=N-#7Sk z)*gLo)SJg*+%7VkYmsyBJ+{pjI!m9kwJg?h?70_{;xSu3vU{CtV{@y%Iiimw=O)Dw zSqHe*GB@^A+$RGscfwqn8&k@|I>5DiV_$FDt-H71^%^r5~VTClOLuRQWz;f#xN z?q73TdBNJ>-2I5`eQcYwWUN~?WA~BXm*#Bi_5G)JGOOKv$!xZjxjbjz`)@7VHb;}Q zdB?REsc&$(`w-c$p>`wgbk35ld&4DbTsa%(XKn0%f2A8<(Loq7zsj}*hMeV-2OU24 zkD)o&ZMgG>=f@hk7X>KB*RODOJLlf)JC;BDM|;i#bypo7|Gmr2KA5avzs%LvoK-_l z7rcMlM>&OW-H?6q5v{u?F(tdX`j_+6%{P5^IPTY+wD{~Vw;y=i-Gj(}iK|gL%iJ)* zI9i;uJ#*88bC%3dRr6_cE`jkUS+lN`h_+F9#q%-QKGAI_rmGFx!IhtNYy0d#dCr6H z?fG!dultg0#4w-3C42dX=N`N5NY!P^XZds-Tv0xBzQpwYoBr@o?w*-=G+$!9vgm1FSil1>`a?H|vd;nont zT#i{U&3L0>Px-4kH!gfQcKDWq{nacR4t)u;TA1uV+nNI3&&)*o|7zza@U8iW^AqPy z&PC31oVm^fSOxghvB&X<<2py!F~gDV=x_hS{t?^@u-<-^z0p3+KHMH-``LEL)^5Ac zcA3p@E3pl;b+ev=Cjy?e-feBQ)>tQ4hgj{Fla|*ln=Q9lF0yzm<6v*zWd7W|*SyiZ z%DfPs4H#>7nYE@*OuJ1ROe;+x({$4)Q$OSH#t)4WkEK)Vb<-#iBwSTB=C^ zD}oC)vPKNg$VkgdO=EDsp;|_UafhK=8U^Nh3RNo^#$AMJNh}w)S{^s<6E2B@a(%$X zWE8jgi^(W%<1ZqkxJ|#1jN&%@0y2u*>=rVL+vr7P6t~F>$tZ4v7m!ih<~Ea2+{Q-8 zC~jNBWE8ipAu@{F)cIr-x1mjB6t|s0GK$;GMly=q$_6ru+sFVJ#cks}GK$;6xnvZ# zeSR{E+q!x(ircn2GK$-@+MaA(Fv;tJuZI!!1+WGxS=_7X&pH}qj?CBGoT{1(qS^3V zV-*=>TWX7!2!8bxT8nU;PX@WUmWK?Y^{8Cic|`C_cC_W3Lk8#Shn`yB{aiB0&cS+} zLj=D-v$<}4XOls;XOBIb48|iB5@r!WyqY?b404O7GsqyfW;&e+;w92bGRV!@D##$W z09sB2k8{2HG&0C7Z%!qH++41V2;#-dQZmSmLZ^^HZfUZF2;!B<$z+gQc$`EA+0j)& zF%iVeiWA8ow~9D{404Nx&4+8RS*~3&SWdz(%K@$yv~5yY!i!^j}pFvh16LA(}~LIm0N zBE6rR403bVp+pcbEDa%o?{Mu5ZAN7Gg!hzHXaB8bP*W+I4((k3E^N76EyA zT;cFJ#yR5czuMoiKWo3kexdyw`xtva+b?i8;4`+{YzuAEZRs|<^|*B>1VTSl0jdC1 zfGR*0pbAh0r~*_0s=)tFfy6|1>01vM7)VyRRp!9^=bdO)sZoX-4*An#53iKbE1D zhY@#OZrcmvK3%ovL{)rWB4NqhZI7EDzrLj4P+T9Dppl1=`YH2hdhwBc7e5@=n}iP- z#_Sw--=2+Md=M8y!s92j-MDy1&%=x7#PuTL1zK!u-m$iL z)s{HezCcI3<>@mvwJoW=Z+X`z+Tyws@doDDv>uUjXYTCZjm1rJ|ICpIuiT}ZotDrQ zJqwngm+gRKv$^-Xmw)fJ^W}stBnq|~ow@9bDY*$wB84@Yhr%!ZoHF{G1V=Oq*i8AW zyYv}D6YN9^YcdA{Gk*TKzz}a^DLPqlS&P|uXw)C$pWhR2B@kGHiD+{_4?JLvv#kF~$3n@ClU@Y6l zFMcnv_CTzG4PEXVY-P!#=ci{JsfyK;-~wjqw3eGMS#u;-M}Wan?(g>S%eU8Ti`5cf zFqHFO|33GF^%ur!NN@x5@v`qP*;>4 zbw$T6!0Qkl<73x5@Ct)Yo)$D~jpf!JIv{Ae+Mio>(8~S5JhdMgSaNq?ybdAvk@{&L zqWgehy@~Ge6Jp5j1-*#w&UHPB?#8AbWcP;d{0_6MWV-cbXPQ*QZ^ER3d$P8`q0XJKsi~6?n~}A_hR`P89((?6UlkN zFeAx1eu9DMT%ad8JJ;z*&c-G!(YZm>olT(0EM4G0&;NIE-Ur{BgYf+S56*9#pF58^ zKXAU|eBJq~bC>f4=d;eIoR2vlblzvY+vtW{0Vn7W=;!D@*DZo~65ODT)jX`pR_{_@ zpf;*j{XG?Z{(!DJp)Q3X$Dz(<-(mFo1c z2YwI&!=8lSj|}U(`uPRB`QJ@0HZUy~%n0wdlm-_2MJmtaqZfX62uX0q*=u{S7m{$2 z;14U_6yIr#aZ}!8uCEV0?%HuDbM4k?pI;icm0?S$W_H`7_%|*y=1R!POHXDC_!C@N z@@3eD1#gP$JjPA6%=dRjO|;J$hOYtYZ=3NCli1l>fUH+XZjB`0xDwY^2ewf7~;kE19KOA#B}z z6wG6+kh2&Z1)mQA=j55i+;i;w{1qch7_8I$ew{|?Hn+_E+oSB;X_U^^`d5Th4GY`UhmA5?9f|XeXKu!=1#c(UaaEmp9RI~3F{`+u zV|aWGE)U-B?zsPG#gBX63HN4WWUDyQetz)P*2i&D!`#W6luirc1sW^mj+v)T?uC8+r+?0pD`-tpT4+zAo~b^7zAv`;fJ^EyvXb zw<_~{vN1-hCI#KTt7Nbj-f(y&+cx5ciB}#Qj)3z`B5z}Q;3l!Dd#5qR{`iSt{J8ZIsyvR7$N9e^&NX?$Z>&{Q zw@zb>>*rwj#)YqL{O>3+3NdfMdFLz7tz19Y)V1>%#~b)^5lo0LuP44?WfhE>??`xj zeHSF>Lk!>S;buSBg^f`YrL%;6mra|C?%mVAjCqQ==*#Qt!whs|P`fIbO;D+!I~3Z3 z$8kH#<9tuYw@~ZQn51TQ*vUp1y&X7p)@9|qPC`eEb#23u3OMi1|HX+A{NY5*cd(I0 zs~|9>>Ba{s7y%BF&nJ&}{L2q%go=gh?tFWvQ9_-ZE(F!lUY~?v+)wWf5O6*zd>!Pw z=q6l4a5E6Jby}9NLH7h#I6|5q!DEA`V4OJk)OKNP@HlScd7SS9_|XbBruo)R^Qe2X z@PyFr;I#AIL>nJv$8P&NoTn|Ub!m8e=bOB+g^e=0`D{vi+aczY6OzG=7_)`5LFPd` z_IW_p8xI`12E?(y>=lfIHy*wU`~&s(W9KvYci4Ca!PuSWjf0La zI{4f7%qBF0fI%YPTKoeNfA5|b7+$FRaHYq1+x@MEq(j5{G274>v-gb*&hC5z8)>xq zru*=g*$i(}e1pVyK<%h`sW{CWil8WuZ^mWzFgLDX@Zb6RPNQVE&-o_o>Gx1SI!?&d z9xe^SZ$4Kz*SyrsOSmw%aYLN2?hMkhXHK@E$<;5PGB1KqFi#QM)BV`S_;ytIi`&}> z9#_FT@X!ZNi=gIK6V{#~QuaK;c3h4x;Z~n7*Vm!vEx4(bZ`2sv(g@|w59;{D?Kv+C zHTz-BnIpY``I{pRs@X_oT@y^rUtfL+d>>d|2H*RZ4~6g7mYd;w@3JcReq~u6e80Rb z4!-v+y#T&nTFSupu2$sh#nu_{y}dOPzPGi)TM9KV)WcW%c=&1?z`g(fQV?6S-}#Yq zn{%!6QuFWn49or24=vX^_FMN@(hN6PKGz*L=UC&+0o#SPBaVU2;ihXHW6iG`9M);N z<<{Hu8ywSZr}eA!JM7om-`9IB9*5o8-|B}|vmAY~y^CdnE?{ldC0U*`SL!OwPnz#A z4{$CqH9J0Y*6I7`toCN@TaMMX4Z3~W=e76S&(&V74QXeYkC`5@7udgdY_(O{ifuP) zbG1pPZ}g{hck16aTdW&Rvkm8JO(w>aWHLL|#;=U88}c<@*k6F#1@AI0HP#tRjOp<1 zfL{zpY^j=khK087nkVgpHMbfb(p=;$(VlcHxAe50wm)DPq&Z(xsC&w`Q!`j&Gwf8K zR3CJ{=6urB=DbbcVjZF0s=iab#Hv--s3#(`Bz^iB(UOI9Nm8RxS=JqXW{qkU5i>Vj z;VD(!NW^pv{ZF1y-9W_D>i0(bC_uA6Km;W4{EKzOTBLjQw=W zRWGToiGq#$BUg1b8T)Z+b6?d}WbB7P%R$wZWbFIz_rI%JLB_s$tNcyX6=dw>L*|pJ z%cEc^1y!oc$k-dV=wEDjY~ z%-(Pz$&Yi|#_unPVf|=je&V(pT8QrVy|{?zzW4csME7S$EFik4-rP(|(6k|4vm)e7 z{J4HkRhZ-l6nQ8_iX?X5oAXKTad-UCL<-2d9xli3#j2r^snPG8Mq)VY9&I4HFWMU* z=K*@pkLMA+On+c5(S3BOpXlyAubz~J+W7OIsUra(?C@G*NP}MVkrNBG_&^OAf=ZQI zO@^ROEvOb<9licI>yjetYkNx<( zLSjmr3P|y)mZl|)BLc8vl~0NwF7a?4$wU5@F;6h0n7gmcC98Vsiy7m`l6<6onnR3v zOX(P*`$d~alY-HHolSBcFmx2jxu0hwG4L0^8bP8PgIOec?9;WwiMeIZ*Jl#F99fV- z^rBXEJ9>LM$xGajN7IPzs|F1ty0^up65TT{P9c?L{jn}{-K1O(`C}-_Iex+rVh&V4 zOnYE$G8sB~P5F6)$DOqTj26p<{ZA{rn0qv#0PQMaBJ07sp zkAMy%E#LS)fL2ojI*7#w+pAcF@uU@3+(Rw*-_!B%Vxf?e8mF}?i+@0hOE5zN1 z?&A$zNw(-*2YdY}c)d&~7?Z-9sFRdbv~uYn0cd^EPKsl|Fxcfsap+`mptU+HIdZh3 z1{?j#Y{LNnGszuRr%dFa&{~s`7(J{A84v*TNzJR^8J-4_PBP#a1?qp)PXoLgW(@#K z?*ITe_Wf%$XaQg+dG_+P@y_Q}+X3GZea?ZN|5rOMSHVB}p$bq1r~*_0ssL4hDnJ#W z3Qz^80#pI2z&~4or3=)~vVKFCF7!^<>H27s6Lb|Vjgfkv*A-^}M*P(-_!WrMyK1}< zZ;=6C>5ZhGDD#!-^_PQgGhS{p`{u=)VP7shO$iU6=j<|C8oQ zAC)pGzceL1Tijio)9<7TJ^!zEeyf6i^g|V(3Qz^80#pI209Al0Koy`0Pz9(0Q~|2M ze~bclZGu@`13>%#TIYThJoo<*{GlJJ09Al0Koy`0Pz9(0Q~|00Re&l$6`%@G1^yir zaB6ibxKyIhUmXb6`Wn5}b`3bhY9|!CsscV=ja{u%nd1w50XUPe$X{i5z`Oq)4O-`S zF#mti`LN@5=LOE`&auw^j-^h$<4wmYN4ulp-y!2PjZ^`u09Al0Koy`0Pz9(0Q~|00 zRe&n+FQY(rr*^1%YRObjjo(|>7(~bE!_ z2N<A;kn1_f)y!gm7KWPZib5hCpu_^OGO)ek8bnWH>E^}kANG3= ziqD)_Ru%Sz7O;%aMV!SkeN)cit z)(GoTI3+BtqB6gMSwa4|=_UE)XY-8m zMWyiQkCY=sQIcO#!PANx>q5R7^w<(>0Z1y&d|1)^;i5&=f#w{AX zf6_xSN_kZ9RIkv+NF$N7ClLSQE2nCV>R8oHc9pPni!%F9YZIYSsqv%7;>xP4n?oTVG%-Sk zz#2NVkG!FwwutkF@`~*d`C~1OHJyKjRy02l_+Pi7`~o_zwg03RG&^I&$aG#^QUf}{ z8;*p6{ze#wz&Ht>SgiLo1Vf>EFZ7QRfB$YR>d4{4M-ER*%arCp-l__gCZ#Bw){4@y zDMf`+4zX!12>2WQ)ga$^=*FRb|4j{SB-E^Ig#Yc^*FtD-#U>IDHIUecYuGb446l2rESgnmNp2n2+T9qFo~~J%B4k0n@`TbR zcTwG;NW7fDrhK6n-W?J0!ni`R%EKl|M*a&Kk@=J7BDb|0my3ZyF68TEC>L@U)$NL0 z$O(hl#LC?MLSi|85ts(BN^?aa3rwDa@vU8rG1=LgrD6`03tK1`N>|lwikv7(Ty7NZ ze<4Q-zmg2NO3Nx;rPE7Fz@jF%b}`0`8KYS`R49ukB>ImcLdU-*Sr?9A^puCt}JL6CpSXM9{wWIlH zX$_Xn#ut?r!2+Lzh{A?<&2+?MQIr>zz@i&O#kTis3Q)riugn1@e6E^iA9}}5cs?xm z``9<;z}jLM7HVP5p@mHiisWwzWJXbW1>{7Me#sz72~NqMbjScKGcfTa+iA?5?`G_1spQF(xZZv-E7i zP6eC78ym=PM>o|fg^hNkxY(XcX}N4M2;@KC^$K1ZV84ai)!>aDOn^s=Yh1910k%-r z9Ckqi8fdk0ql#uBe+6X|%gQUkTE`cc79(p!8B{o`ZcyYvOom%LiQO!ZM zQP$$160WZIRnK#wPK;Fmdx};kVaK34%FkYA{k^>c>`z@*^}N0sJdqPg{^vHOhJL> ziVInDB9jfRy$$S^YHL<&j4>uNQ?t}5RL>5Z#;7uOa8j+7*&l%+n=;9L|Ak?g+@oYz z2yJs!YcFF=QITe8k&y6c+u?#!Q)_Svp6^ zWoLW$D5ss_s=E}q?TjwVaVNyTkn2uDk>#9y|G)D)75t+gssL4hDnJ#W3Qz^80#pI2 z09Al0Koy`0PzC;T6oB*ps#yLFfZY85u*!M(KPQ7UCsYBd09Al0Koy`0Pz9(0Q~|00 zRe&l$75MK`z@@gw_UtF*nV94Koy`0Pz9(0Q~|00Re&l$6`%@G z1*ii5&1h{MdvI!T$J3C;H9BAN!&|Un@?qYn;hezQO1tMoVc@+0N`FhYftH~1T6Ksx6I zSlk^>>|H3}fpcdk-TCbMtHBNKQA4-zaZ~Zc4j$ohE1+bK$YR~$#nqj9gA0H{{_04j zH&hucU_<5ni!ym5k&vev-nfdSO%z`MF5FmUS zDN}-tk$QPd!o{0x8sP%ll3-(9r4Q~emL*6*t3VSSB@bO&*Lg@%#-9kJ3@#Lai+G#R zEuOLzO$`OBeKlzQC|qevPC9`YEnc{HryB0L<>sa2&mXGJ9kCb_o!jD#q$6~H|S0k}quwGz3`h1Frd+y%%r;S7@73~#tv?vB?1Y6^l2 zyl{tm#0Q3it~W2PL9&s?7A|@UhP+dDvh+#`tXg}XNat0VEo0# z^1#BpfwL2S_EPE5t`xXbnoDs5T;1K=fGU6ths!H50a^v@iFXO$nkDmq*8`wJ%jfgL z^<=_y9*4`)YMUD&?}>H3NMTi>uh!cfhzOZ3gbS$>A(4wMbI|->V}4F$I}Bg+LlvM3 zPz9(0Q~|00Re&n+FRj33@fy7<_UiONunum|^jEVRZMFW$_~yoHbSEJi|H03Kmg+#T zDLf@u;|p**PEFpB7tP-A1ee_nn~L1fh?{eS(I)H6-kc5LzyvFR=AhgV6VTcq+*VrL z81ccMrU>|x46^}d$MP_a2Oupqjok@jC)0QUj-1(1@?tz@#lw4Hh{}!b8=C_GOlWR` z%il`;4Sp0?hB#neD7uOfacM6I`f5>*B%!cFs+Ot#8WFAz1;gPP-hdx&ql1DdZsfd6XQ!YMdpR;60$+$?ATSA$ z>MO1tfY;_QnkGd;L9{9%L&82E+C&_cHEMWfc4nqfUg%;%a8E3O-N2x$1e=Vj+*cR! zg~P~N1Zt!nvdqrDQpAFb1OvVhx)=`v$?&D5jS%S73(9>>z6g7%Cel>&1K0KygMqLb zAS5#_OkKw3^ZL0Wp#d{l?~oDj$DQVK@>j4K_+HMZ~WtOvESsxfgu$j_fNkg**Ou z3Vy-qpWFY}I1j0uC*g~Jr~*_0ssL4hDnJ#W3Qz^80#pI209Al0Ko$7+Q=qHHu2QSb zW;6T;|Fjy7#-X;W(EsBP5L7CYYM{!z-Bf8jPydVVkoG~%GvLsl&90gKzO-v=yfG#r zL9=3B#9I~cO)Z(~VXxWd;%pX@$@y22-Q%xu6_-{PO(-gN zO)W2;l3#wdYjV-quKekhWyPi7e@anlCAVhbZS)3O!u~MwQdu+$yKS@BkR!#?cjDlMyYl};}y;ZV+7q@~Fx39Bj4#AU)$>kn{%=*^Xq;tKg{eIXy* zc;bo#U17L{q{hVtMsZyJkEfh0hc5H}HAo z6A8gfoKYenv<3cPb2!j~(u+a?J-PdQTu_!E9ypCJD=#XZP|B9m;12pH18sa!c~NOW zQH5CIpav?Ru!7AMhAcoyxhVn@Fs$xi!NFgXY)NjN*BWPx$_9b7C_$JP_E(vjryH#Rj#Jo3u=2)x0lwW;P>Kxh-^!3%4G5mbF7mP)E!HQtu6Cld7d79i8=XmVb#8q~}Q z?p0x52wG_m0O1IfttVIutznC+$`4P*aUI3~X9H{vwf5!OsKq3S!_5s1-cU=2HVV6{ z?(0lkO!_kxN6It25C|>=_WYBYs(Gz_j4?xpYA&@Ba^1n4!m2f$DHsl?GS2X2PJW5X}ug2m4MiG{fWO7G%b#`lSW6ZE&np@)qxnWs?LpeupiXJ{W;;Gu5*E*`?OpI6Z6XlXQd^}b#_7Zgqx|!qcy%u zA+-p|BiR=k&LN>ZVeWQ61q%<$*fCeIsX4%QO;Op1#$_W~c!(if!QE*%+@@SqiX>s| zd&K_?5kK?m@re)p{uyr(e@%-=NObs&Ucl<*;}@aa6h>MdM7N=b2XlWx{ba&$Pb}L1 znSZYI6@I}vJQ!ojL2DDKv=w0}S>eG-wNwOEN=Z^kieMEa zq(6K0Cd>gk4PIfBim>I3@L>6GRtT5GbY-nsM>|#qj^2gOrx3!H{_H$xLOoZ6-jM?( zscapR-O*CtdF4{X)(Jg4xD$}eCpTGC6o2%Zs)#=d6>3D(+Mdj3J(<1#&-snY`4fE6 z4^@CFKoy`0Pz9(0Q~|00Re&l$6`%@G1*ii5844IQdX?I&(&*KCmD#L9^Z#y6y~_EW z^Hb-0&b`hToEx2MowqnIceXeKPLFe%v%s0*Omg-D68%sGr~*_0ssL4hDnJ#W3Qz^8 z0#pI209D}MSpjD^ow|EJ&G6Lp>5cOmg9{sNUBRKJCNp)!RBt$J>wC`b!O?qlZ>hN@{RrrySZnLnw^i-DTFzd|S`-us#n&5X& z9KY4b{a~Ya7!Xs8-Ks|*j@+u_ez0L$v^sN)lZ)D-;r~A)-Ks_;95I^IYn-Rh_i^Vh z&Qs2r&Maql$G49Cj>jC=IOaKu9cMZ8_M`R}?5pjI?dRCD?J>4fw%2VNZ7XdJw#l|+ zo5}i#b%%A0b&2&nYmT+A<+SBZ%TtycE%Pm9mK2NCeB8Xte7|{_*=uIZv8G>4@0hlj zZZd^U<)$=~!}x{qW#fa!%Z)x`fic1GhvAUnS;K9Hg@);dOhZ@w*ZNoW59?Rx>-FRH zNqUX$W8JH|&AQdP6}ph_99^LzxG<~Lhbq5Vr_=DpH`>&QuC&! zO|xEez2*W|eD3ghXD@50x^D#L=W4Kb{+=QK72E%m{=OA{D*BVwyoEx!o zoX&8o#JK@G$7&3>OPmAPxxdkHuf%yCcJ601td}^?#m;@Th7A&DKX&e8G;ESM*JJ12 z8pBf(=Q`{hqc=PwajwPAy$ptSiL(zo_tYA;OPp)4a}R@Ix5T*`J9pO`_DY}=K>Ribl`SvY8uQ7yXmoQcUsjZrIco`IbW z8lzs~JRLjhwMLWZ+`rOjR+&uQ)4@qR(pSNq6Aim6I8W(k>-1~LjB?DFrPr?`Gp1q2 zOuZf%mNJ(3slWg|(`V=(Arf3=IEd*6Ju*UN5Ux_psMP7VkQq}jqe81krb!5+1T)GF zdSs;p#$?QxX4WIiBrqmn##EzzADK~%8D&~MvR6VF6EUMyqkn_Un1C5mwEDNnjPaOJ zV$dHZGm0={vR?l&nNf%tlXUve$czHan5ff#NoI`0j0r|PGJisD^D$$*UjGxBk%t*Y zW`l;zU@)UlZ!i)W@wvc2CRSiD6A7-dIEZn2gM-Y-!Hj&Jp&OYo1~c+3hWYdSM10DH0exF#``835*_?fya*oMt97>LrDUo8)o29C4tcuGw=YD z!03V*c&tfaI57hcI|&R2X5bMhfnmoCJQyV~Y?y(^r38i*Gw=|Vz_4Hj9<3@F@n&Ek zL*@pq1cC_@xG}7f;4xAVK5}extc1BgXVtHp90=K9xJsx4zIz0AkVJIvRa=b3ZO zy-eSj+D*5b=9torzZv%$*BIv-b76M>n&B2hjbS)MNIz5ossL4hD)4`z!01s1b-@5* zjHW5%5AtuGEeQtaRe7uDjdo?D4_r3mo65b{A#cLV*Zt5o`gV3TIdvrX?V~<}-$nU# zzEp1Yc?9s|&%pP=y8s%&%UP_K5n12`-cHbI@_ej^yn^DD&m2!NaY-BgCz9qz@x-(I zv6;Y6?mQm+&?>J)%7=q{Z+N;3>wQQDcz0?#O=hV!m&;PRK|LnA;%U*;9+C$BqN@%5 zM5R-P0XMqRX$^9fGg5&bU1gvv6&{juhU7@p&2|Gfy1HqdC_88pNPm4s>QC)xw-t)nPEB z>fN#WOPfH6jv0w|;De4zzF?yn18u+o0TmpXVP*`m0u7W?(iGO1k!Xn$t*BK-x*0g2 zRmbq6+g(PS3A}(v9lc<6GE$9zE7gf+Wf_SEVlt)Xl`&8c9HlxP>?&i34roesNCuUW zsErb>R2>a)lt)s|YcA~n|8Dun z^1S7C%f*%|ORgo+{JZ&G^Jeo6=0;! zxyHVR9}EW!j~cEt)EdSa;`Bf3-_$>$zg9mNcK;J~zw6$Gz5g3@jk-y?K{}20u=W}4 z&DxN*R69g#(0l}Y{dZ^SF?@7IXB>%hQHF)$Q4-1Pcx&=EZR@oo!91QF35so#TAK?Bfhm$$@=#j&qoK0h#56H!C@?>&|fwMGptI;5p9w z%*)+3j_JN}v@#snkLNh=G0)B4)gS&TIj}j;ao%P2J<$v0Ov!<*dXDoB(;h8fuy4W?-e7h|D^u9n=QszW zry2J4InL|MGx=-#!arqPu)EK34lplmdcb}BDuT|i!OwB_GrL(coTLl~w)i>DzUbuz zoBSN-HRiQZ>EA7jAEgWjw)r{EUgni(WeOYp9OqSL@78IbUmCYn84hgqbDUS07fSkV z_^HP>B?mV9InK+>zM??O;)8c8Ik4T&arQ8;u6X;d6>qOra$v)s}0k^vuD`)=Qul} z+bV4SbDZtW{>Yq|qWuwNT(JGmakfRTgKz+V1xjN)8+Z;5g4P+cVjZk^@HpIL_0|)6wcV90uSxTbXUq`T#f%z;U)P zZ$Tl=iJ72`3l0QuoXt@=ec?y|r|(lr|8N+9^Zz9Cb~JtAH~`1l#B7O{4mc3Nah{0Y zZo!cNj_j*Lz;Pa64n(snI0L|O?q}YQ))vDl0FJXZdR%Z0faBc9yb&$0a1wya>l$T#;0yrg z|K6x|pf8*P;QZgC@ZT2>0B{(g?S`#?F6_IbhMfqT{~YJ8sOe9H?SGDQXLOr|0{|T7 zj_BhaI0C?NZjT-g90K4tw?(zxL^uY(ac+$s4jcsFIJZR2S6?^^z-f1rLf0fX1fVhY z>7I~K$-MORxv^Ep=GXZeYkcw%Y7!g-;8;Yr=p>}_nN={*AppckVfJ+UVfjDqRfd5M0U(B(Z`2iGphEzNF_d}n)3%Bgjd(gG zNe4OvfEYvg4pR{ZIs||i$;__f7vBQ^6by6-05JwLJAZxe$jv)HRxr>Z0K_ZDz0AdVccAwBD#rsDq80Z)PVhrSmPzr_tGm@BHS>c)RPr*RP08khMnB86a zuid2gC>ZD%0AeIEJFoC;Y6`ujV4!mVh>^gLmz2090T7#$|DqUycTIRIoAFwH-) zv;w|AYpsRvPlIUxU)6;Rmwr)isBQO$|()60GqB!o%1b^TNYwg8|qI zPsvD0zYs2rO{|AIyhBsHA#XzkoZ+mlPaN$+?tpOj=)&)F67#1QB)VPFKXbUd2oq6g zh?4GhWw>3Lyfb?ZDsoRt&2qc=FCJy@l7-u|XLv*Kh+4IeBc?$ZX{r1-&kY0@`a&iC z27jb8R&x{NLSSX2L2B6l_)sFjfG@;HmElWC8vzW-AD-upL_(hG0K8`oVoOA~U#8ZA zG`>WfT^0`o7p9`CI1xw4IB2%mvN$6xV|YqhR!Uk%T55XQi0rhC^o)$**(0;EvRz?c zb-3-9w+r`me{jgMS#WE7f*F-*kv(CgSf=U!iy}?`|5c%Y1zXe_nGOLnOVcxqHS08Y&9eu8bnzRkSfTo$rC5K&A8bTbLinNDpr|ea<{E4< zyIhi(lr{)BuLW0$ph~!0HNJ3l$lrt_V=bC>jCezJz6jU{HbS>6CB@|ryCU`Q1&i{5 zfQzFrD2V1p|NLg3r^y$D<#}YYY#2DMFz4|1YPLe%nqZ7cNzq)NDQG6idl<;HAIf@LT|;@(md9?boP@+GB8G@k#Nf6l%Xe!)3B7-IyD3C5=gq9X^IQl-fzvn^Gl zZy~ZinPG^JH%csA8HvKKAsU4n($12+tZ%E!7?Yl^xpa=u2!(vrP=%{tgA(kNZHDA7 zss|Mfk(_{=BAFwqihrUpf*c1!Xwc#fcsRROG!H-#Lq=U3+C5d&bfld~Lyb`cHd4jj zL5|H0OM4EP=8EJf^yaD~u7<2db}TnBGD&*R7>*?wo>#re7?Y5oSusy29WFN1IdK1{ zTCXS#oFKM8VE_M5ijSHoFTZ&Wx}(8i)c%13B<+K|S(HRB5uR@Zxm4Bqp{tdTKv8QN z^40o6J{W|$B0*Q!yTDh&wZX1Hu$r|=RJO2x?uQPBYo@rABEL{;xDLKL*a$6HW7y?I z{d_%yg*+5;d=x-a$k!AKR{O$X*y!#o0OVOt4*BLc`$JqO61~Ca6A8gf`T>+k2yKBs z*c=YDp!A}|z<2|_b+#$O4%677hs+2$y@dXmY&w6bLlC=gMPNdik~#rP@})Vg@NT(+ z0?mrWf>A<_YW&q)zXt~%LjEeY6J&=lWJvXh!fc}if?Jc6lp0CMe0~3)OraEmB>4;l z*{BcAZdhBBR08(cfhXXt@&&~4AdI)5?U0NzS;GgT4Z$<(9-Jkp^>ey9Re0jdC1fGR*0pbAh0r~*_0ssL4hDnJ$ZmsB7gp0-h&;o5pL zd=g?bT8;Qn$B5L-)Df}p=mx@gLI)Vl|4ohny8my3^J=*LuNQm!U*KOdvouju0jdC1 zfGR*0pbAh0r~*_0ssL4hD)4WiK&8o~R=37zG-{2u+}99XfX~zuFI{EM4r`L2twrg4tej(oVdb8~RU$|ar%~23e2`S)Lr4; zFaDz`m@$Xh-fzX~FN^jugUYJzJ^Q_W%y#yk(B8_w@y!QjI}b41(cdnYcl>*f6~Z=Y z_@Iptwx$~de$8Cn;XGzg+KqEw%blwXl#i_Qz^7Xr>KI742?wvKL=PjNv|phu{(tO! z2VfM%{{P)x-K!8tLQSQmkwyyvCLsg}y@X!kB{@PQKJ(q#owBnJF8#CNND;CH zo7rq7v;U=hbM+QwFk`OWSrPtct)%Hj=pa|dTF6zgj7I<2aIDrMHiQoa(qGm{r4j9! zKPoZyxrfo(#~&DS*Ke_C%}W!6o%cO~J{aCLa)h%P+A;Os>az!$ppWc}zc82%p#6hv z&XwYNbY%8}PmcWjJ@j>4ml@_EPmI+--abx|HB#LTZC`!v+v}OJXw`>%HuP)O8?Ab6 z^!HEf9FEpMt~=aN5rj63n{daE*&|W)k|V#ob-b}h$ANbve|vvK3C(+g+9HPf*e$sP zn7%hB`DE<*-jLlVbF-44Kx@amzI^*1OVNkj235Z_@I2Zf+#9hV?>4mSyMrlx2AR+S z(<^Jc7qvsjT9;iqIdKd6y2Z}6cfRn%1QlfOW4e?*w%(PM8oGZVTK)TuRy}`v0j=u% zy!E)^QMB%x!>5-lUgA-+LHUmBM))AFnr-8UjviWxz8*Cu;m5vZ;{=O{U4;H}p)NBTc^lu zKlaT0hd5Py{4^fwgx8KEipm|8WnCj8Qj;PQ;Mifq{a?m^tGKsJu^W9bAU(FJ z?kBWA@AJ#&`q~w5q7VDee0iTD0quXQ{jobfdo3ER?cRU&iMFq!eU1CfK|e zv?6r$OXb65Z>&+c(4ovl6KAYcqN6*qLfaKI-ry>Zn!otqB3D;kLs8?(RFT4AeG0|z z!$!@9H~R~veTDMi9cy<{BMK|a@yu$WZB|4=YNw9y!ap!jG&v#(i=42d0N&?iy0oD{ zF??u#X4i;b@Mk&f%nv)jlt;ju<#yQ5CbM}OIyq_R+7kmuDu-`}#})R{LDP<7g}w}W(@(1HGXtEMm)J^G*CB%)yFh0==2T_ZYeSbxW>4}Ti-vSI;RG5ec7OB>&YJ{^Cw&C;ir%|+Wpm>HU(WbZ&(#teSh{{pS$AKn3foc7NSR? zSe|s)0^3wME6eS8ccDK~mxIe;hP%Q(72f-{RX{cg$I8*WJul@KB#lu#j8-hl`C(Dc zkLc4|FWxnA?lLD@k@v>6%m)smPlpXH>h(xT7+SeF3mDsv3%F*4(V1tHTP*D~tXm-^(n3Z7ATKen;74duhYC%^P+O=&s0E*ikVDz4wo{ zpTR%0_u-JGU$xy@hL#_CHZSV*8|c%Px(BztbS4PB{^Ob3h8XWh9|s3@?WoS&@V;gG zh8Yh!W(!b*LupfhuNK|ZEZAbG1n+F(uF8anVGh_h&H+0h*~%)U-3`!>EhBQbKWkLI zicY+Kk3B2m4|MYE%+isXyWr~m`nNuh9F3_&Cu1KScwh0I%0}qYKX=S((sFKB zMjJ~$D&J7>L>PL!r{lSuKSiTW8OfjT81}9j-6LI`8nj;1drMr|nhneI&b<5F;L#dr z(e>5?a1@SMuUoHKzqfvCJp;P|d}%$P|3N=Q_m)ntE!0$NTBv8L_N$VF2b5=(y%aC} zr)~tU$R^FiV7Lll(Fpv9$@Kp4I1AdB@w$5U%*E*B)XcVzt}~BT7Q??tWlHDH=&;*L zbT-D^ve6Gud;UI2FeC=Iy=Bb_+pXzxj z!?5D1H*@Y^;ff5c%f>NppSY2>7M+}Z_4QR-w~SKWD%qIY32cmR{?W)mzoWD1{rA6V z{6%KN=GKqD@XNwh=t8Gwp4|A<40O2n!c$enm(Yo?mOa@0BN1JQ9(P$6RDd>@FUUHv zsv<*e>2l(qT~4AiRZlck$4$sE;_Ll~MXtz@x@^pk{wBi^gihZ1@N*k}{dR=11Z<2@ zcIemz9eO)T|Mj<02Z0y(pY}}id`47!ibavqV5A=*4i)1#I8Arb~Zy35za3kj6(YMfH z+ucoUcQ-{R_H?_tryJN9+B!b*-Ey>f$&|sFT{~x}QzFuGCK=F~U3pip8sEw=#-=QR zf3C>Jb=mkq zXJx3aZ0Yj&TTn02QTZutqB9KTgKil$?sHdUP+c}&U6?wc?>=<$lkJW7oXs1eoCY?w z1RK-QL8v+S=ee#ANNyO4PJvf~L&|JClq&t;aYp)~^T*>`!Gj9$fm{rqYCo=;Ujzg*(m-Md$ZCJfQho zzo0D}*TGqf3_-mhwfR9cIyZT2$h;RPXK3FYkN>$M8`Ndvkr6*sEdBtU>iylVQ^xEX zq;yI)c1{5spNzbCM`cG3k2P)FxX#sJaLHZh!ozv%zist3I{1s@iC-K~qLXv`c9`3@ zBRapY_0`A51*0v?Cnqm`^o$R zDUbW<4s<9feSGyrCpuYleCVS4dZY92e$l%@To~Hg<%u&JhToSVy!>GGJwg=>C$bjne+%KU3qit-__F-Vyc(Hrf3FQn&=F-CND zz3}vWg5gX4De_Zu$j$ui&?&u=4Ja0a?1|2eVFI#fR0Jj78v*Y>v-A^rlB>`=# z*!p~O(SQu05<5w6bm3C`f+y~IJ44e(@>^G=xh@+gyp}L@%y4w-o-Vsi_MMZgTp-!l zFC1+AwC~sHA1y^^KgoQ!VB2pp8&_WcaMK{=6m&7;-nOgIespNgbMH4k^$j}NO zRl~duQOZSNqft35bRgQ^`1&VH-U{;ASWTWKz9r$Z!6kRT-1RGT@mdhR(C#C@$(kE7lJOH**tmPz|0KANB6X?wr_Do8tSl- zPUM_A^xd4i^>?;Vz6>_%l_MGtK^tFPYioAf6CN8^6CN*0?PL@5)`Vx_PW=(O)U{3j zxXdf)GhhY&q0?VZUG?SE)#%)X;e)0%YlC(Sdv9C%latY}nK37W7WPD!K5o!_z)R1g z>(Jww{Y{Q5Qmo6ysm|t!&2B@d4UWuQXJ|9!tCEeQg22X~)c@ERUWU%8ZmfaFGgQ;Y z*YV~2k9p`)(Y;49?u|kFq-Tf5=ycos>F^JoyYkMQu%3^g9UU`&y8Fjf=tkU+uQh(> zAiA_Lbk@bm@1ozOzQd=kNPS&4R$ux3!~XZ6)5#U9KissjiSl*H#xV_spiL4lkD_z! zZfiR#{iw{wSIBjJ>9Grr5xd8u10$p#Iz_^Bzu@1mXovJT6q=!!jN7d9=u+9M{X6~I zD?^zfISuT5TZfHbRcz?GqjEPod(Y7iZhvKesPYZT#<5ng(K%#|t8E8#uIt*PmxlL{ z+4wSkq&WLDx&#f+Ez_o>gSe%NEJP=dKD%$WV-Pxb|9pAEo5wPgcWryh zRO~{R#zwxlV01=?P+@*G;|r%NQd@_OM@mmj+@7)xo&9><>et)13Q@i(**MMuHZGJL z2%Q`7^Aq!KT_m${iF956fG*({sPV({>sp!ed+HHAxmgl;@l=VSs{0K2a zwZCQN{+3y;NKIWfF8OWAO5q4Pd$skZv(7G!m2XQnPB4Lu*Q!2vF>x|FH*LCR`O|qa z8(&mk+y3kDrRdV-Wslx9b{qQqY5aQzogmK^=k;S(bUHl>Z9n>WVyj6nWoW+sxrcS` zH|SF6$P=$^yOE*mCH-8H>N;#ZdU@N=8My`MT>jTLg7wceQZAKjoM;?^HbDO$=Q*kE*@Z5*Y=nC@vi{Dw?_Sv3;+AV@NB7$|{PXs9o<7&5H!eN&O}D5F z_536H5B5IjiWKUwkuCu^S5Z>^$e_Je<$IEiw}@clzO3dWZ&Z1BtZC!ZQrlC7E=zm{ z%j){v52Ym+XJ2XuUtLh z_@yfrj$gQf;Q0A$I2^XY;ZQ#~987}4fhK12YYLNcv_d?mYopntin69!u36Svx|+Wi zoaPnE(Mp}-Blz#X;b(qL7!^7=Mo>rtJkDvbyQDqOR$1YY{?2n26gYkM$4_SdhP2H? zZRzz)>)95T%>=ZO{bCjG&k1!U=|a=fg}GVMzMzaYFVK%zv7Xrv)DKG93sht_sfA62 zeYOV|;iVP&`2lJg+5NUIl=MA>k(tA?`eqKpJFrUGz^5Sc9Fy{-{aIn?1#e*taXz19 zXy>CPzE<6^%d#uZ)n3{je~$a>5>n}CLgo*}S~(3ASdYT{ZiMesltTNYV*DZy3ff})?qs3q!O*xMEF zsp_-)C(Vi7TfWxKUGZ+M(zJ=shOb5TQke{L_w4ryUp2^+-p-Of7eI7-W2FyC&=!~vaE^eXarrTe4LQ*}3-8+o)FM{AE2Fd)6m0`)iTW2f{qt>r&j!>mfoOM5hHq#4ko!M->Hj-7 ze6G*M@5p!B%VAr0xUCix7fL(58O`dMAxs7?Ly-1ojuPLu6hfn2rKdd8dc|OTj0$+rw zA(Vh+esY&0{i$$g=P#){)^FOpWO(*4@fwt|Ana$5nj`MSMSDmJ?%dyTANM%g!; z8fMjqb(Yx+it+o~%qH)iLeTaFh_2aiyYq#02=EALFQ1iHBV$iV>&(J2wHUr=06Wsx z$iZVoN%0hWN%3TdqYy)i9X@X0(GmbtSZpgQb>JIno};kPDa+&EclkmG%tZSWU0sRV z(1C3Oc2?+Pa-O@3LjP2(>+MR=hK@<~mst8pfvsQ)egY&P=gCX1MW|SFyDMH7nwl!O zydSwLV-wbvY_+T{sga00S5V!hl~eQW<B@1%xce`IJskp1G^=QZth62=DJQ-^!&j9&mU_Pe;?pC+pTNQ2 zk$^=#?n?!Kt;6nw^&!p(DFN=SN$pO}>>TBVz@BffkbK*Vpkwg-zhJ$Fk6+{Ye@mVv z$h^W_WNv6$Z*rJ|j4O?!4c84X8~TXn#Q9=J{nz?A`i{DDy7{^U?H=tkZF9{Bnj%d@ z^%k{5-B7h$H9=(+)(QoJS^17~h*D52`Imv!D#%2r1iN^sFcz(M>+>5{ zyQi4O$4c3YEEnW;m1bytla}uU4efy1-SSoH%r_>Wb(dDPi2nIr&r2cn6_lFc68FS> zZVaKqojsvqo$%Sw+hd+Fqjh_)4FBS%ZK%_*H*TFj`vh9|@SPoFoJDBeu7%%y@!(6| zki0!Z%*t&?Y$k7Jxd|q3@-##w`+A2N z)pTvS5*>6;-Sm$nnYy#pON1P7PvHqP_xgsp5v2USb#}l#XQ@>ol5M@iuiedGZg_3E zx@T(*8btE1cSv#_A4YQZ^@IbhUNKyK{4uQnL&7Wn_}sP_4WItrZMLp+&;c@oeSpjo z`wiXGSGg@~v3b9HH9;et=XEtYcVAa{=&_Ec%(Jq_x2VPDeeU%rMm5^MQnB-?JI|o$ zvx39pE1yOC$SM$`7x@bhxu-bCH?J*s_v$N+3hi6|k6CAr9!14>ta$jBZCbRCta;i; z))nm|Yj=n}h=yd6XMD3-a{uh?<%b`zn>7O3m!16N7i%6yxu!oHIbE8eeetvNf8MhS z?Ms`v{m?O!XQkRcvKowrWGZQV(^_)h`*X*U+pY*;`=>9NHr{t}F}nA|R(&IzPeY$J zoMTV_<*#U014qcqsd;`wde;c5E%zAP@sA!@q7u-KarxJCznG8uCq1nT zJAMZ3NWbyuq_8Gv$ME}J91~ZHc1#I=XF!*&vXD%5k8fB@?%TgyI&nnG2)HtKwCMfH zm?u`FfrIW#8}-XmX#1JZS3JDIjCQ#7`whvJk=vjazPEqA|Fth#M#fpC zT)ody*o(JKLxyj^dRc|GPnn#bteA%;zjmd~z7d1bwqMnAM}9vHZSOZ}%kh=h(Dr9` zYD;HBQC?~`bfG>BZGU^pbDuoEn9jqEv(%P(@7zkg`<}n@Oi@2{Tbr`d_=kF;EtxA8 z99X;@ZJBo?%4w=XTc7Qp_TDdMwDr*81wRiyg0{J>LNs$zEtzllaOk0l&wOV_)nnUK zZan!k8o6aysM^qH+zXaiR9)WU$&_j9{D$QDs-F>OF6v1uVq3qKYdF?q(i#)lKcem^Md!2i-JXfqG*AFhM?*945i9>XrH^S-b)pdod z+{>l<>!n=T7L&XPE+CS9eZ%oOVxsSD|NWHw7suVZqNy5vaNzF8i=CgKp{+xHZ<1_5 z?>{iw+IGoM&wJqYhP#W-0ZJ>fLiAo;n;h4UjB#^Wb(S(zSuiONQ$8ds@R` zs{qMj-?p9fQS^0oq-u7os@;!&{qY6?H8~|+5>35(KE#Ut(uM#&eH3W7jA+dln^%9o z;&oKAf3X(L?(EqQV9kMMS93;c*$xr(_K%H*!_frX|5sYC!%;X6{r^X;)2w5x>F^bR zKP=}gpIM%_+-ga;Sj@-GZ(pjxgEil2R%`CjWc4U@A9W|y zAF5rdr&YJAdZ`S;=fZN~XDAP>xr|Dt>dYtxbo@tqvQ>H+Qp?*?G zpSPz2n2u6N^T6jFR({_2R!9?!(`3Ws0qXPQ`@LFD`MpswNE=Dgv?MBQJlO-aO)o;I z@Z+~PmGq4&0%$70In`dCFaX}E zf_bbN5kB<|@66c>@fM?9CP0EwB-=mBn{jCyoU;IHxpP;$yGOKf7Ja*?ac;w)0ZQKmzbje+g=J(T<}b5xA(oL~<|1 zd+DsTj)G*cDT$N}JE~Po8Nq4C28#rFi0>(zZcsqlQ8Z_@@+8(?!2_U;a@;YG8c5lwg_+W;9?&r7?pb z1{_t=!1!wOfe-_}D#g@v*XRKnWiWPEXr|@f`r+mGcXTR@z2QaETk6q4DIHdy^nW>rb7hwPRQQZIm4TEg$V4N5W)JUVoyYxMr@d< zgQi~AjP6g1D;}vTNbLfM5rC+VSEBFloqG1&{wq6lhD4+4NaXdS$3D9-y?0zyyH1b_ zK`Os~iLUgDTYmEC+hRHbGP5?MCsVZjbnGux%2(n#05lt*0X=hELg&?GRkp-b01vDk z%(~^y{=aqH`@)9g6i6_%_5?M3a%a{T4^Mw*b)#fR5)4VC`}?}H`-Nqyil8JAHo`)< zy}!Kg!B0*dKG7(V0`cAb`3^15+PcPVU1j6SU{BU)*Oz^tY5(o+_K|?jcB2D%=ZDKq*$>B_d_E-t@B{tgYjw~L;gDvi-!w8G z?SEtXk)rsJFh~{bP9?eNd%~|%^AAi3ZVB>6L=K+%$_o>JDPKG_q=gS$a@OjfCJu}@ zwQ3IXWH-DPe_j4<=TBRXw6$yosAw4qZCYL3v#+LeXj6y|bw|6s_F%*L%eud^B(e!a z#JMACI_{Z$o5eqZc1DJ>5MSRtwe*%*?`x7mLwvKx?t6M;!;LT;-6R+yTFY`^Ai#hRLwj5=7yjPi>T}1SL7f^xGH~HK zl6l;0!&42OY4mwY^VkNE4m=pr`FG&&r!7f(;hopxtbhdvt_|zS7*)^S_2T@`|46U^ z82lH&f!r6(eRf{xm971g%>W1YtsP#&dqcW8s$0!SH9->a-rAGYblx3jBZ9`>8Xate zMBu!TNb=paoqm02->v5w8$b-ci^br&@5MeldgV7)gGDbGd+v+5KMpZ0zdKqFV(?r5 z*W$R#g7?gie&L=LIsk#=vLLkS<4p^@#qA5xLM-?##FEDL_dbh$S*VN9fE?Tw7I(ilMCFsW)Z`xgy`>j1M^aIKhrr=l_}D=-Z;wez2QMaJ8`R6Agc5)=#lO#-EF$2 z+O^v8T0!%&rXTdoAA$b(SE@TyQNm_nlAu?p`)Sif1LWJ0*1iqt*mkf_XhN`OR@QwX z`)KLVF`+}+K+plxoj18B>G-xdZ*0DM^r-f{-6b%pZZ`L^ZR)Z-DWO9LZ22VP&E`G6 zbzPR@yxo@H5qz_`k834aF8JjowPQl6#JS>`kekhXLbPOh9htjL{}b7djjDrn$tyAI zk(!$|eSBmctk?ATo7%~CbOh`%3!Y9VzoZ7BHb=jCPYlO7Hw~P#oAI0GWK5XbYOk;0 zCe+&qbf8WiuD@Bj$F+2u9WZOR*{!uVoB5a)f$jFVc*mQ!yLn){rL5g{C*3sPqno+y zrUU*py~N|*rkiDCT+=$t_BQ81H{H}ug!$}-QZw!z{bz0zo+iAB27UB>%PPaQ{pf?> zFQ0g5dV92f!hnJ+RcAaq6Yq>1-K$}6G}q>v=QyezRGKfhM+u{_=XZdyH#5WsFy2# z?}Bz-3+mMNop7`!ZrZ#X4b*7u*S9&AJ+ll|#~*y|^OQWa^OO6JKe@$@KAPm3d3<|Y zx~Z}a=Dwi_0Tj54ptzifc2pPt-sy~a~(od9Hc5H z!pyi|Px5$wrV;I!WV}5)xglEHZSO-*FKv$23=Ln_yZPg!2z@+Ueb#Nw>o0eEgVysc zFgNbklYAQZ5hk>K&SQDqZ+wJSRFC{7J@b-hH*I$b1|T;{OFbkJU$w#fxciaD?Md!F zv`>>spJ?E6`1p&maW%VZOpJJIoxLt|ihPsEv!o(0S44%!7US?+$a z382DzMI4{`_&+iRpmjZae)RICk)CNYI$KItM9?)uWKCK=OqxSEJPs=>hwnwPOL<7R zP4hik*C^k5OZpRNb?>PwH*~+-Gw(~+M|>)juS}+8+k_9$wWU2gD@n+X;Q26#9;hVjr4hSX^~0DAXx)7gyL!i$d#3Iv zTXcN`Sz$vrH!p;_^gt!4d39tZHJLc+EL!{3rONrAH<4>03mB*tvUR!*X4wPz7IT3- zH1F~1l4WSUw)*}fyS_kc!orp)`#dL`d8SL0$l|~Pm~s!~TQ#ncF&`Eme)CSWa?ZL} zdi?@B&XYac>2x+-OF`Gg5G8qd23~p?A`V>Rse)c2TJ-Urw#~LxjYeAvraT_xO!N@- ze*Cj<&%IcPwyetzZah5+?fWD>!m)kjw-8yXcMG1I_qplS)IqP094p$9lX1HL z;I3$Gwte}6tZ|+ts&p9yU9dryJdyq2^YMgzfKp%$?oz-Kvt70=T{kq`iau;J=;}|M zjGl??nmRsxdf()wO+TfV;4OIG-hU}P*T&RPw4>=|{X?(MN2~6;@zS?1>OHgAH7^a? zpwNZ{PvZM8h0m2y7>c%^+H@lSXFXc|Q$L%iYEPXI z9k<{){Q#xF4>!115T-*rvr_t8yV@VExn}v|_#a(m*Tc3m!5xlS7otxa%{co>;tE7u zHXl#)2PlR2@u`^x?V8%-+4DPpK_7-JZuHN)I@2Y{9$lMyS2lY3=n%AjT6lxtw|@g2 z(EmRXgZKYeT8}E=AOCR%I0Kvk&H!hCGr$?(3~&ZG1DpZQ0B3+R@L$P5gi_T<9O&6x zAQ^TMfQ>-t#t!Xak30jEOKCl(fPehQ8Q=_X1~>zp0nPwtfHS}u;0$mEI0Kvk&cJ^s z0}=J>|No}226#{Yzq9DvYR&*>fHS}u;0$mEI0Kvk&H!hCGr$?(3~&Z811gm$y4U~z zq_Fzp0nPwtfHS}u;0$mEI0Kvk&H!iNe~ba0QV8wTKDB)(_xgX{|NkGW zUtS!}0B3+Rz!~5Sa0WO7oB_@NXMi)n8Q=_H2K1^>QR@Fo^Z%+(6!4G#I0Kx4|7HfB zN`eo4v|iSKcvjZ%2pjA@o7^SgHnSljBFa{3E1BgicIFgDb&W`lmt=)@XF+*!Sp|GF z5rk2`iK5(yB6~%z{NV)!&R(_(TV{EY6L3;~kYlCOo>d9kiA>FMOt+O6+bZlhc9N~c zX_peaA%kF--Qv=sEXQO=c?HB*lvjG9OMT;f41<(~_7Z!A-JA39skV|5>AR4SM-t87 zSy5RyYj}mNyaMdALrj$0Zpc82$}TOGMZj0!vTRPfbBMisaAie-V=7LUoFx5dzV?}A z4rgV#J*N;CDa!k&C;I}nip!l9#K6I&C9}W|hT2kF@pLjmOs*g1} z_-m)rZ6&o-G<;vvQxU`M6}UQavBu#N;U94bd>U0;T2NA1XwNRU`Q=W+mDuv_C6GxJ ze6}-z@=NKH5YCEn;APURp0gy+@GU%vhiZo$5>lxkNtd$2vii5-N=+g^%E zOK@KXI2l+DvbvJF>!hHdvb@}0T41lGTBMx7Qynvg*^8iJ%Zq1Al?&Qr1t=?bOe!w1 z4=A2uFDahvkm^weqSOqYBvlYxFtue>?96hMR+KwRXf4(TV!Z%rNM5P5M%{jj3-d44 z?Lb>`DZ_hx>-5joD3eZBp}5w`B_Y+*UtgU*jh&>i*4nHI`nOl6yH+RA*1&1EIUR5} zD6W_#_W)1xj+;;k*uT_KfiHL3z(7Rp4$hP#3L4h3O5B2%PAV?MR||DboEPinQLJYU z4`iRaEYv@v;Im^;tG06ZXqNY8;nPNW+?PTA$BUE|(99ZTf(Bf=LG^a9#lpn7?^CoU z?bG3_#l7rhKmnW#&UfM#oZQWQDXu|q&D+tW;tG6=ALxLaZjHN88QfoRJL=_8lH|@R zlkT=9wz3jif!%vmMM+NrP}|s6&$R|OQ0cA!!qUo;60aOSH(NGYCM~rW7fsH0l#@1* zO@f~~${kMUNO0gnT3FWgCOOK9yA{~Wdxx;4^mll>_*YkCLXs;?NOYPps zWS^or;W4uScEqC|IOV#ZaZgyGr$?(3~&ZG1DpZQ0B3+Rz!~5Sa0UV~K;QottlucC z7vaEvoB_@NXMi)n8Q=_X1~>zp0nPwtfHS}u;0*kCGGGuiqB2+%@M^qkkU+bvW=JXMi)n8Q=_X1~>zp0nPwtfHS}u;0$mEI0OGP3~1G&QYi>(wdmge zU(w)yrf9q%oB_@NXMi)n8Q=_X1~>zp0nPwtfHS}u;0)Bl0G|Kn{r_5s;UdleXMi)n z8Q=_X1~>zp0nPwtfHS}u;0*i^F<@3-Q#4TCt5CmeS!l^Kw=rEcX^cw^Ul^Vjhl|a0 zTXlCS@749uoPr`d6q6L&anXfCH&1{rPfF9xm8A_G93v=TuSWY!=QP-c)}Dtqy_EjW zbHe_Fd3ei0X}8I|WcF{xp1C=$p1RPO7~$^z6}J2m*udNu&;F&@oi!{wGdDXTH?!w} z>zG%PUsF=)BPsJnI!f(%PS_5(Fwa*= zS*pyx6*l8^VnT7=ls##eTbb11-R(B7OxgzB1M%|etdXTRrqDL47Cda-T8oqz;)!vq zhC)c0^vvl)3@&jL<@u81wCB|nm6Z6B2V2BWnE}`x-d7(d$q}d(v>F{E7r@eLOH4) zSEM{q;D*9evQpbrJ0%@oEYiNq&>rSFCgm05t^8r9cyb}(dYCiOm7xpm+*zm^Q(JL; zni;P}q`~<(P*MN=O^;8#)AIQ`RfN~RTAE(wGOD|2x@iyfF^=(8@X$^!qz%o94(Oq7 zw#ZG5(ECwOS9fjbh{S*i3+$y%M|s{mbylgftfUxjYVL-{{fA=voZhak(yhE|sJAxUky1Sn+%|a)xMTj4+`BdA z`O?T-Z&P6Ve{j6gipg%~nMj}O?O!6^$B1~ZLa2hSt~71vz_tM|4(f)a66l|bt*#-i zF1paRZG|}#ywyOXrHY_`D7MI}g2s``pnul+R0q!xwYf3g&^!;eIEN=3cm$g5^*0r*o*TallFaXqK||00qZT+G^^Qi+Oom& zl%>RyZE0%0V%}z61OWcy3~&ZG1DpZQ0B3+Rz!~5Sa0WO7oPnEVAhv-{DK-*PBV#5z zid7c|yC=Y)M~J_XjK95?+NEQs4k;-~9or|hwgR@Hm>3yTJ~Nwqme_;z!eT8XOLaZ6 zG?OgVfwMG`EYoq8H)K|(Bzx7jHj*sU17~Rzb>t^dZ>$}$1 ztc$EqSRb@jS#PtJTZ>_Bz$oh=YqqtUHPsqxjkGqgTCG~k4a*Of3zp-S&n0(K=w6V0bG`1Kmg83KocjhzZqviwV zkIkFS>&)+(UxSqfPnaJxSD9}!mxEFK#~I)Za0WO7oB_@NXMi)n8Q=_X2L2lv(DhR* z1w}u#Ntc69a@0m$UwqP6ZP4|>Cwa8>7x2o*BPI5R{f&ugikuDe%5uwCmmHk={n$(4ytRqRD6=E`capH zPf}Dr=#ueCvg)cX37;gXuILi+Nuug|U3+}eUiFsV?eb z@ky-eTU`u3iBVn9wZkXvROfYV@kv|NIc*!YQmJU8(zV8d*1%;ee9{WIjK(L?z-1IZ zi2^Po@ku0b8G%nCfXi@v5)NF3;gc}nvL!xg30$_oCoO=>=J=#JaM=u>z(Lm(pELz7 zo8Xfsz-1^t2?Z`g@JR@88H`VYfy>7Dq%m;W2%j_pE`#t%5OCQLpELw68{m@$z@-(R zSb<9mKCu9oW_)4>E=~Bv1Y8>Ni4nLo;1dIIDdH0mxYXklJ#eYRCpzF#i%+z`r3Rm9 zfJ-$#Q3IDMe4+v_1$-i?&S{kJ6##__&;R$c^j27ZvtEM{fb-UqFa~hg`WcJ@Y=gA` z>#QrROJO8nvGq9^3s_*iA4UW2fK>tI))MO^7!eq2&4n?6zSf>FD$vQA1mgm&tYI)R z5M(u3wN{1YR~Q|*WH}4t17BGV!U(}G%N7_TSYvt5@|NWl%L|rgERR|KX}Q-j$8x)6 zx~0r=tEJE~(K6aH%rXFs;y=y+XMi)n8Q=_X1~>zp0nPwtfHS}u_?t1HQ7M)E`r%_v z4nFqni;sQ!;A8LJ_?VrIkG*=~V^$VE_Uws|nVI;Qk%5m0;bV^;_}INWK6dMdkLl_7 z*tIJ@rlsLymoE6&xida?>V%ISJK|%94)~awijOHN_?VoGk4Z`Rn3#x^jE{{Q<71;n_!ty~j}05*V}l0x zXtm;_#e$D!Gd`M3_-HiZqrrfWqKJ=rJwEDm_^8$5qeg>|YBfHpRQMr+n~3<%CZ#t`U@>jKu`Z}%N@|q zFSSg9Uj9hSAWLsc4@)OYdsr0^W(l!aEL!vL=4<9l=F_k);NaiP$+Z3k{TFZ$S&| z43uKFpoL`yO0k!qg;fShF-y?GA_Jw^Q_#X11ErWLXkm$gQp^yvu(&`eB0&oa43uII zK?~~(lwx;53(E_XVmCnxs|%E3x}b%{1xm52poO&sN-<5)!qNhz*hSF7$^xa>S!mEG_Ytu6q{>cwSXu#)4+lOQEaM#eDC#t@6hIWU8dwMbQ5skVAd1lU z$AL;C-~bM4QB+9t|K>vq>vii7){EBD)?+aH|EYBsyaVvQbtTOGziNHK`n2^C>wK8` z|A%$D)nT1%wZXjqaO(hg7odl=GtBzOSfi}Xt&Oc_cpu;o%TJcemNS-PmP3|3@J7G} z%WBIzmRBu{EKgbK{&ise@C-Y@^ zFW?v$#ebXu&H!hCGr$?(3~&ZG1DpZQ0B3+RP!|Kx3xpYYp`R4y2su*NSLiE+eS|(z z*jwl=h1o*36!sE&Nnw_dC51hOo>G`8WJ+O%kRgRgKvLL4=plvOh3-<=P3R_t=|Z{` zb``oxVVaO8gQW!79OJST4Cxx*>tQ5uwF;du0XeWhjg|<@IMreb($uPGs1+7|1L3Fef zL`6wKWTX^CL`Xq+xD6f|!x1hJgoa8%NQe{!2TMWY z#!}FzkrV_4NkPMgQqZ7*6u=Ai*g%*U$AQ@_1tyae7>!b3Fh~J(_Ax}SmjWGr6+nck ze<{#NqX97aFa4!bNr51!q5m&xz>}2L>u?kPP zs;X4^sti?_N-Z20s)dC@m5?uF2w^bTaa>ugT&S#4<|{LlVM?{{1=M7wPEK8%vmk|AtGW}CXT3L)o|E+!zRDZEw1l2#8=#P-; zFCuAWF&_Ps{357+yI%y=Ur6+a%k&qJw6YkF{(Qd(s^8`pLG|B4^oPmx=aICs7?1vm zei2mv1iuKXe>~BzlIb5u(#m2y`p5c3Q2k^4BB=h+M1M<}{!t{YEXJdMq+bNpKf*79 z>dz(mTgdbeCuwCd9{t1oBB=hMei2mv5Td`iO#fh#Ru<#YKgchF>L2JALG=$H`kTr0 z_a|v(F&_Q>{359S9KQ&vzc10>RHnZVNh^!-=TgH%2g&reC23_b9{p|n zBB=h>ei2lEE26)lOn)>Tl{7LG?Ew`Ykg3p(L#=#-l&PFM{e1_KTqU8x#FznSR)^ z4SFUzg)GLSKgchF>Tl>5LG?Ev`b{$ZR+3g060rXgHCPklnYQN75ju@+b}t>Kn= zmJ^nZFpICT6u?e?;pTbf6XuPuU!TTYV9qp$o93BLm^PXgnKY&XQ>H20IL~;(xY4-C zs4*58GmYVfd4>~)jfO?yJn@9MQCuWy!~!u>4A;-opU`jAFVbuD1^P^VxNe^Agl?m5 zkxrv4&}Hhvwez$mv>UaHv>I)JHd7m}nWs6S*{E3r?=uu=GGSGQMqQxJREMkPsZOXi zsusbk4F#%9Rk$!uI3a8l76}@mK*$urmGhJ*lpB?clp1A$GE*7u?s=1=yM+*yvR?j7 z(ss&YXbsHpk04br-9LiVe*ZI_w6Ykg-{~Jg^q2cb5dG7repxTSjHZ>vQ2h@7 z2%^8#KZ59=O7+Wn`6V>1EQacz;vYfu-|8Ph^cPe8vR?jVnpPG=^%wa^5dD+>ok&5Au&7`Ug_|vR?iGnpPG=_4oIWAo~0HM-crvRKKj3 z-T-G>*e>NX=O1~f0lm)(cjZQg6Pkr`sKZRnpPe|#=nt& z1kvBaKZ5A*PW8)r`Q2z*Sqv?Ix_<=G-_<{Y=ue~iWxf0^G_5R#>hJ6yLG*X>k0AOx zQvI@Ceg~RX7DM%?`bQA`DgF^ee=^lC>*XiWw6YkgKhZye=x^^ILG&k3{jy$uJWVT$ zq59+eBZ&T3{|KT#hU%B~^4rn0vKXqrt$zg3-^M?J=xjUznOmo(chHn zm-X_S(6q7`sz1~}g6I$Nk0APkseV~6zcEcKi=p}(`9~1_LH-d$e?zKY*2`}|)5>C~ zeye{3(QomOAo|TzzpR&UqG@F@RKL+bg6KE+M-crY)i3Mi>uFk94Armmk0AQB{t-k! z?Cvl1|CKd6>1r65!@YM|1l6wc3&6^SZ>ehe?USfZ!~6d$8jyZ44>$vy0nPwtfHS}u z;0$mEI0Kvk&H!hCGr$@6pJV{P|IhpX|C3eA3&k1W3~&ZG1DpZQ0B3+Rz!~5Sa0WO7 zoBcei>QRODp!H4bUDgrSSlGdDzvXqJmo%x3OGxMwF+s#AGZA{lqdrdE! zW}60^S{Z*a?lvwl&NL1*Mj3uGd~A5pFx}AK5F!33?t-=b6=IGUroXD+p?_XquJ5C7 zq5EF9P4}#>OqZ=|roF7)qJ3Ihs?E|i(OlGQ(mbgtftCCr>I?8j|KsXg)kxh~bx!pm z7{z~_f&c#)i0Ritgl}}>pPu}@Bt-U8o%1deipdEC&0(N@13~*T&_02neHdu(K+xU{ zG&>M9n}PNU1ntE@vjRc07--Kx(4Gu5GY~YBfo24PW-w3`2#OeJk3i5K477V7XmFF%VQ_p!z^iJpUrgbn-Dad%kc-FYj_@VK2<737)n=w5pwWXAClh>#hvizh;6Y%Y!nnNhe{B4o$gh>#gsYe$647+PB*WJb%{5Fs-z z)|v>J5wKQ7$c%MG6CpFI6-9*1_*EnkG9y(HM97Rug%cq&`V>Zl%s5j^B4kFCS`Z;K zcGR2*nNgxH6=o3FAv5A(B0^?t!$^e8D29Ounehsd2$_)y zJrOcv5IQ1cMjNz5$c!s!h>#gUP!l0DR-ht6W>i23(!!`fBx5Fj|Nqb4NqIWX0B3+R zz!~5Sa0WO7oB_@NXMi)n8Q={3_b|ZU|Nrl)D{d)gfHS}u;0$mEI0Kvk&H!hCGr$?( z3~&biECU)ysI*>(qwu};y0xw4ie)x}S9K>*ni5>Y8i6*1oAN(;}@w zvq!T~Q>y~#Ot+O6+bZl4j!6;4r4{yayR(8>VUya&sLZ5E zg~62-1&*n9CtxE=0gCe}a7=cTvxyRW8^v^*D6^y_!r@LA;V3AmEHAg07TBGPmbC1f zF_2lyk=m<%1~Q2fv+6dGNs!j_W(;JOBc*26&p;+oVn*EtG6~Yq%^1imjY{oNKLeRW ziQVfqkV%l%?Pd&QmT9G?*UvyEQDWD+4P+9erQM8y%#yLxF7-2zNtD>RZUdPFX`ODy zKxX+`YRCE+$RtYaP`80hg0$3|F_2kGmzq*P1DQmL$#omZBuGoT83UPReW{7{GmuG? z*uHK9nFMJGH)9~P#4t6!eg-m$(&C7Lf*`2SrpGD6w7LTrvsL+TM(T%p%OxHuW=*NtD>SZUdPFX{~O?KxVCCYIOY!WD+Gt)omb? zAT9D{3}jZUrbg7yKqgUQc-;mv3DUxD#z1EEY--E;8OS6`Y*Dv?OoFuLH)9~Pk~g(k z{S0IhB{r?wKqf(2lbbP+Syh}GT0aAsM2R7F8^|O`3%(fxnHA2djq7J1lPIkbF)%=j z$Rto6!~ZFs|EYai(9M|2th-KaSU*#lM2QXR=8{Q}X1y5$nKj_4miigUBuX^bZ6K2% z&2%#cGV9S(jrB8-Nz~Cm3{)zWDnGYBCc(gg16wp6oF?9knam3LRDJ!-WD+In>gJJ2 zkfyyE1DVzOshav3$RtWs*KHt^po$hgX5TbieSE`HEp4KkbPPD#Zon(!&9JM@S8EFYJ?>66W z?rr)I_W$by;{Z$H4gNNUerbHtINWG8d}O%CkR`4cXNal#%lbF< zMfzynF>AGHzj#(xrOVL%rd^}0&?Z@Lw|24oU|D73-r^D1326$^}bGR=dL7E!Q@dGl@( z6$^~mPV-=-g%qq}Ueqg~Vu2Co(>xfdje=FodwsW1vA~G)XdaAoA_c2j``+g#P_e*> z$J0C*={O2jwernlEENlkcnr;hk&dQdRkUv&qo`P5#3N}QjC2GAtD=1K$faU|5f7(% zFw$WZtYTiq9ZJOlBOXHYV5Ea7SjD`%JBW$}Mm&(_!AJ*Cu!?!rw?7pNjJO}ogOTP? zu!@;c=u5={Bkn`VL_;!K(cBh8>-6*F{> zs90dcJ!l?`v^xc>n9=QSR4g#!beabv?MlHab^w}+1xDP3=D|oiQ?QB|Bkn}S0weB7 z^I)VMC|Jb|q2&YZ4U;j5v|z!ARRvu!ZH3yioi&4ZCPqF@y>W)nok0wZon^I)V6C|Jb|t5~U6V8j-h2O~98 zu!bK4MhabJ@*KnrONdk~Fk(H;gOTbeSjCJSXsK9W#2T6hBUJ~39nkMr zGA*@=N*SLP8o|>TV3~(8{{Fx05tj=%1DpZQ0B3+Rz!~5Sa0WO7oB_@NXMi*CKgR%n z|NnokN_l}e1DpZQ0B3+Rz!~5Sa0WO7oB_@NXMi&xV*tL*M3R|%>zTtjrB-Mb6-HmtDam)M;J11*wvt)SVrO1)VMNZL z+=xMg;r|f>2E-f02>Z-3hqDrP49Fv|_vbn76}169yA0G8S!jb|*qnA8H!^crR^QBF zjFzc|<>e8*2Mo^4m2?8q`&UKrRC`_p>?cr|SLT(LmD}^EZN74xlMho=Tf3B`7@Bo} zXdhi(wrl3WsP+%5EX^+|E|nO?n#rGelN{xF_UXlicz=XE=d4oLp#iAJyaQ^;u$+OJ z!^TAP&mPmxr&i)=No&?Zyf5qVJ}k!=Vn(_KYD0^&1O*sjpXr=dQe0urvsG3&q`&hd zpD3`E0I#<4JgMN$GFxdW?DmkC93WEh#T?}7rwdI?6sqF9&S@)x(vb90YF~lkklY=8 zcRpd4(9vc9a)XSBl4IPynu#y<=NG&lk z#lg8IS8rWtT%0g(V9jd6jhas#;Xf7o{8bQ+{ZH18r)`*Jx0TE4!xLNkwdA+D%54?J z4sSDVE4;PRSpn6`%5Sxg6zU#a?*@%Tc7FOB_Xc^v=k%VmQK^ z%FCzk{XkY{{_Y|&pwF#G7U#osZSAXX&AF{-?@|72i1*Q1<3={fm8}i6r3b7qFBg=4 zaxuyy6rXl;WobhP#{|sKR#8!246a&An_l|2V$a+hS5IANOpI`Me{cPJ@a~(R2fbTf z+a4&XWT$;vrSvpVS~)e}F2B?Y;qkA$xC|RZ8OIM4K7`3C$sfxyU_gJVqpE4s>#s>B z_aLkj+e@Dx-Aw~-21@hF?B&IdLfUpmcv_7@+bm~9&zwH;r=l8UF>d3p)T{^klnPpd zey&Vy=!DJzeZfl-JO@{nR1lY_DOP+k#5GhKTF^aUX5I%z&r>|fua+3a(K*vxgLI*p znL^bRud_)v_q;-TS)LD>lH=7Hqxe$pgtY?yleZVCId;My>(6(5x(B zp3j4`=l&$!Vwgwh+M^Vo%WJcCmqB#y0r_0bl?BR}EwEd^rQ0 z0nPwtfHS}u;0$mEI0Kvk&H!hCGw}CefUp1m`_u)ugfqYy;0$mEI0Kvk&H!hCGr$?( z3~&ZG1Ai3*eE$EhVwUI28Q=_X1~>zp0nPwtfHS}u;0$mEI0Kx4zYha^{{Qb&7u*ug z0B3+Rz!~5Sa0WO7oB_@NXMi)n8Q={3RSfX?|G$b^o-b#BGr$?(3~&ZG1DpZQ0B3+R zz!~5Sa0dQ94Dk8?zfWCoOE?3Z0nPwtfHS}u;0$mEI0Kvk&H!hCGw@e2z~}$}DrR}U zoB_@NXMi)n8Q=_X1~>zp0nPwtfHS}u`1>%x=l}mcb-^v+3~&ZG1DpZQ0B3+Rz!~5S za0WO7oB__jU&R2Q|NpC)<@s_3I0Kvk&H!hCGr$?(3~&ZG1DpZQ0B7Lu!vLTE|NGPh zw}dmm8Q=_X1~>zpf&XLgz2oDkuCU?ly|@b($tzc|kt}yh*cOsp!My^;nAK{vyY^~V z-XdFaV|G`fgbo2>Bw9=f#RP01Awd{INeH2A6d;5eY6uw9i~xhb=g!F5xp&sKHZ#1x z@BO{jABovHXP(>UmUGW}&WRQ{(E=x0;6w|YXn_+gaH0i%t`;Eo|04}gsGLtYIcJ4a z?Rdh$IVv1#`xAD~USU_;p0IJY3Y*&cgq5>aSk;y%ES#mnqBcKa=FAmlwdn~HXR0u% zjZYXkV}((TSDpAf(E=x0;6w|YXn_+g@bkC8%#lvBT2rV}nN|Hq_aALCo3;O$HhIdV z2@^^t7njVbn7?4r;uWsht11?(tXMI7){=_l%c&n`j$rgnIqDB*^o=>{4`cKVIqDZO z`uZI8U5vgiNByCU{>U8l3mE+oIqK&#`onY7AHwJl%Ta$YqhFY#{vbx*m81SZMt^9I z`X@2^1v%>HG5XpZ^#?He`8n$MXY_~UsNav#ADp9pUq*jWj{1EV{ed~^_h$4@%2B@; zqo0?fzLU`(kfXkX(eIz5zMawUm!rOo(bwdtZ)NoR=BRIB^!wzfZ)Ws+=csRD^n2x~ zZ)EhHIqDl2eMgS^dPd)#qrQ&Ox8W%R8%>T4K%OK$oz)K0Tmy#L8fo!tMAw0);? ze&#edhT5y`3+>bF!|e{+ch1+Ge{$}2{>qthhMng)XFE%rgB@Qu-f%qYc+k=2xX2N8 zoadPDnB=h7zp=k#|Ev9B`>pm%?VEo7E#C=*6D@F}1x~cUi557~0w-GFL<^i~ffFro zq6JR0Ku#^t&p^z^YRXzXvg=361U#baN6M}{yz58GSUariN6G?Q*!3f2R&{m#NZCq< zcKt{hKnuElq^z3xT|ZK$${}4pQufEeT|ZJr#X(&^QkKGjT|ZLhzmvLtq-=V5T|ZKW zx&d83Qr5TrT|ZJLwSHYcQg*VwT|ZLBuRdKrQWmY=T|ZK0s$N|`Qnn{&*N>Dz$1kCc(d()A-{c`uFZP$;KF+tPEKuiVHkSF*5RjTV$&ZnK1I2SwnJ6?C(?5J^!u^+HMWN)&U z+jX|T*e$(7R%`tz4eflQsg`Ops1tKjohDM9keljMQ8SItO?8S0wInyy$)bK8mz(M&QRfurraDnn z;G*1ACy1Kq)ZA3Zi-yG5+*C_Ms$+6f9cRjnrc-iLEzUI4w3EA3dpI8!Wk5&g270Qf zs-tpK9V;3UBXd(7BkI->xv8Ea8p6YKQ$0D;z@@`-QyncrEzC`Il&FPWxv7p6E$KsZ zQyreE>$HL{)gBI}VVS{{pBreQs9T5Rrs@(6rop+X4$V}xbWm=p1)^>pn44<8sIDjF zraDB_t$Der4i>2n$W3*SsG0ibraDlB+AlZNlSIwbH#gNh(TCF~H`M{6(bPLP)&8Pp z>Xn;nKM|@kH`TtPx;k=G?ITjP=cd|Qv{>14Q|%=}wdSVk6g872H&sWbz|+iKsy&?5 z?A^24G*fPxwrYR+`cG+l00%`|VRHaAeCsH&RWR1G3k zb#AKq%*RU3|COp+kDUMeIsWOm$>DLFZ2!#upna2lx?N*?)^@3Fsja{DpVphK)z(p# zPb~LaqL!)VAIy)NljgZ*o9SiKFHL8g@{R8rZ#M>v#fGm8j~KQZDhzu4U-Xyhm+JfL z{;9i3SFIbR{Y1N48_`bD{Gi#VNonS3Z0Z-)*Qi&i2dUmdA+r6Iap*@iYYWgE!x(Tz zrgo(qdXiTb5BFm!&(Dln4t<%E?!0c@G7g=YQ=#XIdXqzU<^()P1gy#tcy^|>%686-Ay^_iq6_)4LRyg7U9No)SZ~oEsb^Q_Oy2=WV$GtBkcGLY*{2n-IC0PxNKvN zy5mH+^*QPmi*&;|>K2J~Lpkc6n)&cc>$-G%+C^i#yQnmnqv|Q$s%0B;Eb%B&iPz@{ zJF*+LG?1g}@NU&Ie~u+~iTcNvqwY|VZf%abgERY}GH;H$gG9JBIqD7+>3VY1Jt_13 zl~#A@_H;ZB=} zo+w+9qpn_5V{)fv@kOS)9WL+TjEi&fnts&sK~pescu z_(i#?t`N1-!rWAsXNGai3)sXZmLT~7o2D0rn)3Eh)d_^rn*>E*Lk_AF3Nnd zrE_yrT_{4Glbh-SQ47z`P4&#o5H6jSo9Y>v(L~Pw{VhML;OpPwJi}>syzKa;<7`Jh zJoV93EMA}8S0 z-N2T$#=$Qlr$Vm~9fUb}M&ty%yc@WbgKI=ix=Tg6@QuhxcZox%u(kJZCss{scGiJX8Jih$uFkrVKOOfQvjaFWPL`OJ(mIsX@`)~cLW zI)}jX|5W><_HnicYy)xEKf>~BONse+<}*#NnpPX%GzJX^4VM~v>wm2utlOiTroBfy zN%MP6h59-50@dqyh4gPrp{dZU=jLm)nb}RHI{e+vuRY;VO&}Hsht_!`ZkI0-j@P?t z;*mhe=fce9Dwdf;&6v@#91C_ycY-r~@wYJ-SKVN!OzxYP}v(DpkkKm#mEgvo-%$;mE0q zltuWoGXvd=5(v;spRGL!&^m6oxETgb+4M(cfJ5H8fLqmJc<5bDpT`5a#XtjU=HIIb zP*phOiASTPmp27sepfIYjSACADC!A>Y6^>vA!;o@E$ebOH;%knCqh!X`y>^km9}hiRTv6*? z^)Y4IyD`dFRn?(6q>J_Ck*G;a_p46Q!xH{m`!>SS^K zba$`nPy}^(eZ(E$XN*meKs2W6P>y<4>mXgKwPo zsUme>6^PLL4Nc&I@(m6i^AvISVz;weugr?HT(rAc`%QzL2ct%?O7+vS)ms&*;4JL4 zBC&uc9&|@sHGwF$9$0oO2A6KMbu}!tr91ffBg){4cNvjDHP*eUr8}%V{6tyS47-ozQBI2n*W4_9S5rJc(T#V zBQu+vZ}QJqW(^Wn*#>?v*ZVOqhkU|hHS_UTx&9^|dmCNrFU}}=UXfZK;}aGZL^9_1 z?QVk`yL(~vpYinAtwz3B%qDyPj$d4>NU^Fi%W~Jw4|_1aUsN449Md?H0q{DG+Jg%6f@qh?=u-?>Xs+KC`nS3Fb6@72N%9msnVmbEOb@j(Dz`(mX z%?!Q-tC?o7UV4_S63h#Syp67EZx6;oUU>WTY-3?h=eBxTWmw>jc{d-w5&B%tsZQey zu$*p$Jr8d|~77lio~9(=pcW?AC{pF-Fd3|9w2_!OQ?a;g#@hM8R-e6wBN?xQMPQyYL?`gpTz z(Q~KPjpIu&mNJ4^{`3!zypM6YcXJ$@Weh{?()fcJf;peqzKAO-CU^-N&%EtloA$|S z*a}#d8pCneq+ydl7gsl8@VkSsnFd1GEV@G;TuMY>fvUs*$M9XaHsFGY*iyU1JZ`)J z*8Grb%@V&ibk424b|9>YVi`|W?(Zjc2v59Ul#E!1)zroTYU9Sk(_<1RXOaXeO!f0E-uLjZSw zQP(1Ogj}99piIS==dC}5FA`-^R;l)syw*!rkros4U(8D!3((P|{zY#`hMsIJ1ihNZ zlrec4>#OEf%vwHSRmF0T_M)kyiNI1ypsosbmmmxs7|giTbQQUlh3nin_`7S|^}^Ss zZH|rNYe5}ERcckA_gWP>iZ1t(*We`Ti(uzk9gmRf%**XtNAjqQrRCct@ga(!E{oS6 zxlcqFdV|E$7z39ZxnL?^{9|lHmO87x{`%!N6hWsi*=oaKn5}0%6mJ^Nqt2xl$^#c( zs*J&H1+GoWIL7%l5XJQm`S*s97v_c;*Q|~XQb@|$dwTm<#Xm)7&tM60KQoW6r9p^9LM@4lUWhg&qcSU7QB1rEHcD+U z4!b?EQ=>Y)FMg`lE$yJHzb%tLvZL-G3|qJ>B^6rJ=slmuDHJzbm3`~KWmjnN=0;B# zQ!uH{n6)+Qq`gx)E_JtTn1$g;J-$<*^!nnG+ViB1R`JMb56VaJVto$O2sr7-eQS9f z>N7p<*Q*D~##tPK=_?AmV;J*+b5{L^b9ta5aqpDg|I!56K+D55tC^2b9(T@W*a@Uiw=@uY95wCxtXu>W=0ZRZJMMyLtn zn1Ju7->HB0F5!Ww?`Tf(r}Ba3SI6rk;aV@csQ0%Q`4&s-Gsn12KFqvE>=e7#yU+Z! zi=-Vi>-uv)k=<|=xOl4zU}nH9*ZYbIfrUH{HRh`Ne6>tIj>j8w*9Ai1de}JtHTF-n z3#3)5(l#{7hMEOWOwvPc4{%05A3T%Cp`6qzA6<8ed>rp)d`H;)_{pBZO={JDfcFd@ zjT(5ByV}ZRqj|hR9ELXsssZCn)y(H%sNHF0{Jx#CVHUYDyf^b*q`km1k4K@-D3vSn zzLbqpK}l=czkgyAOyxV`n93G3>|4hB}g70Nx z5$he+*ZRgIyE;etx$9?3D>mizD~HJjMvNeG#9~#kN`5-Wh$D+R5Q-|(N%f_m5 z!NRryFLpfbSZn{v z{tLUyw#T;6`l0m#>kx4LFE)Q*-eJx&-DjF(e8afWs5k61OwvE2Uk6tI%XGuEzt=9+ ze5~2dpZ`zCtNwrS=jDiloQ|WW2%IYR9;>f<5_GUIbEs(Tm419ZCpg57q>Svkx*-QX zm5Wr>h#8i@?!o4`RXwclgIt#uY+QXDad6Xd)D{^#*K_3pQ5)A*Y+P$O;?BlY2|L$6%0&`yTwAem^>V~Pjp?Iv zqaXH@3$z4xAFvvdvw3UY-9OZFf+rd^Ltuw|ty~=O2Dud*WIrc3no*|`e?C3mObu78{}59LFNRvGHTetz$F`pvTwB#`xYnokWpI*SZdyv+jtp6 zO)CsF8#uvjj9PNB{kl{x%q({I)r#Ghhg0!GoZhj-?`xHd*1aui?XA5au!9Go7F+CC zcF6@{HY}~!u&m$CLs6R}Y*-G-g<|(Bt=O*wwn?jn{mKZrSj={%726g6RvwD_aIszK zkPAicR$8%J@owRfsP7iL71`gDXtUCa&5FNCS|Oa(C&{f4eN=DlhogEUk3>zbI6}W6 z7fF1AZp8_@W;2gNO%FIh%f`tZpj&Z(_HUB58_t_6C4isN5(j7OmyMQ||tS}w|wb6G3SWi?T0O#-0{G{?f| z(Op=Tx7Ll(7J)VG$E&;%X}2s{(lACg3fwTfBu)}`jeb`&)ohejX6#9e<)6i71<2Wm zm{qN&*&FJCqUT0ScHHvqG}M-RC)sib!aUe;8Z7wxrSf}dS=fV3cL)}J^-gu+_v33r zeCttj4mS4+)GD*P--+G5zmCVDmIZ&`>*XIUmjsAEgkUemu-o-yZBSYx-?JO!BgJ3^ zsD}4E84-i7s`PE(aj5N_@8&;L${yZi{qf)!#-El4T{zIcUfOg%{U!1ZLZb7^TvTb@ zEwuq@)8Q1+M|PD&$B3OcMv(J=fog}!xy9MnaiK$P57||=t=4a>msv+6{(p%1dUJo% zpS#*-ABmeH$YpXd0sP0eVyt6l>hg?5GS}N6;a<8@lgvM)j_96(_a=R zwRYY~Z5YRUDJA+-i0194OJ0zNh=3*!xpek<5%%eIyWF)TURv;1^Lm=#DC=4f-URP7 zvZaPKI0l*nS9Jia2KZ=#-L7fvn$Uo|IU6T9E(O?9ZkqG6mvTiU9@;>a=XP!wcQVGK zUfOD&_Mg2xE9)_>^q|#l;rel-Nh!HTw$+wQ`PoZ3&+A6KFWjgWfhK@zy&Jh=j(6Zn z(4(AqM#^lxpTRW}=$;+>N6Bl6?jWsp1ZjCWLiM8OnAH$bS~6z>QJ7Xc3DeRdx}N~C9Xqv9W{dVX zP^%q*TIg89_#*At2`?U$*Qz~>)oL$#`>PEcp@PxV&d7X(fJ0spBq0Joi*QbkaKPxf zjm$VIcwFXw=YNU~YcE1ZbI;_12(P1V|V2tt54TJD7nd@+F z@nP*nf4$ku3FI-%SBLvn(*bZmu^*oiCM}u$`8hS_-*!Qn}*m7`bVX zJ5MS%W;Y`@6>@8(a-*JM%r=O@iDxQn|qnMs6bH&X&sM zjbh{`K<+H5T;G|D+<3^XmdZI-F><6oR!QZoAzE$<>5r9CIb#bWNBU!hL@xjE!;Bnh z=jBqlA6{VONINf+%6>5q@5Q_o&aXBML#{C&mx!3Ms`pF0-X_zprKFNW09E%00B5kt6L=C6&8x zHzP;tTPc>%l-)(Io_NY`c}vd{e`6GZDnS>iELc|g$g_&-8aP&l zNI>lpcaX$UhC`Zm_1r@bZ{!4?lF9UH{LsZ;z9p|56(K@+=yTV*qJ$G=9JxEHb8Fg* z8&_=Q1Zol{-f-_XH%*a=8Qg$~(GWs_{cxx9yJNVnV&Rvs!D=k9k}#|B-iub=ArHSY z5DY}(hzl={g%P{zTC>m{rRZTQgW+%u+F+`iGjjqliI;Bpy<5gyF0T-C5t$w*e*6-2 zo}7k^0Sphq_a=;j;z^n~H=W-Y&S1(?-Bv5FEX#;doYdKc`_`cA_N97GpcR?O0PlWIE^t>o8B^Dy!@tGhP+$&W4u^YgZI?L*zy|_EWVris z@$m|v7!E~iaS}ia7Ptmj&9r!W82}~l))xn<1(mC=4d8)fr&exp3bzbB=-#N|M z%ki;epW_Bcy*&M@&fvWh zl);>Rq=GRJ7=qlio8&XC{ql`Sg4|W>IErkMQ* zl)*X{jcFP*rqKksde(8&@(CW(N@d`yq(r7^5Sd03(h0u!xMvHtI>=V+n|d-5==E%AYy*lpeGoICk9ER#vG=l z#zShLL~3*%EmdM1mNogzjYK8}(qg;1VEXy{x@Xc~kDNQ4HjqlBhHsJ}!gZxban z1w#EKLVd5GgeF6%uSCdsCnYoqLVYAc*2gKKi4f{75i-6?2~B`dFNu)$b4qBuab&^? zA?6A}dy^n_;b(*=wiOuY%KRPKT6 zXt_x+r6w#=x!d1jgzdEIbyQj zDwVsL8ZQ${N{GpNi&XB$gUtJgDZfc7cLO!9@IGSNZj{PhJBoQ9xmwvQmAi5#BS%dB zo1}7=u43fK)k=d@?xGMQNBSc!l}oiSa-=_EQn?Fm63dM*EhYUCmC9{>n2{s>5s}Jm zeu0rA{jpIh7yFQrBmGe?m8<`Wkt6*Pmde!)VB|=DgrstTVn&YiN1as8JBN`Y{SlPP zxzA(dNPldQ%B^i+dfLFDQXMF&s#c~8 zmU{zD;7BEwsBi=s0#xZ4TamLeArN;^4nN4QrcjluGI?B%kzOs0^lIUR!0JKS9{LV@ zWSBCwN3bkXt9cL;0*c<4Dy{plPg9}_El!R%q9jVlvDQZ+#G@uzOC!lzEK$jWQ)V>l zKd)<223+{wJbq9edAe;NTGOxAC&{WNNrV&m;*-Bh%}~gm6(!eZhc_xBXig zcqZ3t8o6GB3E`5O8qa*Tx7U@y%%pouSFHVJQ$o11rbaZM?@giaHfzGSG!niwC4{SM zW`#zgRfQ^wyD;JfBFVIxMyA!x3E>XAO8gd%E6W$Tpc;whiBgY=6N(i^w%)KA7?4^|% z&)uk5)9j^@X0I_J+;7jOJNw|$J8n~^2uDe@mqwyJ&YBP|x&t&glIuRF40w;T>!y)i zH=f9P=D??C@%3 zhCx+km&|56Oe5Q&FF~%t8G0_HT7Fa+^a>%@avHgo8x!OzoVoEF@Mtii3{n;LO}OU- z@vD&0)a~)W#U_O9xc=o7XHJkHbR9>1`$+0orVx0hk&m6#F|B{N8YNNv`Yv5B|Vu5`-;562j71@~_Lmv+407 zlc0AU@)YxDab%03G7I*|J76}BGoT?wCKkr;~t6NfDDdvaZC)MB$@z?ge1Et_M73b54V>z#Pdp5wilDJhy)dy!jaO;+Yk1x}F zx=deu_I|NKWr7nCd;!lYin#dWI%idphyg5`Oku;gqJT0v$TCt{_<{xin7doWNh#);Yaqz zNF3cT zav_q(dw9QL7YtsQ?cngt|EKz3rM3`XXEk2{#)t6mXLFSr1oK1d@p%#lC(`+#Kn}sL z1-z|+7+fhs>Vp-j;O2yzF9dUvIP}p^A1c%XO!xD5=jwx}w>NMT6Xz4`1m!}cQhmR5 znPMLyxJTlswwKHdbzToPbiB7e@dB%>M%#qz_%Vsxal`|?fw=Et(g^unAm4|%h>R9Y zXudf3>yb_i#UA?iro=kF#h4G~yVq}2YRpyygWia*(G~R|?@)-8hGgQ!WO}eJo;Z&O zXZC{MUH^+`lTL%_R<445eFRNgv#sO2A2Zc41>ahY>==Z!ZiHA_^&NaYG3XC0_t zy3$wydDoxfiF32nxO3bc2NkNZFjIT{Xk%f%Cd-zqA+d(XWzV@AcaKsCcX@q01_yN{ zeSvR$*St`E*7kVfoNN{T=F?SklmZ4W?9SnOIQMRXi)#&*#IMua6KC_di|Hlt>sK{O zeT~cG)tRpmT^$ecY3bZ#LY{fw-?t^s;tN1e$f^T(oA)bJ@k*rTt9ALjA)Z-?YWNwg zW49(&^Z1Ol?!aZs&Ql0K<4YOw`rTxp3z^KY9$ou#Jh6(0KaDa`TJC)7(c8k+@WE~n zR+8NJXd-eFGPMPX3q61HpdF@pbmebjiIrWrBCESft$ys;F^b{x`@?Qyzjj!~4=YC{ zNGzjntXbsBq)L<&qIXEPPAz7+zXA}g1p#ivBa`0)lhx$ zW$$y8IU;l$YA`i+dAZFvFmh{RX_i5wR(-Hfp_55P$cG$MjZtC?47mAu8LO7t<5#6C zo-)M~OL%yCJs>IYb}CcrEIIJf$blD2EY8x}Bq`g2%HT?~vH{k%EwPA)Wu}P3qaJ)x z8QA5ZErPdm(1m*wtif3OBgn@jxKUOty{;j#kjG~hg~P@*%ap+v53+8nYsLI4HzgME zz|8u4=;|%Qlm|X?R#Bx-zw7E);>;{Pt@`#4SAVY%GMEw3;K6Q-GYqdA0^1U2Wb0{U zSsbJc>@m_Trjcfmoc~9twyB(3ooYwI(HrdlgKZn(*gPQNc1bJFow zqMnfTQwIY+xk6Vqz0T8ZD;kqF9-TRqVS~F*8T6yI8AIz>UmgZ;lk#+ zL>bs)?5#Vox2{R*fUo0*iZ}O2^YGZwc~g5bkBE~zv?0lZC#mIO^2IRVx!xuZM#OU6 z29|4oQo}c9A+=K`xkWycheOdEw-K7-+N7GV&~R~ukmO;uJRmy7LmNr)kW}$Ng<>G2 zUZ|4?L?vEmL*j+%#10;ZChy+WHbWjxh9JBR1mW()b{=G)xH3o()g}+5I}Jh`(jfQ} z+jtBr`V)B&ZkLC_WI<>{7KGZwRvw8O1IQQf4|zy*wtzO0+bFR`3Irbi$?||`7XLP| z_}3(wcpz#v0FD2f@_@u7{%s)fuTC`bFw|HBi@!{m42ORkIQ(l9o288g691L*>QX^b z__u+=|KtSmz}8Hr!coQ&T4P@%9Ir2Pxh72pbFphusrKXqal)oWhgMOdCA{b)h!Q_+ zT6FLlvFJqptrN*xi7PfOnir)+`L|A-q}`k#^!a*@UD@CKvr@Kg#;VI7h+)R?y$g?l z2#@WfW@k&?{Igdbf2r%yrPJ~_Iho}QXG6xO z+lO?U5yEnRP;;@Rl^d0)=L^bk3)fw=ZjnOmHXq4&k&jNe4yX>`!VLJr#c!Yv_63l1 zSHn6aT;?@E6n2;zZ*8DDf>fvO7;+{Y)CAs~TbBs)9b6=y-BoJM(D(}q6?7Ho4tU!< zE=u~X#zjep2V^cver$Mpw?csYXby(Sd0%7|%#5Vd-_wQ?b$lVlQMFcmpBUDlP$6)O z8L#fL1D{^FWNRYG12TsL90CU@1}M575}yJO;uN?!v4MwYrjYL{56@HxzU%JTi;EQm zIimF=NLz5Q{KYmnU9IP_8K zt@a=7&9-lC|Frq6UsxlSA1xP~51F@`{%!Ia|6}wT4j3A6^1n*&)Lo-=8o1B=Q5k5#d!_^4Gn^p_4;DbVsaA(K z{k@7nRWTkcNK42Qh~ec?PXKq0A#XIQ>VPwST@vmqC2V%_|lOTiO`&4vgqEX*FW|A_HM~(jO zsB7Jk1T6$6jD_M|ltx8d_?7u;kKqca>fk;2lf(HEOlC>|7yeHbsXyz%57YYz>JH*voh;ysK<#s|6vDlFmm*Dm6z}Q| zcvm+i^LcD`8HQi6G7Hqv+=@HkR?H1Zf=vRAzl~{p`1d}qNX?J&O&`_0w}ZI%CI|Bc zqjtXN68QICt4P7BGV3<$-rE89Ue25xgaYW8%^Eykrz;JAY{%CQIKFO74&=*1F}G+y zw4_WQ2_rT z>L6@DN#qy+JjL&%0UgjRW$G+t1L^=9P&kQ%13;ZfeS=`hQKqFClAI2Z6L zA}(=bxN2U-tmPB57jl-Q!29nNFS9CQy*can$G)DNQ+jB;=_JORc(MG@k-A`Y!UbzZO*_3qfWnkSNKKkinWg3DpV+zixop4SS&i?_G^FpV^ zait^Ae!YD-`2UNn_gkl091{HTt*pn{@xxd9`WnBF(d! zb?Wcban*iRfIt5q{eRHTaHYXAOc^_{+99RQ`A4NY?9rDNZmjmYL$3M0*{+Ie*P4~^ zW1;w!mlLXK%|1S(O%jeZCHIAD_`C z2|t=_9Xqv9UW@iPqs=}(qfHWg7TG#>!i$}<>f5u7Hv5p#hI1ytYJoC@*`6(U{B&7m z_@8pj?BjFHB*AcjB2g1Ph5?ey$ShJ1bIk1HbIc^cbb(UPRx*_0J>P5c8YT>X?vQJl z+qcP!@SEdJL?p*d66_Z!3j19k$;@V1MG@tg*~jOYNrK%1KD8pFsUQ44QSzhIRn^}^)?&FiZ7AHY+q1GoDM3QlHpR8K{3<)>)@d-DRpvU0H zgKpa7DU&8lD4ASb0=pA3Zpxe|GYL2MX^?PpdlJ+b0HRMH2+3-GPu>Kzum_1S_mM=H zNpNJK0F;*jrh?Bu`sskIu3-{k?&A|-CP9Y*usAanA`|8fvcN>X=JSwL0{-nsf;pmN z7sq2Hmj+?|X$VBI7jZ2D`3rt&@M05kdESQP48Bmb*%)hL$!oo26-ttF49h{pm7H!Y zRBH;w=OB%-UN{J?s#xyPUNkLv8WCAai_}&5-H{;fdtCx)RFP{L{INq}m%GMYFZlCo zo8w9FQlNq9)1-?iffdatn%>W_*Mko&49RSdQ0Dz_>=qG^88mYl_qs%9LG@_dh5ZyE+$7OAA(9QHy zq}ud+BCySLfNh4H|A(s{RynsjzI82kDT`4 z(Y@h{CickbYN59t98<`VVru*MgfZQH`0{e|I!56P+bXhs=5-rsCPP^y26`;dlTR&=Sa zS2z2T@M@CuRdJiSkL+sAkA@My3|}+!m39BWyh*q&NosWJf9uA`Mp}Xjg=@n>;Ouz4 zHVKa<;1p83$}v-)xmz~QLIhwpg@bSq+G%;=Ie!wqNdTe;pZ|ki>tzGsEZ+c+Ld4^u z?FPMG9Z13z2~hN=)HksH9NADy5Zet(0Fr!c6|ic4=TCyJLsBhx=|3tPOYEq>6OQ`+ zBse)FP-~tDT`e1Gd7ut_GGrr+&o^(|nd_6F+5i-Ng$}o7`JXTC*}M~;&AudvH2_9W zfQvWe$sZXNb-{2=K=^$7t$5O(1aF3<1>r>fy6hGd`%&+NA9ZaKEE#~JzbiOW%ZJMN zQtyN>wLb|;3`w2l7}v=M>hi0vL0FD@XYbGaz9h&mBpo&D`g1>#-Fy{c=RBw+|^bl8!r<)vJ=50-sD;yh+cmYJ+f0a zP-vwW~V34#cq(O)tmaniEU=wO_k2*&Xx!3F^^dL=p4+$et~nHApLh^-925wyD!Gg=2kQ;Dw_oK;vJ9Zh{SgFs9KQ?$@8-10rFGTv{TYk1etXy~QirJt@# z>uR+>YOm6c&^)Y}ul~0>s5`3ZPwF^6%OXcFsVmCCc*wECZ`eBSo*8li@t#aYI zw;8S2W~@)ap-Qr7Vg27F7lv8>Te19aNWozWVDx4K%l{#{VC?GOiq(I83T{%8s$umX zAs3BV{9Cd32U75f0vLS|$Ku~17mQx}TS*{p3a(GUqW8L3`(=MzqNTqTOMf5*|0YSL za5kPKw^H=cxRo4@Q+6JU-q7H{`i5LA@p-is=T&dY#v{=a2F|Opkut~CRvcFYDQlM2 z!^v)i+#1o*zpXgf)ut>w7Cj_zu-hsZOLVSl#ktO#0w)ND1l@QzXHAz2lsRU#;+W-0 zf&2qF^sW=fpReWO969~8;`HN9f#*X~n?UFS&9P8=WRR}%*19qBA~2o(cvWo*v>w2r zyJyLghB2~n+`*WakZ-}7(C>;SZwf>nk_wGIX|enh&#ZvE$y-lMoL1B9U42MG`)On}6@cZ$;6!<&PhV)Dn zIJ8rNnt5?#1i5J)dTVgumw^=MJAgzl8vef5%Rj^|3E(~i)K$cOiy^q{Nnc8prB=RY zH^|3|;oMz~TUatS23=L@PlCe(wW9ZazMKD0DSNP!^~uxdL7mWmgDxBxNP@{j(ttkw zCGw3iBJ=lLV6D5wm)w@60nd$o*hhA?mPEWYA*5L%waUBuhxJJ?dZ1RcApx{5@*9w5 zcG(GLmzpG4Jpe}AnU*HE$hTVfFrhaer^(UKn7wV*A{$xXzj+&JiT_zg`mwqwWVT5ts`{Jj3$#|BIs`}e9 z`Qsd{+ORBnBjoC@_nOAqWQ<3m*I%3w|1G;xnM2}E91^|BXqH~89GALVHqb(1?dB)G zUSC{7&i^jeT`K4G&asXs9B0}0+mrTzw%^(+t^c$x2mk+C^DE{`)89>tjL#U?8V(vZ z>i+}&|F?Ck;r~Bh^R%W|eZ6`NUhp&j?MMlZPptV2ev1c>YANZ_{%TP4bHM zzuH#YVO!-?DZyPzVo?mg_lmq?^~k!~UJUE1J|(zJtzmj>@8tK3<&~l5=GFFMm{-*) z!G(%-`G$G*1$hPOnSHgr81_|NO7NzV*qW`Eu98=X9vfKOi}S)58G>UKJ2GHl4aqA< zk4&uX#eFX4G^t|D<QiKOZ&q+FWYN55<;z4;0+p_?ub_75LQ-mr- z%4GrndWXC+NF3||7vXxP2t|sX+sF>4g2!jd!~35CuG&e!l{Q5EZE_0LA!=Nja;?&v{p;%!pg>aGGd#nRQ&o0ioJ!D(qA-f^v;)mKu#-s)d-luY* zC<9(APgI*COe$=(U{jNil`*Nc!ldR)5xx}m@DJZh*>@vi*UMJ8Uiwpn9Ytd18d!g> z+~yORo>r+_;d$vx5h@h6Qt-U|qg*Jl<7F!xFKbhT+l1{W7`gh%MH1P#T4Cezr3PiG z5O zKD3yZ}+ zgb3rvWlx=3(_Y-TVp~e^3}VBL_I`8I6q%sG4G4`y%By-m;w1g<7%rGt{N-z~WC|`p z?2@_nqLp{ZD?lZ(4@KhDflzTQOmd&CS?G>Z>=2bCks?}Qs++T<1g9V`)AoC}jJaH1 zDdq;l)p6nhFM;RDDabeg(J$es6-GkwBuzs~@C{-^u=ZBB)ygZ(GQ_A?^XVf=qDa@t z%POl*ae0s+D~4t$`u)1pV$7&|&dIjI{C1gxVPVxOAdFs9pAuL&#N69>XRRpW! za5!W~*r*30DS>f={jBzud?<4#x&*^28pWj_3+g&tpAtAWB=xk8kvpkG!ZDJ>kNJ}G zR)tdn;Rfw4jU(sx_wScCYPw>G7{tB>(UicvF_r1eJuhB*P#$6x!U7RpL1qsI)zo)W zN+8-OXHnZfl6$~$N2)PTBA4f8A zz#Sjy&e-}NngIKTz?UJhZ^YLbfA>*eN+8CdZ!0mM^>;iY4}Wej?g?X*2i?`^ z+t*fN4{|!c?y-B22fu!Llsu@}kw%hVd>)8JUJu=VH*(`rWqkWFL!FTH$ZWr#fu#py(CYG~1lAEMb%nsvQ!KB? z=VfSm+6hfhZA#!5VU3lDm65s05CzM$BUpx<|IbF^KIf~>-Ogs`xz34Bi{o9#?;KY+ zY8^8i{lEzDr2SX+diz{^f$baH^R{2xnrusLCtD9&U$Ne2O3?=>ck=NQKuO@_A(4;wBs)EG`P z^npjgKK=Fjkbbs)i0&)hbGln~n{|tIqjW0m>)O5A%e8)OrFMwspynmbZ!`(b8ueT1 zFp4bqZ(}pLu+?$&#ue1&>Ekjk^vJP*X6x_XICMW~9{HR>&>AKbt&EsHv(Tt_+KE)piwiocF#r&}QOfZgU zE|!XoIZTUU#wxH5pQ)rBcp2DXB@28YPvoK2AwZgw#l>l<`$cY67H2NTsx& zQ&QuNqnd|9iZS68Xm1k4j+pSKz%ti7Oe&cF(kry!0sr5-&1Rtl`5rVLpHs@s#{KFImnsniSEP{_L zVgyM$_Rk`?huA|Aq$Z3WK$E@(XR~CO-M^g?Bn{p-i{L#}U*nA>5bTph@Xp=z8%s#f z^v)vq>t`52(lfoX2;NMMo(Ux-q-UI21aCaZypi;bBa7e-)G)&vNzd4`2wppic_Zl= zTNc49XEK7MXRKKSFI~k5lAf_-5xgkG2$G&LXAw-bFoL9KOj!gkxJfKHzOav7(voAsw{%;^B6(&Oln6K!L<#HAbKXXJ&WMkm(zmN&@-uRSp-+!!3dIzovm2} zm$oy4=$X`(EP@MPVFb}LsirJ~^Y=4?Y zPGJPmGbv<8ln9nBVgyOgAUC2!a7ryBNO}gD5ha2Xw$p-BNzX*H2o_(*2$G(OWDy** zn-L^EvoVX{sAm{K(lhm01c$xF2$G%&XAvwo$Ow|231tx+>|g{*&(viR%p1iBlAZ}> z5$rpY5hOjcA&a1M6(dM`W_=bxYls${LV6~UMbOy72$G)hO9k@}Kg zeE&RJa58D|^Ro!P)4&Ll249y&@QuqELGme_mqqZkI~YOIGi$R5cC<5sq-V~}BKZ7% zMvyf4nk<4(Oko5`^PH1K@Uca-;G|N6;QxQS%6XY{pyM{jSo=NpnYO>$R$5=PdMy97 zG?_oeNnU448b3CM4PO{G>p#|S(0!<@*B;b1X%1;PO>cFpdWhc^Ue+u^B< z2@5%~K2hc%%O=H2lcZSNnuY6N_EsFcqhBfmdvxN_G>Atd&B6^ZduIva(SIw0&oGas z!8}^mEZqLmq4i+?T&;gy8PH5BuryMEZEhCsf-9Jdyq}h>Zc+v>Yc8-fa)E7W7Vd=S zGSFcBRH&*)qx?*R^0Tp7xE!ux(7(OwxoTx9zJTEnh6x@ltLgIEotv74TVnS16m+9~ zehzGbZ!`_Q(P(q_+hXKjQ>eSe%(5f_Tbd+bQ#T9O#q3oY60j*`?dyiknt?5i3~Wu! z!o~4yro)ke?KWi^{U|Be(n!I^*_wqLF6zYFm2YExG050w_`EU_uNNmwZO@o(48ocez!WA={k^pJ&u2!Z; zs*auqFO58S{$_H=%sSvAQSYP5z*h*Fdeg|%+tf_%nAv=_10D@Vl!2;3A0Wvch)IQf z=WdS&PAs9ADy@Gx#aWuk<+6^W=K$pUD^mzP)6U0E_?Je)zfd!|cGhvUa}-hq_fe)W zRIcDOas|hm$ptc-Lf3f>w^JFwCGj9`HQW*0ZP(Sq=@Zx6s<4Q<|DJA zLf@SvwP6~m4V#+DtuH&!oWXl1C{x+lN2(YD6`o6!S23;q@{MRSx!GlN3?i@Mm&$-w zNfIljkyx?5ncU8@sfw*H%~fb#U()CeB4D2o1Yk--*BYj-Zzk8YEWrXYKr8h*H%4Ou z7*arQYbGJkI&LvFgClX|C(5+yu`)-dkvTHfOah>FOiln~j;vG$ze<`qGL6)cv1Sqp z&BE&5z5X0!U{?k`@HQdYS>SsW6k1zd{=vp(66q|t9e!n&Lam*-9d?H{1ih-Xdivq| zW)jBCj$mZTROq{5(qyKQCX<~13rYO{R;SkSOGm!_X8WnOTWw>k_gIHnc3Fm-?=hE{ z9yU!jK4zR{c*?NAFhc*mKA|`3E(ZI5i`K5WMl(o#vwGCe%>b~aneZV<6Q6wd`iQhJx}u(l7nJ28pDX5##?%MP57sp_M|gC0+xFe{zj#I=^kv?LfOiu~ z_7cTM@2!gh_=C#L%^P`O_H^8NI6cCL+2cnuyUr?#xEld{v1?Ovm!|G2m)X9PBJ!vR~TkG0&Wl7 zFeCWbw8JWXSUI|xTrlXyn#Ha`szga4dWbOj&T!3{y|7}z?7|fzo5>A>ZZs{)z0lY# z$;+J zrIBoJOY>U30IbRGt8iqDG6fKh&>6Fp7bJx6&xgTq>9d@^`CJ~JCHDE^uP%i??`2*P zN5Xg(bCJb`SP&3~@ZJ=G8nTy({YTS%*RkTU8hw zgk-=W1`N3k!ch;-K;bAcZ|GjTDBiq^N2jM*>p!n+Ql`U&&(7mV3L8(ir9*4_)rMvg zjLp(}TOYb#p<2(ymmZDb+@nfs4*MILNyN2|qo;J;%Ql5()n$Hfyv~j69*Bg9AP%U@ z#BkbgI90O{cD*Y+3Nbn9c* z(TM*aY`)n%)O4R|l<^^>#c;mLk`UJZ^}aw z^U}A0m)_H2=W*x}2VQ!aI2l&@Hn7tBT5MU`4XpGl<<*Afq;CT!{V6TPOIb6Sj_DXn z!U}znaJ;_E<(f1Zk%O*DrP@Tqszp!AlNd~w z$NbUKs8Z!w8N_xOWWeGE5%^V3bwvU`Kep9;wB*LPyN2Z1;sX-B^#LE!H%16s`$5gc zmR4?bi;gcT8{JoT(Yi$nwcLEo(ee;r$h2#Okbb8e_b%l9#zK}Mz442{2_P)S#T0Kfwq2dsmY{Z@0@77dTc z@(=vj@bqql5cwe;3}a*=9Jt#ym>Er{zo!kisQFTiqb5+5>ifj728Bv7KNO2scUdJ* zFI=*%Ma3i1`)?qYj2WO9;(FnbN2-cZ*-b%y@O0aX#^xP7K0B3sS9y4*Lin?>`3CQT zH{`+9rW+j)0sa2L@)z6SG_{=vXPu@x$Dg89r!R1WeFCQrqzm@oBB1LaaAf3_U!3H$ z&D;1wup_Ut3Q(qp=fP9N~i)bIO^S=4G5kmq&>JDn)$%3TbsA=g<>rNUwrm{ad-LGg*}3G!9z0E zYb|Mb{rkI>0!3V#brnrsmB&I_ul_xv{lf zp_W+W1{b{xHwd`DfrXy`XfQj^7;oR+Oc?$39Al1EtKTS7YHTj_)?mfwS1uT&{NlQA!Dvd|7#Fat60^n}z0D^kJ6<~UypcCtM5 z(N7;L)CtTG*c1Vqhx*{@?G4m3_V@btS^ov7;QxEtG0XnE zeVOeQ+bZi@)>_MdEbGmmn**lzOdjJW#x)Q-@pqyHPPD*@7C6xYCtBeD`4$+`ax$?A z4b+%KjvK~s)x3&X%O_|r zY)(;%;aN)o6UuLuDaCOtD4npNY;GCG7lOX)QmL>-{#e06WGs`y4!ILMAEWuU2E5L;3@VM%Ffaq;l%2@MXU`;>t{ivMUQ{72(0LwWGin1eF>NB^u0xYT{L z6Yit&mV&IfaA=&T4DND?KVv8S8Mn3M^SI0>uYxz>0cCKH?o8MTXTrvoAv`{N62x&_ zq0Y{J8t=qud{fI{9-F>2SE=B#tI&6z&11I{9=q|DL0Nkn9=n~&w7S$`w-XM#+gk?m zxQzXQc(0ZygS$L_ROi)BIIntJPC^0LT*63e@R-c2s5;mdx>BFEA*n%4OCFDtPkqKn zj=W7Cjwm&98&V?&S_bg#SxE02NKV|(x7dC5dG=H6R@_2vjB`V>S811^sPD9v6UWh5?^?=LO#z%P;$^ zW2*YcngTG)Fwc?bepvVOd=Sepug9f)y8HE@lVQ}6PJVrN-3q`W!#pQ(mYVX7gG$st ztbQpUE&x#s^L7&4*o~eKei&9A@rFm#^T7(kJSNeB zM;;e|3x;_+g7}{AE_(qeV5HBVbC%y?x-4(y_{sTTeqmpac)TO8&xboU`*`UC-Q8XQ zA8hvR2&n5u&j+~+qfSEKj=a49lrD@q2~*RSH{LmKIfRzQ0#a|f->9UvK_}t~iV=rwe02vGW z9I;o1@{5J?4h07bo{PUS#7TXv+ExCK|6F#<&bG7iz`a5QL=_@|RO+`2z_r4@8JwTp zEl~i973R4b{G3JQzq9@Qw!?pUu>i~}>~j!mW=e)^Cj?mZ`4X>s)tBY(jCo>n(Ddt} z$a2C8z?ok4S^3*{Z*z{`|7iYdBA^ww4afxb<;~~+vF}}__vRy~3H$iDS1jefJpYd) zUYUJu{z~cNXZH6lzisT_^R8_jm%l>#_)i9N`86{d1|ROYBY(N{@#6)y@?Qzfp1(}` z_zzPu+DoO6A6eAhsrgH!kN4C%%G*Bc82R@vw&pLEKE8jusr;%zC4Eov{4Rfy^zl8{ z^)J68vd(q)=Dhrc(#Lo1&R{Q)KK}JHna5{JAK&~|rf6qKAK!S;T7G>>Gi3YSJM-sD zAK&1}ynLSY@wKBetu|Ns_{y1?HlHJXeCevp%V$d;Ulhvp_bln-R7+-3s**mw;HJ#W zE2WROKAfp{h4k^}7c!4emp+btn5lQU^l|-9nUc?xKCT;((ViiF94O9wCDWyky>l`} zJ5Bo7eO~uRoL?q=ytW~OT`GNi_T?GvY0}3l@5nr!Dt)}PJ@fJ@(#H#5$!JfOKAyin z^Z8GbKAvOfUcZM-x2~y>mQ@WM&$4eiVEy^@`iS+T5+V1an$T%tV zgzeqX#Zu+s>$+#<{37Y&F}pL5PnA9%^-SjRSn1K{_g;M2jKkQa^NtM6)DO0YYQsn~!jwlZ)kUssixch0o^y$ZQx}Oe_K7IeZ zBTw@O^H0SKXZ|}4nejPD`uL5@Go>CVefMj3biex~sd7hqcYEdMNgqGIKl6Bi^zjo@ zGSK~{(2p%T0zIUk^y%+wk37xqD}D7t+q;p6^pPsxx4T=pw^aEz&t#N)k;fWwgBE`@ zx_s}epWL)^)OkaklBZ)17nlF;m$#3cTx%WTkUSlocS`v~|GDh8edqmSh+Xn@__(p< z5C2ed+dKW14Y5g|jy@zrE_bUtRLI`g}NmqRis`*U&1}-tyOM zf8W*T?#qY3=aZ?@;B~{xAKbg^rv87Z$u~)q2d`0mQ2y2puiL*lYsV0yL^*HMnDU2( z9mo)a^l3EH9(u{szE@

    LgE{caATAv}E9&mpt;PAzH~(>*GVp@B6Hyc>TBaLo|}7 z##b}Fq?SC@etvTKL+Ag|b;*-E$@zby>Y&Q`j&q;$7UvG zJU@I*_>}OFa96Q{;HA+0p-kw4(BYv(@Q>iT!AFC0f>()e0_+_O2R;q_Gq5mlec+71 z0fCqfy!*1A3oTbECEVnWcC27<0MN zD0Pqn<2>W7&5P=89vFYzXp}z4fS%K8I;`b0-al$d_iK$tX@nfOs%E4026QV52U;~cz9HJ<52H~^Ap>d`*UYh2oP6@=Pu@7iXp~yWfXLb^P}eBE(52h~ zyn(l7T8}JT_UwsWeli-R9luW2%|=vx275c#;6e|4yzJSM@ERxl{{4?AdfmhMu9$Z z;=FBxsxcstI${5bG#g=%j1WabPgG+-A$4MPg-A5QB7OAMUK0`xHNUcN{)tAIq>g+s z#Cm)~`<`1vGZT%lNfp7mGZF!l0a z4-6eQB+&@DJjSx&7*>s?_=Fe#jtq**iXoO@kMD(JZxsUajF?I2!?h(mG zh^CMJfvKsH?J8^X)@wITKIq&V-%d2bHdz?C4vkC(#>o)bdeT00W+SYV9T&Nvta@A^ zo-By$iDK(Qq7m}R5z)AWi~|8>B2o{PAZ8;}R3~;+ zh(sf7lno;rVv@PSNLdisx3U@pQp$sf<{=~q#FPaQEhuMJf|!kPQ=OPmArg(yQ#Op~ zC;5gwOrjBrsw35xO^HTmDo4aue(a}Kvk|Jwr*hJwd#Y1`t@0qEt)v|!(FkK@i0o@Z zE)-ZRM?`x_a?QeAIU-s%l6{7~a-{C;2S^kctd87YXD#_tJWlN?{%XKt**?oAiPe3E z$g&_Z<3z@R&FV-4xoBauY@F{>AKDjfq7hQdf(T-V?dxVE#Fhs+cF>EJ$(oIjTbf{12}v#UX% zyex=p*JxjFW+Swh1zGWK^p;8xvk~g66LTs=q7nAXhFRgdWdXTnVZaPoe))&h*CmNY zXfQ{He$+ssz=b)|{jiM$fe&*eQW#4RNHIf}{e0adfE{*?3g1D_3c5T zK#@68^wELf$sDB5{jGU)A{ z$Uv}X9f{jwmS}`QbHrFXoD2kuX2{Y{ccutbnj;@xNUs<8G)J~{ol2$)r{>7N*HkY| zqY+}Q9+-36V_TCtcuxkYn8ST|}gt|ruwvs0lpS{1a^7Ano zq1Z|QS=DOaAB{#>HV1|f0HV!-!8TCW2-jAoAihz5No5LkjgW0+yDWFDZijC3?eA5# z8;$U7Wdh>=uRbBwHA1XT(#^M%0ifN=0OJ4ORDCnp2=i701kSSm4AnKl zy_M}p%su0a>I7il%63^ITiI?j)(C%6^I&5882b<#*E?+=wTpHCqhId%)aXBrS^9R* z)S32s1>-uW?K5UtuXK*TW!hKB|4(tbr2nt2T~K?S_yXWTwY$du6Ms9tN@V}9j*p4| zCEhjmUF?gneG&i%6cL3iGLvHK{us8e^n?^^4+-F2;a3$UMSH?gDq zU#}*qpDr~~c$i4&2ZFttq<89@4h#g%CMldQ<-+mGYJ0aeYRK5rYkv=!O;R{@;x>;p zZe-I=+0$P(o1}2+#Jp}+YC*p>*CmFSO;R{HF{bBspEY6KWkZi2_?6itg_99~U3Jh> zzjf)z#!Sy&+s!5^oQ#kw0?16Ia56$H3iyr8R0^j~{8DQ*cIo1~J(M(?q;N7qEF9=d zVo2fCiFy)4`X(d9>VeD1Or>t>#3kg2N!w(ETw&m~&aIpmDVvOts|4cK_3zF-cg%n* z%qA(DoDltHNDS$koY?oM?m_Fy$|zDbb)sw3x^`sa|GYAAAG1lCCL?5H7jnd;Xfi^s zI0#smS7s_TQztfzwicIPzcfk9M#v=r`&)OsJNKl1M$T-KhRF%BC?IBCcXM>g%5F8inxtW}AFNy! zAb-nJE%i;?BFkR6mtsS|_k=_i_`QnF#>+5u0iwY9hWIscYul1j-Dv3kHW%i8k7xxan) zO2}xEO6gLT4|v7;0sE>knxs&2V8ff;t@OIfx_;YzH={}VBnQ@S+uOPo|K=G@(k40Z zjK9H}H}K$-UFKAyNxCEl)*5?Rx0a5m(Iich1CI|o(7N;bN#o8d?rk(lkL19rk$tV% z<+r0v(jqyqY{C%h_M4-rkBrZZCh3qIcxV>c3#pJC_{SWw7g8WOuz1NJYyQZ_)eFs| zj3%j%9JqTui6HHf19xmD5u`hEVE&GMt@&H~p8xKx2N_LL9XW7Ie6V%f70)FOH+vdQ z(i}N3yWgSK!Xaa4Ue(54$^hFNLTuDy1)I|}s`@ZZAfY^h6F^ z+(3qqmdJq%MvzNRIwA+o8K1OneD**6?rq;_G)Y6`z?oC)t(#7n|3R$#{YI1YLk^tQ zp0IALoNj4{95{JVFDpN?@$XZ*jW?R48*<>JHDnIb3^{PZo4u{}M^E}PWjty$NiXEU zG26(2l2*up5q{I^T)1qVxBYjcNjf114l~FtNE#srh7a4xYO3s}^g#|BIFjt9v_TFG zn_xdG7){azIWTxu7pwV{`LApVK5aBf6XZa{95PAifgBjH#Qv*iG)W8OK)?0&qlVEW zEsz8Co9(|mMw7Ha4j5wPQTb1k(IhR91HI#92&sV_=-JPHR56;Q26CX=a599{Kn~Q7 zB@v_sav(Cv{?lhPNe|>eAZ2Mk$0Gcw>$IRB1FyBjmsHs`4r+Ts)uXX?)TtfC@iUS}Q zM^sLC<5dp8y_?BiTqyxH%iQp3&284oeO@^K(w+@Q;}tqE;Ln;?YuTL>54w8H0;6%V z4)pIyBV4WnefFs)k?R^K0ibz4Z=ZojTlbVMD4GACSo3L3?Z>sx)ZQiX|7X-5SlcVU zBmPEwX}lvoDSmu>Ks*@xM05sR7`q`hK6Y?y*XYlpL%{OrjnPTbW260q{cnyu7P&cc zMdXCYo?_Mi`{5_Uw}!6{pCs1&he98R)`e~lT_aZf?;DB*KMy_|yeoKJ@U-C2V3)wx zffoYz1{y`~fB!&t|F`}Z{rCA>{Ac?Q_V@DrAi51c;LG~X_Z{ln&HJFUYwEbwe7zF$!4gR#)uZ!_Rl`q3BspG)APz?PuF$ zGn9@q@_UJ7KCn8Cx!}S>$$mlX9GKzuvwX4{Zl^IKfo(snC!3*noRJx95(kE-F=zZk z6zP=zXeXN?c@E45a-V|dX$eGjT{hVAhmhWyfCP0m_2(_5H-RsUo& zjE@JBnQXH2kUj^dft)aSA7^AMFmmFdei|bhnUezq`_mYa6DPM02%rPA!+yh)Y=#4B zj7W=EIK*w&_mA16gas_!4NqkbKr!5Bx;OEf)fUws4*f7 zP8g`7#)vdHVPK1#k$G^!Ko~VfB*F;;XVe&x2`3D+QDa0ZoG>s)jk$i?9^|}39vzr| zo2hSxOY)n`vO#ahYdWpvcO0`L z^W*kpGkj7DB+}+~pkx!2k~1=IP8e9F#)!l@VIYHqiO%P0txWs;+Xg0wxRpP=s9;XQjC?+FznS2JB2OLu) zL=|H>Az?N_GF3uk@vA~$Ho-DAV)a1lmZ@X@^7E}Pm`%`3m5_;k`<7%j!827trus<= z2coGFL+s1jY=UWO#9;e%nArr?R0)~wC-Z=7s)Wq<+fQa@(?n^b8u6a}x7TdC%#qk+ zzo#*qF4YNnej~>abHUDKcUF<-JygrF>kxt0WJ=xm}9f>jatG7hc z1Q1HvNW>Ub(_}5ZuK%mqSKlz3E^r7EoB4tLlQEml*9lROULcp@d5%P@{dc5S)48RI z&|+AT<31!1l>UEp&Ciwf|2Nd0P1gS}h|h|Tj}I5s|G&rHi#-vWAG-cjCty|tdNJ+FCId2aSx7Oapo`f8 zzhs0+hI_56o;>^2hi)2Tw!khmVtdePt`Klbl_*ux+b0!fsqTtQbyxP)Y=Ks)A!MdI zWTl5jKOA}eBC`cj$p~b+J3^aR{dG{bR|}LO5; zy*zod1^TEGGSl7HS~N8J!_0iU(E@o?cTXm|tGfqtWFbU_yuEvg7I>qQPWQ2-A9<5tz%%}?)||@0fGILytr536OBbcl0!?JV z+^G=FZicpUBzvf94V;c=c}I3|(VDPqE;A`U8*t@bzWAjAqyx1G){b zJ_j{J))-Jb)&}aD;c6b`nbC+$s{G|Mnqg`zKp<_;v91}S#sYX2R0BZM)BqyOZ3i%# zVQCEbbtBnHNE!ov`lR~2*bGNw!1sR;0E)(dZ+nnAz|a`*RfBz)jAjTL13nvJN2qIt zpQ(qTPL%PNpY@Dp*cl73bt;)7L%Jo?H$ee0` zvm63ExWqmYM)P@&!E@U||88|OY<*L8$u&((e zeS5d!SZj59M&BD&Sar=O>f37<53wFDJ-XF3|4rW>S$nv({QkdQu=nzpr2k(o{eN@q zleM?iUR!&5?f$hr;y=b;FX#VHi0>5-$3Bm3j4g}Z5}O(u6B``cN!0(p82v{y7riig zWVCP8Bi8?~joco&HgbAo|45JUkKxzDOT!)E%flnX1HysON1>-ew}qyM#)JliqQTF^ z8i0ktS;5nT!-8D{+X5Q`ivmqz?f-#+9{%nAjiTRQ#($pwP=B58KfX78OMOM(Wxiv4 z{lv=uE#AjPufHkY6TN$hPJbVJp7t#8%RK=U{v3t+1VJkJ4nt%4*|@H{@>9ijl%ewa+AAbJ`jDq!tHlT5+&9GHdn zLr5|O-Q$c*Ax5lx>4uOXhMpS{P9%ORgMfpT>v`B4J>D8Y41@gn|4y zF!%Sj?knAb5-Io}pRy>HeXla*L<$DzfNZKD$rK!rk0jHO_MhEk3L5CZG}sSv$rMbG zGx8Jg`uxnSw3ykz~=aZMDf1gi&L}7Zb@P z0cX^P5?R&CY?3KhBM&2sm+dgg6vWYixslu|;EtRT^~-a}9UJf2PJ5ySdg*{PRFGr~1XCMHq-M!%;FuaCQnQ4CW@?N` z%~o$ZEig?7CccmLz#sjFuUvd@vIVlKF(NZd#)5BhMrLLS1LxEjk(srbL<_W&AD*RK zx=ybgorxd}R|ZJOa3ZnQu| z)uSi#$kn3<6IJI_>U@4xCDQ;GWg$e-b0vh)0vXkS+bV$B0vlyxi00?^^P|}^Qu-<* zM9H&#cQsm00HM6~5GBvctAiY`hmbYVc9zym>C+GMWosgZgGXT$83jsdjJF%7L_0IhROL+Thn>m1WiItI`>$25eF0kqCB4V_~Et#eF6<`_Wh z9Mdp42GBakG(3(0w9YXNiDLk*b4)|w7(nYB(-1fY&^pI7?2Q4m&M^&jV*sslOheol zKzJI>$7WjRCaIF%4g10IhROL)I8T>m1WCH3rZ+$22sJ0kqCB4M$@Dt#eF6 z&{ROFb4>~&M^fkV*sslOu@()K!`ji~+RH zF$EQ40IhRO!NV9p>l{;%Fb2>%#}o{V0kqCB1^r?Gt#eGly%<3298(Z42GBak6ts&0 zw9YXF>0$t_b4)e5=a_$I@izt2VgT*< zn}TSmfYR|d1<_&v?f9F5XsLkG@izs}QURsoZwi{F0!qi<6f8?UkhJ4(3X-J;pdEjc zDL58;Pas?VR^PNFQm`!cx*@!H^Xi3_N7qCOn#B?M?aV3y&vHPMb3p7Aa3TdA(~u{h8&Hh`A>&9* z*AHzmOr&6B4#>P}6gZiVY_W|hk%E*l1jVD3D9IG8j2%1lBevJOBvTMGjS;n@_FI5t z3T~z`qIT3yv?Wu}GY95_L#<^`p1oFf@%3rK9$Wu4L+PX>ktBrpv8$#sR;* zvg5i$>M$^h71z}KDJn-RyPin>^}irbSCC}tP{)x1<3xwo^81fu%5q|4O{irpn{?^u z=k~uNnHv6Im>D*cNFCxd9r-!b>U0iv3L}d~$uILDr!cZ;v>N6>r!c>Xno)bN5~%~6 z!ibvD_o`v`cM2oRO6@lb$<%&MjO^KL&p4SH=ETU-Q=3VohB{40elN5#okVKLe?it) zk-s=1hy6Lcg24Z4w$;>bsa;chd+p5Haiaczm-x@|x8f_~H^-;MM~gQAU1HzHUXCq^ z{2BRo34arQDf|!d-Mi<4rS7=M<$w=)xUoSpAOzBRsft4JRsOJ@MGY0vHHIlm>4)NuxB9P z|JeVG|1SUa{xkgt`FHXCj{^d0QbG%o2M|uZ%{o)P48qYk>RI&2E zL3{z=6Zg~Z1@0Nb{|CF{t}k5cT?<{aT&KH+iSPVvllq^`K>3tkQn;o@HvF|KKav?( zp94dR8#53;jZumlGjKl#h7>nupnn>p6gOsIfSgf_8#9nVjZumlGw?vpsKt#LsGtKw ziW@VqL5)$08#53>&ZxzW88{(l)Z)erw2(7uabpH%s4+@$V+L}lF-mb`27ah9N^xTb zipUwYxG@7u)EK3>F#}Q57^S!|16R}-rMNKzUDOz*xG@c5bYMtvV;a(^F-mb`8s4Ze zN^xTv>ZmbFabp_xs4+@$V;Taf6gP_BDJyPFLn5_6N^xTv9?2QCxG@ct)EK3>F%6s4 z7^S!|4WZN+rMNK-r&L~Vht=Z7G^A1`)Z)f8tWqOLabp@RPN8bOL1)9_1`P>UPW z5KNU&iyPBWOpPGLjcGWhMv&shG$d0c)Z)f8EK?&$abp^q$q1#mF%8dD3AMN}4bjvH zQrwt^X(|;uVOHFjhHJ7QN^xTvvZ)ekabp^~sS%{OF%92Ta$ez5abvGEG*jCod;6xL zm)a)T+cyoZWJ4;webcZ?jkwKzh%nP|N{t}BebX>XMku{~(-2CPP<#8P;gc$%_V!If zCsji2?VE;7Y6R)+n}$lNgxcFT4U^Oe(%Ux;kyHt_w{IFAsS%{NZyFk@5^8VXG%Qjj z)ZV^nNF*ba-o9x#BqNmGzG*0=Mv&gVX$YiB$Z|(=eLx>oLhbFFhCFHn>Ft|_Ix<4( z?VE-;Y6R)+n}#;3gxcFT4Qtd0(%Ux;X;cZdw{IHCs1j;#-!z1g5lV00G;~q@!Ipdb zrlE=2CfVCJ4Lf9UmEOK-$f0^4W4(RTa6>hS+S@k`HPi^w+cym{REJ@`ebewlhN!)L z)6hcoRjkt6Hw`Id0PXFYh7vM>_V!H=md?lk+S@n1uLD4P`=$pu0JOJndLIXX_V!IT zH~_S_Z+dSBfcExH@8tl{-oEL94gl@#n;zf*(B8i3Jskkr+c&+313-KGru#bpw6|}% zp94U9`=)ny0BCRDbYBO6^!6?J{}(m2@6|q9JG*vr?QymJYd!HT@yFwH<5$K179SW7 z#6FCz6}A7%DHz`<|yf zcX(!b&h#AY>Fxf-{f_%l_gwc>_sQ-d?ryH_u2)?TyNa$!t`l5)xgs@R7+Lt8a$!dd zTGg0^+%bSwHD+OU44_qwS!f*tXjNktPR9UR)tH6QF@RPzW?*v+pjC|-s2l@mRbvJo z#{gQ@n1RGGfL1kTU~mkeRgD?w8v|%nV+QKR09w_UfwwV$RyAfIZ497QjTsml187xa z2D-)oTGg0=t1*C9HD;h{44_qw8JHRaXjNkdqQ(GP)tG^&F@RPzW}s;dpjC|-SQ-Op zRbvK{rj(&YXjNkdipB!as>TcqjRhc8jT!iv8bGOP%s|f=K&u)vurmhGs>TfDi~+Q& zF#|Va0Ih1wK+PCHs~R&fGX~JA#tg(vJq)y}F#|1Q0ccfY23E!ZTGg0=lrex-HD=&s z44_qw85kJ@XjNkdLdF1E)tG^gF@RPzW}sv2Fp#Ro44jMwpjC|-m>CN|sv0xUGZuhW zHD+LE44_qw8ORwMfmAhSpk_)6G(xKyGY~U%JFRNWK+Dwaw5l-!DO0!8s>TeIjBO`X zjTs1;x}8=vW}stAiZ-HDHD+LAY5-c*n1PF_0hFr73{*@FK&u)v5HYr$R5fOxVd{2T z)tG^VsoQB)V+IPQZYNcZbr}elx}CQB%|O4@?X=x*2J*#T<*|0Z8R!>dSi9d01k8aU z?S3;*FwUs$elw6T_C8d8u9dd?&A`K0AlB|T0~6zn+U_?47vqfD?l%J)(-@`QZw6YX zGql}r27bmE*6ue0LvvtAyWb2HO=FaHzZpoH#whK6Gte}4pn1FB3`9)}q_q3Zz|^!r zYP;VIY)uQKwEN9K*c=$r?l%Kx(-@`QZwA`tz>s#o8JHWNG;8;pfxS6EwB2t82FFKJ z+x=!Bahy@x{bt~C8l$xP%|PWiqqh6az~(rkw)@RM=rl%Y_nU#!aYk+Tn}OD8jMDBm z1GD3d+U_?4xziY>-ERhdr!h*q-%KCrfEuH;`_0rlF>1TtOwy52+Wlq{|Ais#elw;c zqqO_Y7*34Z?l)8C$SCc8GrRp4hP3<5^mb&FcE6cj9T}zFZ)O)Tw3&cNTCsM&nO;tT z)ONp_p8tg*?S3;ooEWv;Z)RslhPL~a{(n`?j{kr8|F+m=vEyO`Vxj0~(dVLzqRr8> zqr;Qcu#P|Q+4zCQ)4qt^TfSts9fR{oKgjz!vhmH#M3;BW{ ziTwXv!5e~S1&0TB3;YszC$K6oN4y6Z71%ehlYg84CGj3$u79TgbpQVT9^y*?ub~QH zqF4b?dJpid_ik^a_bl&l?{4B-0Pl$Ie{(!jJflS)fVk)b@VxsT_YI;C!2Y5J;9J*= zuD`p|u5(?(UAv0iEdNVpp_j@}A|mpON{wR{hN&@1jbj#)sWD28V-}vNF-nbN7OJT% zT$1ylHI7-xrUO!~am+$DwULw>$1IFfW0V@lETmIolp4n@ywiapHI7-Rr^YBXj#=0z zXVerN%J}4|PDQHI7-Bs5X*Pj#>Dq8bYmc%tA;tg48%>VWjFHN{wR{ zMyiHTYaFvsQjH)rj#)UVMvxlEETmK=)EdVutW=$-QsbC~ma2eK{KPx8pkaBR3+3J$1Dt$5lW3?7LKYB zq{cA|OVtQcF`qR8*a%QsZc3A);ys zrPps37ODbDuiq>bR0Hf~+h!L2sZK)e^_zu#sv(qKzgeg!3!(J-&B8lb2-@p63+ZGb zlwQAC7$*xsd;Mmin;OuyvS8H6!ZlSu>Ghk1XsUorepe&FGF3q7^_zuZs=J}~`prTw zHG=f|%|b32q4fIALM=6d^!m+0ELB47^_zuOs=K1}`pv>A)evg0-z`i z85yGX`prTa)mOSouiq?ukpZ;VZx*u10NU#}3sYnO?e&|5CNhBb`pv=-89;meW+8|S zpuK*xkV6L0UcXtGAp>Zy-z>C{0kqd|7EZ_j+UqylT}mSZXs_RFHwS?B`ptHA0BEn@ zY!?TB_WI54o*&70BEn@Y}5guy?(P12Y~ka&4wKS+UqwP zasX(r-)ztUpuK*x0SAEg`px?aG#x!xxc{z^9g)`~4@U}-iy}uv65-#&?}S%`JHr#h z$A8N$?r5?!WT&KiTJMqVwM}Ux#m^$o=>CdA;v@*Ldf7r+Pj3YmRHGYphuLzq8mm{;w_v0aFq{(YgnhSm*3IXvDJ2WFrUt zQho!`I+;PbV%I^gUr%|ZE(iTm@(0m|Py1WT-}+*~$^FLHi(mM*_% z!OoALZ{%QHYJlG3YCg6$-?Az8O*SQi^gt#Zu4zBGhZIp$zt4v77@oXo+)_+->7#~e(|fgx3nImj3rO09Ct zLB|-PRypS2V-85Q$}tBa(-2zan1hmWM5%Jj!O0wuYL#OSR;DAQ$}tBmV~ASin1h$G zW5=o-b5JvlQK}qsurrNOsvL6=GzW%MIp*MK8lzM>=3r?K45@O=LDaNer&W$QsG0*( zt#Zsk*0hn7D#sjjjWcSMV-CjVz>q4(9Gs0$N2zkm!PInJovesd5yjZwP&=Ad*MqjdYt!R`2NDcyc^a6B!H z((N|~%hSTpZofHbo&&OL#n}@%h#p6jZofI0o&#dP%Sq;7dVIcWx8EF8Ph*sBzd6{R z14Fv~<{*5WQM>)-;Cy__O1Iw}tWOK0bonS%xLk<@O#If$SGL%RLu;DVe{yZz>%gBqiB`^~`!`IMDzzd1Oe z7Dnmzn}ZfQFr?dW4rZtgMZ5jx;D!!JwcBqFcBmn=+iwnj$PuO6Zw`j&fKTQYSg0bo=swYSwkq09A$R&|uB6~yv;ZMTP zhVKbChtCcFHJk|j8QLt~1Kbw6HgtOEfKadCPoffFMR0cTs^F;LzQLUW-vl-W9t;!$ zmj;d%9RU3P5B=->clfXKpX;~8R{(zXZSpRRFUUUaGtil@T@tthTS;*w6L*`9>?ul!XxGnUxSm zE7Vj4j+lGK7gYdmssgfnvjUi{kW+OM0uUd6zoztpz-)z@YQ(5rtotARa?htm|7o_u zOc~*sI@4BgvlU{h5i@35uXK*TW!hIu%~p7+N|e%Vjk^x&d&=c^nys)>M%;7z!BOT5Pt$Nm&q)ar0W`VT@KNsd~f?8`JZL z$`LbKA*33xy$ZlaRRHO<@;f856)LJuLZ;K~6K}S{L{&nj(`>?Mg@~$yh-}$wm06gr z&`>o*Dc5BmP*|u+$RbJm-IdV_2~`J?sjA8#Mk^GQ0rIPq_O3!e)iGq5B{|;kPZna| zqq`6+jNi9s}m7jv;eE_I{YH@J@}`P;1>8Z0mXQzC(>xSSK6gvIhoNX94A8 zfJhQm0J9ao$;LS8k?r;@j8^ET8Y1$_QTJCvKsMD7r6f}Mx7e!{s;MM#qLFLA{>rtb zS1Sxt+w_HNi_r?PR0kHRrz0u@8?Dev4LGa?y>&$dE1@yZa=kGD}++r2Z3yNZ82Nnkt{xPRQ7!e7O4_4 zN42;0X!P}kf4=at*$Rhbgh)Y=IYJ@TIm#4N&30?+fOXR^3*Mb*g+ek!q@ZfPwzk}V zU2XqutBqDDr20-+q@a9O>g*@F-FLtPMl1Z00UO>7TQ{HmMBg`$oNcs19vQHHTNi8L zz}I`uzHJ|)73Ro*XZ#`SrbDLo{_~ARMk}tyG2jC6)gJq7!uuF-&UpJ4V6;N| z7;xrPG6yIh15Rrv5g>dFIC&8PpnD8BX$=_yvd4fE-XsyAdJK?-nf46?p2q-Lm|1?b ztZRkksd+8qFr#wEH(FtMEWq$#b^xOle#d|VN0L(kyJNtx3HGnQt`%y>rZ9L`bqdfr z7NB8{{bXviLh2YWKs0Ert9!V0YV}&qO>zLDOI+(i!CADd9wZsaa>7+}RLdj`n=yFAtJ z|D9I5U+vEEAL6gYAC9-jFNu$c*T?>dZHldo-58q`J2uuY=8kTTu8z)$UKt%39T4?L zJ`ijF=SQYT#zgjw#KK>M*M}F14ghC__YdzJ`cAC;zdw`?of{e++EsJ_crEx)Fdw`y zcz7@o_+6~~Um3VDaCzYPz#ajg|9$_H{&}MJ|0w_7{*dou-#Xvzz8Su;zQMk@==}ej z_a3q4f4uh~Z!gb}p4U7Nc?zD3JtI8*Jbq#P>)ngoY4-&8k?!5yUe`yif4c5*wTQ3( z9pUODcJ6=wSCFkQX+_x6{=Cc_CwBJ1tysE2{zWLdJLix*8xaRE!5u zRs-aPiSYn*H9%g7n6{m)2FME!f1kHfWRBT>s!rx1avCG5I>}IQIX;v~ z4?kQT3O2{XlrqSTrI(qBJcLdQv(KWRD`66OD4hecqk<&!kUBonPa=OzCJe9RVSW<% z<7ya~ofbyqhDjL69S^hPn^iL_VG?=hodYtXf+X`0JU)`l4cj9n^Kd)|<~4FrK=U+4 zd<)ioW=rH@dfIeEcDOnnxSke9l$Y9Jl6mMJXJm4iTsSa3jS-n&GG$1g#-Mc6z8Apz zG)828NgSx319N|!wd7B+Y;Mo*6M5Jl-*u7swKE6FJp7M`k!f8r6dcfjX|P}4Ci2ig zK9p>eTs_JVK^{gRJ8a`k)M zL@OlG0hv=llC980K9cOAT)mE4VTzoQSxLgc7Bxm>B?$v#)EJSKBn+fcV?T?MLf7BRJpGz1xq{fK)T*AO3HAd9u+Gi`-3YXLv(I2^b4YoojHAYn5 zlCfZv8Y8N22?MLt7*Tyo#)4QnFmZc{Zn70_sWGDZmW&0x^26EPN#~&eI7|*Sgw{VYHqLf_^I@ zimKJ}eZXuzM-L&ZR_(i}*?P7kF@z9jITC|y!e||@PXi^Vpg;5K#@N9`OQ9RJnp>1d{(Rz(rXIn*T3A zMpZz`{}*7RDxl>53qnU-A$1aJ{=Xn>)PW%R|ALTFjZpIc1>vF&1j+vwgo<)P&HopK ziE4zB|1Ss;6@>C~g601ULPWJ7O8&nfJX8?$7w=Z`{{>;84#0N%r&bUS$^j++Ul0b$ zC!yy53qn9Sq2~V!LO=N+O8&nf+>?h;^Zx~5o}5tg{{`Wld=Mr7Ul7)*0W|+#5X#BN zQ1kxtg;w$<8 zg78L8sQLebuttqg^8W?ljB)}2a(r3-zaX4ZL)83#K`0}C3#{b-3&IyQfad=TLKZcE z=Kl-A6g7b6{|iDBHGt;-3&IgKfad=T!Voop=Kl*q4>f@1{|mwmHGt;-3&IRFfad=T zLJKv3=Kl*q3N?V{{|iD1HGt;-3&ICAfad@6LIyQ}=Ku3T1vP-?|MS8FHGt;-^TGl( zfad@6LIE{^=Ku3T05yQ-|MNosG=S#+^TPc!fad@6Li{v<=Ku4;`ZR#%|MNomG=S#+ z^TPKufad@6LiRL(=Ku4;^fZ9x|MNogG=S#+^TP2ofad@6Lhv+z=Ku4;?lger|MNoa zG=S#+^TO*ifad@6Lh3Yt=Ku4;=rn-l|MNoU1fV?T(ENX1sGJsn=Ku4;<1~Qg|MNoP zG=S#+^TOb?DUkesUih09fad@6LfbwkwY}bu|B< zKhXi8`TzXi97Z7d|NKaY05t!fKfwW@`TzX!4gk&n=Z|xk0?Gg9k9F8i^8fi`90uU| z|C;aq@6G@3?(w=m6yN>3OZ5CZ%YBG@H`gz&cU+IU=8F3NlU+l^m;b(_hF@c}NefdK z&bX28zp&f%q1RlvhuJ12Ol^Q609pM%t=se&`_6gZXp_Y(QU>Y#6i*;Yi zLqBZqf0WTC6^sMsQQfTv-X5DNetVi& z9$NkEoHzSiYPLxQ;~_-ie~Gna{Ium?pShFKCKZf_=sB&A_1GcDt-O8v4Mv+(Fb%kh z?5I>Q4sDU zZSXVY{j;0r|J$Hw4h+fvx53gF!}9-aA#uTk7{l`aZE!UC1I7RSS= z`Tqh$PGgk(e*rGXhf?zY1=t)9qvrn$5IQXk&HopmbPh;0|6hRA@sZU0e*s>{!zlUx z0?bYeqvZb!kUJhm$^RFicMeE3|6hRM@sZU0e*uo?z>xfZ0h*^VO8&n9)6=Fy^Zy07 zo)$*Q{}-TpoKf@t1sI>kDEa>aq)%g%{C@%7r!h+YzX0`fU`YPI0Q=*+uH^p<7dzc{ z)ck(|4#DU1qdM@NzMNk;Dj2Z z`Thw9T%^8W=(2bBDOVYnkeveAd=lhE@2 zSGd9z|DRENTJ8R|J>x&dUym=1cg8P|kBsjfkH)@;y%4)EmX4htJ1mxn{u%vu^oi)a z==A8==#XgF$hVP=qWZs8^Z*b${i4LDT`XxX*PT z>aKJBD&7OEa@{N{|Nkbw04To1@W1~v+o6eSj@XUMqWoqc(GE{kuTHnTF6>tWiFTNx zjtn7)bVYTIi(5t+Y$Im7bVV1N3NDSxONw@>iky&V*0Kp{ik!e&2Ahzg=s>(ziIHfR zp2(*vS2K96OzB;S*)Ba%3nG^@*uzLom* zrRFo;r4PD1f_x%k*};a8b?c9x-mvwV z2hBDqf?5!{s=yvbYM@5QWd$}NEzp6ep5Znrftf(vh3h=CO*$VR9BT{g9gxcBKpa-t#YCGFK0dwD>Vk!9Uw!j}bvGy4 zr0;2nSYA-Qy4s}fX^7}AFvWV~^Ly*RK6>gdZBqC6j$nPkd5JcudD{Pu1qPKLe4Dg9 zj>r`Tds%BsZ#fffQt~uJEHSX>nQW7eCniCc7`U;<;2~>EVZptp{%v!zO*)>&$VCRr zt*r+<{NU)fyO?d#@%X!EvC5!&zipF>rx6?8Bp0X@JdIetEpFXY`sJH#Qtve48Gq24 z+im*Ap4P2qo3uNPSZjo>+bVC5rQ2!5#mXW zM#l%%n{CqTG~%IIyq$V{cnX+(!8kSJ8ni!?cnD2ye?RC=67WG9h% zNQ={mmNbbW9Zn-|SU~nx8k|PVTuDZe{-zPrHxfeHn?_9egp4BHO(Q1%L1rq=O(Q0X zHRASlD!ol3E*7stGUdNLZPMB_;(`(6`jF115$B92=S3QuMw~g7oLlK@8gZJaM=sy1 z%rGKzFHjgYGl>_1=9)HLFRH_0f{(=_6kZRDs+OVfxEesWBurD??QVPvM# z(lp}0kz^jy(llb&1bY;tO==oXNk^pm71mza>0RpW~HZTgj`WzPxN3AinF>6v8159uSVNJPC)J03ShP! z=ro30Q(%vAfKv#usK6d$e+NLWDzJh5oPb|9RsgeYn8PIMZ)K>_o`azdeh6odyxPe|r{#oPamhRDpe*fETw_0JE*ZX%g#( z*-B%y?d=poWdH3+?BxWA^uK*520D!)^Z(_CbGiP1V$BCNwg0YNT|2k-%Gwh||9?+> zbNsRR&GE_cfe!}WbpUk+rj0*V(^mSk)rnhm%zV-_2&Z< z0*3|a{6G8O@IUM?_%HGw;ZOK}^S$j`E_(l8CcgJKz!&m+)>% zto1DLTqnB!ALQB9{U7&R?v?JF-BaA7-Gkj-T;I4hx*l+~x-N2!aP98$)_h9z&D@-cSKxQydVDRmy-_giG-;hKqAq9>Xj`r8sfm zNJ7A*I5BJjAs|wm7_h`9j3PvePqg3q>O`SYJVd=HU9KFAc4!n2Ar?PX4n{jHiUZ2K>2`^;AnTXxy^IXop2H zpnuPhwRHBqd))Ht`9?b&iUEE0iC8OFJa}>2Q?DBBFenZT3|J3*dcey^U%Jg`hd(jE zJc>ksL~-EoLDt*r_bu%GvDavaLNTECSutz%n=6)V4DD~UL!dY?Za?e2^LnlCvAxM? zhdwc&=QJ`&xDyAiid#=q_5$L>fNn*y7w{$q)GiKN%kSOum~P{H8|~0021M2p0M^8S zz+2>8K$;lf`Np0@vK`K(CUh#xM9O#UWIL?MiJ4Tnt0&vxO`It$6tUyLoE#XjQp9H9 zP7aJ%Dq=IRCkIBX6|ouklg41Nh|R#DoES0|97<>8auGWYEXs*#s50;sH7IKtlUEdC);(_p8@r$h2 z*1r07zPW3CJETg7#8M9X?{$4UyvhmMw1@RXNdoKJp;j6s7jq1>*1Grn*ML(8_i2Y+ zsf#%(t2u74-YP9bt8a&4X`xEXIm%B<_3e->4JxhYC?BW#c6gQs$<-S6qjG&aR7;1j zT*E%%ur2L~W4(rb#Nk_7pwfbkOiApL?NBZ~kX*50UvQ8vCuT>Lfp%#O)??Tcf_P~Y z68-!|Lk4@#;9goFtjMq@1p9JgW>h9r-wyxM1}m+}uuljS%n1^UGVD_e3)3O7D#M17 z?GQ12N^)6-z5j4AJrLGq6e<@kbWDTf!VLQ$)we^*bOFYA%gd#d_&*qH{ER$kbL5{BjkRo^w#x5LsjNG`0f#kam4qNYKm zH4*l;1Xa@hm9lfd9KNUnPz5G+oI#KH#x!Q^yEtb8C4Y)*&7(gy-T=rl;K zeIO8|PKU(e2LeItbV#gzAkYA5e>xl zuAeg`mO$80vVC_z>dOxCJ#?`KqIwbZbq+M>?Ral%+4PCGomu;QeS05gNGyV|N2_nI zcZB3B2m&RYA+ZdCKnZ6E>mcmIWI97)A%q<%(QZhH<&ot|2!hl(AaW^$ecBT3yE!0o zErcCK`v2uMKbP|V^J}lEJ+*e2=>PY9{8iEauNa>cKR!Mn9u!{yd^UD>tTA?0?2uUR z=zpSbMOQ>`ie3@@TXgSeH1b8{g~)x8ROH-<6{!>X|1IGs!gqz!;qyiJe>3!Z=-tp` zp}C=}Mfd;xLfwPggD(dk6kPx>4jvWUJ?IH+4Lli`7nm9t6=(>A{U3|`|Ly*3{A2us z{88U$zJL1e^v(30>Ko$Q$@`^uy?3E^miIL8P;VE{SDxoR_lU0mp6(gy>Eiy{{k;2b z_bm76?xF6TTwl7LbKUK_-gTzyVArl<_q2az5q77pe)rZcu9;)4IQit!pS*F3S%ls( zBC@th7)1xa^9J6UX+5%V*|R5h`N=Gn{7y*=c|G6MEV5S3-`Z!&*zc1?2%dVo^VEc} zwz=$?$s!!jiCJAy&14apr!jcsEyt-Z!t~VJff!3LU({M_etPnor#IePUxe*(sJwLf zmi7Clp18BEz6j&fA+a#omfK_z*2kw*^QU;6txUVV2=UVco#NZn)q1+*xb;QIp9aaN zS+8|xOEP*%@B8YD5I`qrMpeLykU(upSW|2tZFr!@$j8*`w4s99V5K#>A%S?T-B!zr1`5@!5$`?|y=wO91kX#~a59VNn zC1yi~sV|nSkPlY+Opbj*N?OPv`LIJ~RPsXQPmdT)K3h~qOBPF7$Qk))QDq#gP{dg- zo-C?N$qKbN;=!WIl%!B&#B)WJDLEl$_Bd}n`OUT8F8h10B6QE|qJ1wshkK^Zm}wRvd29-DAzEb$W)X(R39*o@N!|0=;1D81Onq$UZEU7>OdJjvWcPWXgULFpF?H9z?WJsRZd& zgwe5MC08oV>{W!v>6^ZonJB{E*w9`qAhIuixEn{r0wVkMb+01KjSV0d5Q*~yUt<%O zi-Rf?PZS|*EWQhCgX}3l)fghz1|4p_f9$B)|Jv3iQG}>*L@W(D!20*4r@uL-&%cc# zG>s)2#LA$`OpGEFjRPC(dyZLzp0SjOvA+7Z&nUvpc!+20JeXO8m+=s54g0Qc7GY(a zczhW7`9aAzv1+9KxMLRKW1Lt<6Jd}sPRM0Jca|Op%_2;U6aScF-|o#KG>j9AmypXA z4#tVQ*OO78V4S#PGa+DLoS0vI1Tu@grK54;mN+?LyE+lGtA9();x0}^$M9+brPvFE z`Ul6TK0}zro=zdMlk5;?v4<1Uk|q<~*@?J8Xl?mVjZy6GG>w@nt5cM5TVcu84FqZVUMAR(~J75&~I-qe35lf*DBT-;+43R6H_qXnNckW63j9j7v z62}qopc1pLyE!^#Ww)ALI^b|>Re@J_QVRrk>43ZG+qMUSi4Hg$4=t8BN33fCJ2nsQ z_GGdH%BC((_R6Q2nibY#Yura)b#0eK2b7J45zjHAZpFT$A#6G_*xrd`2YiisqE|fZ*q4#n0a@e3hBv!g>2;TN z{kHpVW(QP_6YIC_ZQY80^UMy28YiCdH(2uq9(=OPoN9JJ(>Sr#*vq=LbZpHINE#;| zA9kR1=k=4uombr3?0}g7& zS!7>eXq@=R9I`JkG)^pDGRT@gvT^l7@jZ|Z7#b(;UQc4c&^U3&W)cI2#)C~*kf0#t#ku2J0NMCxVV9g0!ib<1tZ8+2v_68IpdSojnDq4-@WY{ z%?>CVC(fK&Z{2jt{10N??>9SOY@9f)Jz?EgIr|VcPMo}`mz5vc`1dK@#+x1RHcp(h zhRg%r#)%W&>}|C_deWCE<59B%+Qx}vwvi(SYvaTSziD+YT(-{J{=3;xk~ZayqgOO! zBX_BiwJ~D&u$`=?%HBF?o7XsSB-z`Nwy_w)CfH9JW`~2fdBsBME>`m?^IzE#eA?`A z@HVf}Fo(?4!P~sXfF<_dN>hBv*5P;CZ@vAjVsG!@=9UVlg!t#lhRWM(tP;~B!+{ydFy`qgb)tm<`rwM$(eHyH*ejyqDZ3r zz-4xn#Es44s|GUDlDRSBBhj$mj!{xKMr;)&5aowMv%|sNymjxjhpZ`;zm*Q|=B;~s z5gDcAZfuk{*4R&}W`~2kdFx(z(|%w!J4*7#V!XJG%+$f&ymc@5$x(N(H*eiK@v%jF zZ%g*ZMtO21nW=-mdFvjVKxP_r_|4U=5N|@t3So8xoQOx}kTd6ZA|6~q_QmH!$d+j3 zheNZ&>qOkUne2;45-gqC@M+C$*2;ZeIRDa~4Q7Yiff(>-O{=x+&WQ(IJ!XN~;c_7Q z_oOju9Ed*q)O1+OOIMIlydH#l)cXuP+PbHFi4|u#gfNe)S!k^aA2Rvwx58%eIw#_A z_iXE}Y15{?-gA{%oasRHKC9+NYxy%v@9Ht;aaLi@Yn+IyYBpL=9)HjtgU0=07NM zWK!g~$Q}_-cysu%@a*vA;bX#mLw|-gg;s<*LYIa{h#G+3f^P+v2HS!ciSPdzf&T>F z2s{*M4O|d7RG9w`|EvB7{2Bkb{zLq|eBb+C^4%xAf4uJiUw7{}qU!%%?+xB@-eJi5 zKj&E}*8iXC`HLs+{@ndf_X78HvHHKk9TLvJ#&xUfD%VKYo?`9)mYVub=#iR)_14IA z_7C=@S>Fjka)P$o`di-#L((Dfy)F_7j-*3Z-~Q2VRcUGoCy_mO?Psm8 zyE*ztzborI;YoTZkv_K{milx;l=M&{e_r#hwRZRX_s<>Lx4sjyq=)La^q=-GxV{s< znG^I% zhr|cS2n55@A+h4seyptTgk))uSgHCNnG-xqhc3AAP_lPWEhlKW{WM+Q3ER>ku?p3G zT(0kgaA}ZSltCiFxpe4^f4oTM1nqKyHrUSr^_?&;9YPne@*mjxPRN%IiS-@!J*rP9 z{7d_}h(#dx*W|2aGrfiRSM{&&goA0J5y1bLWYBwIYAo;1UJ(m>(wP>@1SQI zB$wh62!^IZnZo^KI7pfX$@RJ<5pP)pIuy9A`V?H>30u=3 zxnh@G1rRn3lB;3JT@22qL2@|^fuLTkp{-!~4NeqFY za5^N`#1IG;r$b^<41pkWIwV%b5C|@(L)UNHgIopBIVY$ex%a^6bVw}6B{xk-oeqfw zHe^olIvo-#YzPFk(;>0M#)kTI!tS(tk64Ejuj#aw-*L>2%#YjaJ7IWwD6z=K4prX? z$A8d&fyp*+m8J5K)PWBBCcMr<@Tu zRN&0#DJo|;6a1<_GhI{tt>X8*UeELJkALjjZ&mm7^z^&yQ&lo@DSufXuZQ*#ge8NX z6S@oUlaUQQjokE6$New=TD%_OM-X$>EPl_5*Teh>V&;pggEjR~KN;!AulaaA+)qaO z@|RfgddMF^%w@BxeOUziBZ!$o;*WRnMesiv`GEgo#}`2WWn>qBr4nBR10)CwBC%b0 z`9LESP)2qgVchr0Q}=Ju-it4S15$*ot|e4~1QNttJWDueSfGrI;_u87i)NUjNJeGM z$WzVT#;QBIy*2NxcjJqugRz_Qpvdfx_*W^uXqp0H!KV4uD|69pYUBa_tJ7i8t>w;$ z$tgEmVe3?LEbJEb-%c_AcC-3#1I%%Der>?So*6i)UOHPXmCA73OVyEiBhw#3(OLU*rMBfs!(UU~fg`G)mBJxUPY2=>B_{iy4{cm@8W4IW;J$z~S#Bkft521HL ztJoRJfl6wd0Mge z0B^V-bKmd2)_s<{Gg}E@k87i=;QFKMA~pk{wevgYKb(&{?{`jcp5cr;es}C*?*blX za{w-L3~;oo`Mx>@Al?AWvwt5vwJeY3H~zHo%D0|K_KP>b@d#30U2Af&)ny;wR?-?^ zc=m9Z#~d0qMsB=v{!inR@doG}DPoQc2aJ1<4}U!T&ZY4N$Q?y6GQ23Td;RIX=XGd+ z+Sx~cJ?6-;YhZ^47@hpL{jP!W28bLjjm57jhY)Xo#u3CE8SY{%JwE*X><1TU4Ujl; zl;*&2^(bL*v{xB=eR;yG8_v}d4bV5ruyJ9>gU0S@{iZy4 z?Pje3_GTY(@vw1Wr!juxRc)_*@m;L}>PCsJ+apHhbZQOoHcD*SS8FuPec;u-NByET zK-wtrlJ{^UW1SQj8znZyqDK8$YhE~PDeEb8jS|oHZ)X&*Jh{*M&r(_gT#XXzhqpBf zT_zm!#niD{13Zlqt0x|2B+FN+)&NPP#1nH`8`-HJ{eG_F6|Dh=MhSB_uKX7ZnYrf5|3;V&IiPd63x4XqlJ}GqVS{8Qz#iFa#5kD@G(lH zx(a6uGDe9-12y9jZQ6UgcZakFm>4DIk2%U%Y<+UjFiOmuA{+}Gj1u?UD-aMcO59Zv zT7i90V)i=WSfE~%n7OT^(X#Bd)vZ2#N^5|3QR24GS{bRI`~TAlaIHhJC~?UGp&#%oN{n7Ad@CVWl(_JDfq+?2;=Jv``G8hY!rZ27-il}14g1r- zwFWp9CCq)g=33Vngo+Yp#Q5)z)&QHL#K8Un0h6M{fZ@WiK%*$pf1=P+I20xNveBbk ztvd_^iV}4h;aFf#l<2Wi=qc2R5?$HydX-;6tpVml34OOv1L8!9*pEU_;Z2n27!`gS zpiPu$*VSXpT=DexU*FhXYk)OTqBWc8&VTeFO_Zn|!--e}oXH-d_ONkb>-SP?fHBb$ zzI%B`V+{}{TEbPTmVhpi5^PkMm(UtuOO*I^n{cdiGH6>LE&$_<}`gE5GTndUz5!9i7;MUzO)9tsa&{OYEI4bQF?A zi4PW3FQ0li5+%%GW9y@@hayqpO*Z<&2?!D;US}@?t*=u({D=~-d4(F#BTATCf>m0H z)x(bH>0qmZ@zViCq9x2x<4QMT^$;am;;Brv1Z;_xc$}>?Wj$!sLzXCE4hi#*4X#8R zS+d(|Bvubovagrpsr!7Ov09t!4 zAJk&?a3lhB?$z6Pyx3|`?CKX|^)Ms~^yCjevHI&wg(849)@<1>pMT3}emMb9S#B zb*5f_xe3rWaly&ME*ZnUSFgWJ1!2lGH($Me?4h6y0(7YoGAB*9HSRAbJUiE40?79H zy34bsYo0SUJh%Jcfcy=5{l%(M4yQJ4o6z%%l#t_t0c^$yA1)cAglay0;cy;4((6a7 zp~F9Ji2g$Mr^P48&)P4Vk39LnS_|BpdZ^9x$<*!A_+H>TQetv zSAN?PN!Xc+*;-}bXEMXa?Wzn6O=8%v-M3W+j;3PvS&W{9rAY@?o_JpQB}^nCYI33b z=C7z0f~v`dFhs};!PewL#}2yMDwIgV*CYnZ{#4GQo`kVUjhQpyxnAl?NSh3O`08%q z3W2xDt+Am-t4Deg<|Y*~*AL=_^d#g>1vPL_(39{t31SNfW%%=vo`k~55F4`;AXuCP znPZj$1d)>=HfAY6a5))bW0nF0os%IpW+^~0ItenzECmQsCqrz^Qh?xfGQ`F#1qf;< zLu|}afM9nr#HR9dy-y?|c+y3%`l?@gTNgnh3B^+}brz#1A$f9RY{XLN5j;CnU(3cXu1WPfEN2R!ERRZ;W6g=#?MRcmuqUB5cr< zKWfDrV1_a>iodjsH^2>LWW*`Ps<{um(X;u74h^tFGC;!?fw;pQynz?Wf17Ro4N55g zZI)}G)&LnK=g}Nwt)55NAnBO7z68JdX$|l}T7-> zkvO6?zy?V>{qJ15%Id7v023qxTbJYADgh0YiMOi+9FP)hez8Tw8z6wBtLDy3!g+=M zks>|YpRZd*w1$zUAQFO2Kz^=Dj8GFBEF#`;AqZP2z+)~U!fy>)!v%^W*#C)tHs`B~ zuxZZ1i65>ia?LRQ1RZZUPgR6Xgcf>ouBr%|2yGpX)^LuRIJ`=ntsq+K>xI)gOhK3v zrK>fDDhO;<#m~qP5cbnro=II9M2I&GRwG-x8-G3f(bh+v)GFR^mI`4rsrgl6`u`Mj z{=Yf?-%vZbc4%$q=z-|2=(=bFTm5esoBdxCc|Wo)QXjdIt^eO8QWJhZye?cHo*W(; z?h-l}dOx&|W&dvs4Gnb(9t`dZt_?0?=07;72M)08|GGd!U`pU@w(pPJ&UdUccQx;v;TKot6cT2o7ld8$GSq!FWJ6-e{tUHyaprx2OS?eo@KKDW;jMW zj&roC%=|CE1<+E^EcOj5cfYx!JueIh5b)buqO&s_dkiHU``ZZ12dJS zXSEcpiFU%r7C5P_;2TRpnMet7|C1DSi2}m@Cn=~BX~VYvNeZGwO9=a)q+m%D5cWSw z!H{Sh=H3VV+JYWY!W<5%d?2wD+=w3lUNEqL;<#aLgn*_ zrQkvosBV9vr65A|FrJyn4>Xp72GJ60=TzH(0#SgCgjk(O!hk67IRApgk`N#Y{B=vU z0`!LhY#f9)0sFBJF?j1f=d0Mpl5iga^f=hoc%r;RT`URpAwaiwd?EW-65>OE&b?yB z+J{g3^s(=!#FEe+3iRZQK*y4>9s+1Xx*5-D8(#k8=u5ODoX0-D&#MipnQQDgy?Na0 z|GGAogz}IQ9k1Z4XlqFb4=K@cY|T@~o-e+-@AS3W2`8zavn=U za|q!2CSk09y-nRO|7@)%Avx6EgD<@|zWO30k%Z>Z*8ss~yEi;+J!mA7@EnO@11c9+ z8HkRG8DlYe5~f2t6kt0%JkOu5^dwwIhQ{x!<4__A>7lI!CeLHzVU>rUL=y5NGsk|% zpG*@;NRW!*&!&138YFed9N*y*rzasoD(Fi-dX`ASg=lN;$wz(rWwqC^AjzOe5FUV4va`*Y7YOH+gTzBB~mes)jE(O1+#|>O(F>^q70@`T6Od! zw1}QWtQyRdB6<>LBtvWlB{y?D2|1D>HiMGqR`ewNNCka#nz4H0mAeM#kI|D*BpG58 zD0xCkPePJZ(5{<|&9Reyd-KOT5=nTHdf?X&9@gOd9#hiOqTv!lZ&`aVU|5GD%%x(;}a&b_voX6*8wz3g201lT^r@I$13Q zagqxC#%50PV@o9APEsK@bMk{~A=r~t$edltbze_Hpd`p#$eDLrPr{)j$ee=7p+piE zC3WfN?1QgbT}mXOQ7UFjl{wQ?Etxsv;6RJflY_w6rLLx?yeG-6<;0bqJVOn!nVh`W zdh&E7WX|N|XIoF6riR!|PN9;ahS*F_UMZ0r2*|d2ARFUkdzTzjJ-AcVh1hIQ{>4os zPf-`TVA@eup+xfJLor8InE^`1+~1_ioOCFLzi82uCxW4$h`B~LAKuWDC#WH|y9qx< zdb0napojTOY(06r5;7;2hKvWxfs#bBA0T?Ne_#_!tz*-Z$EgdkEl{}H>&d=qh|MeI zkm>(7)$F6||9u7S?;;dbB*T= zw*KG$-0!$ovi$!wl?=d}uE$*Wx~_7a;%evI?|g&31Nf73obx1S8^^bfzdM#X=CbVn z32g1ZeO3e@k%qw8zop*FO6rxzaXk%(v)?vMhRw9)?yaZcaVlu}k;bY`Z|!>O%!PUy zDknkqU18GDITcjLbxcn~=_JTpOr5`V(9^Iw39|1BlZMzyX8^;){0zYDq(bKK@L|TX z)-!KzT=cGHylrb>^rrj;dv5d->D@H*OMXJPAzHZo($P`YDq)+WXQHt zOA6X2LH3nZKswL6i|k2JGG>sfii?;)vet{Qcyt|vhCE8f)2`% zZKswLlu(Amom%u1v`~iFKx_5Ol7bqlpeQ#`Jq0_IA=_3hDHx&z*|%y*K@w%iwpB|C zq9{YQty)r$MHv#eYSB^|uIdrP6iGAYfT3{OAc~~OU^a!)Dx#&JiG(;ad)b#& z0**)sbB<+|fFR1mD2s@vpogTZ<_ycjjlcfz`OIM(pNXenhXg4P+uc`wmD(W%Ikb-p zdd;bkj`1B*kV5%yr}&BY#5Kf_|#HxKyr8(UgMt?43H4!Y{cpb zfc}wY%mFz53#O$Yf24@HI&ZZI%#Rc?hv;~bcnaP}kn+%2T;9Dz`vGU8#QNa@BmcwackO-YaV-U7qr~coLM!k!N<1-# zKWk_y$QmUc%LqpcQ=^2r@PGaA#X_R<`O<3YRg`-iTd3Vq#mf!JeDHs|h z3O@=ppl6iGMTHuDOo5|BiY;Wx&uMQJv1p)hee_Zh=29vA4pgTi=CMUWIB~3sxaVGh z_=AeLt0WvtPZcqHop3BYRK(0}!Y9{VMcnq8@aZ3;BBmawHI|eIId zt}5bs_F{?O2#;0~69x;PZ5I`B)i|N2omIr;(}nY)s|a)Xf8LLTiWt3AXeF*9E_|N% z)b#(UHNTkS|LfWK|CHKcwOwj!qVGr7N0ZT;*!=&lQAgy1$kUMqHvT^(qKAJE?+mXA zFACon9un3=zlZ)ATFb`&C$qW#Jww6Zzk{y^m$9AyCIrt6c4pcCe+6C$GzaD|_dg}j z(f^D8pDY8A^-uSY_V@F*_U-q*>08O%{|4VsUpJrE`-%5OZ;N-1_cHGQZwJp$EdRg8 zll0u;xxiEB3A?{^zv^D*{xh2aaJpM_{qB0-^^7a)n&ukm>f<`hxsUn(3O4(HqH~Zl z?({gmWIF&Zaop{=(lLR6lKq@ivy@iyOIAq{V%gt)~{ z8q!7xaf_XJ8pdY-Iq}&y&`HDBND*_v0;?nOG-Qnwv2BIZJ`Gi~?{nibe>7*ePeah; zKkc6#PeaQ{Ve|KpZy^y+L&_*(+XE*JB_oJ^51cfFj3Tx@aMI8*`$(!!+yf^K6{CQ# z2TmF$X1}BQY(7zKnqaMF-5+KH(Lgl#Y zmPERPk}-GAt}^Y_%)D3HRGD^%V)&(`r`v*|htEa$zgAs{g#>sZjQ=}4 zCh}cmTV#3U-pJLFfsqd3AK3nXkB8@l zuVL%|AI0YXzZ-foG(U7*=**B7{3W=|pLI4m|LDBf*`JO7?{~cE zc*60JW0GT-qZ>QC|NB2Jqi{NZOw8+N6i(-7yYTRP z3a9h4U3fSV%aonY_OHIM>{;qfk0O+k{6T6iVl3TkHrO zEh`=AsF2ssD2&d}cG$5l-&m$>bfkii*Uu<~j;$#nx&k;b#>t_@? z=eOncGYXyav%Pbw$Dz^~Jt~>Gq=cB)&p_iS zAmsHk&^Q8!dHoDDjsRj_KLd>;fSA|MK;sA?=JhiQjq?k6{X_;DXMZ5|)nG{?%LNk| zn4F5?yNT-=$ejHtlGQPv$GPF_83>&U`m&X=dH(qJW48wM45W@i2xRj&0f`L6j&{j> z*4}P)ThGAl=9Y$Hylp|?P_EEZAtfYPSSFE2A(HD<|8sUH9Z5@ zQ$e#hl*qvMq=Pdf!q&khGEhE=F`s>_46ILL%&4u!=oyHg)FJb!Ryh8${Ml~vzM7iy zQ)J}@kDe*pABD_^KmJl6kx}R$tMmg4c3NFZWEA>mGAzYtF?vR!e`RL5&{$djY_~%O zVSS^@dyYh=Y<~)7m(^GzqmVzd&JHL4JoHRi{^-%0F-PI5RoEXZ^qsj(5bsdg{%D67 zv(;ksj6(ico$}H>{PR%AAA`&&q|l?X{L$9Tl%v&JB2#uh%9tU?DpNK;iD4PXDx>f| z)}b{l;#g(M-Y3;z3CAi^);`LZ0mmv+wmykr`Nk@vkUrL*)hymvWfan9GA!L_F?yyf zee|PWjc{Y-(@10#)@K%Cxkal`B2%_LsnaaBSY;H_XVzh)KVE#pxXVd1?|Rx|O8TT#S}_wl!X?K7@2B5rHoGuHx{-9F<~|7kY+ zlSBQdS+liF4gO^R5X`)w)hjK1r;1?FK8q;l|9|}dBmX};bZO|sP@CYl!8d}-gZHsj z0L~BoAs7gJ9(Wn~|8Xn>aHRhy|9fl?z=i%B{lom-{BGYzz88E=zPW4{z+t|w$p3Hh zHhFLNUhM7fZR7dQv(59E=YF;Z;F+F;`+)lc_j-4Od$N0|yR++n>z}SQu7$1}TxYrB z&R?C|oliOEJFjJH09b1PKET!hJk8Ou=0~dkdKS`V|H1a-$EY_~SUn4IQ$a#9KMQ%2 zAbT=D3xAU!don)@g|k0sus+$6`B_+;RLGvp&%)#+$ezs4!saB%p3Kj}=p@LV%+JE= zWXP7x&qC~E$d=5{LhfY9mdwvW@Fd8d%+EsdWXP7x&qDNM$d=5{LiS|HmdwvW_+-eI z%+EslWXP7x&qDlU$d=5{LjGjPmdwvW0A4Mw zNishRW21~cnV*HR*>g62TQWZjU!#PW%+JEsC?O{Evye4Ph{^mcT#XW9GCvDdqlB2u z&qCEGAtv*)P&G=3$^0x-jS^xqKMPf(gqY0FLe(fCCiAmUHA;xd{47k35@Iqx3sa+n zn9R>Y)F>e)^Rw_ZN{Gq)EVPXhVlqDqd!vMy%+J8yC?O{EGjmM8qlB2u&)lIR#AJSE zwu%sw`I*~QgqY0F%u*3zGC%W26(J_`Gc#3$n9R@2P!VD>KQmoLh{^oSG!-Ex^E0=p z2r-$Txm87o$^6VMDnd-=XKq#zLNZ^=OjQx$QgxY|RD`%xU1o}k5SFSd=l}Ot*Z;Hf z|K|FCld=AvBl023|0g3;B4J$4@`C-QR;Gx<*}k)MN(k;3*wehxB5 z5nCcZ2NffTJ&~V-h*89r$j?E;>>0{{n8?pT!6+ak@^dgS`yDJ`OXTMuV6=pg$j?E) zXbCZqpM!o;LQLf6U|*CF6ZtvV7bV0*eh%_Q2{DnMgL_dzOyuXFUX&0M`8lW;CB#I2 z4(de-F_E8xc~L@483h#ETMQB0mT3qJ)^p&q2E= zAtv&3kS|JziToTCj2?=R$j`yUC?F*AbFeT92#Ne0B#d@KOyuVvVU!RP`8hZkZA3`q z=b&J;gqX83h)Qb{gB0mT9qK6_R@^cU`3J8h( z9JGr7Vj@2W_o9H1$j?E*C?F*AbI>me2#Ne0k$wW`8gOD0mMXp4#GtMF_E8xZxKLD@{l0mdMYJSGHzL^OBH+ZuJ*%MS%D=WEoJ$NxVU$Nx{Rjn{gjA4Ol_`Trv#|BbvASs8gS za$V%iNId)-TLWMHL?y-lo|HaNbotHaLc6M<5#O!~yquz0o<2*-CN1*2O8ZED| zw;+qOhm1d#_j%Ov3VRF2I!2?$o$qI_9@XP!Ew8Y*APc?oZ5g$^!rp?h)&qrB6!sQm zsdu4x|6sn2q?T9MTae}6J;ub%Hy(d(&#$z+!rp>0S4pT*wl~{1G02kfLJft! z1v~xpnLsG?Ey%L*L1Vhr4~4!3SvKBlOd3A-zIMMZ(DDj>3wHXdPUxvZ--0YYFVraO z8#$J})A>%ATE6UWg!o`Vz_@MJzlN-AbGw!=3mhSKE)`l)7+jDA==oNfT3%sr!A@^( z=X-l<`Le;0R$ga&OWb5#V+w@}c6!Y#oOOl51v_o-FVs*dT(Hwdwz|OB;ddW4@6vy0 zd4<9SSrA|7sY2m`oz~6~2!+B0J3W;VKDn~Ok)wTlrEn}|ha-f!iSUSiV=k@zJ)q?k z5*O^WgiUAW#{!A7htPv{pVt(Pb-iA@W>UL4Ef0w!M2~|t4;ZUkCZ9ZQR7uN2;t0{L zomc}BM~Ke7Y8Dx5%2!Y<4~ersY6d&^9BMpjU1E?pQbHS2^RTf#cL*oe1@rs%TW6eve7PlRBla`0aQDUrXoUwapr*zNgvsxY^M~HSa zs)wTGVRDqXwPu^K@!XS-={@!rEf19=MC*k$j~eSoMz@CB9?llnV*N?(JtAO`FS{= zT*#Kp&%^U%$d=5{!}U~>`^H4vDu_g2Kus?~h zCG+zTK&eCaWPYwJfwtRFfF|>EWecQ`J(-_VXdtU(OXlYk8fY?NGC!x#z%nBw^K)el zv_0K3$d=5{l`T-g@ce5cr;tFij+o5Pl_iiKy*-(qQ&=D?WJ~7f$`(jFWJ~7f6cWhl z*pvA=g#Q^=pmh{^n1S^nrpZ%^ju6!vEp5|jD4vi(V&7L)lo zh5VUy#AJR>A%A5?Nap9t@+UPWCi8O&_hW@@$^2Z|{b(IqGC!wKKeLXQ%+Epn$Y7d1 znV*CB5yYO%&%yf$Vo&DhV0~m{(w5B6U1oZrOjMKkxv^@Zn#|8#svvC1{M;pKqMFRl zU92YfohhEX2!#F8vnTU&V-!Vf$^6`CMG<>4KR2q3h{^mwIhmguss0m7=I2JJ|HP8{ zxeM_p`&DC0=I1U@5kfLw%bl+vZ0pnIhO3FUt;ZHEcby~f4|zpqyKN# z|1anN+XlZ6z8!orxFC3A@a*6*L2uxr!1IAZU}j(x%K#kV|JlFYzuLdZKbd6!%>4hq ze9!v|zL~z!Y#+c{?^oW}yi2`*@?PmZ)q5mc0q|YVQ=SE$NuHseKX?vvfA4;at^fa^ z`&##z?gY#Kzwdh5m3H0YI^XpNSHSrhO8~Su?{Hq~Jb|qM@SS6u<1xoP$9T5>Ux%9S ztKsbbIZ{iVSO^hZV$Xtyb)sRI5U@_cq7zLMsDb0q{54Z({wTsWY!(pM zpNw1@G44o*Z(G;8Cf*4BBZ!%b7P<@nlaUQQjokE6$New=TD%bgNDwm?%}q4k2m>UD zdB>|Y=C*3(X$mCbjZi=t>35iMcfT>SZ)~$G-UtVjk-n{rKV4LKbC3VUcq1f`AZ9LF z=nE{6Am)9MzetET!UJXG18(r~Mu?z{?BcIh;*Bstg0Nd7+mg9r#_>j|pp5J~!np5~ zr|#dRy%%qU3sQtFjxJPz3=+glSPKUY8aus=Z`nS{b;jnKV_k3Fh3b73MU)hCnJr#^YKP#A4S-X%EDQK^by3| zFIl(=DEajtf=bdNQI5RiJtVVaf3uh3>-i zWaNhGsmsIj2x5lItCw;fmPZgXT+T1$cpi>N5w_2;Pz8!d5w_1Tf6W`u!|-I}@UU_F z@VS3~vuCe(9)3pxSrd5E2i+)}--<)L*1VNrJB=P3`VBZ!$)KhbD@KYL-<*!}T5 zoQ@(asm_0%I^>~rx{;pr;K)J)3rRTjS`z;e=zdaFb$lI63_M@V6@yhW$gHc$7*>P8zt5c z=Z`>I9==A2)f4*}P3iETKZ$*zP8!fLI&$JuSQOm>LC^5P1k;X&i=VL7od!xklbwVq!H%d$xEL?@> zntn%#tHvdahL?Ztx@5sNEq{)RxO}>9Brhs_6lt?u%b%?xE?E#a8mv!$n2H#^w7v1* z@VS4zt@Su9KU76r_`J}MAu8g$?H!E;Pha?-KgXWd@`F{xuzkWAJ4;0j_G(7`!>c#D z7yPc}&r}g-#Du%lAQdsNKNkTle};+}FkCp=(^W+OiTp`J%b%tq`p)4lq2&z~QI`>V zI#5OQSjm4Ywfw0nqU#p^tfJ*lQ4#uX{##}G|0Hw&zxQj`)-GbJ{|&B9M1PC!h^~r0 z#CHE16pclGj=URrBJx0FLgcha$MBDA?Y|Y_`@&a;PYt&Z{Wr8N^w-cmp({csv6=th z1h)p41n&xt4fYSV3VaoKh0XiFBXDuxxIonZZ~x!?&HhpRy!Tq|Ak zU6WjAv(&%e`MGn8a|zq^?<(hM&Y0tO$NP?FSn7Y8W2B>xqqe&5pJo5C0+h&}FbtV% zu~oJn)(Q|J`xh$2)?)J-cNAM)_VH~ctpFdQgt-=5Wd~2K03D))IZ`~?ssS6K#GBg% z0xm>}*Y^pnK!qsrnpda+6QacC{+x&vAVTzXuoc_*>3|K<66Qd0z#XK2jK}`+T6WTATJ( za%`(u0ZK%G9tY1g)=&M|k-cYgtN;4MM1an{dK-@yTMdd` z{bH;D8KOYXBaN28?v=}Xq+$iA5COCy7aPx(cmC805Fz`BXh<96IL6ri_D{bC{l~-# z@E}s6BilOr>FBoL*)Q(Y3a}tjqT^Uc-q>^h!VU9psf#s2f=G#WEXuexoA}Rb=go{Y zLV+l7E8h$|)(8P2KT=gwBi0E0Awcc2e#VoPGtmh7AwX!;AY;w)(!ecI*HGN&I5#mDt*EeSvYsQ|ld*!Gz^+sq9ed!itJD;-!|0_?} zdLzV#LRhzrJC@!E^-)1=4~)vY7QGSjBSGf)a9iX4^0RB_M(B?{M;OE)@|QKw85^G4 zeQ-ej2E7pmL`ylG+O%y#&*4B4WUjZ&HB@he1xb*(-ZB?ay%8QHLx+Fd$e;f8MhKAt z+OtYH2QVWFVWV&Xf*Yxz{oH)@M#zy2v4!b`O3))2Vk&l>f8uNl1p9W*;VttvFYds|NF{mUGzqHl3a@I6)t>w zP$d=gq5#2`WXLymlyDLtOe$yue;?Gj5zZv_+#I@hj4)me9NBZ-%yFF?;Y})PR+Z8l z;Z9P6=7!Mh8k|DN3xA5t~sU*k@CkW>WS|vkl-9VvFFe@2iJ9G;WY46%d;zeja$gnCI|7Z&4KUUR>(dbWFh;nr?? zBlJruWo`j2oC6q`3aS%6JV=-XefRYzY&EK@%W*lq5gsN(e~&i`hX)mtp+A58KjFp# z8&g3)@|Q7sBZN$b*iwu_b8s>hv{ithWin*EwNf}bn3)8b%V-G@B9{R5Q$sAX zB0$Hfp*!~-BU}Z24+V7oOxM}uQLoEIx^r@E`V)+*Vs#8NO0K=iqjmHAA z=N^%giPqE`Ynq4sc;65E^~OJ_OR)$HFJ=1w%?<}0|Nk!fkLb$i{OAqQq0z2UcjTkU z3z1S}cI48?iIKM9@5670pA0WxdjOstJ|^r9eG+;x)DoH#x-2vx)IRuQ@Lje8z@p$3 zHUpqX&>#3L@Hb)ozyGoE|26&w|5P>y;1BFgz-PV}ea*f*e3$x8@OAVa^nSqB0LXf8 z^Iqt!^M*WMc(!;R_1x{b(lgN0(fzY~yL*kh-hGq%Jat9t~ z1ZV|VAuYlNK&>KL0a_>%MT>|R;Dxjq7K-s3f7*EETTdkW#S1V)im>5N{z^hCzzs<| zZ1{6cwH?SIDPj(gdW@MXp8o#p8{2CIs39qWb+sz*9O4CdAt_?6npOSC3$Q|hm}_Ej zL@U4vNjv@TT)N8YtX6;z5&}6O{)z=MC=+j2Yrq64!NyN5B3^(7lCGB5=Hj0)B#;#8 z+5UXpDxwu&fP`QJtj|>m=$}k%u!wj8?ngReF3-VVTWJNDA1T5HX-}yZf%efNY#3KK z@o+v`MC~d4w?p!Uiut!M zUVzrg$bR8F45=eXc||k+h7?Li4#*q^t{xD4jubIRfdj_9$A>>2e&^D70X9bwi~=tT z>|TF*?|B^xa5-{YG)IBiEwccHlmE8gH85U)xzW;W6qsKd@dCV!Am%7=7h`GpouXEN zwUMJV2Z5_c31y>2*h((^C=&$;n|*vYWR3wlRvUX?p7831bG1YPzD5}~2JCpy*gdV^ zln1ZftQDYZfWP%(F(9MO1$Jf z+{job1&T(AO|hs^U%pVa0{n~;&-QO;6t6tF&-%|&S^;uKiS@(V8U^cJE5wWvt0x|2 zB+I`vS^-u@i6`c?HnLMc`u$wTD_Q|cMv2EVM;Q4p7RKBEqH6{C7$ugi0*zIac&sECeH;kTi)ifGqWc%s%-MC*b47gH-FR7C9 zh)s^RelN9xrYhmPmv=N)h^b1rO4Smb6eZZyXkJ1q9Hkkt*W9 z2Lz&niuksz(2w>i;;TA-zO+I+74gMjUc>bN8)|;5sr|6_+1gy~wAvB1y=$Y<|3qJn zE{Wb9y)t@g^vKBnBJV|3M;5Ua0MCtdi@3sj!W+Wr@YL`*;jUpv=!4MHp;YK5Hv9kR zP)+dt;JRQv%l;1u>VewNXT$-be!&fWvwe|pz? z>%BL6hj?|*@1B2p)_4}Ox&LReRsVl?|I@wJy@>7nH^i;Ges}G3t!C@~O>zx!>CWGs zJDqEs3z_o|cIs^We@U+oH5eQ^%~-wh%3Xu=$LK|f zkqoi1A^uyS7okQfXxB}~=GaNUz4_xEi6ZRCK3~ynjtvc27hj?XKTqTgi3Yx{CL=mDSb%~AmJX!4$R7omijtcRM zF;RppNrkXL%E*mZ&i`qAQZGW6q(Z;3K_Px@i6V?iD#QkbKB)Ex&LkBw2afpHR4+oC zB*>hJ%Db%>VNMccjxKR1QG`25UHUou;Hy@b5=F?9irG?SU{5l0#=(IWqZgr1Qisez zDt^b-ix4OoVuMt?*Lo2SB|+vO6+hd05f&vwY>-N*1doy-Hb})QC5jL#>EPJ%FUM35 z4q_!2Vgp(Hr!`T8TFHejn0Ay^C{cu4shA_H4D3o`*nrr(RR(&cV)*M7y$HRMI&CgT z!=KaiBK%5*E?oL3KSg>Gilu@c=D+BA5tb!E=9pQ?c(5!ui6TTx>h}-kdNlmo2Gx=a zvGr(#D+#tGLu|-QfFN8l#D>fS2+pN~mUlD$QckcWiqI~p-35cTP zk{UBd-uQ2O5=Cg3)bH z#75_YGYJ<{K|i)Ja^*+mL=ieBw`OjX#?K^#OvP-iGEg#^VPkVu22v(5Y-sM=Dg!N3 zG5ah=FG9?u11nGcuKczoif}Wz(0%jy%R9XYJCh4x7?2l&pvi@f9dxzTqeKykCNbES zhkuVCX;Ne6Ty$=fdJ&!`Lm$4%wn*naf~v`_vEf9kM|u&mCKY0%i78%4FT&SUP=jzI zfwD=^+V{g5;nogolOZ-PDL@c62{Oke1qkjYLu_19fS_+O#Kt8B2nHuZY+O=+AaN38 zj!OypE4qUfviC%=`$q*Zq z6qidE84-fM*N5mR}?X)@ABvL zc(Iil=_eqEsgb?{Qma5NxL|q@en46=3dH_?;esRYpJkmDtr$@d*c*u-Pgv26IR%(s zDDh%Qjj+kPl>v}=F{nnW_M#O7imnWA)8kUBv+<%|QN&z7fxp+o{C|hLy#9ZE?c~~F zwMW-Fq8~<|iKe4BN6(FRi@G9vBF{!Lk((puMY=~k;l1Ha;ZpdH@MYnX!$*dG4((v8 z|D{5=hDLI=EMI4zgUtkZzOn}33Em?-|Mk4(dBXD$oB#j+Wevb{9NpLf z{$KvZn;>uYuS=K>!}RqU_b(fI^yrTB5>0S7`v6K9+s5oS_V(C3^G5$8i6*!kWz213 zzBcwOzoWL>z71Lv+|B;lFw6#7JjS1|e6IChPFkTgLEI>@b$ifAU-?{@?PsO5CRiIK zw(M(VJlyl0cBx`7tqICTiI=QFE3zYE95G zO5~zKD{wMOq`C^{6h=mgMFWM;1v*BF`D27u;9``RH$}KUAYzob=iXYQ#s5&d(S45B znqXm+xT_?z0tchS>~+HVfPqnBCX1KxGY0*l#BHAm=L7CViKz#KV}W>4Vscxd2CRz` z*R%K*|IWd=C^3QAH18>dixO9{RVXWW2(1aWMTyI&3;lp=QR0#XLJgP}B}TJVD0wUJ zEJ~Q$#_(@8EQ=E7Z5L|5u_$2rV=wW1{kvSlhOCA21p6(t4?7d{qf6(#ylR2x6K%wIuhmGb39>{0Hhy9O zS`$Qxw81tj;Jt`7!IEeRwp#%|7ceAR;=c!kZo-dfiErClC1OpGBMPt$4=QcMnjl6L zU>hEA08&H&Hkpw35<*0KxtA>s#BV&XAxeC(KsXMl5N%}V(rP2nAX?&G7Te&TDIACr zukRBG7!W1QnS%UNhyT!Su$hAVWWaqW@XSOD(3+q=w2ifMcrRj2P#;?2@s-sQ5Fc8? zoG4g1)L0Y5$387AT=#i5W6h2)OQXAvi#0)e2+-qTo$+*f$iCpbneyDSodr1hxfJ_5o?0+P@rdf@si);wA|;@NAoCb$kM(Q$0er^fEw zuE-A;-x+Iy>W~ucX7n)Dl^?5OO)wn_+$x+Zhzy?Cn{ViP3!%M87EiyC4RB>7O9 z>Hm{!J~hYxH`JDDXVqR*TVDU~-RRTo4Zy9@3!-(=aOB^SEs;kfcSo*>oXXY!_+R)v zw*LR3@MM+%=pOd5{QnD~rqHa=MWKG7R>6J2*MrN0^MVtCgMx{`fxriW4S`%>8ruV~ zS0Lj5(*KJ8QU9I(OZ~_D5A*$p?EtvgH`{j+Tm3KM{lfc_x8(gJ+yAeZH|Y7)^Ma@7 znduqn>E#K!KV$3v7u_@2Ism=gA(s5#>}qn&bd7Y?v6cTmac*)JoYS2bI{)DGJ3eu2 zaugiX9U~ldZ0-L~*#Ra>uqyi-zA*N|c+&cD(M#|u`;DT^uu;{yNA~V=(M>Ih64XjA z)NASgtU`$rW0okvu%tpiu`$(ZAvl&?hz*zWU&TZTnk5zb z@tgIttwM<`T@;ITFAY3xU22Ae8`X8;nW zf|hqORvu)(!`=UzD8a*|Gr-0|cU8{-OiU_dj&lmF!Nycjop5nO$fVZT8qfUV)=N+_ zsgSu2G*{3>305W-G6xvb1PJ;jLu_;* zlOZ;)#w*23@ILZ>-W(I-Z>-`ah#x`B5ig+%)Q=!+JZl55qLm zMrO@6-mD*&oAK4EcnKm%kn)_$x#h>rcnKOvkw=?Ox!Ks(_mr=%bRU)|K?2F36I;u6 zfMdMz`T7f1|1GdAUV;SDGHhBU|LxbB;DF@RoiVE2_tvS?nqYu3vA;?{{|JF8lh(JV z3GPQaVosUl*Fn4q>PHZB$|Og$CYT>-hfRol+v-WY3EoGFlqWMUff>u|KDn^Xjw|7Q{LrYWjsE_`Y~?}^qlSy3eP z=8)ypA~!0ElqU#QzNQ_TCINAZOZJCDw}1VWV^4>s8`OXM(y>Qtx?a&Zn^<_J)wtGl zotikqBH~Tgg0Lxi*qnOEN5|q#6IBSCddPo|5=|3;*e3CZ&8dfM7p3?9{ZLC|)5RT{ zt|>FNqh!o}$DVl8cvTaaf@s~#nyywL<`l$ZjiSdH>zy|_&vW*41{|L|UUodWN`v@$klx(Vn{23|phb6KqlxKOayvN<5Z{7!PlH zYx{)FX{{NeMu}xBeMZVUAFwn^Ji;bL@pB4CqeSy=;e0^QC{g%PIH%AvO5~zK4agZK zQeB0f!ptbKh`j}wZ+$M%GD^%JBb-w>871aT5&8ikqr^S;3N>J3l(?%T94%Cg60_F{ zt-!-5F>{+hK*A_-+h;;6Ffd9?Js|WH`bCM!O!fG63iqPK_3TXtzs4Y5l$bDBxISQA zl(=e~@VP*_C~^68;j@KrQQ{IdxL3K$Xw8r94o|%66R<=Kj#oDN|=N7 zyrb|c+EF%GUpdxTGqj2VwPP$mYlc=`#>&DWP77ArxSNQrhcIvdZNdd|A0{ddJmFeVDzDjX<;i2$t^3KgJB1gKrs&3I1R z@bV`|UlJ?9mIx5qbhz=?A3mQsY~wSr5?qM@z8%8H1z{q9>zhu-ntw0pQq#R(q6BNA zZ=%gn^r@B=B}(un6*HyEz?>)(nB#w7Ta|%2DHyg!am9BNCAgD<8UK8hfjcRf3;I_X zIF!V&!T1-d3?xd$2yI~9y?z&0DR zuJ-$4bs@G~?-b*W3Cc5mMmB$qrdswx(8N#t(QhCA#;*+ zFXNfm^kr;bdFRq7Kz2{BsbSEpng@-y8>XIob;C}*G*Vg0oZKvQYJ?IpCnfWfnJ8Td zh@K~Gk6XD0^wI^&Lgt)g{(?a-ov()2inqKq)BkTY^Z(`X|J!RXu06iCb@aRFdu#?k zCVE?RM6`D_8u?G;waBu_pCebZJpej|e+lmhuVL>1riO=ydxmR6Uxi)^Ee-uCbQRtK z{1V*B)&NKaZwa0s{6jDh_?)f(x0uZUxFpaoP|L>uU-q~7XZtVm_w`47U-(|~m6-pJ z^7Zlsy`Oqt@D{u?yd&A#f9ClAW;Xsm!!yEjtjF*E*uBZ!$o2ua!2Jj2{vWwEy7I1R zt_#@Ce}3Eezt8b6$8&5CfLk2rIlBMfbN|+q0KEl@Wgmoy)KsqV%8z2A1(s$1inFta z%eV5=s<*(iXdx^paGmk?rnh!J_@~457O0jCVN2#pYkCW8O9kyZ#(1v$3#Ye0xFpED ze0v(3oZa8+adF?yEpRUTI<>6dxP0$2c9egQ^%i)SRH}UWR-U2s7O0m5l`mi3bJ&*z znU^MifYw_eU^0YDlb>-om~_V3JohK9hZ(&E7A6%c&xOCQ{6L>*fr!b4%+yBZqf4|v z#Z=6XRR%I9F$iSvO8`11b%@PzXMqfUWH2(R5CR#zLvS(`Gt26b-U2I=8Y>4f_y+

    u@SfW=9L%xD9DiI`}C$w`F}ZQzCAa#Epkw4w6p zCR*TgQXxbeDuog)P&yTpsa{HuI;k-;+92FX;B^vYMjHeOZYM)5+8{viI~iiphAPwy z$CDuzZ4e-6o&=fE1_6TV$qxyfJ2g-$d?~HadR?nPVyu9{Ry%{bj zLoC_AThp82gA!yW8w3bSC_^mSAVAPU8A7swpC*{046$SbuM}^F9g>j@@I!)> zcLlH9apKJ|M1q*f23|#Lh9laC5F<$Sy(yhcr!#% zM*4C@YlbJ1t{~Y^>5A42OC*GuO0aGXS~DDx5C|pk8Zbne_`s?WZ-yU|u9~3);XN_* zkQOmR3A`D|At4Y--~`l=5C|nyho7cr&z+ zAZDC^f4$?)utJI;PVnv(y)VcwJhwwLoY21JX`~z{h&Mw8>Hp4R1iS^U86rpy7BK>T zI$(h^vA=ps;edodjDVjo2q5W5IYv+!0g5+6{|Hi!5pV?ZM-Ve4zz-+h4D};OIV4cI z;I(FWAL%XDBIdn?^pPUv2*7>T8)qmVEn-Fh_-TXi5dskaPQdmk!6E=wjd=5L(+5dM zSV&;2Fqm*25Sx2OkO1J#oU00H9JM-aHJ1?fpfh8~~`?^g1*T z1!4;TL=XTN-=TSk`fp!4#%s-k6^$bRzz^UoHF1V@i1Fq#LD;)j4ggdJDdWw9R0s7wpAN)+kQo0TA8$TQ^}l2MpZ_oz3d9`$|AVoq{EE}` z|66MQYmWb~uT9q8RC`Wsw^~a{}H`v$3=k)I7D**KOw(;!83IGc{ zlRam9x_R90kKC`gA9c@lPeca5>-xm?qN~L<$8{Oo0YG#9=KQB~y))&!#d(3V&KY)m z>3G$##Bp~e1MuI9?3R4-anV?GENcioe4y>rBx#A1c&nGAals4`{Mvwc}ihW)}@ zOnfm+&;Ff@mVe+MUDEx$asN6Zz8IoMkn#_FZcCp(KiBe5d@($aAmtzUN)>G}EYJS+ zkD5QDZ+>m0b^Ba$uYTKuZb^)&QSz8z8xFCx&7PKe{H`QGUs-P z0h}n?ZeiAJZ7~#%biw?=wYs1!hQCpQ{a{uJ$QvOLW#i`)>P89nD^;xlZzBX^YP<%l zjSyx!%&HMz3}qu{!u)CQ8h_c+XTiv&bG5}VHd=%QyR0JZ7sJ=cxias_v)eC*rOAK# za&~+%+>A8s#*LC+{xCC&up4D>W9ODW^N;=1-M$50Mj9}0l(V%K*cj=!c@wlc9&dq) zk^1F4kky42h!{c4JkTKHUuTaPf5x0!D$Y{GOw=K)&pQchT6Eef*mdYk_&u5-)kJHnbL47cH?V<}?~H^^`nJa(Gv5f@Df@J)QS@K+$(exYDI~=n6y@Y zYGN%=E830O>#T0XT3}Wbn7OSAz^f>5+h-P_wLq(AC#D|YozPmKRg{?AmLEv01zJTL zxxTL22&9UZn802^Rz8wg3!I9UxN2Or1dNK7xSUOJ;GZgliV|iBsB-PZTA)?5k`{QGhMzQ313T7!_?}AWJv!LxoUL zV!&{LfKO4Pzj#xCPEn%AN?s$@0-d5A?YgDfQOFc6p|jyielj3av;tEj-o&mm)y7cKj(V)&i3v zK<8c|W8K=vuYc%;w_+{uC<^rCH@#R3EQ$cy5TOE8iUNc9<3+3mB1M3XS44~r+t;q# z7C151GSDas6pmtm0;pXU zG}bKXKCJb)jLIRlt!JTAMtu<=JrTV*}<5G96+DXKPxUY4qTD5Ln zY^_VRwY7Eo&pG$p_uec425qbDiyCv@J$HHc-Fv=s?mhS1iFtX*QAFq2b2uJTUFG?C z&{0G$XToqi+kQ;9QyC?XQU{|m{xJS^V{zko5y;xnP&Qr_a?Eh~9_XREvbO-7K zWdV=>ZT~&~i~QYCp!H+*fYk$54_G~5^?=m_Ru5P`@W0UmW7d;BmuUfnY(8>fX0vk4 zdNS$q@#u@PW7d;Zm%~FEE|*iZo(#K89}B1pc-{>kbnoBq`EcmztBcl?ahJ`+&dI!j zQna27yj&)5Jl1X5G3&|5%WjhGEAZTu2654Pvh#8aTIhOZyMu_Fg`w;|+UjJ=uIYO(JJuy|>Bi%i%$fOrzOk`Q=n50#fn1Nzr<;{&JY`nj3x5 zp=iCZ05hx(*cC(HKKl1&=3K932AJm9t`d5YEx6ELT;k;h!GFBOhi zpT`D-f+&iT-bZoUJmd27fCHVuvs->1@Sihy#^&b%_c_T^w7!UVvOD@`;6100 z{4wjtqq7<2;AaiK{lIx zv=%8(baZw#w??~ST18`J89a!sinVt&$6HIaj?UJ2d$g@A=-1>=U441SqC~87RkSPK z(cZiw)*0_;ZBBGWWg*do*0I9$piIl3CDz_5Y84qIS*Eo_6I~^d@>TIfysNpRrKP*G zGuGY`g9d59x+uOR-riM;f9B!9hR$lJo2%g;CHQN?1Z`#vvS?ME-AlAcXH=`~jCVn+ zqd|Wn))s5&(kjd0EfVlD@zydRT7j`S)*0mrWp7}T@tR2KO%~l#S<%>3Qait2}XjvLt9xbnG zm_NHY(og~A1pUV?jdjNK5{=es@M%gKBQ=rACe8GedO;go+0hzH#JUoi$lfAI{4&$D ziKRh*sa6^E<3I43BkisEJ~FnkREq@tzJu$kYqh*B%^lG&Xtj=Zm<;;RfEr;S8)Ou! zgUO?Jmo|NxHq1~rG3Desa2iaPd{atxGPZx=oJd1NtEy;j+s%U6xM$S?VijI^U544Kfs;n~1$;6+(&`50+6^Z>_AM}gX zfE*Cg0Xk-q{sHPcn9xd$C!LTJM}v?GaN@}LKKdg$ftkr)N-f~2 zB@@e_ow^J#zE_z(*2}V`8VEV#6M;zT;Fh+=TDhS?KZzom$vncpk?P8{&W_`n+q;)9 ziglKNkX{w*)Jj%>0FI+b))uWX-UTH%q{1WPolwk^{N(S4p9iNK{-4^aY1}#UbSNm( z<{3jD38OfqWJloNS;C(l80n4k=a#f|MB8GCmRL!B-NHyi3Ca7(CZSoTRhQ>{;?gph z@YL+Aq~+1XGHkkd32p4k?r2+laa{ij+B}h36PeYdkqF2gQPnuttBp5=A#HkJ4JU22 z-WQZ8Kcpyoc0=9#dTr)m*cA+(-%yWX`K8+2*@$Dyqg^dasPCz!`=vo@f;?jo{HlPOWEP0%L6 zE9#G%X^zQW7IVL3?(FO@gba{vxKBE5A3Uq)n9Qlb1#ajAEaJ&Um5=UZu-4B?wx?7%a?+#+7#_v66-R=fZnKBIf&~x0htjY-7&Tq`<})k1{9JL})OU zXKt{b$&e7k;jMX2n6&SF!e?%EZAq+LPRYD=uq9-YL|PSSV2G655BMh|KEek~(MWr1 z6$n}AL`>5a0kgC+iJS?OwDHk-a9$ z3Q&;9zfo+%4^K{0oksc4zf@P#VfB$R6h!bdx8l$eA>!&9s;X-%YD%@b1(61=q#jh^ zYE+I9nf2l{;DS_mB%m7G1Zp0^cGsE}@OMUGT0`B!Ms0rW%)0rtRgo&Kz9CW>fof)# zf*!?Mm0>1hdmuw|?fkhjLABY^mJIiT87-j-@y$SrHN#5?z>g=i&e#N@3?`_fL=pgI|eKDa$!Tu6_u~yOx!TyK5pggY;9|*gEK9T5Gp%da8@rUuj_vDX*iUv&r z;!l);_Lhh*X-DNGirOhxq=8l(i?%Ek1^OC=y{&(W;js_<*4!x*Q9U$&`mN~X3}iCl zEKQz_p62EXIbs00Rz=`}J(3A0_yqbU+L}4i!D>b2OD+jupBY^P1_$tChv9QMIbeMQ zX9xBh=xorBQBd}xEiqJIV4X!<+|fz;ep__K3e4LXZC?^glyie~XO0=|VWMVsft;tH z6->(RUu-m&N?4yEMMMH9auo}qf(ki*Nv;dIAvC+mAReTN$#WC5%SgF-5QF|I@B10qEKBi-(t~<`JgEv#qlpaKRz(S1kq+OkBTjV z6}|(3mRY+oV;V>;(L39TW zT-5-J82J)#7{hp75(7bjhIUKGQdk4zF_r+;AC1|?xbg=$j!F3xW25bckt_jO%*XJDTan_k($k{mPazo7?&a6{!Y^V!-qnP!5>CICOWZHVb}>SvD)v zu7sqBS@qP5Ez?l*GX@TQU4t}_@qF`xzCC_lp+vz)^oeeQKYUt?F+7omPih*X;t45q zt@=leG(ZtiPuC1e%tqw~`_U%B%PUs1cQF=5Zo& z8M>OTG-lSK8CJHe2Wv7)&3%d*m-#8K4+(xu$*Vu<@3J{fZquq8d_~;FXhUVbs~bL; z=qckRO}eqBWxr_NSH+h#h79U3`Cc8lpu_dl%r40J&?u}$(==A<*orkCZ*k+y>cGS@ zIlP4Rz%tS(728=zGesk_w1QHNKd+dLS)C43o6sM)S~bwqP4fhjVy(usAzL3F$Ts7w z&zeL!R+~!6o@vw^T0YBICN9lv}h#LVFG4sq{!zPHNi4!ZY41Ox)&V_n_9RJB%#I_ zlKLarjj-s&N@G?XVzVuO75W4;k9MOAHL>iSp+LY=7O(u9*DL}3W=3XL*Y2-X#@b;E z3gPhrgf*mMcuN}-j!2#9iV{D}{pUbqB zI^YNW0#Wh(^{o@3Oyyh57pfGXpAdUmgSpfOz0@)k|C=<#O&JX+X(*?UM_Z;~U%-xd zLpf*$Vig=_1?`bHnBW_q5L$yRwyYTdr5hxkp{~kSn)VZD$Apy~(;{yrtS~f{R8==N zRoB91Xm$1qJ8a0~9tZ-5(L_^z)F3vM$@CW3fHVS_OLx<-fe;$fG}umVRyrT1#`=k5lR=&P4(lDH1=f- z4xeHK8G#ixHl>7Ej(g9zVZvq;Y_;vLmEg2XM3?hsC2X*Cff%F7$TEvecI0Y} zFJ25=;IPC(C6#IMRv>7nO0K|Q0wP6AM_c#uc96|5K_~7{D>&3xVH!-@AB;tqdh`fq z7xA$mt=4yQs+X^b!oEiZSaE9-AS))w3{YrGw5xZcg;))IJO>n)qLEf)Fuz(&TAA>Vd<{U`^Y!K!8~}ygkaCJ%H@ije0a63e`Hku|Y2?A7;#F zXd&679bcUtgQV5g)zJmMUSDq>bPD*Cx(_OxyxHF*MY0_KdFF)9+^A!-!EJ7F1mUv@ z+gr}9&YezX&k@piw0LLG-xgckMXNEHvn`&Bw%B&?o1zIE*VT%gR&Q>ikd2<}auCl& zF4N)@4Ui1bGFpHY8UsDI-8es*u=IG=#{fKQ%Ew;WP}kTf_Jm5<8lX34u|*wB`cJ~V zUWA@I;wb8li|0wlVZqtn+`8DL*i6lPXEj36YZ zL>44+SsOhfzm}-0uM{5~jjv2(*QMAjW+Am5*fQ$Q6j)-}DP#H-I%Dc9!B1C~0R2*u z=*$qg#-!6lR>9LL0TNWxhMVJCB``Er7@@W1If_aGJlf(p%KZ5z(C}VK`RDEg(E4GW z7(7d*#z3nB)tgtXw^S1s%|M7T8?$e62PkW=HPv~WC> zW@+LeXAHTs^<&=B#HA*lJDdLPnt0AUv6OJbmKjzFH}%@TQvZfMB{+y+>EGW<{ku>B z_}$gNGsRTF`gg`;`EOFap9Dy#a;l-zoym5J-`Sy{7^a`PImMktY8b)MwhGO{<2vf7X* zIkya|$T*#mRYY!TZVB?_U{+Ss;}c*nsR+(3E`T#6u$I+;u9QXE{#w!WX;aE4mQO4K zbJ|zL2ioMJQDnf3z9RXg22PmZ(d&xcpvgi^?I{NUyD! z8=;1@WHp4iz%R76s-mH)nTsRNMs8|ej^@gWdh{I^oLwLjqn)kh4Ar#@Dr%~$n!ytQ zPVx}jg5lFMidz6D)H2GFFIibvC0=6E-V>)x-Pc@PRo&c*YCJGRHR13wr!J_gte82! zrlR36$Y3AdLiiQi<7x1@`0tI=F5KXDpG_iav|MKUjS1B4}iN zR7}#WN=)(u>OTqg|Hp!ZwSM+o_%;}hm~gbzI{(iud?GXe82KFLz&ihr`=_`VEPUjw z^Z(ZQe-NCSb^hPbT8)Fh(tp?_OnA!(<%(IVNXN`gg&WxXF$TSGN`!(g5Nx6c3byg<(->-_(gL?SRB zbvK`K&p4I-uQ>m|n|1yl0;Pd2oYB*?V&n4(_h;+;KgLtE&i`BI|IJaf@>{Le`Tv|C zfSPswA7Zvq&>A8Ue`1q`K{@*(PPeB3yx6c2Mll$4IgwRfI-uTJZ z`G1JMY@Pqlj7q~ImfV2EVNiPVhC z$~;ahmTpa=34Q#m^Z(ZQe>i48(K>%*o&TpBk)#OTs*pd{`G34lNyZ!4`hX$U`TuWe zD6T?}0-DfP7y`pY<1q07Dt{Y7ab+F_MBO1XIM6VGsK7Dk-yDj|bZ*T$|DR)j3T3#k z2&`G*XSROKTbj7k#B*npb^agjM3m8Bzr8`YOwz?V|BnH(2%G-5;%^ly0Il=?U2tWd zb^aehb>-3Pz}g<}Lcnh<^psXzR}Z7t=XYc^FY%#6T!uony_o=F_^zny!>F-^E~^ zW8Lz5tm)>{4vGN+=e>=KtofL#jLD}*X~%Qn==TYiqsP#r0xm{0UA#K6%s9?ns!hkM z>E#^8yC>Q+9>gGO%O-L|#>}g}#QoK>k(;_xmz?J)imi2(Al%nevI4xR=(;Do(8CnX z9j_#mU)VU2Z@R;djv(pB@xS4#1S9Z)tE>zB^h*yV%9)KJ(=CmJr$*Sf$jF0ReQJO1QF0@ek7F}P2jZuKnqika_>*HEs<@we1# zC_CcvH{d#CIq-u~Eob}JxwX=A8u%V#+MaP8k2RXo?__*<%q zn_O)F^IACG|2J%GVdI8jc~1h}Y)dY&#>JS%y|LettF*U%%v+kc)WmaV)4yF4&zUEd z621jWxT)7H2Y$$rzV?NGv#Yg5Z85mi zjW0O+*WCBF-{gJvog{lV-*tbpqcBZ70P0}xJ>DK|)0W1TcXW0xjlyM)rhMNu_y2wO z-h1D@Cr;eU{0^B%0Q8Y&X34z=u(7soZluc0BM(een(qOuY>T(Y!J5-%!JU(E)!a99 z8(>#wckYdW-}%b`(VNn^&kw~Aj7)quD;{g3oA-(u@uoO@#6ACQy#Fr<_P^pe(-wFH zepx?O4_G~5^?=m_Ru5P`@Ne&dwWp6&RQnj)+Rw+H7lzsu<2-F8+%Vk~k=B>Ae>Aw{ z4vq(5P}*1*9L+*+E3LM!NvoY-Qv-@GrqLbVn6@as#GD-TL&P&O+p23DBMnWOIPzl@ zZ4?Vv73js3`bD65h@b~I=49}c8(iW-SQ!^gzkjbfn+0}g=!6rWfHD<8o})8Xb+kkm zb+<)3*P#1-bP*hcYEHC(b{{Qg4OWjdtG{QwT`QS1iB1T^8^UYi?Hh341ikD0dOSj< zfhEvX-PlxJ*{F?`Z%pYy`FhgHA>%NXao`HhL+F<`!oe$Zg6SMqnYJpPh<7!2=;kAQ z2zftB_TDew6q>ndwIZe;8p4*8>z8^GWv&)E^(Fz4)hhAC;OOi)uDQK?`Jz~730(2K zD(B>qxh~_l5J3dX0<6rEW^S7SPsSa0r~dQ(How0cwDWOYo&=b{&=-`e)`@*}?UB+f zt66L$*TDk7qC~87RkSM(aVlU$ha|TKBLPlh3*8zAP1H}L> z(CO;`P3k4pXy$7^Yce8A*mr#OHYyeKOgN^$}{1X|<%XuA(N=SQ!CtbW_d7 z2QvponlxOYrL^=UGtt5$EjZ0+XanrrWu$5F%=okfT;`Q3ZTd6~IdaR&m~qhHj9dp!gDIFVlk9$M|H3(u zhDcUeDyXV%CM-xVfE8Nk{Q5{kbzN1nxSAcma;XMIN6L){bd!tu`%f%0Cli1ELgBv0 zX3U6vUoY=~gcqsrj4y{JXDz}}3`$|;6`PBE^MG4-eV?FJOUHN(W7z@;VhIBu1pO_5 z`*n}6+fq`XI-s*>+5HOk=A*|ijB$6gTqM!$D<*yi%A&j0GzNihHC<<8AY z)4dZsH}$bF4RV+|MAP(E4D;ErnmH8ZB>fG2{H%5y4jQG8mpT29^OiLgaR`^XB!=#X4 zlH!{1mX0V~>edn~87{;)MBU376{TeWxTFhYB`uF8mf;*>doowJ%oC|Kky%Zw1sElW z0SR$bV3L^P{=po{p2DU;fS4$UxF}nn!$tyji$2MaFw1sellw@JlBM=$1T4k!hdt_b z!X#}B=piQ^bON%0u%b{V(XN)I;0UORgJ8$SLEuH(+5m(gU<_Vlcnv7Uwt<-V6SPV2{`zC{=`o4^C39zIex^bZ-=w#KfPeL|PO!Wauz!jF2kfB{0?_5-`K@nb>l`de z=>5#0a%uaBbLq@wT5D(bl4fv`?MQTY!alZ1z0FLKA5`uXV`@{hb4jd=QP13{m;qd6 zT2;gR+0Btd>+2flH$+TI6Da#qfzD)+DiCA^MW~{xs-!i#rmU*su*T-b`StZRhm~dW z8)_F!B6F5W!!uGpW)>r>1wBICIGk5~&B&v*f(|BhUE^bED{!{8nlT6<$(SrMhrY?r z$~tM}X8oI#NGOLs#PG^HN_(GJiK?inAxaJo>pOho-yzY_-PsZ|FP&xCQYZmH-OSL1 zyL5R9>SC8M6hM7#sAw#Q*>8l&1*126u4SC}kO9oHCODKE^pldAr7YK0HJU429&azn zoY}^l7p5pQ#(0!Dp(a9uu{?8w^-M;q1yrHTW+mGgk7mikBRj9~nOj|35-XQeGH)Hc zqA}KxL|PT;`D_de=;9V2e24(5==%)Ho>;cwhUrRo=Ic(Fq>Tqnx-7CFQrkpU88t+< z3K6NheMPjDa0y;tgH_}hhS){zTT~$2FT~#{A>k*tPNRJ2U#hF=u=)tbSw{Z36^E7x z5eLo{)wLBhrCJ^*4E+^!7Yt2cIJOB!9obV|aP|Xql%|S?re-coYp7e;sLijP3A%Sx zq)MxAh*UAi_RQ3lICiTILsR5_v=)Wnr&T^(91+Okv>=xaphmM%^I3^0<0 z!9DC(bBB;^Y5we6(ZR#jMdLN2m$|tj2%>rF5O83RWI_o(fxd~hW{&cNMk)&W^x?7? z_LbXn)?_V&ZUyImLWw%0w{773!#DvIhRSUi>WL$ zyU8FP&Ci@Jwm+;@Ln*0GfSz&ls?fY(9OLk$^)P#;g_lJ;#I6WCQ+ZW53T_1A}yNw7abf z9eJ0+R*M!}9q-bjU530a#vKz>hDZ=^az(@BFp1(wsv`MqA>OtHn88sJf$~u&&>H#n z1GxqyP2kM+8n$b>cy66sQDR_j*!71jrCY73caqjYMR(*65kcSt=^r+ zBdJ@Vo|XF)H7@hh#`$wg#6ZB5y!w+~$L2J-O{;Er@)UL>+fbSB>ee;hEQJ(b3V*U+ zH1Dfoe0gKYpdKS$CG*v-DD--#!_+2Az=}d|MWO$;N1->ZwUYK!DfSAZT32lO3f?lz zSx!ZzKS7#1x-X%|4vs{q^y|y3wCbwGm#>I|brc1si8YBh2qS%if}E6TXGFh<7yulE z7Xeg8f-9t@nTpff)k2VQkfQS z1tPxK3Z4JWL=pe4#p@)@;PB}JS29=Av-UitNe5e56^%_LsN8>@&0kQcO~(;4VUFWl zZh9AZvwOfRjWr&aNO2Q|R_98?M#V(=c4)uo3q`~904@*BosCPj%QN<80iD020Xrvx zjER%$6lxr@$SS7jYeNupcsl}8pbMxt)=dESQTM2 zu&bjB98F~$YuLo)MbH_rG7p=tz>SM1urrM79{H<`ca~?>st?j8IRdy+@H&BFxN3f; zGdDKma+_NmK`o&P+baWh=1wQG*BLenRK3oizb&@7iyYuHXIngb6COK|S_O_yOG=Cp zn$v0=vcoGY(p%D)VKmgCEx2xD8sRWU%nLO*M+^@Lnn30`Vhr@$cH{hL!qT%p29(m2 zkG-;?uCY=0bI2p>^yVew>1AnH2>sW*$c26m;wh|NL-*3x2>ORBjJi?2f>G`;T?fm? z`WFuR4Oz40GlSuvu>pGmhLh={3fk<3NBM>@^il3`N58INJ#6%M7b8)23AoDDErfk5 zGCC&XP-l5tmi<|*(D_p2K<5`K3ctIdJ2M5ASS!nzeud7M|EBnz&^aIgta=zOu) zohy@vS3#r`9!X--Wz9$~FfCK<$c&-_B;`RRLL+AfjXyJI& z)dW9Q==`s*iRaFyf4e50Gf&7{E%y|PrG%4m&q}zd*Z!6I_asaI21hfnn2L?XMdJ<; z`XI2B(F(u^o&sc9ZqDk-RDzFN3d@Xn?eo0G4JulOaa5=P%&dBtg$RmU#)3uOI8O@? zT<=ybHPlxMgKHD32(y?4&pRMnM%|fWs$l&)W3v1=sou~p-zn8wsB*Z?m+ir2`b4n6 zW_IDqOv%k@tk%%NQC9BUR5*)~TS$h(PUaD+tfYLod2s?aJ+rFMOv$ZRj&fYA%gUOS zl$+OhHL*;Ul|N5%ZW-Boc3EZQNzN^UDl(3gWEGK{np=WAo}87{^!NmDZ2Fgl&aZ+q zE0NCVCc@USgDJ&r1r3NWnNVNaL7X~mM5IONP- zS(JZV<5d@ezotfZdXWrmQ4@y=24nLGan}U~$~R7c=P>cu77f9+Koc;x{=ioR1E`yx zfg`#x73x+{3zk5@efdy`7kS@?Pp_X2H77)yh?f}g7qJw9r>gW()vGS5qyvN*QmqIF zBFofjiu%tDDw-W#Q59W7RmetuTjT%R-3Qy?U+c%}0jmeB9Vd83fwk*KIaT{X zwx0gPPj-U*PF*9`;2tJCjfRKL+Tg696#@~w_zMYUZ^fj}46$zo1GItxinBCZ5}FK; zwq+c%&mYZ9Kgb3PrKU4(|FU3!XgO$LOqe2IvA>xq!V*U5YX!z;JRd3?&!i6#CK)G$ zkdkizCK2`y`AN!C!zO3Pd|~*^Md3=ZDHb5Dz-R6UXPki555Q6j%Oq(8(a<01(Fep* zIB+hBu7JRMYZ3-aMnnW^i8)M)JZlSF@@0`n{~KSN&KPeZo=8Il9ES}0#V$c^Yw=V? zi5~M%zg2{K!MH3$zjnkNL)U*pvR<~oHBGzweE}ohtp_eX3ivY_%!rG&2R)J{@fr` z;*_HZKvIIoYDG{zxsDZ^i$^u(WbG zS@Hkm?OUcfeE@8G>2Bh3?(6>KC=kpDEn#X?SBYdCyfZd{jKE*={ID)+zE*YMB){2< zpg0_waSN33P8hD4c9uD8jr0Y_|I;Bs{U#*Cm-`!vW@p9!!=vEjj%UUHlOo%S|7XSj zv*Q2d9|I!dX=aQg8Mf)$8Hdq||7XSj;}Gpu{J*^MYxEF!M*JFcxI1$cwv5PhR{Xza z5%$rF|7WvLw&MR;@&9ri2yxk2M4dh$(|I%_0qtK{g0kZOS@Hki*ccylG1e`t_>t$bOC!Y%rIM);lF z6V%msm7M9j0t}f$ePQIBVMBfSe47jPmD5guM07F{q55(oC~*isU3H@2Xl%Vfc~<bpll@0k@j^oZEZxKotK=e-_vA8sD5An+(C&<<^81QQ-}y=(%8!?g zerNRWLP7t#tAA&Tse<+IjLGufqi$hJ(gnx7{*w+yPtaHGm9A~!X+ z1XG|ta}Ssvp8$JXR{TG$=$ncER~2t*>sTCXkG5<&P+A=B_!EK0aBC5M@H5a)5g(b? z1CEKOGHhLS6(&rYGWvncY4sVMQ*Y{bu$|y4GRF`AUGSuJE*R! zYL;P35DM#M>>oprTJit7SLkO>IB4N8@&6{m0RUU6?G#)1yl^D+VrW_L%iwvz@#;qP zaMc~SD{zee6aQ)cU46It=6K)quJZalmwTqTpKu@N-p%!#>tt7%^A+b0ol_luaGd1W zMoB6A*`Kzrv5&Jo4@GXtPeW|Xe>^KX0ZkHbE7%07Efo;-1i!}an<#o-f& z`5E_;^ThfRD$`q7nZp!#;&y+!|HOu3EYXf7V$;O$+(z0Jqm|CLSAO={^5yv7%G{se zEh`&$r!r+}TUO>*n=Ewt%J?|(>I!zJ!oQW=ABUoMr}L{CdrM*e*#7yIy(PX|;Z=RP zuCR)L`?E9bEys?fs_ccl)tBquvVC0GKlTG}wtc*;i0YDkC;BnB0~K=*;(#pl#oC&_ zfIb{kcptv}QK41sv&TexORa`g(GcF`L^BOxql-`fhN(Se7SD80&Ta=IkA3MDzTt>_RS7Hb3JbtT1{(@V|siWtf-JtuDHIcDYPc#;1{8)aN$*bxvtQv zoL8nC)7wH+mGO!2bLIJQnm!YbzCtUreK807Fj)ADz5G$3b)9_mn~v#CDpm!Wp-}L) zK+RJeqwULUKl`kv2LH>09e^9P0W8&501_#VQJVnY2EXY3&4I6hm5O6?I27}hj0Dgq zVCFeJ-opP`;>Bt*|)pyRF8ML1FHhN66c%zokyG) zg90a=?c>irvwdj$Q2gF97~$J)2-tC(89)kuu?|4yFS zw(!m2Bg28vVCdN3SHW|GCF;HE{J;l+wSh_gjs69`Klo1aZRh=|x5D$j=Tcy|eykp_ zdcf)ds|TzeuzJ8|YnoB0n(x{YHUFSO)qK~c)%@v&s`;+Xs`-njVVQ-f`7WhUOA7gy z97sJ}fPw8&w$8vlfI4Zj6&c!>OW9fjd;h|#+FAp9KdPz#P2WW;jfH+HHn67_{$g8c zV7Kp!Rq0B;Q1~~g>N~%du3x(k)>nwG@7$!azii5ueHdf7IcZK7x(h%X4zazVGG8H+ zb?a>My|9{phfO{iEBd$CqXmY*~TEs+z;KnH{L{RANEzyy+b%wEzER z|J)Y-bNKD>3*m>u>G1X8OTuS`PYrj57loU`v%*uuV) zcqs7mz)u7J7w8Y15?C2%3Cs`74(u1$BQP=$4%q#F@&C^MlK(OP-Ts^Wm-^54uk|PV zG5R9hM*U{_fa>N`99J3u$9i@&D4!`o5 z@}BZ*=NYQQzN!5eo|eVVDg1|M0RrC@^QqxQjo<1KcdtXlKdf&9fC}~a2PSSGx^J9 zl)7Ay=~EsgvQ3cv6aGQW%LKXcg4-$eSeg17k#Ru|>@c2~mvZWedLowyGQIXQVqPrB zjpsi{sWE1r@OwxNu5EQW9Cmxf{SPXCzFbk%wJn_a_xn@kMS@KIv6aZEAdAzd5P1wU zpNVCuYnvt6Oytpm9N4~}$fE=~_|V?ejw1!Rp{bZsj}T=4Zl_Y};gUQOQbTJG0}|wD zb?OZu9S(Kvp`3f(Mq*zm$c>jzBXWVvJ%Y&jf=vJDSgNXt$z8E;Lu(s>#ImnB5}2{< z2ATT+VxPzCC#@#3p2>FxiL4Xk!02PCs#=-%6C&pda^usnvo^o&F%D&XK7}N}bKAe}09?S)4ldI%19pa;W|VO05!P`l3c6E15j8kCeA0Q;B(+Ak!a-iVoz|5B@@_2XN}2U!r>V z=hXAsiQG>z<0n_wP8H-(otMac1-bDj6Nq^qLH6%@38hXEWbu`8O5IzKsSlo~)V(CL z7`2m``Kmus>Lfu9)%^y@(AtSW!f=?g-3B0WM(iolH(vNGm0d2#)cG2ap|ukv`_GuY zOr#G!7pBtp5afU}K;(EqrcYl^WT_zgwLcMABFNOmea5eRn2ulpy5Ira8kDAgs%{*p03hSoZPq?#`T5^HwI^a)h9BFQO~+b+n# zTOOxW8>bfEhvX@ON~MoS-jfAYeDw-UJBc|b&O+)$Nga*U34+?=kpnQ_@q!w>>n==N zBdGKzZAh&aR4RQZavsOjZBz>5aO&r2Ok)@xyz3;)$0(dihcJynICU#cXU5>-tE0%t z5S*@f3@Jw7!MjgGiUD}=r?(;{@%QJKBgODreD#e;G5V%{@gmm8;9GVkO;X0*)H4f_ zlc9HG|H;V7$U9J1g=q}D{k!gs6yt7jiY7C|?!Xa~F|Cz*;`ud5NzA?J1fW6)x%7n} z1PZ<|V{ZTG!;zOEcVL%lq!@AgNBk8j2HfJ*bx29Pee4dTB;3y34=IVZqYgug!FFK5 zWk?~`f__w-x&Yshfp$Rs6{a!HZkRg<(->yc1A8LHC_50M@xvgS`tWSbhZu`G*SLp} zlL2#2@8FDhb_K%}d7+r@J(=23gO<#2)ax%8|kLyN?p>^=}cd$%G)`6W# z7&5R9#r}zDjH~H~9>shNs~Z-$FpW`lD0Ty;F{ln+zYkK3sp-phM~WeJ!+ezc!AcUZ z2R(is2r8#jWkgM1isC_KKuteP%8A6&55B-OhSQ-|YAB=W#xtg18iQ%-eNvbhOVgL^ zj}4Vjdi_-7WF#%VGl6Lgr0J(gD-$?spK<&lm?mJ#?ZkV7GXw)(2-A(PQ(bBe(7ke0s++L1F8Kol%pbg67>>N44&zYS7RxN zov?OQeKn0q0i5<3T`1gD#?8U|5&Ht;p=n-(3`}Cs9K2&aCY6Y!a1!fg#7td8!cYLF zea^`9F&pFM;2`NW5-#5hVm?O8^b?07XOS4Kdpur*6hmd|chuF4lpC7XLB7Cfs{H$- zMSoI6rW{;rxa3e&=n@E1m0{NoTinv2&qwj&ncfc;_xA zd;h*+?0ui|PvuX_Ysyo~y~-`h70Qp59wni)D)W_D%Dzg8va{m1e+HkIe$-xpy!JUo zB)5ARdN;1ak*W4F_HJBPiUYG3!57C=%V(6z*gN2Qok#}X^l{UOWb{p48zhq9H@yn& zO0}2qH+`jG765FYGkSnh8G(l`rD@j75S+S@%>Q1-;Gqk5BW4N0w$;=~M&XT@d_^R~ z@X!V45Xm?^biGaRRT_a&0? zxPKIhgI)>9J!Ba4G9st07k$Z)JTR3&qL(o__23LDia|Mb{mw)(Di2-KMK8gyJg|Ku zr7|w3u1BLP)QiAOtv&)sz}sHLW}nYKr{qRrM{q`R*IyG^2_%Z9%gTvlbWWYShDZs| zgBp<%pC1&jC;@sSS>e5m(5VN+H)e<)y7fntmoa*1h@^EdgY?j?+fgc`^x#`0%X%eD z-_T8|0;iS1x6h>x5J0V@9+*w30;!dOgB?Up5pOh5xfaM^FG4lA>1nSfQ2$VS8LWrq zen8xe*6BwGrg|B!Hyr#q)r5Ery)#rpW>GH!Hg?w4q!9HoVh@z=L(BrQmGr~UP{{(b zmGoVt1t#<-oncnRe#;d*OV5h{e0_&!eIkya&q9 zr&LDo)LUYHFnkY1ZIsIRy`k|nA{oFpH2#1{M)09y2)24hi)Qqf68iNrh;KOf_r%O7 zKCtImKn8nvB^9aS)*VnqQq*1s^8R81vR+2=feGUKGnDriqvoRaGL~<=@-=!T2J`eY zrIgBOKGZC}u!Qqx#MnVRhp)1+{|L&ujY z31Y4=rVmUeCAXJBeW08cEqfW&Q#XmuLRg1p3|{p)6(v!9zZZ#QSWn#~I+}4k^#?Nk zdKuVLHO?pR>O?Q&d+HC@5jz4rj^Sgk zp#HE4a$vs@ruLk|=)GDlK1*a|$&FBzh|3p&xd)fs#_=CeK?{X#|IDp7D&fEDU)w@iPBY#0~ z(Q_;_pFt*VPn?Uff=mtlmdGW79O|KA*t3}PChww>1r95zAsXO4jKirjFQB}P z!-GFOm&iqw*FIx4;cyS*@ZgJIQmVw^=T4xK1rCFyf*_{$Fb)sQBUI`UI1H&rQ!3*y z+C#|9I6U|wp=FQ6;m6*lRL0@K!O=tt90on|ULqNX2Y*vfB;#<|q8@4$B;#=EvG<8Y9EJg$dW?Xihfz577|o;}M&ZFTe?=uT3a4H|_zU$Q3d1tl_+8pj zDtXi%#^K@{Xsxt|ad>cm^y?nR;lcEKR5Ro7;J`d08HWcJ{hUaN!%Imz^e_$&KJaHs zMI44!4;)KK(t{`rWcr|1NDcN>k+7V0(ZncMDc%Y(DR(bg?bQ%ak1~A zMI>88JqX0K`u8C{PDNiD^)M6<#L+%idl-t-e?xmf z?O`ZRzfLQIJq*RE3%&=bp&o={R4-Dm0}1Ly4}G*Vo-K-EEFMURRx=i-A6ib#jK!&sM-jmZ3#h1pY&5XrEU2`Bc&@&FctIy}Y zaRz)BwTGd2@QhiMRYLK?M<{EN=!~I-r1kbN6b~&}Ps|L(12yGDG8CsSxt{Ve6sIm# zh-4^ET{1|_yNZ%im)t-kBk{mtLIy}A-bPGKM&b>J3X#u9oVx8JDw&aZ@I2fBQhOMQ zQvo=C)ET(!C8C)5x{e24U*4^k>4aq6kx5Xne9 z_%o8HYZ-}C1IsXVEhBO9pxDu1Bp!SbwOVy8BXRK{jjXi-iIqX#d155)AMpe+GZLrX z{Q$_|+SNk#Ja83s2j~lH5sG0_4xaxt%uyzIPw~zP zzZ(8U_yNa-?tg~w3jZ{GsbgOF9M9NrZ+KOBY4~u*yN*x8bCsVe4>^AyJ}5lNb*k$u z#}ro?Shw4RcMI?2Qo{bw=b;ZmZz?O5=iODI=bamr{?H@dHynY`Kt58v^LZgS`2FnhbY^Ira5audxpk@ws*HHr-a=M~PR8d3LEOVwQ*JFCIKSB^^ekoykDYtHE&k1OrD9ab-X6L>N3 zSm5r!&F=f|( zKX;$uzQ+H7>jl@Jy)B-4<>#K${crl8^FQdn%YU8!V*i=`ll?1UrDH*^Z-eu2-xJFI z%4lbi?&I(S-)i47-%*a+9Vy3h#|hr|eRaMH-(JdFu2xs4Yk~8x;Bzp_H_rQ+Zzt#B z&YQh=dav_d>^&2f34%_iLjlwLbr{jgKZ#QM$KM7+MY&ydIvmP2PvaO=ZsDZTr;xgt zlThhWZW2k0cf1a%>$t=bxIJwbCBmXB+H#62(yFgUNVR_|s2NxN0;#`?Qi|87AfICa zr*-vX+FwOl|5z00j)gJ}wQ2juOr21TZx9rmsk0CY?H_W!@1v6D2nf#VYtWFezbB|U z+o95F|C8V>9z?4`*;Y^^pWPkuDPh4m<9KYfqA=&(2#CrZ)DbgAZi_(eeOhoS8#?P5Xo z?~LEX@jXu4um(6C+Yn`+k+=joeX1_Or+-S_UdHzO5pM z+41`$HJ>@p*#Yx45(S)7k!p}>+al*YBMqopPCI)6avmZnFLE9%sa=t(micgtQkiW~ zkTy$D)z{FFxJTq0`P>gN-!ws${`O6LzkLPgob3_dlroXlKjvbj?v?ot#~O-d+O0?p z32NHok7FtKG3T?W&?;kPK7=-9grKxnY5VyhPJ0Hm0%b>{U`khGz8yr`^zHtFW&TQ1 ze?#hJ!C8GZE-xuBiL~My5%HAg1l6y#0p-}0(|%TkH9R5HeuQbGIc)=4rOKm{qHpww zptM(U!$o;mP}Ai<6V(eIe?#yc_FZ$W-KIeqLHc;aXx%06d@BBXfy%-LZlqhTNY}x0Gz;#8(9FbOh+a#pKXi|!AeG4funv~+( z7Q#z8X8N7rBR%$`v2d!HGu`ULg#C$vCgWgrh=HXPU%mjTiPRIpM=wXBl(SuW15zcF zw9V6~k2=I4BVPn4aW}!(UxbUB4jxv;m!cZ)DAKb5qXy{Hs3^kCz;>3%CaeMbBo$!E zu87Sn9>ijS*!~J+Yl3WKu-NzGY-D2C_acfmJD|20r=8J@Z`#V#d1J99iv*=T6vb|h z$~1Jxv9W*>i==j*G$~rxu&-uLS~0Po#1t9wc3A^?E!iFuuh2j7XsGW*!6=p`>>V-* zk(JBnC%-zIKr==7!r25y0rh)ewDIukpYR$|?{bl}cxPwO=r2LRV(a0wk_pJ!D=BoN zu=O!Teh{`(B{df~?f)k!Ts^b@SW-AP>=!Xbo-nq{_!VeZTa0wr;@*JO{a7Y-12tC? zD}WH=TJlvRE=iq& z)Xz8@IYcbsB=Wno{f(2zbD^1&NSC+$Q&RQ#Hh&O|!WmnI&5D`3WuTXbEe3l(qUOX506Ia(6v zt07QbDJH)*+wEKvxy0G-6qMK@u;0PdBe=9;pCJkn8}=aYup6~UaKC;}$%hDNyMU>O z(8jd;C52#OuMm`2HncAjg$Vb6$xM)chmiSfOWK{31k{7@E{h~F1cX3THZtuFDjg_v zda@-Yg_veLQ&PC-Xgg0*I7{qeUO+xH>}}7>v?DO>VXlsx4<>L@>J2PJ064Gz*r$p# zvA1M@h$-4lvy`RDA942H;DyGGyFSV{7udvCG@v&XPH8o#gdhM zoZmg(_BUl4MLA1(QF&AuRIYb?;Pg9pceZ&Zcr?#;9;f?n?p@s>x6Spj>$k2KU5~m3 zT{pTebDiVradp9d_MxtWT?e|#U78Eldz^oB{sAHaKIyzy`55-JQ_c&Vr#p6a9v}WV z{M+zL;m5=Ggl`RB6+R#Q3)X~}g^zMv=eWzU!f~-j~=UAQ8=S9n}_r?4;dS?GPo z$)PvE-{67JouO+(7lnQlIw{l+ z|1SVf1aShPQQG%t-IF!{%fO?7!N84y%K|?JZ-iBWrGX>BZm(dw-RJ)d{1M*tKkt9o zpY~txzSn<=|1AGnXFZ-naR0%462W29&muetz6rPauJWDlJI%KS?R57mXrH^E^zG$1 z(=pXI&bO2DTc6MS8Tcu@;eFP5wD$q$-i|lDcf!v89PhQ>i@ZPbo&+ZpqRIkC$lK_R zc=z>|dUtWma*X!|Jzse~^8Ci}prgt2OV1;o0nZH(vEgjbT2BHz7#4b}JqNf?a(B3+ z?nZaSy{~(`^0xAV^01Ott_MX*nEy)ZP^a-zHS{2uDhXW~=>gly; zyEtZWzJ`yGI*6%L=VMC`VCpnn=X31GrQC}SVGbccmDD}B#NiOa1U9ypVA>Q}W;0TI zbH01tMM@~Lkgo%&$uf=XgGrq42c-2gPNnWeQ^rxwX)UPuImUCo3vlVz{x_zcvSXR! zWZF%@Y5xmTPhN@nc4q3r1A$Ul-%3Yu`NOfDOp&9n?FUTJnza4GyyQkO$dE3&>6mC2e!>Z()Qh5-=-*Oasjc!Iuoj1Y4Yim6YAQZ zVi^;-jBDp@%Wsw*i|&YyV>qGaQ>2cT)M%uRU~1y7NF6Sy6gi#SPL~uq))ruQa*;ow zWvly{S~mhJP}VVZ?k7lHDXH_3x{xW_U$U1-3N;P;9!$|zl)aRxGs)WH36nmv88~e` z+{8H^+b@~(j2p2A4^woo!gf7V^5D$Z5sw<2{QQ_U!}6`!QG#Znlu(zIV?-;vV}r-iW>nWD`aJHuJ}(1Wp*eokw` zWff(Nq|hHrVPTlAyA;zFb6O2<2r2R%Y6vi2<+MX0nC~n}p(s|)VT$%X?JUsKb6&tS zIVR>HC@FFj%tAw0VZofPT8q^2JWa^sAGAuEGvqt!0Dwx4h*lWDZnNeaPInZr~$QUAx(1Ok)uxY6X| zDhDq41=yRIaW@4E5ypTboIva>`O`({Zg2mB3n72s9ho49-tCwmPh6D?9F0q0%4$jN zkHvRM3Ri=a|ZfON9JrVhzf+`@%JPV0>Rjzo&(rSOlR#!2s^;-a{idJm0cMXFfu z9gCEm(`cvA#nGKV4E-ioHitq)431)H}~&na}VWkb5_ahSWPNu*;uh z#^2M#eU=%?nS2ZrSl_Z-0Z6)g+6X}nMMu{_7JC$n}z**l3E6(*uLTqM(4&>OX7Ga<5YL)QC7k|m3|EDx zgm(vv+#C8w=-tq-LXU^;4&4ZQ_h*Gp39SHYydhK>+B-BZ^u3S=_UHcqC;uM@`}@Y= zrNOg;rvz67qrrw?WpHmg_wNC#`;Y1?u_}=xs>U$FQ!f*Cn?mNe~*4OE4@iqA(zI}YfzVCxw{ZBsa zzrlNx_cHI<-c!LdU=i5SRo*Gy-Mu?`y`Fz~-u1lddD3%_=VrL^;2f}?J3TF)CQrn( zkEhu4eUH!mPxqhPueqOc-|N1`eTDnS?jCo--Rhq2o&`2_iF;?a-}Ra6J=d>YPrL4O z-RfHJI@i?;>m@PQ0@rNUR9C5Mgzo?UjB}&&cIQ>j^PGL)Z?MF9sI!{R`;T&loi@iu zj<+4pgEfDr;~K|>j?*1$9LGA2a2)J7z)|KH=?E!bDSuYpQl3*DQ0`E!RxVIZQ&uZ+ z<#6Q?liqhEveiEJ zzDtp)SNqueZtyD9RMbB7zC+KF-fM_t-@6oW zee8PIKL&S1)jo8+!&gY6rm6O!;~hG%k&>_Wq1zpt;1V0AY9G7ZiJjI^AG+O16I|_M$GhU&S5hiF-u2T)yV{42cUUtSRcar*-4)Xoz1qia zcZ1iWN}~2jw>z?{)IN5*D<+o&wQny`)Zn$Z6EnNr38xOVkKOKu?paEy>~@!a_9p0$ zK;NF=JmmEXpAWTkq)7{XMxXiEivD4kqbGY`U_Oa7l`j81kveTVddr=`Kz7irU9c zcfur6``GDj=&9EzuW-6!e-gD1o$kOBZbstQl*%r5LuaAMuJ*CZ-OyQnY8AWO33yfe z*yS!wc7@u>#wOLKJF!?H~UTSiY zBvHjylTkqq-G%mqnmk6PqH?Y#n>qDgt2sU{B-r0^P2lZOg2O~$F3T*%C)T}3r7Ad;Pm)Z~0giciV_ zJah@JHK<7j;1qcosYwCA>}I4UB>Qnw-P$I~i?wH7NiXDnj=HH7Nj?NK9n_ zPLYDHCK-SSMs`zP2H>H`Pau*3cKky0Vl@R=BKamoG$*xnA2*LOr$dgP>N(lZC*ErQA zLvWfF*VLqh;EU%_>S&R7sO?K48G{Ee`kY9{;DNo+gj17@!D(8DRFjOsLwAm%RL0C z=+RRtl|eW~Yf5TTfG|w|eJGVdI7MqrYLY=X^%e!L=w%R2(`uU9D?xbeOnl*924S(V zr}i=k4<$*1?iC=cq-bGC?G+#lsvf!)tGx`u>1Gs_p=Y$6$kht9wa9<`TYI8960YOjQ0 z@CD53=jPT_3uzG!Y~;T=#=bqhI$c*;eqf=b~r-42*vyW_A=m{GK2BP zb#GE*7>oyOsFsI%5sXoEk;jk2tM)P+Z(R2{r29SR+y1Boy@6i`o(VhvH~w80xHxcT z;AB&*y|Tclz%~H|ZUTJA|0}S(?}3x|SNhL`XmY!#JE|Tfsx&GeC~u+->Zo_jbWCv+ zJ9cuq9DjFCQx8%nsbigcx}SAF0CDlI1-tn(_xqlsJawK5&t9H!o;B(b>RfM)ce-~X z#M#@y>-KyKmiMpKk0R$x2WsYb!wjygj4Sk5NxLd$ppY7fs;`5DiZ|iot{_gst>ou_0?|1#ob&cyH*N4zT0~k+^29w z_}p;P`m%DqT<=19`_reZiuUJc&H{cJv1>? zx)A@+KtvM()A%#KA6bJHJ5g=~wc54V3{NUkhE;sqtF{)ac=D7?tIEoJW!r=$ zzU5Erg(dzKfDje%(CYerzIj*^B;T^DU5a%)b%2I0^!+>?ne8^L;|a!WxUyoU{IUs| zam7K;L6UzsbzJtXF6)v@OXBcyr=PZ+}P5~k>s8e z{V$4~I=+urLnpWODc5n0WbVVimYTWPD?0Ob{8v9 zP`9#Yp)=ar>Zhe*6MT!E))0TiQ(2*pem~z9tu4nYo>(VY6wHO?BrNc>I?b^?z7Jc& zB{FL-v4-K6`+2%A^qyOqhc2Ybw=!z2utlEWCsh=jaIG|Ko+on9@E)=9IB1Vpb(YUc z-)EKTc(Oa&wOHcW>TFkHiEruGM2T;u*Fx9|ckk#ZZ)>Nkb{_tY>;DiQ#^=dO8ED&% zzvC_!U0jdn0kwUKBv;qjBc0bQPXuHa) zvkYy05|(&YNZW2K@$@d*+oEKuGTN6`=>WGB^j28M^U-J@V;#2>^fbK9c>c99sU9ry z#BJm8cV5#P(SO0;aeZ6&+icn-9kUc@t8KOfzph(Kubu!U8vog|XC!p>=sNn1+l~vLfWpd+4NuGcRa&{R&EK`%1bv43p~BtKvCEYlI~|Uao{!6`iA|R z{Bb+*9*;enjHM4uM~xjPsE#M0(GFXU{NIZ^vaVgX$8=NM@zqs#U%)ImvF?8>Ch53d zfIr(&U=F8=C^^h`!UH%Qp0{r(R`Ik*+WT0#-E<4sQRH>E%{6-xz`9#IL!I^%Hp0{I z^}zy9u-6j{JTo4CrK}_~8orwjoH}MUkC#61#Q?MUf!O>r8D(11gCBrINd3Ch=vBd2# z?F^Q9PGK8rBbFyg?~QeQSGeZ0hHhnpoQ?&a^l%VzJVmtaG?sWOX4?m%Gzxm6J%=Uk zUDJnSiEo_OQmm4d;X)gSC7z;4s}m)2tGm`nl;)Ui;{02wjszdT4}ETf5O-Q_a$wI`20}PYOq)*Bn?dJl9ZhkNb>vt@qh3CsGj_P zgZy0~_kWr{$#3(0@B7I2s_%$zAMDM)))(@v_RaTA@D22J@nwU>?l=B1elR{ZUNfG8 zy#G5O>b}NUV=OQx8iS0kMkkX0?+wWM|7haQ#2XSfC9Y3goH!+MaALQ_&WWuO8z$Pl zzd+9aH@!z8-u_^;6DlcCxQPY@SgP{nsi{RES z2qT1x;Fh6fgm4kOj_-;vLgpekEX}p!DKw0bwFItPc9;>uCGfhz>CiJHgiGLceAk2# z!X@x6Jf(*b!X@wn+-fsIxCCzHWHCb461Z-qZ!tpF61Z+{!ZJd*1ippmNiag@61W+& z!xJSKA#(|w7tNJ;f5=<{hY?$;5_G!}!bNZ^TY^7iE`po#w9+L&y|oOkTc(Z?!e#L7 ze9MOE{0os%#08&hSzb+%Lw6OxRs^B2;pM*cD@D8 z2;pM5wFk`z;bM3l--PA~b$6I&hM74Xj1aDbTPB2v@?} z@eB|~2v@@E`2IB`Bv!)t1~z}lS_#Jl5$4T{E8*6bHX|ff!ug&yBP3SBM^58c#+C5x zd{>(h!j*7qTbmKWmGJFPnETp{5Uzw<*(Zz;u7ua|eQrhwSHi80ZbnF~gmW|12w5xP zdff@rPBlWf5?;p*RU?Ee;dOjlTwH!j*6<`-Kq_E8*N=P7Jk@S2DYd3*lQ@ zZRQuoh44CVP8%Uy2)En=MhF+et?Vg@p;X=yY(|Iw8zEc=KYUX+E(=@--_G~;86jK; zZ^x7P7$IB-x3d2jAzTNyQVJO%Tn9gV<7(b1YaJXC!DqiszARO2#uJDw%SsJ52D_5IviYE(r;QEn! z%m|Cb>J@O?c|2B59itjo!Q1hqIz~0Fg4gk#U`DlA1%J!j17TF-DtH~=ZDv%PtKiV- z?R@uyQEje)n?=5T!l*V^z@ca@-5J%m{(a!Ixprq%&$nuiOy&1kwYmNca66vO$5%ZU z`Ur=7@pL}s@Xe1gR9hK+jB5N8x8o^&jB5N8A9=E~IpNj#DLyjA+!tn4o1bF%?U5;_ z7s9B<5ApWvdE7^}^&!UmR7SP@5Wmi0{16|x=4M{R53#jR(x{dnVsj&zQH>ws?R*2S zQEh&RAq?5dv1C-6A7WlKlPvkG%@48p60))^K^QWAitG5kH=`Oq#Ye7c0d0Fhg$cRq zY+{GL``M(&#o9Ia02U-ohJE=x-ESlnCbdgSPD=FuZLV3n>%=*L?!VPZfbJjsW8I(l z`}@y>69Llv4g9+A7vJZ;w_#7f<8)6xoCy%W7yo5A4e$};9^)qCGUH-nIqVAi+x9e-ijl0{=)7typJmw!HyMe1Dn#G?w@_8T~R*GSzy0 zh$xu>_&TmySzC2<42rPA;PswJ@;G<>d{HtZ=5<`26=4Zj$JKZJS1j?+ay=hQJXl=s zj3pkzt&1i7dczrzE;LZ@kbaVu=S+>$tR9f1m}DJS1N)#!|gu7g)#57X2qI@!e(m z-B{wAbM#eM;@fTXl~}4bTm$R)rVf2Hmi`C98%T0HK*#k}OE=d~U>)C@sf*ANzNbpB z#X7#FN)Ka+Z-de+M9JLPq+g6B3=hE)->IVGGWP!@SOkB^cR1;5MX9?vo6E7pW9M~T zv;5x=E5TNH|6~nH{x^2)G?UW!pm?OeBly&U1?M1BP zhe~Le;L$q3bOBcJgM+lIM2Y7Hzs9<+tivd~TUFKp3K~XFS_gQJv^eVo&Hh;6$6{iv zinZ%l#{eGdtPTH;J`u}RJxeZqTpG>+XsXA#+Qm>@;u;2d!|HJ-kARqr|*x%p8 z_ZzJ1-|GuQp8b5trhgL7@4M1i2>bRs7>>jbA=~|y#A%6L5}SK}_P*@h?Y-K&-aE@X z$Xnn|g`9V%U@!h2$aS|7PT?EkDe?q74#;bF!uP@RZ*;DKbM=ayO&z~DUUxj?*y>pB7zP;!eF@(rypXUfp*CTD zLO;k@=&+x%KV`quUT&XmKi{6F{{`pb9n^1v+<)Wr9NndTs6D1#q0Q6IhvELe{R^)4 zXfB(rsml{+!8X6sWp4TK#d&3=rR==#md+V-a(8J_abbRbZc%WRp^;?@pKlToGf- zKkZWeXk*D;Ah~o_y*sb#i<2hL@OcAviCpBDv}zQk$*rl1Kl zQBoS2FyOUCHIFrvz+wq_O`s&wqw^Ep5APW(fkhJVn?P}7;Dh%zdEl%rfrS!CG=ZW> z(dD=Pa9`X05?Bxo6h^XoYQtN<{gedeOMqXZAkyK70l6)2l!8s4Cjqy4iTp^TO||Eq z>M=;RFjoS+4|$Qm!dD0NsV$Vi90~9iawAQj@3(8n&>w4l`RSv5rz9{#0=$LdNTc9K*KVuxOJKSL zcnd{`zG~9tuXR0YBrr_^yoJI@qi=d0k6eAf1g1*BoXz5bNRuD$`{IUuQzS4&0!|ai zkF*?d>MMxwk-%gL@IK@n`q{nZ;2$T05||VXAipnB>{h|@y zFS%C&6C~g=fzn8m)#IOR;qN1X@e=TuKuIL?mHZDI0^7e6h|7|JO9H*w&4;O zD*0MWT;(uQPW1@k=h@<}x-`;-rQVEQf0Pkc$B=hfo_J>MaN??=(%(*Da zk2D-#b!5%e-%DVm1b83v4t;*Zug^8@zd!;bB)~6`8)4)obYff2@H||?_^=bx#zdpXLdazfq~ILL8S50C*Iq56kf>I>%Z9mkK26B zxjg~%3i;yi>HVXBm=|&0wY~h*yfXr5)-URZx$^IQ>E8>~h5AJOy;SnOqyAnZ|K2O= z@5S=(J){0!B>&zc>hJR9(~L#^y+HEkNBvz6yjl0CzvoH5Th!m>cmrKMZu2_}0%XG< zpHlMKlqd7b^5w7tT~zh3Uq4+wV#p4tR--?UwwkX-Ul#RuHTu%1zpK%gMEzZjzBuad zYV<`>e^;X~jQYD8eL>XU<>;H`)4#)KQruQ~QGb`?4dg0uluaIY%i11Ed1ZNO*f~)@ zlfw>lRzEBJbEM{LGZKELM&BvwXKM7>QGZvX&x-oH8hyv8zpK%Ai2A!4eS7-%Ts8W3 zQGb`C&j`XWnl`tY_sZDvU2R&_{5fRC;yGoxoyz2IGukR<;hjzPq}}_K$&}`HDpgDy z#Z)ZX^z#+%+n7vAZl@B(WGd#GD^gM)nDeR06z6s-R!oLs?sD`Se$*E>nWEfIMUu&G z?a|FXgA$|7VY?g5O#k%P&rGT?w^LymoAA`S8HXQ86Z4+kO452V+uPM%p1Jj$Nf+dH zDkx*qg9l58Tysv)8R_c!d+)cu`|hYCCYztzNj*Sq(o80m%dF`8nw5*L%Ql(3+}uui zO5zy-($bzk+qS*0yG3f8*34!t+0Xf@l@I{&X}ZHHPMPEwnLJ8JHHMvS&|Q_1U%*@Mq* zZMtRNRTghe)0FndpI^3EDpzfqs9rqO?a#Nb&UxFSqb4f7F^D&rPt-Z9Ixi3ANXb9g z$ZW=%$q}co8n(rU&BV-Qn}+0a-9fp2r9HL>&B-ZCZD3x`noX;k%x78>G-0#mbNT!G z*geJjqGmG9uj(t7Uii>~W{sleFwLjxuO0o)S?~L8qGm76Q1v@@{nUO)a?_}JOG{Ms z`>x+JsCs>gcfYBR@aznDLCk?}V?Qg?p4+$n?g8ch>xNkziVCz<|9At+?FhB9lJrbIH(Grioh9{$FGJ-Inw=WabYi zO;0LKYT*CUAMs!BUkaJ_Tl#*6)%!bqYkb3eLE|su4P&=aVN5V`4Oij^iH|_0fLV#> zB{qcI0PjFvfIGa^-UZ$v-i}_s=WEZ)o_(I{J?lNwJiQ?AUZVSZh`8VD-U7My#<s;%c;_TsU>-0Fjb-e0$1oq-@gnjsZ zU=O}8;m3p%3HuYaC6p)3flPUw5*pgi*x#`~VZXy(ZC_v?V$ZWT)&J1n*AGKJyjp#( z-b-(#{iVGN*8ery3T>#CuQjv%o?5=llzDSYbu%Xe{wF^*$>mG=jPP2Rk-Rd{_3`7J zT)rf>PJS|5l`l4Dx-r*h($CJm`qN(Pt)I)UXRGo>3dwVS|L~CGD=kERNL!UJR7kh8 zPY&FX)YU@dH?>vy0)_P1(BIQ z!b&cm99t))lw3Y3woZyCxqM=59g)j~*g7JY@v(J8F5_bBh+M|T))BdkiLE1Y868un zw4vnkQL%MIE+b>>h+Ia*))Bc3kF6te85Ubdu(5Y#ouy;Mh7MmqD?0L@onk z>XZhUT+VGo{z^EF<3NU2@Si1LY)z%Y#( zZ9b6_7^Km4L`q2k}?Ekqy1%^i`enbMwmB@Lg+O|6#*BLJtg~3SPE+^n?D(F{Uil8kzgklKK#I;s_hR0Si%O+eg5(6wkH(WSc08dt!dT{ zD*>>W4f^2Pts8>-6xc|D*{t^GFF*LivkJf>HgMx**KHfTLV*n>cplr7IBVZcQ_lfd z$VSZh>gbCXeW$<%5^TdZHSa&=>yaM-Sit&R(eBl*Z+@-7BncL>O?@3_GCrsVFrN+m z=FtbHJ+WAUehGGBo94_vGi?7i0OqlQcXjSvHb$>GD%=WsiO(KR36G4eqv}?_CoE>e7i4gckSw{nL8~ZUnHD4gBHG zb2ZNP3iL`4TD${iCKqO=!}=39OzNjVh_A=>z&y6;C|@6g7K_>7>la_$=Jl=$bW1Rw zZTiyl@?ZIV0W4xeJe~9}kIzz|OM;ATc6KUizVm(n3)#p^E1G}5TCNWT%bgNz$2Og< zd!Y2EasUfh-|O-=zw<(^YSAIVGPb#CBcs=!7Xz5jhOe0Q?Q%z|0uv-y$~NaeGx(c= z_5kLw;Y~lk>ruze3WPKDaMXot^MqfPtw=ZoU@jZ-@WCVZUK>`RF2N3L^QfW~Q&)Tr zHd7hvx8k*m_grlhs7bI5+q~eTmsj1M1z;)bUG>2|cRc%n0&Nn^XPYa*xpjCOfG{(& z5B0j#Gh2d}NUkm0y!-AycRzL$~&L2d;<>e`rzH zt(#tu+(yZzu+8^A{p`dBYk@0d-KIIOc=QQ%M{JNBT(=Hvo<8P?3s~>>?AhTlpUd{v zORf{!{PMPsT6$7}%Vz`n_sltXYN+JaNe&j0pKAT;Y#%sj%ko&ytL|;$(Jz+VTFGS) zE|>Mnc;c}w9n?bY8p*X%Txl8Wsb90a>b+YAj>!leQ);PU@GG0eR`( z_V0rn{|o%R{pr55z7xK^zRkY5z8=1o#&58He~%G1W*Oa$b`V6<+|0i7BcGR zxV+BKoDt{E&Q;D4kcrRb_{8yq;|9kCj-g=fCnS6bdG@YNSPuF1f(e@ar2R4bjrR4B z0l$kqRsThQQNLTiL?5r`>0a$q?J4aptx}t#F)bB_^uPF*Q2~Y%IEJ{Lo^`H;Huv41 zxVtB>tU!KUGAh7=5>Q+26gptxfOVi60SCN=s@5x2Y^=gQ%5XoInM) zs#3YuioPXy|4B_bP{A#$*n0ANZe3x$<=LgbZ&Lvl7C5N*VB4E_>gjLLK?Rs>rcDJH zTLSC2%lvnP!la(rrUL9PfwecbfqSr{Dn+h=31lIiA3roLRd7Z-K{0AzykB9hui)kAbA^RRDeY& zpc!4ymef^D7myTnMg^FL0-E{wqu=f9aJ_(t#KA@s(Ck}G7gmLUh{VBI6wn+ZC-apr zUbz_+U^NP8?z!K=DSe4(iAWsGM*+=GedhIx$9yCpB5|-IC3N!xb6))9XM~iKFQWns zN&zkO?RqPec&mVj#KE$ZkQwf@WUhdS#KFWA(1J-@4)-bEC?Fznur(!gaKrbuk46iK zNF0n#0WEwf>6umy-WL#&I9Q(oT7;i$%TrrQBo1b%fEKUUu6}fWf@q0I9PCjE9r$(f z2c2&d5Ro_-rUF_rYbkF2aloZlfYJ5mc93zY`FVI9RFj zayPx)^7I^7mg9ct5+ZRhR|T}#WG>7Q5Ro|8trEJ)yrEzL!fJ^~91K_qr8b&#_Q??f zA`%BnRzM5aPa3$U-~#~>iGxWip&`e?C;X#;h{VCR70`mz8-5Qgw_X?!0!1VaMy`P7 zcZrlXDr+fPA`%B{S3q+gHv{4+xYL?jM&vVf+Y7b;!!{W}685(k4>K$A^p{?bzdA`%D7SwIt`?gHi3 z%%}hpT0rB^-FkKHWe;OZ%DGmD7Cn-HjLU$Bjj ziI#}O8!KqkhHD3=Z4`Gw5s`Q!1&w(8)92kui$qIA;tdrvtihm%3M#)A5RrHT1r3ar z6Onk5g8B(vgFl=_MB;u0;c5SV-;t2}sx#39LOJ@FwkaERlRM`I&A`;jC6(SPX2oyDU z1w`UD1@$mLoc+a{u0Tn={1OGRjj1Plbbd*6TuHqA;(vvd#LG7l$h{yVE9G_3l9G7& z1_gDs77+!cBwoH=K~#kVYf4GHe4T=dqV57^C}otdRZtgy-hz9cD8|dFsIQFjH3}-@ zUgD<(q$FOxT0tdI&t1Nfc=;*?iO4AH%b8CkevyKr?{Vb=&M3c7L3vSXt#SrulwY7A zs*giV8G@7iHZmEx(_WxYlJOBT%|K0Yl z?8ogp?G^UX_8d6T@^x6@U#$<&Q?+lkL)untmR1D*s&}~IpH4PK-eoh_D!S{x(*^N#7fM@CnrJ&eGHc^u zL>`lnyu(ENjn%mdxFkov)}&n;`7s`pDwGiRMO`dK7>d^ zi0#ep zp^GgeNYKTRMR^0p9==ODBC{$BCGB8^u(hJ=1rG|kh%H^tXI%B9K+-Tu>#HQ_!pM?+ z%Z6uWw^MXJq4CibbU|drw2h5F?ERylGb)MUf{(C(5(@^OWdW;axsq5g_$(u&zE`Q0d})oVrRPMg{7|JFsz3H3p#B*qFxwg^bdCZm!VD|o*ONWI=FiLrwEkbsCth_Qn1285Ik zCZm!VD;VJ-ASs!QN@A>_yFozegHlP1l_>{~m2d3-w1CtHrIHvc=xz{@6m>==F;-?C zd#})2IaNSJ;?!8N+zkRE5+}yW93BPKUqD3S#8^RhgMf&{iLo+2`~K>xzo!X^NSqie z^DTD+hoT%jmBd(Cz`xEf2#83W7%K}ccY}b4#EG%8V9D6Wb0^mdh)A3mD+?@lgMf&{ ziLtWq;PA$`ogE_}B5`7@pu0gpMB>C)Sqz`ulSf|`5Ro`BRu)_C1_2R?6Juq`c^`h? z>EJ^GA`&OY3c4E*A`YHPVyrBIHJXE&uxbcFz~DkA5+}yW63g8nAR=*MtVDOblt`Qy zD~m06gJ_9JoER&MJ3j|5o?HPDi4$W5-3m^oA`&OY3c4Evq$FNJjFm}I z%Pb{I;uXYLL3abTL>)ZDSef8!(`VL%uLPtdUO|i%bTD`WUObF6@r#4Cug zGRAT@2uMl1f*32K;2zi>-X$O<@d{$Bpu0gpO5zp7SQ&bjN6-sMNxXs>E9hyn<#d4TFpdVyvKrj4e?I4>4BI-5?+$abm2XQ70fGabm2X_9!4C z@ny=QL3>R=MB+;oggUN(h{TsDsF)j2p9+Xbe6fPi-5?+$@kI(kbzMM2;tLfNElld* zSwJAmNq{XCl6!nUfh@;`fQZEB{VPNyK373#ABmQT#OEl8amD*C0TGGMCXnTm5D=00 zECog1Dr(C3EB!NJ-@g-b_wDj+@D25~GJZ0ihK&95jq?lxBLDY7{=LzO zLGSP0=e@UhmqLEMMzGKSQBN3F`?KADyI+C4`WL$Ux?8|$evi8@cTIQYyAqslI`46= za}IWnL@26HX@FpHP#q0M5Mk*}t?OuwQ1MYR`p(Fy4T*{WWm5U|a1s z?U;76wo2=-W!la_Xa5)fGOCE~g-;sa8e(pY7FJwV6%VvR-vIhj1yvfE{@$vZC0|}I z=!`0&gvB%|Z-A^S9%&_-v>r^+WN~Er7Xx}dy{=j{NwhJ1_5>`Sy{sx8YK2YW!zU>4 zNqm0U&dCMKM3Y%nJl=}aE`}ZqK^L%v;hOB>V;@sA54ys(@o^M1_#`$jesof&D;3Qn zuaL&)QqXZeiHs_uvElP6VEKGzRq@a(Y!V+(q+s85tSh35$6q0h522t-BlG=9J0^!t zsP6J0ETr*cBItNmL=}(3Lb}9g-a7DWg`mL|k=DDr=iQa6Z61z=bO8@+NEdWbWLcke zPfUG4?mx<^;xSqE(}nRg56t4UgQ0gpv|Yef&PjEgTO~uyvZ{D=7Pg&hxs?Q+AGv_L zmE>mVj4Gn}b+DYK0+!#htSTO!g-v4AhM;mIm+-;K5TmRr9;1acdIgXMZ&D?{hi(vp zORWT5P&gO_C10{_Dj`10tOakK)AC)IAuR0XpTAB?AOE;$B&(8#XK~EM&d>V+?50xg z=`bT%*ka?hMo-w170rXRINh9$Xm{i8O+Q~H=n{6}Prs!<__6F@RwWPB;&eKjY%UVt z;t+H(TfTqM2K(4=RNFjYi_<9#O?^QZv3XkqOGa*ZMA1BKi_-yyAqIjjWb-?Jal!tR zCl$?uw>aH|VXT3m3)s|=pWZ&{m3@llxk@;l%rNLc(D`g;>pSWupMGA^JYxx`TQGD7 z2s)2VAO6fu7k2(q(L8Snr&Ae*AqYB`&A24uT|Jbz(s=d~PPby{AV3fx&1&N zB9jZGmn@ZGV1l4a+4Q_Imn}IWS%} zK^L=GDT!aN3!YOn&uYTy77U#Tf-YiH+AjPty(y9RGTHBJhQSMhE@TUK{PIKj7c#|2 zRwYk&!rN}h(5)co0ye7q%CGh=`b_l%lAfT`I-OxSgP`--4DG!OSG_NzDYGge0}9fu z7~1QC&SNv?m38WW;7-*xq(ebEjbVU;pmW)@KZkF8VE=GMLv9qLTQYP#aN2bCuqio5 zKmG9!zoH>g3erv35-a3E(4}n5z)hZ%u@5O4vZf%N%+MJj=n^(@)}CYE?QN=PNTGss z3d0}>K^L>h1!sICzLj6rtV+nIf;7m)a!&}lh|O5HXK&w^Z&GbTauuWvw%7`b5Og6M z_`tZ`C%*bo(U55c>1GTa7J@Ed6Mpso((X6Aq9N@H(gC*63X~8u%w^f%wz(rn+mM3= z>BbCQ7=q4Y<92-3;_!zudq!3zBxFIlDZ|hSLFckbO|GdL@%KHdCy<>5>E;Zb8c0J# z=(KGY+}--bql$)9EwU$btzZg4m$HdR&t7tT-cO2#ye*POH;150*yKUJ&{H$+Rx~7W zLAnu}eG*a_u(N_LW)pw?cGoW%#}y43U64*u7uohq z(|&p@QP72K>bMgVv%8K|G~{|g+Q(*`{GjvAKix0r0yg%^j&;3H-lk|s{DQQDO}}&L ztdA~wO3?YN=du2CKHh&?(U1j3wvEmaLFciF30E{3`+L5kAtembNeqKB1f9#KKm6Uc z#?Kv7G~|at+QZOYf;8k%8q@88Ht&9{KGBtsEC%UBHr@);5OgVQMAi<0rC5Cbcx{ytN|Gw$&JKj@mL$(>Dy$qc!f-Yb)Zf)KC@UJp8RaWINNjn$@ zcL+M4jZS;?$bD-LskR{xjqC}!T?C!S=5Tp0Rx~7~LE6bM+(Xdtj*Za{Dghq#s zXge=5H+o$ztFjlNF_1*ixsf^L-(Pz7BY&&e=}Bm`5|IXbCdU5Ds_Y?Y2aBOW_ldR^ zvnrXSow0NYo8AA(5hJs&Qaw3e($Kc$M-n|LW--RCY5z~Lz48Bz{r|c1u=5t@YUfC2 zC#T!-spCo5*MA}8^6Lo4YmiCagMVqhn($Z{yK-c5`WmFM|2@pK| zPV#;ZMJ;Ak5r^Y=Yu~znr0tSXMI4S}d4%Fw0ZIQrMip^5j_G1R&WbGpQZBhF;&2?z zBNTfJs7Q63I2=crdn8|eNkGa$R7D()_(l|vau8J!haIO4laKt$ri;fSv^0TGE4haEZh)xdy5s4FrBfg~sL?liej`(sC5Ro`>IO1CdA+nfNMI4SX z5Ro`>IL1Ik;>6(?J$EHU;^UQ95?x=SPekJ56okGk0TGFh{a1)cd<=msCy8i@NPM({ z(7h!fBJoiQ!pH>y5s8mfQ1k>V_hUxY2nAtW4YpKFBtBe0(RXGsk@zqLVHAyMiAa2? zg3x0nAR_T03WA7)g^zq377&s6UsL09(FZ`qEd}U`;DV+l> z2M|=nsdj=cW#dM5dFZUOqj+0qRVkgL8Czf`h#hmGpi9`KxxIUI{72b!RZ8bbVheh{ z{mtjsKO^X3HuCZrXY(Fa)>M_!IU2DAH&<+0{O1`#7qKzFO9Q-8LsE=aStA@Xr*&BV2dW1x5QD=b^#mN&$jgbt5nchmC`v<+2Wz^+&(&W zqM-BHl$R!yPjWR-ZL83{rfl(L%isF&$Rt7Mv9W*dd;4H8q-YhI*O)Cy`E1jTZ?6(` zE*m}fq9r{VT(4*qn%96WdH1Q$8)n;(1|QV$Ll-u&U!wxzs#Itmw4Gz_`Zz4;QZ{;g z?iJ@5}_*A5pXl&1)olIf5=`qaw|3cYLAr$0`+?2VRaI zpA?VSIZ)6=Y;xqQw(mq9Rc))#ye4cBY*?ykaX`?8Z0z*5Kiu4CqM}u39{4Tza`r2N zE?^T2*WGs8>unXSLi1AC!qmkrAK&B>bUvGwp8aS0u`+rst4f9Df$z-mT)&NXt`T$| zoAO7)-VdIY@2jjT6`I$KVGM?#bJ^s9Cli18agXYW3eEEgzXhkc4{8Jt;Z#<4Ri4y) z8!(K@5OgUUyRFZeMIl4Atzz_&8Tu^*UBYH=>v-+J9fK8}Bil}7v%mVI<27A>5Ogsc zzVy4!&mVtS(VZooD*P6LE@E>_Q?7CDa4Nc!r2TAW)XEX;J07>IVCsh->`-*Jq?3f- zLbMHY+3l0+cZN(;be5zWu<7?a(e2V>#|53wrrOtR-FfZ1itZ?BKbvaBAqYB;P40ep zMb|@e$8uIx2TA+bq=T8I=Qmj==v+2s@ExsMPnP?tv#Q!l8vGVk$QRP!gBr79&Er#Z znya3)leB}4e^I~v-976CUCIU&%q?8^z4AL(1tslg=R0YX_9sezXj6ZgPPap%5OT~-9ga-NqdC# zD(F(SbV*?Cxt_|GQ`J(^=NRhtf{yoFRHaJV$uPD=(8X*~-6m(vd3{t*QV5MYm7pPv z*wOQj;rEcYX0oKuFz&citwO@9S`a#VJ+ma(P^N27#q6P`=BE8*gV z2?>P>Nf7`4jQw`l|34P8{2BTe`VoB_j}hpsd$d!q2jC{{B5k;qr8#XMqgx=OnpiIV zt$j>98zpExO4F<+mP=pQ(Rl8K3k9S!&1zz~^iJky0w6>Jj;o2~(xcW)COTX|QsK;~ zCYB4D5(1Ln%8Y7ax!}zzAf?+^6U(J!ui2?S0#dqtHL+Y!w-=Do?W>99lFxnZZUHIX zzM5Dr7oEpX2#83$uY%CkAs{00J_^E@h=7R1dn*Xvc?c07O?58?mGNNA zlL8_V@2Mc%fF&Rz@g54om!^P-#F>KVooS}X5bwy0>hl#;U~WXrc~P`PB;H*?Xuk@G zNW7bZ(0&yVk$6`Hq5Uc#BJnN?Li<%fMB?Wu2<=ydl#eF0x=h)xqLzrdR5eioi)8+U zD|td)(|lC|DpAnPW{v-NFgQj)q@`j7%}U{0$pu6vt%yL$-@TFW#W?|yNh?&)48EE1 zEdh~9D^Sq%V-3f@x#nX5kx9!ZP{7=q@Q;AVq~$4S%5@#*&A73bfXJlfDrj>1wUE!K zoq))sx(A+4lk>lh#>5<1g58?JIllK!|<{Iw@$JxljJwO9CPi&sNabX}eGD z8vc`jh{UrLgnnTG5s7yskd;ecKt$pl6f}xICT|FcNW8s*Mp#KR1Vkj>PC-N0?L7I* zE&T*UBpy`I04t%NfQZD~DyZLO6Bp(TnVCnE8t3c|2S(Grn3i4(=oxPXYn8>^P0Zxyolq?&|>Mhml)NW7tHsT)tt z_LaCCk$3|I;nxr$^(n}xPErs?LJEjT+^-Uh}`3D1>wh6Kt$p$1z{+ofQZDM3c`;sLdspATJ2CDUr|d$ zouHcNVdmw3>j3vKM}K_n3R*DVOxM^`K%^xSqPe6+^EWoHYbGEvX_{(j@%-wne!DIc z5ScU^fyiPb^hr%x6$E4o&2o|Dz7Z{{Nvpb8K^S!>AT?=K8x^$RkE(%xKl8hQ)TC8y zP|*B?_d-6D9093Gt6Hz1dGEdI9eYI|0jWu=TBo47T}=h#3_|4NTeVg}b6~&lj%!Z} zNJ+eEje=&I%qzPEq$FOonn0e<7k={i=K@j^uUe&`nO8w}oq_iYh)Db*0)fl+;Wriw zh)DcG1)<_3AR_S#6g2(3eT|QwcuPP;;wu$2m4BhL1SBPH+W(7fKg8Sr2mIIim-`3# zgMQ6-()XC}D&G=cf8YPy{%;K@|9#-u@43da%rnr_)?;(O=YG_^)xFr=&z<4=%k{Qv zAM6WQ;OgxPx?IjLoyVNJoSU7CokN`MAU5C=$K#G|j*A`R9c7M`gmaMb|Ivi&Av$1C zLN@FY_`?32{a*Vf`y%^bdndbJ|6V_;-=kj&c>r^DxAu`%r(Fs00ZeNF1B?0BHUw)u zaAX2c3m{I~C@U(6v>LW-!Sw7gLS1eff>oY)Edjhos-WZ3xzP;<>y-zx^`n ztp1ZooJ;2EdO_FAr0=(F2v%_7x#CE}CCh)B_0$cjJy^Sm=ZYekU+mdEX5Uf8 z!KzI>R~Sj!-08~7eHSYZ)@$Oqf`})_*Ua^Sd{kS8z?L#O^ZXe+(1aYg)iwl6Gx5#j zMe@IXYWU-eWV+CnA=8kGZAQLYT86-qimg`rg<6KdhKj2ueFW<%u3ElGT86-GimR5d zkd`5^nBuDC%cEroY^Atr`Pyh10xK!5TD~wcL#BOXjhi)v9aFu><_jqn$TvpI5Ew{t zjmURJ%Mh4Gan(|InIY3C!fW(-YJbrSO-sZzREn3(kZBbm)!SV98#z`|M3i6_#a>FK z@opIcgD9?AiZU}~nnHLDW+gt9*B}xFTPUs(B2ln{;;N-YTZX{?iK~{P%nX^94|bvZ z#0G1&T(d%Ufk+fgpSVV(L|cZy=!vaXCVgheG7 zQG!hqS4~6-)=X@*QWsi=z>bNlmbYVS2rL+}d4->a6s6sTi0P91XqU1b->(ypY$78> zOqV=3*DB+|+XN(E5g8$3y5#c&rkw>O=OQCSOczw71tg~;BScJ>oRZCu82KRq$qC5_ z5z_@-T>_HRk`W@NOXsiOxnRwKjRKOBlMy1OOH500iZVjPbitcQv?M1gBScJ>_GYG+ z9qSQN)0Gh-rVDO;5)hF%FzrtbNSv51?W|-{0wNM8rVA#< z6%dg)F4T0$rTT5h2Y!>rWDbI&Ot(h{**(5@AbnyqSL zv!Dw^Kx($CiOrIC-oHZ)NEA~nLm&)Hhx>EU+}Ylh{P8w zh{_3CA`)MuASx$-h{P8v2)_a1azx?_6qE-i5e)couYice=PL-`+yWvJpQoVCBX*9R zxwc$DMB;N5gl-uD5sA-H5WWBfL?k|2LFkr2NVy(Ut7oYflc*)4o~fGX04|AVZBzNe zNz{v}dWM2VnpX5PYXwAFny#SH+)40|fXJjxQxN*q1w|5f{)hbp>;SmNzS=&~UTja+|I|N(wf-G?7;2=kE?OFF9zGRg>dRtEjj72uwQNUzuxVMLyw_4{Og%oTQW<(IV=AS*TGyB=xOGj2Is0(9 zQfw(Tpn*p>piH-v8qmCBDy5)W*O(eNwx0ZAj+vy$YF(Ywlu`o>4wtgN1w8MMwKwS=75q;-#$Y4d1t8 zYs!TaD!axh@l>|1JDeAE%e@jWVZ$4J`?LPTQiVGt-h!>~+xqYGmv)vooYr*7{V#OA zTMjI{CPCuO*?NBHO@_qb%%)OXgUR1ZPhobAUE;0S`iq+H+?#x!#Nm9PqNnfIzK{W- z*)oX$eDc+<5-(uAhArOyeOYhScTM6cZ2dtqCpVs6YG`>)&t-!bw|M%86PKyh%`^}ep2Rlr zE%+lX+|-yEo28%VIrDmf2SbntLbvdy+Hnb%vc9jcTQ=mhbd6_+%oGq77+@RT{o(M+ zhVMzdgbkaYam$Z07K?VXLuL*L3va?UKz_x0pPwS}V%F!zXGU!Kaf`yuBoG#!9M^gg z8`L*jQa!p$rY7H+T&U$*MDX9qrZFvvny_LFgS*1qo*Zl-~-@J4LI8Mw8^eJ?u$ zPwC>C>;7phPY25mnRy^Ayd~S%aL8@9@4-7AT8FdNQaX*SX!fOQ-An{w;Xby}`{npy zpFb;G&tqNwIF)s3j*PL*4w;!CEIcU=&t)w0BzyRudsORYDhSc{nARb7yVuk%m%fuP zJ^$GuGZ%#HOgg!_;QLp~x_mzJ$h-IVSFM}LAY|(;-dyv=piZLir6sJ_=rfVff?f(Y zvq4z6n{8~yPBb!lO1zlm<=#|Mb^A<(&y~2Bt@{Ri0q;mbmKL#+k_O$XcAZlA9Em5f zRrLJ@eJ^CaEBbvnZmfD$hh|IM!&Y5x2272Tohe|YKTNq{e{Z?JK07o^;!bwa-{$G| zsS?j;dA_7y#{6@i>dZ`uCo#soEB8n|k8MnQtkbf&lLg*3G(#?dxaAT_X>MeNwr=vl zPBMBsJ2YK3>t++p!+31$v0cu&=kpe6jvM>w)S+FD__1!U3aqNoQf-obeT2hRqdZOTxq1)YtPNxlp;UHZ9|aEA)YHabZ*066W++0quPTs4)I)Zq*?L>Tazw-PH~XH zA)YHbbavmPlUiKYLvfJ0A)YIYG#$3$V}t%n;v9?xF8H?j3(;-|tlSAtyr|2Rrzi zuRqCN+NB$E${r)Q(YAY85odLw^LDZq}6RL z^2diCQXJ%7h;Oeb;^{rGHZpLt;vnlnJXaXeKg(M9Ydg8S&b0q$+1|4yeVX)a((Or= zNmG&-*z}`J}~Nxn~jT%VMYhTp7?&^ zV~JZ67bW&dO!xi)I{@zXUg{m?4SN3Y9QWMjS?THHX#uDIJqc_7v)v_buj_r+URR}S ztgD0bPv^@J_kWSIzcbbG9ryySam;g^=kP%;fPD!ei1^R8|6_m6zQex8KHgqxZ=wIL zzpdBlTlE$CK)oZJ_;*@6qTQjDYtyvzwSes}7zX{99_FTql@6VoKX|l*v}6KdZjV?e z{+fh!lCZ2#4|9_wz6ELS1j69Y*P6z*AnVh^;L6vU#dzaM(YKvN9kyu(7{P^+hD3df023LMuM`%5G@#E{I)!HU(I`FX{#A=N> zVmMF(F8ugrr0v?K#`NA}GsJd{Ichji1OEH?W~2ohr~%h~e7&67Kn-~9Er5^LEEv$)Y!p9=LT&*zH?)gIltVToj9}n=WlCAiHEsk zjj69&a3Wjz?&jCuHnt&L%6fLGZq$CJjO6H8V`}Rb+=#92z4)%7_Z>pGg!Rw<>7D~y zK2t55y1E57V{3-?duu{&4#IG_?SRHvkG>>du^nqbQ%ATdTeIR4my>K5FXt=WCw4b9)!iZB>E4LiMi z_JV5FvZ<-dmS5=zCsS-j7!JFgHtMB!p6jMyQ%|>G==1M?)tziI7GW@7`%U%l3jU^G zQ%kqtRJOL|gQL0_hY`+Y!;jawPhN3O!KRKb`nl%J%IHKt~6!Rc)6 z`&(~G-_#9ZFjx<`_PtRyPPJ_6wtIEk%meE8OH z8NZPLE@eIb*nfOm1G)FRV-4uys?XU^{|rYWW6LFMK%=RR^9H4>mQ97+YPlg>H=mo5 z2*WwXX$76KmXId})NzC}*t$v6KRY%2N`#Bp=yu;3?|1H}S_YjQVLw|3o1UEOA49m1 zu`Bw0n!9SOfiua_#DYfocc0ocWr9L6t`sJ`;^6!~4sLFt`{JmhMl#;bR4ZK98`MT`;_;cV$Bj;e5tA zm#)+v3@R9udW1b}e9xqY4{hm!FeE3;%|6q9p|p59)_`U&yODcYr^{bjunOT^R`slH z?32%2BU;X^G1YtP=J)W|C!7#j7Fl-dOFjO+^&dfXtTD5&S(J;7Kipzc;Fc3slO?5W z#C>a4UON7mfHP}MRo{XgqREm-SAENb>PxyS%2f1YsNzWPU)whPsYbd=GHXmVKZYub zAafR*M&jpoI)5BDu=(1fg5fh7VqA=3%=1VWjQ+qQqYs{!t>q0_I#RZYf`HSXH zYTr>@D6__lX^rVlek9|AI^Vrv`R&ZCF(X=IsJugem%Xs%&EKT6ETyJvT&JZ{m|4>$ zt_d(LwI!};?UJOWompeXvPNI1s5H{z^YjZ^{IE!Mx=d1HXhjg#+pD%Z^w%;)l}bw7 z0Y$}!er{ZJ+q50h-I!8i#wX)PMf2Eq}9M=RHZm0MriXsgw zQqE}GFH=pJv98g*kakRFO;&sp1(B3Jzt8B~TfRk8YC6U>k+0hC5LYS1Y1;pDZ6|F> zA0<7ObbZp&q@hV|lN|n&{zv?m`RDk%`cr-9e6K+Sz*gUUUteF)_{(_DIA~mDEH{Q5 z?Gpcnvj84}{r`&-dnKlL&w5|=-s25>r+JIL%{ptyk?FH>lZ7uBlZ>u?AF!(PRHsgdW z(^;gc;CHv>2Pjg;U>IVB;*2#_-#!dRglWZ_#u|S>F#AGLKD#34=6>T_%a>^|Yz7PA zHM98%yFZ!N6bTsRtOUbmzz~9XR=o-02@ORAG=qi^#Eb%T6cP-CA#f;u6tX@&3^7C0 z7a;~AZ-!uafx1*%EB7YtJORz1A?y=|`q0i3&zDAf@0Z;39- zk4G>(Qi0@(qH6>kp+JmIrd^X@AUwRjuF3kGFzDju%yOSpJ$);RY)a~~?WHfI;u{Qu z(_P#P^@vX@5y9{f1>*UYw2u-Dga_BxM_C^X4^j=a;0NvGn+*x^$q#2RJWzr4+Ha)b#hC5{3{_kRlus=HVY5mRY+h5$t^6_t z!+jKpk&v`=5)6cU*Vj2&pC0aI)+X4>j81!;6>GjN|Y%vgK z_4P^Cr-#q4zfbb59}IU_mm=?UAtwTMQy}>u;i1Ut@TfqT>*p~JdsUwn?h^Hi7Gjd` z@L>2nbtMw|CAvhwG6j+wP;^OxfpBSkVv_Y~VbIRWR|C7Gq7;MSVs)i>DN(RUf$>sO zU?5yrPnT4EFbo=cJ+}Y~K^>kI4CgD5+*Bw81qQ--^<7cE+Jj+G)x{Obn_XOyykB9H zngGcwNnBBafiTzHWA20kSsx5{QVo$ejkuzGZ3e@jzl$s4xwqsQRp);N!ddl=ku(Ha zyl9BLe#I5ZOAs`A0oF4{2?oME@-=phvOXAw;8)R5Jy(?PwqO_nVFg&vJW4PS=0UNs zSCsYXVICK&-a}$=@=X;CLvXCP6nQs_36x+U%mZa(FD2{K!>vtm$6rdmfP!HNm=%|b ze?-;B$Uv9}&&FO#Hk2Ob@w4%lA}=T&M9T@Por+OOFc5B8-%TRx)4~u%OWp=Te)4q@ z3_~QX7!-LMh$~4j5KgY|O0qsJ41u-rS5iU0!7v2Z{`-{_*d`2twqi}My}9Lc;%@T^ zv6d*o?O9xypPyS43`5ARXpd-?*zV&Bkv5+o_y2; zVIGYeGrcM}IT+>vxz^;7$3!$FpWr~aK|LbPm-WFg56u17hU9}82>a`6NY)3#5TGlD zMqW;$NAh_KgpK+dlJ%zjKh^f8E$OYK9ZBnwCMM-2x&3eYxBIL7ll=L9kMAR2#CN@K zsjsWAvGKF~U;y%yx8v ze1E4CA_=!AtWFr3&=Ru!9k$;AtN+970sR;K1%0<(p-<4;X=fnz|30l!o2a$7{R5qk z`xmSoro=;@0iOPVo&*@IB?>J0BBFVzl7QsYf>YTPIM$<18~(AFL&sEO~y!sO5u^Qwu(3IT-Q)iD8#U zR`tDlL&}Ua@o47Mf^I8+L2NWJ{L;ws1)qJtbH^v*7r|Ph;tql%818wZ4;{YjOt6-y zxMN>9v*Fr-t?BS37^tmJ#Z?*8gSDXI3W1ZyT?}77?!j83>5|W<7`+5@Y9Yyj95u1Q z#HdRm)}ee^YSf_eiazvTZ!WOjNk=W44%UM1E5OlKwk|qq2?lCG1&*I|Ss$z=nlE`b ziBZdUPfjglTBvU@V%Wv8gUP7{ceVTlu`I>#izDl}J-9&)pD4$eN0Sa;b|zR$lw&*% zhz?(Zf!g|%<6>DKtOey*$g!T`t2bsXQIhMKbOI73nV2_X&;$e}SzNlF!4i;Y%Of9u z6gDH)(!okFPz%~}{9McWU@a)g;)>+0FXmdl)q}M}TdwE%mS9dTIJxB%6YE!uwlGo| zeUN0Z7Sv|ZhrZUy$#jZk)4^JzKab>l+1t@kOE6Fi`g8oKWqo=rSDTe`C59_Cy`0*P zaug0mbVhM&7qAPt0Uj1NYEEqj`HORm7}jFk1+nK>25Ui;7URa#OX#>|XM(jvryg!4 zpP=KGV4xOs>iBWX`t(|^O2>~|s+~EtZOAByS}w+&A6XTBs8LRBCiz7@cXxiIeA>pw zAND>gBo(X$EnAEmQ?Ai*%gzLALERSM$gVF=9(Rki>T7x1izOJS1+6=N+_FBsmMh!w zaFXlThvW6cb`-K`e=;2~G#B+`Mwu&qb)`CJV zz>#L+x>qLh`HCus!+WPc$Ri9JqBYh;#9nKxB z@5VfLIkg7)1$nk{65$sy&vvjjQH=`ssgubpl8RKY)~mpQR-R)rnFRi9Jq zCVeC-ml#!?zdfhcMSej(!(vn=kqe^Fo(|SJRcDC`CgzGLLJkEI)l1Bk1Ov4YFdKJ^ z7RmZxtz9)lzOrIaQuoNIHMiagn}B$J#9%<98sDwVxoe1esc5Qc%n?GTNH!g;wJESK zkN13tPLTuy;Y;cpjI0laFIEi^{YVT(=@#LQ3an>h2)IFkIt<5D5mt z>*^bWtj`IXd*_6l>ls90?7Bow*xWuReo@cEQyBN~gjcK15`937N@^p)@G1rN;cKK5 z>C8wl5Wc9sQOWxDVFpzB>IiG(F!6l`b{vrQuVT);YcOJvj5@y zzYmiRC0&=aB&kc1$N!Q4kpDLSD*q5z{r|~#%(v55i& ztID+hT{h=i&c~dWJLf>gf6ei>;{nGNj=7F*j>Lp_680w4B+O0dn-H-7Vn1TP(mv1L z9qj+V^f$o%Ukkhc)4=|JUE8N^(q?Em5cMB-0$^|x(LBi=iXT)J9+a~wTizy4_Wv;V zo`F#uS-7@Fqluask%I_>5R4iOj9OVFx4}e{bIv(qz?h7)HBk{KuvrHj*EwS2)jH?A z4mjd~|M~a%CnJl7J-rOB@*pDZyy0GwEQ&l7Wzgjm!TS zIB)2)vV%oqo#Yu_gLpF#ve1}!_fwH0eO{7pp%}>!Pv?s@@OTu2l$D9Zm?MSD6FU=A zAtl%)#++%hS89bk-ZjPyX>%cQRpUsE7*S&SV8vd{5yyxTZQdiX#AvLIl;xyBOr8*u z4Ki(#u#3i8%QM^taeG2YHaBu+)*`(_LXN_W#8}=K^l9EBu`-buNgy}xkqCB)*(H$i zcqB#)DS5PkPU!Js%#cFW$O}+(xN-?bW7L@v+XyZ+M;@e4wL$FKC&Y9xzNX(0uPmC$(gk~@1 zL6F!U(20QdJ``kbtcRY$9KlQW3N1)a(oXY>7=R=^pNDq>Nmo?-4xFJ?jYEvjV0#${z9Rm7ssd9m~7 zOE-6?I!Ulg6|<<#o?Ema=1iewi17rSq(zNXZ9~we8%Z!)MV%?RgF&a#=7AueDJIMx z@zJ1DY2)l?Pfq&twR=z}Vo^!H5&Dy?Or(lgRJgpk=GK(wj-@(DuuIiuJDue5NYy4R z$VMk=dLvcDm)bm*2)GeTBnB2_l3=uo&j#c2xC~;*K_0eUe3Nm1RqL_niPkO==2e3{ zvgkGdv*nd`FWk?1S1d^4BR4qqv7EdHRPy3GqyHqW+6G$Ep zS1q*{NG1g%RZH-vnj5Hc2}Y~kc!6RBE&;7q<#5})TLLSU?Qm#X=80?C5HRrBlx zk`6plH5Y%1I4I~r1e}8)aZsR-1fx~6Wmj_>#M6T=Y#YI2l^g0$%B^uDRkN^YV(Fpd z$f6@vGZ7@l33QQQm#P_dy2#^QtEMZ)5^gN%JR?=p@Rw|4kzllnPs0>nAArlktW5{r{evhMYAyLvvb&-VfayN`_Xm)&IK(e+@nvYzVFi4h`l8 ze&g}~S%K37o!IJsFJ<4Dy*GP$c25@lKjZ(0e~*8LKk9e$=zp7Ug0FzB`TvIZRyO9} z{QCck=S9yAo;_^de-HO}Y_%&I_E2odcb%GrwT-{x8g&n^}^X&1U^S?KtSz>KNu|%_{zX{TGQd%Lp$!@&QNO zAeHiA6pdq6(_>6H(&D-mKl0b2=n0ieMQHK zn-sgDlAeH-iNr}(lf28toq}MOxLsBgkB8&TJJNR$thyOE5O7`n%7gFIS6@*-pQ z#@Y|B+O`kQh{T9{oSoWy=i#=$P|0OwA~E6~#af=^=EKYD5#tF?YZwyIfe%AMEF9zM zO?>-<^71Jbi4pfm@-d)10nf%JA|K>Ic>v7Aj?BA~9kkC$oVd zU3cYDbc#On0V9jiVCm`{RGJ2RhW#f) zF2xmz5m!0eTqFD_pNs^;%gRJzt5ApL!!ar)*dw;m1TEpk3dUxoE#W2BHO3rdbK!CE z-bjo%$L7LQkU2-_JI#AM1(}5ekfeKr@CZg@bfVB$9`zIw;Val`lEoYMwR!$J=)chz zT1vl7k7rZOn?BxSi?A}ydpuSq5+hD>>O+Nd&foeD>G25mh;b)r2|s`@_a2hMBNmA< z9|qb6imM1!N1p$e#Bm=)dR|!UAd`SRdheqR)0HQ-z zu(VLsT>t#tvU^5jXfS;S8TutUG@F$_VvlvGJ-a0YPPoCK4NmzescfK?yh(LGq*kK_wWC zjgik$k3kYDAZVGfcuVxZXPlgjg0fWr%&TUDKLdu?fYZDh5VXu#_+EO%H811n$Jl7B zjLic;Rwfb~g`n8F-Ygjem0*w9NE5Uk0HdqTc}ks8P>F?OBkTpmTup2^{-R9}CEzdw zNu~+}m0&b>x|GLfCupg$QcavkV?*T`wjX~=n}7Tnf|Vh;80ew0GLhJ62$Gj12r9uY zF~cTw!X1Spu~V_2HvaQg-E-_>Q*h{^GP@Ir4MvcpCZLBBa1esz;S7RGFdD<5nyiQ7 zAUo)xCC1`6x3}x|;`!J^aj2%xnE3RRe|-8fU-SujXo)fZU~tgIgI|R+BC-BhnYrn6 zUjJ*`0`u}fP+6HstP(-7jVY z_&+!F8IS*$ga(8iN;P(bUWBRKr?>@R#K4c?tl58aD3x03V%7o*yRY^f~sZ==5 zydP~A5FI;xoR~fv(Fw>+pEaz(Msxxa+b1@XqoNa#*uIGstt!KF`Epnwx&)(fOf$AN z$aoO`Kw^p%8OtB*-PV7Be4|I>=>J+6WMBx0USurNAAI7#t|`z=kvK^+PWt_3wj+EF z?dh^IkvOq^Ng&vm_;E0XjSZnd1WonKym?fe$+KHLCb) zm0dppiSZ*54|I3}65}U!OffGPw3lEsj>gYR<2cY>H>M4II;Uvpv!G-&j>a!&5FZEH z>&BcB4}HEbDt{vqC&rJYFrdQ|kQhH=!$5lpc8xRRM`CG^UIyEdIJ119DEZ(4(i4z4 zzaC8-4U?XL#Q9b7&lWr?1?dTRI{x(d7H8a9eBPH-dI?73X!wE#3CKYDLSx~-8pSOl}hH#M#nP;*8eKdObg5$xU^iJTX^(%a6pF^#eso8beqhT5IM30VFpym!8%- z5+_!WJenYdC({m*II)7=&CO|QcbYnYvIHd4b;vjuP?mtjSjSN~kwKVCwuZf!uNsZB zrKp5XZi9?#5$2Mu3pru;&DUO1E?1Y1#@Vt|;tZcb2DtD}&91+~nEci2-D_9(gWrh6 znH2=VNH_z^%F0CI%o74ghBAV(1SHmwy!=2}8JkDqWEiDZaOw|F7d%OoB_Nx?13%q7 zM8~boBJooY9FCnEl$9k$<2a$mM>80pY`HPJ+j%`-x>OpCXdEZ>1PqeG0A<;zn;R~x z__Dvul0@PfR)(Z9Kv`LtNW1_+lF9&O2^c|;M2w)Ue5FU?JrV57w`I(x$`Y^#f@Dw) z^jQMtBRK5KNynynAE8eJ2}a}HWe+@QOwIPO@eln>5|k}#9DCRL3Hf~rpa(|ddGZYQ zAjZ)&plq2jr})R<#Q(}g03-2kSefbOzJgc(Z2kl&D=QO;hY=)mL_t{zhT~mT?+22~ z_K(E7U{NG=gvS5@J0nP*#2_gFJ0VEMl|W~eU^Jdf1R|fkLDEuV>91$M+0k_=O4?DL z(bgc@43MTlZhLJ?r>VCEytEe+ur-3@Sq_pDuoZ&Cj;~@{g}y|4u>_-Wobux~ zi01>zON^;K3hwRn!$T-}3n{tRPI9&;^^ZTC-QwDd;EYH-2P-rE!Pl>2JBiX>EGrX< zhY*}N@VD~&&*hmEkX(XY;z2vf}2f@YgQg4m!K8@ zznPKqLeBo2O*x};@K6Pt_(Jfy;LhNzpdR=u@OdHqw(7r! zt^0RN_V(jq*1N+y$=l1D!B+jh+jFjGf~Ua! zr~5x_2f&zE@9(JV4%fx5`K~foo2+lMp3G{Gu=xM0%ttdX zXRH2?&x~YdIzDjR>e%U+?C8z*{Co57KL1A�(Mv_=AJ3u`WfAB#0Rt!hRgjp%Ilp}wasAj{_F@V~6Kq9M^9EvRSq&C!+~W3}zdouki`m7kopABbLN;Tw zu#z#dmqZdI2S_}Fh(!<#CwLAJ14YoA6h$215OccZqTkJH7V#ez6-f{WIEKsElj==M zBo1)agA-a`_1jdcw*;dJOa{7*nGf##CgTJA@@HPJF}CNb6XCZ12KAx|Oa=xGlD`1G zi;bnXZe>fN{S0S>6D%2Mr?;#{UV>!-?e&)Nb|gVuA8`_(Hvx(3BLjIsb^;RDcdBNt zG0xLRAUgqx>l=4qX4Uak$EfTCB(879^O*;a{*wp4s zUS!PkeDTim*UkhHqY1QsL4ypz0NL5RoM~I{OZM0cXG9Xc@EJ@}>(JX}t@9Gh_1UX0 zBkpj589v&EAiE?Y3F7o@o-PC=PLB)+0NDvhoZf_-$Gf$7g)f)EAK0vG5|B8(X#+cc z{aV(iw6{wznn0)LH|ESWO<_Be1ld`(!@KZJ*Mplu#ApJYUbaD!7a+TCEWGCP>3R1L zfHNWq;`B%o17w$#>6Tzl&ucwo%sS}u86$)3aH5IF1JxxFNf3`md<1lM0uql$#sYxq z1SB4BjJc`gxI1WPCtxo2FB0iNXP00!fz~eDnEhaW#i?z!Q`HNN8PD8y{{xR*4;n@j z9pqb}g+T^ifa-?s-b=-#}l3+FuOkCT!4{zPO zfj?!1_!J~=uX&fJAaQ%8rO&o4zMY#mAwC6(+Z&B*_lqu1!IoIZseH=iB2!W!K7!E% zHFjFs$$VNqi_T&Ku zk`j;%jwE9SKvDuau*As^#aa&^dXP#g!Du2wc0HC0!fA>iX}K}EzT2b|FMkIDMdLV1 zvaLZ<79eT4v3kz4OYeM3F6f4`gp^{248pp{s?3IV}$3W6DV_N>Dmll2|2fjq(IJu^U zLB?Nzq-Dm^3wqvs#b4FX2$A?%SQ#?;4J4J73CFkCODaR`NSus|wE12|z)kp@c}q9< zDfoV=DF8@Hz%voFk(7WN5uA8K+0FAh^rezYFdE0{H6dfJx8aXOMy*MLq@~8Z{PK<; zx5W2ZoGq4a-cl^82{jw0$nx-|#$xaBs*4hBQPOo-8IrRANo8fi@wKX?Jj6DO#G=+< zQO%7re&mhB$CJaB@z&{C*Vp1hw;Q(sVNk6X9BK3aH98{yT?AajcPB! zXneU;(r3&y_kntz5BdY`ON_~de{?7tm<^X7jq{C_xc2P~GFSt;bBVF$qv@wE+1mlm zFysG)8P8_qyq9x0=hB>IIVCySp$|h3gsMZ!LqkI?+0K9W29v=h!2!Wmfv*D(1!94P zfr>y*_VMf^eEq-D?129x|6#WN-wO8qzoYL{-^0EJ-x}X&pXST*e&}uFtNzdOR(RWa z{_Az<8>c*Kj^MyS%6{gT-PtI=h-ZPy{_r5J}!UO`&mb_YO_{m4bIAS zo^U?lyu!K7InJ5ybY#BH)&Qu=oR?Xg+0t>`@u1@}$2!MQM_$HH>=LwOccyDc>l37y zLuKs;$~%%?SuDGWmdry`d;FRJW$Qsn;vfaFRJ)yWf?Bmh6ay_2Z#R zp{lctwzQ;~wiLfB9Ey>CY$$YKd z?@B^Tnub;sCf0hn>Y?Q~oPix(Ztx|cnMldgFW-F~S#Xh*=KEj1qwWMiX;d(7cs$4Ik zk)&x}#qXBBap&<9o8P0qE8U%zG|elNX`>;o%NkBH`)Z>h5?a!Wh1qp{T$?qV^w<|B z-{@M>G^nCx$^!;emJgUnl37%^TIEK!RFlNkQTewfnAa z^Uto=6Dvu<<*Y%iiRDI=O+&69_${%L2u2fV3{M&z&leg;?T{$;&@GW%FJW1T_h`0KrK;d)_j5VJj09#+=@1^AVih z`0%x}U-p|IB>7~C(F7eiITlA-gPIk_+yzCiu0DPSNEA)r$jOsN-}cwD4S#uULDY)I zEj#XeV9NzP;f%b*oWB!Q-tm#dY^*TJ$$_W@oP{9yZU~|ha3+F7`3yY17&C}Uz!?Zm zs@&EllDL41O2Fv|&e^i8;If-E}TOtvjwXNf5Qnm@uWgXMCRxAW<}d3!S$xM)S>Rc^3dt%ZyF=Go}pu^Mf;k{epqOvB157a{~(kr2&8T`z!-c z%XR=L&Ti>H?tjpKk$wDMBu0yUJt`V-zS-)kyn00N|hOB`s?*GR5nDa8{Qs+=-hs^(G zK9G4q=Hko>w%6ZVj_cUU|1%tYGk#^&w*K_wE+#MYTjsmU5X%%<9*H-JURl~~DNa4P zlblmxjfS<(;f=!2Sylz>yy1tOER+w zQVjil_dDzSebwueXgJASr;P!_Ek^a^CQ?`1>ua`Pr=C2MoMU@^CC#soSyHI95{1C^ z$@@Y}GH(i~82PVWpG3n+dy`r!2|a1B3EcW>9n<^ne-Ih zQYjrSi=bxOQ=sDOm3mnc4JS=M+uS$fwwQX-Tv-S%OU!(;N`u>uEkHh8*+@c9t{~?q zDIvJ7qQ;GUfu3b}+nFv`R9Y-dVf_qTpA0Fqh(!9oLp*ueUi|U%-6#2 ziW#Nq<;g%rPnuK2K?>XE(i=DOmDNw+WtmP_T$U1z!DY$fwWR5F1zK)RyHzhsqTwWS zyLQbc2|a0UG6{7R-yPKJDs0@t*B+P$b=8xm%%7HF<@yi}C#Tt79};=VsU|_Q3*vUeEj9I|IcW$qP~M1eJrzwC zr`D3D@rCQ*%YvS3RT8d820&WUw7vpWZeo!w!J34V%>3H47ZQ4M0<9}eg+N`)o8LR8 z0TvY~`F)Zj*kh7fR~c7m$#IA(-4N<3(QtCCeO)D?C(S8DpsN_`Zv8OSwb?c*TGI5s zqOMBggRaCinC@4gwsnnaI7X-**rT@`Bux|TF<=1Ty{A-!6X8DOZZ zSeZiY1M&r|C7BNfRC$9yT_qY$o@QTHN$5$o^}MXB(n?U*X6tcl$y2cc%Ig7imG50G zIT%spZ4PynXgE2@zOItck^`|Y+p3bc-2g;wt4PrPh$=n`swmNLveLealF*YCL{6nN zkh9t599ps*D_~n!`L@%NWr!*YKwTvoPL|r&RT5gV1PfDA&QMkP7SfW%h}!l}f)*jF z^nIwJM8iqlzKW92l7(29lE@ZS#9chKWE4^5ohLdaMf)LYXFw1QC;Qq~5sAEHACsUj zFsK`O!<>RYXxGBHb*Pr?ji?yyXFUgme29jVz3l5oepkc7>>hx)L8z82Kva1L!SBk~ zMmQO<|6NIF$(~r4@@K zAL;MnJL!ALcb#veZ;-E*_gnAd-pjqqyhUD*=M&FiPuervQ|NKIKXTviPP%8hd%AvO zEC2t~b*^iiD?jU(tk<({&f1$bCM(bRlk*kl?QHG8SdQ}xJq3jM@uo61uukAJ1*||R>vomcSkwi z^C@Px02Ko|mF|UTIAx|6n}JvEUipgiP+ zGb}G`x|8c##T$`3M^NzwwiOG(N zSXjK4BCbo!?oz};G@N3t%chGVk(c6Ti#}aJC49=ISauQWrbGvz5( zN?M9IF|ov%DuqPDDdxoNI)fy%6ft0mKPhuM5A<=x*@6Tt z@v3eHtEbEfJ#dZ^fPoYxja&J?CLtM$rkGcQDxJoMN$yoUgRGL4BBpIJTQ#)PJ400| zBpOaJ(`MHhB%!64SA*ZR?F=%y(o;RjWhqY)kfOM0=0Z>PAm=FMgA~nk!6|0rph`;C z7J7xOl9uX@=p^nM#ON7e4$CAOPUYE4Aqg$j4GUAM3cW%`aat;jsI3wb)l*%G0(Jpk zSy9s+`?ORSEWSTqY5r%mGsxn#RA)rTZNL7VANG$>JA*{SsZRC^NJ2~HVqr=O7!)8r zu_L0k3J|mdqPCAlg0@FgF)7gW1Z{_?;%TAjB^pk(wZCvlXsI?>m{=>uQV}j(`Zq1r z8d2NlfkgF`xw#`e2b543IzKb2P0~E6mRP)4twn8mS-h5Nf#`_DtX0wR^VO!8XgHN) zuYe@9R0s=GOs7x)cX!lN<{mn5S&Hiv&w=KAiuJ>?*mr8q{o ztn$XSPo3VqrFR>??J}@<<&glFC5zXRdk|F&BQ&i;r*3G|1~W7AK>li`P%cSjQ)?g|K+ZCuXLBPeg9tPWB%v4 zie28U*Rl>~ZOIy)6=o~{z2dyyxygB|vrXpbnGa{~XEXnYXSQ;@$M*cY*fG~Jz|n$L z`2XckOA}W$^W?_+wL@PkkB|y{<)w+M5`#dLM+l1t54_`Ft zzsq-t;Ekdr-=(}h#Z8H*o;Fv-v2IG2p}aRmuVq^tF6WzdT>?E(Piyj=lZNsF6}^{j zayaFj-G_R7wgb-5(j*lomZ(z&CKpQVm00>j6?EOJJX&JjFp^-PpRhbI9Y2gIIdHn>@#DC@*RdSU2Xb ztGVWsZ}GcKn%FBP2_+s6xM`u5?uw5GF|AM)Sk^wAX0FOkU`c3cVx|-u00QItGR@4C zDTTRLq+$a=V1g1?rMLhPSfYB`oKFp}73K900<$#L%vVnO$F@a*%^B6!IUYmt0U&Up zv8cZA>wWRJ;T$bZeAdk5a<)Ij>uL{{RnpSLXU*d)F;}PpOEjFe_gT0zqLwB;OK}-O zVBGspOB0`^m<%B>MO$H8D7{h$jHsSAm(sDsav6%L5CXG(51XX6^mGe(&PhXgvkHOP z?uxVZQPci?&Dkh0GhEO;lpL4n!B{0NO`O;K{ufrP{^l)3U_`^|pluIEA}<{<3F=)y zS$wyriLX+u3n)ua;;R(L0?JBMPy3`wE<<_bfU*@vlQAKB+MH)?wT9PT*$QLnzddJP z{`nA8)`QAURgDh|c4&(J893vi9LL^I0~}23i=gSIXsqYSM>jX=bmW z@fAY^s!3E&XG#UwNNG0y^ST@{at>5$mO|6h)Nm=52>N4r(@pZUG%;LCE)Dvltdf=@ zhHEab(Lhx-iH1}5h6}e|)Ka@p3MKUls*$wRPDGUtJ)oLI_0$fcn({~m)mXMo4XpIk zc6pA=P{t^NYGuZ}H6N~SIcA;gYbiEX5gKv|8+JVY_!DYhlU34EXCo?>jZ;;VXgIai zzOP9_OPz&~P}EJLTK=vYN1MF*;tHa6M0 zMN6HDRZ>!Q(AQ*@wA4mKl^4A*_vI1|r`QlhyE{}8T53HOW~&;>daXm$RyB$0DRbu< z>lt+tc7?WD7E~)~n!nLgYsfjucuG*Mq;ZiN9cro7Sf$AW5AOZx-g>pK$tr27Rfviu zpwzx5(Qs;|y=s!sQY)}9Th%aHNG(THc?3dVlc=6DXW)QpO0l3?v%H_4VsmihIZEOW zR4Z;=Hm$g0;)&UKhc3Y?DG5O6YqCmOYB8cpSOk4dqT$pcd(|YNrN|IPC4&risPy$( zY61SP@|g%!Bj|iYmAo;CCQ&^_hbSszKS8Xb#^oKKn)QV13lwWE7C+9~R734zvUn{u z2T`$onA*i88cxl&7fTXaY8Doz#4R8eI`Gs?L~Xm6MD^4R(p_v{oqE$xE@u2cJ>y?y z{C{cA+MFRd?L$BE_944ziokWfu7mFWxtqx1snN4kdOR7 z;;;2D_ZR#A^1bG}(YM<-)z_P?{r9Z*67L%CX>8X2cb=y`S9&&iPW5EFKXBi}R{ops zE^}wQK5*UQI@>kY)jjLytmm?>$vQi0Y*t6-C(gspv~!8G(%B;Olgz_x*S|@b1&-ex zFFOu7b~z?F3NpTD)rCL38Z$^p714CU^ECSm8Syt?P&x)iM%hhG_yA#o)TU_lMs~n9OVv%CLt*C zId(A~?yIM#(dW3-i~}@@Zp^swg*&f3a4E>Er_twlVIeb131|}CnB;l8N7ENMq^rvPu^z=e`P7oG5 zQtlFV&ca(>Z~4c&)zFMun%EyDy&;+etE8og{ZaC&;x0inlAdSEXEn(n8l>_jK`<}P zJdc_Xfwqvrzm_Iu$L=M9JL73-W_F;1Dfu~Q3sNd^J$AkiOV!hKK87+b2->2eady|! z2m6kW16}nr+8@863=k5x2is6^Zsz`3{f4%MbF}nyti6)UgSH^GpN8n%oWX2^!!63~ zfwhmMr(#kAARp1)QU$M_`rg-oW%i zha+nHY>~B(q=%WPrSk-~$OK#C+^UGxpCzcJPscKqS2aAtF*lJOil~xs0G$as1W_eR z1N~W|dipf^JU(eC*%{EeS$0NG<9rS;EPJc!T-tQ=2rYdoR!K?IK!281($a$wwe8Om zjid*esHO8zwk7MsFBegrC8(tbVwp;?4LV~sBRv37+s`rt?T@Gu4}i`R)zg(yXSbn@ z&H|lFjAhQ9H@)`UYUrDK8Yg=A3}u)WJU2>=xxEUXyz`a+!Z}*H9IG_z1#_{n!xxbg6BCULgrBO@ zOH@zmQs9$@lKKIGo27pAG!8gqyK2(GUm$R?G2Q<}|2tAQgTPk&|6)eYe{ych*~7m7 z7xD4`H}LQOU4!2Tp9&rd?g&l@b`E?NI1;F3-~R^&TC&yu?#$kuJvmzw-~V^A(f@6H zpR=|9>U=Bs=>PY;H+lDXr+9mL{`4I6+~zr-t^MEGeZu{O`wI64_ZWAc>nGPEu9R!B ztHKq``Y`LhtVGtrtiH})oi8}Aah~lQ>+GKSGu!v?(#$29m6;*OM~?d)Nyj2bxx<<9 zB830V{_EA|IxAL|EeDo(w|W7Wjja_~Y%D5Y^!iM2YKBf_&aDRg~m>0k}?Q@ zn>ki0L5asvB31sdP*LJ>l;HxrFRLi`IM(N0Wt0H#%M{hCaWbmMm_4BKx^FIutBq1* zOla|$_EnV}{i#<^mW`4F`*m37K%*2H^Plg%FkEs8DouRPbZQ5nQHUlJQ9fms6f_D! zCm^b{A2bREpw-0Xobthzf4w(*g;i&06oL|$qdW?rQ3%Rij-|8`=tH9rl=vKFWC1ja zMD=QOYdh;sVcQB?8^EfKq8p2POt|mf&2ot=y?V4fM{W$JHi~XE*&0l%9)Z7HXcU4HpVOA_pp;=%1R4cH&}!mylrLk@C-L3XN$^UaQq;d0HAu3ebZbDAB!m z2eWe~ISYPUd?~u-YGQH}C(c_#m5-PlCCcZmLD9TwZgRNNV*O5N4U9jliOuQL*<7vs zRI71CN&q*z)2fNhDdqc4h%t1~8l+TWbChUHI3ilAjvdjqHDsxJHM$!X-qUdo&>Aef zS2uIktE2LPm2D{LFK7+6aD8gyy^j=q4K1iu_roeFZU9TPkhTI#hH3-@V zQ6+`}rDasBRg*El z>H?{B&`=_LP@1jZmdiG_9a4o#N3cptWCTjfDrwa{5mh36==TKefoSvRJ!=$lULNq+deI;q*b>?bdt5tsH(I?!_{n*pv_PZsu~#_*y|tWZW2SR!k{fMwykc3ziZnT z1Z|0^(!$Ud1SNAXlmQ;l782E~%}rM<>&X%>bYus#MTs%aTO7W>p3#}_V|^UD7HqVK!DdY%wp@?nmpt6%=>rxl;u_pm zO{<9_+VeWok$EhX-|?&pq*P*Q`i~l1Qa*$w5%!W|W8? z+Jm6P&5YDn-f(2lF10-fO5BW+Wr6mPs9w`ucKK}Bd&nvlZWG;@{@<^!JU!zeXsg%c z$#a5+63Ih*=*GNT*FCx=a2cGV)pSGo6n_fsA*+;M6aM@5kRhg4LyU|PK0JvgR>mGYMcV?QD{t9e(CvN zOl|;e^%`_E*@p7H9@?YOn7RGry$}Bv$IR5U$M#S{YG@BxrTiLZWd7#uiWlv{Hiny!`9ksWMk$zHgRZ8np@i|GJ=i(Rj}6~^>)mpdU#%vDnkeDCXb-GX zeho7-f7c!uX4ViNqs-S4_XnQYtYt&4&Z1C^0m{n0Hy1Y#X zcX`S4%7vOJAMT+&h$dNxD#KMkX^co~oQT>ziE!gOt%i>Xw9;eB0~2~aDV2-~96oeZ z%NeilR(n1{$(TT8u?*<>64k5CJ?1QL?os1-P`cb08-4Pl6TfE2CsFloc@BGUsyRw=J~ z@!z$EWVGrAtOGmnoNZ#c*fjk{7bbp2uj8RDz64;4T6%ffJ#sgtwGRvSXX5n z0JMfg&G>&##;5rGzgOt@(3_!aLmNWFLb<_jf{z6+3$6){47Le;5V(i!{x?5R67Xfe zlYK+>=Il|~UH#wtpYk8@Z}1QFdwuWv?(|*co8!~j&VMg?_j@;bhkHADzV$rrxzux} zXP76~{f+xE_hs%a?uqVG+%DI9t~*!;V6E#6R{`7g@3X9jvZ}Mzu@wM&XL+5+oliQi zVtIf`&fb~7WImC3W#(C#<1!sySEP?FlqjHkW|lF)5Epx#OpfqyK|jK zk1jAN5uQpezt%KxP+B{-1oE)O7S~s=lvHjl^KOo|tZ$w@LpaN-aqislXB{j!^*hp|31=mqICn{bxgpUQi{ssyaBf!hj#hIV`epv4 zzMpNkINp~DXZbN+-re!#B}cyf+~RmgmRz(pi!}r*&uqB6j3e)x8;6XvNd8bU%2&+( z^tXkjyA18 zySCRmYO988OiLw*dk>lK%w=kOhHFeGC5Xq?r*cpJGDU64UNvX4c3}i-NyiZ5`KN!q zBQpOAs|`y#-xeGC`z5kQy=t~1`@8Y-TiUBP>jOpWJ$rHQj`4_O!!>8&FTYaaT37wx z>uS5@)-a#s$gtY2X^Z96n9j&LXslio{^+NV&TQIN;TqEtiHm!s__vz%r}ySBbyTW4EKTQxd6nXJ6K_U}5=#@g z&m8!(%@Rbs87WFEO>wmQ`7c+$Z=vGNNKs;GdfeUZL?`V-3l%m6(cU%8(wNu7_e!%M z;Y-+VY5zFq(&^u?KNnsy`87+M$!I+vnAkGB>|Mj%i(zJR_uk8_f-y@eVXcPw z7t`RHOK%jo+0JtPy%r486O`B(?VUDk-?X+C3N1iTVq=E3`qv$M+ns5l&;kS{HfEA1 zb431^w^}H)06~e3ncd>A@O_=cf}hX=64h&PMyK1D{O!NbZ27(zPX$fDqW%}A*0w6F z1$Ffr8~}LIC_L18(W?{BwyFXx!j_?WJa6mK14rSU-ZgVf`7EuK028&wXtZWFYTd)! z`sv5Vt@1%@g3dzJE=Iz=8?_oT@=t8ku4+w6B_sbP)17xfYl4!If650i&|0E;jk)`p zjFHY8bad~5EUN~fHT!-) zS`(Cv{hM=1dHm4tH(MxZEm6J3+?37I&8N@BN z(7Mc6yW^}W-IF9lUH+k(^r}Z`fA8N4V zfc7BhX^1wTWXE1B1T_#f*gC1F^%K1a+Jm5{BC3c0eV?F%5mmknL3>D4uNg$NRh~)E z9&8eTy7-k|gR3gHGL*0L&>khm>Ss?*`t!AWussI+U3ci0|ui`8^+e-M-m{ZoQ^Xb*ytp??z}`sf*N&T94kAZRI8V5XUW_@K~2 zp*nsawfDrZH`xSW!l+?K;2{O13_f5d;e zf2)5k+ZnLE@4vohe7E~9WP1Zv`r3KFXE}mH-ksh_UX9HWc+GQ@XRl|Pr;jJo{igd? z_xbKw?n1ZQ^^WUK*Tt@Rt`e3Z_#o?EHcMbpRz+6G`7v83pxU|2IndcE^E0+eV14GQ zOe3?i<2%Pwjw>CT9ituH*k%3AUqP+8Tuw$tTNY)sHLkdH#ICE?&0+URp;7QuhvFAH zjFZ;5pw?U@$0Bo$D{e3i^m*)qN2Sqs!OR~|%*1GLJBk!F*@0=BcTp`JTvHw4x zf8`$c8Y6WhH*@{vU#z{2kjo|6!r1@r(Y^csdWMmOM&6{t?lYnT32EkgWj#OqX4WPC zn^^2rX>{waAH5+TL)(H{Gs|m{A!Gkh#mF+F$A_0Kd9-C6A_RRj4k%dO*r{-?H{<39+G^apWBa=;>I?6zi<21V`mZ4jCU;3 zW$g8y_F>t?8yQ(-Z_Jzf;A49}nM+7>o)eJg z{S`CvuDytng^gk3{tWlwLxh|}$gSpP*JZo(O1AMx@1jlF)3de^(wx){W$u1_+mrPz z3K&_@*kk!w;S-$!@i5T9ZRu`$>irH4ZrS)xX+KSVs^x zi-{t7<7rz?d2MjwWrDEj+7u~l95Lb7dnWw)kVFb<&Dq%?^4RPntLF56m~9$d**Nw5 zi(Xhf>{Us2s~sT=bF(UyRx~cH*wrV!hrXT6CT2L<=i!?DyhFxi8JXfFNw%5k-m`OUv#$YvQIHiL|d}(FUn3zT&&po~oW) z*f{#TpR4;#drzL+t#+`2unjo#x-Gw8)old?VZj8cLPZcRt^QzM@-gg^Cn6c6$G&SBBj5yDX)BEsF+FuaY8pq-(8d{;g&=26kEh^S*bV zWOYSB+t)J7Pfo?>Tl?A)dZZY?{{*#FwsvZ1Tw z2zr{XwdP1wQTa0>4=g%#R<2%ITq1w2YpppxRRAL!{zzopwSob~1n7&vJo7#Fr;`Cx zpFRjo;Y-GTzyQ>zYwalr4B@Fn_98B(GWDj_FG88R*7m|v2R4}7i@c(<6{AS)Gz11+ zy>9UbTbLCpqM{WjWus_aYt2EU;>ycd;Iw_~3BJFE)l_OM&j>-`#MF-^wm4c0xBvqtRm_sA2Mq|(5LhLH-YuhSE zP>TH8Hte#*$J#af&hMJPw6pnrhbMDnPs*=tjnwW>|GccnFK?O@&l?b`6;kz=cQ|(2 zzb-K;o-!bmIowhF;-M+~ZvXZCNhZa!H&!{&WxOXIazG{|Lvg* zLn}jLLeWqw7Wcmyd@y)PaC>lW&|q=DJMeknxxj5~Er2b78G!+Tt^r5($Jve9`?L3C zFUlU4tz~EXzxKcEzuSL_e>;o(4S&Ah&DI8Z&Uc%y*0;qs!#BX!)#vbj?0u505s>t5 z@J{xYv0Vaw_q^|U#B-hJV$W*NIFIgW?9%yl?DN{+ zl!g5|zs?*zBz{rM-G;KTkLTC1&ufz6TN%6p6!!Q0I`)ALsL{cj-ncOP5}>f}=hvB^ z*u*cwt;W7oGe1wBocVR;*EKvSG2OXtuK8@@J^CaZM$vQY*het-ZJHZPzN}9r_RZWn_R&i{h_d9>nV-3=GYv74 z(kcK&$*VKJZwY1~p9J%r#h@g4b>@dH!HA*t7K4K1)tO(k1T*QOd%wQESCz$}9C>xq zkP+EW&Q#!oI>rUbL5>cu~bM*V6rC~#h#`AteNE86U3!+Gae4At5E7$un1=Wjh4IX=Q- zsLtkBD8Z~BG-&VBZ)+AqbsmSz>J2w%EnKt1VyMnzk!fc-wvG)JLv=PkFNxop`qFui zt+{4AXUb9M+&cDEN$EJ{C~$5a`;Md@L}hd9*q0;qAeGeoRwRCU!mrcUANZh)_0uS6 zZXNqbq!xf$=GF~wdJsj-t>ZBkxfRM$z1%wULyz^-C#~N^*>daH7asK>>Xlo^zUU|i z%cxN78;*LA3dQ3nQlT;`6#Gu2o{2)`*0C=$>Orc|pr!|@LOgJyzeyD`zphXb%BVu@ zvx<6i3lGKA#Ar>L22dP3VI#Lf(g?MB{ zYFk1TV!@GmCRK<9M(RPT5D$uIu~Z=z7pZ4bg?LOv&!h^mut+(RM7+6mJR~A#7E^_I zR74L_g?L~@4^oAAY(x)Ig?M;G4^oAAghUUbLV0y8NP?%_kkTtFUwP(J{=^}HZ(bb_ zmv{k2doydi^lFQtdhv*f{s`5J2TkN4@oTwtJZ_=~sa`yEq6ev7JbI!Bsa`yQq6ev7 zJcgnNsa`CMQd*Y;yt#EOdQuP49>szt^&nM<#Y*Zys!)q22Z^i7t;=b8kSY{vdXOp< zY|^d64D___T{!i``6;z!;EC#h#q<2p`D9K(zh-{ zk|E=YegQU2mpj@Mo-N?Jh~SFs?}5R(s>nBaAFEy7zdyM{>g5 zgf!Pvw|<>{H@<*wuenD^G!@xsi{OQmt`B-x&9y6N&q+b&-Kso zm$9_~zVJQfyV7^IZ<4Q%&+Yxdd)Qm=UFRL??at!-*FCp;VxA?Q!JZE8@7&M154rcU zul*(Nkn0=Q3$8=1-L7e_elB;`d+d9EDr;HR;H)mr-<@weA9C(;wG#dL9-i5j`KG!}6$jSLWCAz`&wLS_wIz z@b=8F=b?dZS@ zJHMWX3btiY?OCt@aqJmv2e!lQ+CW)UdloeSrCwt()t-e9e?w92c^qNYOGNbWi&T3S zNkCbrRTcd)zvl#?sP-(R07^vkKvC^kYyp&52MQ>vJqt2`5)r+i$lJMdJ&!hc?N7pC z6uoObk2l!xCi7E~8S%69FngxTd%tTvk2#tGv;-b^2%r#FtH2U^*0b1y4U6YlvH^ki zd0l=w7snQ2K|SkP7y{g2b7Xw4$;e?3=vmJq65vif+Z;&zJ#yFwde*bx1UNBl3OVcr zJ?mMV^0yrJgP!#)WC2brD39e~Pv}|Cq8H%AL}=u&FZ8TufedgWC4wCGhMx5-rU6bY zLx~*rho1E;ya7%uHzGOmlI>d0Bb_DQmR+r&PAU3WB^~$ej@ecI6HvaQg z-E-_>pir&+dKUNqC9jU<4Ov;JRen8-fPj*1WKpP8emx6?fD%a`_(jwyzn;ZJKuvo3 zZMGTO8lX_6{CXA~0VNVYoMPiru+Qe#vnUCu1zq~wdcpaB0fj>4*Rya5D3SaD3j1q* zJ&T)wTJe15!K44&3>5a({CXBZ0ky^)?bYupps4mNk^*YOST>n!<`+Ow?O8|#)R}Xh zZ2WRhBT!U(7Fz+e*<8b`|3sju_AJN(YU}EcZ<_G^hd@#7S+oVzwoaG+(q;V*KvC^k z*ag(~XU7iv{41BBNZKvGp2c54?d z-m*^yP*i&sngO*tX3hfr3Mi^Qi_w7EGhywthYHzrJDv%zpxU!wO;Ww9+2h=WW z>jy!RR9t>Ni{*gY-TR(n=YCuO6xE&ubwD*Ki)zoJJ4uDjS&#pOvZ(ef%#&2_580U2 zOrWUtEZ&oppKmD$6xE&uev(?nK4?@YfTG&72oR_pgUw05H9%4AStux}*?eb3ps4mN zCIo7Ge8$d4dhP^@YR`g0pte1`J#X~OCj>>Zd-?S&N(Aa`a}?*4%YmZWvv3ipv-bNs zr*AzB6xE)^jgktm@mGa@ps4mdfVBG8=C7u_@MzJEKvC^k2nl6vIy`f3w(n1%sP-(D z1nSH_Y~;^P{{f0>&w@&zHa=%g*lGb3)t*I{Ky65NWNS2R0*Y$S!c3snj$cr8*7G5t zsP-)01Zvf6b4!e?1x50P`SmRD1Zw4MYuJ=^Z<7RKetj09_>k!-P!`qRiPQ>fBPpP$ z_L)d6n`6$g;`WPuS1YC3I|#)WRD~~QrBwS2q?YV7Bje%li$wdnJxDFO@tK8B^eqL7 zXkWJ*sRe(Sb09whifCWA3#s{s*FW>%F3`S|XkWJzDY4wAD2rqy^XqmXHPd{2&F=*i z>GyTpkrFeSfFj!0Z9{4jyBqf`b^=ATuR9y5aolOb6O&{u^Xs-EC6?%fvWWI|XCXC& zFQ@MXifX?FDRUs|I)7iFsP>zY5>X3KRQpYY;(odsD60LLNU7f;X=GNn5h?W-Nz&7d z{}*Na=l>t^e_OUEz#D8$fVgWZ`@-KM>sZ#ES?6WV&Fbg;%lVS?Cg%?47-yHvuQQ*@ zyo`qrTG%L- zzLbUbX^0S9WO)S623$^ixcB|1zjGDAdlFm>-~ha$acYkP(^qfD;oA8PBq(T7I6m0> zG~|;)n_y)&buia1gez2qC@F1h-jB>>3jr5nJD|!XjWhpnEbIEj5psp*ip+qkow}sB zS*Ol#Ac2Dz>;Z+7hkpYJ97JjeC~Ug?1`;@k!5%=-j!puH0_83u5C6^${F9Fr=Ziwf zQ@?Wq|L9{K=9wdw7(#2(xq*N7Q4f>%Vgrd0MEnnhkoRH(i4nw*51^s#9X`rBIrMYSg}f{6b)rRH85NQ|(vletREM4+hlBt{VNKTuSA5+m&T=I*i2?Q97Y z)tJ$(4^TR>6mNsO?^ivNM4+LIVzFCVk@3Q$yg5+jKCA1JCli4k`D z&9H=h#_3zcB8f_>J&6%S%q}P;_d;TX-KV}cd+TKOL5i1ELA0+YF+!8Fi1zg)M%ZP= z>`)fbzMjMgyR7&hD58Bmi4k^Lxdfny_Vpx2*k#54KoRZhNsO@L6m!hhGe8mT>q(5T z!;1fbBHGuJ7-9Q?pV&5zJAoqF*OM4Q#Q%a)axWxCID0^2MXSorKvC^Uj3DBFps4mF zMmWpL#{osPCozJE|AC^~lNe#sE#@34_>fRewcmh|goyv4EUNu_q&B|AQVGAm1QgYN z9a19x2a0OH7OA!U-~XoXgLeW&wO@mji2ntpQ`v@kIWOnjoU=1$Y);qEH=#y0?|)IKIFuFq58M53 zD_i}qW8jOxgMma~ZlGWGU)e8Z|0Da%?4j9h{Ga&m^ulS;zMNE6sE}K5*Q@zV1(U^vL-0f9(BdM*n^G1*Ls= z8KU>{g(djB*P+*CcYo)F%cR@S-$xvf=*5C2PwzhavSpzsVN*fCDjG+QdaLW{wfVBp zKKuLx7yTJ|@kEA{ge1MOr;3z9C09dI_T7Zx80o+{Gapo6*v!ug! zA6~WX?#+1l4Sc8%;Cxf~Cjn4SanJfr|ktPyyfFiG+24dd| zlJ`H?X3~?d(i_8yWQ+c++9H-K_H{5mp zmV%Z9=WAnd+-pqeapvH|PoD>Pg)#5fjSctQbSA<10vQ~484KBhAKsM_z{`yxGv{}E z@_aAB`6?M4_ZutN0%&YS3&6{aQBPGYESXH6@(p~c437JZHP<}+a=HEk;HAdUYyR5g z+p~|9&ezM}cnd>(-UqzI7mYv^ch#>%g7aC>DPk*iL z$vX+YNa8IFkqZzwTQ_IOjlB*$GBc0hd^HVT8LzRkYvYptUhW6H!qA^QzIR7|^6qKi zOKNaD#}Kh6;N^yq|Bi9@UpJ7_`MMe$_ZhqRCQx?)US<@1dFZjpx#tjko~(P&*uAdY z)#fc|RkoH+|GNggRMBZ8!TAasy!4Q@TZ~@?j#?X5nzp2+dFObst(id|6-HrQ%VWQXcN3g1!XfIu>-#g_4}JVD;H*{ecxdUbEs0-g;45*6(nZn$ z@G?U`W%yNR?EaXP&X?ohIO{W3CIawM!)Vp})TxU%5uC5d0i|2%4Zuqby?o-dcFXWB z)~A6l%mKKSn*hAnDEzC>+D)Muq;$SI2giMe7^DDrkx_Epo%f&kX$!&m5*-}(8zNf) zxNela*%+HueksBEIvt{PF>C?wLZh_s|0C_a!=xy>uunZe$hGk)PHjgsZ$#OFPD28dyj0m zq!+>2J{|(M$s)%Ac$r-K#aCZ6*>*d@*`6NSD}1%GrtJ>EOOu`Vp8K$Ux8np?_V*BV z7g-O$OXSK%L%oAO+CXr&$%iQ2B8%w{fCuE_n}&aU`v$6vvf+miQshAZXV2Ihya|m>X>t5U)_8M!P!^ts~ zHQXYL>ZyXMA?mPo#9Vk%)Gy3)E>8fR`q_XMcYr`;H$7-jm?-)cF*Emn3^$ z)n!EJ#8!f{4Mw!m#l#B014;S0E1V}zZX$Shf{P3b;Kj*4^Rq1%*98c!>_DP)f{U`4 zY5}-E*>~T`sSQW<)bPArT``~+!K$E1x~tu9{*3z zIK|`tJF`}2^~-9?cK&n)aBkHO(@0 zH8oMb_}^)~%s9d5H#!ZU7@jlK8de#G8QQT;7*6r9Ki$8)YLe00^!308w!AS0wm&4c zx0+=1Hf1kkXCSu#irC(2lF{2Z^cHq5-iLysUzVy#MsIzD?L55cDxhd+NiuqCPk+v4 zIrj&OgqGDLqqla7a*z^G7?$K!lZ@V)rBA;8gU1FG$#zwfjNa;o`)=&|SSC>TPR*+( z8NExDb?aXOMY3JhB%^m}VDOK1&-?`x_UycBlF?gn?3zh=u0=pm?MX&&nX)MS6QHQ} zB%`;u+wIdH9ot)>^k0^$Nk(s>nwbTPYELqHi>5rZVb;@)fuh=zjNSsi58RN>KvC^U zMsL3D_rKYOhCos6Nk(seuQ2=M^#V{-dy>(c`}T}ja^7b^QSC`aZ%(t9*l`G-0!6i- zfWySBXB+HZ^viIdsP^NL5(k_CMYSJ?)O02ChO+3FrRuRri9_o}S@g?N^%$ha@)UL7 z1W;7_(MXA1XMv*Hk3vf1z<{FKk3>pLya9@8KLRO{`T~k-KO8BMWCDt6KMX06xdMu6 zKNP9{yT9MQYU#~DQSFByC9=cL3quSizf=T#3vYLIdi;X_as)qWsSA~gmS z)qVg{^~$2!_eVMZ6QS^@0 zx>$8GZUMYFSzvkR z*+(CIp5Qpa&Mj|w;I)w@6Pp6=m%9vnZS;jEBxO;J6YQMwmK)yuD!%%CfwRm~ne=vP{6y+20q_S&toX4*Nw&UW2ffLF-=uRrWnw{RE1 zai*P9zU;`}Z)RD7fS1cU6+a4r1V&9+&h0DLr4Sdqa7P`o$b@mM`ph=lEz9KlCa<^#<-*a~i;Qpjk6RwTjKcC<@ z<<2Q@+PpXcq@Xhd5wQ4 zng%$FR$ccktGeZBf@f>EOJ2Rc0srg|c&Xg`zArymUX6>hJ65;UaGQMTH>cSWhhc!T z9K@oc_cp)(Cn>#!hF_E~4R%{_<)~$V2a?5y-dec%4_x-%vHB8%uT*w6gb!z3ijyV1 z+C1Ls$(u>(%{AO6FXP9-RPBY*{c_J0b>>bp-XVB14ZkQaR=#>26L@8pWThu-_q1!z z5WJ~|TjWLGHeTJv6a&0c?$YSbuRcD0gy2my+$Jv`%vS`?0K7u(J?!J34t}?a;Ef5s zFwBlUc=>g}%h}N-f1Urgay!8rY4}BXzCybJFH3f>=`?E8u?qxmNbm(N9v&VCoaG=U zpSIgW?K^%VW?Y@P-5Il?EVsZ!IEC=yw&vmEEX{&lP+#-t{ z1mMMT{T#%9UH|{6XNPCLr?m<$+CR4+vWM+!?IZ0zyUBLe z_N47rw##3CTN_&j+vD$X>rK{0);`u&Z2tcV%LA5eY`_0XOC$3)=A-6>d6RjZxf44P z@T337_5U>_X6RjYcEnguXEcSTvd}ITPc)A)A zGt7Hu>0!&uBY`5Gu7<=6bG~NKz$&1Kr>h|`!`vc%bl@#O5l>e`Vusm#%G#CZfFho* zhQtiB2Jz*gML-cxS3_ck8C@T1{MtK@14TSt4T%}1@$^aK#Xu2HS3_ckDSTY2S|BKz zKdB)x!vu9#FQBOQBxVrjU;st6Co#h)b?+RYsP-gg5Z)Xpsy&Gr#Hr9gQSC|0&`VkO zxdbSxJ&75Fp9YF*PhtiUZ30ELCox04dQt63%pi{n1zI=jtCXeBpVW|;K|}*UQSC|0 zFn|qnXI?r46xE)@4E=W~Yk`5H+LM?;%yj~aYENQ@{`}y=o>PFL+LM@}URhLo7BleF zDBsgl#J5lu)xH#|dRL^{mmoFd#e44j`Bx*9MYSi(ZN$tELDBq44Own8l<$6AwH+v` zy`Nlh8DGBl98gsI&V*9;Ed`2d-w7!ZD+5KfFCvsW2?i*teMh9k0wkcQ_Jv5v%G$$I zKvC^GAk{_j3`c;X+WU|aaU@Vw`}RnQI8sm~f6}T(!Z;HCOhs>pg^ZZS22$eX4;0b9dMi?5o*z&|`|8V)8gggv z>$cu}UQpzvkypJ1DY3>9D58D!Wk?NCax7m0MYONpjMPvM@2u(wzz%^S+E;HvO0QQ1 z(Y|`)f2D}_)fttCXdftA)=I4Q z7Uk=g4=CDzE0DS@&d;WSub9QO0hbf%0d_EY4+E4%8?cH{@m=fwIQutHv;mhPwZ+`) zrEiaFSELQN6sb)gT+*pew;!P_Y(O6WFU<$3=0{KxZu8~?X= z8QE-r{mxsQOPu|jIgZ~QCmnm(S%0$}T^&vA-`QWb-^tGUn_&0b8`^%fy=i-tWdJU< z4YB1}|FWL39<=VVu4QWj%B)Q--&tO=BrI20W?5v5*Zc=tAMl`g8`}k-2ipbkSJS(u z{id5ui%h*u4cWPW&l_(xt}qTTHZy!?IBJNpbN~7ovf1tY&wu%~Jf>)&oS`Fo&+^Uc z2dc*-vSlgQWbJC%I)4Mhlv%7AP?qcv`*Op~&|xh@Q&h`W_zO_(!H#O)_4oA}Uz(iX ze}1gxwc9klT`l`Kky>y`GJomJ7h3PZ^K;tOvd}e+uL)e2DYwcfk*v{lI<6ZYWe2|xNzTrJURBScH#2m ztg^k?d#AmrmDjG8eQ!v;a9L7%^5U0``z|0L`_hmKvh3WUY5htL-J*d-wfq|c)L}x-tYrg6wjnA*;!3g7dP}%!UepX>p!|^%GujSE*z)IPa{*R+28ioy( zU(3P~z{--hzWnFc*VBH&>>^Gt8UJav4vmm7Y zEs{MLTi3GiBjxX?bn99cc%=Lt-yW@NS;&#{ca%84mIoW6nnN#MVpwq61Jxu4Smf98 zXhUE{yZJOYn}$)PdAK34!9VfIl9 zx~TtmvN2_TEsrZiHAS)js##36Wr0OXF;rU?Ql$KyYRiKOahV?KzG>QJXfNi`guuEk z8(j0%AMG`aYRkh3fmJHsnbv3+)t1E*DV3tyvPdH3?^IhBL!|tjYRjUB`hO?!a_d?a zH>CU>MQv5fA_nkRaMUzOb<~njp@b)LC%gz07Lr#>LIts(CQ#Tud9@@|C}Zn|-@9D` z3R@|!mV^qGKV4-yb!rSy*hqP`BvhzS7p4G(ZIo9_LWN3o9t=>}M0qtNROqUno&yv% zR9+1U73!6R&6QU}LWQ2MFW!9qObE)tM$4-qp@Qg%f+9_qS3^PtSv?H~D58B02^B;h z8YrTD4G9(GRXkHO04Sn;4G9&xt7rcJMYOLWp+XO3KjB+}BHGuGP(j~9bl1=t5-J3y zuw5Ms|A4Zn_9RsBt8Y`FsP-&WfP8Phx-u6isy&GqvXv3mp-{S1N2?kZG3Xu(_Gc}c z3l!CUE}@j{>%Blx?dKrH&x*Zw!a|^^_Ol74#@Rqo?Pn26JyZ%Ps{Kr)`mh}5%F8+qu2}tw2%jrybP>RYknp1&U42NczQBB72oEqUa%M}VT*Pe7_SdD7TD zQtihh)kDqNL0MG$aY$9Z@ZL9{)jSCl)qX5eMT#+*1QgYN3{nNkr?JI?B6-4AHKTFh zf(_L{=heW7eoF$@81%B~OiKp{K%Q%lr@f^1nWFU}kgo5ALM<7WXW- z-<`qM|0i54*`EImoada6IInPyV)Orha3meKuxQ`!$grQVC)lZevb}-r9NX#t3fm}~ zm(Bc7T5qw=vihwV>>Gc=vXVvj4b11vkC?A8Pd0aBvHicM^QOb5-KHx{Q`rsxZA=E^ z8RK)tgz+l23%~$lTXu@ye+>H!HyRch`WkZB%>R#AwUvL_L2f6Ts?je$;*dob*cGya z%uLq%D|UhGAoq~^-(u6}26<9i{j2PM=w$OvZyy#Hz?RPqavLe2p>bt1TmfOj=LWfn z1W1|F*FZqn?zus3AqA9IH=9itpC=$}_S_&(NDD}Me%swoY=2&bNLZ2^X`wS5f)tH+~6}l+?N;T$|QvX-fI6KH3 zWxc@L>ELJW%TmF+bCQMlT zIpJ4pyj$MU?%bW>UOlw(%jLrOgjsL@olkha6rWX_CH5Qo_ z5dKn)&y;uctz_v7S>sFPqT^TY+I!n%!mp(KG``96K8-Jti}r0?AYY2B=Zb1qXuLz- zan;Yinxy3#ACU7`br`lV`~)d~xyG~luV%Z*jW5*rV!7RsS7#JI`6c1mQhjm1c6rBT z`uh0g+~PvhskxZIE2`y7_Emiv$UAQQ;+n#Nd!T$a2RBeKqr&#i22%b~jc58lao0ON zKfhn&E9Jt5)}~+gd7AKi(Y{)~N8WLeJ87*y_$%bjJ1&-g_s>0q=d1Qr-X`xjd!*4f zJ3rORFPGaan3vsg@k4~?%l5VQr9nSG2|;c*VbfEW-}o5e`MQ0TcgZ`w*WQ-<=!07M zrE>dA$FzU>*@lGY3-?vNvAnaf@_kj~OXRY4z7_pf4I?~Xxv%mKA$9)p)<$zMx~?L!)0I<@3e+ zDxW3qyrLtYbE@*((#if+%ie$b`9i|;)%z;%mUl+E{%174QtnW;q1ipd&k>$4-`Ds% z`E>OT8ebuI@b5d&c%YB)eEq)4+vJ^xj*-S1rb=P{~3U&OESPR8fm`pdh+HJ+W{ zv~zy`q7iSA^7$%$sLzd-H65i3b2Z*C=d@e@!iGv*URzYlm+`CoMfpZ`Z9DL6UT)KC z3LXsqi&J5XYWX^Tjc-@E^!xKg8ef@gy7FT5_fJ=o`tXJPD$nk>^{tUMH;D0;?ZCv& z-s(8$+7(h8!t<5U(65pyORaz=iXSa@g>Qo;U)tv znTE^6i)u#`e#gF9GshHtrSXAevs>P4RlELiQvN8yUzhR5x`d>q-YbifEgi4y+Ig%q z;YVt`Mcy{)s_C~z+G^#q_I)bzTTd>|>@TY23;Ln{*M8iVeUTUgJX`ynJ>uA>93Vvn(SnW^$T7&tKDyY?I5%zTOMNP_4b*k;UyYYRLht1L$UMq-Jl|n?0&_o z*LI%qE#dike&E;bIdY-wQmq?T6ekOB=_k8BpxuBk=m&n~b$otMFRdQ_WZ<*MT3h_I zS^0{7;OFyGw)Sg}72D;i`_XkrCPpqL_2EnUfxoo$-m80@+6Lv9S0)3##I;oiaD_)v zEnm|Q{EQa6TK8?0tML`deuon)Ud+WcN=3DNQ9tmr9_3N-(;8o%?DN!#H?JEok<^E; z>Ic3e_}~o}ZqC>EvgDG@yPE!)g`Y@^YWcE$mAA@&DU?yckL`-5+N5B!Mh_AKqb`Yw&HNRHdkxt{T<5$ zgxyu{k?yvxKV7f6Vy=y@p{{l=gYzxtZs&UEU}v`DTgUT`TOD)RZU8p>`}POzTiDG1 zwzdnl7ujxri*4O(nbr@jk6N#0U;HJ@AC_a5sAYwvx23W9Q}dJN>&;WmMJyZers*!z zTGK#N3**mM`&(Vq3j)wk=D&mWC*%k&VF`h!?#xLB{a9HQ12bBSNv9e z_I*K@C7ZjC-CTIh2ZZKERi$|#s7&e=bSVo1uU~P886W$?Ah)S1&BC;K{F6jn&?R#I z^$ov$v)L`AY;ICjnguN(wrFgYU(f-$&0~hzVR(^e$59@bZRbWzg#pn{^g+FHb9R{BZxut4P`0l0r>(y1yyu&~>{gyF~7A@c4CS0?i4{4XH+7vcBEZa~=?MK<@D9 zn@je$e~i%Fj;b^ZH#(1F-yp9Mbg|s=t^bt75_mLhVUU|qt?a=&ANT&)M$mq_!_`}- ztv~xWDVtkSt?Yqp%1)!NIjsb49iKU0^3hHl{0f8Ih^n+x-Z_+ieJvGqrQEK0)BWF{ zaFMdP4OM9t7EbE2k$n*mG+P>beRxRqSPW7NgWQB_Wp97t@q4fCBIt6t;EU{!nrD4S z%H|eSD|^e=W6n>o2)a!6uYRW6ri=7x;09Est@6$t%t*A)7j&uIazM#~Gi#=jvbp_K zX}i2L!q3OPThJwP+l?C+A6&GW(A<2gv_;1Q*KI_Nxov4C*KPi=Ff$4tvoks3Hg7(XKH4|puelSLA!u_X8v#?q{ zGf<`3wp<-rzH|87=BEhF-KR>kr{RrOU(R1sDCkOAI$M0AxNZlbx%X6Qrl79u3c00H z_K$?-&QqnCCXe^ob=NyRMA_wX)1%pMI7YlgXzn{TdM|V1J;n-}1!u2()~!w1TZHDW zQ>B@Lk3W=i|8KIOOOs7seD&Y&UkMVLdrqKl7{u03?C=V@B-#9>Cy&23cnzVsr z@b~2FKU?y#paXLA_JQwKbf;q#_nRv1V&fp+Mzy7&i{c}yGTjZ_ZpZ68b{zlN{a^9_{ zUo{PRiqxB1Pqp6c&0Ujy)eX!36m*%KTR#82sfWiBnj25J%PTtYiB}bZE=}f*&-gan z4VSkU1}g}?bujBk zPsfCsEU9bF)ioU+>-dt%H$>6siE@J_2rd5S zXvXCI2UUp7OfC!t$aR;pJ(2e;9U!R6WQC*h$MGXDk&zoL#v)f7P?kgr7!7D)kk7+} zTbUPq<>5*9*9odT*>lueuf6=hX6;rAgPjR|>F@3DdE>-rL6;?q=UIxbZ!uG&^MjpO zq$0`|A8pD@lWp7Vaz2*XTf+*2d`6~!=oJ6`!feiKn>i9GqW+_%q$#%XkRup>8* z^iy0pn$yByp;p#Kc}%~n8~oemfGDdtIXZiMql(5`7`Igd-BECwCd#t*%lA=?zxP$O|OwXA9=Qwh7|@SQs{(d`g}j7 z#vux=NDkfl`M9pcFJuSX)xT#li?}dYK*}1T%(u6Sve=1J$KvPr-b3Hv`GoF!&~#T$0D^1RP@V+hPzCNvTDm%y~Xx1wPpN!lfo0kcD|YwXAfJ?}{#I_o53w|ghqn|Z%?`3Dne~dm?wuXv zGck3SC)0d$gKQoqT%eeze&>kSCpqgWJIE(v>We@fdHg>&<3vW*hgk=+?#Nog=Kr_x z{Ns7s^O)y)&mvDxPiwaR|77NUnO9^^$n2D9c7N=C+Fk8l>mKTE&t?L=>)PYm=9=R2 zyRz6>00*2Q=St@QXMy9Q<4wmSZ1(>&M>j`9w)+35Jz`&FA8nUxf7?#kp0?d=o6oWU zE!nJqqt=LZvvoAf1N?0{W7%i9j;;Og!7>3~nx8kv%xla;%wCoYc*pdh=}NX6V7bX{ z{K$C7SYxa*b~UzO=l{KE2pcvSCK`$iCUzSc{*Yps#h!{{S{`pzu?1q8Ke^aEr}&bc zm;#YPY=(rbsk$s!OibgyNIiH#3XMW?xcco#=`rFsQEa!I&`2(Nz1#yiKhql;!2xyu zB3_2rqJcaoQfN3{O>C+}?nFlpLz3hl;J62zfhL89A}JQUlRF?~=7ff%xdQ_DLyG+s zN{eZdw0@Pzg~}0jnCzEAJoze=E?4%+P%IhL6QdI;G!RKTe?e869AJ?X8j!A@w5a}A zR4F@^HZy+=ttLJTQm7x2L~y7cCHo>NmgrF#k<1D8Nmo4tq)=}xDoyopG?PLylB8!t z^(fg3NqI{)+rZ>?T0JClLOs(}4*@CE1B)VEOFT|wIF&-(kxZjrnf8v6Lfz7maMCG~ zIU$xLO?ixT7wv*Y1=JaDv~h7DmqL|Dc2Q1MIKxR$kCGKgmhiZ^^Kq&kk~yLBbk##Z z3YB3|V&NOD9==JWkYYps+aOd*NyUq*WI#QYmR1kRoKPTL^$?IkiU(DT5;MqX_3%|D zh5UFUVqrcfK|M-#Mw0YrXj~+7LY>l84*@AughjPccGTERtA{U9Da352Hn3d$eaO&B zTWR$uS%@SV?4f!{=7gC2OznFJNFg5<)kK|MOsj`)11Z!V$uxbBk`j`Y$^p}Aur0#X;NDMi2=D&Y0UH;i~>iGPqn`FOR|M^;BFPE+kEWEc>#5i%!~n?^PQNFnAh zp{-K85^*k4$cto|I>C_(3>U>QJ}0CY&U#|#ips&FNUs$Am#le`LdqVtoVYm1K^h6jH3HDlh3Ea8VqOb3%$At$(KoNFioP;i9Ca;7)OH zl|qU=RWF+6PLa$BDIT@{MG=rf%%=X2i_#HMv8?Jv$x96G6v>>B;#=!q6agv3rhURi z$>0iiO2;`i1r*5ChrR^KoRBgdwEjgAkV49gP__Q;6bmD=)XGVUC3N&sriBW5)m0?4 z_aa#kQs#y#7nK8rEm{6Piai$=o%qUgWA_i7bi*QniO)7;F$#5fjc>o8I zf)JZv3i@|ldATp++FP}@C!7>yQ%(Ozi8uh{1lhFHlwm1=fD}}woT{CJj1W*ce5`YV z%DmJ1${`>H+0;|06|rAX6h5pu!A zK<#D7d4reoODYYiCh%03K;|#!1Xrf16#>-m|LZ11!= z&N?1*T;Uk*=;$!o-?Q(wZ?;deSJ*RcAB(uZpNRW!w=T90vgTNRw!F&L1FW-*w-mC| z0ADwU&6k=-ncJEEGQDDovl#&6OdU)a#^c72aiwvjvA}TA@UkJsR{D=M_%i;@cqh&G ze<@5nC<)Kt7zBL$q%iZK&{d`=dvqwnpBUZBDM`%e0<@T-`3RX4R&t>A`X>RTF!7*d zbWnC@DDF~D9@Vgt0#zSXGNg)R0U`ZiB@Zg1aT4>vJ(nlvTzI`-mpL0T3=0!iI!WDM zi4Q$+@3b1km5L)d$m@huBPX2Bl@dS-Ggk_Nlfeh>9mf`bSV@IKenDxQ-}qJG=F5@` zeSfvwYOT@k$REz*sm|1&fC#BSk;2TbLVYHvyTeiuus%|l_||!6CPp^OYGzh_=*a%t zIbr5oQ$`g6NMUAI;i6>N1QE!n7$&}z3+oPca2x~>7)0Kg-c=LWaqug_jyrV4|IMcbHdEYrrtXOQkWT7xOXzn!@c7$?hju= z?ughnxcQRglB{mg*FRsP-H|`c_o#&qK!Rfsp(MF-?PAN6-uM|r3NvpD^%J(&E7r4&4>j+Fc40ze{=w+&dO7g%!W6R%4X94|qpF!Q@0IC=HMz2hrg3NzyiWSZxllEnX#Oaa_7C7J()GDj%OpnB3e{=y&POS@n&CJhX?R*~`omqN@$LxqWP zgH|JUEJWNiF>YcoE<-XW#N2f1tsx+Vn2m;uk~9t68Sz0O=B9xpPbb_EC08IRtFv%v z8&PsOl9TuesN;6iHbOEdRF&>V5b%fi+AI*9JSK1_Whsw|Kg5@3!B5h(Q5we-T7nfO zzkoI(jw!?@tAbp_TR|HknG;%+?$!|ShxjrqsArm6D^0mIDYO8uPP{WT7O^Cu`A8De z0Cz;mc}R}Gj2}idfi@PBIib1f?g#-XGzW_!J_y>1n1#@6BvW5*Wt5zSWSSeHw%_0GAA@6-Hjk1g{EUsBqIhlf)>CZQl_SYJ;y`~G)W-M7sIJoIC(aqX|Ql9GzCd< ziaKo?By&QO)7=pQQfLwuMXUZsYe&}XtconN=alCW&&_Q2|8Aa!nV++n z{~;FtkIXD^Uv$68;{R>#x$Z9REY}&=KG$`w8Ll3##?CL<&VM_dbDWiI=l^dVhuKa5 z)7ifN4*M7O=j?abXN&m%0Ne9#p{>+ru>QyTkaeeZjmBTh1q5H}>Gsq`nuDJN1sp}lYY5eNARu|=Yl*-!fA?0;d; zhUc}PND-0>T{8SN7FYhr>myp5)JKXCYq)}2u5B5l+Y+)MqF6&UD>TqNd)d0x%FIe7 zD?~VNgc(EH=&-9bnFSCbjJ(4aS1)yq{smiN?PnZx|rxmtfDy2l;}wcm%=1Zx?J73nCMB!g0SKcRXvqGg0Fa+ zlZu{%lfuLwlJ^LRg(gZ0Gk*y0yAownQDwF^h($?~HzgJh#6r>^rv8w4I1q~+={flQ zoPM|Ep;%$!4;P)jyVEcCFQH;#;Zm6R!{y3u$|I;)NEU>Zl&UILFSdqtXNEEXQWXn1 zDa;b8X(Rx#i0cZI%qo!;#6r>^=1czJ-A`O0s8x}iUC;gd!+h00{Djy;P^}_4P{|$b zCaNh(SGE6={GNDZE3iINnE1u2Q*4W>j`WcwWKK9;_LTrqnAk*igw2vC&R@qH0OUe% zCxwYktZ+AP+xpk5I0`!UIryn1 z7j{+d*M1^}mtsRN;76MbtfHL^>m!AUU#wbjsrf*jIxkqwn~_b9bHdCorZ{y1NMU9Z zp?CQ)cn7)AFG}HsNT%ssNczKk!9K`E{4B_o>VW-WWdW4%F~rz{TxH3j$1aZf=k3Ep zE@B)>@(_9#)<+66;|TYdrgtG(5LO(d`bvDv-DE5Rk&mT7n2-Z#^m(ans>3NRnxSAQvS^BS}U>=u}Ah!^+|%p%QWXpc0$d ze0tsXsxRpHJ`xKTCwcP4fp2&hAHsOp>3DK{qSmO#&b&cMUn^!@=&r5l4Le7s6)x# zNX}4C*ra`jk}{G@)Pt_5DoEypd!$T|8fd7qbJ;ggT^^#?xEBXrd$K~kJ+NO}YzbHagi_m1_H z!o^q=Nx?#MQ;X_HvTN&RY_VZOeo?r0BzgQlIpeq*|8L8hlI3T+|G(-#Ku ztTh)6IqM?ZYxh%S<(If`cB*Bc1ry$^ICw;BNPk3Ga4vpA#xc?M>?h@So!qjm&x6`e zqzK8}RjJ29khbrF1Dg~f&TGNxzu7^k{YcvrvLK>3FV)MD@lEk^g!4w2@1jFx>b8(l zgeC0Y&0K!Vfp>Smu#aCx%^nqI!#Z1L|Ij?{KO)YK@*z5FIT*^`0-O!cuK1jAr@?T%79GjBSlCq zZy^_BkCQe5s!X_|oSxhX}6&myfUnm|V~p9PJT>N<5K zF3FSQAVsE5~SO+Yv)!h9E~ zM!tQ5zGTRZ5CcXgMTjn5Nl9YB$U6Y^MbaNpR*8!)K3O@B{#~jsOUbOg=hw$>d_xn< zA3-N(htqBOPe9*FxnEZ2+>!q|t^Gub5GS_$7QWkeQ~nFk7waQMs1swyynNgEGER!O zE4jyl2y$=92lPeK zA5m6?3w@^?7}Yrb=XhRCF^X5RF~uq5VXP z5T{1sY|t0$BSn}~12wADqqV8NNESqxWdnW3c28Wv4q8Edk&`0Cx24gSBu^s5w~?>I zpf4qfZzJ=+KwnA{-!@U*Dxb=Wq(7pp09RzS$YkOd$XYIUyKr#EXIK41WMu|U6Kl#T zwm;i2(%g?;Vpl@liXT!HwH#_Ojej-KMV||u=Uv%L9S6A>~K>x-1ND&Fi73w)b zoP=Q)$%05bPOANPCO>*S>i{R!VHY_mQh+5AGXVOM>`Npc$yDc7Ny$7UNd^k^MbaNp z)`^S$OEOQOZ))brA8AXPgruH8-;$)POt%|N^z~wWND2z{#rjB*Hb|}rtz94m_fmb4 zEQsWAQq^}%{w3SlHW;Wca#ExU#yQ5X^vzX zeUU7PG~=YI@ARS9Ov-a9WvcxbIVsWj;_ zL@bi+0)11nUH(Wz?I(7bq`N@hVtKe>=Fp85HmymdNCT`72^T?MtdA7QLXw1uFg_qz z5b3ZtLKd8 zekK0T&HO#{^~`%RFUuU0*@ngcFSu*n%iaCld9FWPZ@40^#jakirp~XOhnxxLI_EHF z3&&@UgO1xAiyS@KnSWo|pR{kYPhltiS#4)*`)t?Q#@lkOzgu6o-fi7v9c682xnN0J zsx8YbeJq!lzcU{(-)f#=E;Tz%=hzv4x0@E5da>31?;H0TuQ5(F78^Z=PYlnn_B(&{G1ajQHj zN}Lu+E+{=wS05=#oE8a3m7b_0y;0`0Xl$E$T#ghaCaZ*P4m~Q=iQk)&h+u_b*OH>d zWRY3!&HiAD{ zp=?jkkTim_+m7-EbjoBh1~h_SPMPQtB_?YjpXYHg$u9zpfc250ipf&HFZaVwz0e3q zdZWx{r8ENH#7(QI6ea$uob3mA)4*d|Bh({_zw)Uks&i6|8M-n%ptL0T7Gs8v^dUI~ zliXrVCZs>g_S@mjrEC?s#BV&l-!n>U1YXf(#o424e%Xh6RQaRI-aDcZNMb>Z$!rhu zetXWF!;g+2YAF6nm6jwJ#F$L#BSneBBKIi9WF48_VL`r)gx^u(uu`KAa!8aE%|+eB zLB(7QP?(n47D=)+2NXuqA7wl82!(C(qVV4N$3MD26|R(fzcgXboqroOx%|;K+D|UZ zWZDNPT$wDr^74D~zqnrei4;{Fma6d5>|VX6-rbR31Qf>lNKxXk$ao40Q<8Wrq8lho z!sRIOSY^3;`I+P=hl|j0u&~ZbCkF&60d>6lx&2$^?K_)wnf1}sxT!RA~{i+ zv2r~pL185Q(FR(FWNC&$YbKkA=WBZUBbRGUa8V}HTc8O_lV$gPePHjf2HH=g$QG>63bvL1?fX~L zPLB1FB9|dKQz4Z%Gc*B`Ig!ojng9VQvI&dosGh3HFA7fqjlee|nWhOSxdBPy;Gqd9 zxgN=Jd=Io?iUorvK++$fYgpzS-2dIZK4lw8Xabh5c&Pf={C#g}dio=D4GYOvKogWC z%YHmRZNo&b_7f?x2J1uOYIq8;K2l^gl5<*}{O$15?YM5x1V|P{R&i2|5J_aMJ`Bi7 z5i&KA%*uh5pt1T&yf)d%03HTPu0WE^%7K=kj(@N;rI?Be$WErFyzLgy&XS$yBK zJ+643qtFs8vGMzxpWHKNfhMazLgy%wX*tjmfn@o|+gonWpQ8OliY&$Ytav2OKGXli zF9I!r^^qcEj^f;}_;IM+X-gnk5Mgr^p(Q#gi|PEFR9gZ$DMF?yk`{xOAQ5PUOjRTq z4rmEVF2MUCB(wx2=Oal{Ak>2cUf0jdsrJ=zO+1V*=1SEcK-L6Pn#b#Z#Pdj zmzW)I$$BSxwa7ygNuS4R>fRiqqB{}FF=r7`Q3NsQD;Wy>n%qlVI$^+;l* zX0GEWZnWfODveo>Bu0v46O_i(k^UGOsf%(|OSYrsd+T_i%45aRWZA~Co$q|Th4zg2 zV`!vo)ZHqN75|CcH*b6YgYFL6Pox+zQY4+AJXX5;|CGGf3Emk6Fg@k56 z(jPh;~&9EeU89M;Y#!1l(g!D(LeIgE4JPrOX$x_9^?$ePNBMTw6hDFx9Cq&`xV`6#gKB~04PjDW5rOZ z!C*&z!o#&Aslt>bmP*Do2VyAkQ<7M!Ns0}AoRw1FFp~Z#Kh6;nXe2KT z3Rfh{l)Nw=9pI0mx3bWe04Q7`*MA8}(Ph{(NlF0}#`;K6VyXO}{}asr{Z)RCpfC-M ziKXiFJ3kiV8LBWP6-%YIMGxFn7Zj!>F;!&U1t?5OVyfmpuyA&8v@%5p6h_h?#q}Rn zxym!6zvC_?69fvE%U$01EWYQhue1*7kK+0d_7kizD9nDM>@ke{-AmDVsPIH(8k#a8 z6BNe!NYS}SroImSH1Z|$5Q|^Bqe0HQ%8sTmN>Gx_LnO0wKw(PG!mE$Nr5B(uCD}|w z7|rH&U%h+R31yxiD2${(N>_kX@u+Ki8{QQ_;j(0z{pRmF{PiVKSUK`WNdnvD<#qgw zici6uL$Gi4>iN^&u$*P#EjujZWpRMCotB92ONbYp9cU3Km9OK6G;u z`$ox3L_eRU)$%Rc%_%tv%Ot};Gy)|jA~|lz?yR0S{=mzGMxf*bBe)9TT$oCQVU)R5{s3X#|^0W;j42l*-+ny1}}=YftSb zQgkfVXC}^xfJVUjc%x&|Hv%G3bTk%5K3zZ~kgzv83Q02V!;?VCk!eY21WJxTa_rDa ze48BF2$UR-VAcNr`Oh0;CeF}8%_6I(Au0)*0FE}k75K7{m?%}edG)1|c8yh~uOuSA7&mI7IMJ^9;;?1C zF=o}$-7_M-824zRII(qyzBmjby)ov}(iMk@FUIYeD6Xw~mc6bxvhSof#td4T;s}x( zW9cq~THHl_ImGhEc&1A5VZrmF7Yuob|@IjZ$kZnn#h`kCNxcn2k!G|G{*EH^v-Pn&FJ}1Sv+WQ}eZ5hE=|J z4Hd|TCyv*MLO9uFx- zJd}L<$9>m+qwEO+8q+d~hZ=kKKF1q>2Y8vFF(rwInxDrHRV(BqXiQ1sp_Uw;xz#aP zS+XLGEUBkIh92soJmZ;HuG}){2rm>gu1xlu@K~qqbMe$Ce+)g;MOijU%T9F2;y(e6 zE0c4#No`MzZ$>m$Jd~0$lXY)n$Rp#ZA;pM`BGXDiV@eVi)s1JIPkVShKx0Z07d5f@ zy^pl$rt}KXn3BXr&F52J&orSLQndM zO)!6q+Nlx0a*+$D#_Z_f&c}w`cGF|pPkgaH*pEAX$Ty&s`7f{^(_xqRs9fcokM^7e zjVVcdR3(3^zg8lD(3q0UN5OMF?n6G;TQTFHF(rwens54Xkh%1Bsxc+W#6vQD95hDK zA5+fx6B;j9z9bFfg@VTA$x>w_qK7rX{4wRQKk<`^O=s;ax=Gos82WK}a%khJ19!Ce zQ~QZ8))h4--#AcX`oijhdXT&>XiUjUBvb8WF(oUI9D{qNg2t3AM{@4L8yXMj8>AXj zlFUF%(~l`xie-|CP9QOo{#c0?nXxmC`9Z7M%4QlMZCP@_-p3vq-TXaGT5l|%e{Ts- zPww6qE9Tc%N0GGZQxo9Fx~3ULDA^gwLO#QL)k3Zm^l(acLUPQ9i^8?PXLAzNr(_Y5 zb6c@f0Nxr()u&`fB$sU~y|w9$(>Mt|97%snIqgq$*A*?5>@-I~{?cUWB~6De%^s_1 z>W|?X535XOB|tNj$^(_9pm-LiH|9&<3|J9gtUa%?+6)pdc*2JO9hMZ6@b=O)10~xb z*^zyQXgr`7zdL9KN){kFrf;jV-+oZOi$gO|G9Ss=%PTBR-dEPEzzdU-c}S8>0yG1X z{ur+7U>St={Mb|2d?IAm92Hm<2oS6X4P?GE|pZMjednaf=kz!t~4@o7! zLxJ`2#oBOEZH-oJ!tAl-pYiHoYoM8xVr1SS`49p_5+%vJ!_+)nF(q4JP08m3Xbnnc zBRQLS&O3iG^O{0yP_iYGOK}M%v<8y?7+un_VpP?HgZ{C!H3G?!U#@D=$@ilstv`kn z5G^v9odB&7kbBL3bFS|nvZ-~fIo5~dFQGNCK0N-PmT@v8>+P%uvM$e>n$z${qIM%0^rWfb(v!`C1wA=-R_O<3GNQAe_U_7?sHw{n#}h9H#k3V?sHzt z<^WW%9KaWB4ZtmqrH(<4R`wt4N9=X>wf4bm7l1!)uiNglt+S1_N!E+jH>`WCS6Ihc z+gSdxoUq(&Sz#Gw@tS{Tr~XCEE6x4PS*CAHNz)ysMW+6y7RGOlPZ@78E;M#CW@#CK zl8k>?#Z&(I;@nD#C{(=0)M!c>cZ$1^Q}_aLZYCM4%um*ZkBYb)PT4o#7axij5L5Zo z3n=pHF5ruEA1Nv$ro*bNnB+q$P1IfJ!x2axR z+*@gv~rRea~COUEH)3(-yKFI zzBu=hf*pF(ntjhSYofn9WW8~okxLDQ$uWh#IJc0ZIPn=#UtP4{zBo6Lf)z7B_0^I0#E?$p8iZQ`_~P6+iu&r3T;hQs zN3#0j+&T)jpSsVt9)5(fRAkI&QhWhIAG0@4&lJnmC>+)W0uG9LCFU}35 zs6$$P(HQ#T+(HUg%qZ8_7g=w-Bz=7m3B>s#VW@9U)%EN3Elti-eE&gGUv48s9nyAN z;&tNOMhaHU>(kd4S#O*f$#nW65{R=yqP6q$zBo6Nq7J%&2l@kX195IA z1)DCTNlrfW#tYNemloFni_>*Qs4l+xd~xO+;nHcl0cE*`{9n~X)*ELQGM%i5_~P6< zrYjDriP<_|oV!QC>RJHQq%8N3g4Nx=c-@eLhrMy;Ak$To7MF{~>GH!+P0Sej;%$-D zjmJ<;%5t+Ps+qQvBI}JayO^$;i1^~%C5qy7Z$(i}a{8bz&V8a_)Adaq%bg-rQ$6xW z_bd_C8)sfIO*ILU8)qg_pU;N+;j6?KZ-Lj;84@8QIn>Y>zXVxb2NtbOSZ|y;!gTec zmu8bD;dXVeD7ZAfCwy@}cTz}`_R`3D<81b1x=SPCi}PudqPX75&H`7cO2egb$oIt? zAuBe2(YFe+-gv|Gmqx@FZ-B+=ULbI39KC(1-*GBeQ`6Es(bZ74d_T{LRKdf)Bss; z+?f965%I+hSe!0KflJfTEdyEIhya&H)*IWJ{?dr}VwYoay1`OhnjDPii)}$RU6T{m z8@nv+r3sQ7+sqMl;*IX{CPydwVw>=qy7!2vh+iuC1=IF3EY(`G#{3+y8HzvyJ0|59=6}p5&3nyPnWqLu7^(NB0DRPs(1W&n%w$OEQ5Cl7UAiRQr)H!4q$yR$|esUJ$I6 zFG2j4*pXN-2(sP;^IPe92qL}&vsrLyU892_`0@=T8k2hy+gj-bDM>k;$(JC;OZUD6 zJ@5j)1T$Vx8L^j;UI)q&2R3`!&yivC!+IT%^(L4DOQ!=Oz63K~aA{o(1UjGv2qZFz z4m#1GV+7JXDQ@zkv_b?@jv4eN6i=p3FB+pPJ-l8o2-eD%Ag*kd^3M7~F9@>U1aoES z1VO}?U}g*i(Nz}&L1Pj~@TDuz=_~VGa~})MP_GSw6ekyda(d{2?sOC&_DrWZbPT+J zFQM2oRR^&$O|JuGi9wtB%!*eJZ1L!IK-QaJ1}&Wqi1-rBmw^ttXclxpmlR0wGfF@Q zoecpUSYo)|F$%r}acXG?47`9Z&YT)lMtp_P>p)pz*{1STWYgdEIw0$fGs~7v2Sj{v z=G5TQItM6pASc@S;>@xEt8;)t1|3VBo9^{1x`B>m&JD^PMRUi(h3Z&h;U=*S*=8T@ zth;@}dgJLW96@s9%);qiDBL%(jdAAPpnf{j4fl;~AkNPxfxe=1W^m)F=l=QPiknlP z1F@Z}uKmf`d%igFbCcACC3*p{GT!*5Y1>~{+)8q9)DpwJq2CR}SNxyuts>=2LtlJ3 zUO<+cO&Z=B73Ow+f?VSm2(QY=oFNPv4I<~zOwSzQDQ z%|_Y9$o9M8=wmN+ouqFr$}U1ythCbK60+X-!t}R# zgT?9eg?l7!BR(2gU8BRTQFauvIs*mmM%j_b>I@XL8?xT`i1fFFh#LPN=HLI-_&?wC zyXQ5w|KAq2{=Ze`51B_Y<81%GQJMMf-`$7ZHSVSELGD(rA6y4q*Se;-I=NiV583?x z%bkOrtsOr)UU%H-Sm)^NaNEz>AGhCXpKtGC&$OMlJz=}vw!qfa=CQudPX4>nI^G(v zS}mt6yDcj%{n+k*znEV!N6m}O-OUZy>ipBEE%*~e|-ls~PJgVyugq0GC_fa#6qtzAqDyt-1 z2$`E;&PQ)4l-VT3T`KU+>`M^Kqq7vse3E)Bu{^rYBdiK3H;`CQ9wMEU5WTXZGCAS7 z4o~$vgG*Tg3BGa{9@k0KQ;6=#el%EF#5h!YTzv^*iWY{?@SSY+Lesk?nJuyQS}!!R z-URbPY2NGPCVdHFfpp&{Ks>Ywz67&C{NC8+4{}=ZkPReO5*>721;ndJPOEnSb09%Y zk9*u zBW@!>Op(|*RJ}CxJj(tzQv})}8%Qi7LhD=+XjYya($}$d)m%66+iFnjz~=%unCp5b-65Dbg7e&BI=8n=mt%&#%%oIVpr4>WI$lqD7@oo6A3y7>~!0>LfmJRwL% z%Oze&m$ifLMOos7mQQ(T!>p$p>!m{0n_yljUH3x7mmn5MXEi}8V%ZYR0>LfmGQS`d zvVp{K(q(kk68aZQ>@EKE`+Ij|@+**_QwVh)6GUShd)IxlWOVMYWMCVLwVJJb?_R3! zXILv=VhFNgZmC{8WW9;O>BU3Dml%Y_>G}hRhvv|i7>KOSmx6f61`-2^csdxwD^4!S z>K1+dbKLeOkmyf-q;s<%Uh1yhzC=H)l`bs^Jr8T;OY}unEb`ThhpaczC%t%x_!49S zq3*jah)2?F2^lZlOW6u)iF#=e57|JX7ttZ@$mUNjOR*t6$&YlCOF=w;a?FGCtc^w= zB0aAM)@thJPAi&^FzI_9*2JpHm!|B*EWOcy^eD)(N z9}}f%H6z94CQ3M>cv&$g7Q{mT>`Mgjnz~#yh(+0AWOd`AcuL8Ebb$ol4;x;gx;d~Q z5{oPz?lWik-3>_x>x>teoSEN$?&Pm@9gJMSm*|A-!aYmbE+RF$4n|mSf=wz+^Ijl` zFG1!K>VgE&0d2D{QHYn;y>3AVWCIDlDg|`V1qq--YLMVd`0xU{7y&vBUci@VkE|{> zfKG#~HzB3h0TExK9Tt~X2lTl-{-2QXR7TdZta#SytbtkCO8lSjEcKLooS7eF?#sL` zb6TdK&HX>hPXAl(?&H41^^Gg(+Toh%Dq*YtPdguVUgMnX%y<0mc+HV;tYN4B<*={+ z&)ToEPh)%kn{B6T58JL{Xa8Md{l=QK-eFy0?P+afIcvGka+zh6CExs~`E~Q1<|=cg z+0AzTf82C~X@)6a{M-1lF=AY4>}PCa_{H#wA!=A;=x%6`@d>Le`{%18Rz+ulMC475 z3-i?xt0MMIRJ)mYmUJw!DkGI`QANf`^dTKf(l%n3Zna#|hX@;}8%g?*ZeS37h#kvT zdE}2_TOPrUhJ1Czyy&tOq7RV^`09pZqc2s~mNwNrON5o`hH+NSYz$I2Y*kq$vq8w* zI%ZV#gR1WzAO6~9 z8R~_gQLt9NI$~9-I`i`i4ymkou*uy@b&6F{8)amJq5Dd%{#s?#MxmuLqXHVrd^@E} zo>58An~Vi@#IfjH8T5V1635d2GM-5rsg?_RBO9orj%DI|3&yQ=uT^2tyCONH?5mb- zm*T|xKpk}~x`7V#u1I!Q4$1m~=uI4pE*S!PW37C3#IY>n$36YhT&)!7jjUA191A=I ze6gxQT^+q;OSD}p`HhCgD z<8O5vi(crhu z3xVEPD_%~BP-Q0D+79uK6huhSMQlBtLlxUua5W`UHSm@CaH!x z;%CzKZ_4_ywz|{{^lxMXb)7Z6FUsTTLKW!WW$fVkrY9<>Jd4iz0+|EJ zKFZoV{E@G&DON_8-~gE^+XUH_MZR-ytc&VpMpmk8%vn|DSvCBWYq}>9IoHlt*9c41 z$pJEx{7GFyWOYpfGE=s}e_^3FBO9p8BGT#dNT73S9w|`gAwSY3l0fg`WZ!)!r#2jg zI~@AzGO<=^^~PHH>fFeR^Dy*!BP-RpIIHU2Up;e#c55Vkbxtf*H;oPSCMlOX2ePud zJEgu`Q`U}b+R+->KpmYXsGGh9db8A1Y<$*xUu9?`LZHq{^w!N|1HJvp0rk@fb!5Ka zlJC4V^A=jwJAnR;wer=O@eb0uZDhT5rnF&nB_h5$BNnI2R|%oX7hqqV0a;zXN_1=; zn}Mv(B8rYp*#w;?Nax83oe3LATu$`W<*9_e6G81r|Mq8InK>-e>;BpOvOD5lH7azd++$DiZA{<+iMbfAcR1& z31LYB$)-~;9qBdn-h1yobfgL>AT7JulwD9zKv0pT2?z*?C}IJmi6US@gs41c?#$dd zH}L&EzvuOO@E>2Vy!Y(vXKp#?%$YfNYV>BwK z8+je7@SJ(oh>doG*P#y3<-;+cw;Bo<-N@lc?V6Kxpe`%DXTiLRMGlAR5zVf86^k5> zR>e)fI~BOEdc3GunG=HY}na;?t5Tl|1m>=|-LhYnY&Vyr_PG?0L|-f_Bf>jce*0Kv_O5;ukpG z$oEj)<6LnRUb>O*@k+%pi+m4Nh|ZofS(rt>hbm&^iVN1|7QP3x;EJfaLW+7*t$2o1 zujyM8KOMFfDPCSt9Qqv47T#*bGo<>ZPK9m@PEbDNbR#E36{7PSL5#}jmYoo)xGF^F zienbJAsK^$629%v_S@)V(_cEr+37}Z$e4HEC~9(HH~k{6 zxEPhwExRF9@gC4H=ih!#%5udqiyV=3XlG^G{|RNe;wW%+BS++w*EnX8Bcck^x#E~L z3B}oY<#Y^OalyLW*#BVN)+x-NDlhk2cexG9HExhp;W<}4O)A*}%IQXq$g5(XEHNsl z8ypcH;PrV$MH*tOy1^qcQzwxQTuz-J!s$kSNCv#l#yw>x)ABh%VW=DVA+MYh#O5MD zMD;x5bAnm4U7>5vZO12 z^SeN>)pBRN(vi#(h%z?k?cd;&f`is+f>p)){LzG2*vY^z9aZGTCk3-p z1lxJ`##WJY!qt-^SXVCI&@dq4#pReCG3rT42{dl}(UR-a#2e3*I|)sS>Z0e9k`hRL zt738G4KZj^CW=w1A|yU3VpPuD34&GC=I}`oY+UYm!qRA}vb-2#p+A7$FoJaEjuTc> zp1%40mv<5=$>&DI#Liq)!l%l8@wvh57-SbNp!K!SQ@ea_FgseX9dG@0YkbEJl;saG z!MbusA({K1{v3{wsYGG^5Q8Lv9C?XunXcTC%7+Y+s)mHmjY~@ZZ|R}??}(nS&fF1V zRO2&q`mEbpk$w@M8!;+p?r^~lAq`sZ52Y-h8^Olq%0+#2ZrGV_l%;bcNM|l8=}SIQ z=E2GvYz>^x4UUS3h!LnZAMv@t?BM^w^0~q6Ai;K+QyGe0Ptnoxxe=@@7uWXn#m^W% zH_3sf370$k*l>+<3%GJcZJ&joLr=ef&rPz_G%&bx^0yl0L(bg(VpOlZZ^Wpax%~t? zOg{ZEPdzt+jmwpHKG3;g{TcDx2-2C`M_6U&BvO*k4GyGx3$}qQOJ~aRxxs8N!MY?yyip;Lu?&w3R3K%{& z&_%r2+6T4r@r$OL7}YC73Nb2YE-LyPIja|x*!(~T#qS%z#^rV;cIn)x+#-742-2C` zMT~$oYf#M%THvMe|Cglxzc6%mXt&V#kQX7Jg=`EN5mG;-bnubzZlcsrgNs9 zrpcz3rWoVj#^c7-#(~Ckqt)<(;XT6=Lq|h|{;~dqev^K*UecG-UDx?^b9J3`)wR#H zpKIM(*p98WYi?-vX_jev%V++7DI)#<^?xomb}CfCwmfan*#eq~hYv{F)Fx4xYo~j* z5KR?y%a1$q8HJ5;gD;_}Bp+ePo=D2+mFW0$ryIEu>=Z^i5A6I(6$@^J@-9zU;ESpF zI+`>1dhx1tx{*K8V(7QfMufR1^8HkTMgBzg=f_>1LbgIDKkG`c$e$Scz}W7aoothv zd_SpJmz(tQqK+FRLB>tcf8@xZ1D5Y60!z|Ai*ouL6%B%2ZtPg7GIV@mG6QKN+m$k% zdZCEzbWak>sMf{##9(ERKfxNos1?TnBl0Iy-jnX%=Jc?{^ zXa@zc?W$aH%p#9sNH4PTQ9^OSy4<9%7q3DZv+b|tht|wiD-O-T!duVI{_cVzp36O2 z`H)poh1*>545`^VLrV2ab(9Y|-J^u!s<4|YE=J{aj}+`H6~_T1@+ert7xgucS>#bP zBJJ5jn2KC+%*q}GOB2XvAP%HbX`u>oe=D@*$_YlTfDrPe1%< znaYlo<+CD2747a=GV{%+ML2VqcEu+4846bicA3-*;S1k9q!Jk?{5PYY&IWnL%p z@)*QQuKBcJwv8BrY6+N6i(p-D($<11Y*nXU`Lv`+O^D$5Nr%QD3cDfrk4nx9TW_@ zn+rDi@x!(gPqJ4fziBYrOt4A#gabZ1m~ARpRe;B52eVBC+yB7Pv!`>Ls&5*>y4>P` zVw0qb9r*0HB&k*Ft4o9bR)luB8==`zEz$GYaY>B^K4`YDI=;pwF{&XEZHDBUHque? z*%701x*H0X_0*#*pB>CL5N!38OPj4tYpI?c6b`ykk)G;);Io6-dcv+M#N)Gr*}8&l zOFM1SG4R>JY#qU>qHlih2-fA!QiLv+M*c(cVNujDpPl4DMvZT~oVHg*vm-Vd7^SiM zp!LD9#q>jbc9Nyc(Zx@H+|fh%kkg$ZMx_eB`Rs^MIo;`kRfXStb}*YJ*oyXT?@NU) z_3WU4(2dIU(oYRbJ^c6&%JSL4tX!r?Uks`}P<(bU>k?yV`<3_DuF{LBT|PUQO%`lV zlC~I?oNB{<|l7IQG|B6Ma7;)dS!5tBsFPXHe}4ODCI*= zcP%lhk?>xF`U3h3`0R*LIo+sGuMt@qiDhXzK0AVqb|;j4ImwSSSe6xGq|+@|=uxR( z_RdPMs75b^WG}v9DOq`1O0Z7xquM^VLjQB-56RP_Vrl$;4A=iZg8qM7LxzR8LX5%J zg5L?w3C<3#9jvo|Zr^MlV{c?HZ@X_hY+GX+WUFO;W<77swN8aD+SsBRk-i<}3k@AkmpUs)wAyKPh~avr)&d2s0CKAF@m zyKPh~avlbUyQ)->PN;4h6^opQkxe(xefNzmlx4RKVqG4*6>-32e{#L^-6+g%o8-(u zqov!!?O`Z4>=9msL6VvsF6ABmlzxak)RHr$L8+}*&ir+wa@)jvS`ihg=BmfN&>Y2x z9^^i#UOMbGpNv`LJ~SYyjYVJ6(QwT%i`<8^-!PETyxAK2ckYSBT(B+=X`RL8dsXf!8A9y3 zUiTAMh$5fMLz-vN51FMNWWU0Ac6tTB&eNsN?~eBNThd$kP`pQWDd=^sinWF2B2ILA zvV`XGa`eJ}FV`HinSxcV^Ks2Fi(H6K*RFLwy8R*5hHH*lRQbGM7C8^9 zB~^YeU>2MQA{%)}sdixSc@eD3Lz-;ydtvOgw;-hztDYBVv(@P1uDu3FDiXUqVnd@< zQY~=vc}bNzE&b=_i_H1ThoU{;Rj4b?_{50e#CvLxq0@;`#oOYBLGhm_PW({TWs#1Z zPYh+(b^69d7*7I&j%^Hxxp-!Lgs=7M)tN6!^~?_HiK0N{Ns(GCSdl-p zQX^$zoStf8RH}%Z&yN^Yyr(K*>HNf47mnP2a~U0!m>(1YdLo5o)lw~=AIw$}Y&=xu z57^vqYjyDW3s9EN4`#y!tMcag{0P?N!Dj-GuQ=iL zw$0dn4L(26ifd%{{+lV66scVvaV9WqsKN`~e12R~Q{Vl>6Ov!~kkb<;Mx|1b&yN^Y zyr%+T>HMf_j>Y_-7|>H*SXSL_e10&C>h50oV8bk`yK6H`v;M$vRxHBj2eW0w7*vmV zK0lZ(Em+lZC!Zg|x;&+nTcKD|)syh~Nq(uG#N`qD04$O!+UE0+ZOyD(W>uK4+mUbK8-FpEm=5=h@mH`^o1Zyd~`lDpP& zT?^ZL$|nZ17BPk%Bw(y`NPXjA)-2eOb%!qKFoxA{@QD$u%Oh(4AxDol2=a+ZlG2Wv zrf<3bnxe7GgKO_pQ_m*`BKpnO?F&Yum2{6mj7qiQ%_l~TD#imPcmHci7KPj%oiO>T zPz0^=Iz3Qr$6v#>asXCF|h1i|52YYWyXn386^H68T4aN=r^JJLYIa14owQxhg=PLKV)Ud zkdOvY0dP0?)8M?|`OpKPQE++tefuf9*S^p`z~0ba$@ZJ=lr0Z>0JgGKvi@d01DSvs zPzjJ|HCe7(4q294dRkH~A?BaV$IM&JIp*Q!cIH%bxapbcy6F?>2e8mI0;&RPnSzaf z7{4&?HLf*|Gqy7(8tsPP4VMgi3~LNy4P6X%43+dR^grkiLtnsI`ks&_FzW8;KGLnz z4b#=vMQDq)m$ZAdOSHYUF0EPf15^sE(Dc`&YwYl&mrKh@FNojF;Bt+ok;zP~1^;muj$kaf@$&4XC#P>lYX_LmuMHjb_ z7#_%!K&0`~n>DsqMkGlza&p;|P1}dQQxiy6pptde2dCQSB9demIk_;Iv}=71WOATd zi_bnY_qHIC>;>lJytK3BQ}&zzGAR&aTrsR(lQD=S8-O`E{p&Mba_@Zw4GOaY&KlE> z&kD>&WST-6q=g~zpV!+t2gppR+R)Y$8y)!-kt7n}HgncB9)5aqcOWwY)xO-(wK!`v zB8mIY$?;R#AG)8p4aoF>>z~ti6WjcUNYWOKlMA*tgx05}flLcTeSEUPh3>@)8JR~s ze;|o(Jnimpldo?a2VklK#O0CPAvZOA2T2QT0wN`lHQ>?CBY zINzxl6`qr?kdb*LA;^Bnqy|;aywg1oz;p$O%d3G*wUPTYn}J9RbY1ho)Wq!Sh$K5^ z_?KqGQ4bdv9tSct(8iG5w#$)tg^bK24mrY&B z2K3xlu(1BMNdO4_BlCzq&Mnl3%+-^&03@NWh!#L|SWRp`9xm#XECmS5i-Ok%wNMOy z$yELlnMb^8X1hnjKcSQObO16GAS@4DY4lN{W>_A$&FC*_%4Z_;h?C5W4z2^`9s@rG zqvGm~%p;yL16qvKPI}P>F5VO@8gYji&>MQacOLdR09Z8Q12dqP-2bRE07A5|yh^Ik zVYMoXj}F+n=AHNY_esuj3AG~gh$qWz4`{s6bEUyG0I+DpePuxR9=En7yt51dAzEY} z@mLwq7SgEFp178PK@N zYo)t?H5ULOVOSn`p<;SmSi4fVh(3zdBK{!zDDwy5qe88)Ja7Wh zN3l%A5H(j&2M>^)FCP#}cF7bf!9%JL!4`BF8ZI3@{zcf# zFZUBncE+UYKh%A_!Q%T0p6Hov(K0+}v2@}bx$=(?UUrbB8qde?b)7$<@D9%`F^H4# z|G_J>5}{?+SfOG)GYM5$maqrep!drXLa}I4;T#@Pe#n0K$plSc-RXOjOGMXjl!p`^ zmM<$?TX(v=@ye)ugn|N8#Zs(i8ZedUq)llL%Y0w7L7@-grV4K9qQ5VGKZ_N3sV6Sh zGevM)2VYwI(|e)Ro_gwHJ(C5uYnbDgU7J|WM?HD59$HQ)|As@>3CV9Ria;KLn_IW$jeR1k|Ua#IL}yOiq7-E|H{1a zRaLf)q2x@*dd8qHt?=vzO@OW0%Bz^l;2fUOgrjr)R(1tgHU5JB7(ClmJ)~4Hh|c!H z)QrAo-~Lp6dsg*~6vRfe<-)(NRP_v3^^6dNZ{^}2_SY(_p4+OP;ez<+thR;Ymv_~( zTGca55T|dDWX?D0+tKM63ey84h4~CRCtZ3r*6Mu!5xW;_9t--USr_HEJ3T`bR#R5G z(zGCZ;EYXd5*vk_m{QxIuvI;S#W!EcC3|aYtEVsAGl)Fk==3F*n7Amu9w5u;*S5mSF&SN~iUc!>#I#0?{VbPwR1e4R_%o@+C z2wP4Ms>cgIez$adF{|BU!8`h1rw7&JCCd$FYS16df_D|$4U}fN`T8@;L0wEc%Cg{H z#byguI$VGLnQz%6j%QWyc)JQ#wZ6}jDuRvnbSWtSPofAY#?$#FG3m7jVv34s68{f} zW%banLidNh9y%a2BQ!YVR>+}{H4y*Th4}wo@ZsR~!6SkjLiGQO{U~$*7-Me&vHv66 zN!#1D3APrtD%L+B_TK?j0IjW2mZz5U7LR3yrM)HATx`B%E`U0K&St0Sh3SgP59a`M zGbKVLz#qo1jEA5P;B;dzV}>!@@R#8m!+ygi!(>A@i1@4MpXsmY_v%;aN9fz=Yd~GV zJ>79#zHYg0G;{@Y=|Z%>Y0pE{zg|04+euqXYt`JI6C^Xm^pC>jit@@K1vM}zmz?txN*UpGg?r_w z0viyHSGX4f3$=CObcK86paOqV_+8;%Ij+Ee6s}je7eWiQS>b&}dF8Nz4tl_Fxvo+k zbgFo9M|tJQf-)&pb-Vxj{d>v?k1Wb72N#qX{F}Vxmoh@VC@;hp@GO!e^d2O4T<$q# zgoxo@h%{7#O~vX#l%f73Ru3W!^&f?LQC>N^pkJNc^7fo5>y7lQv4{|0s0|1aqr7r( z!3^9T`Qyj8&QJqF%WyBm7b*iNo(%WOv4w1aUOFhG4EI8Kq5hpUc_Fgkf;V{*{ll_O`{Y5RxH8-eF^1XzmW^bf*^E^vBtOF@i8$?JbzKrrh$iWBFQSOm&k23fY zgy4fS(xHL*Q!8zvjL4T$S9JP$$%wE-bwcpk(L>OW%jAZSqkQK%Q52a$s6k0=@q z&x7zl{YP=_#pRKh0D@TXAq~>_Z5em^d@_~zCX(wyVxQ2NrxcGTE^mTDTBXgi$j+XT zjNONj4SHUj#O5Kj?3Gdo+-#Qt5tA#`XQW zGa|`OB1#5JI~zPH8t;1!WQtTtv-#TW+4$Q>DP)MWvlpaI*WUorC53i&%eecmqU|MkC5N zA%XVB?D4QwBTK5d=il44K8-=-Fib8Y&i7UzVU9LM*BX1V4I+msB>bYe(1&EgS|Br| z@WngAZ@kkLkz~sd{dSwQ^UV#9hkeuv$aJaP!M}^go}GqBvQJ1Er*C!c>Tu9ADNU-_ z-x+lF^#nu?Qb?GiBXxT8u>}E{DwR6hvfPyohY?9OAXA$#?+5lgTh!VDWQtT_+=ah3 z-W`cZvg=s+_M<)PcYZhxNS9Qx!He#1`IaJ*bX%ijX=&%xrtd!JZvrw|s=9pt^1A!p zM`S;R43&01hK|SAVu4JOD(`A>YQv*7i0rG7a4r41^jvheN2DxO3VU&I(qF-+5lJ=# z(QgMm|I)>czE}guOsQPc{_icy$FoUx0V(8*Q6t(LAzPf4A(hK=)}2#*1F}h4t5MP- zRb)va(TuJBTDbMEGydEnNsc{AnQ5q^ec@Loc?%zldxvR%}*+tU_cZ zAYqOs{(R=z!EVSV*;7nOgOnRx`Q0Js9{`ymY3skXWzAFZ7K_UxE!8M#lX6o?LD>W# zT~gWN$pc64u8C}BE2L4%tu_5#>-bzClO@CDAwgS*9ztYSg@oVklG7hRCP}4wp6I{& z?T&~fn||oGgUwX=lxR5iIZHB}jlQ$uVP8a&ojwW)>lKfWLY6%NV(O<2#5!qfLP14TyAV-q47|2w~nzHW8G4TF@ z!5;DQipwJvxs)_ZZ_gonU0``HGf65_`=|6n(lBI`Z04b4v9vAg=-+u-BQz4r3K$0F z*Bh}s5s|MUa;uZ%%?FZ}V*z9GvfFOQK}5DhjLBIoe!t;G=8!X+s)<@L#maN!B(G z0ht=G{Lpask~=HWI7#6xC)cMDZ_xr|N}yEJ-=qoLu)AS)aK8WOAVN+7&Cd&&WnL$wnPcu1~!4!IZ4mfJ_RMYF)GF4XqWC z5+XOeP4bATuvnWF2=aHJ!ED`c1RZV0elhsZSV(>2N)OJIyesY0$jI$1et(I_V)I8yUBLTb_8+( z(`=n>wQXgrPvA_zJ=PW0!PW-Wik9D@D?q+wzN!{rs=0%?CUge)!F15{hH12^Ih+mn z-1w#O9pf@M9iX1Eg5j~@Gee$XuA#fZWw7h->I3>M`pNoskPFc2zSAAht<{axHPuCG z|JHt?-36=v{k3(p&Ta5 zDn_+|y{@anIVBzkj(mu!AaNV*s({&uDgj4Itm%}SY(H-iH$`CQWBVP`%7?p4l zs?n}+O1Qa>d^yBoRK4@PyKSA#DRGTC^5r0lQVYK61E(Z?!zmFcIP&E%i%}onf|aom zoWj~epv8aV0yTxTC+k5>i4qjno~#EkYCd^opZS4*Bi3Gy!RWZ=4}n#RrrkJ&wD*$r zAZBac3TS{+SejEvd#@ahQCo9YcwvL=14gAI?Y$6?aa(id&44}aZ8(Lr_sWqOwKZ!L z?BM9#nNvu6FIoIygI7ZO!;)GGx{vnFr%+^$Ubhp2fteisHdm(h=)Z}wLN7ioN zn^RbOvhc%fP25c0ZTx;r$J&!+A4W}(kE$xeY^7oC$)XRV##c#zrI{C;!rD(1)VOOf ztp0JF!rD&|)EK%Mnp0SNvbMv%k?sEE6xJSAb`*-%-Ej(QPZoEWEmj1^DXcwN*kKfF zmdGirJz3Ua)Sw7>!CmIhFI3p#@X}=+`I$4|yB})3{rfxI7S^6F?Z{L=xmQXDMxnf- z!%LTUWU80k#e-kbsaSiu#3NH(<=zw7+!ofJF7wD#=X&yT38%33L&a}ohe2}+Yd=I# zE$I#!PGRlo@{atCto0A4u=cRT!&Pk|pI7=ir?B?&S`WR4SXnKn@O4jDd*p9yvznZ$ zdX!UGdwIo&+G2fb7=_Z24sSm(u8!nbiI#Ubg|+W1s7~_pek!N1_I(7^k(5N^}HI>tIfQPGRj~rH4~&(>15C_OQ^SQ1tL)PGRlIN)NlDJG3Od+3Ru&YfsjA z7}aiO!FPXdZNVw5Jz3phREg1J?Xv~NHYGD#D4FT-k`*0pOYZT`L5>CioL2*MqGqZ z-bR8MMmCrB?o1hR2}XG(!Hjye6#6s7Qbq_If|-~> zY8_k44Dy+yytM_B4Vg#7+aoC>Bn|i0Dlrfg2uFDng@H~aEjFMLHGs8DKnz(C9_Xcv z&@$W`U-C<^h&4<8QHU7jbqec!R&0h&S(~YKtYwXo285R3-nf!~6e5OutC#pA@_M7Z zvEr+Hl6$dcKl!WEgnA_Y9~$&qQ0O(N|6d(CJhX9WM95zu7ejm@i$eNB4}dbk4`2tt z&fuBBU4qksE7+gd&%+LYIrgshM7zQEy=}j3m2HTvsm)>2T5nkoTi>!yfI5I!%L~gl zmiH~IEW@B5KxOk2^96H}d7-(FIm2Aq^o!}FX@_ZssWa39n2a}#9~n17?f+{=hv8qt z*M_}@*9}7q4WaJ;5B+(4fqsF$mp)A&s=E(00NZrabRBi^I)nDQ_7JT9kI}Z!Mrn#Q zS2XWxmTLxS>TAN_$NZoEIr34!z>)!Sy$)nS#e6&RQNWNx!+cJOiFf3qfT08>t^h|q z3K$k@AdU%#C4od2gkf3Y8gS&JfFXw_12`ov21h;$7;+|)g`GrBiL1hqj{=4qnhanR zdM`NgQNWOswPwLrFQ#)!Tp*5o6foq_WB{kcGs}^W0)_?WZv4|pQ;JjKPIKg=fPn?@ zoWk0pfMEgIvT*4mPGRj)z)->#)*b~6^S6=WS~ItWwMPL1O9pTXYmWkkc{|~x5YrEw z!rG&Nfh7YNh29m8d=xOu8Ts`R+uD_!!rG&Nfh7Ytg|$Zk!z?%`FL{KQQ&@WxFtB6* zr?B=YV3=MvkXa@xf>T&~6fm%40H?6_C}5aMdTWgPlT%oG6fm%40H?6_C}5blQchBE z3Tux729^w96nd#R@=?GrzQ&9{;qXdMVeL`Cz>)!+!rG&NfgP{NDXcvT7+5lZQ&@Wx zFpPw@k|7_!VyOI_NXOcvfPp0gIEA%G0RwCN$0@8m3K&>2fKym|6fg|9KV))3++Uo+ z+M|GhB?B0RUP+F86fpFZJBFO+6xJRE3@jPIDXcvT7&^lNPL;oF!YQmh3K&>2fKym| z2pD*P)j~cb`Atq??ICX96bpAag|&wOf>SNv30=E=KTcuoLl3IEA&B;|xa8-SeEn+RKp!rC2h6Q&@XB)_5g_wU?s} zO0i@Bw}rKr;|)qRw~>L};uO{%A`X6cuw($Iu=WsoaEkS&;1t##Vh~QTWB{X3A|@gq zf)Sn!;C~jPN9IEu0_E8x-&V}Zv!Sv?#LtoW5QMx8U<+~t!Yqi2Wo3~qHeZfH=&pWA z8xBdT{bE1AFch0FMJD)NfVcc2;N14|MU5s@D)E*Uw01a&Mz zuZaApm;Wqea^zPd!=N_;OA>J-LL^6iRY9?qahwtoIr1X~g)_^f1V_2R9QjoQ)tR1z z#cc_B9QhG~V#y+zfhm|dH9oeE zQ{pmpl7$IsV#F6uj~~k5wy^dU1f^bELMb{&etAJn{q|p2zISn3So?B< znpt^t#K$WtaSCf+R#3C!LpL>j_YtSC_GJV$x0QVEG^11@S!qGd??96OXE=qmFNLTp z_VHg|Kh7zveW;)o1Z#I*+dY|6LVFVb_YAuHe;@xpwO_LP?ThXG>{)iJ?OTZdm)N@5 zYQRZ=m#w>@6JU3%)AHPM*0R+y#?rzP1$zL_ne)xl%q`8)raw$4OdCx@O&O-r#vhIE z8y6Y78mk+g8crKF8%7%H!b<=5`gip6^d0n3y5Aw%-=G_!OV^pSSG7gjncCLc2+gmW zPoT=bKh*eZVbHJsmrx*A?}U*mO|vxreDK%r-TjkokbsiC#ABQOK3qOqxpxu@Nm}qGsj&;`jOXkBgHnogaWykN5+j(PJ5Dt zN#uB{6f^VcA4C4Ug{;dJJshWr2acymF-vYd?|Ql`!sW6aHkce*Xuxro6jyGp?ypUC z5iZyE$hbwyX)RYhb39q9b!2$(syB8aTrTjDal6Dy4>+DAr8em}wC;D}0E2`Axynbz z%@RvH$T)evNb$D9(PP$LLDuC`9~lQ_XfXoEGo_f^r&5FIzad<%_mOdf#1au4&yb>` z*A6>gbO7OU(GRoE$`d%AF2!ocyjcCyU4+Y(KWywQoxt%lDIqEK_Y053DFg`xa`}&p z7fU7Z)IikssIa4dZ9~@O8lYF>DX+lgLLfGFR>Hssxl6UU~sT%LH0d!Erdr zk)AA%@LC9G=@gEq@qRoAmk;S+gJFjoaXdAUae2hPYh!9DxT8S!!Kw4c@++Jc&Rar( zd`bs1%Bn3m<_gr?-7q_4+YrTQLV;+5nmkezfY z2usFrT6h}?1+mB|E6w0odZ0stJ?D0!QeuiTyf!<^G56v$7siLx@0K9l^l)2WNMowS>a^_jl2B(k{Sb&^)R z;RGfWkiNEjfUIhRVQ?l-XL+J_D+5d@sDf}-zQOU#K*t}}wD4RKCkP}IL?E1{ZaAJ1 z=qSG-4563u7`EVR&tlGD0;*Skda7O|1{8@zur}2!D z^YpkNtc4fHQUaYDO#FGzC{d5^C_o_qEA`+so-q^xukuD&qfJfD&mhNA$5 z39J(_H!fWJgo0AYXzQcR(&y%U!m+eK_M(rY!+L#>#z4-_<8#3ZLpYuq$Zo!VcKCoO z1$PvLh`Wd7gg7mpla7L5L8tW1Pc_+r)z zian$_g{9F6ij|6R3QMCE6pQ~Eg_0wV0*#L2x@kNOBuG4(eko3zHu#ysN`V{>De;U~i(!wN$$LxTQa{pb1} z`tkZk`ZBs(x_!FEx@=t>)b^jzZqbg?*3$;Vxqk0z=4(1?qBXjp?_s!(LOCNyostZD zSX7n2a^yo5ptKo@UMS}SDa9HrFbb_nMHI@}K$$A$e->&d6k@NU37mO#FYhPiP=-Li zFYSb!j}Iyo+;H{yW&x1t@X-dG@-DXf?K8eWyu!E2OQ6k zQpO!S`DC|9&LtF9Rd7gF{MSL6)vFE1Az3kK-!Dy`e1NPAhXaxoE9G^0jzhBI*Mh~X zd*>k>I~+MN#$)oYT#!}I-4Sq^$H4ZlotH!9y{p9bdG08 zF;~lMY|-vH!i6sa)0F#ZVp^DwNKcsu{%!I6Cr(_;o?BaM* zz;W)+8(|aAAUs4Fj6s?^nd}$6BI9xjDrRw)S|@L!D5NkL;d5F+qme6o=8lG?mTpOh{IA z{jUG43A|vQf{TlZRa>7EB>w5 zx5?Sk3hpRCp3`vogwk!CPEn|Yf;oy&gT$&qIOdY-9qrvT<>*?3&sOkai6tvI{;Fif zEQGWA5ROB#Vq(up;pR}qx}yL&RV-J*XjC7SP%r}-WrZRfgB*qPpYVA`uVOTzU^>EC zl7izIfwmQ%#MNn!9uo!A5Y9?RI1b5*l+ORwoFcY`CKOCXI7?P={N-dtLctV-vtkmC zrv`e4*4_5`y^(0_lM&ub-ulv><0*kY^4Pyd_#}k4kX@g(9CrnJMK*09R;XF zk(B{(8a;ao28m)J97_shXQxzJ`RPDp6xAxS2%FKk&Z+>_Dt4qBAUGx5D@OsU zRqS}O&4ZMh8Jt4SYyqlOq%&}tQ^J`|D3H&nU_YY-_Ns{*g`{Np1a37o&^hVfis|)i z%CAl+7>RIJp22ZQR=hs?K(EBN5I*96aG?Guhc*5Z?z2b+GkLm7jkV1O`Mf)-I>LP39Iw55EG zx|zZfIml=~VYC^XC3ydVfzv2FEa)pJiPrRRO59qG0#pT=PP*TApT{W_ zsT80pNEWFu3RQ4L6!a2#2mWVqDUsbX9>*hH{#8eU66lL zAfH(w;|8e{JuZvmnNr8Fy0=fC78$*Sg6@ij(3@o2xTkM^e~RN7Qj7V8W&dmVnWAAr zfqZ&}Y~3V{A}4y6yT|c#NeUS=@Xl2fdKAbQC>s^(> zz;Xwz2H<$Al)5kR58puiTJ3^xyqE&Yq)0B)$!**FPej%`E4WEw^#Rn$4mTKi5{Kb#;|)M)+xt^d3A|60Lj`;YdI z?Qh!0+gsUVZ2#G=+TOFRv<X^&}zX|Sn*sjBfAWCV5_ml_8c>l(`&9vRLUJcc=N3ShFqroW>< zqTj5aq;IQ_(`$6!>h|l_=tk(8=&ER+!m0m$?P6^|ZI-qyR0W*U0AT9yT4O`$CjVWGPxsA?*v1-`kXA3G3Y9lyKD@g(#WW{PoLM z?c3ht6w442B6bm^DM+r);L*Q&{`qf>K{O8Cd&a|C7SnBhQlsL;M@D_CtiNW^%=78mF-K zg9Ro1v8G0~`nx!VwMTv?^SC&LwI3*KF^`K;D29nB1ox8H4)Z@_(fbP{T^`+ZCJuNi zXOL9|#EwGbPR{!nj`evQ$|-CMxswZSJIRr3oWc``+{pz?H~Uxov5r%C0+BnpU@{y+ z*P%40@C1T8$zMPV& zQ&{`K@&DXjf#f*Ng<52@u8*1n~nMw}u|075v0wQqr_sg>X> z!#RbuZ!V}|w3#xeu=dRaH3XWX-gL%u3Txj~Py@f)+qtg&GN-WiO$0SyE7@t4&MB;Y zV?nVt_l#1#up0@AwOi*D)?N}+*LuxAOa1u_r?B=71=UGz4n&_{aDEonzJZ`vl8oEJ z+SeBptK{Jn*1n#gSW1jjSo^wyYEDCIPGRlq2#RIEIEA&(5)>L9q-Jr?B=;M6D*iaXC(5?P~~%rKvcDwT}~&`tC@_+E*78OHXlI zLi_*2{{PpZ13<%&O2K~wpARkwUJ%?1_Wy@M2f*X@ZT4yQj&Smy!FJtt$hO`#2D$)5 zS&OY#tnXTvTL)R|Tf;2B!5#pwWuB#nCB+hKzGpsae%n07oNZ1rTjhFyO{R&aHm2&P zAmcUTKI3ZRaARX*1oQ#8Xz&>p8TuMB4Q2EX^q=Z?>SyY^=xgcCx*v5P|NpW7zX(MP zl6>J_=ItZUq!yuwL6To^pK}ULY7vSU8j=mpPq%UkO==N}7}!K`3QcMeiWnNv-I<(1 zlUjr#239G>DKV*zA`~$+9{LVx=Eo^?LlvQjLH!%C1670~h9+bySM6_^Ewo|EQG_Cf z#`MGiPN9cc5sDa^$bAbhatdpYA_lcyXb+a72t^Eyblmvw%AohhaSGc)5krS5S#2^;7IF$tAc`2; zto`UK@3Hqdg(nb246pSi{jm;k3g0{^VrWDfw1oY~DLjEFVyI7wzWTn+DLjEFVvrv7 zgf8e!IE5z=MGTEET+F_2JIEEn%@!V`!hhGr0m?)GLfN_F#~h@lzX z(8(#RJ&G8b!>A6A9LOoGJ&G7w$my@{oWk0ph@tt-Z1b_J_c(>MM-c;C;NTS29z_f- z8Xtq>nlEt*YmXv^me6}*X2Eq%VeL`G&{DoF&TgVeL`G(EMqs*6*dv z=M>f+MGP(8Ck0=>a0+XWB8Fxp)3MvfDXcw;7@DjiCBAbxg|$Z!L&Kxnq3z;iPGRj) z#E?cGNu0vkqlh7iE_yKvMIRAG5Hauv7ymOB9fb-_;c)Ht#+gd1CG_Azp~8qBJG)fw z>f;o)g+hf$s<6(S!V`!> zh2G2iT@Bc}GD`K}LZL!;dMqKQu=Xfa=={&z@5WjaIfb=Hp+ZNw)8qs$QK--!HXT3cZ{!r#9)${Q&7D(NdlV|L zK!;OU`&bcBv?U9)g{wG)wT}@L3z0d6wRa$j=Ak)-wT~7QTbtk%);>y59R|uL7;_41 zUrkUf*Ul*P;BpjI6%?xo;S|&7tPYz~So;csV!3ukp|nXv zQF-yw;D5%VmlH-h&|~`KjJ!J6UQ||4)31g*M$`bgaW<#$ z1lk2PDHGZX)f&MmF@Yrh?;Z4zum6t?Z3n0Sn?mk|oC+xjnGd@Fvfu>3UxLpD=LIhc z9vs{>xQhKR`vrTUeSv*|y^g)C?E&-w^xEda830K(i}gqAN7fD2G1jKma+Y5$hvEFc zK9)pS|G#cNU|wVHXRd8Fo35G)P18*+O;N_*j7N>@VCBD#(Q3E`asNU?XV?w!kN%u~ ztA4b;p1!>94y^ev*7eoZ(*CFYT)SO6R@*=u0=og;(ahDf(?r6+|3Cdp^pU;(mE;Ca zMrqyfvyDSbAEE6V;o+Jtm0!^!B7gF1#RW<9k;H%RLSljHug6h2KV{j^uBW5-7$ zp6vFge6h4{15l=S!EA|&z7mnP2P2r)f#nyt9vK9uH`{v!L*TSvDbp6vNo_>CmY z+^+DMfzl_h@5(oQjCiu?U-`XjNEi0`3ZEfWy#HF;x^I+6JlXZH*e?T(Vs|Z9`1C-T zb}6H}mYRj8^73Yf7)B&Qv+psE=qp(?Lvi* z@eywscv3F1ZX!I4vJNP?xSB|D0d`4QZOULE)1E6%&u<3@qnR?8o?sPtAtC>Uo8-&-OYv zjvm;FKC;)Jn_W4W9Bgz_;W7gibcHcjm;b4lP4tn?{+wU-xOP#6KbtFjMxavYwZ7ID z;!uV}AKC5C`K8U}hA0Z39ti&?|IFoTEs_09#ILL{srB`cn+l&6s31)^T>dNZ7D)7w z{r=qkifQx5$4qRb@Tq~YZSC!Sp2R5jV|>I72cFF4q64JL<~;?+vzdm>F1jbL(JGuP zQ02~<&?&veMIPfL9yv3+aPQAMCVj!$Mw8Yv%C{%_Qjpn&w`M_2ez;;bDNuFv=hvHk zfbTW3#h?GWC4GMBbTiw)dDs?S`L}V$He3`n)QLW_$Di}_DtM3WDy`gW(1a!?e9Mqk z;T4tf#Q2EA&W1hn_tLPPXR~5nyhIayWOF|^JGC`DL0hp-ymCXD1k-Q7{~&cz%qIHC z?taeCU0-Q1_ywy{zu`H0a85(2QFIljTFht=L1rQmor z$u@sJj4|JBxwB&P9feB|q&_s>U6wB#nnWMj=g;|(TS&LFuM{2*Ync1yp}XA^&@f0` zz=kn-|MsjeK6|L(!fbUP?8(zGv%I5pR$59RYx?}<;itsC7~>0c|u zuI_`acQ4IGYHDEYp%E2^w5h6qF+LJguIDVElSZNn zhILumY;9Uo-pM{IRZLop55fwL4T3yvy-JT1Ya&L8@saR?SxY@v_;baZA8-t99FOsl z_=003Z$ChBcu=d~7#|5R7?v$l0mYiQonm|>!eCg(vdx>gPghhhF(Fla5MmI4VcwMM zEky(uF+LJpFf-jqrgM<;-a}1*V|*mKU|3phd8di;ZCHL1UN9`X63H}=Rxm6-i7yz| z9QvR)Tbrz4LjEc~+bhP7b+-yLU0|xuYj*GjCM7L4cOdKd4{^M(wbM8!Ab`SGtDwLftMM~e+@eBGNx#rz*u@f!GzLPisruj zZK!>4Owk-+rW`rV_@G8HgCs7REwDypb@7VgfTI%^suaz7#kYwULY1PKulPHXxM;>J z{w^f0QZ)S)e;3-u6ipMuOc}HAt#yr+*JHAfxJuE~m(8HGYL%iXulTzV)loDVzJ`^T zSAeyf2Y0uy#X~ehj-p9|s{ig0C{mui##H$D3Q5t3%}fGo1ThV9GJ|F=d*{ z8Xp=1Mz?W}vAwaT(E#WEzh_uw7;b1{D6fC4Kc?THAE$4nkJUZZozdm#=IMIs(sZS? zKWg_ux4-V%nwoz!pKEq%CTf~$D!}mnU;oAXiQ8A6MgFUzN$b%kZ3m1VA~)8o^hxP% zzrK4>c~Qmt$?;B%KuSu-sBCB5lwtQPQU&T+V~a!#b}6v`qvyg zv&RNR6VH#+%dR)-l~?OGMneo#?S7zL$Q48rzmL<)yASO$#XgSF>4A!c=l}hs#W_S1 zuaDC?Prhnn`?)2f(*o6Ib=y8`e`!QlNA%)rr1rZSqf-MBn|?j|!^1E{6W5R1UhqC? z0Mnn*aE4t$yXmg7MTjPjAE)OBul{_*tlNxs1su~B#C7`STSPk$J@3SHRgJuV00{j}$uEPcp`A028iVh`2vw z8iU0nGTKj^I|hxew*tJG%?uI`$Y?)t?HJUbY-Xuzq!8MM81E;iC-A{dol&*V;J}BB z$_&I`*y{7ZcA(6(^i-ECDJ|Yl4o~3p2U(c!a@XR^t8S!~||~%A*PTj~p3{N(&^+O-R3S?=NJM_529e zPme(pGNDrF&1=k}cuPh5Nh+B^1Fj$I)bsdN28mZyw4XS83`!^cWTu2LNK8h&pB#h$ zkbE^XK6>_aZt5sTB?bBym8m*)&P?t?FYw?LtX#-G^odc6AZ$)1bBZO$|T3dyl6@x6n0ehgA1q@ z0Yw|pe(?Obi5g!t%}(2%%uI;qQDr~4espY6_mam9!cr3tkU`C7 zY1SVY9?l>kb!8tofNFtIQ@&{51YtrV4QN&~e+Y#X(Z2BrqOBR&_h6~V38>zIhXu~1 zRVjpg*2=!IB?pr%9vjiVF~UR|6fO)HJ&TzT8dvs>e#rzDca$)ZBG)4DQ3!D>`$oQG z0;@Vgm~j3&#(Cocd(9;aRik~R(ve9YMb0q#JCY4mT)>rm!(RFxeB};(>90c0%Dy2b z|B51rL?7964^g-LU?0#U36kiyXk10sK?99-{qLSMKTsaAiM~M!Z;)2BARW*oh0m12 zPUoh5{MjwUlkNA^zFAspAoPTrDUhfJ%vw|D!hBV^yII{A-*r> zH;@{h?h2nGRoK2X*&e(A@qH8?#=omv=V3q9QFxbB=93Xky+LmwzPG{`OKbDVo7JW8 z$2;GKAnhovWuVc@O#f(*|dEq zOMjEi$x@kZN$1YKSdVzJjb9nhHL_EdCF6ikmnt;;Px}7S--svs_!avP$g{hNGM+T4 z%+y`O&uj4b$wq$4!-}bf^a!}5@UWuR@7G&Nqjw_vWG6r6;rcADH_5y4JB3e?s!S;I zHyI#~DoON_t^9oa>x|&4Pi4ywFn*U*!Px!!qBdiYeX^II@)l`b^ri`L{DWdYS*kYT zcIO&5TOgin=BK<>TGtesISnt7I)>xeby3GD}ZOg84u5_vVkG-hUFr{WZ;6(@oPM z(AqLj{ztH>i^Yz`K+TW)8Sr>q6 z|0%lGx+q<3bP%#W${V#48Nfef+JM>xa5%PRy zM<1q$H%8npk}G6nW6M-nBdH}n$!W`6L`Locw^37G?nWxR8gds!1jOxogT?zY&QH>bjI96slUCkP>hv&`1sUll z8O4`=umIxxvV%!~aCN!C(5LuI#rrqTFMFAkY)A@m7yg2OuplG-B(eC?mkJ=x4{jzO zf92wenxWrX@Ry3$dYoT&Iq8?Oy$1M81sUs?{Z6WK{X@j@oJ2^fvf!%u!S&Qo?d0o@ z%PYKvIKS+8(l4z?x9{UG6=bBJI~mBgXn=UzCc*Htr~*A%8v2FT11EBCBIY zinxSB8S4k1l#j7-M&Gk=w?SjWB?zTw( z;8$FvC~S%I4-%%(?Z^iwZk|~GKry&Fq~Xpm`SDH%C%9_<0qV=1n-X_MtiQi7RbTE; zuudo^xN81>uQY|?pjdxjVJhnbveD)f#T4Qq{e4~`1PYmA{k?@D6f(&_53R#Q`g^^~ zkhm6O{XK;tbS+Xt;&l`0@9`=_;<}0TcNd0G_(Tnft0C6kO>iiJq8z>!vS0OuV&)?K zU0(%=`H1v)c?E!?sdzu}4k4J6qp5ymhs(K8G97X()nxY4y}i~fL=&G-vAqXU zT1S3lbZVgN!DlDO%rA{-QX@%ele9)Is9DA66shvude0xs6UThT`$>f)r6K;XL3r74 z38P(7)Y4<$^{y$R%XmMjkK`j+Te^Bb|Lu1fog64TDK6;b^}T2$q&kw)R%vZ4gevb; zWOS0`=(!|hRFF8#HQrBZBl)=3){^&SP#WT<%GMgOKSy*#wn=5AGLm|b|E~T$qca0# z8>ZwP$&W@fsf(mE{K}LUZQhvOlhM$7sMlLzTaJksH{MUGA}I|qR;N{PqR~l4r%PpH zGaF6XvLD$dHIbBthz81?(mTG#=rk#E#+dr2^(zofDk3RulGe_KaO`q#MyE>Q%bV_6 zks_kuct5F!q%=gU6JzHM3X)&15Syd~$_9<^)~v@wWSdk&Dz;}4XXhfb?UKS*bbI!8 ziiq^${iGIB8TYEk58F;W!{}rwGBsqPw)|9NTT*DyWGhJ%EoO9*ROZ5wfv?@~fM`+> zsf^?;ax~5yLd!8yc;8+Xy6o?ZXi^TT{K~hLYY^znK$%PPYL|Uai)c~|snFh=Ikz20 znC*-}nUjOA{`De&=z5qwAs@@aXs9Rk%n4g_^hZRKib!hPF0K7!@uL4mXEQoYsy?LS z!(ByqWs1~8QW`WlwFhb~)-pO(DzoE_Ube;+kZn>8sf_yz60pekCH%^iK$#6yj6>cW zf@o3;sn9p%xRKe0g3^WO-``#jKiNnnq(Wc42Wg_=jE0=X$`z}!>-~dlrz zHnp7zb2%krnBi$TG?Eld-;uLVjE1?KmuWd)ss^G-MWh%BSvhCp&V;$lxvlTmzZ9ZL zJtU>!PV1%I4X|RICWU{}IDN}=yz-i)&~T^qC0)4RVIzTOY}lkIOUf_EHYti!M$$+= z3Z2n#UuJ%{dFNrQU@c6)L3U5hXEe;^wJ+AMXoc@fQV^-w9zsr3W$PE2@Qe-ZyzRfK z`;?K;_5X`Oq1QwAhrS*<5-I>Hgggm38 zVxM7eZ;!PV+b-LRZ1ZewZ1FaY^=s(z4hN*Dc*G8L;#Jmidr*oq3qK zKJ)>2Y`S3bnr1=mf2>I_=K+=&d&9YZr49EChYjluqYRA2*+djMjBp8r3Ty?2}x#TNFzGdp2tcXn101Ob}&>v0m(_SWXVA?n8kRFV9q&bcV;JSG7o0G<{U7Gt6sfkuZrPURb6M!Q_I}Z%nGD;sJ!pRgLi=IWWBQdFH|8KkngPMJ%b zRZ*4vPL2X(MWZshj>TSduvpjnV)YVN)&{t6qwK{MiJkHtkfhMcpmmw`9d;`UH_DD& zIz&%uleM5LtII6;*MvhKKjF-5Y^_G+fSr2l32u0WeAiix!UK~*U!rDpet}oWWJM!b z;d$NVc+TG>>0BXmR->@OR3dc4&;_#pv>KHoc4`UTFmzo=3QtUBM)_+5MGQ%0j-4_W zODFKkWV{|GOB-|9;~EC6MrDtkqQD;0g|I;mH_EP9iV*be(3R9=mZ~kA_)m$UE_hn5<|NwwaQ$<&Vkv>lbi@n6ny%dnPq=To^l9t5Mi! zB6HkRNX}#uGG)3RBxf+G_oBh;VY0MwdJYp0pVqC$XN3J{W0 znapt^NKRpL-X6KW`+x94n5<}=EJ^3#Fz;V~UETLr^>yF5b(pgnCvl0;%|+M48IsjF zkxA(0qU%9&0+S8Jea9@Hw_Dbd0)ymuCg(USP~!D4S=u-*S6~>h8pm=`kgL;$a3*Ip zj$v}B>SPPalhTDCIhsibAzcWPhcc-*q{9ngvb1qjt_xwHtZ}3S)Xk^*;phrD)eJW( zf2*J9a4XX#gflBI_EsJAGLLn)8b@#i^{(3(6E56p9L}WPsthlM$IdfLy04@<;SyW4Wx%FofUd5y(k~WiY z-;$P0mNxdw6>|o{jcW9zj(Iir#ZvvMGn)>+cHG?F*MLPkh|iv*ZSrf-YOG)q3>DRr z$%@9ll5}ETUH-6GYxr|klR2xgoJ)lFCe;?-NPU=uCjzO7WN#*+9Z@ZrENv{yr6vPb zV=pcWI*qA%_?{_ca_`?W9MzIvB35H}CgB}NA|iPJlOQ*V$Yg0_w_GAJP}bO00{rHpdhr{t{=s|O?Btj11!QV>H|&mi|@ z65d9-dO(&o?vq0{0IbH6oJG+|`9)wghL{9zOebZsw6QqXNg1#jgIpBkgmhATS{E@1 zZwfjolckM?xlYP}^Zoy;yprcj8cR+unOicr#1r}`lnGrCS|1t}>Q?-7@oQoXz^TP^ ziU$_EgYN_r!Lx!3gLcv1MQ;|xivCeFO^gEgqwuxDdkRl2oKrZk&>eUukO-U=SQrp* zGqLV}Yr%O1%L?iXLjG_3kNL0mZ}N}v_wfDbd&YO8*avWuuebL%?~C5sy<5HGy``Q# zo>x70drt98_VmgBHUD+77vPTkCHaH$^WAT|o7@+;SGb3`_i?@FO1sW=t#J)^bW zbN~PIzpNN|Ofc&Dj;MntPYgWfDra3$*?M=%x%mdR?bKX{%1SsKgbF#)h*!edgB z)tBELYRLvM5f~mhu_%*p8|uX!fegn~H>!Ri=`B-b{j`6ri)7aR=~`9#B)pJfU^T)1 zlS)_(VKu43tK~SW$uFQvND9wMd3YW%&_1xnVBodS1nCd3gdO}V?>QwHv(X|x=^SNq!NGu|<0afC{ ztr(b3y=OYMB_>N_xy&a_6)%fbNg4U6PxA1S*NTDJ1lvRMAPHs@9>63Ili`@^1J&|C zopv~a zRIhH}%3{KG=1>V%leJ=CIN{o99aY|#(~5!NY*5_*YN)qX3Caw|)chZ<668W!B{3;w zcGZ?EIzP`-^R1Y0o^%5(yH1Yrs|S^!a4Tjpx$zyb4&vAfXhc9(#FX=NRGM@6GqY~~ z*Q;5TfU{!YJ0Z^^3E=$|Q@+!=kKnmP5+DiA6Y?xl07-D3OVmCJ2jG<>3C?q)+??n& z9P$H;|5n6=^CWXJ>+)lMd*AgaUpbZt1{B`MbmjaKwPIjEN2yKwu9PLxl_LoT6f!ru zawL@jb<~6|S^W}%Ws0pBSkQHNiM3V;;@=Lzm~fudBq0r? zOGZ*yP$D4>q)SE;oaiDRDn^%#BskG^Jw}K*bOWW}`e9JZWJL^|=!%!+;u`9cy?Ph` zXT^jQrCLI2NmtHUo)rT_3aKSsIg(&V;TcO;j-)W8bav?7r7K4goatJ*2FL;T;gvI4 z5mV08xxvL`N3rh4e%#ENvtq)R(zzjNr7MSoF$M+|l2y8LB*CCUvPxHuq%f#-cD+u$ ztR-DJk}$AyjoivO&zXnexQJRND`Ew*Oy|nSU#@m+<|}8;iuw86kO0$_qa*Y&3GV^A zawfwuFMI@mTZk^bDzo9~(S7zUIG+0eVjeCWj44ULghYW<}$6Njeftyh(llZ)ORYvl>t25+Q>p3D|d8 zjVCY(mXZ`e@^~hpz0j2-c^s4AC@J_z9?K*+NxE_-OB;{L^_XX%tnp~m`Ovk3-D*6F z&jv%@=vtB7#w5J<=~|K8%B0@1QbvTX70E43uIPW+u;1&F7-c3)8#m{=RtCx%H|4xm zm~Uz|ZsfB;wDh$axiSxZdxiI+j!b<` zrv9uKQny`yRrboQIGDDr&IWeS8tdT=83)t0d9UyPKvu+|*Km%rj!^cQ1Dq8H%T}cp z)qh@cv~(uCqvFtO2zQsx=<1OK?*{K&eQyI9j&}pG;H9gZNqu!@-1OqQ2fiGc6)PO? z3Wvbkm-Ma9G#owTjo&WinL1V++}u{NkmYavFGqc`=HTYG94~KoXZou1W`~+r#KFzY zv-8fnq)$8RizR}aJ6KJ4P=gXlUw8q=!Og+FPx>MWZf7xg|iHt8H$4U!c}FF&uhHs1H(qPj0oRwgUr z%Gf!wt|(fbzGktSBd&6fdgiP+*t)JP0m;fQZY!>Aos$%T10h+F1Y-xe2g%B0IF7~+ zEC|WEcc)f3b_zCI_G_eTWoD>~L<>hE1`ZE;w@6>Ej}-%lw^i=2dYzgaL(P`SiWoS& zRqw6HJbarP1nua{Tv<#wJnZNpVc8{EF|c;SWG~%D6)F-INw9Xqd1w&{%Vaoq9H<0- zhlJgGo9=MzSU3cX4+$I24FAjX_Q9`r24RKSqXcT>OL9!Q8W=>va(%3raD7B>{q3hs zTRhIVSN)h}vLdF;pVM&Xh;7KMAD8p5;@vM6iM&0f~iuQ^E?81n_(%v6u|U&=bNqM^dXkGtaZE zvfFu+vP~)+TLY@WfJaiTJ~K*f1%H3`5G%Ht>$7pbTu@teHjrvuA1k(sNw8h|_J$oz zD`G1p>8Q4-YwrVpIrrLZD+JDpt>6+N<0jRxPi;Aq&}l`gA-Rl6=%*vmm<-3{1bA|u z&{0QX)n!Jl?BU&W3_R~+Y7C|G6o(Ew5{nDBVn=W_wyuBtN3r|_HZdkEVv8l|h&7>Q z{&%~!c4e`cvto<5MCk1yvAE~ViY;VPZ%8FeB(azb$K)J$k^lx~l3KNyWuKpS=R%m6 zV8!Nh;V?jxMB~D(*gPiJiM_kO*-woPA+eC0%j8xuZv2o_)$9doSxi>M4ws~UzNw9V z)oc#ueq_#y&EXOwYU9HKDFKNEDMD;ElX}l86pP7lOio}YvEYeFV%6+5P%Io%vy`;) zf$l+4t0pt{$IG63$|Y78_LXHiZHqZ82IDLtMWMC@t~)l4&kZRG-H1$vV`}1& zmH=`TQmZPnY0L=^EpD2eeQ-PZ|I?KJAExsES4IB6A#|wN`|sQ0r;4vH-X_NW7Y9EH z-WR+uxH@=C@EiIM;32bKpK#G3!F7TjHMO2O=ch}iM( zLw~FPAO3m%gZ*CLyS}9FT;CBY|Ce9>PxMarT3(-Lw){U;4TI&N*4(!||iDhj^oK z9Qx#-A3`@*sE-wgKDout4$87R`cVjEX#6V8y|f z>AgE-QM5G_wCFh4vSHQ;v3Ai@lB5tIDf;Bdy}(UPAwUw`*!-|ujH{n4Q@8yFCd2U! zSv~he*Gx-@EvQFGltLhSD4Itc{^=o4Wc3Wk*TW%jS5pY8GnIWVTK(AF_ht{V;^5G> ztp8q&Rh%SGLLuP#SaEP@OWu=Pnx8943IUU)@wK@^zv|7rHLLhoG4xf2W zWi3y}3&(L*3v_2t2&yuXeY&69Oh{5O_3IUkAxH4jnT#z492#^FTruWW~)uX!rNw8vbU$@JAd(qcI(m5EorPIF!*RLd5E&8}o$f)ajZgq8GgUVhJ$m3o zo|@v*GN z+8$!`+h#A`158%L$4Jr%!J*E6dXjWPz+72;bj}dKMrKz0P(CRLt3zOrqnL!a>kt^^ zNG74*MTfv3VTdAhyXXi28II!+Md)wQ%8Mz&)gvFAys{Eg$^&P`hjNKSc%%=>3jG}MAxsWm{-M~Wbha#!WJR)pNf-@9 zvN9Qtt4ZCunZj@=(p7ZK+%UW3t*`u9vBGg2vIyg%NZ&#P%$`r%T~WJSDMl8(O9o!zZjU*@cM6_*Ikko1L)jCh1e=*uB} zk*s7A`f^BLCc|+YzzBUgr0?E+IpMgP$*n^IojIg$U8Yv$=Ho!$!CW8c)FFMjK304X zlkj37eVMF?50s>%@2u@>Ha>Kv8X>5j9QDju@c~>SB#5Lh^nJwpGYP|-NM9svCSiaV z>C0p|-VdzCA|ByI`qpMfzxBt-BYK^a6)POaIW=$(lfJc?y3kzZXP7o`#k1)*(yn2CM)87CF$rp?+Ljm%6r^?nX}^MTq4+N(ihXvK1@Q7 z5$TI$ZzkbUPWmz#j+bTi^+utii1e+AcI+sU`TxAU-FYQ%sPX@YmGlh#5PCXvL+Gf` zM6mYMt*(d*-{KxVy%3qXUl^<|_;BFBs|E&@G{uR02a>ZR|xaPaU zE}y9K|Mkym0t*J;VO2wrt5<=eYB)mJLCfAWl%Pl&8>y1HRGTfw=-_eS0ZIBE7ohDHVg6LqVxbBwaC-#6Ks5N-> zAut$%f*=n0ci++7p|B$W+wf-raDaaHf#r3?iH0ZA}oD|d_CfEK9b zp6O0tGTfwA*&#&_ky{6K!61k(hO(8nj@iT55;l*7KGBK6YQ7JcNQ!m8tB| zoo6-Gvu@DWKtbU8lr`1m4gw=q6F9J5YWT{D^7Ir0$cCH1fi;vpKH{lwGLobqAgLUf zBW=ewzqk{S1P?ZQ*w|;Qzj{WNNkKpoJlM+roG|sE$On?7ATSwjQj6(mMPYme-3g+T zq1&5xt+|h_O1KHl7!0(aAVf0Z2i{-!#D6Z##?5Lvn1irl_u4J8gJY(Qp&mFX(BYAXM(% zMcM@R3wj(V2wWel3G5f>MnPb*tV!6fTtVQR*lGgj1ykK92uOnSg0(Ox2uOnSnx;CcYF>s4LI?5yKJDI#o>68uCiN!p*&uW%vn!KJw||@W;rKVR zK`_X0liFcMKaMuOSao=pf9;bEfsvAG@T$_w$RM_YbTIQjpB^85caV*kIf+5CT9s6G@b{xqBa2ZC<|8-u53^Zz@= z=>LgDWjg;qsc>dtS>T(%V}Yv!n*w73Jqms)c&^~;f>i~>3Of0}@IUOoOwIi7Z|h=dq46%?A_^|>mBU%c;4|OJZE|4d+I!%{Fn3Z%s(lAX1?wI+x@CL;XcVd z(Ou^H#r2%)7T0mE$zmte&+{J4%d-;TrnYt#lSJCpw=QizD_M_lLhaB;_OtxZqrbkd zH5*B>Aa8A^YSE0^J4Zc}4NEwI({$&}xp3B=8&vM5BB>4;f6rA%?D&?yC)uv7tD(Bb6#vs8@&ADLQoAbgEd6C-K z7^LdXa-K)4)h&8Ne%SnQ$oOIUrKB8_V@qbCjDGH%po*+a?_!f2rhQMZX9t)1xge+dJmyNOZ` z1B8sifFwAo@QcUXBnCLhtD`U=365%x1T5sct6<1C!yz0q_LcqHYSc6_xgvm10ZuvUe{W@aXcarr`w62Z6B)6o%@|sI&k0 z=F7Fx?H1@Fu#j5IMqtBzUU9V)5hYC#dxlC=5t~ zr43glfRy=>>O|e(@$1orXo(i<3FfbWT?1N!=b(h$XaSq-Mq6^{d zbAks2@QH(yL7)$T!cdio299{_QqNTohEVP>a7FAyF^8e2`mX-DtOtjIb6qO|b}H=b z`z=|z8;}G$72&;8C=5t~oth=OOD|jdnkq zPq=gUPuESAB!z*=a1)O?+!KW^HF`IQj)V?fYT>4%vNup53ZoY&4B_b5)uUhQvL^*$ z*v9pNQ4ACYu1}w)t^Xqout$T{w1tZUFRSkcgM(5o)g{l?{@@NUmgZgW9fB zIUC*3!%T*oa3tbZ`|NJbuPuYaxY^x17;Yh>{GJ!m1mpp_NuFupQ zIdvcZQ@jg@)wGQ31A`h!VXlwWw3Nxc-F_Hz<0VX1r{spvYAPlvjN}naj^fD)`o(IL z2}2T(I6-a~I!#^~DU4+<;xdmEJ(JTmtdb-t%w)Jp?t_@^lN=}~p1qC=*JUazZ(UMd z!k#hQ#A6e^QRsdqh3ldnyPvJ5`CK39Qy_)8K2{S9Nvzy7TI|!H9)i?{ITy5=U`S%U zdR&f^6(@y}JefWMlN!brlP#I-;7dHDp|G6at zL%)Td3|$x68X6xeE&i$a>Eg?amlf9+hk~C5?+;!SToJ4+`m5-*qI-%?Et*qQRTL`x zcj428Hx!;&IJdAy>;m{j;NifvVhq6KKp)Wu@M^)G1t%3uFBmL#0sO$9_Fv>*;UD4; z`Tp&D#CM%+tZHr@SRb?c=F__@I#O4(rr_NjoY1p)Pfd9Ibw7jadV3nRZe- zM9u2yUSCr)BkkD4)0&1_jh*uh+TJ4eWj(KWkt%Nj$TKBsCL(ZyS_l?6kx-)4fq#>kIPwKIIzLJZzl>7@YbB)N)4Gp*eEqFc z8y|64)#!lilMsf_d>rbK!#;|3LV7)Y)uVSjnSN@B-bh&s4y=`sZcm?jl>DyzAAHgQ zX(y!Hqf+rnN2T&JsVpJG76kaeR-LC4`~NRU9LB zV&VU#IKE-a5({z{$B3PfmQB~rxTi@%z6q^_G;Ji|K)F}+Vc24sv=h>_=~DGLF7ulC z{whld+m`E^8L<=6uj%59TToXLc4D*=(y{4E4%sHRe%l6>1hP+JmOL@K3@Q#%fy7KM z&Ttv3*}x8uWr-O%uLCxBv=Y;~u+CGS+a79nVcoc8TM0RCQD248vYpd%Yb{G0mix5a z0?QIpb0gfU$`Vs@BivHT5|eWy9Cj-)iECZ8;U8CCJZc?YA4jw-F)?Rhkmi;pCgesq zIDHc11(LISjt4oECB{j}3A1$9)Gx<~l^84P?I6)^Vi(w9&(D>l&M~0PScx%AR?S&< z{59=&NRqlovCPp-jw;zVb^Z|b2}|b~Mwy2)IeN&z)9&fpS(Zs1LR@Azfuju%zUQPD zCp@mY@TfzmA+znlhi==M*DISagcEApKmE<7i|_Syk9i-HrRyA{vLSQ+eM_V#&mLkY zqOv~Dcd>z0(hjM-ox7kp0#;%K*Zm+dKI+!jRaY8mjO1`8M}93=EiyDl@(?EH%KiQx zR`Y>KV1CNzKZqJL8BXB%!zB;Ouaw3I8M&IqNrlnh zhhzl{Cvg1Xr~xkwyXn-QQRDi|(#Vw??>_O(>>+ldUe-rze9yEWzj$A-j!9oz_`PZ+ z>bUNE_eL1cms%zv1EzM2W!5mc@QTE5XG~HXjgZDjRx`P_;mi7~{;9@RlEz3@F}bx! ztPFLP`rb|Ln8|QL?d+$&J#MTGEglnSmV!|`u8USDLT7&3A0`$ga75xXo{K>3xGpne z^(9ZfeC1uBaah(zYyAG;Yk!D8D^J4h7@xNXbKP@%NRk1(#Zm=nMUT{gUTCD!RTg(7Bqv)`rio)LtpD(<*@Yuphg}nk_ z1u}ul0&4m`@8oA?=9X_ zyfeL)=LgS2o=ZKeJwrVu`Jd!x@-NF@lRqrq?|#pnbf4*-=I-nI-SvX_{(p>XqRYzL zllNlIwBJrDQ|5fw)`P{I7lt;tunC`?1Y4#DuRE-MYXe)B%x%j6v6EoSj2F9VgktYO zZm)Jy_OogKVZ4oXw}iohKN}}EQvYnHc}ZBV@Ml!+qWhmY?WFOKo0r6_l~hK}nbK0Z z-!}1y;dh5sj=-pavT2T}MkYX4#_cJRoGbbT#g(a@4UMdlE^Y7CVCn#rJG)yKV zNx4BZMNRL%;-D0@s?748>suELx+wb;k0j;vU^>XqgThv|*G7$YQW!(3zaDmJUMpK) zJ1P7jv2&b>5$3frTb2|?F<1B)v6Ipv>YGE4fitg>Ew!DL9#OMKHw|4HveG4LR!^ca zFA3RE%+6N5gM-aWVzw+fGWR7hVke~`)TcID4uy?V06QrSAzeOpkkKU}D=lHJa_Q-h ztTct1ouNLTl$e*qY*|v+!dy{e#7;^-sEgC1M$IU3t`bQ~M<`hJj5Iow=$gWrBRVY9 zV<#K<1bS^aGhBQEJ1NZ|UEB6Y#kSx1=Cv_vC8ZhEiQz1@p5YjWb?!DM?W8n=y3|3+ zFzF5<9W~gUFOrm-KGP){9as7is~a*aI?VO7lhPUL6Butr9X>dLos`~Cv(ub4d5ud1 z)=Ea;5{Cw#z2N5a;Sz!DldP11R!?5tfkoHGhCY&%6I1Bg^pJU{Ji4~}%n@p%w_~$U z9Xl!gpsw$sYQ^7oonz?Q_yl%RIzr7(adzY~uZ>wNDLo;D&wK6qo)4ab*T!TdIS{Lj z-#4h*b(zJdH%z_erE8(u1Gp+VL&Ao_PWETkFe=(l!M=o6(&lQ<+*eLyoPyQHQu}eK zhOMGn^IP0bTFe?fVhL0eTnJr89&iUA?W+al7Glr=x8-0^h z-|EcLnR7;WK4TTsw-?vJc*{_I`4w#^OPST%$CxrRTb4X9cYPVLlRddOBf?Z&d~x<* z)_BiTHIePktnq#)S(z)lru=rhxs)_9W%<3&^Of{Lcl3gV0 z`1@XRhD+%zY_v?;$rWNqB2{S+&8zVjM&M2xHzK^ zn5v2IsuE_6M>JIv*$}gOO%GF4X02qgWF1kbeHZdvFz#&>l}S4pAamb!`o{kXhr2tVIR3EE&itDj+idKRoZ_ypn>v4*6WNJyD&@Z7~q02*SLt{hT zi~m#nXz}^QON;A@i-I2n)4`L2GlKn!{wR8>=(eKciYANs|9=*~TzFmK>cXLg-2z{$ z?EeUn{Rax(D@cmj|KkdJ_0wQsQXYW^H^#3K^MczuU z*YlyL)w9F1*kkAaDMtU_o_}KgVfp3m|GFP_U*SH|9d&nhec^i0b&+d@tKJn7)&2kR zXQ#jnZFZ(d8{x(60HTDtC9Q!&0a zD<%8H^bIjq?XR=}ZV01Pa6pDbCdJ_9Nr3}0-g2ZEvys#wc!e3xm?R5l)`UuKUwGE* z{0d9S4l*5*8R(EnIzEA&0uQuAJ)plZr9&1xkX}*5l#W>|1s-VDPhIXG_3b>Aj!8QO z9>{RsS~}RT%}#*_GM*(`I)eodWV|7@a==DX6(FXP1#%v@dC+?EFGMqeVR-c)D+PA0P(HaEJgbSjksmDV)Cm_xE z1a=DS(E1DH(vUBjnlWpolpS(3D^uU37NcfN+9@zYhUF$Xz@Dds8KT4!U zQUh6VMMh61semlFqIK8y6W2DvRDs#DlyF5kQhC?}&rX3I%6a+h_w5weA>+|bt%2D{ zsuQ#ZBjup$ugxsn(6VaIeosPc5Wa}?)gued*1#vQQ(%zREsz%JDN_e#%TmH1< zI|aVT2rV@O$Rkp6?k=@-!xxeeHJN2UzA(CB+40$Hi=={Zknxx&L25Ef)RdPyvIp5I z@JdGKC^ZbOm7M~wbmRgtykOcbrXb8(DPdaZMK*2mug4yA-*Sglul`yl?NkAWL@$i) zkfaOeE0L6(f0EVZoW^y-w%zK$q)YW)i=*2qAD_U;nMf8sft~U)JMVe9vYPFbPjVpZ zVRnrglU?hu+B(7>dS$8n-0cI4b8~S<+b113A&R72r~_s>q(fC^nOY}*KsMBol-!ww z#51xo5~3=zPVJ9_Jr<{Mt&HAR5`=4ICr@T}l{4Ae6olEb&VZ=^u=i+h-f;rcT z%;vmbkUfD}BkLm>kUgH+SvbCmE+5(Bm|dY*J?4|z1G850SjpOy`Q!F)$%FOa@=e>IBq5EZyChg>AE>&;!<&Y!?`@Bd}ZdXEb z7)FHT5FNvN^(=1W6By|$$-yVElN*?wf#!weKz2Q|OVyB1J@$s=V74r|F89sBh@Cu= zi!(f|)&cghvy*F?H9V}A0oX`VZdO8?840nz{+fo&(hif$?Br@bf#GGf4sZfHxr$lC z!)hIXElaMHq(|uc&=aAn#rppvLtTo$EPkZ;(&E*{k>H=f zmxH$lPYfOwEHC;`(S1ed7cDKSD=I4dpzxl;lM81Q9u)W^@RC^lZ&P51`1b#?`u4x1 zV1WN`|EvBx{iplq`Um>+e6RWL@@@A`^Y!()ysvxj_8#RO@9pXN&hxnE8qY@0C{M8- z^DlP(6J!2gabGW1{u}1r$Mvb}e%A%AWv*IRp{VTt^Pimt3uC-MwC1o0nw?f%J5Gi? z$JrFbcoZ2dbnX~04z0Aof??U}Oq6lT)osmS!LaD{IUH8EHDIkY7?zcCCHhhL2m;bh zgJCh=OKRjuWdrO*W~cq!+N1sjVh#7>of_!0$zZ{!81E%gm){DJv|M_GTD0+E(k;3^ zl9{4*#^o79k+cU6GTu<6b0l*}hwXIjv~Vu+Oa-n3qekxq>CLsW(_mq?iBVR+wCdLn z>CLQ_cFA&`NB)|_Gds13bueDtx;+~#IG0=rron=9G2Yl( zUxNkbV!W}nyap?r3q382UMDT9!GeX!)p~)oQp&~>3thf3UXEntaw91@sg|0pF<_2# ztZuXz^_SoA{U#_;D zf?<9}cMeI%y+d~D2(CfS7RhWRwHV|uy0b{Ty3G9R2ku<*^_c8k97!#LgN%MH(y%Tw z#{2q1$$M|j9%QE$a;=R1Eo!4&D?7D-S-ntG%Y8Y8JCwCdfevADPlIYo%sN)@goK%k#wCl}}JQChgP=F4bsKBpvoFO=s5V z6d>uCjijc597g9EX}5RhStNBB9AxyKk%l#yaaVs3JZ-%V8cyX}8NFzvA=k=IO<{IR z&%a;odt)b4LuReiWXU=juC?W2sJEkrOxmeQTxw1Yu~%v$vpF?nHj=`jfQF+Y4XgLs zF+Gx!dxg+r&=|`|8dhh;W)0@mRY^Xkf|ZFR%(o7 z9Sv7CUL}^Y*oqo5X{TUlU@oIs2OU|dL%9aVfD~$n$c|#xNU=ylWJfY<^v#iS$if&w zBgG=ckR8G08Y!0cJ8*4QN{tb86dNcfDop$f6~j_tgrM;tqdS+A13NX0Yha9eCdH5) z%B(T)k`!Y$lER^a#>h*OOr%ZeP1DK;@|=D<)xalMsYYuKb1spj;}baf|NS!mzpLcr zk{KljiTwY;&_$sYYW=^Di(89NE1q0j7W^srbnu4Y*5KISzIyEc+@irn?!q_3*#Gr~ z(ZbGZ=Km#uRe{QYx8Uu9Sixxp3&q}lKL0!Z+x?rx+W*~rU;8q?D||=#hWi5E_q<8( zncjKcLEe1No1S|;$9P71y5xVE|4{zL`K$AX=9jqNao_Gf-aW_%CMBg1rj z8mcnGI)0`}D?8$(6-EoxVS*FbX)q*4lCQ&KuwY1xyFj;WV6F6GDTvdudpWCyL(2xz zPA_8V4v`D>1?wGBO*#<^l5zvF(_lVEsO4Gy?XcRV8Z4L(qh(V_uv}$69K~kI;de{* zn}R~ZY$QDo9=Uo+E~gR{644LPVNtF~8fPLH13xGxkxb-7Uz6u$o)u)L!H{g5SSrRF zPjpU1vEf?T={c<8n&;g&y%RgiVJSAuT507&^i#*#-OOQCI$&rBE~G)W>ZD!}fMNrQ zZ(6w!M?*b5%PEy&gDm(EW0VBN23hbS#^?x&4YQFn`jBP2lQV|~Uv(-$u@QX+7f+i| zwYwnuI*g>zhZvm(6r0LSM6Ef@@fgBkiErFl(j3hZx;hPHdR8 z)8Iq&QdG{RQfwe;PJ<6II%6p|$WGvvq!%u8%B9#KJD%C;Y9+Pr9hPE)EVzy(PYs#3 zs8DBu6dGnDX}NbS*&1W$3WX$`shWP=l&!B9X5(n5mHluUppmgrNcaSH8VtxL91B7r zVb)431LE8+hImd$n6%SiKlI9xMo3`uE;|kO!|0pPAu(96ABK(8Au(96AJY!8_B&wB zC?h1mM$*GUW+RE#F%dhSbxfio=|kWkqnAR*MsAbVVL5F(4VEO=?EMc^swO{BIOgf9skEO4B9{2HvIFU3@ zTkuAW-Vf5dE?Rr*D<_>Xinr;t(*w9xMlT5IjaSg0*)3{iOr1iJ-ppEQoAo|iY(>AV zm)E%fM{g$WbU!ZD=yf8!v2|F?8n1EE8`*=H9kX3-7Im0Y1Jaw>NE(OiEjV%Trmj=- zO}#~r$;18INAJEd`$&(ZaR!4iiiq^C&D6e?*)hNFs_a2_x}0leq^zVj*UC=!0rqRT z=*MKIQlvMtR=T%jo%TIj%witB`x(@mNjqJ}r5arXq&IXYq-;*_%pMvG4*EFN*^FuNAD%qv^UlNa2)E*q@C`@r5cZ7(i^%S z(p{O&l}OhkyFatW*eBAP*+^P$$w8K7-jp$4e(gKNsV?a)dScRdbn$KGA*qpcXE?|h z1x0#`ox=Zgttx%;=4_Dc^nP3`qic}#=33e5PRwqTTfv-FV(QJTmEKpfj^2x6uXH`( zwHDNyNjnW=`;0bAdPB!WT8!_=_~lMKh>17-m$p2C?gnSaZ9>K#)kY z+)cA@Z;dqJ_ zZxlTG*4N)TtykTv1{-O{Nt2sna=n2jxK|~di99s%^oK%_CN>`o(J{WyQ*^}o-NO^l zJ$5{dpKb<6vPM0G4|YyO(LrSfv5H3aK+!>VAhQF-iop|Ke#I%5q63LyGx(4C|4iBX z#AH2XfTDve_z$B4m7;^J@*j@kM)F6|K^7c{k(X0+n2j{cZNBI>*!<}8t)a#EBo)yS z`S@*r$C~F2%r@;v^Fi5z#EwYw;$ncvl=)UJy-P5h#iUtcV;aHi*s8JEoh>`JlLws*~bkCGlwoY$|-_ zy6oL!H@mr3M#@f#bFJ)V7qdpnPB#LwdCZPbZ879rEh&x(=PAq%SL#_@XV5T-URa`jKn?tXUP`C0KI=@UV5Bbgz^ zYcr9~gHBEk8<#!EPM^TFGCHM5ajun}KAzb{&NBUuiljKQ$1ywf`|+OYi#sTeDd(}w z8utS!j_fha8Xd@_II>4GJMYAED&9WeKC_K88%g8PJ-tG{1C!z+TYq(J^E(>`XT^)8 zx1r)VDuNWR$wWpyaMlOM_Rk(XyWNEU^bGLdt;D!UH$IM zg>x>{OW06Msxw0(c7NY@cV^{{q>qGyj4msR$=(}f+3B@>1>15=qHf??+37XRE?;=f zXFIO`%!~=MW$D#9$6y-8!JxjOVuz}(C;Zb43gn#Wm3-=4eFg9-*vbFjbn^f0CDTg! zhW-w{8oEKO|4;M(uPEMHJhph>;O<}|c!t>jZ(uM_tp9&w(UC>Ni#ip4UU+}u1%=BB z2L*l&JQuhra8zJ?pl88%1rHRQRWM(z`~Qaj9{)f5hx_~ZzVYqyUG7`!JH)rI_Y-fM z_jKoeuI6szuTK;UY^WUHDm)*Czk9Ci77rQ=kwYbi8Epk=5 z^7G#OAL+mO-*yYQ3M1`ScaO3C*MJt~D)h3B_-&RKc7!yrCCK6$gN=0>2)j?&Ek(@g z)m0&A#!gjs3%H0GZ)J*V-)eAJ^>pjNf{R%GY4P;3$903(iH1=Ja1opF6M?#ujB+C_ zI9t)^yHaZ zVZ{fuc%+I>d@9s+qF`LgICog2{ogDg0S zh?pCAL&IB+HWVLZ!ATec#OeM)7M#QqXPXqKT#65};3PJwv~immA7&%XJe|=O-SV9H zaOT>_fhj)WXwAO;M^C)CTUP2wGg}I=Ee?Jdr}%`U)%mAoKHNMkdyw6{jpJkZ8;TFt zYCyAc63+e8L%G_3Q>koxV3lmU8N7rs*k8xTV1<_;ui796emr}@l}^bzJ_ZY}!We0; z<72SkDi-|^|6pils8gff0H4#V;It#$~NpjU&xGP|q7Rk`f9`eYA4fvuDlp zcgh}QH!o#nj4$RC7_ODwyo6c3N4--iQXEsqBbcpob~|-gx)qRB1NEF9uF*J0n-oVD zhUzUmt^DGj->7oRrCR}67^-(9j?AE2f!Rp2+>DFf+FM>YDs}(ETlw z?U)5dnrCDW5*<>z)uQ9h8Ax%l4cN(7=6_yw9wj?WXs=4=iObSJXlSjLGEVDIgw72DyOHn~~46_Zz zea9@Hx7%SUD#*fky}5D_kSl0L1z9y-&xwlOtJPsCD#(uFI&A6o>w%m8dx^u+ZNO}# zS#CB#PpNGcpH90b(#?S>7}c5Z^xrR>e9i7`1nuT1pJ4fsawkXa*eDo$fo*LUUa{=2#@=w(KOS(*PY$a}|G|L@3>;U%3ypNH-bofldiiWL7@{BrT_#m5&< zDefKoG5BKen&8S{L$J8$qoS6gbBh)f9aQ*x;R}Vg6dqGJv9L7oUEqPhS%LY1!2x%{ z8wK~M)&DyAKlk77zrerDU+XXMedKHOo$8zA>*xK$`;zxw?-^qCzeBuTJwJNh@w9s` z^Bn7$tyTbhH~+r;EAx-epP65sA9R20e#CvHd!@U|UF7=2^?>VA*E-i!S3g&tsP_Ni zue?Qe)^zEbC+C4D;`#5qGgIxfs2YK%zNWT15((E-v`AOgrH7(wzCC;Ex+@04o(@^A zyhS=HDlMk6P=^~-*^s5Ww+Jug>aw3KO>OTi`qr{PRX?g zBURpQ{l%C6TX4i=mOHp*Nx&^`$~>`rwd>euthZQmsA8&9qPm5n^ZGt;``NcV0Y@B> zJ;J?TH2L(!UCv*vZ+dkfM;G;b?%7T2Z_OT2(c)MnRhQHuGL6@npBcWg7GaNsca|J^ zXL$odOsp2=ikt{f|MHT<&M($QX_pNrUBE)6hUZ)BU+U*vmU<>+xt=Za0=I{?PH zSBo?}c}~OI{GQnPwl-}>xL1p`Ihr_qqx4>#%-Hs7k>*Adm(O}zyy*IxQSH?tEsZ8_ zzvqX3Qx522#c6x2(*P{U+ae_J5DgQU|t75|nrb ziIV&Udol|?8*|FkmyXE(-nV6Jt|k8B-M2-!hyRfP0@kNR7>696X^pb% z7H|#+M4YFj#O7b>ivUf3+Tqq1^zmkrugI6}f@VW#9Mc_v+nFCA1q5n@?RB zeE0PI-{kec`nHVROI)YD3Eeo?8_=RmgVRY;`PGfvUfD9lDLR{r18uhm+aPNq-z^c* zE%nN?|8i*U2n-h7!^jao$sK+imLkHnuv@@A%zOEv$2)y}hQm@skOlX!M(k9zu~tv+ zpoky~?qQSMA$~H>e>0SbwBVG(RgztKty2jKNquJMoPnoAoA+crSEL08-;G)+cL&g& zOcWZi_Rt@-?`~*)E_={`mU^k8qq&h!u;!2(w$!oamEvXBCwZf(IkL6Pj@)2>_~J2F zo0=mFqweObt_Pj(k><$4sJpd$wzT)VL$_?w99bB3XMCilyMWn9i`>7;Y1tw-4Cd%K ztcylw{yk$+{%2YFA}w+UE4m$K$)!vh*Em;6n%8BfzE|*M&tLmw4;s)CX3dRkfi;Kh zu;pOZQSV}9YL4t+W~1Vny==1nj7ses*+I-219wStWMSOhkzH4;_J6GJAJQCI7W{0U!85K@#NNQv&m_2;{KF6JZ*^v%QQX|`! z*|qgQoSy&A2M$Y8BU{ew=I4vwOnv@uhb5_*jkNU1%C{%Fb^E<-FMOv*wvyH|r(X2L zZ8rw8@yTXQoUf8=GoYoHtoi>jE|C1Sl=5{} z%KbHV_?_#dxFCBVvpK&fA={H#V=g?!1=$|Vu2Lg*HkffiwmY*%p9jT-*+|O)An~@~ zU0-$kDCQJQaS`eD>Z{K9YUbq-mu}gEyiw!JHpQhn8ZF-)ZT_3L&g;|CwWD{Tz;Ja2 zwCpdd?gYljv-yVM%++q`!WU{}&lDJBJ2N{FM~Bi4gDi})oAsr%pT9VoP+*XSQFbdH zTvYejqKD1EAiFQuVatE9g2r83!M;J zB1QoW3>Ara056G^0Im}|0j?>YT3lV+y*MxUdGI+gBVb2xb8t>@Sg=p9K&%V+TG9PQ zHx->#w7zIU(ZNN*!Y>P-EWB0B4_H(y9@3sxT0WN z!L))w1%>{9`5*V+>_6GRz+dn0;`_n(qUbF+SIibT)OUdBFL=d!m-l4vEN_2rp63lu zqvv$bT+d*SN6Z*V)_E1v(L&}cB}R9EIBy3sh{K^rZ z&l&@yT#v>nGaTJ!@KuiEy()l#P4p| zbGEM^kh8L+DD&o~N6xsdS&((n$@Yn_U$tNykg_+~IeTSv$5Uc-4jc(kUobuM%V=I&I7HZ#H{- z068^F)<<_no|yb~RX;&iMyGZ8{MJ_QwLnhElGV|j^M2a2#q)?D!_g_t4?KGJ<>vr7 zIZN8noil5;EZ*|D9Qzs_x8;@7-}UzeQuY-)_3RtnxmGyFn+6E7K05l0_wTy-$@hVj z9mJ&P&VPu0rCrwxQp9M*BZrXN%V2izwEd1#jG17tXQXrG7L&bJo>DYH7Ko@GqdH$+FdFWY>^yEgzS zdxIUaTXg5!Lsy+PZM|5%vOYTGKO0xh-hD5S(JU$IDd$zS&k|%^bd(qY^ZV3oK#s_g zJ)%3G?e8>zI!k{M@4kd@KZb;X`JPhFp_XZKc-w2AJEE^gO> z`|S}(IRA_6k5;Rk8RZnSZ*=-kzliRzSHxB&4bcskr`_BCem+Zdb&qu4%pBdJGVeYssq?)m0~|%Glpc2=~02#V%_VnUzKgRMKn7=#J>o>Q4Ug=Z z_`*f^j%ox%Oq$lEcqLMwDf#-B8Be~?ouy^1Vv4jzR4H|j{C3<=KYW<}6iOM8MN}!Z znNA0Nc=`41Awc?P5midfBVTnM`sWEF&jv)KL0FgSOsB68eJ*op9FTrlL`J%{D%1J< z#(!OvUId7kY@|!^NhFf#IsMbG0`~?05mSrsiYg!ZvEcj%e%pNzAYyVeBH>3q{;bF9 zUdNsWh?vR@ClU)mhulX`|8~ROfRtwuzo<)1eWvrVb06*&;`e-6t4LmSDFKPpWy(KV zGP6hfgHVb{Rq#Z$nSJhF^FgP)X@H20)}XpIH5u2&TQB-J^d2C+Or$#F9sk`oH{G!j z5HS--m!hg$l_~%0@B7ZG?+J*Q_oERR>6%Dp-??WzdfcVo0wSgyV_hmA`TVM1p6)V! zEg(Izh&oX?)A^J~PW{I&8<6fF&=qn}^-0w7&Yq&DMPde`QvHGcrIe-@D!U0svue#F}HdCg^jh-o@_qUww< z_TLph-_rs}XA`N)?6>iucTakXzu|Ok70H1tMfT{5^F-j_PUgXt8Q-n9o%ZSKpR-8U zR*?a~!D0AiAN-{XPgr97QV++3j9=>D7crof&r?+kzlg!B@JkK+B8IBMFZ>wm+A0R7 z!Y@^DOu+bs#pv2vVEj@E$M}t3ScB45pU96KX`|DeT&l7m!cvsBdKozEmrpiNpK`kZ zP!SK79YIC%jbBg^F$9#aE`o}P0iW;-Dw1dX0*bVpV*CP%w47}G0*bVpWc;ny8MvZS)15~OGmV=DQwDp`us7CC}aAF8`!#i5`` z%dy6xph(Lx#xJPI(Z(;R$Wg{GsK_?s7gR(HW#r0-xp8!D*<$>{ij=o(7MG>J+|D`e zp1$4A{zHDbRlNk+c3IxCiK!!R=^QJ)`zuMQ{sEviGIjd89Y0>!udk$3&j3(zNTNRD zWfyku(X{dtNvTdWpw=^Wt9RVAr;5*!l662-v(a^wgj&dy8$c? z4himG^qW`_@R6chiq0%rQ#47e3b=3KPla!ac>&jp%zt^|*h0H782C2uN}wfhRp7+H z;=ss2-+;g1tAghX5(SqQ98)l_U|2z~0=NG&|I_|^#b|*o{#pJye|O)Xz7Ktm`R)+C z0PB5+`69k9-e0}%ig^QpD)G@ zgxp_<-2<<4ALE|p?(g=v-WUA=m$=ru#=6SH<%+-ZHs=eX`i66ev&*jff+!yA+~UgH z#8*V|ol#MGF=b7`Q@XrOj$q17K}&3tW0!JMe1n#^O#;fGe*C z;ybpyO^!>_XVlXIiQ>DryiI&q{2vtG$>nYG%OaH}*GTIADwV}|b$Oforl=|1HBA)X z;pJ`eYoey~N?b&t_VPQTrt}CuO~GrSyiI;V)RbN^gecTrjylqmo_s_UYA-$(5~W9R z5{25!Z-u%ndQgf%2MywFgxbq*gj9QHTo#pu+RLwln$pu1h(hhJa`8!SlEK2V-`Qc78dXSvMuq3_PD?wjzv=qSaeDF{h8tn; zHu=#_GmExfB|2{UI}A6$-fi+@n`TCf%{-@{aH7L-1MJ==KC&4C*R#Og+r(Ej^G8;; zdz<)-X8y>Mc5f5k&CDNJ%kFJ<#~)e5?rq|Om~mtstJl3veE%|kWZAm6i4R`pkE~bs zHt~ha{E>y~-X=b2nLnaJ;v1IvBP!IV7?2M1|xRAE$-xQBAWJ6%t>1 z%pXx9@nOgO5fu_&a*Q8qP$89_!SkjD6%yZS%p*}Dm73v^sF2Fe@JCcgC205~Dx`8W z{1FvWX&U~B3aLyDe?)~;vW7pRLMmT_AFELzm9pWFsF2Fq@JCcgC2sg5DkO3@L)&Up zNaStikEoE!*|1ntNTqG~BPygaH~bM5Qpp?shzhCv4SobG*S%GxaQGuA)T**L{1Fst zRf!z_2nw~TTn>K(g<4fQhd+Wsts zK1Z*Yk!qaFE9xEw-_^TSWOiA`89D1PsF%v|;3SZgcW+f`9{z}WsZ0-lM7>n9hd-iT zBHuHvI)ZwMG|&7I^%B{g`6KEjk~;H8)~kD~$mNV5!6bEWUDxqPR;YLDk*uQ5*OiKp zvUhJ?+pz!^s(0%eEp?M7>sa{1Nq9(eX#rYk9{XQLkkkeuPxM zd+XAUKeAp{>yqqe34e5cbm}QzUNTsGpKXXvyXUx9zuW$H)?Zq!M`TI)ZRLxU@2-pG zNH_6qW#`8eu3P}*;w(8Rdd@EW)wNQ5(OdQGg99sG2XaxC92`AY4y8VP&Cy`5L`PDyjg1tn`rMwRpo{Sta9bWiAv&|1B+^Nr^T&uyN6c$SH^0S?UnZ~n{q_vW9Oe?)#m{(kOn+)uf0cAw~; z?LOEY5c2{aa$V`#;+o{D5Nia!Ez|pUl|eX(`%q^s7d7NWbcu5-EpJyjghT0cl_+km zKw ze|fvgCmc%eO+get2Flx2MxiOSGSLe}@$;a(UE~y$7V4!Xh~fuBdAmq1h%!~JM(stG zL6lxWhsr|jMY=(h?gY>jytT{QMczS_-pGY0)LtYYMCncdqELI0i4awWnx$W8tSh1!cGg(%$#KxLu!B3sE)&ZID+PRpcP(=2Fu;``jDyLDSy7uUy{^C)@p0u=GWWAyULw90PxN(ZCCkIM}Vd8*{*UZr;(_h zA~9fx73$fpvMBRs7N)#i?M=qjk0gN@^+C~5rut^a;yA?gne%243DSk}jgAJ4=!f#R`?Ti|mUi-8DoMH_h^P zk%keq=*3&ba#g<(#SOE(UF2g#Ep-+vA&NyWZx@LfQOh1|{m-5Dl|-TTB10o;#dWf) z>2#t{dy%RUwG#A_j;JHm9-cQ41=_cXye>=0aYY+e5e3?}i3E?RwF}PQHKz6?qCopLk?Ccr z2eyBk_u(v}K>Ie4@)3393v&Iq_lN@R+eGe1lwSLuDA2x5B!NWf1zv~(?b}2)n5FJl zW8;Ye?b}3JNYn-~b@rI&Lqvi0Z7M%>%)$ma*`s8brl3o&yiH|@nsS!rAPTh?Ib!yV z*Sy&C%atpMLhVJeNYr`>9o2^@)LvwbS?U_uz{Jck)iYm*+KcotOZDg^W~)pm3bhw` zBvE=b1)@-Ukx*u-DbI;6-S3G)?L}ru)Y=|b{d(YL=V>Cw7NPbc#UyIY&`f=&hMrUw zYAhQZxabDQFHg)aH*IEP84dtgsH<%{Al+zpY0?H zwLgNX*~W9V2DM)dlvw7V`m1NCEYyAxQ!}?;F1EL#Hc^AxFJx-ETH|9Km4(_bVCpbu zTQH(f`}s`iWpIc>?dLHyj%LUa^Zya|-ce2* zOWgJ zuraoA__{}3Q#Gsceb0B!d(O)r_ug~&QBU`;duFO?s;iNbZVa?VwV#2MbSi+N+D}JH z9^M2L)qWaMa^DqDRQsuf%9c6qOy z$nlHgMaRvKlN>`GZS0@eAGPnc*V+}^Z?DDRM9+sai&6X=I z%PmzFx90Klk&u7I^*kj^+=M)=a*WCKqUAt{G)r|}ha<{>Nr!aHq`01^hv~RnIDqr5 zi|=mUv+m2Q3C>f+bX=|=z^l|H7p#4JZpkGCZ%c5wlmM@UBSs0%bIJ79<(dM#LS1EF zT-s?b=AstYw$1l~lGerM5>Q6E)PR?%YqLii5?pL6`4>E9f(HpM*B!K8 zsxGfB>%8|VjJ*}t2M8|HFaVFL%g*@W^gAE>n{-B0b%xH!d<=>6^v;D^U6$Ph_vyHU zwZN-cF7DNFXG^?_Egh4XGPU?J(z-{-dF$DS4RofG<*pgGjvr$(TmyK8y6A(8N8kR+ z$E0;pj1h(^lQ#e_R~P^M;)t5X+XyboF#Zc(W`a8?o=xX~)?@0DQ&aw{+kH)17qy+C zbs5qDyi{FwsiUm-E5!sCRh_fAgGna~@F-jQ)}N;hDLj|pJcOsWZd{Q(tu%KMF)r{Ar~-E z`1UM1Ks*Wgjsc2FLp%u?C6E*ep%fh;o`g&v0SXl=IzT)L86^OUSS|;MCm~On2Z~rO z2Z$#jqXa;q=tT#JC$ae1cX{c-`9M+asV9+*5&%WDC!WMI?ewxSKvC_9Cn2K*KvC_9 zC$UmHWMBbMRD0q{tjtCUG>XS1XoQA%5^`TZP*i*3NyysYKvC_9C$UN#p;31pP*i*3 zNvz6734o&76Hj7wJ@F*gWupW@QSFH*VeEZ1)t-0~ zYqL=TXp3r3Jc+gap5ZZ?C{R>;;z`IT0Z>$X;z<}+PBqn@coH&70Buq2i6^mgf;i9Z zUZAM<#FLOw0!h&b%>m*`$Q{E#QSFH*A^m@#sP>c4-;k${14Xqz0Vx?J0E%iq5vj#D zh-0X#fuh<^KuSglfTG%uM@pWw0~FPM98xk$02I}JEK+mDN5yvz14XqTgOrRCNQy>i z4va=>wpNSpYoMt1qmYtO0-&h&Baxb+Jy&aiqS}ujR5nTg6xDt>Qq#^CWkv1*ifTU$ zDH$aIifTU;sT2OtN}d5lwP#4lC;?DZ`yoh;F?^P*q}m^k6n!J}&%X3|KNuye=@(u9$yzhDM^Pc9N_d zZ{5Xn_q$sTTQZg_EXypF+z@_?c=-SGe-_uT)@@uLlZ#5*GNEmSUG;157v-o;H=K*> zSLygMCRZ2WQFXR<9%P*0D|Orr!3Bx)9kMG%Uh-|fJ8`RAas3J%_kdpscr`n5UAJw= zhP_K#U#{cFm|S>(n*|q^>9~{06$p4GTXW!i=biz$pRu@pDZ%AZ1e`l8j$yY>zIzVo zj3~_v9*A6%fOCiCnGro&yQv$xnBa180&W&uSVVBSN&)A=h1stj^G<9}I-_O($e@l4 zE&y&8T+mX0Brd&Hze>GcDa8!0NPCq__)UNk^nS5O^WNaEFjsa%=`e1M-V>WdskiAdLph?Btyep zOa>ePFJr6E-BUcd_6dS(l`>@O##PF<^yY@Zv~n2|H_k<6ZUmvIo>)vWIRyHGPy6C} ztzL#~)VSJsI4C!8pcT!KxJ&?%t@53}D}(v_>dtwCj8LnbA#vlK!gm4ZhT*jG84|DZ zckJHn*E6AY9ykb%INtNlDWr9+hK9st0UN+8)b%5`$LBvVf#6yp4RgHQ1lOu*Xt;yP zPyn=E#!gvQ;5fD!i-Z){Yb7;g>$1`p;4yWB77oJwwng>C@``Brq0K|`kKCK7)*=%euV!ogH@AuBbtbr0 zRYSu&vMI{7`_KRRGQg|Y#=}PoANmM8SzND`*3j@mRwq8X-rxYdlATn)W~Z(8Thh8# zUqi#YFzJ#5Ucpve+HKv`osSV*E3%>C-I)A>4|q9S+3$-D_3yn$@L~GHwjGn7@&PYn z^QV4t%iNbAA-Gmr9wQM_%H*(W63yoxQ!-;??1r#ymd#W*y)kjYE{z$@93F1~NJ_dZ5&ts;kpcVg1n z2fTvK>$Uo)!uC{mUY0|?af_ME4FJ5Ht=jj?k7s;=RWXWr6)3=4GwJ>VUdE;!f6CVn zuKA2~hF9y5trs$xEdY3oEwa43ar66F7pJ(MSMHE_m`Rr!@KUyDMNP?=hTBN%yo!g! zLrmrm03Kxv{+xX31ND;$&MSIIyepF-0u2}888)x~)1UnGdywF~x`)KuF?rYr;MHu# zxbr<-Y9A&zuk<1D&P)ak0IydKA;rhG@gE$|8; z66eZf!w7&^utnSNdvMfC*OAtFH4usW+1hN@0pR6q+ygWBzwz}?1m~4OB;J9^zyjc9 zY<7n$&dd5NxN*as-QRee43$?E(L1v|o2vkL zHJkJFAG@AkahTw|!ibK`a0K90tZsbZoXny-3C^pHNW2YO`X1jA&;9_slFj+`yL*1= z@jStK&K7mH6ohkSsSv-vaMm{UAxD#3Y0 z5{U=cqU>=FfS0k_?BSRM=haCh?qCaVJ8{W>H)Q~iv0=}SS@u!=R|M~&;{hgv7=V|u zIrfX&)&3SEIImiw4^`$o03KxvAN~Huw$D6E@UV`1m<(%3ocla820zgAosa0-yimt| zY*sc40`O`!_v}|!m0#DNw9YG=$j-Q!40Hfq#irg`{q#}ahXn7Y<8CJNA^@*sGb_e^ zl(_x~!Fk0KUC0^P&aX!iC=&NF z84Lluj4jF@h(bEUtD@+gk+~Cq$Jq4Ht;R5&jQ?U z-ECc9t+BSXd}n#ua;s&BWrn4{#lyS)fBIL{Kmu*6em{HM-%tJqB^U8-C~6>qHhFA3 zP-xN?HIP7?JZcgsbW4gFNT6-`pw8dFZa*R^`oX7x1lpFZ8MI;FmG1$Cc5G1t3A8O0 z(98RQLjSR-fdtx?dOlzMant8Okswq93A8P~OjK#UAE*j_1r;@rK-=QTo=%Uxz7{AF z0Bj(EwnZY#am*p0ND!)l1lksACpPO8)t&^}=5H7Esry1(RC^L=lPBW>MYSh^HhG$> zMj1c&G>|~stnB`2ps4mF&{nIZ+Wi3()t&^}W{5-3ZoLpFs(mGfV6rKt9O zkdo0XXp3sEASE+ofTG&>MoPw+Bt<{?H1zscifZ5UUn#165uvi#FK|VweGjB$s0t{m zeRrf}=m{vQefVD~s(m4$vY9Q=7S%q4lnh4!MYZpSluQEvifZ2#DH(;56bT#_H54Ev zvsQqj+IK<9xK=Bv_MMTEIV#W=)xHx_GQtED)xINA@?b%rsP-L@lJO*aT@x z&H;*Q-wr7mJ_3qr-xjH!-m_Le_R+aOQSI9xC4)wiA|HIZHnhfI5&RiNFK(bIanUD4 z{inOMn39MYsi!=&@%M@$#OiOrlsIn2^NyYQsRDR4n>lUZ!+$uB(_g5?4VV(wfvpn7 zNM~#Wyo$|TK4R!`{}6Ah0aN1g*{Wf0ef#;(4xY z?Vm>guV6Ed)@}B*c9YIvN*wnTub=UNzhm~u7e3T-w#fC|-R=pK363dot=O8mVtqUf zt(UQ>qw`L@|1y#%)_^H-1#ImJZ{IS#U=H9hHt)sRXUuiABCTUeTzj^5?@5O~OwR?p zl-2(E$XkuQu`XwE1E$2aW$U`|GqvB^40x1HU%qMG&{kKI)-ffn6Z8aiH;4J632rPLqD#Za@RP(D_EWSb+5P8$4Tp$64#Ec;X8Tu zbZP*+oYgMu_2czz$VZ(9Oo`*s1~Sua>`dFMX(R>12)kJXMFr_tk+bUeu9 zA*9ecpVik-|FzGqD@p6?b=<>bJ_X=BX4G%E=h5w0xV5>1r8C?Lpf-Q{NCj8Wl zl}L;0*XekG$qWm?%h}TBR-FCW8v21^t&Y1Ox&U|?n{`jW>6;GIApaU2_c57s0eFlp zFFoO{-#)}=r11Zj=l#@j|No)jL%|Dz%Ys9KodZ7yUI^S3I3qAOP!Y)Yf922kZ}e~R zPx1HlJA5Dd>V22{*7-*Jx_gg#-|#-*J&#xX8_a9{|KvI7+2`5ine8d_1l<1?5$Ns8 zbH3wzl;{7ibPjWNb^OZD1-yr!3pn3V&36ENYk$gq3$N}somcvI+dj56*{-skWE*Ge zY5m*!mi1xlUh8rzvv#rkVtLVWx8+Pr9nTSH#Rv1h{&j8S9s_(f(yBZ1gaEVziW-Tl z5aF?cr}E~*xep|Nq>;D^Qy*#j{2Nbh1B$jqT!rbH>;5oM`1mVoB(B0VkJ#+=I#9%v zYb371)E9pY+AkUn6fxx*iK`$TL!gK$*GOE2$%B=)omUP6ikNbZ#8sFeD*T^m0g9M% zjl@+Lqec1d1B#e(jl@+LrIkI~2oy2p8i}hgqO(@sT~ah`(nwr|q34Oi2PXqXwI{BE zG~9ur+7nkn8rwio?TM>U^`Pk3NT8_p#8r@HG*DD~;ws1^Vt}IB6IVfIeFH_cC$2)} ze}?njzXg#sE_C>|UU#_I{*f1xui)_CBPf z!wMAD-is7ntNe*cwf7)Zraix2fVQaiZlt992o%-cg_Lw3fuhaG0CLachYQG678Oa5TYQK?C*>dJUQSCP% zC13tPQSDDbYD%`815i}^laV?>i=vMPifT_bqm0d#b_0rPPd1~B-aCh%qP+kpsy*3^ zG9nw()+pmkqhTHPYiPFo1yEG`wMfZ_Gf-6fHAu-A8c6%BPr8C9*O+RsI5uy$D0*KkFu{T!s^>r+zXrBT!{8!4G=2o%+R7E;m#1&V4v z6DgTm2o%-67AfP3rsXdhX8bEfwV#fZd||^CsrJ(dm5sFnMc4gQq~r@5D60Jwq-3@r zP*i)e8AZOZB}HQGT^smj6!7xk&s21>3uUM{68unu78MrZUOfy@)G!e{v})xCAA2?r z1B$ja0jYJJI=+6v_6|VN2^^2q+LgQej=pCvP;>&v5sG|DS1Z*%W-*Sf3R9bHFVhj>oF)vhhBnS5tJE9Y0vwDUISna;U9D}d*vI$n1?>bSzO z&N0f-+u`Ij{*(5b?Yry?>_hB@wts9N@?8Q~+1A-c*b1zNtH9`P5fg1!HQ*J&)zDPhv2- zcN71Bkqee4kN&dc(C2^QId;99_@|3pFsinBW9z-2&rr#w`A3T!kZ1W8?mO_#&P9(B zkbkbo1*_Gb1q}zj*?S5B`G<;JkRR6M8MI;0UW{Y*ZsMOPa=}Wq^}3S|FUed(TI3%m za={9<=!^UI&v@i%0`kuixnQ}Pe?iG5XFYNn0r>}sT(C^_^bd4!eSpuDZcW^G5g<7@ zo*p*TyNQ2$$Ze=pjeV1u+_VOdAnev89G8|2;nTER6Zc$N{+;aC?$*S8mYl!Sj&g4$ z=kNH~>(NOGFNS5vn}?uz969cApz2_job}sc{NfvxmzQ5Kyv<$qV{YQu7|t~`^$0SC5`Xsm!aBn-y^3P zsx9|Aa{i9mc5CGRM$X?+)SivP(~#XbUORdEWW5_yTkdM)G=ti9YvfKw%fFMibk9cN zUdYQB4qfI4a-gU^8-;%X*jK*z>bjoL8&YezTO)Tca;`?T6|RMBrbMfJHcM}YYRi3# zoMx!D+^fj>JJpu^6FGlJZM!vcPa@~zhPyCV-M)V^yY_ZSQd-Vo#H+Q?mnmVc&d6CXhwF?;qM55dXf z^sXU3!hnxO=`|-%v@PNzNVgIwI&;KFkO2vx=*$rxp)`GO>)j8%2o#;U(WsDID?rhi z8-H|{gIN-NT8_p{g9G@5=oH&q456~<-MGje<=S6UjKht{-FG} z!LNg<;5EVZ!BN3(fnNd#1GfdX1ttd+|KI)>{rmiz{3HGCeV_Rr`#&#U92Ji(x%kK{BIo6fd zan@pM(DI|@Rm-E6t1MeBb1Z`_?emWEA!z@4Hu01h{(od$esNBsb{cH!GrJtI+_6{p z#0r{(iOn(LU`Yz6v}Y5~jA_|OncC&P-xiG;aRq6F+u1D|!MQAG66Uq>5;%tiO~SY~ z{uSr0ph=k4hQAW0te}Y-)-C>u_envMu&0f`#b;ANldz_Zf5rQvpo!bkE&hu4LqQWa zpk}4+-`31SE`jTmyN%rS_xy>_*c}bN0SJ>XaCBo__O1m3Fl{L zlz3h}nndIspzPLc2~p*Q(QLR5@wy6{gvo6DD^*Sy%*MY`<%GFx{3}(CTgxr}N|obQ za*MxG<+yd+;;*P&k0xOiXRpg-={7lR6tJL)8^y*Zh} z{YB}S>;;HVRnWw3;1*4way^=a?JJw;n6(~d6I4KM`nG6-3dl{~7JsDza#Od(U#WoH z#BK3c6tJL)o3<_fN|oa#t?{qKq$p_;5}^wl{%h}Y5=KC#QV7g*S(*&Jw&32smX;I>pK{{W? zhEH01#}73lNdL#{d>6K(QB+L6Oy^^4;`l@L{tGb;wWLYZ6Ugex$NS3brI`h1>3k_0 zcjVd*`@g^q>?KWOb-pdz@ou*pUOoDZ&PUnE$#+hE?;bDd53evF+waD9eAVHXVOQ=0 zUgQ@K>e=z;XE6F#(llDY*%cXmgrr>HiN<-4<;T1B)%o#*pA{)wTy^D#E2HuC$=&ff_y3JzrXBDQnEsH3gM->37XY}%+*OaGh3 z%=eNeQE?#4cVRoPs<^4<)q^@8WfRtRYX0#Jv=K_0M9G0HpU-w`8@#7xd11aXw#53z zu*FyF{ZX2D%>iqcZ*O^CC#%`0*S4>p_!UOKOPWNvfh^gL?R@9Q)G4js)%hwmX=RTa zep<9vZ@HvN)Emh1?byyAN*e$3+&rDHWFxPAa>|82T}XIQa3ITf&S}4bjc?ogp6d%8 zgclVDvb>+|{4zZFzJ2meN+DI56v zr+q(N_AcQ?)qyOZpTkEPD|(MT`p?~j7i9;a|1H|**~Y`?4?O+t7zX%Dnnc|Jy+4Iy zrHSNGHt_SQ>38lQL)sUG2lVzky}9*^@g>mz>MAyT`VsYsi* z^Y$O!_q#8IhWRG-sW<)l{8{5~CJpn_10u}HU(o@*;i_tN3$@553+^iVk|P#Y%P3wyy?W^3rAG(!9`sY|)8eg*tG_vR5qsbRZxv zF^~(EtL1y13y0d%OY`CaxnP;vv-GU_{YRrA(7TD36_DUDymU-$_x0@B_V=I#(7TBj z6p$bpb*b8J{DXfz+dn}1$V&<2wis1Atp9ypo5XAa@*)B`Ag{-s*L_R)zkl99Kwdr| z7pzu0y!y=I^Sj_%yLS^W9FPlEC6Dd=Yxe7Xmys5E$$(t2Qti-r!=?EbJwrfVEFc%G zNdEE2<8wP*HI#t7Oh7JJuC||a&+C__aSMO%CSD*Q7c5iVPd)qA-jndg=-tFi1LT4+ zwaq6l^IPSq&w~hK^tbY!*{B$mVf`Zcwh7G^KS8u^%i)(^CUf&dY15NfG+pj?)~mlc`bnMuAf~`@~{4@ zcqAa;{LuN3^DO5Kr{ehCanNz2V?D3=-|fG?zji z(vF@(D6aVi*^@*Cl0Cr`fpA=N53&WTX&dNYgyNcy(6S8#!g0+_$ZZ3?kWie5y)Erq zwt+x6&LiHI?2xhn3po~?^H7|JyK~z>pfJuO-R^7~bSQYk_lolMv$hL9Q^) z!`-5OFYD zo{}1h^DuXAL%0?~aUS8$1#qH6aUR^x1#lKaaUR#s1#pT&aURmn1yK1=oJX^B0OED_ zjSDN9yVIK2Ia=GTFip(1=5x+je8$h;oi|Ot{rkp+4V|TZ?38ydcj|R|&5rh$bS0ZG zwr$_XU&JR`-#E9PCEcEFJ@v=$C!X@Gq`9woa9Q4sN4Jr-g$12$y9?WTtN5Z4mvlLs zd|LHsi@wFwnZ9vhKWFK-Z0r7euj%;urIO};Nb8b!{@Adav@NV>z3rEe;|B~}An6#J zykOdkZ$C4b(86}k(!Afl{dM5IcD0h`KIZ88!FzfiCA6@dvvdL5*7c!j1N|vUN7>}( z54hjE_!yyu-3!1y74ns5n9;HSvthFiOsIh|0!u+Z)bPx!pY%_2`wzDA6A?Zps>E(u| znRB-iTG-23x+~lEn5E{QJ10oGf=#hM)4FgNrb_jV3u`$`7qV^dUwT8~`GY0Ry~+mH zBd^!YBy9^@IZL-@+YWv`GT!PgNtdw^*EstvJg$h)!cxxCMQq#G1J0>l^R=X7Y(|%{ zWncJu5L(#DS-L&j?i_yGGhObGbSWEKwfUSIA4Y$;Z(LZ(S-K0`-c4lJJ|gKTo78o4 zn}ugROxhMUvQGO>{Q8t@b_iPYB`3wkba~6>BebxPvvfY&-Zpj9cT8JVoUUd=f3JW3 z##XquxNn@>$Jp=U=ASE0o-f<3Vq@FPZ(BOPkhCp~A3(sv!b zcesfx=^kwR+=ZWgI{6YwSFq{I_x|_$jV5h#J6X~}ww>?%aqf6R(&da@Jo=O9=2}8? zV_DK|+4dcC$89b9K+Zae==PogG05p}t;ZSzsmesk}U?VdE_!h`jsZBdphOZ(XN z%lp4^ct+oBzq#*N^TE@T+8;NW(A<=kG@tnkX7NPposzC%L+_41Gx3sQLUVf>`;AXc z?$=eaQLC=*ZrwqjvD~PZbSt)b*U-6l^waKQv7v{Js=4`tamybeZF9?7r#J2x@!r$w zkFqD_JbH89gszKUB{Vm$CC%R?ZR_}>%_(Uf5wM?FUwF+&gyuH3q`hpzPY0-pDpu zRn4Z{yY-aQXFaRaJ>$as&e9HOv`QUhy>RyKUB?qlvd?R(Aje{R`8S`)dcEwFO6Xzk#S79XBUFp-&>#oW-hGBvvM>BNxX7;*0z7kQ~! z>={b$yL<4J2GD>aKb0V`FNvqKM*7U4SW85cRJEn17J?Mwc9N#pFxNNf2y zSY=J}=$#`@Q-*y)Fp-aHY^}0dby`}l{Nq-9k@t*?Y}6K5Rq|-#`n!(rKb^EDa#34g zm8$>N7f#Om?sFY0i2H=)ML!uX^Te6)z;UazPFU@Lg*P6$){Ni=N4VJ)3ssHp18WFY7~(-iA+;o=rP) zu=1MZ-^UJl9teG?_q?D!dx)WZi^{7`wRt^`mEX$0wDN5ScA9#89lA7kXH{4rHapikPmy zk`UP~l9Y#a3o`dC1|=afTqG%Xwrj7LtgBDj3?+D$OYTtcqTvKjaG~J>7zr*_B_Xm~ z~t}c5k%FUEzUAj5+&F_dGHw>2{x`IijkCAc6202h7x_vMuI?L;yAOBkV8wO3C+g- z*OBmj5xFDjgZ;~$6VkYnP>_^aUt}bN3?+J-jD!G6q8Bzrma<&*}_b6F_q|Cvk-9s{z=wjAA1fmIU z5sRBxiy)cwuR=XPf8dQTeu1W^lHlQJxbID5#CNum=!m2|CXn_M$xxz$Sw9g_678`m z66FOMF>t3O+97GO8Y$Tp$*{Jc@kQD_BtwZdX5B*|lF%&Utc=>*1Ugp6&VEZAfO#od zT&?i3GQ(C}7UsE(koic;tUlU7BtwaySqBjaCjtV%ur%}!Un5Gwk5|imUY1jmTgR{h zOy(8IP{M20F9gB~k9oiF<)9?ocs26m2fZliLXtcub5BAJB{VC!MF_qen<`8=49{_p z3!n5#!j2as=~mD!O4^VlD-ybeWGG=ZlM8{u1hyJTBoD6XZo zw!9iP6^?6}t+`jjr;ZX|fmb6pFN_VzP<*-Bnn9p2&huNzlLCaqXNeN$Ij%4?lZzo4 zifj3HXrc*lm~v&@=8K=}W4;`{%b`S<2;%b%EEoNo=j#l8Pi zf>VM@;IF`If&T=~4a^Ue2Q2S}${fqtmeSiAi^*!X<Alyx%{$85 z(`)m*?Rmhn+cVcwN%Hx#D6Pb{qB)1`R999A-Nn$#Z z#i!L=D6Of)MHNl*(5mR3W?+-mCw*KV%G^Ba@||54h4hsjO>$#W{|RxEDe+(bnHlmlHBIZT>uCuNn&b}8yv=t_ir@G>j0RI2nJu7GoomcM``t+5C;!Ls8qLW zPT5W(0BChI+>p0VK6wjYl8Ll;a*aI+RhFNC6R17&!j&}f*8oe0F<^iAwvl> z1DOEP#7xppayQCpC7KYs(7+fcK^Yhkx5Z`+u5sQok&I|O zHZCh!(8R5G$D49!B0$XsB)7VYAAM?SP(EYG+~qk zLvo~cpwk>WM@WVeL(GPTKqSF4UQItB=Z5^F2`%4MI)TJ2f^}D>wls^B#31ac$(YbE zQ4#}@B-Rj27m`{3|FyjQ7xHiC{{PJU%6xzDK$`k(UO z;9uphP>lX@ox4`@OJk6;Ca$>y=S{;vZuHEXSeFU%DvV- z-rb$o{A=c?0IneZ{~G5|XGdP~|9Qu4Jo|qTulN6@{b~D+`~*N|57<7j)!VMNZMIFY z^|1b6ZL(g*_x_LKRsN1yUa{O{Sz{S$>6rIR-fQ6Ulm8AS&BB-@2`8N779frBL0M>g zyDLc&zmz2w#G;U;BuT|kCCP0-cqx(Bn6w878BJ1Ckk~2m7Ou`c1wEQXQ_#hT!6Fw) zHP3!)aR`W#B&HyVXvl?6`lBR?DOlGa&ZfSZEPO(Sl4hnL0Sc4c6eJb`2#Pj@lH`$2 zkf~>@(3`K`WTk>qk_0@7F$97l8BH!Hj|E~4fuK=!#b1Nw4?l>xuhHZ({U>fl%pwpp z%H}`%Oz(K{%lNcUl9=dBt#p9qDT1KbA0^36LKvewPn8OaWGKl^!<_e5H3Ef6ZV~1R zN~+5$Nn!~Siwi2IlBj5sSc17Ll(ZR5&ezpB#)yR_1?72>Yf8t~rf$DpS0|dBr~kys zh^Zw7<(uwi+ZUI1+KVZJN|HxPL8jalO8TQDNys#Jg%UE9Gz*y$KuHpdki6cIqe*HS5~~g5;z7Ahs~mHNE+BGI(~y{NAXl|IGxBGbUCx{IpD0OU z8p=Z`#j29)kMu`L64S6ws~-CxS$~8KCCyAj0w~F;C<3tzK`vrxC8r=stPPNhlIDgW zsD)%SIZ0ns4n{0NP^pT|-qZf|;I(HGmAFL+vqs{0pb|E&B#CJ_Z@`CqH}%C-B_u=1 z2_|=G6#`0<7=pyg1eJ*OmL!HCF)~3VB%{f(`q+;#VqJnvmFl*?EXzYr?bpX1O^zWy zA!a7XRjJNBaK3ZTfR*}Blq9hcXN(tTZp&>yC9#^)nkwv%k|Z`_-Ai4+TDGwVl?%yG zlG}(m4>dzm+%$waB8DHxg*Kv+9FC;PqCzs7q^2Rcu|ckiT=y)g?U0g|7cpi*t_pST z!DCbZe*G~b7qJmZv=CMo_D4x_8xh7hPn`63=0qwNlA+}BW^y5*BnM+tCUT+OsU(SE zX!6LSBryz$2?=T;8BJ=tpfr^njM&AX53YKcD9PiHoE_*na>;CMmzVT+NY6vbh?!2;+&8BJ>2mE0%%2s_;bJ7*Z@Dx%d*%KQlz5y&FY+OkeAxSJQkO#?7 zvWJ;G2oxr}8w^vp+t74Xl3~1mtT}9X*CD|3pT5sFp~*^!ekdSnGBzcJLAQ2WipVR zkjz~~gp4Nnwj=TK(LO8_`(3KT>nyai--Z7_C+}7G{y!?eYw&RJrQrR+vx9T^_y1o4 z&joG?oEoSL!~$;r8$9!WtN#RlPruFgw(kMoPTyExA+P`Us`no6>E2pzk>^LxQ=S_< z+dNY|iu*73bMC9%>)gZLon1ezk{m-&Yw)D>XlXu$m zpQ3WB4c@?F@9sIi9by)xPg;Ywx}p;EjeKL1YuZ2(^Nl>a&Bw^oOU@eq$=s7K`}pQ&QHl8` z4;UhAnvlIzEyR~ii6LreDKUf#t6G2$U${_u5+4$ZO3XJBJ%K5pLtAfRZGj zN1l%`1xQ9!ZBM&)7kC)?#syPQ%H|(>x#6j+-`4evs@leO?I%7)o{%sF{3n-RvGKER zVf`nH%FQ=eX2ds@Pv08skD?MgZW>Rn2%Xx6P63j=RLzddP607{vr~Xvp~|f|5*>gU zz~_&m4#3`-%m5{c(MFywFawk%MjLtb!VDl8Rjc&pkef}?jsf2)h72Y)tDmUan3-Y*v&?AOv6qQ?aKprQ~YA+7o3L6HL9Y8=V2txO0ICe7kt*ej}&(A zbB8`9ib^cJI_)s^O3`zleAO%I!buw}P-3 zP*GH3_z}54SW1#zHRKTj!Xn8_a_Ns|7bC$B5Vn#n+0_5L@yDhSVfprRF?McM`k6fN zPz(u#tz?U|L)S^}p~{mbK`xUA1NKKzN!Fx1m|L_B!XnvAZG*y&yF~2G>59T47gk%F z3riv^YAfuX$%>_9K9VH51i~U2RfD=p9y4Jp*s2zR@TeNle`5M|ry}?3j_Sw$kiZG7 zSnQ9Y`jE_ZX2=1qA=PW*%n(3PJ=jz`?^&xK`{-PuJgis@#we;ANfJST6-!AMlH~CX z!Xg<}F%?9aT5&v^5nZ41R1L0IgMqS}y@M~TuEi)2W(nhA?QShbihRSerGY93yVxX7R= zA(Ok1B%v!%6v=4vG=1Ii(4MH-{LmyZ1W>e$&FgSP88GRPE>ARhs{Ruvn;dVoZ{-m! zt_g~kvDy_QUT=TwVf`mcawqnO#I8V5?2nS%K}d1z_qyd&Q6xjj?PiK15KeA0SCn{t z$*p*`T!WWbT-rDws?NQqqwwbmPo6Y*R^>OQ7>tbtv ze!}0Yyz1X+mg$yKOEB+KQ}^HG|5Q>W3fD4v&r4~M<&)}VTt3=ss0G4pGWy~*jInGwUrQsa1xd^?d8U_`d+j;Uf+XhHlmo`3iMn(Kr)&_LoC3E z`vh|kWs7dv)@NGzWHJZ5Xpl6D`5b5kKt2_%!yH6e-I3YT&wU817%M4ak+uBh%I5(4 zqolY+20gDtiwEWa$-)#j&05ZZs3@m*R7nw&tmS>sf+QvxA*GpTXwymhhp`%Ilo&_{ zlH)aRK2M(m!_}iHUSCKG>dLtf1j?qhbWBpb){y*3+noDA`^nOKF8}PQdHAVZNpX`5 zlqGQp`3g1koZDtVl6zg714GZ16fw~XwP2SPaE7QHMhz5|m}ou3NhO!<)K@uglagd3 z3&|`2g(-O|_H!&I^h>jkw8_h%=yEw3$t00R3NI`;`Lz9aTwR6Lfuky~QzRAkFp^Rt zjTHWqY2Uut}6aJ*e3>HwhlGT+R2~7D83&$zyYV7$;amw3mN5w@zVeF5hu0oP*vIK>Z467@R zb|XlOYe7+0U}MDBg9k7rmm^6Y)gUb;mmxV4vzuY@A{kYe5}nBRWRSLkE&F}zTb&)( z5NVg_KWWcMI0B@tV9STS{Qi}P$X*?FG4{vg@qqnN)I~^=@3tTSchr(_+HBR^lwPjq})v5t(mq9-A%hpzR?9qRssI##@GaKLB#}9m@ z%NqNmsI!oqGU$)017~W{5YQgUkUG;$dj!I2t-1E-btx*za5P!>l$?(JD#)JbDMkR= zQ*s)TB*X#QBNT`!bVHC6lo~b1=pM zj}+{WqE14Rc&ng2k|CAnJm#)@1i~s$b)>#3Jaf>K%KHBYMgISF`6uPW_y2o?X9gz) zy9N#io(bF(*ccecPyhSN|D6A7|2qG0Uibe8-}AoPeCvIKd~Lj6dK2C&yeE4{d)s+F z@;u?Wkk|dM@pN#1>#ld7c}I&uMqOqSgBw z=Lp+>wZCS6z`ol))m~^jVmoNN)wabp-PYgcu)b=&*}BO(-rC)A)baxN|94xaS_<=y zMLnthfVn7o8FEiz4XPwtDmDTN{ZNFa~dbNz4?zB`i*HIqbUrPIoa&Soj>IL z7r&zkluhil`lrJ7DO?;W43z~KnLurEXg^tY{}x_9>!|*daEgb@=sanw!qAZ(DIO!U zv@gI)m{GoCGg`wToJ=J}Y%lT_m!6q{B(@jHT-6pxi#CbvHKdOy7F{j0lAf8NO=5eU zaO3RrK41M2)t~m0*j}?@d7l+Aa2{oab# zPtnDUrqBorFp}~B`tw*^?UpAl?0LHW6D38$Wh594(||qik>a+O`81$o98Phwi%uu# zkBE{Y_7-`Nf&P>v_7?f-4*FA)*jtnHpX8_AYXu*)ha;DYlEmJs9n|^z*X>`>^^asU zh4z-0)y)&OSqFiF{yaM2Ui6luaicC~G==t-kC9jd=wHef-Tu|g?gs|yKT%S|-Xbvv z&>#ELJ;m)UclI_A-6+-X0`!T)sTP(N$d8DUB9<0;hlBi-B$gKW#~{E>{N(7^Jsxs65DL)vYp@<-XM=N>pv-+Y&@Wi+)|w+mV^lI#HT zN7;%C?s}|ACGJ&4i=4NVZ6 zEB7Wav`K8Pii(5n%O2D$DLD%UlGt41urj;62@K?1?B@*4GF~jCm9s#|Xo{LzbvrDV zKfbaLnFW3p!<36AescL%`~VtF&DLkZ$4H<-&I13*f?IcWeDz!`@uH-N%|!wZau!H` zloYqQKw93>HWqVjL19V~8*Iiw zapJ*7sxXq#6xv{3HuuG=W)4eh2Xx5C3_ri3cH7Sj23Pha>zvwPBxVN+SF?p9>w496 zy;c&&z}i zAT1>aA!#BlB?lrod)pIftFb>M!~oJ_f5NFMqqLeg#)I~VD5*+pEZ6vsqD!o# zDv%`RCaiBtmYb3=36v~Da-I+91-+_ zmWv0IP|l`B|LRmZ$fqkBO=;)tXt_ci7|D)+NhoJ)KbbjX>FJ&HpD3yRq(5U@&w6v~ zm!dx~3D}=-s-O8JP^83&z&nvTe|A+b{A$ff0`(~w zL2?pi#)8#>WHi-BSKr0vXek#b(OaO5O|E;~UwBn#UCL-mJ5NWZz>z2es9(lrzP9So zch=#m75@MHypKfw|0DV5*2ZH`j{SE$0 z{A>Kxeuu38H_unb_y51^z1w@5ce?jDZ=UB(&qJQmJmWpx-ACOoxNmoFb5D2oaUF3T zblvLO;+pO%b@`oNIiGUg?mXQ&&pCis0Qinq0KCPq*)he@&tbKHXn%yC065P+z#g=H zV@uj@u$^QZW$R)+YCUMZ+q%;_)!N%?;Z^_lTXtFMEK!S{cm99<3#Yk}Y3ZB|4rY%6 z)xv{i=u||~!n*97{ZuU9H(63!gQYcPXaPsk!oHNO{4gUA7|m8tB5XL#EljgZ)8^)2 zb25-?xHPGP8A*%qomn?!Xo#>%S{RerQM0P^f4;a+xQq;*kUi2OfR}Amo&_pLP0D3P z(!!2}QD?0~!>9?Xq=h9ZFI{oy;m?2C_yN5%T3L~_uq2^XEi=GvY?YV|X>LoJXh{le zM$%KUxzg>HDQOY2lVdil3T>^$kc^~-*(h7> zr#b0SW2@w0mKNc=+@%{sB$5^urXajSkl?c;xY}Vx%Fq(7%shVnwx!Q2rj2^n%jG32riLu zdVo2C^Bqptm?Joc;WRhoOfE#6=5ShAaJljjAGk-FTX5#VJq%ie)7*G7aSh252&cK# zMiFV)5kyH7bFBjwD3zv#fh6WypC@i>cVFl(V%QnTQa-!cozSd5-z`H6Yb1(SdX#58(CK^feqY=fJ#MVOXBb&4-N^98V-)uX2WYllE z8PX%I*=c66YI+NBOAUJ4PAfVa61|0B9VLmuR?O=U6f3_95>%xmG1!JpTk&Pzji(C| zRHY;_*rxXCb?@rz^F;>#?E`D6A)?*O2THUnciTX{ud+9&vk?#F(ixi&)O1c+{OCoC^E+u(7 zBTNJN_6Fiol4Law*S4`~Rf0iWN|LO`sWsc$_1?Riic87vc=ftX%av>Q-%rIwGMd&7 zI+Uhut;iw_x^3;k;FW5fxqqlXXqG?QTbh9BBzk6Y7;$bAuw3E zlx&OS@b2AyJ+EGiC4jh;Y=h)vEkR53jX_*Wwnnl}``Fl#ii>14&5u5maS6WftI2jo z(WTmolo0YI^{`fUK9W$Ed#~{j|_!$XIfVdTGMaOvOTh2I37dM;^8s9n6eJ;h0 z^hgK(O@I1U_Z!=RRgH*}_TkXU6oK%R^ddPdYv2o!KzK@ekUZfY@$XJSg7B1dBWWT$ zlF>9j9Z{;7&t~rU=)LPcyMV50zH#KpM=Q^LXr``WG>v;re2gSMfbje$KmK&qCo^8s ze-chRjDmsi*pVJ-`@ac~wvv*z;kZb!0rW>QoaQ-r4HI>47yn6xM>6~U zpV$9?J^$|f-TAZgOY*(J4}uQ|FAgpVRt4Jyz6>-4t_`dU3=M?*hk5^IA>+bIQ+x4pJ zPS?q<6I?xV8g`Jn~>_AizZr)+Z@T&sg1-)dQ_S-a^mbqsz1VZ#|=Ip!Lv1c_xt zy%`vr++$@N8!st6%6NQ0EE6L?lAm|7KZ3!<)RVP}Ez8Lug*_=dE(5U{FgCnEBqOX!$yR0eej3MyY&gU1O0%&c63d9g{-D1y0BIatRNbX*kDssiHK-#xi2Z3@9N>zhy59gR0J{FdWGU6B7od)to#t`x_V(x*d^> zFft`;xV2^cf^;UF;bx}E%n>A(=|cNUV-wKdDwEqun3}Q=<$q4K1bR+2_7^SrNTw6A zhE)muMK+x2Xx?8$Vi~c22K1GQ+(vzKPt%BGgq11#Ygh=NFB->@jIc8$YuaCA!x?UA zn(2#3EYpVcx1{ZcLficvjs2}qH=XucUTyYBdkr?2gBVD{Y5h`l4*sk{M?*v zAM`~woXI!uFCwvw*w+mD8X}gk9?I2?T1gvBPK{)^sR{j+g%phI0j;A*hFhG#8eTKd zUu44>ZhD&Oi%2ZP58~GQYnU(SZ*FDfNJf~SQeVR>1oWlveqn%0*6{9!{vsRBxXk;D zNF?LL=1jXwUyIzbx{EKXNcvP{O;;;rcOq-J8=#xWhSNLD zyNO67EiyKxLWbb8>?S!;F_PYftl{k_7pZ~WimaKr*DuTpKKmo-6Ok>?7E&;d8rg7qo%y8^iKN$JbB0?6E{%`zNO}#j28CeM z$cEFa%`c5eB)tloGrcrEkt6Aq$eLan*>HM=`K1wwq?coJrk5rU*Yq-E4NDS6jcho* z)cn$jMAA#JIm68lg5v`-l3t9gVO_wbkqxI8nO_=_NO~bQXL$U=rRlS80kWo}MppR$ zv+@pz{r?Yf|9^6RLGZWW^TAt!Yl4-*wt+8r_5X7MQv&@0R{xv+Tm75-Q~kYtfB2sC zUE*8g8{_Nh{n6X#J;yu8Tjlk6KJ?tfzx_}3^!M1@hur(!yWG>62gX?xp`wI7I}g;6RXCsW$ZO_S4P4sr1O*+CjWvsi z8t7oST|tMcoP#bR&BV@;d5}gO@B)!$V&}+oXQK|thMUdpoJvF@%{;gUV>5UYpaVXC zW6c&aHiH`hLR6~jTNJvBHRq8ZnF>;wD@cYLJkTqdUt|;ndlktL%SV>MG75rhIKwR; zvxR|3Btr}ygSiWWkhemH8$8fW!;>ELKsJ`yPINH%DX=gqa?TQpWQYkgTyx+{j5^>2 zA{k-=$!!Qm9gq!Y%uS$5L?Rh(0>Rh}VK>kLUs17)*tG(S-e6IJ5al`Nb;dGc-wOQ5 z;0S>rYy-f*KJ$c8iANHSX(h(t2n zHiAo=E)0Be#xm>4*bI*s5Tq<8s1VDD^HM+%!xcafvnVb%o1j;QXsdirR${Lr8Dc+8 z%~mEc3W97n!|f+CK@f>#xY-1kHgp$O2zi}ni2Y=$2ePruN}_||-48m%a?VPNWVj&( zof)824nJyK78F9uQ+ztlo6P5w5KadlMnTr>Yl|+oo051^9kX*#kd*`g~KWTwc z2V}#U+2%SR63NWMOB*7E_GEA}*g#T!Diz<W5 zX&56KWU(2+7ce|3U~G7SNM^{{P0{kf1m4LEz!Q#epS( zD(?TkVDSI1^{wM)|AoAVy-#^B_11Z#UOV6Y|Cr}I&vZ{AKl$%z_Z{x7?g{RWu8&=h z^S%EoTmxPC&Uc*qoZFleoyR%;cD(Ai(Xo<$_iv?r_rKD<(B9YfkL@+v{k98i3v6Z9 zzpc+&Z?v9l9ck@h`PK5A%v?W6fd*FD!b)8(7{c)x4(7>{pL@C$`t`>{zqd!<+q) ziy2xCNBl_KfpVXjL1@yeNHZ~l77RG2dd&}S8-ylo zxOt}O-Aa%i&9wrdCIl!<-mcBW#4%V9pfF{LiDNJvKw)HK&C_(T9L(&sT~*CmCR)Ur z#m?TW!fs}&a5Y<&a&5itt6@apDX8!atv+q7QDN*=qHj*$rEX=M%Gk3WMj?ZB$NM-wD*pWs`%o+v)OFlY-k~pgpgzdVMzkXrqYMd zd+)vX-b(-x3&nznfD{oG6;Tur727J=-P8>t`b9(qR8&O8UI2a0+&kyaxk>yz&+ql* zue@IOy>sV&&MoJhIWvPF2%T$&;^oxHy?BfB$d7bB8j6?Wn^Y}^^AzXGUJY({VEykW zAJN}=vR9ts9Lb9Hi}d12HnBLncJUR&Odj5OvR9ts49SkXx$w2-hknqD zC)vc}^xDOfh^IJBHmA!A<6}!QW5q2bs~ZzS@hIz&tS%dj+DX=1OsfNR<(H_L*EhXU z$*6$o8qq9Oo}iz)pMw5|lPB;LH<)~=aEJjE%pIbDVjH6!V?Vz*># zz2PM5Elwu)POTr=tQuo0-r^+kBb}Ft;$_uLBNZpgUg>g%c*DtFd5W7zw$@jjWD|=M zY8Ou;p5n%`IbHcEibryA#qpA@^;IWXZ*d≈qxAzj*%E+Kx@`({3VfF|8KV)s3Qf z5Z+YVC)88iNcO6`T9>cC^JK3)#dk<{q>`L{U4Q3EHnF(&YQcPoc#0d!=5&#Y5RZ%> zdy1natBX{`)2d?|NLF_biKmsY-s1X1XkDZtG=qKmsz)lG;(GD~IyYL}aO4D@;<}R6 z1t=m9LRcRE4-LD7@qdS?dakRkQ?8vb{?Ft84JRzJK@ddQkO$N~!uU zFgT&B|5tw=Kk-S#>NmQ3jcnBB@e`k9l)845?p`Bos$WUNsM}QOK5fcWT0(mK#5K`9 zugZiOSoWFRo_^w*=w5ar%+s;?(#pEWRou!tHczs;r&Qd^g!TG!wc8W6UZRhuxR+aJ zvQhiew@kR+RlW!OeB)g8Q*URw=TzL&@S_p;gpNJ6Zq0kiPm^AG z{KQ8QD{ks-BUMcGD?W;98(mzc+D4Kdf2Qn#?sXt+LpB`q_*+R<_d39AQfqQ$#2?Xx z)xtKqc8Nctdm9Mb5Z3EY*JL*7qiJCqzDrxRe1+Garu`^VpRf?Nfgepg@=@K}pFTvc zfVe8U#D%a8>6OP%Toth=gw8gEP4zeDDyp_=Pa{snHiS&}gMXsWb)ZpXMDOtv$3z!# zqERRdjtSmwx=b7zg|fs$sm)U(JEeL3blQThYzK`};2WLLrGxE4KTTh+U%D!GrmNpU zqri0G@V%p2c8=D5{5J=YRmyU|I)0WyW z>YZO>uPv`%Ix03?7E%2X>J3}U6~!M}GD5CP>G2asMVB5yy=AXFe&VQzH3HT4#YdMY zlj;XY1s{U$bViY?H*J;pE4o}B-rppF;3xiy?nQ!nQq|$n zseY&gM7;;Vx(KkKwb~a|Z%KOmF4?N?vyOU`oP$47vO4D)^`@*-vbr1$-rth-`W@Q) z`X%VmB&vC1Z%y&C7bHE@OIVr zNoUw^^X>P&RBuUo{ASq$UG$84lQf0jB-vVrXeb*YSzYvudP~;pH)?vDnXZTm_0D0_ zjB5^`tC+3bs$PG%_9Gk9Ra2qfIc%&aGkEOm_u7vMeWa@rOxv zY}Jzx`uwG`_&$+rV)43Kqs9V>c#7A`=4!pMX-cC=vbvW%-q@5~BUxR$D70j~#j7>V zZZchJ2ZgSg+VK|4IziYZk>++#Xjs+E9%%FO1J6sLi&x5C>2f?MwCt6qc!gxegmS&m zl1(gLUc1l|@f0tU&FKWeJDTP}mP)o(p((pWvbsbh3N2Z0@nTJA6Vp|Hq0q3km*-aO zI`d9VGjH)C?MFA6t_%!?_WFk0x%N=XH>uWH#VPw@=N>OQ0R>X57&|DOwsDvx?J zYF3mQ|G(*a$Th{)D)R5hP~^eLWw82xqVrd0iF3PioYU(xJ1#h0bZl{qcVyfDv6tHS z!P@^_?Tu`|+sbVFZ8L3uGzGU49@qaqR|L<8Iwal_~u+%eOHJ>uyZ607wG5u+( zfHnV?n0lD%M|>7>EaIMsQ4uX8Y{pNGFB{hwyBp)ee+)kzzB7DLc(?FasQrJ*uu;_h zpZk9g|2+ZXMno%H)P$)wnpjMMY_;VH5H~_MvLu$X(6Ndep~kBM~v6pxklFk0wsMY@fWEM1TRi zyoKk{qpj68gAKF^g_bEl)u4AXKSqO`4EkJ3xF0 zUAQk^1g$Ace2Ch7HXTcR2wloeym1NZ4NxCKmva+uT-d*CzySYaOIrReUjzZ_L+FBR z@gjg94Kk+wJ$V=LPy@t=sO^nQdgTcaA3_&wix&Z5ll_VhK}!qJEHwNhUPO94Uw68r zYG=%4QI>cSxymL3Vw?rdLRsQP=)xS~agc4yJpR@4zO22CP%&EX+2*{_08>P;tq6{nDMVFkQ_8DxSxN+V9=laB+qvp4UHFWzdHmDm6%6RXD^A<$?{UgbldR5@!+V?tj8i46^W;!*%1)82 z&XYsMDN80I=wfbET(VyOBuzY*KGsIXVdJyK_tdTYfDy$fYCqDp@=z5)#bF_^YMXg@ z{1fCA)OwH0UU~fEB|Avn2vV=OWE1`4YIUz$OT^ppS%8}`3XX+QG#hs!G%d#d!#q8`PnGWZzCUU~e(Bs-+t;-`0~qI~RhrCR zznrL0kLkVvXdC#^%!5rQZ$G5{$m8!Sdo>mY7yey2LA?UBjqH`j-$k+`ocoTmXY~t- z5oJ>SO0k}58?n5m+OCq;C8WnsO7(Ov9kh*%h&_HN)x&3@*5`(@OtQ6pVJO>Cvbt0O z+D5WozpU9a=~Dz~o2(kcsb0UV*|XwiQK}wjn=CfS;@`J_!g|d%YW!bPef<9c*Cd$# z&&U4{!0vxNBIBJmoW;&v&N#~?>Dhr#}#{eXS8y`#Op?Q7c`wg+vq zY#ksLJZF8@y2d)dnqv9WQeoL?nPkbc*v+4rkD2c=k1{tk-7poKcA4gwn5jX;H?ZRW zTG;omnelI9$av7W8dm*_4gV_q_3-<{Cx+)jjC93t(r~Atk0CMa*RYb><9|piYQ@7SsX-t~XC>q>{S|1VRae{E4vc!+jMcl$LI+pkm-DdxI*^@Cv?Sn9k zjwODC?j9#&8iX6Fp~8KjD}>&&;sS*w2(C`-Hv-HH#WxMaNnzPFd^CR_BOHY%Ra`nC#w@zY;n znt0wo5A8<|ri(*R@q9MI{rnx*0`0UPc>>*~;<}g{6_>s81iDF9m+nKwNwgRs-h{`s zC2`g!o2m@Hd?-u2iCPt>EGhlhjdJ5XPFdnl3}OA&ef#i0{XH&OZ$M6awBiPADvXNf zv4PWDXY@FAP!rD^V4C7lwZDAw*hJR>d-l^awI6u`#KRD)Myn@6#bvKNfeupfT3`1h z6b!VNY)$V8?s3YtldR4o!h4*uq~1;!bED#vCDR^t!`pa|OV%6UJAtY9xKl44DxS+m z_uBp3^|qgA;&}sd&0yHfP2J>CRS)m+TsHKl%VSmyPt<Bhm)EIDj? z)c=0`uE|JZmX@+tLtv&=hx>1+CqlExUL^-I{>v;9@&wXlgS9>_Bn}La2?42Pe9P$X z^k$(fsj}03J*bt)y3WT&`_345oqk~ z`O_1pepN339~u&029jmFI>qs!p=^?5b?-g24rLQ1s~d4g>rl3dWOW1WXdTIV19JIb z3me_G_0vDzyG3suFB?$jo95Ry$yI^8fySD3z(ZPf?zN#C`l>%d>v-At$`%uwD-l#P|F&XQ;y8TWbuq~I>?($aT68$CnqH(H0Xq~NaB zZ#!jUWFPYBwV`z=+fcH)(Rs9vWW9lCP3SsoG)-;bD=mvnN*VC#$t5x(@&+1cKdP^H z2+%rNY|7#7Uj@dJik3iq*(+UbI$B5e$`hz3S)DRy9m%Tm|4*y&|D91oqY_=;x!!SY zcTIP-bww$w|KA%qD6*OJZ)eDP(7DXn!x``R+HuTrk7Jahr6b(_5$yeUm%Sg1|9@|L z*R})3|Jy_T|269?*7eHHf43}WEKgaMSvtYKf0xWB%=ekcm^01crb-h3zZvmB#K?#g z4eC9&Bq1w?v19!76=*E$oXF zl;zvDY4u#{Be>ZwN#YG{jK8$cVW=y7)C;w4z-y1sgIvSxP=XdC#bt_G(BTLTQe zgm#S`*e_vsr*%KPjx`QdQCab15jHIdo&~=szSyGJ#85m+usziickUYg%lr-6i!LSDs)n4J z>M{yU3o1^8k~d*Vo{WjVSa+)((9$Pln4SkQ)ZU;!lXpto52x zmiQBc>57D?Ic14Ip&K|t%_Zv%^8K!~80N0_7uN5KP&TMpfNUS&~p$$Eo)8!S~mn|^Qu zHP2&1sts;kZb?0y}K_?Nrb)N$Np&hCyXc)>mB-=#U_*o3&p3Imt5Wp_AZI4C4u`k-gGIZusEH6Ql)Jb5^yFE^#H_Xf!5VC0kCp zy7TSErTg>`4rNI#f77RVA)!TYAIg#{yf!^MlZF5Bvt+My0XP~)_9`VX^S=!vM z0sOY-ZQE?iZNqHsY%p)rddd2Z^=X(JFxgsYO|phru0nmlG0QH?TFVqmXN$*THh*FE znIAQ;F^@Fond_VWGJRw^ZrWs;X6j=~j`%m?Lzpe_V8on=LRc-}2V=4EG2;SbH)DMG z&*3HE`@@%n_X{R}B^Y5(z;TG9e;hp;dnG+No7$39J3{=!696EK_A zi@)G{`H|~dn4Vg~cWl$h;jlh(pGiP^S-qa^441E-BqWcNRMN$EUun8-a#$XaSuFAE zM$h$QpA(XYM=EJ&J5FBhU>SXbuSm$^OU5pFX7@Bg@>Huz-eiw9+&6O5)umajVPQIF z@25P!&wQAWO*PWOw(qP+9{zi4APZQ-A;Uhed%guB`SxshMO(J~2HW{I1~Q)|H#_vR ztJx?*^2yCAX=4wa|KRzocISZ1V~H=H9)9b>1B6W0NGp5z;nOCHi{tGD7mu zMcy|vSoyn)XF>1FPs8^zOhuOKAPsA8LU{_`AcciRBSEML;tH;UJNHI|S(jf&)5 z|88bUPu&Y-rmqQmEzErC5Fz6Uxt#AboL2;UN3`~}@Gf=?k621bK6x42Tj#qw$!9DhxqQkU_x^eN4IuM&Ie0k4;BKM!zTRi z!m0S*#}JZlz=q^R;|u@%{7E^G*{qwrXRzCW4H}tP0@+g7zC%sZ0OIwv?fAjJ(F5iY z1ahMk$?|ntns%FYk=uU7{A^`?fTmhj2P;zX>kd^TD+ar8kU0| zy7Au7Dl|caJq|NKA>Db|EKUJCa&r zB4YGfo>^Be ze!I9iL7>WvBH6yU&kvt1JbX(-VoJdE=ZI?D9ItjHp@cj7>Jiqi@%%p?{WJ)Dm4e0u z!Mi6vmG8Hh;97blTV|$XfXQ&$DuF^Jy$B!TY%0?d+I_E-DIv&RV9|EF9eh)ZvyeTPY9$20??s^f!FiJ} zEiD6piUuC9l*TJXO9*oRR@Wm8MM;^Q5^3iv8 zYCCTeYP6&d4SDpXzcvoyloELoYLui-4CXiBVNNNbjYeezNAfYO7(Uh%_8@!f1Rt(( zaZZV9n77imX6g@H2tPvdx7fSKAMf@@o!*>R0vgt~@@DM0BM)o5J2+hS;=O42x}Vy| zX(g1=sHVYToQhKh;YR+v!Fb`q1Wt+QU*p`tp`^8juu*K+$tssYZrj-45U^FWI$*~S z(?PqY!NJf(Bh_5`paZBjME#eX>gF_HuPV1AhqMqDyKJD)8IhK?M%J)SBppb zsGJg;YF%#{93Z(ve~urN@y#lg)0?enu)pL^Y?+?(){SpfPH(tY!G3&1Q8nCg_SWb1 zrvCkQ50z9+mp^0l*MCoxk5{W;U+ou$F!t_0$0m#))KdM0FkWes1;0(cP5RtN_T{}n zj%!`t5+iwf^Cbp*gW!!6^N9hpEOkswYbrI^i#MfOc+C5671z5i#ulpExM{E_IqAS( zqfZt7q;^t2EE^x}!B47MSp}$_n*@0Qp%~X)+x}M5rbn3G!cBs_Y)}vnUFH#eJH2h2 z1iMP&>C1-i=Xx&ct=c5mMG_|u@dWfVy*--*J4>Q?{sXZ${~V&Xq$gMic7cAtBWNgO zm8E~Z+-&?F)rPt8M>luAwNsPP6YM0}TkQRhoAZ!LSg-uP7LB$v)7U0KCeM5}$29Mu zH$KwaEjHMZztmK_Rkv7Dkk|OB2ifdNO}_a3i$&FK#pC})VK>8~K8iXLwIOOmRLiIc z*9F&0u6tZ#Twa$Ib^tgLxjAw|WL~7xdByp*^AYDPSOc)3<2uCtyBzZzT^zBn2Vel= z{zdj4_5{1Z_N6Td`vBf=TVNXuI|0_S{$@RIeZ#undZ%@YwY#;2HPUj!@&W7#u-mf6 zGQyH$i823e{uE;VCt+^DOmiPt9k8D1H`9638>aoHJ55te-Aye_kr6i{K8QFOu{&Z- z#CVAPn?_iT-@$BwmyM4Ymm5bJ+Zz*&#_+4KW5AK{2VvEKe&Jc+4Ge!6J}?|LY%xqX zbT%}Bi`4%mmGa@KFm?LKoK01?y*>X@CXN)yCoZX!4@(JVMuYWGh&x7QIx+{{h#g@Xbj{cz3E4CCyadZdss8BF$qd!Q6Qer65p*$)S49w_%DTRtHg^?Kj zL8_3Y`a!CY5;W0sQib?X3Kb!bDg;9)`h!#<7%|Zwqzb_hiSA%7RY(bpNQZK%LJ%A2 ze@PT7QQ{){OQKMT5*pEiM4=KTI-&=OLM2LoL=O^$N|YFh9wZ8tC}9#kNE9l8NJ)Pw zM4=Lhl5_`ih(aY0A?Xhig-Reg(jTM>L1d&qNEK3|BGTI&st^Q5`d?Co_+S9NO>(G0 zNgH$giY@!FLUP|Od4^q99;E5ijdMWV}JxKL}5K3oV670s7 zK;)!9Nbe{JnDhs!LJ%kE4^o97JklMc5k$$z>IbPpBdQ;y3PHT1Z&oUlRKmj?VR{h( zD`q7@aBK;LIQj;tP&~4sk6xC%v0_Ugve6%;LP0pAKS+gw7)F1P3I&0S?jQ+^V@n`f z(I1pTrIz#~dAK<<=DoEue>Ja7^yP)Mne)KaE1IjCTGCe|BiW8NO5h7*0du?O*T3EQ zA42xg$SC$$-wW&a{#yoQK1(`lj_Et+03my8WIeX$j+k>>Ry6@KkEOg9dUMTWn(*zV zkuJ8Ur4tHN76F;d67P7~_s#6~q)k5m3GxHrs>iTBohM= z!Y4hcWJ9)RLTblfOPd3k%{+~xyH3gcgS6RQBkQm|4;+2?xz29^>1D|&pQPMB-~=K0 z^l7!t`fShLFg%og0mv-Y^x@xLY4FnhgydVEsAM$Tv#Wd2!FgkV%w(x0cVvg|=toGt z&xuOLvOUl8Qq#L&Qb}u;F=6CyKaJc;$j%xGdIp+gZW{kJkOeG-y>=+PYj;8xY9y%i zt`b=Rna@05Mcna3+^2-(vzxRly3*&J;icn&%wtV^H(xa6^lU=%DNWiH{lm*zIsuu> zQWti<_Qp@tMjbV>A=}%8uYKqTGKV!^6m!qIHsxBINhL5(I$UkDi6sJM1YR%7GF>5+uwdzPr=9c=GGs2x4B3CLX5B5To55wQ$wWZ92Pa9 z{tp(zIgRA;|Majg`1t>8QIA9|i0Tv795MixT&G=!T=%*r!YqL3$R8t1BcFtQ0ES0q zMLL{cIp1;ab}n}Ib*4HEj!zt~I39G&baZw!w*O&&A9e${+dkgj8b<%WhdjU&w$-+w zkOi<=zp%b#-DzED?QLyp`PcHX<+$a3*b}gmCC>btxyt;U`7ZNVbH2H*={u9(^tfrI zX|O57WQn*O@kYdsi1`scBizQ@#{WUQzr{G!*wNSs<_A=UKNEgu_-I%mAjN;)3yQizI>(yk7YuF#hBK-{Ge9w8+P+^{X_invQ5PC`m7pn#Or$z7@pEs4s+ z(obNMuQ^CbmE5Ju_>xMA(l>>IM^%PU?otS$@Qf20r@wgj#($BLLb*#JmO^TZvf9q` zNJ$6JT?#=JQZp*U4_tU*2~zT7;4X#e3aL42u@F*JdkC|TTF@7g*(0wZMYV@`3#mn8 zg1+z8`H-U8L*Rwf5@nCpfk;v9Ap%2c`Rp$b5BTK@QdD~g#gJMVx9iWw^M6H(YOf4a zsoJk9@7wj;>n1@JQ0;k*mAJpwv@C&ji<=-twTCDTsiN4gHt#+^1u3dMgligg;q=wI z>0wAw?ICVMYVBq|fAcz0RC@^EkXkoj?yxsAVYmVAX#S$po@#d~L~QriN>}y90e%^#_QSBkD!!xdJQn|@{dm>U)dx-ClDpEH> z5ERMNxl19?Luze{S1xb(G8HMRJw$v+RcniC522q%HQ}Q^FJN0#dx!xws>Ky3Tn$Hx zY7fDnM%k5p@{pq1LsY0yvtZ?-hqfX`wdVtC;{ICQflt@nh7{Ev;zW%at?U?x6xALA zMx<748L{TQrfZO*+C$`s)XMTzNxk0xNl+y9=Prd15~&s3u^sXlQdE10C6QXT*B1Za zi>HvH+CxyOQBEk#%CsXzwO67`_5NCNeMsoE_c^4f_7GoUTZ>PP9P6i)!CjQZv*grI4c9^N})f z7fu_)CuJ$)DeyMQrP{+dnMNs#n*N4uQSJFqnP_Xu8Xh)xLyBtOQ&N+jE1MX|$VG~3 z4})ab)`Z)94CouAsP^hunc@SCKQ+JXjUv=Omujz$mnoE3W>d69(v|K~b<9kmM)KF! zcn?zazE{W16iQ5dLW*kNS@wPqJdNun8g7fPxhpTOzCHzrAGx=TArN-TgVz{{10ri)!CaQet@# zL6JnLyR@yO^k*a)QFmz@N%c}Us=~IY_N^t=Lz%_tM2c!(AgO9?(fdAMQesjxwneqi zBb2gm-&v%n_PLVkr7UQ-6DfM%=SZrW5>)$aN%c|YLNvv;sPA}LmiEp1jUN!eQ7o3W)$s~?oIB$cM{(<@nPCc+*iVcS~XkV&O($+S}z zUHMsMq$EkD$&wKvkIG0vl1h^#Gw98eKRn~vq%u;Dq|!vmh;TtI z{=x{Ak+0vR(gewfP)B9tO_)^Lm@voZ-nDbvAeE7~Admm2@$vujQ7=W^7d0WOAgYe* zM_0)8g6jd-3|FBmKJxd-Gm(cQH%5+&EQqY(sjhd5h0t&S^>Hyw{U7C3r2 zQeZED^Y&x*t@delW{?%CHCrxOPFWtY%(L{c zB%5!UKQg~$-fW&??qI&d^fT-WaLBaYG|H4?a>2@g??vp5SQarLqD4f6@iXIV#)pk_ zpxQq%{BPJD@Wt@^!Y75d3vUSP1H5lIX4r0+Yv^uBsxi(_a{=^!cNvKv#IvB(VL641Vz39@nsM{;In{-rRC$xlz}1jQBkTv zAT2DPhWIjw81UD4SUwN#G7>6?=K(4CM7YaHs34vQq^L9`R1nVuQdAleDu|~7DJl&K z6~uEPD3U61myu9GJQ+wyh1_K%R1nVwQu66=myu9m#v9!KYK4@1KHOy_R1j$Zq@?KX zG7>5*7_q(8hd&QSifT_n1(60oifT_ng(Zsfn2QwEo`eb_4S*EYo`ec3Gjd~|d8s~9 zRC^LCh%|sg=~FOeBve=v$BWelB1N?)p@K*QAVsw&p+eD*C;C>bsf!fVo`eb_4S*EY zo`eePl=9+_k)qm@P+^^#20)5xPeO(D$|vnCQdD~qDu^@yQdD~qDy+5h=mds(GQ1E_ zw5HmVP(g(5f+Al8cNqy4)^_}C^zy+lXr;7OK(!~KLbbN2_9Rp&QbTuai)v3og(5W# zfE3l9gbGD!N&zXVJqZt1VvLYWh7LX$uoRoHX%i|C!xYjH4T6i)t-b3(-lYbDWs_OBvcS-0Hmn) zBvhEz`&jl}KXpcmYEME1kp@7DYEMFiNqhO8Dg{VU?MbL0(f~+N?MbLG{>)2{S8l?4 zHIHgfLIsfq5N**EOc@Ck=oc9hB2;@4Du^@ywneokp~4__gHfcY_9RpgX#k|C_7Eyy zLPP{QNKx$}Vn9ly0g$5FL+F517j@_aDXP5^L#Syv5vCzUwO67Dl@j~XAVsxT;s}+} z_nxL;%9Kb#r9{Xl+RCBYE3t%1iO?M>s=X3Th_=*eEJ#u9m3X4owy5?>M4?hW@1Op_ zl4GZ^EvkLIRJEs?20)5xANQXW)jn2IdhN*!D|cBVN%d7WyL}wbNVUI1QX+I06mh@Z zWigWKtE`=ui4@hop`@y{MYWG66j!TZ18j?G-#}9OYs{wF*Z)t7YF|%M`umH_*>acF zl~gC5;cGeo`$e^{BPkL3AVu%{C`pMOijbn(yCjvWrU3*+QZVslk=2417@w4)CzLt) zVKGw5(*%6@lB5w5${e);v;{i>v;`34U{}*J8}Fw&Slm`g=55f%WJyM%X_-}W9h8*i zV9CilplO*!avfLjMY(>FoV*8`mYF4|4ZOk?Dho8oyP#>A>HomV`=DuAgyh5y7_~U6OH=|x|323?*KAiiS0q&bAC24;IVv*EdCU2c^Cjn<&OuJM z<5!0tqWqi3hVz3v?g1Au@qZ&Sf*L> zEmrf#=ELUIP~qR$^n>Xg(?h0-Ca=jDaW3L%i1E9_eEx5Zr(k@4j4>nppYW>i1K|t9 z3&ZOhzBBj@j~iARdKu!vu0vPlUwS!||M1s06m#8V;>l5_UGSv6Z&Xy)E*DF=<_?2@<$?s1W!1CZ3IYboKg=G~8WI95eB7Ax$2x za^jeYhYKn4aFr9sOgvnIA|I8eVXv8$_At?>Ts&`F2oDixW5+ec;)aSf-6Nq3T|Q(p~%TP zvl-&~tZ?M`#Nb9N!IjD&1-G*qunZbh3nHG!dX^MS%o*$^xKbXZ;5Ihr$+zFn&-xYd zT-N!?e;3=mEs}Mx`^@x4z+@X&w2K}H!_LfN(GUETiKcf-<0nkvm;)>vVvFF zuWlnJoTry7i)ko$6cbS;;`xlZFR~N=K1*6xR@4xEFH-hUI*xcA^L}@zcyR2U1Xq^T zQ1D2$c3!@z!N+J-s2^-|y#1MixP=5)*49vP7hBgy8Q;Oyb6DHo%$Mu89z$?tfepmf z+yLU)tX=&cZ*Lmbkl@NH8wy^ZiCO`~!K&NXr3D2E1Xq^YQ1CizZOpN&KP~wm;#rLC z+kD?!Ojg3Bmn-XSh}K2*0OFaf^DF+to{J&Uy0Ykog4bgr=2vi@yJ3Z=dp>n`rmS>J zFIQIHP;e^~^#q6)u*~gsFW+jimb9)czajcw^h@v0U0;5RI9T=NH>dtpSAKKS%at`a zMC&3QfOsCuO6&G`@3mi&)|G`g6ddjuHOGK>E@SmtbR0T)F~OD9IIwj!ae;Ua%gP@( ztl=~#!IdRB5LdGfh-b6Rf79nKc8wsovMz^$+nA_AK-|l6o<8>4ProlExUx8hg4>zM zLm-~T^3MAW`6OO=Ta+zE6a2!xRZ&@gutOHv3>oKKTkc< zm*C1;9inwnsepI^%WwMEC#~0gLU3il4h6R`k*h#FpJk6ce6sy)2f<<04)Kw7vSn)R z0^)hBQ+TKTb!T-XIIQ3ya0?UJ3&e9-&NtV-X|QoS!C^HI?GwIOnbGzL;yJ!nM=yQe zylo}Hm6bh2-$gzH@oZL5uXkdPD=P>N%X^5{O-$4`Ans*Z5A^+F`wFUzvebtVQe-#~ zhiCPlrmsfd8BJP`BCU&x2gJdugDwp&Tm1;ZVG$7RQbo=~;INuc{>eL6YXe_L~H^Yq*Jtya?jCtnDvvj=Q?yXM)2LBHE=+Q|lxU&+)a3`>{CgksAbuVay*~E#di$BPs|ao;xX7I#p5-f?8fUt>%u8@( z?GZ)yn@rSFAfD;#eC+J#x&u0BxVv0&wAGMUBvS-U5?Sfxum*|NWl>atSb?uc!9~-F z-hQpo^m15_M8ic|1@U}e|E{av8h2DK(v)6qAh;;AKs?Vk;Om~9i&rftt%ng@Bw7&9 z^$kh?V8E4*#7Qb!M{rSifq0H@+?*@3>-LdL_@tMuCAdhvAfD};uym$rRHyN>Gi5~t z7o`}8dwt`TOYNiK?y@yJu2JO{9zW8=Z7y3)D77R5Dd{$+m#reF77o6^V6C8W%5Aqt zJ9T>5N)0z*w1Id5s}XIKt0@miOQj}v@8!9|e= z;sw5;Df@=cUiE;6yUXUuE>~+@#`x)Fb4jDsu)JFOFo)oJA#!SoTFYh=TqFar%Q?Q0 zw++)00&i(uPA{89aQ#i4Q!{Gi@&CxMGhtB|qMnah6E!R<)%B;V)b*GW|2K@h5m^?w zCvr|?`$(7bbLZ>M&Cb!zbjNMS{~XUcR>G)%oc+4}E&Bsd@t+AZ|IgZqH^iw(pfOE1-oEL#Mdq&UckKPiUt?8 zrf$?4?Og~_8svg*w7HCUKFeGF!HG3b57eH%^zzjjZe>O9?137G_YluxnW49*Ilh-u z(bCJM`(R>gVba)3-5MaC%TjhW&$@0rOInxigN3bCt6UM!Vd)*-UD)m&nw605gM+QT zy!?gUcaKCoo8@&L@oreJDWvt~THkN7b-riwo*&l;aj(z);_pjNeZvS&{RokOK|IUX z)b!z7FF*ed!KEMJWJQN7`ezT1Mm&?X?p`tQmj*P6A^iwDE86`2wZ|8KEO5v*<);1_ zfA6{gX_zl)z7~;7stJCl04>po>RnyC*LjgDp zc0X4(7IDZ*bbsIFNIgtipQrV`E-O+;#}S7NV*0zE9@SA``)(i(S&8$v z)^==iA8B2B78bTTO_>~ocoxfS^yiK4e_SIt^(2`2mj3l^!LITii084^yEc9I$D=gOFpc0#Dqzcq{$mh_ z_|@_3oVgFZPFkO;;SRQVc^y8)k9ZF2^z65v&3jZ%)=n>{@cJh(tDz6#kd>H` zaenp3f0NcHYxqsJaCh5jcMh0?xYw8U?g!IX|8;=ilL)>*S>-SZ@ho3<$0jG@Uwx3^ z6E)nz=I|Y3<{m{nlXaN?L`2JR9};|mhTmi}6`#Lc;03LH1e)ES#1RqQA>3d+~gOU*9d93i> zTbKVWxR>B#H2fx;s?bivbA9c0wj3~^{1<|cCipbRL$K(3CE}2k7C3hM-hC= zfM8_Nt#rg8D{=bmbDh(EBlt*yi$V^>AuCbVVc92n)T$#i+{8py0`V+XGb=Hi;G(nx zamWil?MS{D+O2iQT~5jaMOH%4#3@ZLAF4Ha6Sw|D46+hEKThcKFdbYOLU56lK)klB z#9)Gpst?2=EAh#)d*^=hwASVH@<9X_Sqa2zW+mL^q=ZnoMMz8MDZP9EX;kcSf*2$t zl+4K8q!0ZG-kC4>eBWWjAsKONK+)0H2N1j;!G$l2c$RO}zVs~*>i?ejIrXaY#n|eC6?#Czfc}lV0A9;;;t9 z$BlxBLo%Xz?xMWwf8*X-aAnmD(f97^Y!7T5On0wg#h+(Rkj^MeX9!$Wm>>>Wi93H> zf9Rwfd~lbODn$`X2%7lD>E+7W8Q7>=YJwOfBeEAh+Mtp?Aj$$70#%F1Yn-dVRWI^-WFYcDue)!*-#Jg zwe?-=9_vzTf2+r8w0vrL)w0bp+tSt2#Qc}}1M>^!d(9KgZOzf9A5EpECrw4B;ifE; zBjT%wcVNZ8#SwiYQX>q;PmHe^A2iN1b~ZK+|0DeU@MGay!>5I_@L0pIhLGV|!v@0` zL!O~d*tJ>{17YrpA{npr@*g_*>+j*pQjq$3+zOIk6t}dXXgzKP$uIWiYa-9R7b)_r zRjeXsoWtkty^R!k)+$yKN}bGwl(dt(Vuhr{n+7QwQIaHLclGH;O1>1`70YB>BIAk_ zjVPB&iYXHhFCaxD$|aI&t#}W`NYRLLv7|&qi4=_}NrF&Bl!783t@w(CGNQ!8RP+V% zRQ<;Ai1He4=pxH}+!gaBwPgQCXZJh*K#I0S(tk_6&HFZT-HQ}8;9SyHrLwItQq+KR zB(<1Vd3HXG6gA*%NiB*$`^V|m^O2$koF%CR@4dG!FC~B!HQ-D_?VAFNzf3}k8gPcB z=IvUzrEk|Ck)j5iE~!~+WQ-Iw;513iP)nr+MJI7oOqJC1zKssPQne;ODc>RhG{VS28+K-WE9MgtlClrbYXWDnnT`^ixBa{TA zMp5lYNouf?M2*F^sP-czHSq8J*EWoO5Gktt2uX>}j*+6;50_LIblV zHjtv)50GsM*9$4CeSb;mdtX4c?peVhvlF&OwI@!fD3wNvYEPU{;lLn8weKPO)$3rV`_?^pSy1Go;jZW|DKV&o6xF_) zqA}PII`BZx{>7^P)wI}YR_+VqdsP<&iOD8Lz zRka=|sy&(X(uObGQM?x^sy%TYMcpA%RC_Y%MSQRYMbhu_6)@=qXC&fbDtbF9)PPQ} zjJomed?it=tL$}Gw3XDVyObIGNYS=PQDu?hPP>_iW)Fq_G``KJC^20K_0rMnP6wxvGeLy=SHDIo!R(*Cy%fhxlVO!LIIfVMI z`{AOhK}b;pW)muIPW+pj8zDsv=#|vU-aH}lxuA3(>?}zw-wPZ0uG)YU)jm^FOF#J< zYMr|xMYV55s8Pz>1}Un2OGz!6{c7lj%YqcuK0{KA>mIwm&GAU2sP^fSTBuBU{}w5# zeHx*>J%4)Q)Gef__AMkezx?hIZpRFysP-O7%~9r)qqQ@s_RS?Vv+edVFAwgdv{mhc zohqs6>Z~QCsP@eyHDlBZD<-^NA1SJRQ%OzZtHJ zRDu-MK3TRk`P{huzA0CcqS}+$E|VGtVaJ58kfPd?*)9{_s`K=W-})j&wQnNNI9{C% ziWJqJ%yt>8yeF_N-3Ob@b{VP6cKJxOMQ2@B#LF`dRvh~SNKx(MBqg?KMT%-4D=Coz zLyBtONK&F62Pvxk9g-5x5>iro9{`}zM*{J-5X*U{aPWWQHj+ZzhFLL ze!x7#TxgCr{cbvAI&9i#8fPjn)r+_u5r{Ytu_|InL`zuj|BCUn@k!%d#>tQYaEIRt z{}5IHcp!XUc=zzsaEsw3cn$U7g8uWbaV3NwhDPc}PGVaMI?1GQB?KNd zj!R26u7r@I#&K!Glu90KsO_`fH}5b^`^2T4MjA1tl1Cc?%b?qu!kiXq#gs}OZV0UB zPdvbWT5C<3v2i8D8#Ov5AD+gQ5NXsnE+3o5l@MdpI4&QU#+49VR6kB8-lSCWxI%PO zBnz;cWY$dMN(d}!G()w8kfO$Msx1#D#A({Ai>7I(q1y6jLSSv?^xS#vujU#?wdLW2 zzzUQRrzILjwS{=1MyIH@5J}WHPPK&?qQ-HmEkqC1kCV@D<4TAdY8;m@|M*IX7|_2` zHb~KXPL(87$cCY&xx@TO$wu6jBvcUdg^-f=aaWR1As1!|pWmK}l(dq&l7tEc%3eT& zkdj7nSCUXcYzd2$w2`}#gbD>}MGR8XMD9uwDzs6T6hcZG%3Vo9g=%d{bGa)?sL&xa zlUJx6rExwneokp+Y8P{=e9ljTF@$ zLIq6cq^R?8k)qm@h(T=9u24G9DZUaS2Hj%;hpFf!RPey6ea9vY!wtVlzNC_b3IkSl z;u{DdMcX2wLf_d@ySg0x87XQ&5-RkL;_vcQq^JQ&s369OkfH`8p+bAU0Q9IokfH`8 zp+Xxcj~r(sMIRm#DzyJ#?a)uYUWyboAPE&Zz?!KmCY(Tu8jyqv?eFC~(7KVL1|*?E zo54JUE)$gQ;US?yM<_V?I-w_0RC^LCFlGM0E~KdTBvfFEllBZ!RC^LC@Ev5I88#g$ zsyzu6M4XKj)t-b3q96+?syzu63L(e2U~NmJsP-gOsMZ$Mo`ecr8#LQ`Z`Wuh3_DdBnAw{((p+YC}q`@^(?MbN6Ud`HJTU2`zDipkT{`%FOuOdaY zC!s=y;+Tv;ifT_n1+lxjph(yeUkRZCzPRu(6`jNgo#uYpZ?LPCG7M7ft50HtDIR5U zNu+37Bu1Dv;FoVcyJA6#8Zbt_m8X0-`?RT~KT_0y4J9?{JAk^+MT#0QT2hlU_-=v^ zAw>LW&x&zN9Af;2HZ2q^JSwNot&$7)Od4u&$)W@N`N2nMhFs){)dG zUbi!MnxJ$qt|&qz0&a%^*d!cS=f(3?oIgcSx#G zU4;WFs=ZxO!W%(~YHyR2cqJi4wYN%2ydaRG+FK-5tzT4ov!vL7$GnXjc2?S|_Tn;0 zN|c2lMYWHRR5!?aT@1d96xH4+DUq;8ifSJ&DUr-ZifV6=lt|bkMYRu;RJFE<_7&?S zB`Q6zEuwwJT1izqqtu?q|HH$I!=f%ly&m;&)NEJ*pt0+=>r>ZB*Q2gwuKup(E<@z| zkk?}hYXi%dmJ^nZmLZlD^RMP&^CPg{UyeD#bk6jYX^E+esX@e-5ho%x zLZqK!{MA?tyZTKr<`^SjmA|LLmxOnLz5Kp}>i>;~A%>K&U!l9Yzl;!{s1I=*Ol-Ha zEgh5{-PJ%2-if)a*^Q$)<3`Kf5i&x2roPHYvMrqpIyP9(G(LxARNlGc=))tmL9>id z8_JL2Ydjy*_-vMOY~?hzP|mH(2({LD8{4ws*WZn)^EBSeQWmx7Gkwo1r2PVohyE{y z)#HYyX?zxIR$MkN>(y@w4-@%C|E+Ax8hw8>Y!Pz= z+lP8wZ_{!4mJe4DK3C(NY|AT8e%Rsb=QO^6rPVb@e^>ZA;d3#>{X7u}jw9n`GV}I^9ksXYoKbb6{+4A>R6ue1zKFMF@ zZ?gN)aXXv-SqiA|H`u1j1ZsYukpCq|V3-?RV!+{)O;-ra$(7OTD_E&)BnD<8yp54OcFxKT*yK$q4bO{>X2I z5dBisa*faSMek|Q?T#^W5_v|5&-F)s3*SUJ2numTz^Co<>Hf0p)r32Wr=wpX*C*zw3DB zBlP=KpYTiGhvnW!b=BI>@wGJV@3Q+BxyM*ahD=6S?7g$z2eD6ZipGd+l%z5Un_7`x6?bdk(KCkD% zJ#*iXvpq6GPQs6Cw4-t7_+;!)UcRr(=>zlq$#T9@M#w?<2`}@w_;roX^A)~!=KcG+ z4JZAv6Fz_U^P7KpFh%2YeX~~Yi2gfjBjNd^fAxAzY)Xrws-DHg8lS^D{F6FxI>sFkP=E==CK}dNV71Z-oXnu3S@d zh=WWD@x^RR~len0uhjp=V_J{pLGObZ|U z^SN$sZhTwgn^nTxyc!+NDez4_vboRE4$_rwT)CoVM{{Jzm{G~6;o*rpcjuEv{?$&L z=bMmwH16n__sNN29$w88=lW7#z4>kZ&eI48Gw^DHFl*)AF_LBC z(s8j=>p`|}aK*2eVipB8KBaQ8yqP-jS9hXM!{s|ZrE-zPa@732hGmh~7D_DFx2@#w z?=;UWN5=AvD;Lz1k*vYkxN?3i$7TGUQaMkaCKIMQ-qBL~AZJT!G_IUmOEdBbXq?6xsmlng}|R zwYY2DnB|||CNy_NwYIy%YpULNoK^z2^i!9!uWXgKeOeWFL{-|(w)W=ZuQ`G)V9jEp zPyTquLE7eSs7gavIHL7R7!wdQOq1QTr`Mx{WssUy#hp;C?R#H2@yuPV1r3|IeiL^k zCh7;$Hg`d_wu`2gb|AYW}tr6Djq$v&*-EEIGmbMG8Be*2sINl&={snT#) zsapoBG%VWHBKE`6-^W}aH1|GL8iM?)_;05!NfUGdOZ_zKOx6=y2+e&@l?DZMZRfLC zrR|>x%{@<*22D;B?s)RU_M+`P79EJIvh|Z+fV3*^cWU%e@W$H@7BmEBrB~ZF$^C$| z&Am>Q1_e*Nknr3eOwc*LXn)ziKbGz$H1|1?-rNIbP;5yQbha-h_-f_(o=XVLJx=V& z=G!ATU7huXpuH@nx%Y?p?WPl&`7)JqUlW@9n%M8Vd-3h8?@?(8$QqAcHgfvKZG;9-Q=>OtS0V{P7x)@~ zHf`jlXQUsSRt4^+Mz2$6md zQk$F>T0_n|8>V|6ncYoL1-^V+!B0c`$wWqSXtiu|{u|2hkAS7qkrv{ipZ}4bfJXZ(!WedinLKLQAAV?O`YKqN*MOmX=8iEhbI2?~s!}uKY=rf@Qa+ zj-UF`S-*@8QbMrYL$zzp1>1D&-{GaV; zZfdoQA&z2bR!#jfeTi9ZXWr$EA&r1{s&9m>9h?%HQKJzEkJ=V({PDLVGBXty0;jZE zBl5{e4uLO5s>Sc!j3E z38`&d2~F$#U~?At=hM)`Yyh<3hX^Q+Ik2+9Zd@$rEJp z)bAwm`6L_s#f5k|roIWOV_b+AW9pAm0ihJL+EE$O#D#bTrvA55x#SSkU!sLFUpO1H z>fC8nUb1+6a)=jUs!g!ok1PAg3W(~+OE3{q*2bwLAbD#hhj;;|fZR_^gfj9e0+Mnj zhoJltq11Qy6Z4J=kuWAX1T~lliKUbTB;Dua5ENn})cxd)X!D1Q1SG{x4h@n}tg?(| zF9A`Fc}b?)aq-F|8}`M82GlqzHI55GJ!ZAv(z~-?jiXZ4xKQ63N2#2=?o!CvAog?MDaiN|yj#A}#d8IggjxxyAQ9XT@R4zHxT|!xE z(T#xUP1>!-d8mL;R9UT$RKPAZj#2@kh_c#mrGRlED4wi#lq%P$`cYE!krLv?l8|@d z@Aa{sd+#`LuBRH0>*{hcLLK4FuBK-!?C#}*A342M8!OE!U?~&t>9F&@9olO-Bh*3T zt!(o$lKFym^I7tjRl|nOl#XjgsJ+I+*ln{*2lsRoNoU~mSlZ*mCY-ySqP4Ha|Nje% zIve#=)Uv1^QL(P;uD4wexhA=CT;|C0u=C%V$bOND&Yzv{!}|XZI_Ek2I@4k7|Dxj! z$78St;4nu^82$gk{5v{JhCMLM?`w$mals8mrmEvrwq^N@Bq}aV8hmwlNsghoG>sjUA z7F)(jGNFp+J8N`L0;yGsr>Qn2D#d8`SrBU1*^?nyGC zif1`%bWZ}QRm){lO_Yk|)wFx^kxH!s=Mr@mb>*~slw2xFqO;fylze^@s=&#t**)46 z&uI$dHc-omY4_waom$1ynu2VtEJ<>ac8`)gvnj{|br)7nV)rDOP^I{m)$ctCBv$e4 zrrMNpbBddecnPUhJi#f>CKl=={nC+&KdIg+^o6S4bc9T(;@QsXRwY1c6;F4f80uOM z^rZ4jnp(v(o`TF(CQr{KVh~Rzp-OQptBFB?)GD6t6it!461R|%-j8iA{-l4D?Fn_bRnYaX3|Z$qj-hm1IJd;&oQPQVFD1f#ZoMC6>Y~ zmEXVAD#Zy^PfDzhCzWJEmEwt3KdA&#tH2rkKb(}l5f#T&J*k)-L2W9@get{5t$tDo zq*j50iYFy6SG-dCo&#qU$(j#6@j4T#6vwstNoiAx@2d8{nXKoVg)v93(7#HMq5!V-4_G%?rGB)SYyK|qJbM9rf{Ta^a0aE-u5@`S^?g4_FH7rF5 zVDw0GZ25_e5U3n=>*5~CkOx|h07egxWYj8ZZ7g7Iob50y?vaFfpeWv(fit5h)|*i) z>Vm~Rl0Od=MF67*C^U*t#XU7n0N#SDNm~|> zNo`q7R?;(xaID!`IBHYHJylLGq?S_LQ|SaC{}=aEI04A3#XV6c0Qsu8r`!oZrZ4V^ zH~?6nR@yU>t*x#9#i}iPuf1Dz4H2hx&$;Hcaj946XwT9fk-G^&EhLe^g8DaaO}Oqe zMAyVdy*1<$_n15FXsWbFWNupMK7yD0r zFh`*$#fCq5;h^4*dzfsIwP~Rb#(sQM`|;V zo^YjPS3*Yg`RzaTQU*+EkI2}x(2%j*AinS4q|g+nKjG zuLSn~Cqlmnog3N^ispWso6db8_k!Hbxs!79gMWdO|E>zQ29FI64SX8-ecoOcKYV{27CVqXZ~H`-QlhA7DD9zlILd6NuC9s(eAI@ zeeS#5KX9*gAMN@EzWU$mI?r{YtHPBF%Kv}(R~!d+n>C+IqM^x%1F3bGn$(dAlW2@G z;*8z0h#QZCFv%nGEMVHmPF4m3Br%3M9k zZY{dOrckUhjk=NeD$%CY(UXj}Vx7yoca+at_4KXR*$vBxGos6wJ=UFs8*xc=Ej5-{ z2MzMNbEI6rwUBjF#gSv1dEE(F90$gmU3UT)aUi;Aa5m>--DyHG;=p(j$>w~lI!7|% z%a#bR${Y#A7iBJzE49;jl{u0z;7u~Q;Z0s;LKeq?0cTg40O7b?`IXj_)Lqq;WiA?V z$$2dUGwP1#hSJ99NPHe^5sWmb%EE`dU7JoHe4zI4tVPK6VN1B$q{b?(slj;gdU1rt zYoD=7Gh}hxi3c-4BtDzzncZ9AOX4l)vemRYJ@C~%jM<)WSU*Q9f`-7o@{tQZ&i12sk2FS%>WN zsu8j{?!?5Is7PGwvck6HP_@desu^+M=JC+N zPU>+{0TRWU7Fv(yJR|NWq=WT1(&vao>k+az?sZa+07l$HqS#6;s>kOiHz66Hh~I`~Me(U4l!SMWl z<;P*~e`o%@{E=|-e=6_Sd1u1c|M7Wwp|?X1ht3JDgF66=a^Hj9|Ci-9)W{EC`~>>@@2)?$%LZ52nd%xx9=sJ6iLF%pa% zwzlu`K0e0E@wLVwhAd7vt`MiO!bR}I^Y#iF^Yy64NgRA`Hvkzg#b;f>YT?~Tb6O*9wjV0=}qk8F{bT6(#;2w9wP;*r$^ zFcQEc(Fp3KJZ>&Vof9Jn$rwJGiz69}WTPQki;$6o+=!&C#Hc-536hitT<>HgfKH;q z>dtO%B@%8VfL9`N2OMuz-ps@AYC;w#fL>-dDgqb@#wtg`u_T+8P2^T0UT!29t90mk z90{xv)niDs5+NfAPA^&9fL1E+UN+$JaU;R#C0pUdaf*Z+2}Un>TsN-wj&dv8QVr{b zEKWGl%W49I6F@I{OoDxmxW18KywYJj=SapY9n8a#z$?*^EEGZOa3mv`8?Bo&dE4Pg zMliQq2XqM}4oHM7P5{BoZaV}BCnT?=NKILV?H(}_j9Id&OLZ*`$(SXZ15~5Ykc?Tf z@J3lhLjtoz`>|D0)mAhlqnO**!|5pO6vt0P&ml2-!u9cnj&nST8mJ(#MGJAS7eEY80GA$l~~RCnFHRh&Pic7M-FI z7=ep#BP5GX(FTN!#G6>%S$K+duk7C0{NAU(xa}PZcj8+~_)6>U9Nqv(xDjt8WW!71 zf)n{29_voX;&_8o-3egC>q!(_55~F^8;iuZuo|%iIIMg{_x7SGH~is)?RJeK@j6z7 zQFt^$Mfc9#&AxRrX!oBH-%R>2YKjej^fBTr>yuGZGy)+-{J%D*hsXb)6~0t>Go1Z5 zt8i$+rv<++xS^o4U|zuyuzb)>G@YO#FxBTsMt#XZbxj|*8e~~0n zt{`4dD;kQjYE4b7wrJw$#eJ{ajxdspa)_Ma*usz{ zNuXSqC${8;Kfo8>Lj_WXh74yU*}@)c1L`!#8a5Co83AJrOpy`|$p{#mQB)>L=Tt!sKb^smQkV?~m3KesBv<`%SXb@vpR2=G(8h>>KJ zj0M!H)iQmIBwO=qweH5|_9bhSB!QcueV0$Y`Aj$whU`l?BgqJwgMHaxpJW7$ee*^8 zawH>YZ1zI?awH>YtL5D-S90?bGLn?rwxwBpF*a?XStrG&eE!77_s{-}nUyUDwyt{( z4psX^2uHJ$a3jemTidWl?y31~4>v0zOOleZsTGZL#kq0EkXZ?5B+j6Lh_P90wru)H zFrLPu0W>Q|GM>h!P&6wcBMG@@TeZPeQ-^+%@_xYWTGhQ^_@~bf|LK2hV?`3;{2*Lp zVlyJzx2pTNFaGkgvqFd1MT`Waa1PCu^f3~Q!nMgnZ9e1F5V9m8DV$~B^*5Z`ICn`u z*_Uuef)TiKd6QR%z@dHF6qNu1hcN&n*=S#mWK53DxoBTPMiSx#Av6}7Y;jnC6(jfc z>n6oceRL?;k>Av~Okiv_YxPBa(DFmyuwUuI1CR$A9%wyC{L}m-I0b zjMBAR2O0^an#^hlS&{%shr_}qad&vp;{s_7yM!|mjM=fZCbTb2k4B=6?92Es+Lt3+ z37O3nYX})h$j#lV{jzx+?VG*C6iMu0E@2Zo+P9)RCdtB5+a*QsqZw$_C9C4Gzp zqj>Gt?%rx#a}T#KAxjdH;#uu?+1Mk`gR?8hzJxOpP4wHj-Y+{0uAGJ4&wty zGG139WsVf@#`a6dNTPumizU;cePMA*-ur#BZLCP5o)uwPb!gx0``eAg7OLZpDU)ye z^t^3CAG9y&V0n<%mLw#>v+R4~e0jYX*_Uueg3&v50fxY#eQ9aONNl8cJ4|aF zc_JZMOGo<>GLqQ9jK!9<(7xHrT9L$hyGSs`*0s>S<*|jXP4o9w2W*!ZiFKq8Ti-(a zl0HUaEg@U2OaFv5aC{(SNn(vaTJ~*}*Ea7Z`x4GbtR{&pIS}nji$q3Z6(QMYAsin# zawQ?F-~`SOFJB|xjrJvEB(cIa*1;Id4n+G#x>vl^bk2J_9<+@WNi1hYSehW(H_}~O z{Lt_2-1A$zh>=)E`fOkL3giO)UFd`MC4G#%`7e3d_?0EtSXKQTAo=murm`BJq>p}uiHPv1jvLtc5Kw9>c zm*Sq85=iR{6D4CBiMb?^t-YYJ*b-J^4k5Eg(Q1yIO-Po~h{hshB*F6~SxzGwtET(- zdHaiNFCW8PW zJnzRc7U7IUj3hD>ps`r=keE(LW>(c@*>~hfLhRB<%EW>$v{rR@-GFS^NJ4DX$0BS! z53L5lmrTXHjad!SCUHt&>^{R z=H8!se(t8+s@#I$yTM0;=fb{!Gw>~(^mj+#g23j$q=3gC_uuY6&A-e)&L8l->AT-| zrf;EdjQ4AAkM}n3sotgDVzuMH74G>P3TOR2;XdEJ$zA2nbG_|)*maR>oy*AicTTTU z_%ELsNw!X=E>RFoMmd<>0c9lFIvHD5R1RjyND>awQQiu~wq18mB$v8JmWJh`U3@~nNgkNxxcb`c}Vme6(#pFU&#&&RWF!Speb zjA1RYF2iKqLPIi!#bPzQorao%kz@?3YP8tx`mvCy2It8f2`gvV5Y^=$0*MypNVbHw zcCWatW`aPXg$Wr+(h{0Kw)ORYzxVL&S^-51SI1&aSD*9I@+)j}MUu3HmK$q*`9R^H z`ieynv~YE7<{w|Z^1P>4+C_{cTS8+?45|xhbz~fiEitGrq#+r{DnI!y;BBLX7HDA> zHzyg#V$m8}m?Jlkg{O-vx$mDVWTJ&Ray=ne%fyuP1rjYx$VhUX-5_C+;rOn#o)z+w zAzFA+Y-;|xvuDPLghi5TSrL{zf)<_>tD17#Enh?nnS~|Cva~YsC(y!Gv1wyR{yqFl+IbgAF13qpgEs2t^mbO2p;&J^%hCjkY}_ z$>VJo9E`Cn7IZ;nchxWd^7uUq4zY_ENk+KZ;q?8VJk-e>Iq7308R6O_kxRG>2w9v2 z!jBFSEl)i3$uCTK@*}zc7Ax+$^5w?+dTo0~l6+qZTdhDBRCHJU{p}5VR)_5(MsgZi zgGJTY3rHU$c^o0Pj7Wa@%%ewh7Z9=}DG8QEAz554DI~i&&PXzP#gcE(6D(3sLIxuC zK$b3yoq;1K6Otw0peH!8hLFp|<+jIM!9799NRp=_ZfXAIlgFL;TLDE+z_P|yi9g-G zWvgx0NRp=_vg{l5M6`R-yXOr%Z|pj|h>@%!ecFF>6MT)AyS300q>qtgsfhI-i91ZE za!(MlBq{f)Se}?5H^|8y#+D}tXC$NaZssxc1dHjD<%DGG8|Vp+j5s3E6C62_kZd6Y z`vf5)Nx6+&t@&*}2zSc9cRBY&dH2k%s}j{uJZqaZl9YSNRS~uVf}SYvo^)&S^mAt3 zVHYuy<4GU35`vx}eT-x&AsN}inSqcc$zuf4@&pTlEKd+FoHX^A9$i3TzmXhAFP(Jh zmGP;v~U4xC>y7WTSV|%hP^l z+cT1s8^&c3UyP*_p$j6h>fYuDUTd9T7cr7!NT0T>RHezJkC7Zr$R=ToJLN=$E+Aw{ za+E+?E|7Y>iyGKtmoyNVcq^T)>c# zB;VP>2#Fex;4Y&%=RfT8eRYLx&qz`pkS<-28)NG#$^~$;_UzSN=MLFeY8Nq*!$=>t zzM^^o)5k~-C1mq;a8~j+UkJl07cgW=@<@TSTyVmv>rdEI@s{lZhBJ~wNFv(;jP_;A z5XmD5$-c*+eL3=QLbB{Av@aneNqH8!YT|1zYPz`Vz6@*PHLw!1`}Tj{e^HNZEGzy` zob_Medd>9< z*Xge1E;Hxbob-3b|2a8EFI&4}-_P(WX|kBn%Q)3B@_?aJg~8U} z8))zvfMlGC#Wm8i1CWeUZIc^K?-XyBp4E_%Ue2l77Qg@OHT!O|Ju9Hyl{apGulSjV zZO=w}Ij7noE?It3Ccny_Ba2iIePP{mzQ5Z=j9$j6SlWW@IhsC3FXL1!B0~#PTyONU zMXT}RFp6^*a|?4MV^uNQT_F1oyqzN%t6C$O@B>07T9_jlt76~P(ZYm`^omOuaXpSr zo^oswukWs^*mdP$uhN14kzS%#zF6xpIE=XeB%uddxH?v~clpFy{xFnTcoOwxwyJ;@ zCVh-v#;PJ8{O6jnU%ez`qlH;?+{;+igs;S97LRcYb0pjSt1hhaDS4HOr)ZM}T9_k&Sz!#(FtzixE8>#3poIw;>E(MpT1DV>p8QCP7Ov{9 z3SRQbG2eX1EG$pwkyA!6*7h@TvqU9t!&R}^vOBhWuD#SQV)Qb~#U^pIFzFNSEzt>y zoLHeR5ya>nOO<0pADzI$-(JS7A|g#|STAqp9Lbm!8~)J=94VQVa>5C>6-~S7Z$c(I zfg^!ip%d!mb=rptBszhRk=~JPAZd{od&m>s(Fw4ea4%f$aq7jkMI*iPJ{swSK#Zk0 zU^B0bO?l)3|9Qtwvx^wLjC5_HqzH5Z=@af9;p_y07`?-(awZ-8iB6yh+3025ijDi& z6F8D_D~3cTaHQl`mJ^oGUvt{;O3vU;;7G=<>g3_kA8{uTGSYj5?Sw$AWqn}c=yP5a zP;^2?Y})I0kDU70m9|AAz4F=_=>%Vlttg-qDqnAeS=-Z=sk?=##R>438atF zJD89xPQ?zvk%tnJ?Q}<9u-LbE5Fw+Z{xiL;+9RrnzTn712+3A?&=(w8M98J5eVX&f zcV!h;~;O{&K_4<8QJJ8|kIY#E_FOqOn<7 zzQ`ke>fbo$s@XA|xC4(HDda_vY$d2c1A+uhAPMVJyQCoxqU+LOM8s zBmIPAA9rw6;z%DMH!l*2kTM|$MBE*4& zTdtMF0-eB-`v}R>*|8^Z{LEuAm`*-6NC zwDC*!1PvKU!hJF}(cd0%zxq(2T#}bPK|s5!-+Zp?i~H!H#z<1$Eu);kmK3BDM3GqS zoo{=uyLS<@#!k|QEiFhVX!;n*c0#f`N+%3Jwh@x8ilK#Bu$pAai0q>;T9}X`{$G>x z7ZLy83itns{r^_{zqfF4;fR6{3w~R0MZu1O83jY&27njxugKq$Ujujk{VDIUyi4cD& z`~Km3$#=8wBslYbi1$z4$Gn$%w|b{~5B0q7x!-f9XO(BX$L;QS-|arzz1Tg%^_lAh z*Nv_&*9op-Q22lUFOrh?_^Em5u%^H}mj>l^BdROG>7N(h68ZUim8)$pnknE;fy0N( zOC3sE#m&PzM4K*;z%I+kWH`Z+ENP?|i5jtYhU>4b@-u^)Gc+V4QL&%AJ8SpHGPg+$ zR~nL$sO4||GPmd7QSp8?Txm!~q8i7DyUjv~miRG6q6pf!rn~+eV^nWMzO?Fv@u6A8Z|{6A@{l*l+nf<$!OH-A;0*|&?&N2pp7|_ z(Wpj|{QAaW+{PTqXcSA%M;j9|k}71Q(GJR-MjKamPuh3d`FD?f&^A~k#rf2te+na) za2vyo!4qFzaQVge+eOS&KDFZs2gC-tm?%N*n1#hDMx;i|lcUE8EZUeO8Ih`a(Rl9M zzsS%ZZOoBCq%e9~aX@5yOE!)+=19h;8a;nM-dp(-ZexyQe2OKIqm2m}Ny+Q^RL5_l zi*eA#le#NqLgn4I!6GRibIa<(H(ywGu{=Qq+wr9C`GeQb{qfL$*+tBhmuy_h4=u!Y z%%a|uhwQ=5!A2W%Bx6+B{IZ-Q8KYW8#}J^6IT9EZdZYe{3kJ`bbq%*ML-sOa<`Qe$?Ue+zd2rRrj2G?!Rm4kbc{=;a*@^JYQ5%8CH9<_tgKv z`aIk{h3fAxif|;OQl%otyQ4{13R^fwGAgy~z_#nI{%W{DqV+ivsFZE}5pb-3?|g23 zj%19g<($gP4!>xFKw=9gWTaPK(x+N@`!KmYEud)r%I?Y|51+qd_;TB(kzU&6;g7M* z1aw1XY_9yaMOSEsdx2v)xq%chdppPt25otwfrdxAyT}j@Zs15prpD9FQs@SbWMpdD ztPxdT{!M-xM>lXJBU5#4)xN{_|AV`MBN>@uO9|)(LPmONX9p}Hj1#w=n%oT)vC5)J z>wa==khwwI*+JO}=!S~!8L{{mkNjelUBu|!PIhB!3D_w}AG5cayfFgut6pwjBZR z|GC@^9Jzv!3*HQf^`FmPm!UMefg_g@vRSU&N+i00kdaUiA}v~{%y$**%tNQCH741kFgX5bVDRI{hHryZQp+-bHifNhovf@ z8%Uqgy^FrX4eYK4qnBkJvN%?`K|`{vL&m67Z_tqQNyT~6WJ%@*4S50~*NT&6m(LJL z11*MQ1$9(dt@`MF!iG~o9-Y)A zh?#03aq6^Y-I_FNnyDRxRcA};*5p{h6P22djg+wA6fi|6H3?#-1VL2dMp-wvYHG5Z z1kIG7hzje}HZ`muiKwP^T9GAJS(9PIDWHiCYBI>^6!1frB~EoW)=bQlV1f#(64`XG5H_3wF6i`Xf|#jwBu-_X=&z;)0yDLiu#UAR zY&Zq9&*{|!F;l?zuqKYLX5ni}(7x|8IAM*HAb!@kj&}oERg%Md1tHCpAbw~|D{)`1 zJRe#G^;1}_=U{6iY&Zqv&#CeRF;h!PoaRO~tg%ZB&D0XYY7-#7nub;*C3qfIJ~ry- zKf1G>SDuh&3V0q?NSk_413nT8y60pl)PS(z6c9eA$`iy)38tsSDNd-{osVvU>nW@@ zBH*hD8%_b+b9yyF%+&EDP8%#$t=T1qW@;{Bom|ea;S>-%hgUPm=+tZhkvv8XfcQ>6 z3f0m(wRuEUmtC0{PC@3Q(>uAinM|COx@TD$#nC7fPR(!@M-Vd=`ya&7$P!LXcNRww zGc}FGX(Iq?N27(2I!<7%L|<+2k-eJT@@}T4l2najqEs3I!l^0FN)p6O9ZTXg0)pbG zR~xCxq~x*Uh_h#}XT2{xxnomP9% z#tqqC*w?ghYJ&3{sojTDWzG<4%SLKEy-#b)*86x%E+yo#;v&MY$FW9IPEF599Ye?( zc_~a6M^bYNr%Y!BsfmPB&;Gi*2wl+0oNV-Pbfmf;k8(8fi%0#rVE61DzlS}eo?7H$+h7^@kRSAYMt z8?ARsHwkce^PgUy|M*lo|I$n|Zl;anD!5@UFw>HoS$0sn(sVnJGG>~wvrUh+zx4R& zg}NOG8%_f|bFu?L%(PgAQ+Ch>bhHC?@n~9{v4VEcI0)Jyl66ypnPxOii)qmg^a3+2 z7Uh&O>g$7U2aaWYZ9Qz8dF=47bUP3>oCdz;WCwznX|evMUaieU$`0&?Ix`J?4Y3;i zQ)bYxjJB!cvMe=K^))QeHk7;MIAie8Z8Np%YgoqL*1%D0brL2bTAZ(fZAGJHSn=$8{LHkZa#lZ3`_gm+&aZ0QD~+aubVB;IasIHjb31;f!Cp- z*PQyGYx1|h((6Xpa2g1nL)&I|^Oev8x;w{i+BXPCL^@28pJ{HFl`47CoT{vlq~#X|W*~3uz-S zw$6&~t@4YilGIt>)l$&&<$rp47HsIS(W zu#(a4=6}1k7C(2bt#33f?vBPn+Nus#GW&`@Gc6b=6cV38)ZSFxlf?JUbTMIRNdHZd(reDRyU{qRyoYW ztQ&)rrXkN#uoywq)k+%HswQ^H#Ovm+8Fe}9XkyEX?K$gySB}kbRKD} zbxy1u(GD{mBJ6xYQI9xG^IRoi!|7b-+7ZM|2T7bpQBYlC1!g)xSdD$5njGsVtj0{x z34{%&ea>nUB$^icR&2BKrA5>eu8WYj=+FrOX4*qKICXY*eW00k6Smg6c2zek@q}>N z<*YA3qUju_uQuJHzExS%t(iK5ba1pU&F5xnA7M2rf%YYAICZ+Sz625R|LUAnPSMLn zR~BtAnp-ry@YBL)3NJ3)QaHVEaKQ%!_Z6I8u(V)8fjd8w|1&uKFP48)-rw_n583|> zc{OnQ|A(O`Lq7^_fV=++a^Hs2|If@_kvlHe6Z~WFf#8pV8-hmQV4x>(XW-1h3ON1$ zBmYzW%l+;CS^gn#@84a%vwSOkQJ>%Y8l3&N(_8C3(({GqMb8bMU7p!+_TOLKFS&1Y zcesyp4|2Wdden8LYrAWjD;L!L-ha`|c;*AmMymf-S9RCDb;;aY6BJ=bGn^-Byh}L_ z3JpA0+|0<8Gi#!3kmpiWS&c_^40a8inPK!u9dV>JG=>dloEOm;#LNII!Z})NXEHsd zd~!80C^G}AX^7P(N)?uASXfp=tTvgT?MQAkBhE*`&Z*Hjv{_~M`~mj?m>I^3)KSa2 z&FBSYMl8I+3j`5S$MxwpBWySWOK%PgN~@b#b5r6pJD|;oZJ8Oyfz)~Q)~nHG9LqS6 z6KP==x0xB>K&XR83ejX-E+a#A8~$gf$tBTVnf)X5Ic0&2UzvkxVoioaz0ukGC%! z{ZD&BHZzPB)yc2jJ9OibR%V8=B9&CC8;`Kzj58}@_tKde#)`D|fW~9&Ff)jZr_EK^ z&IlXL9KwvJfzf#7Sr^SjGexYBMrYA@*#~x;8K6h#Qf*xj2R72m%oGq-ZSU2MN7!&C z-?`-x#LO^Gq|s$G9;2Tb#)+oO%+~FC%Oh+wlgsSjII=~$TUsC7x@z!qb|Z>rf~=6n zm(h5U?qzp0_zzwBv|Y%|FuJt<)CuiF7J2lRM_QQ~Mwhm~4(AHJ`G9Ub!iF=>bg7yk zX2wgt(D=AA9=poT%rKUu(Q(!C7&e-5GdnmLZ_?x}KJ5nTCyZL$taqS#^QAOG}2F7tVUyT?5Tv+#zWOh z+4XeMwAkN^Q>aGk(MUDjtL~n;rS0c~sDY*T(hJrWjGbM-_9LxJ%nw#a|fIs za+Pi@QaqeK+1XeGG1DxQPzxK-4#eHf^lo~!Hr=8f2pdg{?I>smEp9+NRCjL}&^yg^ zC%r&h*~CUeFEG;`gxxAHjrl^i17XAIUCwqOh?(9=;vDTjF@c$GC#)93q8$huO^d7K z&<Jt@HwQ=8fJS=mloFg|LlJL^hmr^1Hen2pdlCaJBMzgJhF=Gu=d5XCJ>yH}&c*gs|cCCTD{X#7u7_ahlW7AjCSO=@VJq zG}et>rJ}n@9*ch!tJ?;8fyTD5fzS)g^m@W->>C>f$F3u+#=fy(5H_4%>ud*tnCUen zPUCK92jZB~^lD}Y&1h%`Sn8E0U(L7e5KXUQg&Yk5)Ox_3f+GH3CGP)A75x&v|F117 zEBvbP75M%yvj4^R|7Qy>DX1@~E;uaz&-qW}pO?QZ|LDAb<)!oP$U7r%d0uhov(R&) zYeQ|J`Js`ypXWXWr~jXrTb}C+z8<^>PXAjJ92)p*;OW2>fgOSAfx-T_{P+3K^{?|! z@OypzzB_#<`{w&bdO!C*@4dmh%RAe9h|2e0?J4uP+-djC?j7#w?!m4PTu-_#b2Yjm zIS0Sv=09si!0cnIIcooj)pnJUYiQ_-_PK0(1!Ak=Howl1J`1djTr(-QEOq8T$DMIK z8M%+vcLFhO{8X(C3e|=`e{pr|=XN18!w5@@IAUwUOwOGs zWPrI~^3l>i-g4da8JjGuOa@{|GsEbMHcZRRl=8{!mNGNL=!@1+6)n=Rr%5MJR1wEMpaf@BO`f@W$z^)B%XZs&`-I&xm3n#wDA({ z%?9EOuo`R~+G;DdZ;oa3MjKMm-W=OZa#xg;+&Qi8P~F^wjb=Ej(Iyu(Gi?0*cF)Ec zKfZ#QnXwwJsiK+b1!jh^8g(h5Zf3$78DKRyjBM%Hapf^h9o)=>G&79cXhQ>H@YpUXl9PxLRd#Lb1b7WTACNOYQjb{n^|k#%=5g^%+cOjsjxBAI#fRpLA?o@QA?NHgHODR^tm9}+*l32Q z1#0PPXm40)x^ZPu|3^9Yh!D+)9lGcwEpH9&9qFDkaP=U=@&mVj627XT$#2yF+c#-t zW)@KmS|^I3{b{{@6E>V#=*WTD1#xC(0g2O=r<9@D<22^lB~B0PV}MGYP9ruV`PwMl&;* z&9uBbG%&1aJ$1|@wQtaYkI_tw6*+E+dL*r#HgGDnugHT%s zL*rF<&pYq%RN*z3u~u3`T50QH*h)z&GgD1ib%V5SJi>-E&KZR4wmdUaMdGv!LNp!) zX=bL9u($uuIJSbYS_UE7jONss?in4odYH{1l@OUhqH}{Ih?$u{uhs%Mv>6XR$_VS&;0SBQ{|{R6|GuJS zMMoF@z3_>`OA8wcYYGbs-YIyf;H-iL1>yXE!0CUt=I_m42)F-zoYxJf|8L8i3j6-w z4?PyTIJ7o2HutOCS8{L8?aDnNw>bD&@JadgKN9o?`U7_d&JL^!jPif%@Am)Hzs*0@ zf2i+$-($WX`j+^{dcX3%;=S2>I^6tM;`y8BanB{5dQY_{&;6nMN%v*$4Q|7A(ADF* z)pfFKzH4O8M>!AXMEf|+XuM*3ZRbV%_?n955#@0x zH1K3*vybtO)_X4h)vTVoG>@}e%FI5=H>{|0E!=|h?@gxWaSh8D$0WF;D)8V_7FO;l zfny)ZMP?sk92#p=gSv)gj6;jZRWs4BOR1TxuudSibWmN3VWWMVXs8R+EihU<`wI1F z-(tIu`Sds(EnXEHc(0S$#~6oGki)bx`+#v^e>~A)_GH+ReLy{e*6e91F4ssH!t7&& zqx$Nvj%xo>?W#kcuz0hN5e`S6a4aJn8aY9qa4g%0u=4Cbjd?0DS@#KHqkZCB5R07T z#VWb>POx!?4wT{tSfXV`EbP!NZYa|~kkG3HTm%VBpF|4MDl zK&P>J#aD+j%c5_3l?dn*67hG72TCr9eHs0PscK+FbblDLg*CI%IsqlM9aBB zrx4cYJ62f6qM5_x$(gxU1*{H3NV9J;*|6fvE8k4LS7ss6H!P&>V{}7XURs&>+MOR=(`zq~1zL=I9 zg1(8yCjIBUM?buqE^;;d7!%o9bM}dsU4NwYBJ>SuW%fm>294s@)epB?So95HjXp_0 zEZ?X@+AOT)8$z0WjDD0qd+5g({!x9~M&GdTw-4wC+EDvGiN4`j#zQnL`i5f}4_R{h za3JW%`BF>R>^eN!H*?QU3J z{<_O9WcD3HwRP+_q?Osna`u|!afUzFeM4BIPi|?je4{R1fl2QiN2wr z+Uz@;u+yYjmRnf#4ab%cR-F%RVbM1nJC?9o6pX$hY_xBT-31QD*7e*9rwe~=2}a*U zy5}ywd*q|TPPWY)?HkPsX_+nP8#wKJ_N5^G#9*~gOkwp&+n zSy=2hgf;p`3b~eVG+Jc!8$z0W#iW6{e!-Hee8VpLGW(7qtoE@|`9{NzAgq&bH0*G~ zE|zzOsx1}DHyU;rVbvAZnrj#~+BcNBL|d6qE`bZ!YM%Xi!Rf#G$o8YzcO<<)TcJ=c zVJ|TIh7fj#oH`EIT*9zM-w^_9x#W0$D2j9mLyqn{eBf#Z`huoVv+po^_4H3pS#)$X zVZ9oC!Lfr0tIb8KpVV;dp@f|;FVUK9$wglfHrmHGIINNPdEKTv0~RqJ+5Y(zH4oYL zjrQ@JJ}p59ol?_%?AGhjUDph@3z>aIq*d#u4=jA;v>fY2=oHe*>?>qgrzJeX8hr%< zYdK}HxNP7Df3f6RP9db(mrqh-;-aA=AG45XZ(0&C`|=2@k!7?u$A$h2S&J{mS^2iw}#$20o0g%7lMb@$ZapFTVMr+;Ji z4v<#b0tnihv@-krgl+lPUyk;DF~m|zjY~CzHTrx4YuS6{)HyFze)OV+wd_quv(HOX zwFM`%H(M*{V~KrE0SEgqEaLx_IR~ux|1{YDKNi0KTlxQ!3PS~NLH_@_kpDj-|8M!v z=3fo@|8wE?zfa-x{~zY9%`3}uh0>wlgw6@Afm8oJ$^BjKmATtF%X)^8W{}$6c4W>Rr{YJW%z2^Uv&O6lCq=;zFB{R2VqxXbq+M}k_A|nfJ%tazGQzP!-u0!TGuc%JU?t(OqOyi- z#U{#nO9$CiG;FkAT=Qi`7!Zn2$$#nMpIu~uWmgg4*rYL6Umf}L2X?EE_S3FPUrb$l zVHJ{HMHZ@*7hlBeLS{cBAzDn17AGr?>IV`MwAQIDxw4CBnw$M&$kOBG8OEPkSo8{u zJ^M!!R^9GmVbLob%czFBZ`s1i4h1@JETbALUJ?iHJZE9iD;z7ShUJwlYdtHDFArK+ z^a^34{o=e1jQd*Q_OVaGS6g883IyY4eR}5Y5BY2ZNBhM!7FHp+EG!_eA+QReS1Myu zqZfUB;;Ap&h0K0NKQ{mQt#@)y;)elfwH@6L^h5u8fNmkx&3?u^v@C6O3yTx`*3=?XWEW+b0VzMM%P;(_*3uWfL)d6PZL|!;w7>$r6OF}AnBRY1!B@7Sqy2fzJKBeO z^iDK3W6Q_0A2^z~amGa&M=WUkS>OswEA$R&W%lQi#nqig78bq3u|dKfec^etFReOW z_YR8{`x*1l`U850V;S?%Vhr>S$4cg5S$v^&v8JU1dWT~f_s~Lf^bTR8{o>Lv9MZOb zBNod>S%T3!<=xfeUSIJ-{z&E>+Fjs}wLJhA9W?#WDumuCkJYps{PLZf*4l;4eivC$ zi_OtHq?Os9Ls%^~NAECf-x-8GGXIAAW50~*-r>99~-4L;}`OD=kcV^1aQIOQ(zJ`R%)Z?uFq@qXz;+R~LM(0USL?OXEd#KfgkAWr5S-zzHtR^Y z48V2}RtwCfTQqF6k23Y(gzw?-?O~_SvX*p<0LNyuJoEI{wq3S`qkWXA7mR6g*O8_#!t$a>2Fxy^*two0H|NN%)`lJo+xrc>X3_B9fA5nm`p zw{UC&VYNt5j!$429%0rK*3se|%kuTKC>=Wj$JUWtEz24$PS|K42rXV6JMNI@i*6_wZx=HASmK@*rDI1R zt;{}|xMz*rT9l3!=hzKY+v@t9@vm=I+iTF`Ea2>0PgpHI4BI%zveZ3wRioaHilOt}Pr}@KwPp1veLT6&w%o{|EW^<)16h z{debO^6ts|LEfUgp`pLZQ~#So$Ayl_{Rnse2fqo%gFg?R9$Xq65%?hRc;J#ieV{s! z=YP|Gum3dvT>o(2r@m)=SNV4Mj`I!jzTy3a_f+p!)Ys;U$@e|9EY97|G zj5ny8vY6H3{yz$4&3?ukw4qg6UBgEE_t{NWMAqll?D%xQC0NbF?aTH*-pKzrameGoDzvzMyi$ps$=`+4eCb?6M+F=js_6Iz&!{voYO`z4vM{4>_N zKi5)<{KLb(ZB$?F<1PA!W19$D3JLjj*UYjcqklM-k%z_BRqz%T{ll@0JZyG*VEF5{ zu;?F-W#mDl@aP}HM*I0r#+^s*`ticqYO4nN2X5QizUslZD-yP;qy4m#5%yB?Pv7XD zXsq_vAC^5EyTdMI_A@%6SrPq1T9x*17FM+Uqoo^@e^}txzlm(F^)~bm$1?ihIIwXn zqYn#Cb^YX_Z7O{P{ll@0K4?Qc`iEl~eb7FDqJIb*?H8AD*#jFt9t8bUo|Rz|?WZjO zxiKxoM*oz@=5~!J40z6C{#ip-)Ix3a4{0^Ff3+9{rGHd*0y&0aKC^!niJT~NfZnhg zEjor{SrXoOakb?wDq$Tv4#%=2y!rBTrDE#n7>->|I;<5@;?PI+j>ECb2)o_7i`v4X zV+b4Vr?h`qnCE)~(J_%&)zg7J*M2z9wsEwdXX9zEN5?=If6amXvs&1<_5Q`AmG%uB z9Yb1;?O*hrj$ub|oBaz(q_*g#9HU_&{|-m{333)0Zy7~7M#Hj9Jav7Qg;kExuqTjQ zExb@YM#Ih{>^6B4>cg627&h8Zss8~zQBFAq?%g`>(-T_{ZD;#2`guy8Mgo;%piu3w zy2#ZF%4~0%{c}hwEzVYsVOovtpZ(pAVR2u7Es0c@5?U2S$8anp;h|%q^(n7>=Dma##J~ndq&*Y_#N}V>mWO*sUM?7wx}UtwF0E6CrH0 zf4V)C!MaELF7M-Gsx86jn3`DZn{&=S@#$aMHjei5v^>W(teWns?TZcxJpZj-$m~Ck zw9>wYqhm-bvwtdKwFv<&&SJ#=DTHTH55_Trf@kEPrEX&7RB|eAbs8gKL;v8E; zavRq_cKz)m23VZ1(f(@N;*c|X!#~e|^pewbi&uA74V!=3syBLU<3;-?*@Z$eEyBjG zP#v3nnXlsL#IbfEv%iY8(jslNIB8|}R}$9I;uPhY{S}1GUJ!)OUmP1H?2Oho7cDPT zRz!<)tjxz#D+BTv<}G>~=UA4J*9d{d5zi0!Tuaz!KR;wx+rf-&9CFqF{`Q7FtHZYO zqWu$Wi-ViQ{=&0OOB=K}6sp*DTp#T2+uLb^Vf&W_IzZUqf1^#P+|61U`7WjW@fwB9K&WiuUN2v12@O^MTKKo0$#biM@HQ_rnocH z(cC|Zc=mC74}(OQMH+Y3uwlZ+o;>c%7hhML99LAh4lDsr`=E~tDuf-qAF};*1KC|NKY4wyXz!sfF#FV_Cl4ajV4HlzVlXb1ciZ(^7KL<{ZoN?Hb@7#AALs#gdCQ z=UA3+*8=NMD~7MLuxN9_M)&)f`J7gw$|2yMa@#FmL6MfdycLc!Qtv1ehYI<*3A zJ}I{Ro|fA-ox8yUk5w>bMk(jw*hkf?+cwBS{XVt_qVxc=N=V&G`KGC zP2iTm@%}&g&-736eeL_XZ?P}Od#`u3H`nv1XRZ4)_kHem_c5;ht}9$CTsiQX|J#3y zD*_Ye7ZsIzYnwZFh8x;D8^c@MJ6gl-Tg8LMw$8=|?P+-2@l$+!wp&~ z_Y)_tSQZUTT&e`thnw3Pn(OPj+B+_g*%(O8l^z~Tb302kAwSXMgk?Xi;4`WWko7x3`5myE+=% zn!2_@*(@NFFWc1sMDT#Q@tAH^Xr4;2Y zSUhjhEK8h}hQE_AyJuN{B56-fTerptlr|R?mAPlN?}iscQx#5V-)jH5r4G6-Jg%$n zYCfq^{I#R8p;;)I)vW88h<%SOJUUP|PjuK>?a&E!c7;!_>)cca^_|zIWLXc?FVz2a z{ML^4R`(t69Ja6|P!8h2jG8#{=NXo2mN;l9*00|su&W)!9lm^QpnM@TE?Zn@U2Eee z7NTr9p7V46e7(zcujF&;(Bh*x|S}XB=b8w zY3zXE2HN}gs;^2a?GIUVRG)FpQQRa%dIvQhnCbfx>hE zh>XuTB4A9GmEKm@0e!5oqxlpV75Fbq$UJxn`;+MVgZGyn9vE6$R5a2%s}5%8PV2v{ zkbEGAk;lx(Cma?SSzc5$)B?-FLzEIf3@p;=e$0Gq;ov~|ELmlM$=(#MYf@Irdcq_~ zd*}eD?tNH~Hsi9MzmNT7VV7{z9+m<7X1c-4&Xtd_dYPMD*!pWrwd9=E7=PT8^*FzMTP zC@TuUwEviynqL$sg}J2^r2>4}3KEIGI>@vB#D!%R6e{LSzHj92&zr=&gkrH51-r&Ol+&*;cZRgL49*w7c>(7n3-^n1q_3ItfJuRZFBMi zB_PnS1WIz-zLm)$N}R<(q#W^gkn_8Fc>x2cl4;37D$E3ZA03vGkPqK~LMTuw>4zwd z)q^3J2~%~>=0#GH`YWjQfSD_M-Ei-WWlMwz`Cn!e(E;Egw9FsY1OsELii%3SGj>9y z>golRXFm=oRHs1DUVcA05GaMNUFM$A)_HQHh?BzOmMocP4*1myx9Tj61nhgf+#eV@ zv8ZU2*T&jEgvUt^siHLNF}!W+G+$uo%Az8u(n49K`mWtD#4QA-SPzq2OL$2~d&6#s zu(JFGc&O)ztGt2IdeGK0qXC$HxV5osTYCebYwf_XPW+)6I=D62*@%HAVC91c*39+< z42XrG1=#deSkV6EJGm^3r;6@^$L@%_<$oxOL;QfMI3z`eY=f9MH zW&WhR_wugHn-lsfbYrMC_v76AavO3F3qBRRC^$XvDV*)MEil~wNBM9#FO;lAmp55Z2n-7^pZyu-27U+!%&l)F3PlE|iZt8e5=2LC7O0 z;I_sv%umf-d*R2ru5f)_TX;)jcw1dtLko;xqV3i$EX5@XWDO`0n(_KY4RRzbchl=c zoQf|42|IbqmfQcK>E51{p#O=Fw$(BGF%%LTgIa*=7 zfO-l3D)kk_O$2ISinjK)GO>EmP}k8A2Amy{F09)rVx+Lp)P2Xh=8U?4F-61{D`%}- z7{*XUGDnbvzlX<(Kf|cOQIc2O@y?jq&4IERVzeLl#{p6-qTwJ!Rq*c2!SDHZM& zdw0r!wX?B9ty*M1(TA}vy~Ms3muysKk|mj$Ek(?v@s?-^@rQ*w21Sr7QMbxnaWq=}dTqT|^23*Vzy3 z*A0};mD_j4+Vz2|wOn_QKBogBzgg`KjkYk9F8;E+v8{eD5Zs1FTXDMpQ*GZ*mahv; zglVJPv!Vm0AhAGbjqZHlhY?@@6B|9mOsW4pcwpm{wTh>MP~h(n*F%TlKZnQJY(@#N zU@&0pTec=p0rPy7R~86wt!r&=*&A-^*oiXeQTuN3Fk2g_H5G$VVbiSDfpQ?u6`mFC zJKLK&>UM6Et8epW)h^C{Vok{Gxqt-^Oq#LETC4P~Xod>a!5XTZPW9ggDnn4H+apU> z1}b1=g}OCDWYQsHkhZSIJz`pRcr;MhfI=Yg#d#|%R^$=Ip|`_W3Ij@4J4yr7(L)D$ zNTh-X>LxF@yyjlfSih~U8QPH4ihj;2uKqOm5A&A=%3zY8=v}_Mqe;eAf(Suz?RUkV z28ik8MW9MA*Dei=fg!iVy?po1oh{9hInj?DFc`M&-U{ph7Gy0_wb)v!6D_Gz70LN} z`jUVFqtO^pNh}Jhd0+k_qmt~n$(r3{+yZL+VbNkWlR%m6!qw0-Ai|TC(jGLlx7Gn; z5)F}4GZ4gz?R$Q~A{F8+hecC4K9az!Cj)Jy1A+%OPh1!{3K-%@FGy<=((wPYOExtE zKm6^A1%WacL%>DQZlP7SK_l7OE(+rBoe&Pg8nbvzU4*80X{y_C@d*xi0XB7f@y$fflH4ZEe zp|2_e;+|hTQ$^BPScZ-wbmk9uL`^+J2Btj927xbaoFUit%Di)GXNKpsHNfl(^U35{ z3)S!9BN}`{nFv%1=24-L^*~TO0G3TIo3$`J4#2=Ytb$_lw`2jYSsRV1z-acKE^BGW z{$W6EVVVH|j0I0`o*t-b60Ljop8A&E4KQJdhz~fXAfhmkSfmpaSj0(aqXmXVtmc*m zPDjJ)FJgTQ{sdfb*pz9C0l*uYcdCyS{O2s)6bu^NzMA7yx19}^QD4f~j{}P;5LE2R z8B^61J$q+!XS)b}A(Cj{s{b~yJVC)s;WbY!s|i%d z)y&$C-A!c;@E`D@n4X|B4R|DaJ$$2sKgcC6wQ?YeuyP>toq5%gOO$$Rm(7Jnws3iw z_@Qx^_%Ens|4wUCvlcD~aq16cVG9nTzFIyhFj20+(eiW0aq_w;RjN^uP)<{`26S5jXw)66w3>!TeEn{R@65s`P+a?Mptq@}6eCOp}?at)3<|GS>3%vOss^yQWv-#QPkZ-y6M;x>ZSLUUCmwI`1vookPjE$WLNF(g z4BV0Pg?Dk_yue!Tm)=|a-}>M7KkcjcRr#;?clnq3C;0yDJK%f3cOFzj{TuBoDe<^x zty%-#wg|cPU-%Us1`iB(Jvhc!I@0T|wJ465rs2y*C#+;!qzAhCk*?E5`i?5`iiQ6! z7{A0vG4cO$Pyxe_a_uekm7Dh8t-)qzU0Y+z67e7C3|2Y!(|Z=X_Kfn486&Z^9vt>@}7l)1pwRqPu%N=jPT zJ_EEI0J8_7=ox@7bamKT!AC%$8a%zswafICmVyXT z9y%R-1m6i=Q2rnMDj&<`=>4vpV||9{cF%<9tRbv|ETPX9`$5iIuJ)0>p=AJS-vfHg zIH|6=rEW`$h+e{5+V|xA(bZPwnLNx`^DpUgjMA&uT1mDDRWi?o#goRF#u3`B{n%#Z~@GD*Sj`Woc zb-M@J!?IG&0oQLVt5|FEs!s?D+ucL_MLYm$pSbQB1O3SB=4cKC%qgzBeMZh8uWL?w z{chDFCiu!L+|aWyFQ*ACDZ*LdLVM(bxEG!dzQy&h^^V%b^S~dLbo(9f5Z>{b>!At0 zigFMsCWCE4iuggcLHP(Wgs(|B8CEw%VH$r zO#^7iv6cmF?jayVI3`DY6%}5W@H(Rnf>lVI{up$6r)HcO$Xu#Eypn@Az=wNAWvPSe|aDTa~49i_p7|KqIl!`e;ND@ouc5WKt>}OE%XC{(7 zj8_qdA?Q65pxc|4Jhg<6HSVC)uiuneElU45V6`Z#6uj=0@z5r!z|I3wy3i;C9z&*A z={TP`Q5CRLBcz5F)_MjhTgO-(SD%&|cd1#)nvq~y1SPsmtDPw*=3Y4@T8%S&rDblH zomXWA$KvgJ+LQs4IJ8HYVzi_w{dbjea@f)1edRF1WdBirBC|*iFNyfds|ZY4MhM0y zN_yc~YuIu6^T22F4Mk(hd}Yu}@sGIrKj3$@?q4vv%vZsbS7`Cq0R?3K(I{PeO6ox{ zK2h2q8rHSve;!ywYCm`+%;HRYI|B#N>VcAfNHNTJ&@&wVI^dC%KIka)zm~yc`JW!` z`^^XwI-F=H>LDAB>iM&M4-GGckxLgDXQ}gNN0hL5+5?oX9x{g4vJv%**Pgk4D}5i34$R5L}jGN z1_KEwhY$6Q9IE~zn~8)#lu)yh>0drZT%@IbKhVKFOoa-OcH??86E5? zjHjy(6*R=-%1#DByq*Cv2;k6%1tkO4Z0B<{?y`S`$KtP6YR4hg7^2{q$>ET;QA9wN zv|$fRw#0V|Et-Jhy2fzS}&(BXiTsSm=4D&Ha3A|))vLHv>DH3Y4G#4-{@R)a)oNelst zPuMv55{ZBY^MBZT@Ax>XtABWAcSp180bv_AEMsh0lGm~<%N^UYB-^qrTee(rV=b>O z;Z?DU3q@vT38WBOoDf0?q>+UBP!c*Mp&CpHp@jgBsVVdxLg4+LbMMUDnO#4S&+ni2 z_rCa(pq+cqJ-45G?rC>smaLzx6*x=SAs858a49v46@gsRLh~vli7+gP$N_Q91RO9o z0o}YZEF0li4RAAE3xN=>rm;wNy5?G(be`rLs2^<2Vv!`VjL|=*Cs9zr47u_12 z9vy1FZr*ENWquv+36^AiVtkzSP}WcNz542`lreO0L_3=P8=~=8wY&-c!|-9FovD4M zWHdId;`u?wBJDp|rMTuS;426WOX`-_i2vfYfJ6+@`}+9}Jp+xwxN8&MrbSJQ21M{;TA&hnA-T}&Lms_dK%rI0zswzP4IL9xSn;v1u5m>_)4whR3|xTIGhMz^8uxG;1lruPihYi$Iu8=jj&}( zCd7Xk*)iJhaK2WE+y#&f2)Qw}!uxWYRi#~pBMuS=G0d24j2|zc-P+mS1PIFI(l1c0 z8Jg{_V-QS1J+V8^(7vu@G&Tt%EMzRxEO0^9Aw84&-BsNy>iqtFrwulS4ku9oJL^yr zamj)O{-M)P9cBz2MLEf2=dK>{2kRU1tlM{;ev0uc&CTRg35QJU4;N)5;-9N6!^P-Ud9sbiFl7JK|j3`FAmbr%}QzG#6k#|VJ}Iu%8sfe zO(2wL9g_C8es3AJoY)ra@$T&j(y!BmG^!t1J=%x*A1aIr@b}I@h@%Qw;xuv2W08#B zJznpJcQs*tcu&_=2ib}w4gv}2pRm#cw%OX9I65I{rGckWfdmX{-rh#kY4joPgWcw!qFL_j&dt+RX2V&9hl->2Q;odRU(01FCecow_AL?h;CHy>>bA1dZ- zJC@)g{2y8U2eg~K@~kd_F<5U;11V1UmndJOL6YX3A~KWJbS|i4C4+&l*M8&C48q#c zOJMAugY0?QjkqSn#ERr>Qn=BMU?}GURYwo5)o#FnR4rQG*3p_^ikR$dX;6MURTn*^ zT@S(ONI$fIq|>kHDeXF3(B<()J5iA!H26P7$2V*L<1HakfH_M6>~Njv(_HOZT+kt= zrnM#jg;YR5x^e}8)@s*4PEC9RgG%vNLx-mp#5!24T|ERdCV*&jN#cj{$7oj$!x7?S zfgm{)3Yqh@E4-oK$^^-!Q9%1G?blv2o$W^>@9a=Xs(@*s_A76!98g^MNR{kB%TF;@ z3GJ6&)k09{$_}w>ey3gTbsPFoAq7-5plIJ-?H5qNK;J=QlaO*hMH~n`w`)K5rbLnY z`9*^0z#{EuUVDVt&XwdLd%gBkNl8%^35FFRUIv*SO1z}~#M=cPyF<5DkK2)VSoCFy zcA3{<7uIrY^r)k6hY_GFoD;xt z?IJ%$-ckgp?5#%a2Og0kjAAztl)A5$Xctx*)m3sR1ERLNz&EOo9vrKEztpI3245Ap zF}N#_iykb~zBd-zTMUpY91Fv(>weNbzs85RGLdvDo{~PTB z$kZyF%7Ie|Mu3T7-7j>i|2pk_kBMZwBAbvY&<^e!wDY_PaL+ka%7TTzR6DmA>LD?* z1mvjdh2%VXuu?n6qZI)`OS&`$7(2A@Ce4FiZ|^?=TU#zm%h`ir+(k;pxA2qjjWNv4i}v9DMA@OGkr~0G|Eup1gd9WWev7 zEx&28;KaC#d_^35-pS>pWT=4;EVyWS-ok-O{0H6^>uY9JAB^{cwR}NG)M_$y#XC1? zv~HMb6|!%u*g)=4Df;2u57mY`X-wyr&aev17@}7U=B20}q7DY5nU1H_4 zoqQz|gun^Q2m(3}r6GYFZcfJxE6*GZf5zdAu(pA45EG0gOj91CD-154WD@3>S}HQ3 zC04H59RGpM&G9EGUCMmApJ3&fRU60vlSQe_2IM#{{%6wH4(!iI>WMAg#elS|0oYB47X6@j~%ZiP9RgrIUNf5XjI z_?-z8(m0-pR>&L)Kb8@ql?=?)%3_ZDfm;wY&X{fK=Frt{*BV9F4(A@KjFKbyU$)xP z%vb_L%_~Y}wWxCUu2;-CX%3 zF3{S5YZEw_e^XkZGIVQClU`MsM6&@WDrgH`VeR4E!CW-``^KHht7&*d$}!}hfZG!Z zI>1?;UU3RTj{>wJ*zHjkks`6h7C*h}WHyi#iapX}#F3vke-&^V zG*{?5akn%}c10@gk6;m36kNB9SxQ*D6G??rrcR5duT-H>Q=RN ze_7XW6hLoRuiWAEHoXGE>DB3Lo4;ZH?f~rt^SaDZ_WWK|(?mYMFw&)n3DCgPC;6gd zS0M>87nIlwLg^lZ&YqyK8a`XqX;#29y(F@V14F@2!SR{p1cVIQL^uC0>o?0xE<7j7 zPUtYJF>cin)h0kx@3#|h(mcC&(Q25!i!8s10f_F?E81lQ3Kh4o4oFYQfLB@~xUg)d z@TYZ2L9x6RyE+tqi=`673j(B29#_HPNB-C2x0|DI8-x=uM*(AoL-`rtJ(^XoI?PgX z=}Bfay8!x?7eY^wDNR|}4s{T~v{|k^)U~Y5tj76XA=~4e*FqcOM<~+Z{NOD~2c@f1 z0m>aSTlw5}+~S4PhCn5LD+v6ylqkKO?*CJ@?`VZrLw{dZ@TY>Fg5&Y--|hLQ<(9?1~1fnSG|jMFsFe%F)-`)yG#Me~KTE0t#$Jf2^^VnDWlm!cG!FfcyrU_K#BHDX|R@=rAr+)fN{8dp@$?RTga#sws6aQtH~^9s^c_4 zxw3o6(r)dHNWHeVEVP!gFQQ;DsVLtTAnJE83uy#hA&?jtCI?n@aqBc|iEp~vI=i8` z5{SfaUwN6t8)0g#)yQ`#!7_r*qQ))kzaq+e-##2lGA3$&gSFT!$9^hh-jT4h;gXIc z)IlOYU2aQQUW3Lpd9b24Lswag%qnt^V3xznQg#*gZtZb8T)Vhw{MnM|>&1;P$;pV_B(8p-=G0%W z0NRJ0|MGlmfpP`vibLs2ZfT58en@0uD=ACeffXY+t;(7&SvOI*n|K=Kr#gdi&P4sw zCs^~CcN;0@F5a?T6lvM6z{8563prHL?YlP4w(8m6NwC(PEiHX8g~1_71-&n&_)-@{ zG<8;sRmagEE1ByLsM5Lqj8dxrpi)By_4~o`Ct9^;WhcmdpcY4(foaPi8uKa%h%&r7 zID;;*7>v$JbDyYBTjxWnA&cJ5XHnm6m=~Q z$dHT75>zx^CKI*hrPfRi$0kJDek%m-zOY)@f)E#uWXX>X1lGymfxLO8HG|^{ifQ&4 zDiFdg32+chHL>e`xoSHzSTrpW?bOF3x1`u*jMwPF`M$NuP-W z`@mQe%bJpN5gbv~a+Pu)J;NW-S zNEL{g+WC-r^v^e5)C$fL$mTAv#tSmWyFefltd|d48jmKLrZQ=@(=9|vu6EeZHpi+& z;Bib$oS0ETqmvqI9EXJwXOCwm$X0_`3;q;@g>mf)JxjuvRnABAQ0@y!bf|9nt6aIH z_y+@d%mk~9r7A)a&9W9zfcyfzNp)m1C^EmwDpl6GuyWxt!WvI0BoZ)VFny`F#tN=c zG>k@BietE}@~u{@CiBcMTw;|d!f)pmCYfFpRXQK++`*h2MwqCw#wgtpmNSG$TF-dh zkqIaTbDEjfXhk348q`oh_e1GO(9mX@b)3R~JEk^Vtu(t)3p+_%_3d-5Q9@73BdOTn zaOIvOo{B+9ti2^Otr5y(xg?eQ z;MU`&36wNhMZkWs^0W!%Mp=bH!-LK@*IDue2zW zkx@>lS6i+R)Ixjo2lR_W^Fjmlw<2pI(-FV#qwpi)%fdUN&C#-`2`&E(=Go>pb9#85 zIVkIO{iLkBvM$KlmNg|S%Xq_h%=n3Mva!yXYM7CiBfp7!qwwLvALBj26@|wYd|2>c z!4C`C3ltL z;iZAqIpeec6D|$s=>xML&AvADLUsy~2dm)`@V@r9(0$PdLqCoFFnX#YNHDJph3E$6 zTqQx8X;{E+x1gKjBO$D=fC)V1t4W|u&*=9H$Lofmbv*$?_M#Zz1N>F}KF{g|dN=4C z;X}Q``5}&nVfsCu?aPk7IP4m>wqc1AOr1jT4$9~9p=4a=2>cIn^t7P}i?inuwBhCy+? z=tBUn)?W7PB3)o!^)9r+n61@b@~pEQa2JrPuhU-iHYb57_EZF^d{Pr`-_@WUQg9{^ z0|M9UX8BjNa)$QTV~kPKjJYS#OTj>!#UB9lKcXGMsdti$8xVIt*qqto# zl(L++Xn#~TIf03*1H-Aeh!*WJA60S%y$tE&UbkwGs{Ivm+NN%wyjFX}BiKZ^oFkT~ zmh+qXx?g)(ZJ#TUB{(UJ74tDvJD_PgQD;}g=g<-?*5x{UZ{Y_`xj}-FMpQ6*f7TxW zAMi?u;N?ohraYO6d#zZR{M}RZtbQaQZ)42tAVuhE$! zI3z^39+D%)f%eeUfVV2a);2;1yh_)xq-gjZNEs?77%>L0YjlkwfWY23CU!3cbqob3VLtn21zlXKse$zI;eb-X$Q;$%3MM(bb6`(JG_g}63+oRDA zFdN`Fu)z zy%KttIeXDi+up?G@7hPtx{jg*PGEUw*+o1uX?f z=D(7EWB!Kxp?R<5{Ti?T9g%xe?zY_AoLh3@xRF1X{hjRD(YK8D+S%&EU z7iV>6l^ahQ{l|XM z?3JL|-hre3cJ(OYBvekJD%&tiN>DaTl-50md>=}`1Ua6v#E!7-X+;DH%E44CEr*;) zImKg`muf=ia%co=kQu)hs_F@50&~6Qg#3*C4C`UKIKlZL#(NE8mXLffmV^} zlsx)WBOe(FJL92PXX|D;^jKIb&S58xMS;4uk#Nd@4r3deo0p>J^3w@fODE<=8^)ke z*v33G@~~9#$Rz&~#1fMUj+J$$V|I?U*Q}_34kPTHsZ!pamLNj4d&y`5oxNpNzhcb` zTRd7sWRmAe_~?sIqci7Nr=f1q5D!#T{!Yp=QMY4i5izKwN5cBVKO63c)SXUJ#edI4nt9&drkMSy8Oga>tqhu zD%>L+jLbx+2m?00=_oz6W0AGTtb%EfFy;s_9)vTHiG69dcCne6kgx|C7;YtrCp{*Hf;4))J`9IbXYCYrEG)rRB4f}3C8U8Q zJS*Xgx-Qmn^%$$q95DiJ3l5sL7FoEhg^M_$H0D~pii$$vskj3ki>0<)No5vl)qJbR zjA6cn!IR2wF&5^z*lb2HVUB7c12eYF>Skj=Ij8}4jIjmM)P@DKxOLkWSUdQQ0bzu$ z@@qbPj)F>=B4X`$=i!Rm+X;4Vy45Ar6U^4Q44uH^Ja?cXaMEyTe|WJ4b5z)@3o`>B zt49cY37v5~7v&+!#0u719p-458jlhzmVCZIU~*nR2t0Yq7;Q#naS=}%HS8pvU`bCI=OJV)whCc$`0WG*A>nxM(! zOl2Mc4ic!nxY#<$tbm zRCX}?aAs&4_p)xS73a4~g{20SRYd15ip-BT_>n5*1ar_Z%{ozSmlU=$Qb+Kvpm377 zT{EhzP39wl*rJL7tGF3wnZjrB*MI>s`6R+MsBn{qlRl z;!p9Mj69T%{9efX#pHL6x7M2@VBjRoEf|T1&Ec_}l8{X_m09Z)izt%)3wX%?-Pc`Q zZNL)i1jRNYpby}30iA%-+CUDE!px1?Rw?_RWZ|xQLNrlH;7CEfJ}a4G2~3`6tyH=U!r*Bz2%j%O zLDi%J0#(tU=>A`&U7;b~|4D^M7TjHMcEPlQNd8UvJMsG8J9)R~wdM^%41g3f zb9YW6XK3~l*{5X>f%kuRG-m$E>@`PbJ(AT2De9k%3yg)vfXKtR|IZ139KJ5RE_`I@ zp3t^Xo_@XFr2P}s{2%tfv4?efat-BP4+aiqMa7ISBboLd{G_F^~77D)CaE$%8wq5t+uC{l`x+v zji83j@DIu4JA_h{h08D54!B1@K;09*Q9ijRKts2dWv#KNm@#0khy-m6zQCLqcd|gE zRjXo9pwtQWWa*cb$+;*~S_c0i*S81V5=Gd9=$S=!wS2_ZMI^kE0-qUBN|z)B+mrKb zJgULY79!R0+QJt(b)jyw0~?7|`|9($lm^KSm%@7cyxA5;nHWxfR96vvc(^jiJ6sF3Qu!bn6~@Wt*{Dlw zszrN7Y+fPE(=Ds)v1UmN5gLaGG5I8_NR@o83i?e#j#tuTmzbmR5^2mu zOhhw?mkBLqguN?OoGVF%g#^bH6DY?t*<%7INx~CE$x@$8C|T;`M>%@EJ=%<+`_*nM z>G-Bt89}s8I&l+etz9Y$`C5EyS$MU5oLLGoUg@G2BtD4T9bS1@s3Wl??P$RPVa&Bh znM3Jb?_dt1#6?hCcvW1D>VUpDa;|->ISNRI5)x;m-GZ2QAJPCKdczcCr}#vBq*)1` zl7|rFN>%;($^)N^TY?3I`4G^j=>t&3h!bs?k-AmD9#_#WAGQh!7N`P-yP2vuW`#XM zzF*iF@X@F{ykkfD{!+_gzg|&iA7hrn>$M^x9t?2Q0JUjq0VlSC4^Aip4xKvR9&T2E znwI*}999{S5g8fc4OwRoGb<2l!D*0k5{jA^;6coIcMBdcrTJR2w6VUKP|Nf znM2EQZ46287x~A#1JX&j9SV*9hnLs``6;#vGN^HBvXm^TNuDT*)}@q25guP5?UiNr z0JFLgL*YZ{NS0KLiZJSMD7l#S(nR|xHa{O8L3!yW==}rBal4bm+82sxLo5fRxr z`91>eZ}Zt8EwsNTSC(7GG4x4GI2n_Sqc##Yqb^o zDXxWZdc15pe=6`X1aSR)zMU-?UD-z0#L7kHrlj?i8s^zw<={rXJakZt#3K_Ux#4%h zcZaVGTj34iShz5Bu<-H1%L~6#*iu+sn1k4WHy3=f;Dmxn1v&Z8=UCx2c3@%cyO z9m=}}QT?~&&CDyveL45e-0$UX&#liLnDa)?{+vs5PRUu6b6obP+0SR+gSdgGWv|LE zN92IVqnAN`urNB<{F`~V`C~{C=9qa|2eWR-`g+#NtQdR>4jH!_XB&OSJbsnn>Bu#a z(?jQl+Cy_gN9ZqWPwKbmXX|mjQqLq&007L?mM3Tt_CXi}9Z6e<_etihES5P#e@4^7 zrxU2p>J_;}!UD1{4E&Gv74*bM7zKP*uWkWfYV_cGy&1+n2>Z!0Ax9|XL1PO_FA*IKN|p#5o5T}K6+NLh9!pPy!9znPi&1ug;n5?CZwz+{k(LfzxYIdTZhpQyd04?wU?L}m645k@9Yj{n{yb(ArJ z%q2;}Nv~;VbX_Pls_;HRhSQ_ge`M%K4l)Lawxu~a;JFXNp!%`MHKrzEfZ^IQ*cgr% zG64Pm4&zs00h#8`z~inuJfQL4)SnXer+$Y90qTZB0N^Y7lfv**b!iYYDT5pU=wf}& zaC&$kB%K;Wz7w6`NBZn?qZHPr{^vZwL3`JDe(nQh%uOBZ)LQVG-0MI6Vrm%bF3=XIuS5K!KJ^^5t=`-+fA1qs!;u(WUkTnSA#%0Ml z84UC~{ilLP;tnZV>jvAT&f>DErb1+@PZuVr9z0*r1$FSiDG}mNeVTZA70?0Ur!z<> zf*cZP>Qe6eLfAU!t&3KTd~M+|gY93tD1nfild0q%31-Y0}5wF4)Yk7DyI za)hu`uM+Xy9q3GtZHhek+~z;^Kl<^@5{Vu1hm_Cac8S(h>+q2%$DVU!oHVEy0r%4# z=NCvfO^;py(0RKTztFkw=#L1;16Op(WnFot9xE|Qa6BPfK2Ri^0I8t! zViC}MSO2l>jZEfei6kn9>!Emm`}9k&>p?JGp=J8a$}ArGKK)_wOo<2IxGX3N)yIjg z;=%|yX9j7fULL@Px0}>AozTJ$^dE`iLzRFEA`_5z>Se;gBTd>VdX0&6MW7_j)JsPj zBe0~&uMm+<@!qU(Fy!Ctfr8q{>lc?AqhLBunO)#4anF))^2>pop#N~JFN7IhNBV`OMhW*w9Ahkb%qYOs@t);q+K}?VBch*4Dyx_H;Yj|P zNz|&3sld}C9zN#)&2-4(#0cx7#j)?yFV2$mvxcOh`f-ARkg)jUNHZZm9I1~I?vqNg z1SI*TerzSZno0c(NG}g3j?_nbCH%t3!$}wQVsZKfWs72hlqYX6n^))~`J+B(nP zXVB8<6T}nCzE_ncTwN_abpw3=)(?n1lqNEx+S4Uv`Va{ol#?;IFOg(n`d~qme8MjV z^+~++qlMd!5Cl46P~Vp$?9`7DZaZn2z66$L>chnmBXS%*2q%im3W*#coz(I2CcS;` zKucL<2En5~6t8U!4>{5~>W&b`>4WG+KmRpGoHhjGUSg1>9n$w>597iK2H(w)Vmlu& zrD?C|1BLxR;{W}jFa=-zcME=9um!L7{XYNH{Or6(^6b26xo_rPnR{aH=$z+szLPU6 z`@`%@vR6hwi2fqFC)!}XXWnUU$oe$v@~m0LtH!sDipYzRA4FD1j>U_CmxY&whlcJC zwS|gc|DVuJ?ZLyu{d4Z{)9p?Ud{XLv|6ND~>4e7#C54QYthN)EIm*#qm~MBNgJB9D zlkdVq-A*z;IACCo`K5TbXz+=2?XTW2G2ncH;KlCH)Oi=2;3q3{)Zr82dnID(kH{k3C?4w?}Pm)Jb#Vo z!KsVwtx_A|0tyD-Yl-;w#?74$%J46pLv?n-91W@A=!nW3(QnAC5h)!}4X`KVkb6pH zZw?xlp)aRQwYPAHKA`bT6RQAZ}dma%U019r3sGQX45PPvsv!K_Oe!{)Zav6&zv@%PdV$pPmw+ zD;cEt8*Ic1hCaF~oG!=rv{&7J8NXwUnm!hOI7t2L?d5D-Rgot559$HZ+6p&lA{_+$CLMsydRsz0xS*~tju`R+0 zQv(%E0v3kvTUfMaXqHk2&H6#3y+qD)y8ar=Updms1*D`t1UHkx3u)qV5q z1!gH9tK1q_-{|3TlQQ(n(?H(aV9)2^)-lm0919$IT5Xk=mI;;2MWY^=YR_{g$_-zl zL^4S$E`U(m%d;;AZNZQUXN+)&*b%PsRneP=cxUvKSUzvoNQ8&W>Q)F=E zxbW;l85!UiIkWH2&b8}=DJRy3FN#XwGp*GgaM6Pc>{@B(N2RP^x)SSRvi33yu$rg&9!SdBqi{s1-4F45eAuo^!}&j z*>l*u602VcROS5U8R&904EpKc&Q1yR^5P16wtSgHYJTLOv@)(PXuUnltcJZ_ERsoV z2ViBp_& zRH*dA0x3pg6W#x-waYYU`PUSDirfFxf>8do`F;82i2nbJyp4IqxzFdGmpd`%{hXiX z)MvkweOC6==wGAfM(fQ_%sb4jW>MB(vd+nxWISj5(Aa8JNB$XkC~|&eQTW5~jp6R_ zfeggab`JOGO#N<>2>W@h)xCPig<5RGTy@SfaXN^ zPJ|_^>(QM&6m9uq)q@js* zbZb(_nx)_v;e+5)f{8D*Af1Iqv~9GO8pLaK?2-k|rIj8#?P|@APmMH7W)LeUc-2-M zY1l+`vUz*SeNv=SKGK0K5NhJS$9BMpg{Ba}b$QzOjEDPWHz zDmA~(4RuNTUa;KgkJn}w7>zn}Ug{WrN|B6^9i;-=TO*!9@)Qkx*tp23wO$^{+`c<6 zHJqP5EOimF8lo9-w5Y5D&5260R7^rmQJWfOj)qU9Vx_>8LJvR$4kK>kcGFEd;P!R*vv-tnS# zM@2xDIlmPg88rvXQ%CdbIGC4oS%3Z3t!$2zo}-}6pb)4{4Kia`!4;5dD^JQ}euCfL zxYA6kz}iPsQUiHtVJ79+P2fjdnozhUGuToLPYo~!-~eZHz&I7cK2yR$&QBf1$1NFl z`Lr2GJ5x)RAo2HdGd%bPpn}7%lm; zW~Yu|b`Ot`D65Zt%VmmS{Om*Ej)^Pu0T3{}zcPha75T}j1+^eoSizD!(LpJa+GuE% zROx#v38#{Q!dwD)|Gqj^$N{DoL9_AMZElk0v5WCZTo&=*y zu5|5Pw3E?n_q(%$3>Cfc2HWZ8VZ}k}`cic&-y94}&p{k#xM>lifKg3*yu~B*3Wh~g z?#e^4rc|C;L0;!vu1mE-5h(T`Kq8*XV0tb>imDCC6q$2HDwnU^B6ff;pdF#~68Qbb zHdj(9Y)~sFU@?0z$QCW#H9eJM4h1_eqI^K@OUT+0%Lx|Yf)pwNlOY5Kp%z+VbhCUx z3O0n0EQ-f8917Z-kdMsqHB?Dey4a}Fa-gc5pNg_+qaRg|a9U3%(cYLln7FaPG;vAF zWS4a@_WoGA)HyeW2dX8B7Z%+$l@_iS2wz*7!i$Osgd$v$RdXmp=X`fkxaq@>y#t2o z<76Y`#KT@#X1~!LJA>% zAWsqA?Z|3rO|*-E8q}RM)RfJ;M^2ziHGM?|^0K8VU2*hh%y>XlT(uaxgUn4;mMY)6 zybRvplV+qevlRSI35QwmbV!8F`*PQnPyM7lzs}xk(!-I}p;d`)4wdTAW1^bHwRMff z!Hiu=HbeB#jM8OHgJ_Wo6KaZ!ED9#s{RTA|lnM^7sH_jfB`F>W!D= zXa2o(bc%`tVb4Tcyc;<>B4?q;`K#27ncOkCPXbh`iEwItI6&$N3$xdqjvIYJ9K`R-Q~!jm~dg}A$RG5 zK#4w?VtP_0$`ss;^XwPFI?sM(kU?Q3`UP8HlKz~dzos>4kL#fwp#`B4`Um093aeo2 z|5Cx71?LxREvPLxI{&r&Tl3G&-;zHiKQHgOyesoAh@KRkVccSTOTS0IOg~j$q8FPl zn%9RPHEnZw_($Qk@Z9K8+T-D)&CyvOYo8h?=4}nVpEuQ*5qT+cL*(muUyH1aj5LnO zeKGfca{EJSbitnhnieA+)@?Id*|cuNA56~W%Y=Q>IFiJm{AKPybeRK2Rp zK_d|pa*Cc1rXI4Wr**<|g-+d7_y~QHzAgY=FO@y?*M)VIL;4A#eit{OR6x}K7yXw3 zn7XA6_@9dmFz@M?BY5*@xFqaeLJ@&L z{iFbP$Lb`b9f{s1_J-RQoKdhMX-KyY(OX5_Xcv-fL+Jk)ZIK3J5Pe$!oly1)jjYIsxSJ22@(9KsX8^ zS_TfBuv!N6Z3_^9yGnspVqEzO^ze2=iCgDmu4D;+L?;JcNrh5)ulG8=v9n*#8z$wxXp1OBMKF$nK0c6TAls(HISr*9Az z^lp2^rlOVQY%iH5&!vCp>%|btWFcXeAFYDCVQMY?&%$EU)$%(rGHJ9~%MUu{nFr{r zhZ)0RtL%WgP-F|BuY!x(M-e^EB)CzU0kgp{qA`?piUpPa5;>(%>u@eP532+7xjP4u zZM-f5qf(vth4i!fD7v&r50pwr4fu0lU`kxXfo6BCnf44{0%h6Q1Uhyh< zx2zZG!FtnB1J4CJG|jjZ?W`gB7AOnPnKN-B6_fE<7fzRI0+Ym(~S&x1?+|ik1S| zwBsiwi@hla5Z^7BViuqV1gn&V@%o$oS6>NLd>SZ0S)dmK^@G0S4>x91LD%54n>6r0 zslOn+c-$#v^^{-N1sAXN`tv@lB9w9y)&jX^G`S}r5`gsy{WGnPhI!$HfTfN1sd_F8x+bcToY{^e(}?}M#yh0gNyWq;y7a=7O7zX>eUJncnFq{M z%$ZrAWL*Kzecia+SZ^F1c`~v$QX4rs{D<%f@Bw%rWQWG;kLb2OL;D1k{h$AvlR}V6 zh;TTE(nQ(G;M-b*YW0#{x)pPXV+mtt)uqMokEyNHW+LQ zs-a|pUu~610w)lwS}%0=o2yeR%~C`|f*l46ov?x+m}=_?h@dFd5kb*TaJA{w?$Sz$ z+vluZn_6L(vf+YXQ0o73#i^Afn{&~!@RfY9n^MhEFq%ou$!TC}`~p%T7_Iatg2$51 zy)#qG&CzIBi8O-{oN!=$pj)h1s}%f}w>-X`NG+4L(IU$y020NB&ytHzk=JFm0Iqb_ zuOoz#{Q5teQ%%w~I#3VuellcXdM%D6SQ=hFv#ZCZmU5K#kzv<8)%_u+(e+fFmRe#C zhIAeQz1Rh{F@pj!ZRH9P?01?|jnda7{q`fRa|j(gr{U>X(Hv5qDk-dWB{n}J zR#oW=q|Y>_=5cWJO4v}SPp}eBC&5#dA=Obyai?)D2t3<5J5}$quMkVgXI~*#mos?o zViWciZ_iBCNy9y&#gOldr(b;^3h`gz0HAH?(6A+`TA@N_oo~Q=nUDmM6jbTP(4hVg z)urZgxVQbazb{Hn5xxYWbbE{R6nAfl_2S9m*+ir0r?XR&C9zP|FZ5e-IX%un z?(6`!ZvaBy-kp-F7Q+%&l{4yZw?A%C@vF)i?MTx4e8 zvqo@Q7PL;-n>{U6WsW|cEa%i3u#SBQJ&r*_kw!W-B{fmeWlL2x035BgGP0B^Jr+^2 zcuA_#q(?_8BdmH-tu$P9r<$l7k3`N|$i~FY2g2_+q$aSt%-~Sa!I!q=&UhQ1Ax5AL zJS!h(_Eq%`b_QoIdkSj@H>N7&Hc`duu0;O7*d_|iB2;plyg4y7Ub=3n6-eQmSONZ$ z=;6t=shG50RnH>%+c#Nsj>$er>s0{-EbmNBjWb8VYs~f9Ys2u+5P5SoL9RjdS_Q)N z@a$B%d=o(e(6$2~K@*}dAMR4|@JKu55erjgW;M8Kw{qUNj#V+?@it!?8ZV2F(BTcK zQoaUOJJ&!Jpw2DQqk(FANntR`830(+c7R6AQHb=im>} zpWm22EboK7`|~c%+m+XpHzxO!+y`!Y6QL-fv-m3s}cBW1il)9|9_8wFo99qiel zGI!xwsO(6VMJl-EuPhG!FSR&eLj^u0xFXJ@2yWOFt0nYqqw$nOTzu3VCnzvI*NH6 z)*(sm=pmyQM;cF)2Klp+7(KX=?29pYs@Pe=2{|>kasOIjslqVcbHH7o9WJPnjCHeV z4H@vF329IJQUN8EOd+EOC$AN?QH(kLl^7j#kWL(50NHZ!C*d(Yicl|AxP``5BT#_$1= zkRw$l=?sdE((gFdC>aH_0o9U9v9JQnBTZsw1LP#($J>iw&~7`_#Qyu2lKwv{|8=eK z+QQ`p9~E3)umB%l{rhSJz8ZnAM&PRv_-X{c8iB7y;Hwe%Y6QL-fv-m3s}cCWdIZ*{ zPBg35lImSr46tRm^f*zHL=d1JY1kwjQXKtpWx&sbP~g(}w{@vaW)&=tUEHc~io{Jx zh>zG#k$b)zcE^ilNou1E03lI%ek@*sYn2AS62ydXEIRyNCMbyJKDj2fK?ZV@_oHl7{*5DeE^_%`c)|9Nl zb41p4-w$L>&Kf*hWL-z#(ld=XMFS35|LLjRuYw%2w_2Ys-R%O=s z8AfQW9u2?UxtZjVLR8mFlC7~@;(K~ZVS)rdYcjawqS2!1MrdRxYIfBwsHtn7xT>bP zCH#%@X+~%n65HuDxMUCXAfg@^e;~+8M<*OC<6ZDMggZg_>l3CLp$(|xmMD(n8Jyxc$B|=W=i)@m$%*!O@#4;15JkZ~ z22`M}cMoKnkgSR)JBrsewI({&Y(O;~1Fu+GjcQC$&93_Ywwe{)eI46<2!D~747_}hQ+j)_1_Q^Gu|-T3Gkh- zzx06*uu(Z=P#4^RQIbNf?kV2d*MY#3ogJY&j(?)3JZ2cRgyF5%K6}H5VMS|qCxy%I zOHwpn0H4&qavVl~073ueFL~edK`($sBOym!3p!C(Z#>y{GIyz`d?_5&@RQEFofNmU zr+7)cn?eWg1lsZE44PkV7^g7S-%Z1@=$?+#i|f|Z6fci&Y3qaB7khPOvLjx+Zbhu8 z1#kRqD4q*v<)F>L4^9+D=^JH?Qs;^ zvtnhb+bR7Am-tKJjXqfAcNDjFlHclA0PXA-8*8?eqm zFMu6rS0!hSHH%Qz zJ9-)z<1yFG8%Z0M=BWB*|JJTWceY^3fl7SgTpv5Hs#vbO8z;Q#ADAZ0P)|==A53)p z>#q3oxg!i?2UmX7+=qSbZEo#uYw!BviU(g&e~e-5VjQ_=uk_(qfW1M^HeX_`4(hBN z?hIXS+0{NYV9k0H=|eYY)r4V&(MUDl@X57r_=+^+rM~q379CSFRIZ*IK0dA8S7I@a zzTIEk-6PMLG{i7ga;1-+{ecffEj>8b)tbLXDT2@r-aTpaq(>j%j>y5ZX62KbQFZ`)S9tM$v! zli26?PaJ3%%eWWUJQ(OjYZClPTKi+4|4-cj!|3BOKe^Mt+iH5?pNOLiJPLM3r%;+A z7IzvYiha6v%29I9-tdz#`MwUUB>n~@u)A{`&N2VM$3C4nw@9w=8_qTSGv0);>-%DY z5&P(z(MKA_6z;;_H~qVMUj3@dig~MQLwCg9yRQBSXOR0g8NN2I<^g7sC@ITom$DR( zO(y!bced>5O_T!7+y5!~nml-Kh<_6Ep;-XFt+%tK8;bioVy|Z{DgmF{qJk>$*WSO|eUV3G2o-tnc2_ z3m%SEH%J^@MA|m@vD@OVwk_a_*Da@$9T$z*V@K3QB%!$ewE=-1bnXJnll&56f8e}D zVP{iZ|I)T6eXXwTY;OmpT^`?tTiBK_9)X80EeXl3c>Td6`+T^t6+5?qduam)8+$NS zt2+bm{GFHh0AWC~wXLW1i)(vu9NqtW5SG92mBI&M1F#Ps02>Qy3&$4b<1N6a3vMs? zNx_)~+Y6csstbnXf1dv`Z=3{)YUy`6Y-5_)gwadAH?VmiP6%lk%44P0Aab z`&sTw@C~>+_k!GAx$ARla>wN6=DeNrWX`QQm*$+2)0VR&rz+>@?Ek=1;Qs8Zvd_=% z%U+v(eD=s}Bl`E~!_n)a-^0s-OQR#q56p+mpPIYO2D3Qp{jB|2mu2n9s>wRSc+vPR zUK%{nm|_%0UX9!y`F128sfvWd&xEfITj5pVve17*PlT=r^@mo3M(H22tf5z5q>n&1 zoqwaPY9oT1#?t%;t|G6oO<30=b}xAEwrw~TJM?`=%{*9YO)?_5CM)aCW z1``9&Pd_fRDvd}zK=r$~1VLBfu0h=0+~UfK0RDJxi8aB9%npSc-)~E%0i%Om07p}c z-haBxs$jH@`+t;%7BQJyLBzrPf$(YuyhvrU9==bStpu_Kvkmc!ujPT>o+qaZL~CXxqtn*a~RR zomgs(5oqm_NkP!9Nzkp9IK(~#`^|gCTB8Npy=!`du(f!&qPy*6(b{k3jkS(r(AtNW z&kTb0#FMy5%i&tLCuWT@B8x)d+7&mYf!4Lr-M(F;-LzZ7#pN#2U%dR-1q7b3y2(yZ5*gT()7nRm|&b?yZ~72twA8%!uy)5Mtrx zNT>%4EU`u~>bXC^ByH$$mqN_S-EErzS$M`6>lj`UbNjB|7eu`zjs>}!TN^%ov^AXR z!rT>u(ia&?5@-v5?UUEWSi=OuiZgy5MA%484dr>58y%C@sl}Z*OyvUm z+G{($=8S zM;nobP$YY?x7Y1ckBE(k7fIK1h>ckBBK?m0JR4P^K! zzdZf@AUsL*;wN`@?Qxo3Fnj$tYXCQA^0Vg+3&JlUj(RJJta>|XpbK(d8DkyA13h`~ zqs8G*w~ZPKV!g3xuHyZ0pJcFUa?8e_`?7~jL9h?>jwpaEDXuXB5U86Ko&-1kH|W2Rv-%lvRh=Gy(*A} z@z^D@zR?lL!f@;qS!bLX$iis!iLBFqtY%eCn}*To6e(G`dAr z@2i0A+i$l0$CW1c99j|7|6nCBt_PS zoq;Tj#&(gl_8foKRE)++B5UR4fh>$ho5)&rXCMos(JHbUp9*AQG`5MXhBpIQ7>%tW zYhG3$3!{+`S#ysGWMMS6h^$$Y16df27Lhf5NgxZOu~}qI-WtflXv9U<#D0I)6pY4+ zB5VBj16df2O(Lu8nm`stW249#b6+3}qp?9`9s5Ec3!|}KWF7NiAPb|hPGk)&2xMV2 zP7qmx#sso38f!&X(X2ogMq`c0DqI!F!f31(S-BnltjQRSRU*qgGmwSRSShl?KMrJJ zG*)od@Xvo6$iiqei>!Y?63D`6EEicHy&A~EXe<+1?|l}?!e}&!thWaSvM?G;Mb_)% z16df2B_iu@^8#5IjYg66@WIgs&APb{0Ut}G4GmwSRm?yIKX9cn_8ucRU-eUq;7>zoS_4~RKWoyoEV}sp zsnEjEF#QGndOfL6*FHw$zTjV_9hPGJw~wgZ0!P6uZ6xkd@AOT0X&P~X`jRb)ZtcMF zeTB1ah*`Fipy|!M-#$BInOZzh-3J{8E8S1(6FNS;57X8G3KCzXGlMt)38!8!K zxoKdjwU@cqA(MCAm=Q}&2kw_~!2agY46EOWYzu`4-kMBigsp|fcyo8>&Ug6X{#w_i?tA?%5Sh~KeEt%-**#qc@pPg)-YDA!J7VvCNwX;{V*xC;Qb1tt>K3@P2Eu)yoA7ziaKw*srF(Bm|w*NJxnhJrc~mb|C!e!&O#~5m_Ay7h0|N zWGqgI)8n7nFS#!~f8CB2w?f9ZFhn`G@UB5P6Svg=;Y zSh^PC;SSJ)p0f)Plv8Tdmum(5I1E)^;NTbBf$k-gr49^!zxa=(v*O6(U^V zus#rbsk6Jg6}CR8?(It}t&_M%(aoo4URDeCbiwol`XR_LdfHJ20$8ifh(IMC4R4s4 zvC>)!^oi&HK={bfkw+qwKW38E%9Cq;GWxlU0&V$v~Hm)vm=)x5li>;)y z0rl)mfT$!zb^7dACR$sK2z0NJr|L3~O>-9=2}FzH9ov%_4}Iq6Q>=s$*@QxW%zHm$ zWy@Q!lAu>>1G(>pvO-ojD7SaK=EhY&l+?XOSYS!uQK*hlW~$-LOP zgj&nANfWKjqElC_I*_pzuT#6ap+P~XDt{NV;v}C7=}*>Vp5*!-i2dT*L|=A~oMD|v zWG$p$RW>ejC6F?ALATi1LKZ?e;_!$s+umpg+J7|8+QbX~gwtL)BPe<30BCX>)*?iL zBqthF2I1L87O2#QclHLs>)IfyC;4m(gn=aoMq3+L##i~m%DN!via0c#B%#Q=XMBmZ zo@E&olXj+wo=9{jB`IuC4)brN|!O2!nML#YUvsO9q!`@EoZ|xooH|zdrAoXL5 zt}nM%%El*eY5FvXe|cw1ACcoeh@AA1pH!AxD;(%w)}~?KlIU?|dHTo?E*NVy^TfA( z`olEX+607&5CXTO9YaUHJH}ehlC-vty=jdAXdKP%*7pth&-ta+GComTU-??v;NkU~ zonVzZSmHJ0+0A8E6YCIKi!MxqZE7QZX$uZgTBSpN{)e&FQf}`HMBM~?N<5{?`j34J@k_LIQh?IRt-1fgden|&3QeT2AHv+ z*)({AD(940a|H03L-z#REXTPGXBS~E{;bTJEr3h+rLAbxPb!l{hiJx8FP2!dn4+%z z!F@*sF*i~RV9|^=41DXca_e~R-dcO)q#$Gx^Ub^jnTG)SACXFHCLe)ox3?Y$LL)FV zNWdQGc&LwHo4L%(RWWM@OSYS*%v&5RL!p9c3HJ0Qw{k}ZH2!R~HJwk5WvNrr>S(2) z=QN2&y--wcP2-j?D?4Ib5HIUDwk7v~(O~HND@v@XJR(g^JJVJaOn50YMi2UU)VU{@ zT2pv&G!6M?ZxAo;VS-zvz8z&wc-zS|8LMP*9spf z{6^uVf@cbL7tG23DF4pb|@Z|2>Y*OxaV_aC`esmvj^780q}@37K7M7b^K8Ez2Q1&Rjl4*PL;sIWoLAbY{xVOjvXHvQJHAGd}I z8$=By!2T}_l*qvN?+4>Q&IVrxw34%Q`L_HPN4@v-^)!RD9SpmCU5u=&At7GUuA>(eHUvq9ac@mH+cAHeK2UadU-~j8A)|sba_{nGR3T$LXP8g>GA1G;#u?$a zd>NJIN}D_miolZRw9hur_Kmb-r{s_qdT=9&H|Zf&LsT006D1QYw8V`R$1mO1;We-Y zckU~jZ?3W7a?lR6+3m4+GT-8wAQJ3=j3ZeLi9&)x*%Wt!nUMGIw)?OI%E%fSIFiq8 z%zP(a1#=+W=sf94sO`GhO*T0kWOKnsre(f&HpOA#;k;?S6}&SU8#?{!^j&>JZC775 z-G;LP2#%(Qj+&NPmeRPVvxP-&Nw_J%28%sFv;%XG*fqA{$v||1ft3#4_=kAyiWS%|OD)5L@0ZFm}h z4r$uwtBofzR@>~Yl9~-4%(mfDz;gM|$6TLT0@4i0G1&Kv>$7Ir_ov$MFMu2xRhsJ- zXRLCbv#`)sgwcXmAw*I&4d+d>;Z^{#ji!CJe06WeqIHlD!CXd2%UvmU&CqGnZ1@sz z*-tMxWmv|tYPE=Mk0<6xTr}rb7tFBXRM0~8emdr!%sZ+US8CXgx?2J*Z*A*B>9aqd zX~V%FL8brQX=ff|SQ66`CXX;yWPnI?z{L#3Hx8I;!?}RR>*MBcW*)EQeOf8LiUjJwb_?AX~GTW8yFCg9ceQB&Vh8H*}?h3^(T za-bD~J_ZIfz_9c`lWe#aKpgo0u=nQiH68!|_&I0h-2L7lswJu+_E-{G?37rlK@n9g z+D2RziG(DmMz`E7H=)|ws4i4nv{gZupi5e6DI$1Ns@160R$D28swltLykiwUodvN3Q}DFp8QW{T z@U7DzG&*@IcwaIL5OiH^!1cW2?XFo6SAf&x^3eAd)Yu3la%207@Xkg>aZp z_JF;`luIpgYo0i_4F!HPx#v}JU%rQwlI6Fo*JIz5|+Y?wU1w`Q3SoG!dEXNcsj%gu$#?% zv|AQL6yVKPq^32k@f?1$Ri8^Y2n$9JP9M7Ekt_#@{T?Q!3yI0J#`A9tJq$N{y?{v$ zo*5W`sgqKI(c)F@Lw;*ad$@|Dvmp2YAHee$Y7hU%w#5c@_jAqqWkJ-z40coJ%Yx_D zcp_95oC-E7h+ULUg6_Yzjmm3w{(0siv=g#jqTqbwyDM&GthK|)Ng)iror+aA4stLeiJ%0 z%LHvZS=;BXU%psl+x@_SFPXjhYOs2;ry9OF$q+Qk95tcMk56{bf^dc>u*tmHHH%|7 zoWo9q(Ah*V*P{6|Da8$+knV*KMP)%G1CGPFwlOuoQRCc+PoXw-%bMJMW*4^p@5kc* zcLcm2kP>ijKwZ~=TzRhHt~O8uaHn&QbF8zupSwt}+9YWVEU+M%`dw@>q151pMW#zNz`f;$%xw_oM|4JZ7DSS~Vpr ztT9CKv5431!TtIU>NT)$t?|07sa1~d|R&nh;glW}$1?Imw;lK7OWoxei9&mSgS}eW% zcLe_Zq6^wu@pc~%1|G4iZ|&jVodI0Igx3`K`Z8aIwBUrash|UbjXyc@2`D?BlA%B| z%kLWGQ9vvN?`gy3KmEi~)eibr;Mb7F@39Z#&34$!5MO}M-muDYf%+`PYg82K&uM}2(;aM}e0>V~)KEJEg zu;wf6HOCp2m3i|rb$v)Lu7Uo1djw%vUOW2tlK(dO%W1-b(_CLs;y#ft=LLo#TJ$| zS%j~{itW6A-~P5%D}}XMWLBzJ@xWT`VZT%S^=!VDE`?QEhpZHFd$3Bg8lJ}2XQi+{ z>zp-7%n(?g)%H87TA%z^W~Hz)86d%1)?p zfmaF(yr`^1F^6D*_qyNdlBHcKEbaPdO%RDhU}d-7@4SD#rYnUtU3k_LVu1u}I{!&^ z`(Wd0t`t^t(OKig42IR5|BF|)jw^+ATzHoI=4$NX?%jU3ef!051y>3yxX`R|BEB0| zaDV!pbKBaj6xMFhSqb9SVC~k}k1boZmBOlRc-B~$Oo41N!KzL5JG1)G|LgTyDXiDR zvf{<#2kW(=2CWLa0<6^T&3c^e*s=vyS+LLVlz(2MmBJeBp{&QCGxf2JVeS1#=pQ>H zS!I>NDl0bYQD|9ZEyGIayx-mZPu4)Cumg8hOA^*#C`in}={IcnEjT8VMRLdI*2+f0cjo4K4-W;E=3`blMTl zkDmUq-}%BTxD>pCqq0VzsS~_{6a83Hf8bK^2X2=2AesTeAJ|{Uw>*JM!4o(vYd9J% z!4ug3$*EyAtdxQeaNjKO;>ko8;Bfz2suHiU^KU6Q|Mt!T7oVx<`|Ce}V*J{v+3UAd zFPYvdi@X1T*RR#@W^VKMEd_ty&@6EO0ka(V`_}j4`g!`6f~RkE7Wn_b)+KoQ`nN3i z@ht@(-;gZu27-YFA76j@2=Crf@a_%E0zaUkz$zN@x8bkBueTKZdTshLb%3_ZMsfqL z1e^~z8E`nD-1G%h1Kb|4Dd5Y1Rrk>!|C1Yp-j&YZGJC2b_DI+nt-7UpiMg zmphj@7dYoaG(xs>rZdBt>>TGD?TmBY@9gF5si)YN*x#_fWZGxXwa>Jt*(Xqw{ZYLxxn>`3zn@&N z-)oPyx3M>|-$hQ?U3RM5Y*!)g!LPOhwr|Nnve&kiY||C;wQa3!6qmbx7udSlI@ns;8kwK7)wS7diuJO2n)Nq&*qm%V zY#wX1%ni+TEEmic%L&tU%R$Rt*unYQvc|I9vWV`qyaxFePFd!dez9a* zo}!y9lP%*dqv;oV2l|m^7=6!jpQVQ-(zL5rH<)5qxu^OxpN%uDG&^FrENA7Y+Mf=NB%AeweXJF6Yle$;l+PGlIl zkMz*9Xgd-~TAOB?(r5$I1kS_f%@HanvwSdzB+cx;78dy5&c-S2%h%P@BsTY?_?X6)Qo!Y{WKt zgCW@A_=H|Zw7hj|`j;65K~B+Y>=*lzI+=74qD6~i={p>~l|bJ{^wyi@^ev9EJai$V zh35J6O+*V`OQH)n@|My096eV_-$3;0#nbe4MDw0LO?f}&jnAaKA9Igvq}UJGi8`$F zJKpWMplj?5*e?1)SMl8ScZJf8h}OLmN;e={OM>WnL|?u{=+}r!?g*mmII0~%*CP5n zDUN=H=+mRc^h-o*rp%`$98D^wUvQLIMnC5$zLI{1Xw}vE^iz&5l+iUD9S@|d5fx8A zLXUGayoCOWXz3?`^cbS|Tg;+I5iMyDOOGIW>-7qH7}1*-1L+||Z=79Be?c^FSOxtV z(P#FJ^c12sQ$6$~qE)9V=?R8l7wAV_X9zq?;M;?LU27)vH$-3jxsje`qkCsMy`rJi zU@!6$-OT<9-YZ>n6Y|#AjiF~4FK86~Q(MQ-Ju&pE1}$k?NGPq;zETvmmVHZ)1dU5= zOP5TIOKnSZp~j`Qr9+X%rM9KrMvY5tOY3s&Q`qFaYX7DzR^w9pW=n#`rS{FnOl=k3 z!8hv)wPKD+inLES`gEiAF-OJa+D9CHSfPCg?Jcu^vou6o$$wkYRa*hS&9iUnQ=~1& z-!|R5Q7eMqvh15WRcQRV+!STkK7ij+?3>zl)s}Kzt2pg_j+!ND?{ReZeC=J1>KAKE z5N%j%*A{cMrmF_e2a}9BRp(FW>JM$Y4gb1y@U1hT4qIa>Lyitjr6s_Pyt6MtKE zxmbIOqn~56861_5(w;cgHVM&3kDk_&IqILOB_Ue5y-=HoXhnRimdMe=nc4)7 zdfT-pIO@_>8;_{y$0E(m(as8O97kJ1v;>aU#c5+X`mk7wN3?9XU3;9Pdp+7?9Ca$z z9_1*qOdG>d*b!|sN38<2QHYlANYWnR=<_4m!yK)y)JAf&GE{qrqh&GL2#zKvE58Yp zsP+*^SNV7F{oY5k2l2P}Ll$ep5xx6$s20c3s&s7_M<317hH|vDL>q!=N#|MG0~|#y z)&_GFUZM@+sO=tYAV>8Qv{;T@h1&gy7JW#x0UW(rsNKg=VUgCKqr3{OAEI|!CTM&% zz4da4#_#^EIbF3F{Oel9wO(Sn!eYdtu6I#BD*(WG>( z8>0EO%e1Z>Su3?Jh~BuIu60KA`m9i`6GzXcYaJ22dY)*}9GwZ$qBuGkp+$0ZELMx) z=um>z0nxl^L0ULRDY04@qPZ0bT6>PlE3|eT?dqzvMdUkW*V-V0;49^{K!;S`b1;0V zFSFm^tFcNsCD6wzN`qOoR3H8ZF;vP)fjX-wA!ff)Ut+((H|l_LLZJOBz9Znbsp?+# z8w-e1jtewYMVT@imii+824PRiuL2!XQO?X#rOv_MAihaCCeV2mWzS4f>I?WA#4ssG z1^QgY@nB{rbvFJ6@k+`OfljJ8M$E*d&cfdyGD$fs5co<89jtf|6pvT35PbNI@;ri~dCGHULexg@uY4Adi#I=m$F~kX zjmP;wpWK;_$BbXo z@HqMU6g*CKZ?gD2gl&C(dE&2 z404UaLhw&INVk92zDG%Y%oI3)KWZ{GC2x$q1Eit`EiI zxq3tJ_*=UN@OYx%U_2gubPyhYnKlrQ2j;}$@rU>B$K&3$1Ms+O-+g%8ezrdzOHKXo z_)Vj}cw8Ud2ajJ3j=|&S<9p+A^)tQj`0>1Z@wj4TPdt9Gxd$HKJ=h(O3tioq2Gj1i z+KC-o-%vZUV~ac0Xm$)~uST)sJ^j^4b_{wh;`~Rcn;pY3z_nM>4ZOl!~ciBeRI@x+#=h)iWn%WvzzqYP{jDL%)uUWGlO(0Xi zWXE0B@z&ASVU9-~!yWhAYB}z8L_1uLHV$gPYQ4|e!y0LAZ4I{8vze?8t7f@kIcqs; z`O&h=e$IN$ve}XAnCVD!Ot8Og|J6RvKHHvUe-iu?#@Qb+yX-^k{p{WB9qcXbjqG*p zHoIcG47myp+kUX^v~7Z1gdf=t*xs`(u)S>a+McmxIG=M)gFS_@&XLZ+&OXjA&M??f zXy~ltv_K7ni}r6FryRdP288YQt&R=J_#VYR;iuWj%z<@d$dw*owk}@b1ZSZVWy6k=mq;Sh>SQ$_kw4{*AO4E zoGzlTLA8Wz@ROKK$J5bt7`>17ppmq-^#l#3^{9htq}WAlUc zV8Bk;ulXY2qk#7U7C8?tas4;Qm-vHquf9{?q<^7*q`#*x&|lWQ5S@{s zPlPOrBOpejx8BLRO>d_+wO)W|jas@XU3Q=_j3UhueSagJG~=jp7HP`SAB#x{M-?Tc2}i&0 zA&n93n;S}kIeICE+{2MKoiySodltEyqvsZrh8)c-Awe8Hxra31DC0D#kLcjtvIR@hY+sM9eA}X;riTx!Z^b9xdSgI5w6c2nB^f{pF5B@pKyKdfTx&nt){%C zop61wylDvG`doQ%S8^}jeR;z;!u7fGyOIdk=gRAP2-oMzYt1KIpDTA16RyvdTgnL6 z=gR33!u7dwrIK)c?#I6Z3D@WLzmr6`KDYn%`Go6p`(G(0T%SAIvV>&f9UN`ChdhPo zaA_!+!O{9rgs)x>f0a)7>gDk2#e}b34u4!i`0C~GiajKQpYg$IlFre4grsq_D2Pnq zXki4IjObABStOOC9*ao|M_o$DB#xr@kYtWJoF+*ewI^gEN1;I^k)sw7WCBMavE&Jk zf-=c?j_xcZZbUzqoF?NC9UqiLUgv0lhrGs7-}&TKj(Qc7c^q{wBd>7O`3RZIQB)-< zUh9d-ZLHn__ zl?3%Z`>~Qhf;yi4*r%Zc^*Q^o;uzw!4OAYnpBk}|e1z9MHLRR`$kE^mvXY}%J6XX| z{}8gAqnNIwh@+lyWEr9pM~cV?9R0kJEJd_`UYhPew5$Ij-HvEW?^x|Cj{eW~UHG}p zE9h24{||Ryczet3^mmSK-;3eDy&XrlAoAOl;lFh&r<*yteSe1k79K*s;pqQ34hy>oTTB3!M@}1VhvXZ_8p_kv|spNM;_6B=4g1Oc95f?f!a?T4GPr`a5NxB zE9a-IewAIq)Z5RH%9*7ZSDobgqJ#z*V$ z=d&ok=R@}-P=3z`!xO+hz&@D=-m+7E&xgN>p%wVsjtL%mfup{o=y^ojM#a!`h_-$n zt8wXWU7f)9FYQ}D&eS&GU$@*Jq^;v18$DR9`Pvzd`Y%z$Z~fm<`4@3l|L!V(i|(wjYri3H z=kFofX^u{J)lPAAJWe~w(UBzW1V`T&YsV4of73(xT-!H$6y&|QdjjGIsYgQ#rhD9Yz)*|v1b=V{s65-R3tH$wS5-TK2U z%I9g>=2;rQTGjuJK!@I+9X*e{qpg$tgh8e*Wkv!sU1VmvnLrG~sjhb29=7f7hLx8cKeF-wxQ%#V;oO z9d>R^3E}U9a}Vz!`{A!^?Pq^2A$+vX9^OOvXq`QHn()y&TTaM-fH%*6W^@GEjQ4kD zWGvzDmovi?2!9`(8Inmh^1lu&Bpcw2arV=t<>XWR?esSlWDTNI6JyD0j>adDRUD1Y zB*h#(T1Yk}(`DC?caddTk>a#nIey@(4#SRgi}f9gK=4BROiDNgm>; zRUsL{QL`fQAV-ZilHtt%|6V0u3HUZ(aX@N7bb#5l%k?r?=0lvPAPc~=&RA!C#}3Cc zj=qjN?fW6C{}c8oTZL_%Ezj29T461;-fyjKS!J1O>18pSx0>geyPIy9zA$-At@RW7 z3VpKPkzS);(PwE4HIwb6fILh>w8Pp5TB;VUUQ$0($EtOe^>71Go?+norgEQVi6gw9 zYqJ}pNc2WU5oeD%bFV=|st=SbU{ul#p6Xg7F4M|q~Tc)>62y~@8n?=5Q`hlY#p3wXgNoa=LN!raKUp;-nOAT8vKXR<*OIG*x z6Ry&37WwMw0|A-rRPdB`)_iJB4%2QH`Ra)g=U#jHsns=~Tm7;(-KO2(HQm+I8ysfY zb-`;|^3>PtJnd$Yuby5IG{w#a-)V`AB`(x%7WwMASIFy1oL3^RYEH*D9jVggtC*B?VNR@8iIwZ8f}Si8Z$dW5GdyvOP@Y5&o9uB3^ox8lEZvvz}*b)=^Yd-FrP z;AQQs`PQn>A8@vIvyfU(XI)Rn(~@Vn|KYTnT&~?Lq}J0(%s=qBj;gtlnjNp*ETq=c z5kz8T_W+L9V`@JA-}+y>SxBuXn!g?)q&7z~BX6G_%nRGiLTWux;!yx6Y{~aP;*0HO zA+?@JabXClom6v2Zoe?|$ab@kT2BP{`7;rKL-s2*pIO~6+s#61Jsrf&R-{h(s^)Vf z-q~&zQtJr^u{UPdypWjmX3ghUpE3W|N88OpYCTZQlzrNi^A~EJ`RBHINFEER^+55` zOgynHxNXfR{-eLP8{DTq#H$dTxtrB|PE3`vu%A!2o27pCw8R)naOsx3c&dALyIJaIPYa#S zP+98d2PIeh2mfw2Oa1I=uG7BIO7!$WHMhdOyxlDIv!|I(VMM^mTd$cb^YwPK)XyF$ zA2a~YULGVFjhi0dZkGDl69VZ@fjy_AYC5E-6P!1Qa^hdu@F{p2;U>QiqtRM%~C&m?#2mG=U5ww__%kto27pCG{ivy=WyBN z`MZy}8(hSrJy603Mi-K=wXL~dHRND(v((QXC};!^b-?oz#?*YG(7PciAEcas^bT&8 z`q@(-CvHG;(Kj`pCCkU=hIDL^9;kK%uWv}lmQ(ZDHv?{OWhZh&Qnof8R`m!@>v>i( z4!3f%xmoIG4-`EDk-$!sv*xStp52!F*$oNW!aY#^2-XsipiMGCZ_m@_hBR$$JWv7& z?#;e>rR3gjWovV@)XyF$ganT+Bx}=azPFn>+uV?{jjjL3Drb~{r2$g{1_gw;Zn(-_ zpScR5=HGp;CeFXWO8c=h532n|I$e&Fj!lkt9M3vNJ32X>_LKJY_E*6VevrL|T>~%o z)nH3cvE65DYW>stt#zd}&pOuH(^}v12V@CcZt+?k2e0wE=3mWg!DArZJkZ?C^q1*- z(?_Ok(_^O2rds+jeVzV>o(}ft=8!AkN4kpoXfo|X8HP4P@kBi0r>d6S6aBBw3sQ@Ze@XdT=og<^dqU_DH zBLwkStN}3+h#ds+P=Wz50*K+92p(cmVq|z25W@s9MSkhXuued1&xzn)CT%eyJRFGa z1hKqAPQ+ff6~tX#4Tv3}#WtJ>&TCR)cz6eUXm+Ts#iTTD*|QIlJvYg2rPC;=Ku4xc zsUlWO^X!8(&-Y}*N4mX6AkA~HD$;O~;MoTWo*QSwM>#?xkl^`)Dn?amXCI_?Zj%i; zzA%$Aq;@`3#TxLpq|QE;)VW!9GhL5@n0A)bIlqctEuAy)8pbxuhCE)#gLKZjt9aEC zIr~&d+& z)}!0fHUl&8lV;hFiwkcO(l-BD)n>JX%|4c}xmh-3+~U0VW2&`SEmbq{F1_3&8$Nb0 zY>=wC8mn58W*;PJ4$g*8S~!qWo~?GtTj`m7ke)dt8@^-^3$a54K1j*jBpW_ba8ru-sceUNCmc{Y4Kx@!ay zEzhW;`lVR*L5k&&Y{<<5SB4bJ)jC@}xv~$ED>uo81T4@ANUm(HYOY#ZWgnzfZj}ug zS0EM>(keHuBK~sD z@DxH8707D}NtCM%>+R{2eULu6X*T3cfr~==d>SpC% zA5{Jg@jQzcgUY|Vs~C_X{#MOjAJqH}_B?}cE2#NfzlwFM+OH3){WkGDjrRl9euq|3 zdR5i=^+BEArkb9!BKB(&3(lZ0!2~gEnt!nCT^?ZF$&$qGXNxUl5^Q|U|s!F~-sN@^snU3Ou zO1{-NqP{5B@by6r-^QM4*b>z6Jy~_ps_MNysNNgwff6iTm_0@hcqlqUC#|LWl9;#{#)=g0M z0IT!@sY8fo3U4Z_MR*mddVO9W)aPyDnarDdcI1>QR<+8!Kyozkq#_9_^HzK5RIADB zt37H)3r`9@f>4vU8p*#JuMev6HuFrv2Mnt54yd|juiNVI`k)SPV^1=Q9_sM!ui{lz z;PusRJ*K563Fib<;C;S|^S9c&KB&Fh*fSBEgW9{*1X5LX*9TR1gFT5jl2CQmSJm9D zdb_^bx1gLO+0QSL3P~^ss2hjTDm@{rQ59(pO`d88QK^5H=o_J(J72WeyO#k}1KB%AD-19hI9O~!R zuVVUD&h>|fD6l6|tv0R?YU4KXJc4%x zwQ=LCc-5-n`k*Rqum`d#z*_>U;#L#Gt$MgVsE6Cw1IZNN0}AzUtIhbTO1M6#gxlBy z2@@EnsAe1AJo8Y;em7s@HvDUxI?S%$G`fm531ib_CSIJXbr00R&ULHv+k`A z>fT0rhT{eW3&5#)dH%O7Vs1zx_Mj&YHf`?!D>6$W)~x0;Z*Fb;yNu9omP(AR{~uFI zm4NR9RtDriM1Mqp&2xPm`HSo&MI;M+2EvG0 zJBaK41g(o!TRow!Q|GCZ)IMsEash5%QJUv~;>yu7JD1BxpWUms;a zj0Pg;u1I_Z_KIME8vOU&0%#F-3vxhzMdAyK4T!J_kORsq5_9$#5Mjxl1L`XyLR`9( z2vvrG2pTLBo5(u@WrcwVDl8Hk$vYDk))|PP#3Hf5EcvC`{zDF^u}G{Z?==)41|lf3 zj0l0O1}(B)gEq^E5a%i*Mt2TlBLnIz5}zzIAhH%glVwDRl9duWp&UVxWkd*~l@r5Y z!zTyyStMR6Hz2Z+0fm+kAp}=S?8vrfazLv^;+#waA{#970fTk*L@W zh-?c9bX-P+@LvNW2s|6qTqK@LG9a@3Fi>`pcw)W*k!>M?!pn#dTP!6;g@JgoLFHvc z2riZqBXOGx^j;)hE|wFSc(OtBMdHsf21K@J2YN3O%SRayS!Y1`Wkd*UmJ%b_G|LA4 z7m1VQy^g?p1SJ@W$)WNVaTgF&VI+=|-(v)OX0kyUM&d~6;~E_i#(E9YdxNPg)K>`jpksxcDx%P-vlcPc?WM&h@`;L@x!pdBM|TZ93T zbq3U9Mucc_DKQ)c4mvUt`)3*u*;s>y%!m+cE+vLxXFyG6L;YvNi4RLJ z4Metw3_3Fsd)wtLvbR|_XwFFN($#>-Is@7>BSILwl!!0VY|x;QxU)h|#7O~4G!nOj z7!cW{03{lU>*5TEY||ceXe54EY(QjV4JtGvLWI7Q*bxN|Dl`)B^~i}haY2zrVkh~f zJK|V_GL6K@GJ_V`$bdeL#IPd@_IZNL*bhZxP=;pk*U*WvBs>^%_)dBrc0FAhKSArp<_u*g#5*!mk3T+ei#qEGOb? zFOCx-ErOI7iQ*Y1h^x}&M4aJ61@WU<21NE59wLZKOALtY9sU3(LP`cHk$-0f3u2VK z*W5NVND#y2myW~*Xl)=MxTvLU=*5M6}^L^g2;a3Um=kPI2U z!_`|53*rn~Wbembf|#3RKx9why@L2uu>q0wx+f<>3Jw`DvNQI&2PZ;?4k@t{PP6WU z_;jG0h%eG^f;cJNfXME#D2NQbr}%Z zx>cyH5cXw2WXn;Zwn9{x0g-JK2(=Z0#tew?Zp;yC>#kwa=LI?gdRdN8TOp`S+9I>W zH_s7jE5w``5aD^r5o+ts)AC-2IXCYU_@n@?PUwCP%2PI|hXs z+#?$qp|Gh)m!@ZG~uE8L=ZSqjH4WT6Rb(9w4$7h1y#7lTLO{4di%gC}ZH0Jo10s8_h1v??z2XtUPt3|E!0+sUzfHRjRF^H>z00U@$em2p|(QC2ziV60uX8|B=R&M zvXK#LE9Ch!AhJh6sI8C&)PTqy1);V=mQVvC8$zMBLK0B}A{#=XwnC0k10owjp|(N- z3@I@RwG^SYLWWWUA{*;SuHQleQv)JQ;!qwMlaqrh7VVq1AS_7}{ZW0me!qUN9<8_0o9K7xE}hb=^c?+_9-!aSt#mE; z@h_uq(|L3@%>uiA3LQrup+jgt+KqOgEomcKm)fX8E|cHLVe$jnNj8x$$VcY!=F#S1 zmX9zaU>iph$6b&Y5V8W=&)I)9U$C^ZG_^Fa47BvNbh2bvCPHk%2-BCQPoU=DLepGR zf$2HRd**s(hgmaSF`YFXHT`JXW!h{$VLoWyYu@Hq$ujUcUb>k-(DA7KTl-e~TKg*d zGRP%(TPDGO&Lem;i=brz%Ol8g)Irw6f#f~1fV@n+wZ86Ri$QEs-@31F2%SB(nC#)d{c}zl&ig)y@O(vQ_e2n$ujtJ5S%l{+I+MPb z@O(vQQcDQWS9B(658+v|&OC9N@N8OV#u2gw+pEe}^*_pXgXf+;cbcr{=nNrWb96F@ ztmEid1X;_`p;+=2M?WQyFFD$uNlG~Su8@4e(e5JhIY&D-lFvB$zs;zFt^EI&HSa`u zIe8ziapL<5@*YQf?c`mKc7>279BuDP7IRcXcAraiH&QeH^-`^JYU0RIL3y5}OIACj z{5L&>5{}faR6}&}uQ;kAx?EUDc}AzpFBVar(dqK6jg)6}x|~-|c}Azpo(jq{I$eIw zPI*SB%QHhL&**gd$*z=Vbh?}oM=_(5!}6b5^c8juhox*Woy*ad5?aX7#y#|9MCJ*h z)W;Cd*~HPgKys3!-$DuI^Kxh(#L@A1hB~N-x;YxKk&ff2Z#l(mK@PQ71;uPZ4z-7! zVzwZM+9iZywjhTZ-IZdtAcxu^j`D0le_XAgci`17zZFaCax_1I26FUjCar_0;;H%M zGD8l_o^<*LBJ=2U%74>;T1+o-UTz%WxzsAMlE@YQ+cO@5XV@!Vwv%i8w>crClB0sI z0ikYDt`geOMW`=U;yHC?>{@0y^dN|q^M6)>B904)RtS9=0So$1CYZK_R z9DR{VpW$dtA$=MVedIKq$ktTEWWjRga z=(7qsk)zdin#j?|A#?&qE4tDr7_wh)97_9fbaxEx%TfJNv=2vjq|+Eg*FGkEu8b!Nvv@o4^qy<9>&b2MiU?S!Z@ zB9wOIsC^8L<|uR&jpC?9I*sHgWEPF!=$^&214lt6G@PS5_s}qo0#DQS9MvMU9Y>BJ z+Lj|r1Z{)p&*igdC`U^dLl$Qyp+A?D&{iD1y@$5s=ygI{aP&$LZO)M|f;Qvmg;?5@ zqx=LK!ck5pZNky>g|soEE6q;RV2+v)dJjVZJ%6|9{B2h;t(b_XI_>ZI7%L`Lk_&il z#S?+#JfaKsByx@;mY0qr$asAg5oW04sIrXw#t>Z1s@})Z*>}}f@vm1J1<^(vHHe^h zb5t*uHsq*I0uAEGl}Q_LWGkfgIWiT|yExJ|(mN6TalM?@QxvTa1P%PAyvcrJ;REUk zMD4SeC<_F7M?H?n(mY$4FVOSquM9yLz;fjcfj&@=F$7-!b(Plzs;wSn2z>k(D6a|h zx_X2maOZEMVBeTyzj~Pc29Em|m3ac4R}V1+F8U3XR|KlB{(|V)_m(U81z~>q>d)*q zh*0gL{3K8>4QB+zq%Kzuu-{m8s)lm|-1Hp^esh?^zKZWm@XB{6FEbwV&sVV(@WF4Y z;CG05YiAFB@uG)R4qAxL(StXvl;Q5_+WuD*+C zdBf4lUjjX>KFAPDyr3>bbgXTpa#^4bI({)(xjl6-|E+B5P5Ytsq&u0TK4WbA{Ooa=FWiY+E*0n5`hyy8#g_6uH7| z1)1Oth+v_}6=o|)6mLL;ZP{F5wt_tJ21GW5!fXX;<_(B!2!+`Svd|k4*$@h|6(p%Q zATogqvlZm9mk~Rml{r_Ktsup{0g<&R%vO*A-+;)5P?)VCLB5=bLnzEvkU!sm2=>-o zVYY(w`UXTc*1~KB+4l{IY^;UZ3X=015ZPD@vlZm-Hz2aH7G^6*?QcM2V=c^9kon($ z$i`Zjt)MV~0g;W2Fk3<004Who=DEUb1!V;ch-?Uj*$S!-$cZ?F!fXXqE)0ll2!+`S zieMNJ*$@h|71YQuAhID8W-BP6VL)U_w%RvSE}m!{LSeSr_oQ4r(Kv*{Y_%`rv|K!>_Xx8U zf_S*lfXGJ1!HJNwUP?r>ey&{*J#z7&SwGh%h|dNYw8)0gDu|hKIimeP*CL41 z<#NPCSGi_EOqa_s65o#|K}?m)5gi3`bwNy$%P|rkE-Hvm6v=yy4;K-{gpCG7HrART zK2~l(WMi!g;;0G(A{%Rk6QO#Bl*l~_p5;U+u3ju_6E zGgA;x$a~FQ4>ASusJzz^=nC_cARe;IJA*z7GX(Lc5CbBNOwN;nxWB6b5k@9wx*&cR zXFz0foW_Yzb3{t)fNoDy1#zl;_Hbv03_+YCmm_y(NEgIOayc?*hX0=Rf1XfV!Pq4e zc4u_0%@b-XRFE0YU`<3>0AUNd=c`5+Ip(LbS?rB=3<^u zTTjJE=OPecF6Iff^;A#kTm&M_#XO<5LhUPQuW>DtC)CyxKg;FViFr}x3AGh$fCeqX z7a>omtzaUQ6Pd=GC)Cyxd*yQM#6IeILTx>*PYj4`WQ5uZby1{5T=e7# zwH3;y7!X;DLT!brDh5P0)p(16IEYoWG6SwRCLd#;7r3RMRUh-|Ed+6qMp4Tx;4h1v>LhYW~ptcBWo ztSH@p$VNt}tx&T_O2qY6o={tl#>(Z0(b0KAZ9UpwE=OFLV?{Rw9R4z zB8+veP+Osfr~whiI#;NzP-4`82xFZq)K;iKDkbt2oKRa2ua}Dl6AR}GwH4}@%3EZQ zYpzgRp}eU9k?ltbwH2zL8W7ojlu%otII01W?MDf<_3#I$4T$g*=B9D|_V9befXGH> ziXbiuG9a>%nJkD4BMgXaWKua1>b6RWxZcW55yT#HIbslg?j%9%B9|ksw{nvOFga zJoj-yTrL+6#xv(WCWuQD$zhD@ol*r(QiF>v>+}hGPpE*Tt^Aw zYa0!S>~VcW5a*T~5ZPEiEQl{v7!cW5kK{xsizg*wgmmshg4k9r9t?cW9U+LV2Lus~QmDG4Kkt6}%{=L|i9$h1v>ExduemqEK7GXV-uT>jbY*TQ51}azt~B zSE#Mv@hfkUt^d73ZM~$+<%s4MuTWbrsd71@xy38gR&XaaxHKDUp|*l|s{xU%6NK7& z@sh`Y2xFZm)YgmV=Nk}Vtn-B0dhtxL0TD(fPpGZnpDQKub%Ib^E9S`M$kz!%ZLKJf z%aN}WgxXq>E0-f*CkV9_{EFrGhX0g3tcBWIk#fX<$i`Zzt>A5GKxAVr)K+lDG$69E7HTW_YD$T?PRJ8#E0h>E zAhH&P+IoS=<%kQ4JfXINBdEMZT>lHT^?apVj%ex06KX3scpJ3H*8f6nh1$plL^jq! zZ9RWZE=RQVz0Own8;(10vh&5o+tXDRMdD$|Fyx zt>-4m<%lbfJfXIpOO(qIR~~snZ9V6nWpIydtcBVN1+@)`Y^;Ua3iY-Ph-|Ed+6v{k z4Tx-HgxU&GRZ=1@QSyY^diJVZj<`h06Kd<(%W^s55+zTlt!FRD<%mm^JfXIpJu8ZG?+6n<*^3LFXy--`BM!5lzJ=a6IehVec4T$U=K12`?o;Dz|v3@`h%ZUMzjrCwb z{65Hl$i{k*Anu7UAhNL@$cYfiCMDt$B`;PG)8%r+@ZY@q1u<1FM_kL~4G_d6xg2pV zlXssWJ|UMQu4VH23*tDr9C0m^*G~{f%f*A~we$K4;>cLJc+kAoM-Yc67!cVI#t7n& zOamet!rp>7u+V_WhOieWLQtTTh@QQ9_X^?}xp>0Ryw+0?Ps*nmX7UHu zdEEu^kX(*osB(1^#GmAH#QaftT?KK!T#lGODzA$mekYeB=8wwjEQq^{{D08gJR<8f{tX8s@ssvf0(c73pei z`O+2as^@Z8K5=Q5h0ZI^v(BSXMR1pMv-3;mC(fnLh0eLo0_StiY0hNlSm#LRU}qm^ z7iXBWxwE0Oj??0}?zreU<@m+152_7paD4XnXnhv3UQ=EG`+@%#as1Vz_-l^A|927i z|2CrDGS^aIdCoG;l581k8EF}8>0{|)39~e}1X*fXbn{j7@8+ZC{pOwKjponHD9PR^~?LK&Yzlm+6A(xaojtw`sGf1Zpe3YkI@o7;p(x>SYA*;hMy`SDi zZwEOY>ghIm9j3_t{`+4E{1-^TPIL{5d*2_nNj2ZX8}z0E_uRcgf0SdWj(t%z-NG02 zkX!h?TE%%mT_JwI_PA3YBk(fo8GW?CFAN)_j}ka<_7YXUg%{~fZsB*-o999aZFRZ$ zy=}~BmEOXS=#6jTht-?yL&(qW*pRh#Xg>^9Wz!BzJ=q}oA&^vvejiaqN|GX z`|;~%+H%V8KW+U5wL&r zW=#Z)I@-3efMLIW7c5}i-aGCQ&_4UYMmJ&W6?b!3eD%XK4F$aN^rRpG|1H3b7x%vU(_cB3i#~VW_1Ld`j}o@!1$|e zYY8}dbF%;e<6d6j60mpYzD@zVkkt+WJFg#P7qDaFNj3pH{O6KYz_1^j76BWr>uwhC z4%as(4nMj0O*37<<9BqY0v>tdJ0jrEb*5@oqFWW^lb_aN1SHh&JgV$r(S)p$r-re; zP_FZu@-6-bg*&yo8G`zpj@`XU9nvSS-?KaBi0=3d8Lr{&esq&dXjWvR(L4JnvsX$XS zm>X1sT8rb9H3G$J7~2b_6_+ck@i!>4s9{7e6jR)*tYW{hvWhCk@j~guhDtI121OLr z>xk;M9M&`|X+MC!(I%Eto5tJfHUI*7^2M*=0Pm553gj8i@oC|PbZZ80lbbM3A*$(gVNClsGK;dc}{xxsk z4i)Epy>SDUDERCHdPg0Ge;qfVyNXW$yzd)kgH#Pfe9?1Zu3+LewmSDx3a`?El9C5jL&7+-&8599B{y zS{}XJY~@e~$mNJJW?pW#a;Safazx9cmz%9vf-L!^**2J$o2^*>ECV7NYi_n;>9q`q zY^=H2ie=w2AhNOMW-FGQ%Yewnnwza0kh{=;$i|wRtypS910ox1Znk2X4-JTHthw2W zB}OzLvauFsE6AHDC8FigE6i4qR?&dSS`=n0$hv4iWZomfYz0Xfm%jkPdaU9UgNfXK#Ln60kgk#0a_V=c^9kYr6tM1!JNn60j@mdgf^=oMzGYj4bw ziwB2Ln60kOTWmmNLnzEv*Iq6$AhID8W~*y+_81V^5DK#uWUiAE(V*xRW~<8faygxI`*PAhNG(OF?{FD#tK1D0*86;_FiJ0FixNn+xJAQt<$h zeO;RgqE9LwAhNG(Q$c(oRxTbK!Vp2sPcR^|A#5UuIhh7THiV4@@%cgnA`^HpCqfEF zDG|eKz4r)W6S*8Qyw=-D5F5$mh$Zv9cMD&fMa;kDi%L98Q}BZk*{ z8wjFHE=LTn_0|_en_P}qug80rAexHga>TK|QxLU{21GX2^*9mIMj8;=Sl=OtS1SyN zY^>{YBBa=r5;45i8z_kL<#NOdK;Aln_^MovSOLgeTM!H7a>V3A-dckAqFjzF`OtsQ z`afT&t!3NNYaW&G&QMwlUMKlNZ7o|{VnBomkuTKNZQUe~Dzw;%MeFAawRP(cv!pHJ zgvb|a>(=!_aw2;-<_ooTOLNIwgiA-Wu>O3Zwtn+=oU}zOqn=1dTagsIBYXkrPpO%ol3wS|XQY7)y_k zFVxmAUy=@CG=8=6h1yzjhqT3LeB0&=wY8*ngsd~s__oa#YU}4o(vgYoh(jpU)=!TX zOIze)E!5UEQ|3#FxXqL=)YdhVxw~A zVibQAgxXrPPfkP)C10qmMcXCysIBkcQ({15kAhHJ-+hxviIF%dgxb2K zQG}F;e(U){ZCz3)(}2h>E!5UUi({ok{%RI#>!P<342YoB=L@yq4`12qSTwkT2BM1+PhGPb8|=`9f`7;FXSbBMLTz2}T&3(Dfyh3? zLT!EZ;%O<7PYR*7&U;!;#J%u*p|;K&FCD^2Oi`9E)YiF2HcBte-)3BGWko7#CW1Kw zlMm%{wUyPdFd(uw1y@@gmMtX)L^jR1+Ul@u++#pwZ!@m8I-o#?l*osWtF5fIj{%Xj z7=Ze%!~FOt10pPN^Id{CQZ61oDV%~hTrM75^yE7PafnG{aiCm0xai5Z3F3W{ z*#kq^3Ez)aLF^SI?=|W@7D4PTd8J^BOpazwgaR1S7P;zb62$%TUgHuaUl+vhze$;#-h&ze=9@*AIz9xv<tRSvU zFd(w!=re-&MWz7}9xm_Gg1Dy8fCxkAoymz%RYXeUk-eFM_>f$Vm><>qlpw~*<%soB zy)y*y0l6G`Wbc!L7%P_}CQ|iI7sUQ@Ir7NfX@VFdmm`ntohpbu<#NPCs@@Di>{=w3 zBYO(H>4MmCqXChPb($bXlp7G)SWn?ZDAgh*qL$*FEQq`0;=zDjZ>k_}my3r5?6UR$ z2<5sG@O{9_fSiEQ0TBT<*CE$ut`}Y7UEN)Eou{1}oUc14JNr8uIWB=m{$j^dj-ig0 z_8azn_7(PQ`zU({yVdrK?Ni$vo7>jS7HB$CMyP}`}3eobGXPtbNy4{$Gek@P2ZwcoT= z+8k}L)M35Mt7wS2dz2;Ou)LAvI-OVn$+W%46=d_%6Zy;wL30 zC&niS_ey?hf;(}NJFP`}@VLZucYL}#ICXrmJ3cLWMsR9Mx;sPJ*8Ss?9SfT1`Y3EH zZ}uX;#)bo%oixdvl9-+_HJ#z46t^4BEPSYaL1SHy#WUN+JmPm|oICNUscCL@<*+?k63( z9h{glacUZLX?*b5wD`mnxRR?=s{+vI;7ZKr((lY(lP9}DVhJF#bY+|Av*)@OfKrzP zT=2^D;XH;VP>S zMHPUe2Xbb9o_?$tcba=_TI#fT5OFdHJU$^IaU5Jx*{1K#ZdL$#UspH}yh8oX>pM9y z**!UZ2Jm+L7*+sk-%#Lz&!``-hM54TY>wz#0199xoC40Jey7A#iFbNp#)ROM)ZpaQ zbR2(RrY9t(PEAj7r-K0XO}^d*pdU_!cEC0DAKH;MQZl_&0qBk}V$7@6uaO5b*jT|N z9LHp-ubdEC0P16ZjWEAgKW_cYg!#t$vs2SjQ{rLr z#HVGr(-KqD6O!F&sp)KD&>y@Z1)x*Hz(PS4fBE!E&zLX?Ziem~8dd-bB?z7sR`F}T zS4J9p62~WwO-oEpj%QN{PTBH&SOKV(a0;uj;&;lBsmYW0Ex9L6o-iZb&8|YO?Pyy7 zN+vvPPd`Q&%1D-T>+?` zgWxd%mlauJfZ1{DO1zMg-%~=UH~d+cQ^rRHu;?}B*i@yI>QEy9G?(Y04gYS z+P;5Ynjew(AYnpkvO8f$I*vA+VtGBZ0F+S}XZx=H{u67+40m#BihJ^eG;t@Uj?D`| zBZWJ$ul~^gPWs0uC#PosU)iSJn9!^MG*Wn^>`Nz4^t+RoTbI|a(M|=Rkj4Wq^UPsC zUjO*?jI`9mlnj_;i77C~6Wo(h)6yoyKfx|>?yb-QP*LH|En}bapA`4an4Fq1VFsKH z@5V{MZuWfp0?<<*05%!Z#qUBfsVN!p3Gl{or%i$hgzqfP*}Po=D6B9{=Bv$q^gE+h zM(Si3rQ1%hZEIfuiYr`#9(r|{-w6-0H!ie2%^jSOn#?bu_B__605sSEaK^qq{=JWz z%wDwYjT@hmlngyqyWI#c06jJi=(`;k{4OwT0?dQ>4CpX>&TfvF+Vz801)$QxGf%gV z`NHp<2hua#sgvRH#D`JsGA*8X=pSh-l9Y#fyj8txciE^po1zu}BD_=Kee|WlQdiF&SK~N+hnMv69)llsFmaxfgfB=z%KuFk8lbN6l zE`W%N8z76QpzMOO?;yy&3J8LV3W~A_qWo@EcirmAlkV^HJMTH~d*0_f`G?{&pZ?U+ z-PO11-l}S7eSF$P_H(%wF+bN}Ki7euC$OI%>#P5{HoLkuy?Q+Rxzw1LpV`&5>sW)+ zG_w^>Q#3T-ROf?cw!&eHhD3GxSTkGUEJj13Iu)jxtsXea)QAWZGjuXTHCsKGcD5** z2ung)7~VA1Z1o%%9yTI2U=an=RI}A{pjBUEA{&mXW~*mkU&E~Ht5b@q+3MN(smDmM zzB(a2lG(SOtxtY$NMr#((=s(;3FEA5vH7SBmAJ`aHB?k5u12WD4R^O25y1mM=TV+j ziC=h(iEO+zEnOw9%?%qWvOv>m!&TzypZ_)_srVUYvOG48PiRvvJtP&TNF&OmJY*@E8oAnr^5TZtl=nBLn7Pjaav!M2q&c)64_o4)B32yOY05qOheV>(px27EH}7lMd&GN zv*vkPC7!QoOl09>(|W1IZ$B`6uN$&Rp=mu;;_3IoMp-vddx{<^@x;r!K1540*>;QJseGtP=MhG;AL5hS&4Bl?2OGd59%2TX{V2lJZbsa$s~IEdUQdpp!gV z9u;U7sB8NxkSGt4cLd4?irIb*DDoHnyZ&po?_i$bxPPzhn17@7Dfv@*o_~dZk!_Fv zZT~C&Jlj|PTz|U1zwL8>vcHwTp>3hRsythM$zR_8i0v)E%lEJE58n^AmtkjsgT8IH z7kq17LEp!|_iZ`8S-z>Z;l7EkGQN?%LAHLrp1$_JCbq7=TChVv8Cy%A-{rT~fRpWS z`(*EJTLbUU){4%bt&cj-JCDE#_ZytcoeP|EU`_pV&TQvU?|JVLTNUpv$E)5A-sQG9 z?*d1@caAq|E8%_4*#}nJH+Rz+%V6V_9nea;J6Uwalii+kpJUbSxV8a+aV13t9QvS(tPyW_%-Q#xuYn|c#!*R)R!m-c&gZqs8pnIEpt@~s5`|erpsqTsH zk?uk6p6>SUChl79koz%rz#4H|U3aYGUB9?4STkHlUAtXhTAy)!X6^3!(6I?-SzdAF zyT-XPT&a$gt{$#-*0!!B$707^`H-s?%&0WAJPIp(i(c02UUGiJe5Ds#$}345cPA=6 zwe<4qsY(wuZTV8} zOGtxRq8~noNl*Ewyy2P}N^_RBJh(geXQi2z&VBEU(o{?LQjRD@O9xkOP?~6IN8k2JlA8WErB}A{l$yRj zYf>4dv6c?*xTG{v(|>2>A5j{r>A$)`=t~1Nedo(re<<~}^hf*pDD|}TOS|1lT`k=; zx42SAOP7D6xKdk9-~Me~wo*$=XH3|q)YQ_+i{~me)by=>pKMdAYv~XiXIV{4mwje| zqAg*+dGqiQrHYE*EcW9)rLvm-Gb_7-Qb|q!k)9zdiE8@BAH`CX1TDQkZk7_#(v!!X zQG!}JrTPLTJ}^)2!*&gTodN=1SYZy5P8cdr26k9sXN=!rzE7zT_{sVMq+te6DQ|y4 zdK}Vh1-^Zu^pHC9rj)ZEm26^d^Z$euWZGJ?|BDsUYP&)^!OjM7j`K>^W+uBC0OwWK zmc~060A&PgV%Vtw(gRug{~x;(sI75-_{9FobS?elg>y=jrQIXvH+VytrlvF7_3oj( z#L})GlgIQ>UR2YWFAeOZOl4_F4o_;O6lm!QwQ`k+mM)ijKnbg9>Dxx^nvT6%IyRb{M}?r`C_lB=Z~cUq+6Xz3c29#O_< z>5>;Sm25SA_slyRmC;)I&FMRpQCj-7DXo+&E#3Sp5riKs}xu*Qzd04&GRYC%e|IttO|O9k;QTmK=P&s@fIO&&g^@?ao~AIk_yU z-5E_^l++tb(^I4)tgx<(gAKoy)NYQZ_e$ywr|C55u*TWbWSXSjd{@SvCh^iC4c~VA zuB1K)u8eKB-;lmx#Zjc%iOba9*p~D7=*yO~j84-RWwp1ojSfzI*>Xn3Aw5lwSJR_h zDaS0QF@0FBsHR6A`*4Wm6sA+ahT3ogq!}LYD981$L>_SQH`DuE-q(193og^JpIq>E6O6nIug0xFg-vLN( zUL+mRIAqGpl3I7kLZ(cU)OUlXCuw*ZUgRJ7kGU-bd2dgPZdIZy>C9VGg+$U|&@Qevx zOC>P9SJL{m+Zhwmr1k8zw%kq|mZTY0x04sYD?O~ylNY}&XoSUu1IUOblGRXFv9eFX(*Vk2 zxi(Qjk9b6AN&pDUE{&kI=Hpgm5rlY+5H~R|vKzpKcU-?Rzsq|NZwmY`1 zwx})HR?2$L`hj(jwY+>mo+I~?UD94@yhJSbpa}mre@&x96eW{7v~R+2a8!2I;Itv& zBOeG3gIsV|jvSoUD6U)XAaLiUj!dJzx%AA;+>zic0{6_Q3DT`5%Z@gW4px-WRDzBo zisk?X4Fbq$s_q2pxVFEuuO&VUr_Cp&d8_4AKS1HnJrCqRFbENb?>wkN=Lv$byg}4DD@}dP=q(TdVdp9n1km`e_ zjw^7ajmc#J5yQa|lLKm3J3bX1peSjqG_avs(PAm7(3r#Eehg=&8J-IP7P({K@@?VP z(f*1ufnNSQ?5S4t1jjbhNX>!XCosnZ9GJMjARaGD9XE)n?zySBAqF~Hf}{L2v2i16k`wsjpT5F z*@qiN`@p;h6`(UQMGF*a3g!xg+=pFk9PO zz*@f9-#zL?dnif|sH!Bv43yD@sVw9KUdpV@32@n+mug45D+)MEEfSrqin**=2819C zn-G_i6$k#rw75}O0E~pIRu8BW?WQQL*i|sCWpq_$R>lyZe|o)6G({_$1!lgC=i$g-pwa=Vy2VD0fQm(3HBCYXa17kva{8x_c8a!vMzt~>m^3uhVNpIAG!g+i zYu34O9T9vcr+>VuPPDc5bkljqLUNsodVDPVnim__Algb%AQ%YVJeZ;^bXl{J!_u>c zOc*mNBXvxAD$Ngijm*@+!!7%o?QqtJwp0{|xqwSyMzheR-G`@V4}qYIVf39H1kXHN z^7iL1YN1oYg)V9dA6+m@)CfB*9uls4tYPhFW9=$Bd0gl! zeOBD^uLg%jwU6_(PioL{;k@~GkA8*-5W_7I*t*<^y z7CO;g=%UuC@SbMGWq?IS!++=vCL_}8MC+;VmE{i1hZnk}BXa3efo)HQ&aD-#s}=7K zOr4uvmNPtk7`#zr!0?9AI@%L*2jD-De9ku z?DRoU{`w7{iq_N&Mi`myGr9n5;Edeytc7WoTGSDFWM1894ec3%k?Pz+mv_%jr9o5h zF>uDzf!MgC?K%bbK zIWmrg$Lc=#c%z#5SJj9nXs;jj*_fzmVRT8q$2X0Jv@zlhaP1VjBqfax>I`pc(hpUu zM}t~i_6_g|6_Q{P&BL>@AQVpvVNE*X?iG!P>X)X~he3Pcd-@-%pOu@VH+irHl6Kec z7Oe=%#h7yY8rupL#>Dc`+LeDL#-_rzOTAr5J1f)ie}a-|2`mi^4^#uc{w9CKp9H)1 zf8~4L7w`SW`zd(GYkKZOtbZMk1m5Z_cYW7A*D6HpnnMfsEELpo1)f~G<>ssFiX&2G8b z>KHf^rT|94${YH9p%&V+G_ap0=u#)?mi$T2e#56bK(HYly;3K3(SkiPz{Y}6jc$H0 zb=Yke-_fSxs}ln?BtRSv96v zQ6G8HS;b7U4uYW#%&cl-oAgW=L%^beK`_aMbH8-@lP+G;7NTTjLtg3U+BBH1Xrp23 zf-gENFhobv5wY4N8M$;WxOvq-noqZ>GtrU^9{Zv%Z4tA)WB66D*6N3*zX_ z1qEyQ7Skm;o3Bm}9R_F+|j2lZ0JQy;-Bt5efVcIc!SXwsBQZ~ESr1NwO+$A~{ zF3|{tqGb%9urb=OLw(dha6yHn==18lm}G${hNAV_(fRYtTy2>ctb0>UdAR=NJuRcp zDGDsYf)O)BJ{VoET|po2oHTGV!0apB*z}yN@#)Yy%_12+qEnz=k5C;NHDRQqo8pIe z1%@hga$zK0K%$%ChbIoE>fsG))_7^l=wz*UGytP$SvH}}CZ_Zg+TulQ`n|PLbdokN zO=CAqWW*Fb8*f2RvuSMI=tMqd|IzYK(HFPii;(y;*K||emeC1X+3!PONYU4&!1^EP zHECgE8iY4N(`A#|M#s}hIcQlLQ&O}HSj58p1M`RKQZP`2X>fSQ*)!a2VRz;8M$<^4$R`iS7KOhI!ve1JKwb2(T>qv$kPAoR-W;n#|6du=Dmi|Ol{7GMl}_E zF>6V1er8dx)I{wWCJVPWk7j7z&%YoFs_1JwrozNLe-Lp=A%7Ogv~bJl2<>hD3&N+0 z7ST$tem+@O0#7wkp&rw+>PMf|Zp>d0d4<2lICHx)*Couyz?>~}VA3n&8bs5z*;*Q> zRrHnJM&;(@X6m~^xb*4gYDI_hSvCmkD*Do{X&Ga|DZ%q=`hNZBFs-CCQn~1hx1lTZ(}`ftsQpxvBh|V`)8H9o^C~nN zx@ZOHsIpV3FNv;3&7e~g@c)rxhC;`p+GC?q2aka1)WI+Z2#KtQ*!gel67|J5My2+PnQNa;muUmGt3AP7FT71b|3+mNR6tW%$|Y zpN=NSE|pHJd~`eKg$C*c_n8O|&u#ZkK%|x&_3c`ZV)lxUIr%b&|zdYW8 zoVHgySG~+Uo^$YNE@;jR_2PmGC0f>y^;>?qcCW?1P-yHYwD?^MlqdpVAX~EqKN*Dp-m{*{fHTe6@K+ z-(F2V;k;0Dea4kcGH#~JxROc6P4yX9GR~OjGfp(gxQQ;~M3an@^cg1_XZ(~d=)+qT7Zm^siPrg$>PIylm2x8vB3D)Pxg}vAJ z|NY3C!o>LcK(x~C>%kNIPLv>1wccyPu_{l!|LYd67hg}%c3rPZ-e!Mu$##$&^YbdC z)fKeu_G)CV_QdR{wXfHbsoRiNN6pE8?vnO6`v%JJ4vh|mOC%#Dj6=^jEZPm~^Dbeu z|JOs1mMCbmgH6eTMv1#8EM7x)uU=65UH@jJB?#J#CLuD1+B!FHkZm6--GZgWtq%#> z%RL*Cd0{3;c7B6U#smAxTqM*I- zej<7EX=+&=BikQk4<4#LDQJ_|8b3%C1a165<8~`AXgNQ`lQ$l%^mdI+ezJ`Obw9uo_fBwGx8X{0ZYu z^ zWTD2|Tk^%qvbQ}J&4Xg)+E^Blb?zkEg_9$!mm7sNx1hCaSiRu4~VPcGceZqurP=(ik5 zD>crzqVaY?8)G?0HnvO7U;4V29DC;DA>00HfSD>td-yfWLb5KUI}o;$Beb8MB)+;f zqy?5(=8!ee;cnfyh#dZW+PqLocT}??&9m8^-F4h<*G1PCuGd^?uBTiNJAZa=alYlua<*|k;kfNM;8^6C?C9>O z?6BI;z`B7KVK$(S-K~75tW#c52E!Tj57~aOZL-a_W!ReA%2aPqUKS8$)JsUYoJGClF zyd{EpFoIAAiZW$(C5tsvYhUW*$Ic{|5kxkGpf^CF#13Rp?^TB;N7j*TSJL1 zvQ2&U$%$BEC{GL|=x%Cek~orJL=#Cilwh+zz`QEGO1|zSHJbIILe9L_FX7g<*F-5{ zFoC7KD%r@kNh|-|nc1J5c<%1m3Wu(6Vki#=6Qbe;W|A97McpJJ9d9eH5pQw%c?=FzbSBf4QX zz^B@iMV>(D%j&<9y~DFVkK6GsuTFd(j6T$d$dnh%qr(prY-Az`0}vE6<^}WU2m}Qi znh3%e1O<(G!8|$$;e!2+n+U=%gbSMRf_Zctq6)(Ph~JhZFKIIYUsV|Hf~P{XA&f*+ zK~r8Zj}App@QjHd3`S7Um>0^UqY?EHgAEzGOI^tBBjx_M{A!e(iXFBD^I$-tcDnzG zNQWe>j0$BM4sL^abWp;GvMDi?M~5X?$P}|e!pH;*X-cGH6D(wkNg?Uz1Pf_Q4CT@B z2^KQhtdKB7!9to6=^zCQnQT%>I!wVr8WTf#bfCfuIp>;LAz`e-3u#WI!xdi0IoC`I zNe3*vkS4@X9v!l1g*?&nviu=ArJAGUJey3x5qB^TMlD()fhe6Khrl(_blnT&TQJgV z{xzS!U%@;&Zee-5U>DKL#YsdPd##Th28HtI$OZGhWR^D!UNG-VW_i=$3+8>vByT!^ z!MrcZ^T|o-y6HEIoWDK0^_aXaaf`_`4%i~mi{Vx89gHSV%sbTyAS}2`^y3|nq11*&Phcx~J zEtLL;A^ZngDE$wE`46;Ex*y!oF)fmhTjZ;O>(*lOKh}owacg|wY+w(}1}q4?2Kxb~ z2YLot1Zu$Ue{TOB|7HJSm=jp)f5V^W&xBclR{om)vap}uE#F1o0f-b>wFM7s!26{Sp z>U*B_1R$2+NB2?pX7?xVH({@VEO%dbYj;ie<8FuR57#-@9$0qQu-*Zlp4xoiX9>nzP0VP zt+c&od&xG&Ho(@-R>xM(=CwQv+L9`&DSZE7mII{RJ zB^Gnc`ZHql5xardyNLac*qa=4;M`@2S%_sK?-i{`Eqs$tb5I(kfz3Azj378tfH?A$ zp5@@e_e6~b3$P|$-k*cH%Vs0kSAa7S?8(9IrO?kNbraxKWF~81vvrL>MX-wimm=6n z0~?iVjAJONg8<(~W;+e6zvP9R2(}R*HoMeH1M8ic@i;PD2(UDQ%{ch{Vo^>aKvB*l z4XomtAfEZg0u;}DeGRPi@Y(K|Q7r)`BUnQN;V_J^5v(S_eF#<&;9dkP2`~-81P(T? z_7#Fb0d7FBq5#(;SV4e25RBtsy>Y7%d_sUL5qw;LD-bLrz)lE0s)2CEMI8i-3lQg& zrH2Gq6PbPlPaHtd%fTV-79!{t-~t4l0z|7=vI`LBaU~lEYqs&?<+1?X2wDW_;-KYU z1Y4t{+j3t6;g}43J}vhIh?B#XzXXU6t>rd?Yu8{#H#HCr)4+0C{tzIR)AG9jMLDk{ zcvO`0R}NmOiucI!vj)N$8M86>%L1H*;3WahMDRNSRz>hU2lIySK=4}uqCeSkLV#P5 zc}Rf$5!}Z?m<&d6ivY3bwrmpMRb+l8zybs}Xds;wMeqv&K8xU50j49kT7U|ID>abL z79qG$fQ=AbAi#zQ&O@-@aRlGjKstMZ;JX4mgWy~ZWHSz0T%YAF0j3~xwg9mQv&=vc zMzH+ympKSSO9c5BmY!OHV1Zy>L@-}~QxJRszK~$XNMLW`-OLpj-pr8#!+SYgV0bGB zaSUQGc_z;YY#+x42y8FM`UxzJV|_FXg1fMbd|F`GLv|Awc95L~hW%qZjzK6E&!eTl zDsiltz!Evu1hK@O9HU<<3EGbZ5^=C0f)F&s!3J=(WCbP!2yv`FV!N($tR7<9?HsF% z*yblVRtK>!>v60$V(U6{tQKOchH|VXVxK+7u^Nbdg0tt<5nHmH^Qs~C;VzC>$Sy5u1U&lLW+G?#X!}#2~swdrg9fMW%8r9k#lZcH!$gv8D<@~_0@`#Q4mt%2=WtQYvImFVdaqJ1i(pqz@EMlnxIQBSV{l{|b zF~oYm%CRzt^;pcY(ugH*;@G2zbvnVZQi!#?&ask+wYGEY5yYB5!LbsEHR{Z`;83U(hx{CRvO0%+2vz2gmqX>+aL9uY2Kl%- z^w>boav_B7PbY^;jpHl_LSr~&=g`CGkyJPoSi)I04tX%%%gQ0gNzRgsvBq&du>Qs& zci>CQdvXU$;FrLOz*gHQwmG&u@U-^=Uwc*Cqc*Gcy7jbmhxIe-Tx)@K6vW`Sw$=k7mE_dQ%qV5PxB&b!V_&i&5S z&i9;CA;REkXESFd=fjTsFbie`tT%o@*aq zZ)2}vFAXyQzbMC)jml!!$6&mYs6Elp`dE5hnk=Q&llCcPVIyj~4Gy$);7e%@`#;^NhPS-6N=f)Ya`-U9 zmGp2X!U+h|#aakg6fi8uLbw9Lbg2}=Het*2lVhC2>bN#4TL><_!Wd*0)~B85r&(nwIJPK2Vq4I_eR*NgZGMZO9F=dS~**O zpoiTE|D%~YFk^#Oh_p(8Xmb4TG!9H*wf=uJjU&U{PEFqOQbcRy76($$>X!2Lcge-M z^4~gm7rrd=T>-;#F=XEnFzm*Q@Sl3PIKnsda502`)4@6TvdGs23|lK9`xiYdM6T-K z*+S$;0mE7~6uE*h-3b`s@AYst!WZ@MXoN55VIRWh1PnU}BYaj5qsc9w*2DM;$S3u1 z8j2hjFzh^x@KFK7F2o2QMwqU-L->GzVLxJo_vv9AgvxvLFb+fIU3wS?qVf&_!#>8S zy-g3dM|g`KZinzD9b9k);jaV?`yV5`K@a1shrC)3e`VLxYtvjq%$J0qN-hjBbF zKPzC^*%{fx^{{x5hYA=r)>EP!7Alw1r-+ug8RHvPQVTWC0w-7Mwor`cYgyAgY zmk}m&E0lE;}&%uG`Dk8X7faMX~t$}^Fj>O(U+Acus1f;DR*k^e&agR0&P~4-99DMrX z4$SCF0d7Tby$1GvYgY*b*9ou~f@{E$Y*)%^KY>*&vU`Dp#sBPx{O1JN4#Dv>{(qq5 zs0Bv<%L0)=-$1Q^%YVVY7S8Y+;&1FP?)%BN**C|R39J7f15f^5?>z5#Zx?UK^RMRw z>HHhcq#TGh|{dD1X(=T}K^7on*@T%SyqXlrivy>t+^0(f4O5JOWhNe=Ui69G2RUeyr z<2soLvdC0Q1i?-wf*6?UF1aBiqZj#T!|sRnCk`b0bG~{O79;Sx9L&eSR7!l-gvbI@ zSrLJlZbGCh=2#3MRa6X#p?nsX%GOm-N3pbn98!1FAZKC8Q?Yly6NQApR5b>W5u1`- z+k!8=*Di&eQrEe1Vkln(rUJ8;nIs0LGNOqj3ryvutSN0LhiEu+rMJmh`syD)#4``( zLu4wJvZe%!n_&fh#?5l%)M)R@H?Cgd#8AG7OfC81i34Vm7@5k5CXy^NRV^hr$SqUJ zDs2JLp|9!R0iJn$K7^*K9ZyLhn%o@`nF_=OW{NB_l|C7iXrjmhQ+XNZn<+wMDwc7+ zi6X?MY9XJHb&{DP1g4^5l8K^-ODzdO0a7`#V_1W-ut1lbq`Rop!ikJvKE|a|qU99X zq%B817Te&Vd=ZxlOt+aN#-&oCiDVuNOjTR5W*e7Ok}tO>Cu7&b2J;{^ReL6ZX!(Y0 zRF}w;W3(5jaF{<9p*$9ws!6t9WF`sGsa&%4B4f#59t%%pJq8ViFkS?j2jQyf&7nNQ zmCnID7QM;^%a{m4G%E_0F%e|Jtz59Qi68{KqF`wgL5O|T`o4!NtX*Rw2*I#iaP1ls zK^7a!N=So0dXSIk%5&c}vY)LB#c9I$JcyN51u4&P!Fw=|h0bz8w}~Kx(xRZ-M36<+ zazU4gAd9r6L@1%lM36<^YJx`>nFvB8E-&HHMJ9qQFjp0XV3+1(0o%bMME3X|gC%km z_&X4v2Z6eppcyZi$KrNX!B4ubHrzHKm>|{b@ zfxnDMgLw>}u=qR(1Xe3ed4@~UgLy12mB`|9oylUl!^zNZ$iBb~*p^C{ zb#G3jD~ETqA|Jl%-*jPNQ?loEYU@%D%&Ogk z=S{1<&7|7hIgwU-n@P31aU!kuHj`?na3ZbtHj`>6QzEbSR_k20N4!#QBzr2UMOT5o}dwQ#St)4Rwx&NZ4 zKb#BTc3*O@ch7VWcQ<9@{~fM(T%%oWT~9b~K~(+%=LBb0XUOrd;}}HZ&v(2CX9RY0 zG<3u{?Dk*nN9N4+lvrsU)ScfUb3#Y&ae)% zCRt0!Kg-+Xx8>1tTRBd;BYh(+mY$QkOI6_D=hM1rfM6J`Y_*$~A@2OJafc8VRyOrl zT6UAK=x#^$SIM#1eE{RbXk}C4c(MXELt6OJR`Lyu7{2-VAb%-CVPRzh@vxa9TG^Cn zs2B`0E1UJxG~nIvQHl?vkxhAqJ2wTx%*f_~HH~)-3Zsopy|ISdxCFz@#%6-lLu)vh z5+7zJHYHNt6J#dc`Y7uN*)pipksC{K0yP+B7B&}bXd=iAY)!DCp@Y&$Zo?zFA&^E?^XjXk*iAw@V|Ru78s5XhROry>#Z?6-2h+ zj90r|6Ea`h;%B$IXA~!f^3?@stlGZG-&$6Y^=v1Yy5wl=^j>^ETG_C2jg|_Vd zko}b}Htfb3*HFH?KuuFTZKjB3HeCy1qR7l_)=ks(A=Zb;S++sQC~~3jG=#dM4f3W$ zximSd+92c{Y^65wBJP$G%tu38rcA?bFPIO8w%R``lxV!FGoM-7ypVa;069zTr4LX3 z*FrK=n=(N$PkxjfWee_mk#jBCc$?pwU_RQ~w2*m*d6&v(wl-S~*&LR|=oakdGvk{6 z;wbzJv!>}Uw!*(K^O^o)E&L1E%kaH~U*yCq7V`_(wW4UcUrOeKC5uJV{Se9r!xb)}4{CE*B4qZo zfaR*1xRhu)NjAY=ZxwU8lVfbh7F<6S%ty=BMVW?sVFmNia+N93 zELR}TG^-6-u9Rq28?;<$ZDu|~USwMh4kKUEz3wXJ@CP-N&n#E9C1DAb+>IPhc=<=` zXJ3%>>b{Pg8O#UMRclE~B;=SnKS<7CdW&B|JBhxQ^|SO zC8FCWm=CrqN?w(pBFCtiao_`T?(4xfn#J`Kl3==O_nR)?vK$~AwNf7IQHyR~#F_E= zV7sd0LP|93w?p~NbY+DE;!-n3uw7Acsi9&pA5B*`T{vdEk6u2QuBssA8Ez^W%x_OC zO+N%w@NE;pb~?eg4FyB_ZLt;Uf;DLYIRM>1%&(KPbce*P81Ed+Z$lMn>rkTQU$RXd zzL67jtFby5ZyU;Qt(UxECfQ0SdBaSyB}&r8a%Pe(xFjW-NjBF@mNt`YrjsmfEE&vi zN+sFNsRs-7jHk@<300&-$}=3@2lJcg1(%u#Cg}v18VZK;pTbJh1%hUu-p0JrlxWud zG~#8HDbu9uYsiTTC7N`74fKUfHT(3|*A+6=?9*G1=S>TlYM6I0zb+@bD?i%hag*BA z(GyFX5NjimuCxr2H|TUrhXG_8+e-$6?Bnxm@q1{>3+C6<3nm+Wl;ZPi=md>IL_i2v*Sv?lTdrtQXvCB3MZ$xYtn7ZL4Q_UrMpST6U-P zhV_hfyY*A+8`kGwtlc$mHE<;GWnf|8mB84*z(CtT%|Mxe)&HyiIGhr=#6QD7!9U2~ z!Cwc~|J!}PL8Sjy-^ae!eUp7@zRte-zBr!?b_YD`-Qiv4oddH5!(rurBkz-NZon_Bq?B(~QbW_?1d-=U7y&$DaDN1Lhz7nUnY=79! zLcBqir;n$Vr-tV-kKKL4eHK;*eCB=|b_vLI_i{ILS9U+*df>Y1I_lc!TH>1Nngn|e zc5yXyJ?Zi}?>H|wcRN3GzUh44In3F`S>IU>ViJCHoOEnj zr^}6GkMynmXZvyc7W*gmIrcnzhP@Z;5>VOxi1I+WsvLzi0!x&c$|NO?#_+qQoE^83 zeP($ykwDBw71>H5u_C(hbj9FWbfx}Th8O7MJw*r!=jqI zIn0jRLJ<);3`;$ZAuM9|{%5QJfqAw?Y~>0)umx*bjJF9rBKao5|6i>D;iYkJKR!5< zm&WEsm>y?`FfJu=J?D&~U)_dFNdO+#3fZ`n1mMByYY#8E4VRJt+_f%eTOT|EFCwgl zucR{QfUAs#6IKkPnaXRp4P93EKuX6BN9azA@Aso~%*zKVM zS8`@o9f)m6H>hAmqK7$fW^3$~=$Y-`a@aaM2FKx(^_3X>H1em$;JJuDufuyOqCXfH zgJVd(b)>-I-1QvP=@WxzBi=0rAB}jY7~F?=8-ddUlQ=Hl5;&Zn{Vw8%1P&)uFGPHO z488#IRWbN{#Fxe3Nr*2I_)Yz)f;Rf#FmvksTW74-AjoImDrVc%fx-WAy=AE9RL&ZBij-zy@4iz$WXda^J zi0a?}Av&}sat9y^Gcbtu<|rMUAlgWWiq@&e(U>0OtPT}D$Z;LImFrr*(V?OT*~`(G zZ4Tz>&=gddr9+bueN~{koerW}H^8viiSE%uyB2m35!dXg z1F>hKo9u8VJ~bV6Aofgc_-Be8&dEisxTr{yHttSD7#9^u((>zgbF3Rs#Bybe7ujFv zVK>5S^{@+JT!JK7u54a}@Jhih{yjcB*3b3uEM((?CCO6!`;ZuZh zc@v0S_!!~EdiGL;7wX|w2rm#Y91e=`JPunP+?|V`EUQ=y1u#AuR_?hs8IsHNx~bRb;nBm>!RcaB~5}0j3By74WP{k0abf50^psDLq^o;YK=m z;u?e-2spUoGQ#!ruo$k@(Zd&!T}uy7LAVCS|DOyj$N2y6wD|w0{15wn@oj_E`=fkq zeNVvYe_wk)gcbWKuz#QAImP_{13mRTKKEt!SMJx{Bizm1Wn4F0dtLKf<6NCw6`l8- zhn-8D&pEq0D?25}DaUfhR7ZbDU5D5HJ*>Q+X&+{9VlScm3Onw-qhz!A|G#YC*p}Fy zv-O1i2NdhK)>YQ1HPza{8j!EZU&*h_&&ti@M+=?&7aRW{9|nh&I;Tiix)>hT6AXj9 zN}Hqv;!NXnc*5YWLcy6Pf+8}EuAC`LW@rZ@ZK1)Y&wtIEJw6Q1D^-y43{R5^hDBf) z5ED%V!Lx;eCg);>RX-P;s46aO>mC0KZ=+^4%$aXj)(Yq3N<_LzFTZ|H2lvs(p$s8jU$@Xq{ z4xTRgqEKXBGD=kb0}*4xtdwZjj-jyXLjy%x?G?7| z4f36KD!_lKHuJIZYOgSnH9m~4HOhOEync?Ji1riN zN>Adtj=f1REL>|qG!DXz52I_1@(cw-Vdh$6-oJjZUe59fQ3FO&$PvhR|KBCWtIB+9 zl*x!6lP|PL<|Fi=!i<}o7zzvL8ZgUSJ|gSbM%Q)75qboojHXL4jLtPiTte2V>qf{C z)iuo}gJI@eQ}0ZCj?Hi@`Cu4)YuZ!WFFpr?;0-ph4~Cg(1tQ(o&}n7P(8NfTlyEPQKyV8x^H z!AQX{`qs>ep)m8Usil1S;#SLivX&k*TV)YB0vn9O2T7C?oNKCc79>rGp|EhS(bbk_ z6-VcqIWZJw&NWs_U>1`y$=+M^Y@h;injR=z4F`h3FnHJ0QvN5R@UGE4XN(U>3xjt} z?Q%_d!7w=2w6}q7J8U8d-Zd07<^{vxT+;;Umc@O@Qtj-?{q&@%nmF+u9|rH5DoA;T z=cES1;9L`eiH7TX;=|xwL%~EtUvDrB&NWT2YuB+AJCa43<8d!rkv3L5JHopL#PTLY z@UC%1*nHX84Hr)2MWmZF*ClFa7f*K1-?t@PT*TLe6ZC?kO$0+a!Oi3Eq`ivceBr08wmyr?;%NPnjp;tU?rdU>| zc-T-e7=9cp)45cK#|4RlZKn(9^+Zyh$#+(&a+qA$|Cr4u&75 zWu#0>l$Mf%+PSA^tF?u&U)&`y7%tB9c2TBDZ&HjCX<+#=!{D)C_#sYIDACYP4}}Bz z+8mazku&pCFW*V~ms}`3hVtubb68r;qk{j-VRm63&zsifu;FQKbo}4f@{=V%$NvSm z{(qhSRsT?blD~vD{?GEY_LcSC^zQdAfc5`fVg3IDSpUD=Q^4Z?UG8)4RqmJItiPIW zyX%bWGuV^wX;&4O#d*xR)H%hO;tV?ec6{Z@} zv40!oG28F99k#b^nXva@N$bznEf9w=!rIhYQvOBWD$kKez{>weq^r_q*hT+YsfqM3 z6#KvZmk^=WqCzb!#bTk(gWBX>c3x?7vXdT~YQx#Rgb1}48P%#%4d3R(2(=g$_8bBg zcAv4lLDsO4yJT`Wwu=u%sL{w|Rq9Z(Og*cU98ga>=Fejdys3EC|Ql{Z!ofx5(B!2+bY-yNg9KfC!p`lvHg-wer+sT*guwV~4 z8f(@iL};{@_OPs>RKs&n6C*TWi_6kYkIZDjtmLwcY9dR+won!}O)`_Eky~16S5vBq zEDhd5S=e;ROqRxPaal?=k)=i^%EG2iX0kMji_21~i7Z%}C`&heGLr>slgl!yi7eQg zLKZfSGLr?H6J;sYL>8=0Aq$&MnaP6XiL#VxA`7;skcCaF%w)m-L|IBTlud|G3zWZ) zt6w0%oXa0N8NLtO39j z#Ri~M!v;ufUIP*5EIEESicX2;blmOPz#kkGGIhd-A-iD)r)kpo$QUBYEO)S zi7HwF_BS(YT(DBH6)4rDajBik?-|`6%}f?dRW8e@CbHC6MOoNi%}kb>tBh;0tfW*! z*@Or+Sotfq682{^c^kY`m6~#(3QUu?!J{uL?Cxe(R=2LKlxkSkV8jKoYIHl@9nR3^ zijO!!lMyM;aH=I3ap(mvnh4r;f)`B$6(I<_(ixin@evye0?#mlIvBC)1@D>&$~wWj zhJvApLT=%UOJ znWGK$wtYw!a9|)xF#H@RvH&2%8Tep$3MVR5(Qw8*7@o|DEXdE$vI~VLQ6jH)s%Fo;R&_s$p1tFg%_UX|+>L zsy&VqX|+>Lsy&ty-E^Zu!xoPZ=klk5@+y$mwY92SV|(LZI7cto&_r;IPOzb&U?`kT z1zCF!gAEepKgk*GjPVO^5pt1g;xG;eQ4Y(S3HVmpeEbA=}fNAWVcDAUlL5DI7M z^G-I)d!#P!WZ5L|Onu(ThIt3W8Jy^*PH@AS6t{DO6q)tcRUMc<~4Fuu)SdGYCUCr#^JO71-|=(uxfvSJ!;Rk_pvv(SF#sZ?kSg) zeacE$MKD8oPk9M;^BbVFRcgWB`F0rBpMjD6a@$+d04Ya`N^7Ng(k1EZKvaH6`YSL` zZXyQ**?~TR=7CCq;{JR7OY#r$`|`-ZPk}FN!)*;>n>SwHfx z@z3*5_mA~I<8Kc;3`CvT&gTBQ{y4wechh&?x5xLnvyZcqwWRfT>v-QgzNx;^zJ4%= zQNvdTP9M1LJ>}iz{S;Ouyx@J-+uhs5o8T?(x$pVGbI7y7v(WRZXT0YbPg_`J@TkY4 zJgan9nkWfMaoc^{54JW#W93}9Wa7-RnYq!v_TAVAeP7{2{&(?4!lwXhY@KbGC2=!aJB+Mapt;O#e zZY{J1<2TG9mVaHtZH4&PG~8YY|5d{khKnemA2nRfSKvQrxU&%diiWHC3jSpcSMwG4 z_ZqI|E5eM-3Q(5;9b)S>+m z-NVtCVAD5sXbN&)*P+RXz9vvzu<3LyvQyEAtoPD^=nqWMf%ulvgBEGDD80NB&#JA~ zVm9_}iIDZzVsP=!y%d9scPlRj7w^zS9j<@&#|S(o2CrWXE`soS#NZ+duS*Or!tmM& zJSG%;w$`$2EkADrX{ZjZiRd$0gW2@U4#w+1oZ}s>12KMcgbu{$%`~lC@Xp695ttc+ zi}sGj;G(_5F}P^&$vRx$-Z=t~Y45%DI~gMWoF29Gs#9dvI_vg1Ut-lXM_HfjK%5pTJBV zh)>`!1a&9hrRu%cS)_T`|yXX>p3S8`@|9k_yn^juihAo`xEJ%YLu z@aVy=D)ZAymH6e&bzmX~i2%hRcu#>H^$e^ugZY-2(?7n}o(lEpP2w8zLV?HhBCiWP z#)9DsZm53QXN1lojSqN?&f5Zy(a92cj3vb1GHt#H%lU}*M6!V@McjE&#G}4|k=!IjROTIA18B^cS zv~p2YlV>mmI3K42&USTILN6hp|h{lDFFek6H5ejlg4;ynPXai|^vf7<@i2 zqx@+ME_#;50*@)@TUtx885gc1-4Sf+Fy*+MB=8ukWR`}jBPn4W&WPa)Yh^n1|M#){ zXbBt-d>nW_&@GVQzwbZnU*w^p@6w%=sXZSA2$ylv3y9@)qHKIEia248Bmu@ zzJ`5LVgd8Zuqh+PJ#6`zY|*v|Jzns8Ryu5ErJV?xP{15BD0|pUR_~dCB4nD$>O3=y zYEoLgXNEpemi1%O3=y`X*U3aePLF;cjv`c9JWhfO%%< z9J}@jG@NQmD4^j&Y&ss^F)C{qbe&MZ95YlE95erc%KS2vs`Yh-bE*ji%q>Hy+RJZ3 zMXwBupJ)M0sLU%vRl&&k4^$dD#C;bxi~V@tq_LP&hN?nn2T<>sP-*y(PW7${mHA|Z z>Ki6haLJ%5J+sTuK^ZClmkjr_P^MvkS3&`JWb~pHOhmyYqZ6%QA_@)}y=Zw8QEoRepBhOW`+-7sDQd=7!{`7 z%$SJ<)H%ala&Y=tcgq~IhHhE4aS=JJuJ7S}K&XKFXSga*hmmFAc3AqlmmG)^z&QQ6yW!+^THT@xbIUBkF=w15URRM^iMdQ5dYMnN5{D=R%-u^xF}+dy~c3F=|K#i^mlAW>FRW_7;5udhSbDJ3Z-iA%I|Per#y?CO#3GaF&O0h5q4-8f2tEA$+QL3cg38V80i`- zJIGA7ON^`uH8IjTRyNg4wo{C(2{kd&F-EreKW4HW^s;8u#7KLcES(NiLgdFWkKXUv zwiNkRT}3V0ww;irR9j#2Jsq^Y8YLHsk9-prGYD#1Doc%g_z+R9;h851kv5zPUqVW) zPt>z5I*?s-v-NU+a#eNwf6Nj%7FZgX5=aSzVElgw#{U!8`2R09{?GNb_m%Vh>D}#p z*E`DF%3H>B-LuW}re}nwsi%bds(Yh*mV2nXu{+?p?E1p>iYwJs&*g^Q_EtGxa`t!D zblM$f9iKZQjy|xvo?<_3|I8k?_qJEHTa}Z_G9_PmTB!>A{hxvefv~N&t(wgSkp|1H z`PQecRjjgnQeGzK%TLQyWvg^bS|;U7y`;*L#d6GO_@7t+wirI#cV61H$Z~;fUUxNc zH@givUh>7tvbR02e?kEmWBlP})M;duy30E`beGwBoSIlb<7fCgLno8u`Q+rad$9g+ z7C8?gi(~Rmac)8Zm}4jlROu)=1gl)*TYJd2u?N&76ree#%~6?*pV1tH`$|h-Le-mN zci>!e!zj5>0ga_$4;F|5)6j5BD4@|a+-d=8aT8G*P9sE%n~0(<218;HEoLGLwwO+| zn29KwVoWq=nTaTvVnQ@$nW1Q60S&6b2LR4;DhhKG+N7Jx0LQ=PrcOcks#p*nk+p=v?_7-QlAfWznw zmm7o%z#2nQU>aI@2?bz_p(s7d-Z1}A0oY<(lrjzbwS)pN#q^@tCZb@A=|rJ1fuEv6G4U5C7L;1s zgMzwHaS6enJE_~=hcH!1eMuhnsr0DWymXZ)13XY$R=3!mA>G)|{JA0Ja$a4pXXeRCi(lm|}X_ZDz7yi|J&ynaMI+OnVNY z2wTl$TgS+5HIr=>TiX6+vMpm|&DP}N}!03{SO(#Zl<`G)+=JWplGsbfyJZ|YVw-Fpo!g+6GA`Z4l3?Y8xb( zv_VBqRofuRqz#_rg@rZ%NAEE+pKt}y28?Rr6D}Vsd&F24^0myd##tcN{!rkHz&z`0 z>tyQ?YsbKJ*z-R%&@oUyPytQ^{LBBn|Db=pf1&?1hzv;ccl9^+2mQr-_kBP34*53t z7W!WGjrR@mb@bJPegECCQ^0xep8vz%xyRd3zWsmAteG`y%{px4d?>_TYwaS05GE86 zLJ=aT9HS_TN~ylqKCHb9rGpL*Q9^}~$T5VRPsy255rs<8>37{T>%Q)5{GPe{J^wwg z-|O+m)AxDLXMg6NS+i!{GuL%rS7af)FG#@~gYJ=ABQ+ysBWm~zR1H`io)dm4{8V^Q zxKp@sI6GX-ybSdNx0y@L8D=5m5%f0On03vo&0y$4=ul`wXntr)=s%$cp`t)@s3}ky zstTNjx&kYMvxAd@PX-4-Z^1^vYQdQCJFHsRVk|MH83o2j<37kWsAE)w9)srs2LkH? z9|T?vJPS4ay9925^$I2RzxD6+UHYf`JNg9uas7ViGSEP;szz!u6$!)D?&_^-O|`75LVm(N$WWLA z6$+kG2D#r)C`(zkBGik@=ie4(Z6@c#WF?xAt|qi0(v?V|q7u?i3B{Z!Wf`ZeToG!Q z5?UPT5~NUF2Tr0h(rJY5MEVv|sNjP1jZBVB=!zWu z^Dd5gSpM%_{5bdVA9Zoe#q#s4I1}o|l;djUbsP)SbU`|W(2huXj*-c#ups5RV~h?) zI+;7TR-W)|Y?BogK`qaIH(6Uuq-k`3)|N=~Ic5DRk@5^WlQo${I-YA;r%0rj%?ng~ zKb}D?Es_5;p{>zj3{vR#hm>cqnXG3Y(h*$iD!u&>q0gZ90i?9__8>yVvGqktvm|>E zIuU*EK?<$Kklsz`DWsh^WevWNb|6$-^X)lhowiWhmeALbw&9euyh3_Aq34mdPSl>&HYl`AFd*_4r+@N zS{rGWp!>EWjUv6j^-QE;LNTXP2@yISwFaS>&#CB0YqyG^)=#L3R3S9PsgGxUo26^F zoQ3o+uDz=2$9Vnv{vfnGYA+FrSGDgqL6?XR4cIJ*bO>-(8d9Ix*@p<=v03A$U1 z_bk$rHSlxu{eX0C2fX@xrwGNX&-Xo{c=h?dBNVSb-?yBy_V##eCkdT|^lL&VB0WxM z4Wvhr(uOF930;fYF9}_PbSI%bk$!=6=)CKZt|v4H={iD_NIw&F?s}v+gUsr<;0)3= zsO`AmG}2XsohFwf_g3P0f2>v>c34}WrL^wwysi5W`akrK_jmKxg!unH zb&mQJ^aYG7e<<6Px0T0~JCw@4Uwj+s^K~+12WHr7c6jRoD-<7AI$0Y-dnT97dCl7Y z7prCZ1;0#^DLYSwY2h7_T$@NiY=*z-mrIi=2+d#s0kk7zL%>8CXW^t&YX@i8a3N{^ z-+VDT&tGwjSxdVI0W7J@VUJ7!BgZ4)Vs%`jVN3*()K zk%HI^4?{DhcOFK{4$bhZAbZ^jiK!i#$y^1Xl$hFq8DV-{VhV8?GScG`Q;ftlVjsS?Wy=GS&2MS?O+>if}J{R0bv_q6u9 zyE7zH7?gprvi6@cTL{YVD}YI5wsug4-QgVDoiba9$`IR~GFuvzfguc&*^;OXlX}}G zQg&1(a~1s2F1+5el}#drK^Zu(%TIQy;aUGZk;0%1liu8JmUo%d6a;1XWx$l44UrQm zJ0_DE>g8HFr9AUC;wd{M<9rL4(lawVnW7Py%cYMG^L=D};)K(!-SOo&oawTUUt7sk zW&WE8M|J7I>nkKh>r&TSclzJArq;x;#@JQ zGSb=%37O_QZLP1I%8dLYNTkY;5&V8vep}CUm_(|yTiQk}i({k`FPa;*EoGp<0-m{iwrqjEeQtSL|B~!(S zEo=SjJ7=w7$+ovOwDvl;MXpVxvV^TI^<09QOvT)`7i6|km+b|g#5Ur#JukBjyKK+P zY$0BW=N68vNM;*y*%rxcgVc8R<{rMEtu>jYQhOmQs`+R5^qWW-#Fj~4wH9X@UF_V_ z?|ie$J^06vOa6h`CYc%yjK?{ zQ>x2$)2}jHh1!DDb17sp<)gNFpGSPhtW}wL_gx@|+Ur1mFVwju9i82E|t75NiBY0Ud&|2Y2;|K0wk{zTSkSSheFYj)P8 ztS7SuWOc}DlvOP&2KfOeVq2hV;IvplY-H@d*zK`8v5K)k^j!2nbY1j==&R9j(LvD; z(FTwm5R9CI`g^M*vm+Crmq72x?U7oL8{i9n57qaUhNp$|!o$N|VP!!AG6Q}$kC_|I z`R1$UICGHM!E9hwhVR+A(EiZs(CpBJ(CAR_(CwjGp|X$_@O^Mca4A$A$O{e+b`9PV zOazNTPQWp!JTTvQ)fi_Cg5CoSjLJq3G6MDoRtIJWCIm*qdx+ZuwE|@WKF9~yp)b{^ zLG8lfup;3WsQ6b*`&~QcFQ)#k9)oEAe5gV&P93CnP#dU~)u3_?RwJxdW-Akv(MoUe zE&}QwLYyDwBQPOoP!FmUZFK(s-)3*_#xH)qmU$loy5DAR`W3lKI9z4OeJ*ZtuKw-f zc=uNSquG{yae(KE?yituXo3etHa3mk@LECj6*U!a$djA z;lk%M@vrid@Zm9YriYwz^x<{wfU~r4i@v34)S?IW;_4n)I%UZ;>_$6iZ}8-ghMtp z@?C`C3^;uw8WKX-AAKdI{phfH1c|IEePAYbF+t&y*yeEdn| zD+q^7QRK^A93!miVi(64tNNjfi}U%O;4JqI{oi)+UC5`q_)g?gU3?hwHwlNTAjn@Q z9O`-?=XG}AdSFF7kn^g54!?w)*WYpYWaKXhe^y}w`SUJb6?vhHS3%CJ4ub#B4~}yjmmk z&n*<+#~v=d_&#=baq)fZN;oWZM*l7@-W@rw2FmtZqXo``R9>~x=FP?Vzl-?5;$-yc zGmn67uGPyXte@;^GCUZ|vgv z$a!5i7(e)kc})YMXU%<3U!QR3hx~jVOY3{9n3u$={c{HebB$QZexw(<1JH&@e?dxXR9+wye;X9cA7X{+ z(cuhgp%pvQ)10zC=}0kCh&4q=ia9~9+Lzy;1GLIUEzajzziXuXxt2AzM!Jtv)_EG~ z9zw?;-Nh;E6^(QUq2fGjM+)7YQOhe-v)<4lq+3u6{g{z%CbSCDjYy#@GSUr%DoEEm z@&6TU{r_xuqVJGZJ$5O!H8wpqD%LtyDf%;1(ti_b=eLZOkNgz*Eb?k(Xrx)BRQPmw zW%xzN;BOo*ZhmVnHz%0)!?SrLbUd^;R1oSFx-nz~4+ZB3{}b#MtQk~|ea2klY2z*< z5%?>xGcYUgc%Xfts{Wh41)jG@>aF!k+IejQRR4QOYoV3(pYgAO-hV^jeM3q0l)6fN zQ5~!{QLj?IQ&uPwm4QlQyZYY>Up&_i!`Lt26<>+3CpEUFM;1;#b$o%f;nKmXJ5KiI z2b##WqcG0fZzi2M)cPP(#AVw6`yZFabL}7unog9M+A$bmT0>%LhhWgOhNo#VmqcJ- zq(|rZ7FeIK)wq40w038)SiwDFsCEQ~yB?kAUCJsKm&KSq<~m2_3K5u0ti+Z|TyEV%EMZqWrlKfT6ah zWwsE4A-1O#i7kX+sO>3by0vw7*D+1LdfGbZ8*~twjf&Ai5Qf;EQexI;H`@QKeNLku zE=}grAPgMYc$qB;!q`%YtsR8PL@WL|+iI`xYio72@MwR_L)Knav2)NPdojQ&kPcJnASJj z`uN1Nw|qRVuC>eQCe5{pTssiMF7ZtLSMORyxe$kOqJf!40-n-jE{(&$2o89kgk&zn zVVu!ACrqMERB2DIEAjUaiU&&4w1Y+nF_Lc8l z>tiS#S^SM-)~*Tvz)DY?$s}^^NQ}6`zLK0U2*l7U%v+kwrGXeYvQd%~mV!VGy}~5g zL<%A?#QH`##V7_qkYTAr=4W#F>cE)M$q~WTC1Gw z1Z$6z-okB@sYkgMa!qaRUTY=msQvBh)}DF6+S#XYR-8{LFqw#}Tq=I%`?>);iO^ixA!BiN~wx7OJU|G%}qY+*M; z<0D9>9&pwlB2>si$os)rZ-# z?+x4%{@xj@)We$N%zUgZH#`Rw%^LAj8&CCSu1xwb%4Dh+87t(wj+CYH-p94@z4&*0jEUSCsTRHz-e%YTzaw15yl8HL`u~qX{r{>^|9>mg{~sM{7pe;N|2GHU z3O*8S6|88SGuA;2ewfkBC>{6#V(*g!g9A+h#r1FXW%>)S`o5ta(@tnhv;wV{cB2-8 zetL`i`Tk!1y0F&%sJd7!PCYZ7J4dJu(hT&1q!27Y*B;X)$!Yw zXV2PfQ@JvcXHVMD^s(C{rgriSHI^rPC=+@1gbhd9p`N#C zuAMl;O(n`iuAMiNF&%sGu@&CgoVj+|jAP1_p6S1dTzjs@P5b>=Lt<(t&16hLDKW*F z8l2N%dA-`*Zq3XTKHB6iFB#8;nOf#vYb(7Ac;~`Ajo-jS!)lygNjf{d+0v1nqU2iT$rO} zrr?hBee1_QPgXe4vAng#ew4?UKr+{!qd5=Tw$}HlwJfs=VK*y4HRfGzo6NN*X-u1` zw&45NS{71|_;!A5?RH+O2rbUioNk5R_&%_f!VC%O6Ir`Xjot%`gSa-43$rvn`?SY! zzcmk%*E-CI*5((wt_B-+1?2$hBu_>{H0}b(Bb9lI9E`)9TSX_cfPH(%4u} z$UX)!Npqxk=m0q=9=kzDft*+j>aDX*ttC}`xs!7M!pTl1CoycCTWhX^D!Kk zWQ^zHG|l-Kj(fi_P3Gb>Ez`TxyM$vR*Pf=avykcM={cuN=He_3Zi#Rf#>&nD%+knN z7%MvqWRhmv%FY5z(&)uFR(2L}mgby=v9hyZ&(g$M80&c!61nyyjY-*A*x0ndvvqbn z7v^aEcFUBWYc66CmmzZ{-rfV-=_U=EBdnYjk zrRVMwx$WJimn5d`T&9;KrfuD(lO?8ixJ)N|nkIAGFjMDuQ5#ut#5c-fYkSEOIy~Z9 z2S<#0zRJsYiC>S_%#~?<{~}H1-tM+NuFST!CD@DbR@OoH+L1(VE0?WQ+ESbXMIBRT zl;^sEMDA@=dd;YRi~0@8s%;(#rb0*@Y5cK2pwd^5roDB9YsGx!M=@zetn0H@R(1 znQeWStwfs4t>?B4$!zPoY$eiU?u{VxY0tF_tM1n6tuTe}_B;Fr~W{_p)e{7e1Q{CUvT zzN`Nh$o|h%3CzmN8lKfP>z1rURx!x^KNi~@-WoKBRgMKA^M8MIb#!)g z0@MZU4fO+RMaxEgk?$irB1bL3+b(uO-eO?`{ z_Ep=e^$tg6rFe+zP<;iZzY)DQpt=jy^P{I;*vDiu%^f2ES} ze^s{4c!+N*ITNA(G{UI@o<}%Ez;g&EBQ%C1oFE|PK$R?T#=u54{BJJRl7bE^jWi+X z;F?IGDiu2l=Fq<-(riKd+=sNfpgkW&T20Vy&m+B7(9T$gR;wy#$Caq9B51pPNGl84 z`bVVK2->JU(yIlnKLBYZL9;g?ttj%eU>yhMHTnZC-i_=3cYR0wx^?Q*s;B;sTi=0S zh??K=4@;|nFy|kHSB7?d^y67%eRL zyGNEyM}0_e_AVBA5V`%16uJ0*0e|c^>2`~>>^;Nr)Ti}gzOQ!w&F zL=O*<$oIK8<{A6 za{Cbk^&1F>rwHU?9gCvEBLni!h`wY)%xm|rb#c57{cBttXRrR%g0smx`mZ7!=HJN0 zx)()(DKv7i?!}%2BmYGBz&zSS&g(O=J#!(rKWbCAF5(!Ym%mW$)}*Z(%*kYI=U>BxO7MGpB? z7svULpRC&f{VCLwbvrD}4Ebxs2hzllzd|_VSRtS6;s=nE^*JmP2YIebKMMIc!Xc#q zIa%KVsRp}{4|nNzA}8xlKtBxm14IwOa^z(F$v?)uZIF}oC%{`HC+koCF}j~bPS&5W z*fMgm{)ELvk(2c&EC!04tQ!H2*@pg(V*J3PsJ}ySRu>8RZGyAPM#x(b4#kO(HzRz~ z6BUtLE?ypa6BjRs{AS7@UyQsV;ZS1-`Ase^?(_9rT-*=IIt{4RGZuZwIt{3_BCa2@ zPJ`8pK|NWg0bE=^*NOeIiY=%o>oiz(7UX1|1}nvaJX`p%YAVR96K=16cIJWpYYB(y zC#bI?I4fU*yfWcXfCTx~ghLGx;`jjLbN^&44>qc1p4df++o>j#_Ud+WWAdk7Y@E7wjAFDxudXwm(G6eDt#qX>0;K%UiKB(I2B5qHjeXjkb?wNB)lNjm(QY2lf1GM}py_;U(ds z@crSN!zG{x;A-;~^Fi}AvtsDy(B{x|$N{)BlpXvFD)r9|J`1Y=Y6T7Bh_ToxH2N8h zjN*ZB1Iq&w0|Nt%10`VP{R;g>eX!nCFR7i@R%w&92ef9e4&X=sI{y@S_s|NSHGft& zsZ-TQ;hDRt^1HH4nWa1dPuy|e-!ORhzeL`EprUB(6_jdfbGmHuO|d>_<<=T@we}wy zb@8t%ILpt@>mO7?8hfRpGUZ@vH6*T$-t)J$m(_*2;W>Vy5_$K#Jp0Q$`%%ySo}Tf% zzRc6!xvA`Jwy3G~(KQ7S#8j*uyIJ?b>~gWcRnbcAu2(z7^elQnve+uH7dkyT6U@KDl1D`&-HGK`A-<7IgQ? z^^)B;$KC(qd$v{;MciSV;P3G3y| zJ$WtriFpEN8QFPFh;Y@_F>7M`o43}R-PKy{Gzk-qjfrr1{W8`YJ^SVLf9XSOz0zpX z+d76Bv-55y!jIdRwq9qe;+o}K>z=op>Iuh2MEKEwV%Ce9Zs==XWB;ZIVM8MP@Tse; zS2CTAKg%uyU%V1R*nkMD}?ol@a+wf^H`4vryh}{8L1?xa6kpSz35X6M~Ngn182j=Clh{wF07)*!-hZ%KB2 zJrO>+L~_*E5#i`<6|8A*v&M}xtqstbG`^f1bq*1Z{I${aZ@z6xE5a&wUZA2pW}k(aKpX z-OFpT^QsYH&qpQS!fT1J+w+n!RwcsD??`SbRfw?TN{O&C5w_bWIgi&6Ve21FE02Be zpSo-qo>u{cs&lii`JLx%sCr&`q09NF zt@Ux{rnk%a5#fhYJ+GY5#mn4oEvfzcv*(J-ChlzC zSR6?SVOZv|me%5zK4j}ttex)4y4CZF6Wt^Ic=K0l&&uf8L?H%ks^=9Gx~pF3Vr8C1 ztliIidGMFqzr=pCgf8pdy4HNB`?|H={~?mI%}Tr*rYteR)ceeiZ*j`@=L z6x8tRWHvUl&0?X;p>IOlAeKKPR2X_R)H~EBR5x^WC>Xo|bptj)G=B=z4tNmi_%#n+ zA1od88K;ds#!86iPcoh~20$ghMn*Lw7Wh4IBCsW}1S0wcfsujxpq5{qK*c~nKc^qi z*XbWX6#rR$sNMyt`Q^a7g}=4$wO!h$+B=Zv@VIur)?RC%Rn;Q?i~eK&&9LI&Ey#3u z*x$q7(qGG8-mj@Ys{7To>OA#jsQWiWy<2UnCe#wjpWZbPm2Z_D$}(l9@;uZ8>RKQTA%(gY8A>Wb=qCuRg4$!8 z(&}~kAx>$>I~}?NI=(>hy`jDYDd{q&LqEWbwqy=o`8xCibSUi{r_Uo)_(I>7jFxnc z(`OPYv@j7RE!6yKNYPZK%^%BaxDRa{35DC!+Qt zq@75D1h@K98^_k?U6GA&9y%{O#5vMmKbRlYQB6I=LdW5z^3LW&Eb4Gi_ z>9q+Rg4!Dh9gMUFp*qs*kdhv8I?G_P@2RD8zpR5=maD{RZKNzKDMR;dMauGz97=k` z=`7QTQ;aO@ET@Rm>FB_+hd9M3gkAwD=@F-wBh*BPGK7YZmJ(F-h|{4fp0hXFBTg?) zC`PpOEJDS%B`T=s5vN1-DaV)gh|@!ait!qRit*}#iXL&gA1Ub(rz@P&UTzvxpK`_k zbP_)g+9g6KBK?if8c2UdN_x3z(CIGY`^=!Vs69*Q8l>M5+7sze z1r4x>FqsQ8Q@BUF6GBM23r@dHTb zblHM?8%*eCqyq`vgtR}Q{gL+L6yCxwLfVH={AJLfcdc{vffj!mw0j7}Uj_|-P1);p z^lgXQc{w>q+Yp*W+Dg#mdZf2P3NNcftlBSx5jPhYUj8C(1|FF_*3BY^6nf8cxKcIFX&VZFKX=9JLCI0M)S0~g1#CzJ|EOqpcoR@PYC=W8J&{i$Z$(B%+C(acFNU{3O@Pti zcHwKyOXhZSrujHj?9UGU5!xAgH#9cXDU=BQ9o!4~0M7*PfvSL-aR4gw=NdhY8;uZj z1zZv+3iJy!3KY}7gM5IO^dWjPy^Qvwwhrn74%b?075x|d8{rv!q`!^7vU*Y7qRxOU z{Pt=!=nJ?L>hM3MbXKlYR5%#;7ta?lJd^$Kb+eW`OR%inETl39uhQ&%h~Z^&0GP0$ zwczDWD;n1?Ztb|DZbm*t@OZo)ltUzz5Wy3cLnM}V0MAJQ0L#G=OFMpNE16JYDZ+Q` zz;%fwgzv;Cb%`Ye@9@B(aqE-TXPHEWeReeICVoA|^F{D31Z`Wt@qBR@&$okj_VEOn zvZggJ6T{ltnsv#G2v0k9mpMmIoIN4gI}6=82^DPbCnS4ku{%e}_I^ULcNVQPt#AFu+RPRyK7mz* zvhyL1m$~HGtkqK(&u4KwVcE!2nVk=TJYnfAjOVjJp0I2vv4lvTu=Ezj^I0ShEqm;h zSVAZdEhWNuJ`3e#EZGD+Y^9snYdozL?(b!GKE(1emQrCnpT+WoyoXYPW+4&I7%UDW<@q8A|b1ZeH^b8us^I160QL6u< zWbr&P%ubSFLO@Rp(_0wNX8}Di%ubSFvWT7-rcB8~dSaLzCBuZ6o*1ULFrLq1dSaLz zCBtMvJuys~l124!m@l7|3=_h7I82E!p3mZXILw#NN`}cIdpJyqGLg?>dp!LR9v_uk zt^Iar->{B0s5Exf?c?~x8PA9CUM3|8+IW8h9i1{^Bh>s6crcC6s7@rvE3E4m)%qIqVLN-tq=Mw`xAsHx(^ofCbD--!F)+YvfTxntL zXO#x0?6Hp4-8a3@H@}H93gJF6(Br-%*3PS0o#$(;Lw7y@bGsp>g^~sQ#6XWr2FgNy zVxZp2L_Q1piGhxl4Kz##I#xDN6L+t}RWepG&=4xse^CZeX=+<~ep=ajJCpCT(MiY< zr^#?Bmr0ZXm+}*dQg-dOx2HulqG?0HY(CN_50rYCR{8@p@Mra^jl@lCfUZrC;3hUe z*QSSY6B{7eR3>i(9U$3KHg7oo5gXumI>3i;6C0pw(}TE)4bZh|7;a(%bZr`no7e!! zrZRaC&;gPyiM%29AMqsgEwY61!OX;dz=0(6EuIPEiM&BB&&@K=fz)%erzd;<@9Eni zp8s#i(qac;HGgibXRL0_gs1+Gqt8e0k2Z=Hi+mgTG%_hNFw!J)RrpkRRd{lE2=wVI z4H5pe(4lXb*}^Or`YE(N^g680ZxyN(`~@liP7gj7Y#*#4xRT5{jk1BFVOqwH$e@+Z?xswL~W4PL@Vh(XYJ9}TDzwAgVsLhzg(Cou;-B6bKh2(rR&fT}w(=%QmCXr@oh;`Mo=CgK} zCw{QDyUUMf7r-Qv4-jdHrg z66TO%l+z`aWC{tEO(d3L3dw|?mWcv;3YqzQAin3DU~Pai1Lf(h{ZI;T)dG<$RRD8H zK1@&!v{tRxo_WYO*xFleo6+l`UHoJw3dj_)bnRBA%+sDi+BXlTlz7@RNE~O#m$KGn za-6<|!vB$l_(nOq0H%;)oS~l9r%pjfC*$~m`v!Ii5M@i=a0@CBv6)@SlZJ^TgikH zOEG(7qbw(}gxRAQWjTqZJ$dA#T(VeVY0n)qqg=9BVkxGMCX3~IUd7o3Fm=p~k_kN@ z(c=YV<_JntVhJ-xVQES%$;1&XLlR4vI10;<#L}KOI_I*)+1;}wmN1P(%iXgimiDAF zV+rwV?~LsNm}7EFnJ`{p&p0!db2}{Z%*2l8+Y?Y!E|e%?KAL%0F-y$tut1`;=cnk| zPNKA@tB#Td={@J`+4(Sg%^W%tdL}T(^X<7TT27K!!qiq+PLf#K6J4~ND6zEXy|xlY zIZ1}Y2R_1kvqie%k*KFpaj&$71i z3G4eO7XH0{SWnCDZPYBE-wEUS_7vJ4r^=*B>%BI=oZElv4(p3g*;2xngc4@d{Hd2I zt6DQNiS?WAv%851r9H#8Jwr_CdF=6gd%|ri{Y>eZ{-4Nq=HL9_*UAna=Huev*Q%0( zx2NZL@M|Rp53_Z0@M|RpZ_nQG;MYnH9wzS@Pj>KYB?nJt@1R^GJ9vBcZvR%>%Eztm zN3dq^>#Tz{S&s!wgO2A9z}>S?evRbd`=e54O3A_Bk4pB*ukpOo#q;~2k{$dS$-(z! zN@w-~%AT@=??XTNo~q>Fd*kle!S|FLd@oe8gYPLh`1?@F4!)=4;CrHy9ehvEgOBI; zK&6=lNkiVtHS+Hjw-FF}u5gIwcXwIlNG!Wi%N&ViSC?f{VtEg>OiC=fP|LaNC6=9u z<=pk2mWlkknPuiefwt8vxz^8f8_>ia|xc6aTIC0N+P;!Fqrhk%Gv> zP#d6mBqvfLd^vm~yct#lObI^=ZwWeu8-=TeP4j|z0NxeMF(*N8Kwq5a<-cSRl1G@st0yAI@z{BuPp?M$&Y6@J|Pw1QVh58g&0Wd`Gq&L#5>ZW!fH}~g2t-s6a33ao&kXJlZr>M`u8h}n} zBeg12{JWqWP}VAQlu63tN?)Z7tM->QNg1R=o{8P{0W&NNsHmcZkVpAvX+VV(&S_;6 zqo?4svWamo;iR&O(T#9Y*~GZV#W4@m=L!psxDrH z94e%s52@&3K!p^-yQ3Z|q!8W>IaEjyd=pkAG0GC2_c>-`7*GiX^?9G0=mQl`2oE8L z$|izun1viFn;;+YL3QL%*#vo&$t95ME{<7LhM)46-bcMcc*zIQKk$#>7k~N~18jl6 zT>N3~6Zpf$@p~P(XnKy#GMVF%O(2 zyyH7>p#FQoe?8OXHsmJ>?=g2B@?$QJ8Pb6xE{+**0jNO7Kd)bV%*8C}zyZSJskZ39 z-^JS?hl+LR6Hm294i)PJAAb@#RIEc@srO9eP_d5i8OWgm9pTfFuXAy6K359<%P%|e zz7$yM;&@*QEOGIj=)cIthaq1`_?K!8Jokji{;b%ps@xUvDf7xj->L(LE z{%gE11zsTh$;S?%KHtSLLp%T#*>F78&i7G2Uhs2&_KqTdj_^4lG5%)=&n*u>DBEOaJ537|z-kk6kL}kFhErdV)qc{&u3GZ{c2KqE4{H7{mJY>G~ zQJw9-qMpo`KB~1pik!@sKDv5U6XZ~Vj(;B)epgCxs6dDO>w)4tLj^kIM@x)CpX!7k zUMW5=T*Ec^&ne%ax(d&J26`MRuHhQ|;M0F1#Wh?&FCneK9R{5&CcZtmh6||pj$FmH z1E(%;j1DnE8zPM$EjL`;bxlIWz12Xf7rcZH8le-Bs+VG4>ruQPG ze-gR?=|xU^Rr+lx(sP6kM*1VC|8v(q|Ib?$0O9NyTd&Z~UKJp&a$3jHfI64_TS4nM z8qEZ!^%@QGZKw4bjm9kg-^X{9)&HB9^=wwRtQ)cdu|u(sV)?P&vHG!S^y}y{$oU@_ zZ2~L*Pe;~7UWq&yxiwNDd>+>NzZD)8z9U@K{2j9WXPHmJ+WutdpU~dW+|V>9`d$6`${qG~A!02VvH^Q)L|Kq^(f%^kDLl403^_BW${Q=1KFRh)?)@ZM4 z!?atqa{izE>+R})E&Ubz3RK?zLY=QpRv(8>fVZhRY8F)8|4Ny!q?De@jY)G7a! zn?&lA>fThQ03uiL9-rk$xwn)pup?DYZWnACK?YbLQm5DeU7JMe6dRyxlSrLn19WW? zsZ(qiWK)>}JHEsRNVX&joXjaZTESM}EB9Il)@F};vvnuy=!BP-zxp}$gNzqAnN&>5 zl)f|8u1w{ZLq}MJm7DRCE)XH55R-aloF)pKL@U1gXO!;Nfe*%Z8T!jL*3lxniij|U zpi(AS0-n$Kez10BN;Do~?d@*EX=%K`&ckv78%!$My_1&Z>>g?g`2Mi$s+5OcwGQ{c zZa1V0^4(__*lAj}X>(9^x0YvmQSUysRCppwa|DfG5hIE4qTJx(_zKG5s}2r6X`o(Y>+3!QZ~){cej9XHN?;{|q1 z$v*SU@;!;A9a6HDOenDw5hat=aqwPKPyi97%qXS8c!3BgG0WE^mJm=9mfpfd0f{HE z3KGy!e7jw!XM}YSD*p}G-dvnaJDy}8Ia7MR3QrW+;Up)t0Lt?+PlzXF#>tctPdl9C zc(UphGEaynWjvWu;%SGI(6gM(Q^b?Nvz(`Aynw`$>O41; zQpA&((9<$eV8@f3BWE=`WOrmcpkzy#Qg%nSBTDx50dtly_e*Yx5K!W=Cs6j0-H{=r zl({1_rRboo#NG$77OUc^Ig1Rotb`r}QsikBQXF(ld zY1a#~7PR`HabXg9TSk|DHgC&;N zyDW8y<#p6j_q0qD_0As`bVeNmt zaHX(ro;CL>x$vysS8b!#Q5C3)H#KW}*2h^>m4~u&vzla8&x*!=jU86*Q74%z&3B>8 z-x$aTxWlY#Rx$&yhG2haO=wQ&#n6+X{-O4vn?jXCA*c*^Ft`rhC%hbd8v6Wogp7b| zgAwCb=qm6z)Dd{i7-tML+8gzZiiRID0(L^5zo~&#U|8U8c*{^V5Q3V3U&5P)S$d)V zh+0nhUimodJH3Z~n_g2dqx-Z|P#JK!Hd8Co9@Tn52gKTt8Q}My@$dDo^w07a`X7PJ zfM))LKMN`k99Gwil25aW03NkIaaf66@vOmB#oyH~iABYXVlRZP%W^QEs?EV9>;R5*s(s9ZV@kiG9 z7~jJiKe+Vx{@FN1IO#ZLe23hwamfc1tWwBF zy_7DEcmRE$dx>K4LiYk_yG0VN-D{f`H<=%k75#trQf%Ka)ULYH2!zSYq_XhDL8tUGF zpRF;#y+M45dXo*m(bSG8*>I8OE}W(tX!62$WP>Yv;cL2qeo?o%H;6ClM)wBsMP2LO zAik)dk`1me>holS>x{4;yMbRks_Uy=mf}AALI{*VJdj3_ zLKJsIHS2S07s*mx_lG|y#>-g$6|t+H>l})Aa&P?|#IC!^WQxVzq)=dbH^J|){jL_h zA4j$8Zh|*3mIEyACTFNx+)civSlmsHA!ZdF_%5|s6l3y(Hl1QTvD%vilVWnO2@LD; z(OaAoSgU;k@kFXVj<|^8v54`0Y_C2>{IpQRl3&E5DHeCZhbb0!!J&vq)&OM*!eI1wCkHK#Pb#;Jv?Ii+#j#qpFIN0BSE z8Kfanl@x_EgET~{lB*e{AySoG%^(ets>Ha-56jpl_Dh>V8qi!b6ZCU6gET~Hlid~^ zeKrz(iLWOi-{9gCk&9F)=2HVXG||NUmJrP#jnytb2lXpm{5|BKy7+C#mk~~yK^i30 ziZ+8ZNU9ZZyt)mNYDJqt8YI<r82J=ev>?=wlMqRk);k|G6M z{5ro(eCUt!1Q*|h=ZB;)LDNUP*BT^+i8g~Yo+Cb_8Kgl{m}oOd<7t;3@6N_p%0)9s z;|alOGe~0$;iMU)K~j=vGf3kBmwp5uZ+{mT6N_H(z*WmhrT%ZGOq;aXaIg~kLzCcw zt$e@13Y3dx!@+Wt_gjJbGL(yE!@*MU2v~=W6P{FD7sTuQ*WTG6u85a}6Kzi%yh?D| zhB%l-c#ZRzvJs35PTLI!!+gii^CJER1x;uD|8`&2K0E$@PgadAf9$K+hq3Xod!g>1 z5j_KUlR|C;&`ME)y4?)^q(sxnGxt5k*c|Jz;9 z;PEtsx%iuJRz=^tnMfMqT$yl-R2WZ-g;ORdLlR4fa|ugtVLT0CE*vG)@9$_W%~S~5 z1?&5ITz;QlW7%nlb8$W2(GqfWY#o(e!?z%AchH1uFNo*P+|!&E`H=J zokwB`K`vpL?`fGxLyU{RKVua_ee11lz4pWT>|z~+?j6v{gAX&FhA3Ai&?8qS(h%h$ zrVYJc%Ei+V=Mtt;C4{;7!FPxHq>{uD2ytX;m%ImK`vV<6(-VljLUf+$tt6I*RY7EA;^_Ebh$E-wu4+~THN=kwI#Eb^}yzP z-c7BIiw_B+T*6eUgeVt3pWU9VQrGhuiKj`J3zW4bN(ghICuDVb$Jo*k=gNFWEd9$< z7*9i(i&$>*RA#3k&Lu3ph4D0mxws{(GV2|rPeYt5W66Zx^{CPi<|39!&(@IHX^3+P z%cOT?GYw%bZrP#3qt&jr=2mq&+HJA>2`S<;Cvh%NR*@(n&V`;(GuKm@orXYHW|*wF zuIHU5o`yIVu^b_>gg}?D93ioUI2X6P^MNw=SF)zFCBdIpo`y&lvD_)K zgix2T+$phyNEcd`xuc@wcu1(LeVIGTNt6)kLQm+E;~lI`L#&Gr6NH{Kig+4AUBt4Z z#1dj%!m^{p5<*?vvfVF(hk7qtPLo&{Cpf$o$I zG(iWtQ#R1JYoI$N=RO;iY@jk_byS)yp*K<=YXxh6=AUovfqrrj5asu|>~uB!;F<77 z>qA&GeBqlHtZk5?c;eY+To_MZ>$2P_v8+lhcS*x-wcyh4J(?#PZpA z-A2}e%&P4jtUYGnd44?E>8ph$2qkyUN-oRVo;kqT>59~{c1i2i%pCeNHj_3s@_onC z6@(>gCgoW}IXhh*Et$}>X=yxN&Slw9Vp*12HuSViq{}c%XNJUH$NF=upX~my+1CGc zK&6?dEoDme2kXoh_HV1T`$qepIP_9DPL)X;TMILl%XT>Z9fh(aDs`sxY`zyyUxiAR zrQKF?#g#y%pDDcybEJ!-GQgCc*JeCj43*lyD6>!*WJ=F@N+KO&N<8(gWv4z$Pkn3I zsgL09*{N@Rv$YVqJFYxB)7tUy{L1TIe@C49Fe=%pZ|!+P+4KLszHgl8|K}k8zZT^G zABOz@0z3ad5=Wp zpV2$(InbYPxAv~~gm$NPt^YUw7f|c}5q~RxMfDuS+h0|Osm;_<$|+?9thyhd+^l55 zu>YU_B?@6G=rm4*nA=CNYRdDGCRxblg1YnY16o)~b+7fQeTu)ecDq|zCJNbX(9t?l zi7lHC3R?&P-C)hTZ1>W%wmO|K`Dd3XWHUmv1*vD-&txH+6FSlm3<0#BlksFBn-w}* z{a>|gUg&7q8I$|6nW3XKK?`fiJm;H#Nj_kf4u!)7spJD@vqWJFE94}$EF}tULF#FnQ^=B{bmuk#XAB~Q z{&Lojti^YB*(;0NCkt6#lp}Vu>Sxvu%`TMq@{w}ZKGxBquFfyAWFbq9a>l@}95D9$ zp-mRD8Ka|RR|9B0FWzJ!n=?9Ec9ntlI&04O+!qhOa?#r2Glr1sFnbiX zAeGp%>7y7eEQgeQ)nEcCY(Xmds=*AB*urW`$!K8`DQrRNIofz3%p&=N23w5jIo9k# zm_}xvU6|0b*>}7UW|745xWp2sk;3x0#1dwaXbHxb7U4<}@%*^DNQhDAw!sZ6EzP65D zdbrhX4SwR^zjz_cBQxW)vkbhSYzys)r2VU?GgHqaiWkB>GUI6{C3(-f3dKA!#5_Hp z)f0vGJkq%dg0he7;9(*u4!)1<;Kf9e9ef|}gy}*tkz@zo$NQ@6VDP$l&;o+-0Rdx>t)u_l)Vy;4>Mk9;)%DFnzbj>X#4O7-?F7}LK(tws!Zzn zQ=KRbG9~W5qipvE-F-(zvipE*_mXxKg*qzDfw17(^E_o2YT|@~Q1U(UyDTS4ELCbb zQDUhGOSaV8`%Q464=tI{^JWuIKkc$idRwNSqL$tj;}Yqy%+mQNS<;c3ZJl&FH&{oS z+cz@2KGIJzPg}~A%IntA1^3?5bZ&j?m^0fK$|rD~b|#bO*^H+jN2Sh8z3*S?F{t!2 zrRRJ)o*s?L5K~H?1s`KdJop8&gMXAB`~um*kHX!vgI^#yq>-p(2fx7k{*`_NmF$of zcpg$b{V*!oX_BlINRL3J$w~%z?mas_94{uRFrI$MWjR=4`5?9Q7RJ-Vge5Ch;CbiH zP7g&(sW6^?z-2i`VmX9bdJE&}!NRh~t}=IfJ{ZQ+gIvmvo=Vfd$@h}d+o!z%dG9@q zYJrY{fIeJ1U_=8K14jcJ0}BFEpi=*kaLoMGJY;?bwfiQTqs?CW3_W7rZq|nSeg4oH zSo6OUdi+fYjS2OI$ba2XrBERF6RiGU6Py!#G5BP#KlA{&DR^~IH_kvFz%paHk!L)l z^j5~ev;0NnFg)33DRTqY=zH|0+HCbx^=-94?XD)2b$Y(`v-*g7THT#>Dr;BPa{qk) zEB>eaZL?-(6=gk|)hp}vtlC-S{r&wn`pfIf_3Dtla3;1lwlel^Y(i{ItZ(cN=weVQ z7Kr{7-5*^OofCaA`Xs!~XcMg+EgSglsL8=Suo=_Zru2AY9{nXS%Wh!m%{`CmBu z5F4iR4bESP+~ha-2InuthABL0&u-4aZ|2%VZoL@ni*y4WY?>R{ulKl-j`@>z`xK5f zOhvbwmLML*-Qg)1lBo9Z4Mq{)5WHeTKH1<(p?-{SFs@jj@F?E^R;~o7;e3Ph7Z2mk z@nkp~@MXU-*!>qGH>#h}#P<>_8)BBfxn^f>q&Md0$ShA=yEmd3Q#kbo6fZ!N`V_ZA zToY`!LRV}E@(ungHW++E;ED|a zzCpWUgU&Yuuh^jR4bG@Ahd1cs8=O($2IC*T!5Nj<@HgM!j7n_yi*Im7B{uxYH#nmb z8~)%MoKcB<*5CLBXH;UtMZUoqmDunr-{4qb+Oct-Z*Z){hI4#_V3|7m!Y^1;^K&5s))&o`elm6-R2j>ER@Sl^tlx8MEovd z7LP&v62+L&s^d=vD+0cbtF`l}cC8@zf#Nl&K1p#;#77akRuJHV2-Z}x6RKxWbw|W+ z5lmJP;BO{t0Eag}?PZ~+D+nf0j9+H$d5ZCisTCl0W%>7}7=I$Pdnv{bP3uB2{zPaU z`2_@Dde@xgUH1m@)tTnrAbuKNb8isygGqD){RJ-|8(crs_?z$Cip0+@e$$-|BlyQ+ z4C04pH$&rCdz4~v!x%0wwDUss5Q;Y=Cf;+pY(hMMs{13pAF=Dx!kefGSbSPNsakwm zT`3ly)?EVAH5u(G&cTt~L2(lC?F5rG8MpBd1Lj$-X>EjTa7~2IkPWV>^9j0vuKn8X z-XLzGo7@}3P4qMO25}QzK{mKn7TdY;fH~o6rsPCR&T1Df{&&KY@W#6pNc^ zF~qK$=NxNDK;=9qCRWU)_5wYu* zdye9@T&FQeBZyfCaa4asG0uy$)f68`^$Lo`ZE+dLcA%fD^%oGkcDa^f zvCCByi(P(7vDoD&h+UJI=O`AF7@YFhCERd;sJ08IAs)+3*yE2_E&D8s|9A6!;mg{S z^4r;p%y@u=*8&f=+x*V(N@ulk#mvtk=LO5U-L+r@DI@a@5S(d z@Xg^Y^BZ%iS!ni#wfn))q0on+=R#dVIl;ezJ0bUfbnuQ~W#boPlkukUu+h?}5cnyu zF7PU>%5N4Zt)JFc=`ZR7^~QQJ$o&6Admd`?-=u}%d3upQ&)>se%de^X)w$}^>RoDF z`2(s5%!D@v?I7>}A`JP;e~BU%O>x3wJ|8Pe+{{`O9_?>=s3&i$%TGtLh{aPdl6L+= zv9n#QWtlML?q|L{_)G3zT$?Cj0Tp3e?5xC=MO1_>)H%M>TIzK2wRUY>)Ua!@zQPt_ zD#8||b*v9qsklaeSlb?9L&)ROWDyIh2wNzV?5Rx@L0CoDg4DB`QnHA}RfO#qm0$9F z7oRL*89G!uNup(;6{?*m(X!wQ)z3X6Z z{!k{1Ai{#daHdt}SjV7tUX>b;Sx5i;!Z29`!Iq2`g5l?(47O(=G*JZM7I8hu zq{$){Z*hj;*dCDBvVe=DwMXDBO%}0;i?D?v+&!#Mom2p84`lQeEnUt(i9`{^T!bx1 zE$gEPYc5z#fY!eLc(P9EFLE$wC%?!4q~4s*QUFCliG%0>eKCCiM(h zBnw##hT6`M*s>rDv7I5YWls!|9 z@2dB#D~i1)3kMKmrd7VPPHeDBLLVyY=yOlBxwaurv6F@UnX!{Y@4O%KOdv=W-jCYM zyCl!}QnIigYT-AK4Z<^)ohh;S=a})@MHB8v=;E5!4>vq=fOTUN9sL; zE9~X6h0X+?8ODji`=~8QJu|U$3VSkJCj{*CvDzTMU#wl3qOONoV*iIr#aE*T`Pgjj zRBL0(UVCSKbwl~7D<8$z1j)jCal9~fVPenkXR@$6YT=ZDw!kwjDpA;t92=8*#)6ZD zU9Ygsm)PFpw#}E=cDcf~y2Q4#+qSyI_HJs+T0nUAhD{XSMQoYWb1IN5?Budt-LQWz zYlU5;xstWV=}#v<-;ORVbeoXm+jXEr0I6rbU9#{_YRj5cNNn2^TPBs*wsYA+uM3H7 zTWSkZiR~ROTWFObv28!f^ZdW|%IE*L;rYKUJpca+&;M`P&;J!7KSe%+>i8Cxr*X^M5hd^Z!Bn`Tw5Kb-{mvyMpfoABVVqRpX-l{6E6D%_tW*8(1Bf92gvE z3O)M1gNXeE{eD>aAJL9$i?n>L2h`ou{QLd${Nwz0`{U{#>UMR8`Y2QpyjuBL`CNHJ z8Lr%>l=J=QTgxB+lSM4Q1!prChmP6Y$@(PI{&sg+dtE*M>LrR`LWREsOzK$&J6Xh1 zT&V3Pi7ia1sO=_+EzGA}w*4ixFrlKh{Ux?Aog%hSUCT2^J5dDFDPapz?_cjCm`r7C z;n$nJpY{GlF0v<6PLk-qYGE#w@r9o)sc%k^Yc6#W>VrvsJB#RC%GP@Sb{5%lDL&<4 zV$a{soFbS?i63zGK3aLxI?74{bbkHH#I$4)%%yNbXKSlj`=0xz`Ul_Ev5vgZBk}9n z7x)#KEOO1InArQbt4PeH;H>?NR?MZ~lVe)X_X#;g_FRh3PN0q3I$y4}&aU=<#QM^H zzoPL0CyMA~ifLP0OEO8JY~A7W1sG4sDY7S1#CNUCm(HfZcdf+NHJbwM8kw&>o61c7 zm{#IzPo~Itd&+!aHih3J@a^g8n=FFKl=yP~3hnTov_6B}ZS{y^?QseenStRCDPOyKbXIX?~5zMDD zzVJZAd_7-G<`mfzDsm!b$WDYkqY@`#hU`R$DV1{~W=Kv1OsQNaVus{Ih&h#WB4$WV z1k9;iCt`-=MA(xmaw4Y7PJ}(H5+`E1I>|b9-&+-eQ&j7#a}N!^bzlQ=MTlvYb0VhK zv*zDxw>q)5-?8CccoQwO&2hla6)`>AdiN1F8!2OLUj1B&2VW@?+GePAPQ-N2N0MaG zEvR*_i0PhBML9(l(~=X>M0O&Yvag&t5lv(#q6rSdIT1}HC!#TGofFYSaw2XKq!^V=zVu5Ub*OOr)6xNM7m_orl9RPze$Wr?=N71~P@ z?e$k^Crh-~Q7!A->KW=u6y=c9AeAPIl2_PPmDncSw%*cYQTz(qDiYglx2?A{SybI^ zJ7R^zwwlXUB25-u>$0u%NF~ouK(eSR)v^w^p3~k$Q57--sWe$s*<}k2a=qU+7F|Pa zK`Qz3Tz!RYCy8w(w{0hhZN)2WJ9^r}{m}P)l!P|4+H}{iE%pH$^K)Ly-%S zgOPQS_aiSyo{kKPbc{5LTpNi%e}E(5&%^V>uZ5otKM=k<+$5Y0IRn3&$IZ>=N9G&m zc=JK?9`hD6X_g565&9;yHMAr&HIx?`5$Yal0U0Kxf`13U3+@Ph5}XlC2S)~b23rPi z2$l^h#%Wkd@ToD&c;0x-=xww%>KGLa4c;&83#kn!I$%KU|F875 z`ds}beXKq}zf*6ZSJ6%FXYG)-Ui(0MMH{CL);ei7Yt^)<|Dyk>f1`f^^d5Z9Kh)pZ z-_#%X7gH~(C!ho2BK1u*1$79!!it3)^(y60<)pGr`B<5z!S%oUZA5uIR@dt=q8N=^WEXMtwz)&s;O|a58 zE4L)nZ=;%(EkgBlfuZye;;9tZM*JpXRssm|>lBMG$!h}Bl;&3`ZjC0G)oZd2qloi_ z8oGocP6iS9C~-4Sd8RO#H@Q8szq`y>%fK> z>#&=wiyGoKXaX2hn01l!3wRT%TT(SE6xT+aP4K?0h^q;Ff9siut5Q4zab=39 zBfgsACWtEvT)R~Sae0bO#APWCAudgD%UOs^BEG8X$Kv`fL2-Fh7o%8Q_A!E&EJk$% zaf!2g#JEk0#khkMi*W}C-Yv$h34F4K_$*a{=XO|xBk@s;?~k;9C|BO* zXTA8$OQ`;n;z@`vQ#=tdrjnarQUmctp{8qQexZ0Rs(+*yr*hi&6!%2+34w>syB_f& zigOSjpg4(mKf!a?Bi<))#|38)@1giK;$0MgqD4~?CY+G_1pt(TGie?ncZz6?+9HB>k3{$HXzuXI+@{WsuAeSv?nzoWm3?{D8u z-+R8%zE-}n@KpY__jT_OZ)5Kro{OF@J-MEN@C<&N`>gwO_e^&mcOAFpI^|m7dIf3$ z)Nr|+hn=cPC1Xrl+6kFN!Oe3~pz0Ut<*b4_7pXocz+#>xb>kB^pJ?r$1 zWkPTTbs2Z8zA;rR@{m}?Jw4Nitq|RPGF=F+P~CkJT?no4@B@sY!11ZRlkI_Mzh6IU z>~wgRj~8MqRJUM^z7gsSJ$|3AA8I~_MNBMedZrOtA>$n?(}may)g5Z98_(pS6*z4F zv=3~yEnXGRG(syzP#L(_CwHoD+qE;6X+&010cb|GJ;d=$9#~g*-VJ5a9J5Oo+*S?t`|Q&)IR4e6T&L|H*xLg>~*#&NwG|b ztKbkA)jrcH6T&J)cGjz#B|kNYt8iJMN{$1BRfufXl;*a|LfmI-kcE(=uK(WYlYScU)4{+>O1sq+r~piwhvqJ9!K$3WhI_3MdeLSO~se2nYZ ztM640f>G4b^T%L)eb)&Mk38E~KiI=4`O0N!XoXR2(;VWNLTClJS0u7Dw8E$o zSs}Cn+{+SK2(925$*2-ph^+7f0o<7qSqQCA*_jeqh^!FVg*$o-)W6#7d48BIXobrHwS~UQEVQc^K$-dPzu0e4I z%65~;mJ(&R|0$7$I0+f;_CF=EB?Q@NTZ2#Q>mgCCN9?M8aOK{~FReOZEm$nGIF$ve zMD~tCvYJG;m?*1BWN$Adt4d^xin6LiwumUZWxhoAHbHjFd|TP{%m|aUt~G4?yYo){ zkdb%b(Tye^+p#KVJTuI64YIja-o9B*JTrvjh2#n*EV(!akqb#1jB9&GiDw3o3yB!F z;A+SP=i;x9V~W{U7K~@Ag}6l}T%{1Vh=l7Gxucg#xITefF|Vj?8TDAEmmXuF+Gi+b zdJ4%Fk;uA5*&-5ImnfTDDv@;xvdN_qS%)B7?5QgDe$&insVq?K&zqUgP}!@$emdH= zJ3wsa6e7#0aeYxLYx|o*e#p$pg=9xcWG9KTBPFsE3(1a<$W9PtM@VGH7m^K0WXFlJ zA&Kl*L3YT5osz`yF;o_)wu$5LlXXmU`y8GFo^_rNpbFr4Pj62f&pn>991KyFEOQm;XP^6Q~_76?TNqhjxcnh29Fi7#bYP2-OXh5BY+Zf(M|Bz}(>U z;PBw1!A8L6xFV2-)UR5Wm=v#S?jB{fl7lV)tl-M zkRR}gI$M1~9i(3!b&B;*Cu@s{&?JU_X8u1l^1 zuC=iDV7hC#>rq!DR~1(fb|4&eZg4JiW;w??dpeu37LV+C%HeQsO#Pd=I@WE{U(u@k z!LEzofuNzhXy}fHa-yLd8p;TU?SG=76g9w|7!4&v1HR1m-ys@Q{KV~oVGF*{_7|ZB z+R!^f4RGN{DNQusv%4S5wVAhyBKQd`*Jc<-FGT~EYhwnu0;2)TwV4Jkg;m)MLy}9m z=&0a2hEiCr4L-rHM3%wFU$;Z8&j}Xn#llc5hvN~1|2MV6NOxh~1#wOOFG}qoM;{LI zNNb2bETm^1{Sj!mE`B0}hQFx+uC8dnLV8RJb{C=H5AhS*(QrjH^hX00(qmGv?*n(3DM9KrH)Yp>{>v>5z){F4TnWT zYcw1b3{%gcVLvrME<73vM8jM(d?Om>pkcFU;H&!;F|h1k{KV&?0UtDdpNfV8{KP8J zFcb|dsR6QJ(XgBvAmtSeABl$RXjmp1uAyP6Xvjmu5@KMvr)c<4G*m*vBGFJ04Oqkt zPSM|ojaY|<`ScTzu89ULBMYBk372TVilEE@DU)cxdT^$p6B^zj-@$7ApaBcd8lSlB z5*ps5pMZKhXn36(pkfXh@~HvJjKtpe8fPw;O=tT@{lRp}IiiR0z=q?(j zqoJ#4sDg$r#K1PYqu~*1fSv7V=tK>$HysTb#K3l!qoD&e!2WPFw5JBx;f;p2)Bt<5 z(a@S0*e+`{w4?^uCyfTIK?r9F>jH*`rt}lg@(T@(sR6oRp+TnxXnBQ(`qThTtI$xF z8lXcJ8t$hC=rM(cI@ADNqR?;c$yKkRpGx?o@T_lt)NITjCHe) zDF{a>To2(8hoKt@!T}2NyNkkM==6bXFNOJ4-;FTqxPfdZh2s|NiASE?!#XV> z`!5t>-4YPSTDGj)!XSiyMK4_p&n9bA>2e>uN#zUv(2 zZ0RiP_|37&3ivx5@hpg=@E7<{X!huX`bzU1(*M{3n#BVt@XA!mjb+h5ij*49;(-)+ zW6HR7^p6+!+xYkWtMonD`Ou2>du!3-S$vNQY+Ykq`%RKrJd%I`9H;ZplG3)If zm2ibn3XI{1WXbq06?4h#xv?y|OXU`_e3y#3WJe@R#$zewk{yvO8N^ajXG5y@fMgkX zFvVQ5BN8qIQ-rf@jAY4pG{sypdu}X?MpIzP?5XiA9!)WqY>Z^dAexdIuDN7mBumD_ zDdv)mkt_p*Q&PI-lG$_9vy6C(75HHN72NgoUw0oV4g~{rBdBzI3;$Ud0hLtX!{C+@APM7U=${!SMEv@`8=HsrxQ;jOcoq++umuLLeX+tU9#CNm3|!lU zf_N4WsIUc=b9q1|)u+O?K1X_%5l|rqW1r)&p6c1FA2(9~_(DKL1*1?fhJE(+%hI!q zhzb!dkO> z3^HzS|eH!p3kf4X7a{336Cr|-+YIqR;` z_`Dd)>`7!9)jpD&*@Mddd;Z2b`$%r)V?>rwZ6mqy%8yPkMrH>p3sn0wjLe4$$)2&5HJ|^tvFHDVk;##ckt*S9;a%am;jz#; z@6OQgp)H}=p{GMlL&bwX1-}X=VP}8CV3EKNfi)1V?;EHa2*OVORoV>gag9CyABX4v zscJX%Zq=n6Rz6goQyx*`{{Q^@{2%xy`XBOF@?G`q@V(<3>1*LD1>N@6d-J@5yp6m? zJ?A}ZJ=vaqo_eqY|BQRJdxraQcWsEnA9XEtJ@4x5iaY;v7C`;~@y>S63XVS<+xYW8 z`&T>*{HfHvIn{K_K94YqJ5;GYT$0BqaHvwcsn%S!Ii>L|?op+>bxFA3QK65*dYakq zQ%KJ;T&k2G%($oBb@X3TT~R-Gopcm@TEguiF*{i)DdR#btpiSp@D= znX=a;vc#uiBal=R%A!6MQy;iFHVwFyvzcxD)qb698TAS z+G8YFRO(haUFFB@k{n}jtB7u~dh;Z@)UR^7iq)Gd;euZ!=+2RFsbj@-8%ns~SaDtF z@%krh@942C@T{zp$H}PnjzShVRz!B))_6sIUTR0#cJaOv%L31e%L3KDu}l^?Rz!B$ zFTL%zF=c^g#btqNzl|vi94jvCIJZ7%d)tm>foFxXQffR494kRqlgNT+MP==&@vQcR zWL1f5J5ko28qaDg%6>IpBHKogl~ChZtp(Yl-zO!qt*9(e?JN3awJao?Bav+(%H~L9 zn-`KzNMxIdvI&W7(?YVa9xA@q`p42qwZi$R$g+ZuxFw)Mol8fA#-w#?du;0X%(lT8AP2cvf{m zcFfzy?cb_rRYNYkGlICAJvWwBl@38hjc28!tQn#^ZhH-hXT^~VuejI{Bq6#Oa?KFk zaY=|Sid+^!0$p1!yw`Hfbmclcdm#S)w&x|!Q&0!5o~MGx583|*-CwxhhbQq7?yhd# zofbJC*&SIGc`Nc_WN;)SQa4gQ;tO929|*67_XX3#!^4k;8-=TcgYeeiXlO%dVJIs! zHqf)wkS)Lq%ukAqqJ6P zDkY%Oz&Za;|4RRx{^$Kq`aAgR_{%{}z@L2ke4j(rfmeJ_`#Sp`@Kts#^o1d_V4dq< zSFY>4_nP;tcaL|CcRq9@m<0I<8PJh13hyNT^Ze*8;u`1b?P}|~&sE-~!VZ8F(1l>R zbGCD;bC|Q6v#GPM6Vm^8yUV%UH}8Dz9qXi3THfJvI!$!)YD8Obbo_2an{#yZ4~RD7 z=qrD$TROe{Vv4}R}XgBOnrZnVe=MRwk07o;v zM6>}%+aE%-K1W+)P*o4!>kV!dmlmfMFijB;AI5g;NWivCK2=xM=*U_H3aX*n!pOpt702pEeU^Rk_`2~TR&I@MgRY$TR-ryrr)%Vo>B|JD84>ZY9d&< z1~O}KuquLgBUrvAg4H?L6v1i;mg$9HRSrIeU^;>&#vvHz;3x!R2;Pp(B$OzEkp;+1 zLoo0af>jXoA4c#l1l_nFRUzlN_VvNO_)}3T@snR$aB>YM_9_*KVQA}aol*ZzZcv|5 zX6!;kS-~)_IT}g}hQ902P*N~-yble|;T$~Pg5=X;!`iY|7;|>M?R?&dDs(!L1 zhDqV?!~eDLiBn7PJ2r@h#b_X#Xh7=JA~dWMKY_n<|5|E*Co}v6-FCws!_Yvt-GBkT z0zch$1BMIu3A*hD3{%mtoPW84J&K@#Zo6S#G#cpc8Zh7%4F3mI3X&@E6Yq)!ezw0( z4Up@FpGb%X+;HTl+dLpMs{lViw|RhJC>rQC56B5>hX%UMgXJKhfo}6)Swv`fhK>sI zfY30R7+59`8YWT$r0t+#yl5DSh7qD+1R4g5h7cP15d(|8qv3I4V9|3l^q>Zaf1{y0 zHRMbxi-xYEp)?xkzKMTxCY3@1-8b=X&csz{p!+7E>KNWX{2l3cK2 z{RC8t{8#v!@Vntr;g;btp z19bwLb_(kFPt$t94t=kBLS3cKRQsz9p>F>rWs~xjGD>NyRQCS^6#zfRo_*_`J?kIXTEc&vzfDu;|dI&{l&6b@W;bm*tu^yp5HyeaY;Y5c-K2Go=q#< zoh>b!#eUrE-4i^r@BY%OPi^;lFW=RqzQ#4C3IwUG#YxL%fgg*wq|Y`Q7nRjF?PPzu zxFXA-v4|@Ng!Q-0)-3vF@nu_DHjDCD#E+g)^n_W0NniiuF{qyv;)*PJ#v*>0e~13T zkUz>-tUgZPVOAvML>Az&hzpiU#>nz!EaLlHBt#b5v54=UluU-D%vi+PR|ER2nMU_k z{p)J;CypOdiI0(mbu8lRVaZoROb3a{G|7=+5gki0yOHErLpTSCuXT}pH4ElgiqoE! zoR1L6LE=jT7L!RSmiun3?N?XHhIowAW!{kPJ|ERTIWz}u2Ltqi z=Y4mbs8PoH5mw1&!I%^;{pQ{JXRI6KGuQQfM?e3w+seJ12XPpS7cCLjR~e;Yqk4gv zh0l2`2$RyQT%)SK`oD@d?{0NL-zWa~t7Jm}26We;D6^KOF>fci9(e7Fc64E9oc29X3_6A?#ua zmg!YlU$J`GlrBU5(DyDV$Ic5b$YL%j!7`6I&gm!LU~#v&ehPYv!CoVaSS6bUTv8(} zF)m$SJ&NVAOw;$3>R)yL*ZAmOC7T6XEZ!)|O0z&qig$aKgqOy7kp;E%H8nfe?mfAz zzQ14hvas!hkFN^n1->e)Fa3Qr6u;e|8>J0-NUTcsU7Y7XEIDH;bDsOxn7-p|(zPu%KwOZ+W%~Q!*(O7mlBFm_@nJDq>vP9N+KWWR2WtZWya%w!gv?x2SxkR>< zASMMtb`iRE=Fb9ds)c|b~}+}RLKceRFH+Y zx)RwUR2HZb+1scrdnat47L^?#vW#k<7L^?qWZ{jnsd)s zY<7U@8e}8k_pCdj|B|{I?K115TECrmwua+1lVZ=>c8rW?tH?EzV$a%ceT!!+$TgE< z&)TPIXZw+BCdHn$52t7QkZY!DpS4e@%l0DIOx2cgJ;+teMYFv&rDwYtmmG{UvV-9g z55^hU!EoXr%!6@8axfgoH4nxa+k?TL|NA)hu=@WWMxKv68mS&}g})6i3%?ZZ9*a5&Q0DP`xY5lbZ+HFvw?+Z0Y zeG=XP6jLrL8pSZE$oG2D{pnL%X8SX#FOJ0=jq{T>?z^CwyjpwoYj@!5n9k>5?*I3FbMQ?-n#*o^gDvA7*<* z>uu0aimq2$0(@uH6lKg2`tDTk?qlL(WHiBiXOpNhrevJVdFC^cF`4(wXJpTeC7Aon zXLQ=JOh24@6LE6uZQsNn$3%v-1WRth8J!-c?}AK!sAjDna~O~L*3}}KU=B2&(P_zy zm

    gblTQ4jwYB3&1YoKj3t;4&1W=4HY0GO`HZGWX2kqxKBFm;88J_q&uEHdM$DJy zGmb^P42=b<~f@tmuM=H0B2b>O`;{1VD7PbkiCZKLH%5B*5ZAUezJ1C^*>$0 z&}J;bJYB@)c*#kmqoEWw;yKG%y*$y~w5O;OogFUsc1d|WSx<=gM4K zbJT3Ef(bm>l!+ZzVk(gUkCo4rSYiqAPgA2}$Mu42uFO9*C&1=$&_sNedF_lO#XA_SrvBVP0x8%ols%);{ zTBfLMu2W@mWv(SZt`cfA0iGrPvKM#R`KZ3N(T8;=MiTnBW(5T6hmn>5$I`k`0NP;)XCAUi?nJdX9`%5Ij zk>ry7Z6#v~=0%#zt~n1j{sdY`q#Bv)$JekMDW>~G6W~O`8Ns3sw_-9E(j2FkQLF2p zrLu|lEja?Oa4=gangIVX#dO_*$-GBX)A)MZTUji@d`CW|6_P1sKTD@1Wj=#n&!)7( zeoEO>kjbVbV@^gUo6-vVDP>O*rnFo(rHOP(QsxBwdN!ryk|~WxCYzFsIS!d@O3Niv z8Y@hxy=+Qj=#-?)(fIXjO6?_68ih zie?YzQ)0}w^#ev@l_vU0qnytqyfS4E!>{)`fol8p(d?&@>AD4TC^A*Xv~~7k*+YaW zrOT%D6rEDKY)XUi>)DjjB~u!NOg1GM^GRf~DWyxMG*FmQ+_BYaJ*JydYDptvt&xWkO@hOEv8R604$HT3{wZmn@ zzR+)w;lC-gEcANlh0u^t7swAthYW!m!5@SBf?otb2xbQ-1p5Tr1?vPW1hv2)fs=u4 zffa$b0xt)K2f9Or|GNVv11`w)KcubK7HdiE8SP1}llFj?25%6qt7p~S>SyX)^)+>@ z`h?m>y%*~IE6Nq+IOO|(th}kb1n(5ODovDXN^!;Ezvw^U|I)wEp938R2SAU(`u@B8 zVc*}rGtg;pHDvwIfNq12L%+e=zOp_a^c+0u-Q-;ceFtBF&VyaN4|>zR#XL7WKYI3g zzJLx0*`A3|h2SAiT~8%X(0$eYoqLD-6ZbprY3`Bk9_|*9jZoU{asA@@*0s^K#Fg)Q z&NbNe2=oVtxr#dfb^hSo>s$j>3NoQiK_6IJY}@$yZZ?1jMtoy>aH@Bc5zp4 z5)^|G>VFnWyRxg-2wGt2s(&F$x~!|e6Ep+4mo1cbO;;}wlKg=o1G%#-l(tM)^9Xtwxd{uU4b#<`1jUp&bvmM?UAj7z zpnSY9S}1Lnu0Bgp{u`QNp|ttAI)R`WINosIq|Le7j-YcClfcx!T$_cd4VMwGNQSF2el?L4lg5fl>y)Vm0pz}2Zl z(CUa*K$LVHSMMa~M&yy;16S}a4PC!6OIZ1Va8KjNz9Z-qM2}i1?bfY)OVIkr zJw(uYh#uf5Z`G~rvryW5TiHv{PN=Yxpm_aNwsAE75^^^oO8Raq>j}!&VJ$)VI;OqycYr&ulCAB!o{n-g7-IgSgMBKHXOO|REQ|vo!EmFq60WLz8TTp zslwxsmJ1Ie2>0YLWa}c_12j_GW_R;Vr0njJLU-^@q}@5Xg>NEd_nZ{>Yai-%<>*&; zBFgSWDel@jh<4%Vrw<|8nWHNQAjE$>8YwTae4{ za4GJ)ClT$y(b-oKW%s=l_w_KM?KzrEL$n=7vl}7WmZPtAL6qGiQ@YchMzl3YUwRo) zcIQlS|92C#x$XP^+a_qXoxFt)*S9WT-$wjQy`Q7?`I%aWqjd(L!hIaA#LuXES^R&1 zYi$YWT5mO?c8j9$EqM|DK_HLMp`nR|Q{%=lZ&^1K?cX zi$G3bJoM{p5{N<-z{}cU?F-no|FZU!)={gYm4Vt>=hPkQM`}`?sPz zB*!-4G@4_?{)}`14VVf0q~RP0{c*{JMA8TZqGWZ6B*X=|WOZA~SPn!9t#|SfaEF|W z^q*O4flub@2aLkX6|BP?&4I9CD$HOo`|Ib8=-3qf*qIj|{Pa0|5RK*-QA1;#Dx==6 z&wDuY_x6K}>)XtN=UmeW8X8O&W7?*PM{|srp~3Vrrfr^hG{*=b8ca81+P}-nF(ZmB zaH0WoqiphKgppAVreyL)#1SXIQ8IZW;E0poD4DzwZ^X%OluX_TH{#?sN+xecAFatl z^GW^Z)KNMxux`02U$x>#38Inw$Zv4=)6Z{f+jD2%%la{+nBqXrgy3W<7{reJ2Fc`& zU?om|gJkkXtP&@`K{9zGREd+{Aep=osWd`n?8x_&P2LDq8dQTRnLLkGvdQ<9OrE8` znK3hV+V_-9o(C)0Y2Q;ad6xQ?io-Fc?c}35Bw866vZR`ALV7fZrM;P&8Zgr(Oe0)r zEInh!B}|A`a?KAnOPD-bsYT$CYOuaDb%GuhDUc}yRgX!D;g%3XeyC_IASVCM6{Gl zm~lfRr3y@E=-44nm>LBeyI?W`gT_~}u?r?65{P3LOh)Jr$1a%6SRWe(8#^(TNSLub zW)dwW6Gkl0(9^(lnvUHF-r)cRlM$`M0SYEFJjcF@eV1T@a9nCJ*Z_&CL;~V(d~u1T zWWtEI;Q*)50U7}|9H3w_BWi3E?C1-o9ykg%K*97Fn%Dq|sYIeX9U!qp6W!Q{%&P!< zIb(a@NlSFaAA^(_O*|?{)|W_jp_2B*Xri+qSx+MQ2$i%aMiUQH$sPwKlAVa8gcwU? zFiF#eU@xQ`FX#o2zf(qe)1@CDbCvCP;#bO!Ow*v=irE3j>19;=+kN68WV)oxSfaf! z&`z>}wxa`;GTY+Uvw?P!473e0*+A`?u|#WOpc%4(wxR=-GF#%;vw>zv2HFCdY@qhc zSfV){X#OSHK%0?)%9%~^>tUezmm~vif=n2wgc(aTCIf|+o3ixs2iZW4O9M+;m!y~L z`0Xsc{H$&I0gM07aklyYKmI>4*f01HyeX&@3MyaumX5tzbpTCyTANx-k*_$LVXWyHq`_)Nsd5Pac| z9*B<;aLh#tj1cf{$R9@W?O1aoFqGiawg!>^lz?l94-#+{@qrZIG9U5&1Rt@i3gUeU zUNNsI;ynet2;z@XJh>F{ZUis(6xV;0<5z$EbTsli3;0OH9~STth-V0R2=NXCA2Iz#mp7Ft3h(E~jKY#Ah9Px$(@9`lP-U!qa zaEwI;?iX;3Mh5N^@SdoD55c1^w?n*^fVV-shJd$5ygJ3Fovsc>GQ5_6YxH`4qF7gH{zQp&YQez8#zvUyld+TPFlQc zYY0v{ylbCvoHlsZRtxwH9M4JtpN{x)0mtjP_7TTvb9Zei!AT2uZ867b2Y2lQf|CaB z+FXK@{_Wa31Sjp=wKq9VySHok1SiegwH$(z-t8LkXI7Hd?b-~&C!O21mkHjRH*VLS zCphWCu02a|(u7?j{>e(xgIya(_@o89HiF}{1G_eq;G_Y&M*M^or2o1`{DBpu{kn#k zU9|hUhB;ic`MQQVT(tMPhB;ic^}2>RT(tALhB;ic@w&z$+(woX?YpkANVJ7w_K3z} z&L&E_u4^p1Y@z&GjJZ|=NzZjnN3M4UzfLx^P})OXt4Gk~_*=o8DB3|?t6_0z19h#s zh0^}%T2+E#7K0YI&>p=`+=bs(g`gD?t!$x>ZFu@MM9UMD|F+9nX!m7}A3$yyg7Wn( zg=p8){Ayl;pc_!(4h!w}`j%pd-cHaWh!#QgsVC8E(;@`jj@*!iW~3LXhG>AGaYR)M z?bvZFUo$^J`I>nVEj=AQQ_W4#5vcpWnb!BRy4>msYjwm-YqS2}Su_6sVx(K7M#LLF z7G4pa7VZ_k4{G_J34IQA{0D>{2;B}90M`fegF}N&gQWw%1-1s>4vY@82~^bn(spa} zv`Jcq7E^Di2h|VN7u2q54b=-7`zw^`N-w3367-+(f9}tM4E+cExBD*m*8B2(Lw!ws zr6D7KtM_g1Xm1;DMbBTJ-JW@#NuCT(%zXp;53mY=UEMX@Ue|GW{+{mY<*MTfI?p&i zgADt=&U((U{YcIehb*2FwiG7g1?B5LV)n_QYt8vG>h1l6>PEliV(mgqRbT+%AzcB2YN-{t`(DNO8&j5=p-6O)Cv)>9!@J(sGPw zmARHOVl>AHUZqCa;O;dNNn_8OC23EL=I||VY?PlD*B3l@@6gSM>ghXnJi6fJjZy1Y zk(L92E^Fd4Vl;>Ecw>^CC6W*Ym4LadEUyuCycVsBisy+qQ8#F?XH+Yc(} z%TvWg_lU_XX*m#>OGz@KZMDK^juECq$-xpyh}v<kF(vU-9 zdcdqLk>oKwMwCbzF}>7*eC2R0iKG$IGngP*OCrf5dRp;U4(*aiLPXD6bs$P4jeuTi zl&~SCioWt|R;y&bUH}ydT|s=KmzHD1^UP5Kv6Q~pDCamu-znAvjpp!ho>shH>$wt1 z27Ty5k#%U+_f1*>B{1>ja5RU9@nDoK=1U|Skx{moFOh7> zuLf-6k$sRo=K+*tM9Iavfgo90B3YkGmX=7?6C_JXB%$UGzFJVSGlkK9D z`1NTxbw-q&nNMn@hk5?a3D=XKO-OBsQc;zAG zF8?+E9{)W51ph<+yL{JtdwlbJ6MY?hY2N?5`@M_2&w4w1t9qTDZ#~PP2Vr+lE$BaZ z687ECa6jR$;|@an{ZrRWsQ+Kj6>*+}9rg+5KxZRoF&Oy&`CnQtcNJl4dM*0{l1p4g z_PWHj7bUly?*n)~(bW>s

    BF4KokbU8 z+TXr&!C6c>pkBr-p)X8TuKtGQr#I%i7jn6`=w?jY%S9{~yhZDs3NTwccj&*Qiar;jG$dF8GV7fwIZBmQ0B|jBN5UCQkullW#4VJogyc zzg#rin>T6R6Y5#@DwUI3`dYzUFE@R4hVZ^)il_`gQ@5z1Bb`NjB zk0wt5(|~zIA_*=dmpmeo1dkC%38fV#>w6Og4>j0TM?bFAO1m%~b5f$Y++}n(l`~2D zmz0^73qGSYOt~bujCghe^C5jxs{Z=n_pYf=eU2~Xqq*E?^sz6ucLj5K@|WipOyV>G zbA)7(z-dg4lP!{r$-PFGl$n;xy+$c9n#;XLFJnp;3B1PCFxeuFkSr2+8`&b+Gh?~n zHd;S+R(M15RyG$L$JCGAVA{Wx%>~Dih(0fQE1L_hBNu(%{;g~*7hFdag|Z*czWVu3 zOLRR`s(;~=K9*}ZkH$6G-Q*Tj@E%jDE;%)t3;v@u)LV#x|Ckc>GEw^)LD5|9LHZcg zKJPFWJjm41_ehzsT*HMl?_R*HC0i-*AyXq|D!w0{Yjdpj~+w_p}UrUuN*l3^C1 z!@MjR=4~j+hIv^s%m^~sFlEdzGBs9$Nixh34wDfj!wjONmoX*73?S2W3#NulHq26z zVXAbPr6j{tP?8O^lw_EGWU^t(m_B4`b)ZO<{cEILFCQil?H|^2J%Z#SiKLrKE|N&P zxFkfpgSIhWmjC~@v!f&OV`OjSv&egqX_4Vj1>nI*EOHxE|NAbyE&Or#_3(4yC&L}X zb;A|H3e^7lHncvpFq9n{A9^CxDpWI6GUR~De|v+U1>Xx!3l0x<4L%r*1#b)d4SE0D z0v`un4?GumGSCrv1yl$q+HcyoQ1x%2maUD~p3qupHMNpZE8s_UFVy^-19|_W)E;Vc z^=`F<>QF8y`;@iHJY}Xb7P1IhDYcZ+irfFQ{~%QSTj0-z_X&OcZT#glA<#l+@L!QAZ&s&}sJ%b_F zpsuI9#|K>o4!GAs=Kpl}aQCC`M(!%`-r;xGQP&37LRXe+tgEN1nX4*P`Mc))&bigO z%$etW2Hrw+6kkACWlfBdwAR%}nM`5KKT^g~xIMB*rn)t{Q(ZSKL(pmunlhY0Lu>I9 zr_o?_=uCZL3L31onqY9y*0uqw?{vz538H~t`FF5SV9r9oYA>Do#2D*40_W%_NNd}` zX=1oRTEYf)hz6crZuKB$-vOV%^q#;M;wM7*~?6zJn%xzDPeovpc6y15NLoKn*m%a||`m1kYi_AY^zxMGZ8?b09U)Tu!W+ z=a#w(Oo8)2bH=uZ?bu(Z`55Qg_x z?GQdl;noQ6;V`^RL3j&=@rSN{g)lrV-HYr`C|nESr3f<@4&hu1Uq(0!VdkPB{3?Y@ zA^Zx$P{9FHE7h_T-iYkt6yAXFZ4}0UpQ<4Y+l9|sY~>dU<7HntPhq_1E2k-pmwe?I z!mx4j5!BvIVcZv??4WQ4viZ?rn;H?`$l0_!+d2yKaeqc(KJJwi=Hp(*VOpYX0fjH( zNZzCH1%%(A@Kl6z5Eja*y+Gj=$eu#sF)dccRRugbOo^-^WuJU7cp-vjdoyY5+ zK)eFM*KNhqBzPymm;KTk`DHooIJZ8CcxeIG5HBg_lHlU z;{SERfzavDr=gjlexZ7yNbnrg_Rk3p3hKc-0zU;d!gKwwK=VKusQtGM;{RhH{$EM` zTiv71S0}5T)VOj}IixI6UR1g%H5H%#gny-fhW`ow{r-^eEbP%w_y+nK`HFde@@_Dy z{WbTN@m%(7^}OR5?P=?&=>E&S%RSFM(VgLrx^B1*xIT0}?|Rf#-Q{*3fv4}6oZX!@ zoj%7g@%fwlUo1(&M$Fl@Z?zOn@~{zOI)2qpvDb*C%8~Kno-t)p;yFibO3UqweI<>UkugvZ|GlaodC4fS$0rU^ zqST2gB}S7ZNCeCxJ@jq)YhT}b<^}!8eMTo$F3E#LQerg8gG5?4*oA3(2B#$5swft zqHPv!G)W>vtTmBD(#aUs+jSBl|s7xzC~`Bic_q_ZdO5w?uLZmFz8%oJ=G` z+m=Ye(31q_A_;RMXRChG{U3vdNSMO}<{(>UEca=~G!tXk z%W=m#{Yc{qkF76#zkaIKv)|;@Psbl+?ob>jW7<}Vjph!)Z&w-9{<@X>6f#|mY40E8 z4o0SzF>TL}SneQUMg_7NJxOO&Fi78-N~t|MF#^pR->{}0%^ir}&Sq3#|7?*v0GVt? z1(F%{M<$z*?2PY+OsxfUE~}w`Uar{pU+jNO->)?s{{CUj8fRK=Up^rq+WKYD+&+S2 zfkd)5l`N1*KEWkf&otY#Y#oF756^# zz3h9$bJCORY32S;U8p9Y;(uSYoq8Yi?ei;u+<1g#%?aYF{dFz}XI1faoMxKs53V8_eNYU^=;j`gg(1q|_s7f#* z+&$bhTrGS@=tkISJm>YUEG&0l;dJslK;ozUaa_+YPKi(vI&vA{op zGlA`phcGMfOrU?DUErQTX?HtUIphs3d}I~8-?&#Rr}@-h)o-1xpjN>WPj63g*A&+PR|hMUr$9KJzF0e9 zy}$QD8Ag2Xt6|J>Pz6y4?0*B7O3}vO#cdJ|Bdiez)`l3hCLdL-~cqtWR%^q2~Z0q0{&BU#5 zQ!p@T^ixOpP0Gf%(8@vz<4b5|4#KR~Fp3=K;}U}>c+$EZqM^O@38j#son`PE20TN9 ztt^8n#SJYigDJ%g%`Jl|g+Gm8W6NMlaRa7dm{Q!($ohmSg)VFh6!w)-oEaeb5@DU5Sf&LAv=*!NQyU!$wL zI7~zAc;PTM65s&WBU=cuucB}*WG}PU5Kea?R`I80fFFop_}wy?pWso9-z@r|D>gZT+=xL_H~Pw>dc50=6F1UHK1I*8tw+J zNq=t;gOK!>M-4RTFF_47>2D@A(4@cV)IgK|UZMt?^!E%k(4@bK)IgK|MpFY#`WsFR zLek$5YM@DfPf`O-`s-tzhh8D+uM35HTPK2+fv}MD*NVa!$Zm=-#NsfkMypFqE9bIZKzz7x!ITUaVmy4fK$Q#^f;?onz?BS_#d-K}df~EJ@g$23nFD5LBnaDvo8n0p8#1}s${qD}F)j&2+wYDhy9<)nB$C~zQ$%chipU(cr0 z+t!VVCOab2*t{lTc0eYZQg2&#Cz^Z+nHp<2V0%2%lI`)pONr5BJ3+FZM6xZFv?s=r zZJ4BaF0n^-$7cO#C!^u5e(D*cLoPp;TI0eS%y;#J4UOjA`pL@m*8gHJPye$)zQAe&B&J<~irpz@#BeZ;-g{k*%gJ00@= z_q!IjCc8Sis=&Vc-OjnrvCcNmI~`YG$owxo51c0M7_%3n&W8FqqXLLmKMD2Fe!cgw z_2Y@>f!lRM)kB`IhVUl;21Nq?a_(nakmLP!dq}zsttMpjB9&E zjOTH`37p-_(9Fr!X^G{5--M2clp4=JNlK0932xJ6XeDL4VzE5xHc6@R zJnlBJMQBrVqePY^-dNt4lp4=tUXw{>ve3xNwsLMPkNHg~3sn1OnLOq>q3mxruKr>qPmwQTyUTS?o0`n`A}T<-zV&!y<&OHi?Wu1wfM4sOv___6qkjz zU$z-bu{`ETp)62sFTwFV=1FncnVovtp1JWn=1XxdbQrVMjpczi#fJb?$$~L=iptKF z$TEKlXZFf#b0xCOp`x;LB(mUAQQ0{XS>{tw*@hBX@T#b+zW(7@t`^bdB&!WN-Zh9W`w5V`znK1LUtQS5o2njbmk9k`}xXFJqVQ{#J zu#B6Y$6PKHW|2teYmRxt3>t&u4aMxyB+cyI7JaE2JTzDS81(*3>rY^jqVqD2xn|WY(V*Uy(0BtL! z#`5a3bua=HAPZF6bj^5PJwX;a2-+s@$MWh@S)kfpCe!ooXR_9tMOHP&FPtP1ljfV z`rB^6isw}oxKJp_{>4{bIvoN~?O%N5#ZeZ1Xe<>$vI;Te!fA60ZWOt2+OSLp$#B!i za2ZuH+$tyw!)08_aPLAc4EGk?%E)EIh5QQ1a4XT_0#!2HiYUv53tY)?Dch6}kUlHr!7!v(5jxTR2*4HvkQ z;g&=$8?KyN0=Y0;mLVemg^5kq*kPK#2x-Qd@%fFctJQjJR#f%-U!?qE*JKNehnQ8tqaYgdG|`DTX(0qL#{u9 ze+9n_ZV#>q&JMl=y#l*HwSZW#NZ@+l`@qh?s=zyeR|3NW-2zPlRUvcWKkWx?kM@~1 z2i_oz(t1D!!QEO3s0MgJ-KVZq=czN*v1%{1m0C+Jt-6(;m4nKc$^vB^>?3Hc)K+!HxiIPm zE6+n?rKu5KL*eHU#v)0Yko&Tlv!QA*vN0=FW957iUdY*FmL?F!WL2Z6F2Zv;`;iiu zA*W(VC8Mw{vN5%l!HW>a3`ULBjYSw!*%^%cgVfjYD}|gLOv*C~tD*>&YcdL%BAkgL zLe9<%4nzG-WWQ`B!>EO_+aD4Qm>(HzDH={&Qo#pB17%qBD!Z-t4D`reZd*(GC*XlabAOKO#H{Vb;G9;fWN^Ko~1ru~vpV z5gv#xPoAsST_Tv;DjBpPM4??&*h4EoW?aEtVtEZ4Jlk2;RY1uzlM4QUX9gsRNM`sv8GKZav!n* z=Hte+Nyg^mu0`1U`M7Iv7@8QNc6AOz$0CHQQkb8y=@jN?Y@EXUjEy18ng^kFl)^a( zSD|nM;mQ=Qj&MZ|)1rvwDa`XDOHp_Oir}6rcxo5Y*-ueEK8UIz4i8yU4Q2ckPDj{B z;W)xx0)My}VGoBhmj8^fo5B|nc2f9)1uHixJQd;p5QYt5LlFLl!h;dMM&UsS|3zUh z!hdp@R*?Li!gyy>ex@+q*OYS<#=Dxr4};?F`2c?95o7~gAK}9ku7~hJ0{1wG@P34a zB-jE9cS80q3TGg^oxo&AAZWst%}*(tuLKs_Giq|8fSOCK3QAF5daEQXKk-ZmT;aTVd3MY{LKEgs~e>n>CJ68z` z^E+1&3iBIO0AXR9_g56=7an{NRD}!AD$3>;o{te0eh5P;%zp^z39G^np|2VL-{y!M zg!un6kxr2)?6%(TQ|qJMuLaca)KAoDP`|&X>QTOhJ^#-t4=YjsKhXPcu751-^1st}#ka-x z2JE(P?7PEz!Mo0z?d|Wa=M8(#cs}*K>UqL*uSa#CaIb);?#J9U+#c7rt|hMLT#vY- z&VQVHo$ouxIomqRJN|HN<4@b{U-5jFzJl-D*^VvyTv zz7SGjT-))c=NlmvD?q^Zy*V!Frxx#e=f$&Wg=-|n^I1ZR6^Syqi}gdPoe?LY7tXd% z&>e{9^Oy=O8YA1jtBU9ImAY%oKuOF%3i zf+~1EFlu%EGxb1T$@Dk$eM^q~*r>^47B!v^F%>~}qeK>hDpYo(L>59Sg6sx~EW}i( z>;{Rf5K@7e^_0lckP4$pWQCB*pV61wW$2sd7kTTuF@NcY|NXr3+_%PC3l__#Ar(fg zt*=Sdr`w-XKfZOs0*e~Y7eXq)Z6lGTAr(fI$O<79;I@{?(vS+HN@RtQ%Ae7x=OnTa zQsIXTsJ61{`4CazkvQgTIG5``UrIbV^5cs7zN5y{@fCxZ3jd)o?lk>k&Ca!ZPcEx} zyM%RFoWQv}rUF+oCT!bVKAz8GD(r^_+;aM|YsV_>J@^ku3xdte6WiN3sw+ zuwpL69LYjJU`041=13NTM^?;*m}48nOwTtWE98u5C|d{!t9VZbz=U5Dje?BA#Cqxezw`E3JNczmC-~Z`R2HcA8G-qVAY0`8zqa+w;`#nU-0KpquMqc|gzGKD&699F zl>2+RQRQq?#^U*I%DsH!F|Vy38OwK(C6iL)`A$LhN|8tGGidT1R2Ha`44P*P$#$}r z&3i_a?Ie+%Qb;yKB0E`>&5+1W5@m0@B$1sc$li8IB0E8ly>zyEEqzVOaoFFlds*-u z@GQ?8Pi28>e{swkC&(V|bkKGPvAnTV7O3_oSl$>x_L~Yx+lR1N-e@WdRQtz?yitW@ zb0o4OMcEvQ?1)0L35o1*Q8pow9ac!TxoeC(S8u4nr#VkK zS30LTdpK)3y^f>e^Z)<+zt}ABvGC6KZ`!6a_E)=EhKps~B;ke%+|%}n%Cig)D|JI< zREaEiuuR!05?OGt=xC=%WVwF@vi}Tw;XqG)o7o9iKhoh;gMQu1;g5F~_*W>)sLk|^ z(AL0HGFLyu{yQ39S;uGb#1&I^pG4O1u2PEtvil^m+_^Gk3na4OT+z`MNMyNhWy%hf z$bxT0Wrs>+1=s4I_JPgzm!(vho$QD06)IPItmf%~l8j1Gl zPP3?Q#i;h_PP4dg1#ULu+FwOyao-Bu_gioU-|E_|S2s(3zTjKoiZQC>v=LmZYgtp8 zOO7wNR$Nv_jn4wliXVt;O>Wv}?x)W(Tr2BI>hIaJmpWe73s}XH2j10>8zugG@k9W_*Pu@ueCXU+^2t$dhd7O_C@L7*Vw-RKpNMymeqOw;cvfx_@vX>>Y;9ODJ%Mw}etpwSb z5?OGrsO(IMEcjMLcHxd5_v`EWPV1lisDplBVBK<4zG`JHSS%l$D=rIETfa4)55AQk z+g&0H&J~sIE|CS_N|5a)kp<_9%65~;f^S7-xBn@T9V*Cf|5GA6M39}fHE8dV=RZYd zfokuO=MOFW4<09JI8_CjI0L_K&9g#O+IUfjeB^bt(4RdH2Wqu@YU+l+42*d3- zrkLb%*Siq6sD%4OA#M=~x0lEry;Q<|T;NvBD{A|~B9`BiE(1_+*XKQ)`Fs1p#r19f zvg@gzFGG()vPC4akBPEHB(mK_*`)o3%UFIlK{mNmBHLAvE%sCu`@4Gnqf{2C_D*?z z7b<)8*H1^=zUzzScP6roYTMQ#p8rT8*^v_2heg?u64_3LWJgG3Gep@D64{Q0WJ40! z4x(&GBKwdaJ7mJns`~2xD&D-i)dhWDyBaS}YE#)d8DshFsVq<>m)v%RWOqnp+lsO~ zB(iM^$!?d(wiac#OJrLWlI<^%Z7It3x0Qtl7sspa5)RL9h`+z*neG|sdCb$yQ{7YC zebfD;yTHB1{l5GEVeif3ZK~cs@H3BlpMzwI3~|qpIb?{1N)d8}%1}uPnTM1J6_rw% zy2Cm53Yn=)i84Holrdx3dv2190C4zR$04(Omp4X}=kzX(tREE=Q1CmXJ!0a7f$yDrs|-;18Rf(DOl zn1%*7G4O?6G`NU?FV&*KNe!^riUzxEz<9mD4cU-s{vz;?WGHe04S!PuEIOj$3N^s8 zAsYUq23Yt*112PgVZZccg~@2Zgybm$#smc}$x`CrKbz4t0V#dy7Ze_3>i=)Uhuzo$ z@qcE+2S3d;vhD&s&5&2aJaK{VWy4W4d`AtC+X4-kMV=o6vQwbpH2no6jX=XU#K1E| zpy7mU_!SLb%Z5v6zzPp=aFCjahGX;>kg5RiLl){X+ydRKG01dn7FCcdS8g|NtN6~=QP7JB$BARjs{RN}|z+Y^a z4NszBn{4QghAonz`9EmbL=1eFI2teyFSLs9^G3sG^cS#G8x2^41%AP|PorTa`32uA zjfUm2;SDrkah8;n2p9dB{DN;I#$S9$4X|ez4U4D&cJiWOAu;fMuxOY|4Y1=B4YQ~L z_I9FSIyJy9N;D*hK}sr~MGZ8m_!Me@1hpuIN#0>dmO(05G`vZFK|^a_qlWHRML%Aq z21q)JQe&tA(tDy|BsI_|-RG%+W*Z+&3_OJ+O7*7(NS26(KGXo|4$<&5H9%rPG>A=5 zJUJl3Vz(1d@Q1M2?ZmVBAuM(~0gO|SfY|NClhq+x>~`V_-w+o2mw3`Pgxlh~7T^X5 zw-zuYFGIK$g~hbvUI9ZAFJw2Ru$T@sL6~RVLiSx0#^CaR*kdFmTW=`XG!R;BCgL@X zQM)Fxc>!aDt0T;73nN^W!Y?2!wg>TIzzB z!ghqk_8?v#7vT!X<~42+z7=6!rxxL|6c%T`jDVrAEV4^ccmu*E5axAT5iU;Qq6ilg zFw{>)xCn)}BOF4Q*D*y{qp-M60toYZqR949Sd6#Wy~OK!B3o=z;zc|WcAyBauZggY z!re{Se_g;(5EJ2R6rPW;*rvoQSR#BC*#H+H{Fi{CtQ2`hGtu=}qrf^Gy_X=1ac^u)L6h4CRj+FoZb2I;6`)~%t|9=JX z|Ib7Ge?^G@-vROeLm>XYto93hw`Xg8VLyMd;Mw4+;KX3}VBMfEa4hg);N?K4K-_=b zUjTddhx;G!m-qeV+vdyl_476L-R%9ryVg6|`;51dw}|JAXO(B7=SfdJPY}Mkm%Cqg zcZKh5m+LT8(;MS@$Q5z^?flC5f%AE1Yi9+=?~d(IX>gF^UPo#BMf*nkd-gu|Cia_b z=WL(bY|$(lnR4U8eFrR;IbvB-WC|}!HHhu5_1F90?qSD_1lpC%L5XJ3$P^_tmL(!n z!1c(v{n@UxN95>_WqE3DQ#O_*yeHs#{1>hWO@U}Y&b3a+oh7+XfO}NYHR?W5Qe#=d zeUj?hQAO88Y)YzYDz5OKq`G!g(KYa&2ww}d_lTlv;6Onaj*=S70{=-`Hr2HwimnL< zN~&urE;vxqx~Z-mQFKl6pg?u>!U~6>=`_HsM3z1Hp@9u{CKw&i<5>S8#<71p=Wt*E&8lOZZUuKmgZr zi941BK9uwTr|W`R`wy}tCkp89eUa@M(EA>6tFmL4Z|`&Nz%yohqgm96!l~`pmUM{f zAs+ry7T@8qEXj!i+yaFxb)s;pLRNC30Jon)mO4>5RUs=mQEqsg;N!>k`v{IxAR$rEOnxAszO$BqFgTsm9q>m zk7iLPijo@7GMp%;Zo*O^#(5jueCZ?_A+Yfky)uwhSGMWq~IpeG8|nEm;TJEQcbN#gLmC zw!xO%cvchaTx!?`sfMjFl2gN`B;SSP)UYYYv8+b&uqn9>v3sdu8>ASv2FOhf+o0;~ zQ;5;*^U~G-*!z`LAGzronwH#n)}7e7)UfHQVXKGa)UYYZb&;GJHU&ABRYx8+CHD^O zUTWBM#jw>zZfe+c%b|#6)k1D+*i_t_$c171=eaG5ej#cIRZjysZ}wI@F?pMtTh>QwgHx$9@GJ-J!ch%BcnK5?o_ zva=WTQ#{~rr?M()EGsU_PJXehbxclHjLHJlGA1XM6)hxNMj;!KWy>gJGYZL;R>)S7 zWlJk$E6cJYRw!g|lVnG%P{>x2WHUCOv5rN_sz_yls+dbwC?tE@QWmaj+c>Aw=Gp?^ z-&3IaUU%31t{UL||HpX-^4~3W<~YYdBz{|GU1!!=BKE z(EiY8P%q$((7@2cp(dd!Aq}bq90kw+JpCR0IlUXy4!B(}rd@%ofZMbWp@P6jt%uf1 ztEH6+-hes+yMoJu3Gn*&4z>&48N4;<4*V3@7g!A$0bdUcfK`RYfy%J2;8*_<|9byi z|J(jykX_(zf81Zx_m}UaZ>w*yZ>sM_-;Ih-|=B!2iW} z81XNcel415j@AE}_zt_HcmsR`YgNP<8!yy4gQ zi;CnI_BGpLXedt&A6~>MgjS9iY-iVN_={U)LjVn>WrH6LB_+eU*=V?#8j5{86%9AZ z1`LwXipqvb_=~V?5KlN=GMvQ42rVcZ7NC@0Hq1wZS2l>-nFKA_ZTio3@fS2U>Bf~@ z{PxsnY!VpGo4*Ls*d#FgfCd_y1cq^F_*=Bf#+RMZKx30&oer1ZgETe?3>Z)n{FO?< z`X)-z*c86xhXxv(0;?(Lnh1VNrC?DAe?h}T__7WfXcP!vm_Y-L0)fSf)@YznAbfEI z4g2ZAVR-`$dnH5XvuM~u419?J4ZEoUKF-lVgFX1SDjH}Y1{emR0W)N!zk1L>qbK-e z9St-Vf={>6Kw}}U!GswNG#26-OnK3;fb;_lWzaBBHk3xg9LX?Z1sXn}2AKMxVWw=r z89?xT*?=#|V7_d?89*>e41A*?9wS#ai0dj_Hi+x$J=q|}YAQ9r-a0(SWMbgEzBdUCG;Rb8zoKD;{0ngm8c+hin25i4j{XAn=%8V! zZ0L-J!Ls2|Gz^ps+eJTUY|5XoR|S93m;U1QZTMCT(x4Ui1-{jSy`*1k73Z8rv+(U5 zc#Nm$FJONL8lIF5#n8}QHWWp}6Ov)5IJJ*c18kJQUpyuogj83_FjYvAj|SVHu-yQq z$VY>XZx}#BCn5!g!D#3p8wR1Fy=>6Y(2g1)a2^e9Wy20Mw3ZFq(a=gZ^hCq`)Bp+6 z(9nV!AQKrHnh^uf_=Sch)BriV(9lpeY(ztS*{}f(^<+agG}NI6$X$ho+Ok2s2W!d( z@gA%$8OEJOsjAcf8IjNsmkl^c4U$PJ&!L2q)Znf1FU07UA_krV29HrJ<^SLG-}wJ8 zXa6CpIrcl| z8TJ1v+yAnEX`c??-}l*XvHfh@gggFY*@kZ=wf4`yYR@RDVrL8IiX)Z&y$<^&CLdxsqP{cc-|PX}erGbKhHHfk+9}Iz>G5pgSxGM>sRj)^D|FCCsRj)kE7G8iQVbe(tnfh_r5H5f zSV;}qD8--&$4Y9@Mkxl(aIBC)8)Z3Yv24SyVsQDO!6KXGRT;}R+$w~ts6>?wUX}Ei zrF0eLrLu)rg>zwb&NA;@G#k7srbok|TIQRHWecZDO7@CE7MvlyjdjIm*-qoeX~B-p{W))GwUBuSMYF-FV#=ziv25_ENV2DTu`jn@ z{1WPbv!gxAPw+cV2w8BdP+4ngEE{|(C~K@~DlQx9RIxi?nbUeRa5gwqh%T&rT5_Y= z;8ii3Yb=r~u5xgy5LsAtvy_cxQ?H7#5U1dRS4GmDq2N-t3fHx+cNxnDw~El^D|nW^ zl4v&gRd5(MRndg6$8Rmhf;WMTEtI*ChmSt<)u%Oo!G>|3~OI*7y0 z*B)(SSV8IC-p2>*Wyg()Lwobujb)eNx~b{bzi{K(r3(oMRKlfXVFfpyU9ym{UnN{Z z7FKZM**D9=>t?Hji%Y_4?oC`c{YbalVC}UmTm0K6_s-a{ff)l`{x@@oquIr{uEDh# zRLdfdvFxISWG5?Ri^#H*6|&(%vXd0DAz5~kLRK#%TTLOW$+FcHvO!t)zCzYrNcLWZtV@=?S0U?^WMQq{^5GxN zc2HRrHI{8BvNpa_|1|ruY1OXRI#fabL*K6F>x1?C z^jp&L|NXRP;JN<=cI)Q{hXq>)Zwp)v6a?l4M#KL6>aYTE+`r5}!Qb6q-yeoO`D?&C z|E#aMueA3U?>29~cNkRYyUlaeQ{b8B8SUxhspfIHkGYq+-*7+Sz7whdoOOK;Q3!op z&0M9NKRdTV^}V6amd;yYAHWXq$PaTo;HY4~Y~N|00d)Y{*eluof~JeVXbz98aq(A^ z%fYLL*jBJr>y7HQY+sXw^+tpznL{7R;gdiYf5f_+oEl}2Hh0_Umz%MTCu{{POXA9A zG>6C4q(lR})Pmz0I~IE^{}x{^J2^86;mnyrl!w)%s0K5__GMKb3Tac=*Q1S`^Mc8v zYEp;i6&b3QWE1M0h7AMN*yrn(ba}YRLX#QI;qyOn__*ruF#QvUk2@5H=aWBi__*Tm zJfKD#KBhW6kEg-j$5e;s6F+hInBwq!+J}daZBZQ_W_@^gU@Cgg=X`kh*cQd%c_dBh z@HcEP*R1HAz`lVK?||s{Z&KHtI8S`WXHv)Re!=+?JDHyS7ouk5z=Y54G_JiHx9&Jt zoQ+RkdaEG;TmDa2AUh+6PxnmX){E7c5kwDB^qb(LV#xVr=D{;^V6KP6O`hs3H+?m2 zuD#>ox#MvSG$V)4^i0Kdw^n7@sboHE)28k>HElavD8eiciJ#SL$liz4$H%uawv}gz z%fBFqe2Ql(u54SGO&xLSz7LDP$Tslxrp%uN5vF%YT=sMwmX~G3wX-b)XB`SO#ue&} z96q-*6+e1O(QBC3A#ve*ieB?covAqY!GvUR#P7wJV&QyH2Nrb&ufBd7Ze!s*v^62c6tc5Ml0y#8<~F&NZL8 znTlibV=RlO*t&f`+f>T9Fohya+mJZ&6UAl5CvB$U^Sc$}2s1V$4*jkQ;{`uzt_`t` z#&8D3q4|8xR2+D{5qtkj{`~i|t^C`5$d7^ulQksvD^Z3`gp7Ejznsk0$~nd|a`;ru zRP0?{acG#QA+cu*#jU_+X{KWL$11YPYwoI7w2qr?s5ZRTJ6qhMjW9(+Vz=iiu_^pA z{5qR$cy`rWFGVX0BA=j{ijTfsff?00;4)kP{oHbpDpC+(c80``b4sx{8yiih@;{Z>dZRB@g(9DknTpMCwSF{b!*mRZ4cjVu%_n1~V!fwtV&nLe`|uf! zDXCH%Du}n$u)WKcryuqO^0}^(J%kfeuejT8zn^`O=4~&*%ZH%9EF*ic5G;S6Z6;e8 zXv|*+Y_IW@94PuSh!F2~Ol60RRH09?6NiTIM};5`6vSH|w@qftH~w|!@|ks5!Sno^ zp@kq0AjB@t$JmKEMlLaS((nR_r(Sk{K`c4ky3-li{RnZ0Z8uxfGV|s6Q#7{!i3Lw> z{Hwk=bYDTd=^fh#Y-RfnK-t9h@+ba_;=P{ztRRNx+TLR;;K99N&1_ci@f+_)+IJ9& zeFQPM&YD;yyEiAMPK@`^NVX(hH)0PwEnMdx5Q4pgpz~+j9JbPU8;xXpUpZ6d!|!UF z#8~z-Ks47i0-Fx>=vRgMdt&tr#j@v9 zl-sZ6qa7_jXQSCYNE0|!(S#?7tp6q7gk6?No1@v?g{+zy%YH(Z9e%Gu_Hjv8L5*cU zCd>9%qmb<;$ttL^?5?tGySfV5E|RQ*8q4lXWqIVZ;;MO+$a1RUlszKJLfo}N_F*au zRE2COD$Ap`ExFO`jzpGI6|1=&Bw2|0R;)cgL}gXfcy@a(n_kW3juspW~S2 z{I6pBNo2p{Q+5cRZy{L9gJE!f{)@bvzDcVa~Z>gU+5RSZUi9?zJm_fvvH!aJPxmSJm+lqr>9FoF#N7?* z57cts;&wv~f+J9cV6iL9HP-d4tD}p#Vy>HDC&W3(gZP$OZ&A12U)yAU0MD5;>X40V>gjrKf(B6c8G`x|?I}=EI$iH!qO@|l-kqQrv#LK%Pz+ery9rd3P1n1a zD6N{VKT1&1-iHY)+S^f}qGY=M5Tc}Fx}IsGw5YlM06{0?IJ6|_Bt-8cXf;IdMU)gY z*Y74Men9Ju3AzCl?j$J2lHxL%&1eUMv@ zpuG{jg`oJssFyZTTJu{E60{*I_zBtoQFs!ko^n2?DEO_rP1Jj}3I@vSPJ$jq1-psT z+Thv^f}(p;`Rh2#V)e`--4=j=+=vf<_UC@2hpTJ*WHR}LZF}3Lo`>QE88N<-@WOhEqfZ#Y=M6C5~BQ# zoaQck57GAoI`>0FrwMe{Rz#-?bULmuYW(e;)=gYS?qq>xhY;oO^fY&B2BPl@^j%!n z(fFG_&3&sAa`~GxjlxP{I;K+N@BcLV>Uc!o66lzGMBfzX$WIWRAkgP`Bl?Cwhkl3X z>jE8k9nseW+OGtn;|1EgI-=tQ+Oq|suL`vLV~D;Y&~DEm`m#VDeH+oS0_`{l(J=ze zT#M*vfwnn_=t}}^c@fc30&U?zbfiF=--_sq0&Un9(Gdcz_cWp}2( zzo3Ty?TY5XYene zx?MY@Ez(}r9@eU9j^N?o;^36v^TBSx=D|o%3;Y^56!;u=?T-&U8_0xOfVV&(=vn^` z|3~lzKf?dG{~mwLAA+oa+kMmF%l!dgMek+UsXxOz+}p-m$@72Z7wS@|b8o^agh(Cy#aKebP^ z_psNu>(G_Lf0117t4q0ieZdzmoF2qJP8EV;U+KI+^%V2EjplM^UE13W%v1IrY{aGqb!df$>nal6f?l5`>ojQR0b!u9qNx)*o@n9GIGIh=TB>@h>=|G zw-b^L6_Vh%6Oz`%NG^BW3CRWuN$}hWNo!&xmwWC|vg-kbB)INSQbCO5a@Sp2l7Hfq zV6UfL?Vnfb<%dheyp%F>!FQLIR1zb(+;=A=k18a=c_$>TiP2o{yh~qk{Nu|0AltUL z{I6%;p1=;ve!fT!xbM>O75~QM{<~B=-NqN2m7h40!yR}jrbEe$=5P<5XlQ#?L&1k9 z8meS+C!T0%drOCQB!_$PL_@8a(H!o^6AjH&H543qqM=GA_vDF&W-1!WU3sFR*34)Q z_vK+j-@Bk{D0uU*p=u`g=V3$PQ``E~bB7)_RKbkqaF3qZQ20=H%wmUA4|#UNh*LnP zbtDITdS*j`3G3c_Af~J7$}#LXIIU{^g%hVp4tMIM4)1pXwHSLf?V?;I`w62t+^Z)J ze_C~T@au`g^X*rbhv$wxaro1U!*kD`IQ%Kc40h57{YRj2*wlh&nNu(H!pG6QZM3qTt^XqNA)uBRSyROZO?@+S%=M%cze? z4tMUQde51w6-@5h6USwS`3jr3 z+b;DhZ($R7>Cz@wVH5YtrGDisYyu}-+T@T;C3C>(24l`!C|gS9fQv2tBi{D&wC&ub zmiiHIyJP|nTH3_hE}6K;EPbfLCUB6YO}y>Wued`j^()?XVk()#{a@I2Vkwow-CZdQ zZ~G6l?cm)?n|K2y6Zd9`21=$(H1P&XrgmuJ4J4+LISmDNO0=mE z<;$P;hu9ZojOa;r1PaX7DD%E~{74Q%Q8hD~(*#A`oN6729L;HrR35Xephj};;#7=T zUap8)ZiJ!%5M8S3R72V+1v8q{07ZGHmZ~~cAE~@k3Th##KH6L z|E{+0`1k(;`2O!0j)(2={l7T$a_G@e^^hAf`F*U9)4S+3bq`eTTcVBEx@xsGAJpqx z9-I(-B3KW;{ZBy#fQf+~fd+xF|BQdN|6Tvn{=59eeCHtke+ty&V^9O&ymx~)%iG_3 zkM|bOCCCAg?-}Z8<*DGl?B3;`F|bBXhHs5@BK8FZX- zeByY^(H*|_HT!A%O8eXJwcpSlhKB!Fe;K*PywJFFN<7ta=EH1WI>q>xJh|$XW9BU$ z%{8WlMr>UGm@}X*_OjqNC-%O+o9)@j|Ipo=kqh&}^fwk~Dl~btS9-Dq%*HBBm=+4n z#tKa`D=YzSVS9PDIaPs~9pX>d+UN+1g`BAp zHD-nB5v_Hf-(JFuHD`z9aL!0BObgRfO%V0lzG7=qq2X*lKS`Ae#A!07g{EkW*(y;U z@Rb_<617^)wib=#8uLQqA_;JpxOLQGE|2y~J%~BcGJZFbYfKtZvW!BKM|z=T8HJ=V zqeRKl3P~R2g_5Nel03#MMTCxjvO*!rBfLz>PgW=-jmc=Ll{^ffBb&#AtMv=)OCx}> zn0YEQa(Q%DN|F;T1G^)+#!M9@0}4qV*@cn;g`_c!MM=Lx(wNm6OlYNFA!$rSoM;(l9mzE& z-Y7X)A!*FR4JJrVR!ADta+I8;kThoHrsO1rq%kQ+$!ZEoV@_^LRnM^drsSOI?!mrKMg0~ofgZ^tIjRh@?kdHRLHnX1l<`8e3BjBom=icx8iTw^wlXMRIFHYdG{ zZAbT!u-t^PW072#jFU6J;Q==L(Peu^zWNE0n2h6@-*7jZm7aWkk=l_Y zn8sWjJHNql<4`o$n2M*S3efp(s?Nh)Ty(yhs`D@vPj`u*`EH8N8&h$kq5RBuQ*^#M zYVtGRP0{&k$mD0fn`P%CxmA%F2=`r7)pFxYB=>fS8CNjl5;LY?#wc^)7E5L{H_Dmm zlLT>b_9<-VybT?;kNbrkT?BiGnxor3k{b~xi8K9dW9mu64$91EZiXa!UL{(Eik?@A zR+dD6u)ocArn4^{eWz>mkBt~15XrrbivD1Cv5hY-y}qSiH+GQEX7`*mujXiOB}sIg zO0*&s9j6klAVhggplt*D3}y=z-+PGdOYP4vkDrlSo{Jh6DQ6C0A9q>L*Fe};4{{G_ zBa;}-y;aieqtYx#HTx(u%SxKPRhqX@&E5*lGLoiSrCFM4x)qwGh~|qI&ZwNTC6UUV z!)I)l*@n~xaCYGDbA8{u8$)O!xg|K&7<%rUK4a;ejpp8rq5)u@Rvo`MQu*;uTOXgt z|4(w3wYd(u*2A~=RPeR;a9UHcyP2z;*1(caZYXisTvwfb5mO$%NQeiPgQ>k9e7*MozDU4t!xHG^e> zuE52>;lRegqQHBBF@ZjT4uK|tXrP$?8mu+!^e^`({jd7_`a8giLuJ3_``vfkx7oJ{ z@(zsjJ>_fdtK%!{b9sOA?)QG~{lNQ{cc`~3tU*-u7WZ6(T7)}2%OM-#tDe4|4p0}M zvPX0O?mq6`>|W%a3K0lTxm&yIxXVIy!k?UFoi4{ukd5$j#|N+yG1Sr3agU>_qqzN= z{S4$ISZ+_+U$ytOcYxu9qAB(-+z@VPvt1@BF2fB=LKsaNCmAlo^#x87T!!lqoaDC* z*OG7yLJrrE@D1iY8?Gkd7>FFco!}(5WjH3`txzW-;VlubLUEDUGJG4sNnXovMG2pY zI=4tTdg{VAOE^wI!eN2aoR(p~gzrUtuY}`TLf9?g{gCe@_#p=dhKDg28MbniHQD+C zGf3)x8$94u0#|>TM%7p2=2(J_SOf;-z?$y zTnTNIaD1+W)=M}(S3+wEUi9v#Q2$d2e-iOeB)mJ~%PHRcAH2 zjr;`!_a?>lHc#LeN5AvI~xi#OkeI#UQ9e5)hklLWr(uTlLFe}~|oJlhTNi3I z(Sy(%1Rs4-jKgaL?|!u!>Wm}!ofSoUULknxul_*(Sc2C)tRqgIOUrIu*BJ2^1b^wd zn*~0c;NLzY#(5aQPZk@7IztHl^;&VhaAR8UYq@8TjT_SdJ%uQ4OzYi$^fg4EHJ`J9 zUO}|CiS{~MMBF{k5LDbF-A(kF>7U(&3S9|`+lWG)5iLDXJVhTNsCZW52C`?|6Q-hW zd*r$&OhUAsi9X%66DEQPwIyf_xvdc`{{+69LahjjZ=ujVCi-}}Kl`FW6N2_e^ez*9 zY|Vv{h&CiBZf6PAH_@&`zSEFfhoF8$Ya{yj*Od{iNzjUjRyWZu8~Tf$@A!q@jE<}sR zJ0NN!Xr_tk*G-g`wb!o_6m|7K5G6(J^-Ba5T-*jnOWNxfOfI0cunj+&C@pBODxrsI`-zbUbQiA3n`mu@L zId{zOh<-@WONcJw{{QZ_uekqzQFv_l;c(TkBXr2{|34C{7INxG^pC**-&L=z`?ZtW zC)!(3y{~~*1S>lUt>aOkfyH2`3alHvu0Pb|@ z&eO2+FcJ3KH*kg=XB?{??>e4_YJ3$P9{Z2>J@ys$T>BV%PkSqS4SR9h73c#0izI|& z%K_KHSj)J|QVGMcm5Ksv4p#vQ_DYC2FmGX#hy!yKHiXL=)g8G8b)|!@c1s&Gte1q0&98vacZn+=x^6o7Y(+0dAu7$~tG-4zab6U##-b z4s5@%$~!*nwbbrU%+yP`#GZNq^N-r*R<|xLa zQy!lC8ryTv9=;F9Bt{d4p9nSQt2Dt;BsAw+YDN;mPZZ$KPV3}t3Gfr8B{|VD;bA0U zL~I!=wp=ntA!!6`8B9*Jl#C_}CsC^B{Hbl9$##8eL@2RiJXPNY+zc8?fR`wJia67D zoo!6HPuaoy?ydiG9o%6UO&DGx6uqPp1vilpy`&N~+(ao+zW${W1wT<*lrvSLhMx#U zORGe|Q6xl5TZ={#;3rBitOs~{73-ju1o(;4XPy%+UG0$sc!`MQe1#-U3a_d3!_>;3P_SoikOBCh!rN-bqeXJQ)oik#U8( zIaBdu1Q!u$Xm@9r9pk|Rvkv`dL%~TT8rt1aitP(WpfeA%ukSHp)I^uSM?@Oh-SY5} zgyAGg-E_B?da$gbOW-3iPZBUoE0~6pD5c3064KF2T@v*6C1M` zJdtp{5o{YD{Z1H19Z4AOp;Rk@xkDj&6P4VdkSr!f9VE9aB#TnX?Fz{vl4MVXWSC0! zR7i%1B%~#>d~akVbRnrCMiQDNxmqC^q>|ReNFpFfuF7O{(@7C`yuKSk<42qKPe#H| zC9R2(gin&}sF3thNo!&x;USW+Qg59CH{lkNK(x#x8cDb$$)yTOCzV{PkaS3rOB9lJ zD!D`9%A>b4PGy z>O~F70P5H`vpuPOC+rwxr7W8K#=JBmxi9d(8&reYlx^LZF($8Ndv-XL*Vtr6bDx() zYpXV!>DL2JEXY&a8xHq)Xxs5X4ImkL#gP& zT`JKbL=>0`(ZNI%5{Idx!v}Fu@FU@-;b^!B`2N2M zeG&RNlpPuq>J@4isvoKl@`307u)bcOr@yN|uRo#R5Bmp7={E5D@6kTh-q&8&25OIJ zO|>YjB>V+l|1W|c2eX4?g1v(6g7t$Hg1*2n;PYP(bp_rHJRf)>aDSktbCk2EvyRj0 z*z1_#cms0pJ?d!Yh&hVduh>u7x7(MvTez#cOSrB>CBfaWijeOb@9J;QadmPvab-Y0 zfw$eyxgWESb*yrQoR=Nvowqn!J5ShqJGa_1ogX@CVtSb+9h;37wLKd4g3hW{uurVaXWm;v(V%bk@yAyfooMohHOfO88{NMT82!DRDKp$W6%S<^JA4zK8_kIC>h3h)5u# z-X8Mn5uJ^fuOKcWgy4FZunY0NC-4UWniQx={{s-4w2sFhIczqll#VM;;SK3LLTSTb zQ!Bh$HVi_;a@nAx!K{?drD!qcu$dKz8!pobs5^-i6tw*Sr7Fk<^y!Do$c7pCi{i2Y zy{6$1G5k)#c|zBT;S!C9I7|$Zqn>t9^1RO`zgR|Hyf2xF=^T#*gOh#NX*aQ176;b zIEncITwFg>gg)Tn`k5r*Vth!<&(%h4W~2U_f`7GU{AR>SY|oXWi8Y9i7yK((Z*D>S zRf4}W>R!ZO7WiL@ggC#W30`B)AIN`R;D3HL`FF&hlki^=A1dLO5Faez6A>Rs@OeAX zJrnLP;hmA+SHd4fybr~Z#;M2jz!J7i- z1M46*|JgvZKuO5kztNxV?+^L@%J_cvZSf_1gMIh=%6tFtehJzBo`-CIl|5HHUwLMG zMta(NV(uI6gAi^1iu+M_4amTM+_lv8hU;-xJ(uSE*0~BY?my*h=nOl~8vg&D;QudT z|IYrIeX_lmo!M`;{V0EYEB_ZslFd+Es| z@i;8|E9^^Na_z@)>?q_Rgj(?8=!T2SpsJbCq~YU2(FXSC*^YE6siUq^eE+2oHJn_g zsDc?y5-(S0hyt^&coRtqFPEAbO&VUVbW0yOwZS%neZos9R-MiELVB!81(?$|k_0zb zdNC4270hUoxVd-?nyUN4&822WlZKls)l#4qwfAG&|KM97$FU`Puos1|`ySiStAJT)?cTV1l0uH6fDF+I^J-M_0O;Jmj!0k^s;mYR_yxVp@~w=MZVS<4

    q3 zc4j0&d|kloZOM!#3}093QOx6I9T(YAUKse@EOv6@gC`q3g>&Ud0-RmxM=@vG=d<1E z`kBY7-w(M_G2?k80luzu-~F6w{h&!0zAoe0<={-qP_Re>TwQ5RH)mRgF+>x@)dkD~ z#|3tDM)xy+_PowczPSioSYoqjLb$p((>{moPL&M&kKO$V!_{Rply|AXa_e>^0iLdO zLwT196b&Vwt`-n~Y}>{@Z+Cx*Up#NK{c`rYjD+xXapv=E2^6P=+TiRf2#NV>!EW=` zj3$Vu3z!8e%>j7bai*naB+(yx6yUMXmRt5S68%t;6D_OhMiPA`$y(M$TNBSx$y%00 zG9!sTLXt;aTSh%(BzmJHCt6M@BZ*#;WCMldGgPvHrDQbmG?z@>Z+Anyw`T*pn4V64 zQ7FG~q9@lhs0Onw`^ktDoX7UP*y^?h>(RLsO+1C74oloZ| z_?Z?>Jb?`j0JEiMJ-e7LWm>2ZW+d@A?R`s68}`#8Bk=*-H{NiZi^D&Lhv&U-X&G@6 zNpwRd?|jSW*vIM0wO{e@-1|Nhnq85}JKwS=TeRvnUM!UD;>Ake$7xz5(FK{j^DUdO z8R=50+ftuMre-wJnKRR;9>Vu+%h;;HJVvoD+b0JkWh5RImlH5wU`x`e)c1HMLL4N1 zhes2SNSa4fnh#UWBMQwRuzJmNgF!WIs}h@|97#S<=_8i{J#^v|340m4|Rn-{C@qU{)zsU-a~Jo7ty|h zJ^PcjURo2ac<_hdy5O|nv%zK%|Nm29Qy?cWFwi1U&i@K* z{C|g>3!N`H+dHc`t~ho&raJ~ZS~yBWoxSz;srF~=ciD?Tv;VulXdVx0GU|@Pru=2F zxzF;k8q4EhO(`nmMpy(L5g5gt9=5vn(U_x-#4J(4V`Hlz7d&8RB_7w8^N+ z=;E@lU(mLReP&c#4zhjnr%)`9M>nO&X|833*mxeF^a)|uaHtaIF-|DVxe8$(<|Kr{ zo#k1@E@nUOfuz%gKMrC^9_fU_oEv99=@%d(+{F&0N(kUkBzdq?iVKcF?kBTNVn*rm zwcoG;xe9eW$>)G6vO7(-%*Yr|@@Zg->`#-&v8Be6zzDVnlFvbV%x1)rd?uJWd62Pz zH=_-k{lh6o*8=KaB`*7rw}&kaR; zVV|n1y?l0v?d4p{_C}J%1TnQ*z&EY;T)RzXQM%a7l&#aBJ z_}+(&f(a8u^Gky>turPjjR~Tm>E_Ja*p#ocV9(9>Y{TN_@R5%T=8>eBA38bH@;x0* z8uLT!e0SGWc82eb$$yodfVjrYmlueJ!UQorlLgK0&VKA<>Wh(`yvCC?I^SK2E{*wJ*xuancp@)X@-IAMC29(aRUpY7*cjmB?e zUl(4-gV|wvIQ^Vz=?jP^$@CDInX1E!>7l_?99~Qh`QbAy40y9xX1840$VkHU z&>T=8R%f}X6+C8aw;E6GBbXef`_3gNDJ0ub$w>;y2ZbcxMqiG-JMvXtdxEX!cl~I* z;WCnKQIZo&vI*%{e!gxA->x9eWgAH{rjTq+C1aM7(c}YMGIa~{&>Gifc9y^I+jn4J z%WwQhvK7}fsGRA1k9`Avm0Le;|DVsVme@`Qr{2!8U*I*PR#Lh2qZDMB^^1Pou_BHQWCVpQ>lK0TgFL6#|-=tIA{l~-m zZah5i{1Qdynxr^3E@@e0WEa44DC*j=^%lA|u%ZFD4~1 zl58wV_Et#VMJ26?kz^ww$rC{oXXDc;HCOMidRP8W>&=@ZBiRromBdK0fh75YLb5)U zv?fN9cM8d_drNjuoS%9UGgHB=OPG+>!t(8wk*tHw8BNxZL@V0n zv6V*2qB?AE$`NEzBgyJiw4!Y;TbbH*!S<$hQwwG_()lVwU6$_`p8s!{+i!zB{Ud!n zeQkYr`YQPR-e0}Pyqmp?z3;(}{a)ToZ$s~GUd{7|=Y(gQ=VMQfXN>0=Pg_r2Pg(eW zKkqJZf9jqN-|+q19o&uFmE8XDx$y4rif}UgO1MurGh9DhKI{u!3LOn?3M~pv3%wM2 z2KEUw2vrIN_22cc^{tR&ARDR-_R%x-`g(b&G;l%NuYIP?)ZT!70uRG_LluZP_$_!e zxFI+%_)hRSs5;mpSR+^}XouK?eSy_bckuPVfIz1}<3Qy=(EqFdh=09*F4Q4-!T+TH z0e>BTIll*@5f1w{_!hX1x;D8Mxu!v;!)IJ=U3Fb$T~6mu&I8W1&biKaoi9M1!~2}o zoi{tKIlhH;hZT-|$7_y(u-l-y<95jR_YcG$dt=+TQW)RtdP53tKz1DpcSE>3!aVUL z!X+t;Az*rO3S$JAUX;QZ0H%i!=Eb#4ZS5k3QCs^FVJQAw71;|Y97lLAg<}YRKwwfU zdWIR4>$Ay`{~cumwx&pHVX#So`4|!GD-=Dwh5SN_A6!ceQq=K3W@C+{pJpHQ5){T3 z={HeWjC~Obi?P=chA2{et81qyeBL~ycGPU5w@{}x%LWmwv_>|FXr-010oTF9OUy$X z=`_qk>$@pj3*j#imfHUfg+=?1Q1}N^MB7KKc?3lRPdVQ_b}M)(YcTOxb{VZN4+@O}!9 zMOZ{|L(-Kx2!AQqkc$Q3Edr)*j`axh9sJ0iLE-KQ=OHY;P?}SCBeL(J@CJnIQCPfC zY9egZ@-%C{AXjdpZ6X8Dy{N4qGFPX5BKi`D)MidqetV?0hz#0fk4ZKca z(ZH(|77e^iVA8-}5thR4*HRecytGvmUSf7fTTbCN2!CWggj|K5S{-BqzA=hCAPn+8 zxXZEu)3k(tmJLVDgNMJD4a3lIiW(kv??(f^Qo!3HJu^3vUr6uC&t=0Pl=?(Ah*!$T z#2~#{|2Buv$fslq>ANUg3*l`DOYfSK6c+EA!xR?pn!OYj@0y)v6P<<5S|`~c&RQGU zaLR0Ek$YqVzUzxL5eE4@|0Ns5dA=kY#Cbk18^n43mKx}JK1K}EdEO`+#MI$4*&xpI z3fUmeGhX^I%a-=;lq0{8Ht&>_4KvI^3>TFRjnNP!2I*S5N(|DQ4rc|>Drs-nBJvAq z3)qY1HDW9?n}-hdKo}Mb1HFS!aR2`!wi7nU>OU|1V)(&urO@Tj_E27EVCbGuN&QECtv*@r3EqEA`$k&^ z)&II^H8fZ7aBy*OY_L->9=IOZ8<-P#A<#BZ$^R$#{`38V{VgE&{~~;APxJNi-37S= zzV&|Mo#5@}t>tw?=D)?Bmpz?4w?pLre)l~0D0im2it8%u*`MVa?s~v=tMfPKHfPc~ z(0Q-3wBw>Jn*K7 z>p?}0xK$+CjS5-t ztWa5NYCI2IE94@BwC%Qy%vh6d`YGFYcrkY%h>Hx|E8-&K+&9^>P2C}Kb2ckTWgHY- z@UMvW^1Sc$SbjP*E?v^tnqY5s#UMRQuAC}yB9{0ZBGx`^(Cg7ON4)y$J0z^$PUQ`ycd5JU3 z9WdrITFs5;aUTp7eo`e2ZWt=8;KuW~BZdlhR|#`p3~8}~8_(nJ7$V&KAC)lo$OvH- zH=f6xGAPU^A|HcK4TL$5T#QF~;02V+wPws|)*fZ+U*tv6IF6XTcT#!R3yb z)I|aBD^9j7ycx>_&rF&N?@Z3Ulcj1ZKESqmA0M!{{BJ^+`({$Q@XqAiJ6Q6n5$wyh z+*PkAguV)HRph3>G%O!H@x0qPH|3oIT__=8o5ofcxmYt%NG+_HvW&YUL z8+k1?tWh7!%OK~CbM0Ad=P!qO0$Fx+OTVsH7vc0cmRAMa3+IB9EpO0RUS;IMx!_#O z@Y`74ZODaj0PY0K2URq$5*Y_hRWzYuA=x(+vK3_6Hx#nv3&~bd$lfZ;R#C{7qq4j% zh~*}&^j=K2Y)Rwy+lZBXlCP4fYA-gkBCk8|n~h9LflV^}qB}`VM`Wo`jkK{q={T-d{{F zrv0s*(RM-Yfa#F;Z;;kmyIZTO-5k6gJQv&pSp;SV-wX~d-_Wlll&w6Jz#f1UH`3qukRP%5#L7NLa6pP%J($vGpO&Y=nHs%^B(tZ z@qXyd@{aNL_O|yn@>cfhp39z-o-aI0Jh`4%px$3cPZLkXQ^bA6ecJt{d$~Ig;ui+E zA8|Kx$K5x%uDQ;_io{CS`;d)bu&ayf9#=J23Fi&x_s#<6YR5y4yBt*SnM+Xq zLQ83n2!rfRJV*?DmSjqWa7j2FAeIdulnr9pu!U?8%Z5$iYMWtPV^YbL^X7pAQq7g`1x%fo z-%(gNG11c=xSN(;IV#xtNL+Q)(J2y;T%HG!4e(fVWOVeE@R}Cls`*N=smpV_fT_!K z6NM+CHu~ClodXPf&_5GwC~AOgbioCr0xY;f%;EXSUV$RKIsn4UD4c^Z20R3$A}k*v z8{kXGUW~9*QgR`M@p+-o7cgY2M-hyQ;o0s*yJsU?@($0UFy0gTbcA`5b<|E$ShOU8 zFwcsP>|6@t9i(R?%(Igt`#lQpKzJ&JwG5jVmw3O1x_ zMtB5;Ya{$Tg=-=F9Dxt+LU^cvArUdcgDE@{;eiyMfpC8cqc=|PE8tr9X~^zF;Q+$D zDC|cVpZS3jwOY(Z_$g%HRB5HSzMrIU8D!%dA^>c0**`|upR7Q3SA>gQ*e}}MnZlyo zk5E{&yAy%;iFV`LCs6EcHE}N63--cx%dsWxC@e0`2PrHr&9)R4mu4G;!&AmiMeWuU zo{VrS3Qs~9UylJ0sfKV1!KP7-_fS~)8kT#}U4r!ZC#7 z1YWoW;h2D-^gO~*3ZF+fgTg-`T$#e-5UzwUFTsv*1q$~;_*M${Mz}16-3XTvFpcyq zMPZzb=r>dN6p9q1Fiu4DFv31(x4V$7QMe((0SY%j*hk>5xb&oZ5cXcJava$%3gg0$ zE+*16x<|JmTM9qAM&V3TTlO^F$ab)R~$j@0%hX}YUe48BdC2Z;GNy@ z<)wW`VSIUMXDN&?FYOG4@#Up`D_|N6dYZy`#cIbWj909-pTc;>YP$uzpwmtq!7nJh z1L3U{-j48Q3im{KBf^qbe?5iq$)<@Jp5)d4gtGC;risa!6m7gnuouPS*b*__0(K1H zIfPB3jc1AZx*R+FH8DtK-tV9Wn*8`y*?_Opa4Fe3kY#Q%`zF-@^TLSbQ>O^$ItH_Yd^dUd3G75FONrnbPLb61PY7=Uav3&}@0a^> zGFuB?z}}1RHo5V9@QH{e(m%Q`+-xt&Hl<529g021_llV0SUxyKaMhD@tyhcU`QQ_g zgg2^$!6`z8H>!jUr--?z3$56o5(cjb72co{HoPK4xSL8C+#*z1wbYjnUJ)`Bk@2l< z-?Q~_HX6pZu>+~(C1Q-hFCv6F_g%K!sHgWLD*%rKWN$IK@qF-$NW!gD!r&R9!mU)o z;24pFTdIV?GeU)1s)P;C2##@N+*y?{xJHODa1}!Vt`X8=c;a~`vI~1s+eHf{<%#8k zb3_OO*ZmbcKcF`+BgPIld*jXrw$2k{49=0XFx>q-R?zkaTb4>4#P(bRYL(Dl5{Il zLow5)7z)Ehf=?_+nywfM@Q|d3Ej1J~6+*JkhayaF9qNG2=e=0pHQN zZV4-t1}mN~IY^)lja4H-9VDEq8VTVbNsUBf)kuJYL>h_4ijgoJBxEESD@FqRBhpAT zR*Zz?ANl?Fg8jDhZ2c_$%KLyFFm9=5#1K>eh{2u3R@QoFi)-uvw)Zh39M0s%^9}!q z`D_F7UX`$y+;;|7A?)G3Bf9pK~8p|7vTzCR; zuH`o6Sl&y>g{$~qxTBB@JN7u&dOnyp61kp#<-Ukq*x~Rmx+9Pa55a%ozJOft+x=ej z+%?6RJzt1>Rlyxzh3dvSd z$PSieD=B0L6_Tx}kR2$?R#eCikYxw0QONd}WCyKL$o7+D%MB@KnWiI_*OziHUGL(y zyw0O}&ypr6sqwr%T-JP=UHY|X2itpW1usXu1_C-$i8IV+Lo}~9)dlV|Y%wIonLkBi zyW||#@w{GzblaGqIxi(F9XJ}K#5 zfJl#z*{XDL*L@DH&|tJlK~;docjt}no5ww_PqaYwQuxW1osIpY}{+` z9N}T_J=mh?9}rU&W4mgUnZEWpTz^S@{~zby|8v75!|lRV;QN0UeE$!F@Beb}{l7)e z0Z)E&y`=V|wqBd6_0}3|#e!#ptAi7RPX_A-1A!BPWr5cMT>~`(ZrFFf*gw|a(I53) zgBpUfe9!q>`O0}OK`w!8@3UU!E#~>ov&u8k^Mt34$Ll`k{?PrhyQ4b>{`NiT`2X@o z{C~pP-`U(*(($8Xy<@7Q7v%j9*}t`~w7+G4!d}PjvmF;-{nr1AO{cRXs4LRXc9E_B zk$<;$V+Z6!P_gO8?8qFmzuN@2SSFl_O&60R7~iWS+gG#9K^~hfCP$nL#Y(ILrluRg zBk5-(r&=apjZHV^MrLz)trP2~&U9mHWXb~7@~IP_F3pUtmN?Z<5r;J$W=7)q!0W0g z;#a1_)CjL%gKHhXG96|{;`-%DVAV_20I zfjO<&kyNHayyf%7vvc1k8)XpaIu5pM9FH{JJ-l>D%PS^No3t zDa;G>*nVLf!dGCSrvW>VdQzC=SUyaQP}tyFPJZM0#>9vS|Edx;W<~}X3g&$_`B&>% zbv)mg8WG`3Dq&-8B!n-igpJ7&5uT_LHfBdcc%n+!m>!`p6e+U(#x|t4DII_n&gPrY zM-a<5=0~P5=Vr4N=}HU*J9}JeR-vnTKH~Yt1c?ZDRtdulNu0cSJ36a`VTL3gYk$t$ z@u=+*+hAlvewH2BvHq1}{j<$h#PVT|M1>!&b*bGs>;PYLs)rS8V)-yj62hE2fi2^yo}Yy%@l*)7*}Hf?Op+wwfJzvq zNmMwX5{6llB<#1HWb0P`!0$bFpu}spJG542D`NRDPolzp)nXP*lc@04*(za}ClO)b zDi#bMmxKp>Sj91e9ZLHEPF$YaV#wITqQ#FLu|2$`M~fgkuHQ0f*xQu^w;LBW z-p=sx%L`^&fBfcmMJ{~&{tLGYa^VU4Csfh0Ot}`#@66kqo*{6m<+j6E{-cFtiz#Fu zk!6c1WFIahTT~(2NtP|DknJeT4qdE}?I6hxU2G{E&wq%^;h zE-YceIu_eu>;M{VUJLR3%tE?Ft*^*vemhyWXgfA1oi1)icb??FjL>~h)}6XorQ250 zox0dkH zI3wX7!h6G?g+B;S3_llsJbZt+R=7;q8Tu)7Ahb3#H}r1kh0v3s2SRm1<)Cul&-!6~ zgT6qYqK||O0&Vp>^$Ji!@K^1awpm-Oy{C`YO_WL7vBDgL1aWE%1CiqOS zEvze)4LTvWUqRs0!1TcQK)*nTK%+pVfZzX%|B!#Jf42WE{}6v?e=~p7ANF1LeeK%} zy8tFbt$`$o%I_``ABvB|N(G0E|~<8i1yP!00`{cS%D zG5;Uiv+OU~d)iyuoO!&QHh;qog4)^})BlmmTQ@MHFMuV5e$=G~aMGI>XSlX(*ocOj zvH^qP!qsI%H~d9aY5*rS8sf46r(5BuY-owU$dC-<&Z40*HGp>%4V7er2w^EJ8$<|8 z3E3b*Sc(t>ckkda0OsO!wS#3K5E8 zg(8YjWEL4BWERn&6dFkyRChY}8bTS9G7ll-8Z$>ILP(@{_`TNNXTR2K-Op#Q9*^H& z-^b(gzJHX*^YuK>z4qGs?6dZIzSe8;nS2c3S{ojKsdx-vi6-cAEh{sKR-l>~VG3Jh$a0jNNM zflV|30esYkv4Eu!z(;L(6+H&jSioao;ZOdF zYE3#}0L!--fsPo!dS7~=vA7<~=`o-#0)FCaInWaWSX`7#r8en-0W2M+2O3|;z#<|g zEg)M!1F%jWKk+#Y!0L4j%q9W8N*n_-<-lYNU?M2A3O+Fj1G(}is$w9U1o&!c417uh zurwM2GiU&oHe=vp65vadG4LS`z|vw2Os4@@8jOKyGyqF`F))<`_|jYqyh{VHv=#$z z(*P`u#lV|1083jjFqsBm87l@R(g19{gn`#+0Crizz^gO>J0D?SJPp7uKp1$524Kq{ z42&TGz6}oso}&TSMh62UX#n=Y!N71DfQ@W0Fcg1A`Cc>#iEaDRlQWs*-*SbV*DBFuOGK#{H#u7_}E0n_zvR;M^OY|ai3HbFzg48?8+2ggK$NJ`A*viSDh8MB<#8Tx&Ud~H^9?b_bw`mS;TYv;;V5svXy0J}$UeZ%?CG{swy$mRY{~Sv zIpWh1_Pg1}@{f+}{^NZ1qp|Ied7klXks1OM=W22+TTcy1PM@f`@obSB0<-rz`Bt{R zLd9yMYQD?%J-m_6I*C>Y*8_6FIN5p&hgi0r9imSpK|&fQTNZGMW$Uho&V__DB{!a} zCx@65fV{rF=Wq7Ap3Gd9Ej2d(Hd`Fa2G;{;l63BRc3$66Dawj%b{fwH(<3>v$om+C zZ3o#ZW2aBH+eo`Gh2z<}>!G&-(gSt!9=4Kit9)t(+dbD;GxIb)K;zlE?V*!-Cv)Y^ z?Azp4gu9Kz7E?KvEqo8&$v_^(zDy>4{J{5Qyxk$V;Cmz|>v+Eb*K!-GShg@e`1Js; zoviEbw3juv zcVheGEhl5y!uv3;$4<+vuy{6jA7WM*8eC-mf^CNlmmlB!8ar4l#XTF`4|-D+*~_r? zdgA;kwy%l4C70RYcs7_HlJG#4FxVedc%Vuc+z%q`?fi&s1Je`D7OZExc<-HAWVRxf z4gQA^=G?d0;^fX?Ma7cxv%&t5gj=YD!2qGcEmXo_fJnm46}1$z!2+Se&8=%G#eDI|5*B9?)Ro{JX^Ox^gBMe>xPO9K1fnIxtoQGES!*JopKc! zoRFk4JXQX!&B6U zIzvgWgJh#Kl;qk-HabH=j%D8^cZPx+&#r~SMrVXnolz6XMrSC=cOu#73?;b+l8w$# zlB*-x=nMrpmR(Km3HGvUsqySM)&1v}8z&V8V|I+_a;~+(n4QISO@r~Df;j`bu{p^tZMPcB z56w1YWk;zjP`k1@hQ-Uaw&$CdW}DP_cBa(asn3_S?uJ-)RnouzaIW>H%-L0n371g` zSC)m#sDvvO6E3YtpU$o*3zxP|pN?nWCJT>Qq7tqk2?N(UFFU(D7sgAMx&DN8x~V!`nPRfX6tbmd*<%XXQpIG)DP&8^vg0geu2-fe%DZ7JRR_Fe0Gu>G6M@%q!|%^u6Xh3h7Nb2-;KF+84~QA~KJN;q8> z-l-B!D<)i|5>Azci&VlX#e@f13qxPoCODnk|DWr6&o#!?!}XA>2GqK{?mXfA-nr2E zk@F>IUuP?49cNj&9-zLfpC^1SygU3&I4?X2b_{qT+%Q}<91Q&tIsnf9tk655k)f`k z2ST?)4Zv%#f53Oa`N8*tV}nlxTLfzcO9gHQP6f6F76)bo#s~TZS_ke9ln=PIvx*)4 z-u931ckwsz$Nj0kzkEl18-4Sj_TTfqp1$V3JE79R4ev?sR_`M3$1vaUwD(bOU2i$B z%k!IOC#*Wifw}{Opzhy&p2{B0ebN1+dzHJ;{g!*UyR*BoJLXP-Dg;NIPRALTby()e zcD&{o=y)7f9#nGp?HBC(>?@)Ez%=`d_Wt&E_WR+#kJ}sawFmZfj&ct7&62~+yDR0n z43FKegXy?-E@c#gk(tOGiC|zAf+G<0?n7`mg3jL&942OuwRL-*!pZKGp(HT#$nsqL z#9$H_*t}yq3_L3W{ug|cw_#wQ6d3g&2A+`uPp!Z}KPk|<4hH&?z_^2>#3y>wz*Fa| z;U}IVfq@gdx5PjX8mM*=f1p#k%K@BwN$E-gPdmO;whRBG*&Yj|*y4#Yq4J_fKvjAnBUFFQosyETOr4~P@2Ap&;C z=vrtvrBtJV3M0h#oa71F9U1i!ch-vd8EGK=iCldFRmxQ$3bK*Io*)6s1F6MhVkTNDDT3NTQHN~Qfg z4Fgz!hfAgXj0p=VBzuVmrr;+sWGV54OOpaeaUMT~AfD73 z4TOFd4`iPR*lu3?_$(g7BL~i4fM!U+Cr)F)A%9{525dBNuGt@v1U@kk13T#_U}_Nq zG*9HFw{r^&&^!?cG{*qV6S?W_bP@wJPlV5{VSwg|@VO%l&^!@7HG%<}+`*?oFtCiA z2LwVGSV#i=l@|kZNr1nzVqgvpz*{Ew9#A9+mNVSmy(}dKcGyqFhP^u*f@I@yWcvub$#Q+&{ z+TasIFwji?L9(g3WzzyKMf+F$|477R3!Kd~7DOb+zMKm)`7-)GkUYX$rNasU4l zc$;q$E)hBtS`m6T)GKsPC=fgnTo{}X>=3*I-rIKt3Ik&TEdv#`%i1PwhBjDxKr8J( z>tExa=I`gf58lpC_`deN1@Gl`eF5)L?_%#nZx?S3uhX;FGsiQ|)5cQ;D(`P|=eb9^ zA9h!8{o(q~HN*8R)Y<3t|5ii&zrIlaFXH$a-o)Q@^l;R1X!axaMfTV2UF>(-UABGv z&0Fyo&k;_ETQ4|2&U!gYEJt@r^tm=;tJZOrK36P9H%gLocznb^xiWk2Fki#-D_bMi z6v)aU%SLpnWp%$;4qZ0Fxsw#KWZ8&LRmkegMo4R`DrEIlBgTv)m#wOh)eRDqg|{2) zz43CuA2BB~^%o(_7Q}LNcZA4ZQ^rd#a?yP(N4G_i*TU|ASH)V4FA{G3;yKh1(OFZahb~M2N6oC9HcQ zLRi6#=jf)05MEWF64qT26jpPoEy5=crVU{8lN(}g@1y^j-}$T@VvFe1`&e#p;rpkL zEnpk39jvtDLzxv20g_KT)4Bdn_v_B7OmMu5|&YoG^co;LQND zG%DSYtUE`c8!V77)Q#o1xvueDGq@>i-4hL=;!6tKTg;lz zaTOCjqY`$?!e{IXVMj6H)An4pZB~cT4femt4%(hR_{Llu_{VbWvhZnpn60}@|6_Y$ zgV2tPc9>@u&#@H~o}duUeo+>lpb*Y}K@x@uI@`}|H6Lm;J;e6tn@FRv70Vt+g*i8y zE&X^m6f!->b{ctM*y8N5k}yp0snT) z4#|*@!dqdR#lAW|{{F9Cs?B!t`r3{W=K004M{%N8s7h>!2AE*Ar0RD z7r^^}$6&RfJ+M146W;$@!TbLeZ40c>AErH|mGxirZ}5K%`TtG)C4Faot9|eL`uQ6A z(!9TTmwVs#KIOgJ8}a<&S>^e_^Q@uhh0lx4Zu^b`mR*i zXK$5rx^tlO0q3obOODNs99RX=%2Cz+kA0VYj{RkO2YU^>2b!(^%gp7YH7D;h_s#Mj zhHqgX{o0V1;%Dniy*K>Z{#bY=GZ#i`NSu~gg3aKgs7906dcGNVKb#TD%;m#0Q}Nw~ z6<9vsXt=}$wu$dW8^6 zNc0G4w|BwxiB0<;=mH= z?1SXi&g=9#q&T~mnac-breeS95jNE*uEW+CLu1j8Fc3px@1`O4ZnC7wD!tDC7(wL2 zFjKKdw;+293W&6Km1Zm7y$OZB9~VRzf+4Z%$Q1Toa@YGcAMwAB1(6THOvR3GE7}Ny zFC?}r46`Y%?%h^rRtL7)sFN=g`OwQ$Y_n29gmD)VTkci#BOi5{ip|e!Y$E@vyzn>s z#wd0r4ht?%_iTget1#gsczjfq)T?}Z8J6RDYuWPeQrX5w^sITog8`Mv ztI(_i`zHC+*|j(i${S)zP-YGvOgZ@A)_t==6MGihYwR7*j>uJQs^;*4RPw;Lc5lU& zrSxpM^Wq$~Q{P^^vw7gm92i5Hg12_If5eXR4z%rLM{jhQQq<}`lUOx}51^8QB}X-7 zOQwCnSA(!3Iis#>4j((2ykSq7yO*%tD?{h9-uy-A@nKVvm;O$Bmb|iT*US43UVi<$ z;PD|-k{6j-n|*0iO=CYezu;Bk1dk7wlDxpGCTuZZvNGWUD|%KRZ3`YBDJ6N{eT~>+ zeT3VU6&d@Z3my!TOrG=i#%yt?valE_%8DL6dT*~zRKgXI)Prg#jw7~et zoKw`PmI;rs95FfqS)RIOy=Esz9~~v%J~f`rr6}r^1H&V11LwA7GdmoI^vK<83*YRb zKokhf(FaG#Q`3{ds2)L2e$D$A4L6t_(;BFm|Y z+vX`r7E= zLiq_K8|K#u+kCc6e=x#k7^k1x4TCb19Ls6X$@=%wFuzXpVsn!d{o9OU?}FP7xjv)G zikbe$k?Z`S$#`REfTOilC9>*2eqdDi2>v2qVJsy&; z$1&CQXokYZ^*E-eMV`|X$;S0KW<9kT&v_8Z#`QR+GKU}FWO6-@S(?M~oF*s?zZyKV zRMi)a<-QoF>WfAwZ1lxARbSkXWTP*}S@#9c|8M16X!~C)``N?4hJOezg=zq=hMx(y z4c80b7WRhDhxUZN4dsU>hlYeYgjgsu6bfF3s(x#OvxDyjM+LhDn+5L-mJT`szrj4g zH-Wssq`+XP70@_vdmux*uAS1hX^SCeV7%5(YpvCTs(t~e9B|mb(f@`2L)bl_zyC4F zAgJmO`>y(a@@RS)=+o~!rvksq1)2mPvN!5u211L2-l`?SA?r09H3jUW0@&Gz?hOA z%AjmaNDpD*D9#>-+F@kFF65Z-9z0KB)DHfJu(bX4916!x?chub#}G~sm~4NYYbKf| zUk^=w3MStFD8~#$ek1{DX~PCNfSy8RB?<72_Drepb+fTPsqafr82cxL zwY)f6^nD6ti@wL|Ts{}wVEq`f0X}24BzVAVVzNAm8HlWx1LCAs$N@|rhx@HVrF$(MRFkb;@m$+t@k zv=E=reR4Apxhe+^VBmrr*pGqJasZwC$Z;B=i-Pu(fOP-hilpRhig}C_%t24S)?=WR zDV2P`!~iCB8v(qJQZPk3nWtcWB63Yg>FEF%xFiR}ng1pS#F?L<0ea?#NPzDug2%vB zv(PH3rg>fR30Uxn%LOA9-WcD!$Gm0jYi~ zt}lWUTtusXjx%p*w^Ssv7lnJ6O$~QLSSmKzjKT|$-5BAf)z9uW;m}otrJuH+DJ*{4 z4kO%ndG}XQ1iy-I=@)MmvhVPZ?uG0e?*I3(?XgAnMdn8)M7l)oifG|u;bq}>!hOOG z!Wp68LaRgXhn@*F3Y7?+g?Ic9f&+t1VD0|-ziFBS z!%^rM>uBSM+OI=az$~c8|F}JFy9p-~&EtNai_h7(9j;^3&sjQ&S-ITNbMe_Lx5j@w z?GLaYbwl6Fj^0yl+^UCOGW#l;3#OjmpmHYcE0i>k*rDzo*Z^p_U~*f}IJ}!vEiL9~ zE;shfhN_rZx!ls<^G;%s5LVympgo-p~vh^*pIxd z-^aVz(b{`+dz`o``Uy-v(a>YIBdn-APaCYj4#6(kE&G=cOm6duh8|NilpB4bq1Mc- zTyFJ=hK^G;6x=@1&~d7U@?0p<&~b`}a;r}?RK?^*pTX2zTf2UH8_Q4T7i==pFhn=; zBq+gLu3&PLPcXk$Fu~#@%yyQ{Qn}pWb2kh7uLuu{1^)yW9y<0Km52A&bp zhafb>^O%f~tGFQd=ZuiEcnIvcWXK_hO6G$72G^0dP>z(!1+y*rA>Q^gv=!W3Gd{%I zE``8LONMycr4aYdMBAkhSY^o&Z@U!Y)|l}r-gXiynaiCpY&(gR%H_tF5#en=P1_DW zS2DyKD22GMB^oG&z{N_2cmt&nH?2eiNvLElSX82cBvLAu`%$8S6KDgu`(%W81Eml* zn?wVp5cigh5O1Iq;#QIo;yp-0C3C?!5)CAgtX!~(;6ui*z?}A5Z6CAmc-^mh9oUaQ zjkt2X;!X2T&dddu$ZvdcT)^zdRzs=M=XT#c>hJ@y3g(mlfgl2D*CfGtkv$v&YG?#lq$)}5bPou?_89JG{+z>LDN@6sZ zyFmug&6!nL;XSW)Y;pM_+XBl_APLXx_-HP-f()kPUzpqnGMG-zv>YZxbGZp*Fg0K< zRGbi4K;nd~iP2oJf5-_fRGbhuf5Zu?nB4ghC$vy;LJXPwgcc}Hs3AQeYhpCF0ZQ^K zv_Nq}_aT#CArP!dQb)xG0Q#G%#!=Jsv z|0S4r;o%*esyKWt>F{yY;cL>v$L)&4-zgnFt~h)R>F_bt;j7cb$5e-}CLKPeI6SDIjiuOh9rws$U{5|&oI|?g}f7#R5yrNmT zS%muX_R;n?*pcKO(Z#5lxly2+d6--FS`JM!b2ABX<9S7zYE?p9=SgGJlh5R}{HO5w z7G^6mbE^>Is`83l(aMDQOZ3@`y^RpRctMdNTY(TipRUL% zFHeXw=Ue81X6BY7#Qcqlek@Cf*+&%Jb1NavxMF!S-2b29_{?Ti+t0BmyvlLdvB~Lm zeCD_mo)dmQ{1W5>w1?FJcZ5rZ9ielu%ip@t{Ln|CS3`p!AE0sQj!=n^EqErlJGe49 zD>xPE{q+g9hJF631jB*90>=Ye14{!rfysg4fo_3^0<~bLKaX}nJD{!C=4&59R=@zQ zy~eaGEzSRr|CE1+f4M*5f7}0@zo-8Ze_j7=e$98;cf_~Jx6t>A?=|0GUnk!Ku;X7T zpTm3ByVtwgJI6cC`vO$|YwNwwo9Rt~JqJ#BwtJR&@;q;PMtYuv`G(q_^04pUCHEos zM)#NQkKM1j2f>^}WA`2I5^kI8jBB@RrE8XJs%tFFJG6%N2vuBR=U>j_&aKX+&K&1t z=Wu5?=R?j~&a#g2jscGLj{6;P*ctGK{a5==`?vN&`@8lr_FmAjw|L;OTn<*4*q6co z+>IYEiBqPjJCi|oqp$9rYkp5scMx#S83Me3AD@n(cQAre1UL}EH_Vomxwraq6HP57=+}rQ2-*(O zJVfh`T8wB8K^G$W89{NTF!d9HwnXm7CR$?ofB}epNYMU>PA6zTM5htdjp$TFU*A_7 z(RT@23(>a;S`*PX1-f?|qLUHr)f{JvQzsG>r-@TvBPh-hr@l&1oFGmek7&(iK|I<^ z1l16IfuMdw#|pG*0it6}G`-SS;(PHNLCYX_BtgZuWw=0>Eu`*1lnZ}q8TRY z{k!TRMAHb0u3Bn}iMoz`@HleA1Z|6`M$k5hdIUQC9HI_HVY1sqQ*ICxeb|)033?2< zR|qQHvrC8)6E@`}LGc==93d!Piq|-0C!#RdgKgMB&@G5=C+KEG@mCsVi+Ur9 zztZpyxEN9Vl?D`l8B*4nx`5&@L&{2m;x9uA{+d#2KV>m;=f>lBv;_o>Av#~6!q-pv zJZT@f_16(3&lWJedLTRtH0(}Z6}kMDy@<{f=*IJi^54@Wcbx~(0)eh7k0}3@O>)1f zi)g+;ziNeOoPU_CM zg6Ir^ei%mdV}VY~MD!zpzS|Jd4+Z*Wdqh7F=)^&YP8aB_uOa%rKwtU{(P;u5yA;v) z1p3@|M5hXL_$frE2z2lbMBf$Yz!HeQBhY@;5q(>ry_+KXmOy)SLzIs;lKtCtB%*xW zmP9+gjVK?3B++(-h)xn{o0W)86llx6h`uh+=I0UR#i1JZPlAE~^ z(N}QrSsmBOrHn@~j&si`FC!Q&i64In!OArdd{Kb6BlrS>6`CP9PJm4i9E;$s-4T3V zfVhw_WekEPMK(clYWV*eTm|*}2Lu}jO9y@rYz%x77z%Ij<)H@P7A;2` zsXd}q^8e-E4)5z@lK%fL-)!GYzV^OqJ}2w~_@(!Cr~-JG*XKFvS?qZO-o@|sgxn|G z%iUAlePJKK40!im?V9cy;A-qD={)CL2fGhE>wM5z#&N;1(ea66sN*3=Ir|^>&Gu~j z2>ZkK+iX{%>EbV%r#oS~@2|nAx09?jDoJUsa|ijxNekDUA(#mVaq z9-jOf%c2y~Jie|=octQa$?FcD;Xc4Abyc0bZsD0H-_@ZwdEwzXxTxafg@?y)`>u+U z7aktJ?Yk;YUU+!?w(n|r^3goLjLYaIEdnp2))U})d<~bu;c>~hLJ~YY zAsJUl5(^I`V+u)O;c=ouQdoG<%Fj0_B*DVNR(`(0QZg$~ckq%o61;%hma(l*&gr%G zuY1@5s95*qq#W}JmYD|@o~a4U;cU%`tG%yJKFId!mD+G7CMypdJkyE8=6PY%mW86*-TEX#}-U)yW+mO zsceV5bz?LS{5$h@2WEeTB=~nivcE!7x9{}R;jQeakks8foymy`Nnze`Nw-20%sbIa zw?Y!EJ3Mj7${)+tB@2n{)vN#9ZT4j}Pgr+6_5OrqWsPW_Zr$nUqi35}XLFPFe6}^` zo5}@+rtaJ&`v{W%6-VdBo$-{>mkB72&Ye4h$&Y?qadd9oC7*FT&s}kJ?%j!_A5$Ei zn|I>q#}r5B?wvULIK|PqeJ74SPH}YZ--)A-QyiTec*&#tdcLH{`^e)Co?t2xD)P96 zCzy&%g*@)z38r-lKs1k=cqS7j1FNz^zG>fQud*$?4)61e%zG&_uMFPueAdvC7|km! zN!GVyX6BWmlGem%UP(!^oC^KPM%UG^v>Gl-;u7|lx;l6(R*z}{$}moa85 zUK&a&iP5}NN%DX~GKET76Qg+%A<3s+o3SPEsEv|SNC6&Zz zUI-=KoN1YL5X}oB6SAh2%m6YqV765>Q=`qaCPwr8D9M}IR?$o!GI=vqOfNEdGutSd z>7mWECPwqzD9M}IM$t?cGI=vqOeZp-nbXfHn&}|TR1l+ic9eu>DiYwi|DR_cYI7ZO zZFGI<`q=fVYmlo0yno-}D&ev@&p3BGS2|}or#iqpK+c1Ko5W<{n(#zy)? zT1VVBm*{~;c0d@jh57_}9hQ@~mgxZJh55+?n z!5c7>urv5=un_76j0yG%whG=8tP~6et^|GxY=Qj%KMPERnT0Narhz*HWdbhky!NBE zR-2>Kav?`!L; z@2lj~yq93^VJ+kZO!bcO_Vl*!*7BC|Iy`4!SHR_v6)@Q|)YHk+*c11px&L+_cW-eo zgq(o!?*8t!?)tC}L33SlR&r`khwy-7tz(X3s$-0!r=x|VmZOZrVLt<&|8jeteX@P1 zy;Dgr{9%qqUn~Qz|EA=>$#xIvPZG}WUxm!?b9y&|lg%E|yGS^?4e9h)14g6YklsP! zqvMd?p5SCNyY$BiPWG}(e^lUqo^Agiw(}8!clmrh;>{!+9l-PlB^*7#^d=IHE?{~i zf=6F_1ofGOw?Mpsgf~b0UW!jRiFiGNlXXk!cS|_>(djiM93AQO+hH!3CwK6yjTZIbMigD7|K@raefGcQdN|yG3jc7S*^_1NUyROM>X!t???NhiR=~w?Lh4+?#qUAt z9O-&uEjxW&Thng1izH}IN}}&N0&Feum(4{Mi1q zUkU#Do0zqdc2dIeIg$3WgyVA}?U;n){g!r=;MJOR!S)=M@J@&yl<0QxML!e}yvN_wP$!4r zcUKhc`GnxLe)tpl9}}FcmreVS;N@2}K>k#LFZ|^efxk=epZkh_ew*M&(?+1qn*=|+ zQd}?Y>*~M5{r>s*1hTna1VQ^D+Rj9~tvELp(Z>jiIU;FoOtj0eQ$ggmB&Z+J zhY{_57=IztniI4la+{fG=QV@gM6?M(#WSOkiFTUbNL)8YP;uQFAll*Bdeps_plcAV zXQCZH+?avr-2_cVv<{-rJiQgsngrd9Xblr>6HmPZ(P{*ZA&TSE)@3FQM>J}30Ud&9 zRTFKs{rql3D-g5@(Q=4p#2-hrG(p=STGB-6GWWD}f(qRTqTcSJ4FQ4*uHQr-*mmqJ z9?gsB_-JiJ-2|?^R!C-<>|M_mFoH>;l-`TgMyp9QS5Of-NaqSbpiGP{M0qv)k0tGzulQ|KJRSf%yQgt>~VY!+4dbAH5_jH zA^Sr6M0+=TZM$YWD(wINz-Wi6)&qxoWC7-yEYbkw5x zx~pXP2K+_JGIt>}UzkctVl&k za)Ck;+$15Xu$}UWnFNw86_UbC;zY%X6EjI)iozB&o1Zb}*h6fGQLbNHabYHLqC%3G zNxZ!Nz5c*_ESg-Gl>%wlEh2`rduH?%p^{*v8`d- z*1ppv>(6!UAm4bZDkj5b<_kB8Ge@(vvv~r-F1A-rsL0CK-6YhkrP3635@^;^XzF$n zYSy%^X4__PC#@Sh0Cf_oKXh7Lbnugsw?GdGT!kdqNurgx3Q6K7fn)=Pq;Qis(NZ!iUw4y| z*9Vqb+1_Ovp=Zubd7AwQW6WO9%6pMJ zRH&&bH1l4dnwmm$oTTZuy~frj_XF7nJMRS-PB#yqnKzbd`n$4kVVjT4)1%pLIXNaP z?|G`(v_PdfhG;e|u+)s^jYfA)<4epcvP3c^YO`L@ACtQ?^PWRVPPAOc8_gRfNtRJa zj---h6p|w($tjkOUwldW-p1^Qo(#mF!_2(%LL-gyq70v4*NlsNr zK1n5~DkQs0l2a6t-KgXgOG*Cz-@~?>=l{=*yd3EesUC5M4?_O`>)_(w71lyWLrX(% zgnEYV2}Ob@!Ly$l>=$IgTLNbSs{`)`1_T-fN@?e`b=pVTAngIIjQ@B49&qKe{jd7_ z`CIvG`%C+7_o;$+Hwz<@fa5;|c5Q0N!!;ao^`o zcb(SP0St6Cag}jiaDM0f6xQ6gaNg#);@IlQg}ne-+@-(OC&tY8sMz)+V+woypJSXW54QAom2 z*OY8|x!(Zm%;f|b>jJZ%B{M4lV_oz2mru{xhp5(VIMG@c8?}tw3}?Gn^P_GhocFRJLOO^vl1}cB@Hc7H5A6XqM=2qhQe@{ zG_*+3_ac3YH&n$G=~G%$n8fVCR`9LQoL{otu$LUX5aHk>0ps1|h3CY(*cXsCeCfnH zZ2LDKes_F)Ba;|Sz-ZUJ@W3omNWySeNERt1MfQ}&r%$bSHB7*8Hz}zkMiVgFHCy=r z%)QoU3zCW3JNVX^9$bW%nSkN0DG9{#EHAl02F{xAvMWwpBu{A|S<`Z>z03p*cZFol z4EEu?&$HXjXu#I-|9UqGNf_;#t>m-5mg%9H2^j7sB{|Wu8cQ?*gIyw7&ss7cM!Q0? zo~2|~K8$tEyPa2ob;jB6`Zl1M|Ko)6VYHjP+d0$m8#}v||7~Ntj9sMh)bnAmn{20p zQ}1I7lW$@>jJ+KNQy=Z>bBk`ywA^?vnh%5Bq^4ep-TIEp7o%M#*R=f6isr*;H>v62 zOv`&SnlFaCu76>|a5t&x<4nuZPgcG@-ZkDxfZ1Ht_4&1wdcYX7F*+SUa zaplnj+cA{yyN63rqxmr6O*WKweRD;JiXpFF?cVas5zU7oZ&H(YeRInJT{NGJd7FTD zVYydkX1*Bna^l_W%WM8;zJBus_QRe&KQy|OF772V<^|?{g`^nsa-yYVseFCRYg8C* z0wg zJ~Y)M8ia<>2I^x`J;WO*h4jIv9&!~A!Dy2-Q2LZUzSKX(8%RPW^YsCx9+D$j`T7Xb zxXHPfWbe!ltj&Ds)8=j2(RZiA&kybc8O_&+kUEt!ZD-le) zPF2iubuasXXQU8iJn%8wxyz{twp2xZMdjmM)B;% zC)o<4>+6OQ)Yf^Jb6xRz!n;7Y}k&4eA*H-e4_b}N|Lh`lC7xZY=vY?A<1iK zS+6I^e*`6!#AyD*lH^AU$re=7nwXW}oJ$(tOHeST;xI`bja z^8Ei#?d{#+R^axRhm8I6p}nD%p+Z>mKQh!U)HGBb>i*vdo(gUcE)9Mbd@VRA z*gn`Wm46sleFCilbpz$0lHYl4ueMSv)ZT`A0Nu2vT6L|2{|40Y z+wNcL|IGiIe~`buzo9=9cK5piRs1&k=KH4mUhwttwer>VmG^nP=b?t*N^ha}ZSP2L zH~Sz*38<@g3f}aW+CQ_u7Wp-@BeE=#6PXwp9O>Zb;b`ut9=Sh~6-j{=2tS24gG|RQL1lUhbCe zy6y^YpX;LQfNPy=uIqi*3$DIU`LCX%0$1o_h&D7p zS3{Wlx$t91%OT7SYxDqJPf&+Q!3HUqJd$2R4&-8UV{!mfCDSXD0Nw5+?N1Vrl5n?@ zfRt6cmIM~j^w2ySpn09s%@R)zDG~BT3gaD>HX7l+G`(>!h1-~CoHh_)x@$^WPYN$U zb{B;Cgb~8#o>*>udIn*0UnaNy#%sc<|DXteA42#K0n=oxUnq=sT&lUblbcsDz+}MG zj>rahEowhT;WY@iq;OY+%`Id2#wDcmS`gU)V^)5ukHXlosV)MO>T5Ou)ADPgPhhhW z{OYFsMcMexO}R|rab~+yE(n;GU^_+OGsr$l;nN74+e^X8L+O5m%{^`0dOdf9H=>AC zFU{QCO=sinlVWb}ro$~!Elv(m3hIC|UZWDUyAC)`D5|D=;OD1c+G zeL7i#a?{)S5#*CKD1f&>{1iE^w{vsEPf)zmNyLu}{6X0=bfR{m> ztoZ=EG~#5<$3IiYEJ1u3Id0~99Dk)Rm2iAArZ1Lod^DynlyH1Drhh5$|2#V$f4b7= zOSrgy=1RD@f5h{|20EgDW(oe^W7}54^CD|L{=T(EqDO;h)HVN8ne#nR*%VwBwR!Mc?tI; zKAPei#dRD-aI$M(`Urwod_N6!21s}+;{7Q;O(_?6$k63>lZ5-y$_ zJrUOiHt*QZ)X8`iad=M}h4)X!ONeXh_B=HZ`4exH5|Nolmgi#RHN-*bDZFztUZA)r zx|cCl;NuRC68td)f9iZS)PGLk11ENGiTFr@SG%|v@!i-2p$N$&*e`5c? z2Vnodi^=`}nrjvOm;K-SbD>&)D}NPOjbG%O32*n0`)=3w|C{V=k+jfxGZun<3Av`3$b7K#MAt*c~KWADdy+;$mL(=#XuUlD;vGE$)xFisXesibU zpP32pkdi(hCtBv%Miby5nR8RXtf!C!2T4fQvy{wA=mwH8eaPRw>>b#F*Kce(DZRwd~DkLL^SPIny$U zC7J-AD|ykKoN2kGO*A1gr~I60Z38F3_A+PTfw@3+^5A=klV6}ZdENKIlV6}XC9u7c zr^HWwf#Uf^Y%k8VJf&ztx4rbE^KMcs5=emSWqynJf=|n%XC}b*O5RLLVl)A!7m@6z zkObFDNLmx43Glp3Nxsz7^2wc<0M9EasU$`d;CK_FVuvEvzB>FnF+AGlFj5RY%Ph=1UOzq(r?MkOn~JjB&~_j1UOzO z2}^d{uw}_Tb$3EJ+%A9P2s1MQmX|51B1RKncoE5pt=Y00e%-sRvqrL{Ar6Obi>PdYImtR+^%4P-(_m@1;~~ePMHZXypql2M1>^ST|{z{ zLK6HgAvwuXGAjXgm-&d}OP_5U*!J!}LVvbr2k-6Gsq9>zcxr>;m3+jhnOO-iyohK$ z>%}I~1Xx}|RLKO#%RKo`u<+VCha>@xSMubQ#Au?vB)R5c_Ei-<@saI>?IbV!h_4}; ziF#DhnwXWiN1Qre@@>6-C7QS!PhHK-O4OA^Q*Ga}t;y2Q2ev#h^R=~6agpj!Q6;ms zIQfp_E7rEWN1}ycINV4qjg(q%CTHtL3`a6 z_T5Xh2X5F~Pn>yWiP=NJtVEchO>-6F@`@63wt{(^VDfSaP1xe(5~HGL^<)jRotcRW zcS!&Ukl$|zOp_yc=Y>VpS{^oPj9sMNpRY$L+OQoJU@H3 zcouj*^t=e``dh*td$$Jm!^(g>{~G`89+&%^d#`(ydlppsALH)fe#l+JUBY$UbprhL zmBE1j4}Vu!`TwQsBiDG>Gp@(&&)65kj(XP}jUBf;o5N0fw>n*pbB?{vna+2eqa&vy zJ0ssj@*AkX5u}CZ*uQt(>%3rZ z8@S{@;C~?eUU+P{H{?6q9lp)^q+^96;TRhBhc1N2E4_L|HEbgnkl&s`^R}Kh2 zVh1)AOkT88QvX9?bWKt(AuPGM9Vjf^+_n^6gXjAQg}Wl$RBmF(45V*CK7S!I;k3>O zOCEO`g^Q3KHq~9l?lrF&;5QX@xSVFdxI6coQWLWDG~S^ z8w>X*njpKcBG!L4xmcrO=DJv+9v$HA7e6wsGS2?qx#;J*h z;#ZFc=r`sf`Gj=y9+Cs%R@@^8#I5*)91u6aX0yq9{CCf19}QPvhgnB zFm`n6aTJjrm+dJm9+#~tEFPCFC@dbA5173I4;v|CYpB-HR)JSr)e9tJ6P>1v`8i0> zlAd>vn5OT##M84ROaF!l$hmAo%z)b_2L_t~XR*K_GvFx}7-$Au#R3D&fUj8K88hI} z1L!zsJZ%PyR*67gGhnnz1bUkRqg5i%%M2K;5`m}8fYB-u=xGLwP836$APjnH@fyef zf4d!j9WuI`$1qM%1iG04;{-*Ziy1Kb3V%^DI+_7PN(4HX0Ygdz#Jvj-M)AD-$-KMx z2uwUL4^UV{g7>-u=pWcO=0}vrhG$T@k6%MY`M|VSXnG1-3%DN&LWU%28?I1 z2&9++<7Zn0B4)t&nG^vWWf;d0mtQj*t1kex+{R#vgipi3q}nQG~DZKo~n& zPhUnD`$w<4h43;Ik)BCUP^Oz-yOJ8EFy5@GRVa)% zUTQ@X)|aNC_7#MsL&hj94w*?|amdOP7KgkIVQI*4hQi`2fCCJDO%*l}+4@Q*gin|v zUP&7VFB}%y_(Q^B@%1`HMa0)@uL%xfsZj0}U`xi3Ftaz-1DU#slAzfRvb3im+xIfSM0 zLl5r%ce1TA*Z)5esTOgD_lLg-zZ&iwt{L`)j)ayZ*Z+rt$6yV>FY{)2 zeuaGeDKJM+-xG2F>|W-66XpZzxc#mpu7$4GU7cNbx?Ilv&Uwz4o$a9V-*rckqYx_Y zw{ldnUjgU;Gy4$xgZ5Ikv(RXpEndKV8@J&)+iVw7oAj`~%GUEK?3z)wuWt^lOh&W;;7Zo^|VMw^yN1+fCKa*|y5;&5S0&nZ^G-5f*L zZ*VPVlVSyY36sH1j(9DnPh$n#(lNNO3gvew7TumLpYZy7hd;Q&cD=ms;N{n^o9C8Q zz)c;4Yfu}p#ewIXO%HWtMYVd2z4bsFlNu}FwvLd6TGN&bjD+9#={4P6VEb#7$zC~fv*2=n$7nD7x^uGS zRC}y|uV}(^1McKhHZ5ritSz?OuYj*?DOOU)e-u zt14vq(k3EXRUymQHlZvp>TOy2CaVC<9+c%&%dCS~0k}Oxc6Ghp-PsDgLTEX*+bGW@ zt{FFcL=&KXcxU#lzN-5a+jXPMl%iJmncS=b?)aEzwgjk_hEuG7TRteu%a1E$x#wfb za;id>n?6Dos+TKd!S)fdKvl?c-$%$o@pFYNcYd(7Kvl?c??=c&?R14KcYjb8s0vx` z|DY@{y{?eu4v;C!sR~){0SQ^C+^&%2E)dEBRUylLAR!Bd-xadp1PNK7DrC78BxIp( zyh4_nLD*WLDrC7GBxGS-Q4Kct@45SbZP=J?o2DCA;_JW-A(REG;)jP@LIxFnc=)JD z@ngbGA%hD)X#c|HwvfSvC+@#+xiMsL;YVr_RL-}wo3aYP8WN`lRLfL~SOIuLM7GPu zs)~m`w}(U%9-BH(!3BeeaG{{T;sS$5B$^9U#Ra}ql7;;M6tZQgEKn_F;{~O;tT}k& z(_qfh?EKVx_hXr*if?fjD=5WvbuwHC;5yc^-x^&?+c&H<+spU0tnD^$vRFY$Y%jla zfNWWlCRR`ax%_SbuI0@eE4T%@{4N9T?QBkR$g?diq>jW7O0l3jTZPpHo3T*Z#`kz*31GQh#E{zv>XFP3%ru#F@>auN*+^4 zx``xgdSQ7BW)`@FBoM9hO$(fo~ z*tn)n7)K zdfvJ~QDQ7Id2)F#ORGLB@jPeZ$@fs4d}0he`5vm1AB~6SC*Q-ewm5(P?`Yd*gI)b* zMxKwfic}6?g`NCz!Xv`X!{xyh|1LBmG&uA?sC4jLaBXmUus>A)OAq`S_%<*l&^u5+ z5Y~RyzS7>%x@&i7UjIS=eE)b@;U9;pf4d;}f2^;yud4T&ce^*wJIed8_cqUE&t}i3 zo*|y5o-*#=-Rs;Rx(B!$xo?4re=A&5T)kcOU18_X&aYs#{gci*PQT-bW1-_UM<+*h z*lTaEeYSlZ)cdPyy9Q1EpMSAJeT0?#jR3PJ*D;ly?)KTOP(YdOzwm6o2m0P)-XF0- zF~ox32u`-Flp8DL$u>A*;M`0$b66=zYAngNtbQeJ&34IDSvxrx1Dd=+Lz>G!uv%o1|}h59Hv;X2Fjo=PEiv46}@mu&yv1D-^>lqazwvc0{a@XW-y?h;P>R6k9oY2xJR2VY^p` zc+EZYVq_Ka92|pdvvI2Ryg{Kf%mVICg)Gm*A+kFavOE)qwzfzi3&SibTcnVMQI;e- zP$3J$EGj!tAq#^nA`2VUbzt8lGthP|&V$lrt3=M#FT zzup&$F_yvoTfr4$EQ5PZ!Ij2X(1!OFTo_}CZs7a!S&lEV3Sp3i-Jqn#3So>T$yQRx z!XS&vT2o_%FvgN(D=K7RkVR#!sj)&BV^P^5D-^OY$Re@|YOD~(SVXqmuyU3^PO(Bh z$igoV-@nlMceIcXv&`?Lk{T=I11%v7+aFrbJQnhy7Rmxu@#W!zEh^hqAbSWy`vIu1sq>obBAS zxL${pp7;bQfPt5g1!^repI4Tv{~xw}7@q;2Xi{SZeB>o$VdqFoZdL(|y@V`KEsHP3 z3i#kl$bNs@G{w6$jJ_o9R0Wrhzo_mM1^2mP+-jEGc)=*nH3tFQT5{B5Ct){(YT@?m z@K+@}953Bl^w~(>56M9Q=i2A6pJ3;siq%H3qyKzeIq#F_1a|~B0)E&z*>asutYA2D z;fI}bE%UQu1;daFqb$y~e2Byfh9VaR0i0|3ZI2ZUK`uP`FT&2CmTya01%v7RprXbK zo-HPOKp{IwmbIqF3I+Sao6{S9F5DyB0`>(c8+Jpbz*9ORSKU|AXY-!+?(}}+O?cmedV$@&4?%T-GG3?WtY?pBrDvw+UC(IPUEpC@jZn_x zf%%3X-D}))-0!)^x_i4@x$k!026+dUTnAn2UGrSiT`#(xcC~>Sh{~>@^H1jy*mvMd z=SR-*&SxAK9Qz$>q2Av#$2dnH$D`0;|HuE#bP`S4K+{2CT(Og86EMxkzd_;V=C4{R zCW>pkzBIzW3pUhqWw_p7vVh=##E|Qted9sio3`zLN>s& z5&i*TUilW`Z4~|p;qMXV1!xh*v~~^PiwI*nzsAeJB8>ZW_R% z-K&tzE1e=6*92$)V?stk zh44ERu8Htl1m3$1;Wq>fo5CSHiNcs7nEE<}bCErP!k8YI`ig*Ik2GYzOkoXSEVZeX zsM*YqFs=vyxM=~x&!Y(6Fbv_*6fT4CC<=?)eguJ+E8~xI2Zb zA>38Kv_xoU3a>?WI|}10e(IwX?uzW@0v<5;4uqRfIF4{53day;1pa&j!VLu6X2Ds6 z@1^h=gzHiGG{SdNcml$85Dv^5JOJUlDBK_6niTGba19E(5w0d+nx%a^h4I%rHH*Ud z+nrjK!uZRbS_xra&zHnKSb@Ug9xP8`aSxWGu($`y3fS58K0KXUDO?}n(iEZ+hHjI2i%Kv|i1f=}`<}^U_ z|Le*D{BcjeQx4$IdwN_B;17Iy6%yd{m}YmR{Xqg!{{I#dkn;Z%Gyq9NDD{Eag?fGg z!ec4i1L08!OZorZ4gY_mEwW4Z{~y);|1IIq!b8JN!)4$de+{gN?;m2J^x&_s``?sc z?_m94C~!QmBrrM9HBc+y*7j@jw3oGZT9*GG{|-opc~pInPw6J1^O?EfE~bDb|aA9qF_ z|2TFy3LK;L?EkCw@9jDE;r8bCa<)shjr0XPHWTa=G2ec5)|O7zyTr}}KLzapPHoDT z7)gq(h;Qxk?Jl#|Vl%-`kz_k6WWi6NvKhh2W)#i9P-ZvX^Ij^<)DV(+ibs#?+%&A($yR zvB$aA1%YCP!b}0 zQ?6E=Hcuf-?G#Q`$Vzs~RjAKv?a~y2og!{@pepVga8tx};N^WScMHra1Um&~IW@*+ z^AcJQ>|o!2%Qx1-m#SDHxG9qCP=zemDO7f-LKfTSla;t29?)Q?2w9+7?rs$;1UE&J-J*~MJB7+_QOJUu zBFS!6$by|hWj8Bi!A+55dn;tYPNA~B6|!Ka5LwvO#WIaMs}Rf-Aq!ONH3)@Zr6grx z=*dTzmOfFeuq|@ok^3*)Hpqp?zLFa+Y|Xi*sdNSQrBN(BD}0onThdh0xz`lNZgb@F{7&Fn{;enelTQbo`yM;}G~bE#6Sn`@my>d$IK>kytc&gCUmy^++?X|1SO>ZMiwWE) zo0ZbD<<5(9*!Q@XYYL;nCrq;fKSu!{uNf!QVqa!rZ}}(0ie=q28fZp}Rx3h5W%w z!Gpo|!FjNb;Kkt6!8S0LP&pV3{0Tb=ZV1c`ycZY~=n;4*P$N)6yRMzkzK7g^kDP~{ z>z$u#FKKKyHS@_*DWe8kzzS>1UH%su?<*y32= z_|Wkpc>XONwdst*|K)$1Gg6Q{!XM@47d!oaInV+F4dp;{4BRILCY;1TeHwr#1P1Pr z17eb{mK+e1ba%)BF-ez60(@xz9^*DSuoDC2S{c#5z>t@fHnOfz}F<3fwcKVY7wj|#sJQy@=w6JU<}MLCj&KJh8N*l6vjE`v^x>z z<#3T*ox(V?n|24nynZdRv0RP@a7Bb;f(->{5f=Uo)S(@MFjl(Jc!gMmtDp$LV#>3! zfT8v)vW1)TXlT=HgexMO7i&cr%jIYQ;{{I>CQmD{){yKVQ_MgbR+5BIKmboY4a*bp05t-x zQYlDDMk%a4$v-i66#8>%ztc}ZS}=a%90~BmUJU$31CW}FfzvbqdAJz(g$5v#76Yf` z06uopPRId#?4});0}W8>CmMi^QVblC1D!B{RX3qaE>vsM5d*katR84AY?dFX6eMBd zC$MBJ|3qq&o*39Ie?mM(c1nT9*YOiONI?@(+80~^UFcmWs; ztd|3mF|bAsOv1n_IZzb?D@cGBLczc{GyqjkFz_`EK;04yEF%G4c?1JkrVdVUG1Lyh zz+(CdsQ!V0g){*5J23Di2`qx*6Bw9919S)5LK=YL3;2m#8h}a*7|5mpD64>h&u9P& zBVgcD8i3LU7??o=)TR4~24Jy1e&Rh6;LGhXFogzS!8``up#fO(j)Avm02Zxd;0=6G z^M&UKPonU#|Bt;d0dV7}(wK@reA`BOVW#k8uf$czlKYc$Ij(*L;jyQ^eyv^5c5(I3ym^H7DY6 zP=0K(uifG?-8Leicgc^MiLDEOmXfU|6(KqO$MI=-shDhhtj{r_L9TmJC!?%ZF^fs>l3XXZ+*Fb{{J!02R(o5 zIpFDR`BTfcs+|AN;r##kh{yjN&i|)y{{PucKWq97ZvLBsZDBdi|KG{Z|8Hq*X?P4f z@Ru}9Hgq-A*FTK&|2Ne~>eu1kzpvTtz+DNiZ=bQM_B#RBuo z31H!3(T$xj0ab(_3*$Q_ul=kGyeI90}s9WPp`kEAjGP79u5|P zmOv{zb?4z;G11a})|LI4^YE_-v;tI_CCLVVBp)Kw^M>419Zc@uLN(Z8eXpz zZ>l0*-~4)c*q$10`+UXRR=)XlGAz4se&EA{A2{oVC-x3}gWn@;wAVYoR%!x)RvcpA z{3RB&xUl|$fw%jWtM55)+rSqoXYQ9iW};mqqXlTilhMBU)fTk4@4jLN0`L4P8ErLC z-@IZ$`|KxDmD9z}Uo6A^?$I~jT{#8a{6$g|2()4fI^X<-7PPPb`_ETdY8S|80a|4o z&bOd_)v-{;Tuk2i^JKKuKz;M)TF~zPQ{_k+@BBG3T7Xt;?S}cY39Yfve*5M(zrTLv zz{Bhc;u{8jfV3Eh88D`eZ~obYmjTz+5p3Nz2EO6>*6YsM@Wz4fl|-z~uaw*S+vv-N zD#nla=FcjDy`l>2iW1mx71%Sau($lA3hWsc*q#smvf>KfF#jxq6-4WK_pj?-I`BFD z9=q@S{rj$O|HwZXMDxxsmj>gvfUTG(#y7uAZo_Zxy7m8EJ8;icb2}foIX>|4^H@e$ z6K#itmOv|pIQZt$akOMHRFz z3)+RRJg;)l_rBH>8hsAruxQ*8{gA-Q)BcL z;{O-SSe4eg`nsRo)4FxwL+?r4_uFl^4}AUA|8&`jpvPfL6}q zw_t{;aJ08pK?`+CMtf@&v@A+R5aG-py`~CUXj3xU*Hl3ZT}tSmM1-y?XrWBWXuGPQ zg(@YZef)iu6XPvFmy*yv{=SOw-o6D{l|pMDe@_*(k}AbOtDu!tDS|y-1+An?G0-Y# zWmSq`Lsig9suTmQf>u_g>gziGv%g|KDenSQDU-IS#?>3W0fqwjvMlEihHeFl-TQ z<$%8hXi_@G^xL;8t8)vcDh1;j;jID-RZ1EO+&Wu@WTq~~Nmd!wyCCaQXhLOB--4-2 zagse+g=EmB^yb1ON_eY~%v7d0$sVmj1}IZHUQV)Vuoi6!ZFr;#$)HW?csa=`!+IB* zth1~#sBfWBpyeccqzcIz1S}`nBUMONFJL*z9;rgIIswZ`Rt0wcW&sO>5lA*$nPl@f z30O|D%CO$~V^)$?2KCLqP@v@`o2^W;`5Of+C)sRelFi>BU^&TVE0b(~PQY@KRfgR# zf0SU2eHPs@+qh%kKfm_KvvFQvfSt&E>eT}emmXrB6|h7!z$ORo>09^Hqu=_Ufrt0BQVk~Ff`CP+ zGr{f~xRV`Bat}Q8Kc7!M@AvOFVex##7Hq2)TRvL_l>b^7Z4LVS8)9(i!XLwqZV1g80E|h-a*bAFPJ> zx)Q{xYKX73B2HCC?3+&tve8m@Up;iqz^8C!+Pa_44Sb6x+?q=bN_gj|2`}G(FwiQi zeyRlR6;;q4vZB4B3Rh{uiw>rOKS#pfSs+Ew6=ME<$1(&k7wTVO3$q4d7gl0gXfHv-?lv7 z@`aZ7x4gFH#+HLE;g;T(v)%vW{)zj3_eb4tau?mx?oszv_l52z*T1_Sa(%+}HrL;| z(yj^Q3RvT6ZT=;)_kE`MUAQkW-~3#}40xNDH~n|h_mR8ry-l|^%{9HCX|SogX=URd z5I^vh#t%2Xq4DO%Lyg0YTN=-AY-so?G6~$#@GpoZm}!VMT-vY-67@fEqrlzux7GiB zeXf4eJR49a?mWlhfMx1e#(1sx2R*=I1q;Te2m~qO!WOc*wa#->OZ;vF#aTC-Z=hhT zUlbgZ3XXm6i225iazXqTA`axNIjJCZOKe!6IwBWz{Zg3C&zhAAW*&R~kHs5#Yr&JE z;96_J6QV%1790}=SIY%ox?IF8o;6`D5J5j@MXd!QK<})5a>0H7Ey9D(8nqUPsI;?& ztp%?WtrE9>w$?QjF1X(8xkv}X3(O7=Xq9QbGM=mwsOqNQW=#>+k-ePZUUpFY4<*@C#KG zNQW=TJ|@D)&XNvaFvFR6L!?g8tz@ELi_|JIUWo$fxCX2PKN6uzXNhDhx~)mPA#P#i z1+NhW(g6=bWv&mAo`t>f`1`~g;@(zX@E%dHPHrx&CZgaHYk@f##7(b+3g!s$hGM?K z>EJj$8?L)uKcWtcRxlm?)6r=V|993OZy| z*ba#Tm$g7l_Z4y&8fj_98!LV*zj2`XAyFWQu;YyfMS&c`j)IgZkVDu>O%Vlh2s;X{ z5Cw7wI|{<0;3smc+|T`qDEN_7Kr&bqJRuiA;EICBtpzzz@Lg-c^`hWGYe9!75cmE< z)KHv>DEPee21Sa9g3rnYi1iQ!_sRvg-gtp1_>8sSJW(LWg#Y2z8_yL5cUj)J;dW6V z$AlviL9o#kcgSxbL_xf9yR|^@*A*YN76<{d;=@t_IqwCk4_XV%dG&s4fjO_TUV4L^nxf!!)&g@yz1CV_t|&Q#{kPFuej-ra zD!&0oq$rSM+sTtC3SKR}LB2py@JefeiR$Inf>($)ZjlS%`Vs{%wH7>A6#T8VU{Vyk z$WriSv$=mG7a)0(c;hB(L8~Zup|!vx3U06ze8HSoN96*f`Vns&mJ5)pM-*IdEjUvY zWUU2fh=PozpkU6Dv|NCsIpU3!wZKGmou%NlCaR=dfYdVr)s$2~$zw!;W-Tz;Yus9J zy?8@XM(cp8Llng1H;_a{6kKC1_=+fy)YrQIo|*fyD44Xqp^1V6asd*AhyqFBt)omF zqF_vVgA!ASf?>G;nI%NQUTeX9qF|4;;9gM>tgEX(-h5#LHXwCKQgMwakaSMx_%6#M zyh7Hza1uBrXeDc2)+3D)*_ZA_W9w%hj*H6AdYM^A>--NsY3>33PAW)+Cnt>Np7j#5 z0DH@qKOhQTY$-S*Cfr#??*D(RJpP~j|4PUI>-bU!`Tv9P|NlGu|Nn@b{?BQDR@+b7 zKGF8dwu7($v>}K8$FTE%UTbe_ljpmh_j+#jL_ON-2bn+cDOp4pJ=|l`IhEun){kvC+YuxXZ?-!(fZE%rn<-M;{UDB)*dH+O9Pp% z8vo?ZJ~i;e4R0i0-oOv7c|_J8CtnMLYxS}&SAJn(;CnB*=+1rr{t^S-+T(DqaJXiM?~!}{{Xc#m z_@9AqBa#l`bS516Rv5m9YH+^ereCGCj?JZtHxGJ`!>?jk^%!Wy&@ta})2#xuG!rY@ zSiQ&LRuO0kv|`|v@3`qz0a`YXD@G9>m%J(rv|?nS@3`qzVWyXtKTr|YdmJ_(qqS_o zR0Q=MH=QaB?U7JLSnqK-RV1`kKz$3cPlXwZDx+P1Peno-zq=x+Zvie9;SgkIri!rM z1^84Xv}64hL46CRO9ezABUR-Iwg8ukKue&NC)k4NQ6aQ2aaBPJkBW&FpjFVqpJEb$ z3}mYYZqp-%zijo9dl%qO5oigt@|9r=raJ|#O~JfYc{wb=onoS`2D)K^c~f-ngoliC zjavu)^TRBVao`iy=K2=kPBC0X9CrD@FNkHm@Pg6{*L@47JEei&Zc*{3NZ*3#PHE<_ z6%F{l1?Em+egXZ~jLNZV3-G4sL($0bR`%O1FmDRO>*BB#;~0GlaHi;Zn@$MJoGA=% z3x}=9n>H-Kmm*w6MBpc@4F;Sk@?bpKSYt(pyZOV1=FR%2jhv#A>0e5ON9@{6O#jX;l{F6{}dhg z<^%l;SIu2+$ZOxiHKKETFrEkv+|C`X0}oQZyqzs3?DGUHAB-n@2j2hs|K51*zdl^r z-VF;^6RbptW7P=pT))<=)XK{N;9U)W1{Id3=t?1qKG62wo`eRbgLqaA-cTz}cX_vmiYzx$)Pi1%0#SA`8pgkX-P zDq|6}z{1y5h5H69uy8+B!Moc63y)M4y#5l{cT|DhRRa6=DzF13usf^3UM|CucdMe- z=Uv!oPM&%KttjPv3(v8jg>S5if_RyX7NAuW#7iw`;aRJwQF|A5$Y=pt`5e>2b{Q@C z;(UH*^HVK)3ez#RgnM zb-0TRxJC{)`^e1)KmLJTt<;-w5yG(c_=N@>y79}WcHMp3SwFktA6D-A*uTY_qwCHw z>b>On1!gxYgRMP&zJU(i0Nke^`vQ&XuG`!8>HQ>+2jk`m`()*e5{fI~O_>#1E|ea!*7F=E%PA9xt~8v2ZSFFAg;*^SCz zYmd`$MK(v#4T5{|E${qJ>&{)bzIqK#7rxX$xAr)WDjMF_s&I5pQTOsPxX=C)R-s#V z-TIcxfA_uB51RPsjH0nN$O(OZ%bOZz*W%6;9MZf>1j=1<{7lgecV)1($LVaM-VFvv zhjQNc=)mJov1=C0YUx}egTvY&eD-j(|6g18^}6M;W#3uW-0>#t@$YQ!ZcDfIwf>>? zv#rNk58z(ES9+e^a!bqBmPYs2-0NIVxw5z;;FhM}G~JKe0Jb-N4{`S64S#I-`-WZh zuL7#S=yohi)i&E&Jmf;yvwvdMfVp()XVT1e&#$#~ub zQoJL3qrT}vA$w_0&ygcXx)W+aO(f%mWG1cV=DO3<`R>{4dgy7)eB7fJ3c2LL*@Bku zN%f@EWIC2Ns*S}_S1h4*tNH9eemZj`tsdUlyQ#Ntdspw)u1#ANOCuZJ`{b94-Iut} zzOLvSZQ2_c3q<#7X#I3t&1p&?lS*aM%2+NF*AlbrK_Z!+QlfMDf|gRefniJA(=(~= zbaJ|TDs#9er{y&@7oYB#P0i$cW|DC&o!1iaOuC?@3+&-_>CBNCEit9#Gqbt4mhYY} zq-Lm{y?woXihm|Mttun4DJ_?bE39G4p5%;%2EQe|#5I5-#~@&d7zP=dMHDJ7W9X>s22-GMz}c~%^Z zA4+x~)Oyl0Jqe8HOh!%MeZslDcSmnu%i~x06xX?He05D|dP2*M4v&seFO08K)FBl$ zp#`@+_hQ$@J^T6rn##v>$!tMfHu{0{54$zQ}d)V4$mMFfbB}hW3q&24<4!WE?}ZCzDIf&R_+AEa9Ny-4opH!+**| zRIwu&(DwKB_3glb&S+|$#{Kg>7rHL?p^u@$G;k&hbF7=zUvf`BtzO_-5kqT2)j}r42vpLT%pqlLTFs@@IBP2?sL#f{;^ptl!=z=WQ#rLe zlbh->QFd8Tnzhoz*;@C1x1Z~}_%hIw&A#!utj1c*eua)=8PSRtk3~l?5+5&aJjcCa zusFA>DHs_HCe^7l7G1t8r(u9Wz4RDgy7p*V*P%?VE2`xV zgHv>ksdKb2di-&)xNtg);la`07E-F2&2&u@X?zYC<(Ao5^bF?l^mdKa30aXleF0uN8U@9_sJc zwro<=^~QX3ONArlnL3`V(RTFWbH8r(x8s$pIjvLp{-lFTQ% zr}Ob-oM=umq>!6UZ0?!OYq=hEwlGZ`4f9@0^sv$D>FptA)zjCLpFPOFZQ24R&emR@ z8ldb4*Q3R|wY#^wm$RO&y<6)3ZSz^KHC;4|SS!p4Q~F!(+}Hb7xK?dsFR6uT`5nto z`IXO%oe9>madSh^AKR0owH!=B#9-_&;b-P<059f`ZTY@&$xAHy7 zB>OL4z@VtPL|&9IS)9ujcE%4MC3GaB70e)Ib022L5N1Zpih)$dQ@JOwB2W^+~Wr@%o4Ta@|WL z{3U+>&t1zHzi$X+@&$8_SbvErvf^ErbhuVt?5k@e0JgHk7Xj4r_`YDf%NNGX3uMxX zB$Gyh#hH&r<2t=6Fu*&uwYk>!aV&8yTi}vJuM|_$@hwIS-4(}_685_OnC&jjA_sXf_3SYzS;Mnlk>_Mo? ziV#Z%t7lvQ3_hBny+v141#d7GAIYz-L?)fqAPKXC;QCpuJH>=7Nl_BIvxmD6<$4NW z=W*y1QyM+*&Q52kPNi>~&V=fIo@{chNCkSDpqU)lJ4&3DX(v{tX|cVPy1jbtDyr435g6>54Gn~5%e0vm(GY^uwT9(}5aFpm}2 z6j!cq@DGpsXR!@XXOh@Wn8I4-q~4Lx-f=!*b&=AY)}{+86W8i&PcoIAVdKQc9;%hT zO~NP&cH9NYqvi9cPQiXA8X6-V;}^w?>apPKi)U|a^6wswLf1K*#702gbo$x03T@k+ zfuIr^1y+=?eNAe4V}g-nQ4d0SBkeM!r4DMju7mVmzDMjjyP!3gKjK=Bwo9a5{2S{Uhlj(&1aj%*4YWlz23_%@z=!|jU1-Y>ep7Tu z-7CW+b%(X+UItCnpFMaj_JFjjq>VPIbVI}PI4r%Cy{C9y#C^6_+}P7F912Fpc~h8R zG>Hpnumwx(!w=KRVaRn-hliul zQJHutEs@BnsXVkK;>|Q=vH!(%jv1S3Qq*`&LeuHn(M>zs`K@EFi?=}r4@2iPl@a=d zZ4&WQ^Pwz$zftTNb*~tutHx9YaE}lQUvT0~EJQ5hnOtEeB=s`@l z!;EQ4cALC1qNeoiQUJ>oW}GQW5bcySY$L13+#;y#sa}H%yTkpMu6{(uv5Cm*pjY^0 zw0Xyn?{j^Z+f@}Aofr?NjSdS=H$7@yRi}cjQ5%J=XT;xcb9oEgkaj zj)bB%RbnRs#-5*@Dde|aX4gl&IpT+*6C+`zB)!R&yYEt$Z=0pY;Mk~M7pw z5DJ9-L*wC4lzt24YK~a|^1WMK{X1lMO#4t|zn@qFgO@2tHiP_{ewS~f{07Y>j+@!F z7|_}+u8R${K`ijSL5-{`QD$c6t91y*jo@b2=D3b4Fct~M#$%!J7~`e%6Wf05xb-s<5jt zHe7-?(C6y2Gztu8KcgdSlUQPr4D5bVqaZs?>UQmH2?yvJ2Ry7Ke)$hnw)~4os=|$u_oA8A+zGlp-*7k}b3oyHwr10o`9X5;~RrWMt8l z&15*V`uEEAtyl(F9@GnJ3KJlve#q8H56vL%9wVp#j0c-HDJhlglL|_h4~H}Z=p}D1 zUgK*yw>XL3HE`fs^{tPYo;Uq@d${7`hrO-~C-UoQ==yr$t;FB1zFt%LAhts6rh<#I z3ir=WVF};y53&wS?@l-xZ~q4YP7Q zLI3sj##7Wj);vsvJ(JWvZci?m32!Q%y{_f#qNmurmN)ry8w{7Hz6!bJyBjXSZY+bI zxW#)W+L%dWO=!BII8Xi(v~erejN!-o814U8)y>r{zjgUV%fcPEcSJip?cZ%bx9wYP zuWS8})?(`=o)5J=*^-9a=7a8}>%UyzV1kk!ix%V43^&@+V>^-|~1}(Vul+oGQlpn}iO{%@OdDW_8XDn?g1_Lz|?$5s$%D zJ#$?2MO4O!4CdbzO6M{&Gqm$##>arLrGdo4Wokf2XR{o>XIwp+NoP`XhX2zD_YjRm z-|s7K$v`@|i@wX6q9dcQw{SKI;>DE_IE>O*(=-UeB1qn_E>p^p9SG_{c<*>LXfdrU zfn6$!)?@T_KEWM~+cuN!<&8y8+Pz|5aXn_r@IGVv3GZKm%xo|V(dL-jP)=m>(cssC zTP$^b4=}}|*&H;{{IsSOVtrd;y|GYwY9^VVj?HGVh_&vcGx?*2+p}*=cQ4xV;j2=v zuFHIZ23=tb9YsJ3F^JONikEx@KC3^b42UKsk435bLu$r-?%Lw=jZGX%hdp@b?~;S>s)Jx53Fs1GNYwuId3CI(*vEjZ%cnKX*r?* zgO10Bb%ZR!scc+@#k$ZlK*qhDp-3RcSG!Q+kI(Wg(@s097v{^9Uogzea3oB9bVMl=T0W)1~PA3rkfUb(N>xTYzBU=I3^ zsZJtpg-ewv+`-<7=x$3l3>P!g0hnA#9M1O;ikNskMl2d{cV`oa43eO|sQ6vMDemh8 zx6lK)NaQfun~zT9>%8;OA=io>QS2HnX7tow<(v#DfP zCd*w0tbHtEtS6gI(yxP=%ylB3ptpN-ci*O#$1j-B++9Uv3vU>kfoCFG$Yg1>^OkuxHgdE!U|WQsc=P1o%C+KyK@I!XYV_J#w`QjiV7D_P%3r2_TzxD;Lv#-h5HH}_1j4+C$&>xs2VOS(}LTn;N z1AE7OG;#Bac9hK+jQOElCZ!CLrNp3ICnnTv4nD6r8t}pBm8k1I#kDc0;VX(~uWcH| zeq{^&Q|jCVG}F$(Z<&dg@dvR&^THQ_s0$;+hc?7)O@Y75Q9g`G#C4Ly`QDQMF-IVi zjpw%zo07Qn7k572)kXdd+0-Gph3!L$TR-`Uz%{OoA^y5D24M_SkL}x~WipZniqCl- zJeR)W#*IxQ6M=vja~Ri1$K#6vD<+jn77ChJ=K&QO3&_Q-uZAKdu~kAQPs{WyVj9Vt z$v1p(gb!r0MERZY3n4-VGb>$KcQ~mX*{Q;l8K2SCB@;XQdbh0$Bkq;HZr()n(<5pL zJ%;+;o~wC$BK*Zt+=%s;+~2S4eXeU|*yn2+$)q_~7P`$1m|*)2cNx4xRyE=cf`IMX1In^pNWLUq5V%MS+uFMgVP3y3o^cgL z2`}$y8VT-+jEk{hc1H@sV_ew?!zD%0h#4|Gg}UZjSu|HwU~FOt-dcTjiS&#J_1XnJg*t{%jVrQ=MT; zI-l>E2n>U$+p#~nA(<`NpS(S{-+k_m;&S*4Vfvm;LH|eWuEKvn=(3-d$y_n&x*9z( zuyFZpgY5**o%}577RYLwWzz-HZH@H{rqfPjJzu_mt zH|y4yZN{~?$_F*rh~PcN!C1qF+1I_jn~piWv)FXRy*>utDR();CZ-%r&de~6E*Z$EWxMeJ z))ONLl^cNJ3)maJl5OQI|T7rzT&-$0PyQ1+u*5Lx?a@nUkm!Zgp@@Gqt9~^aIi~XVlvHv62F1(~0>2UU z9}7@?ZAcmS?;Z*%YxJJLsNd15aJMl0j>!a^<^^SBbX*yk7#cziRK|kqsO%v5|IOl# zR$oW!WgV>@t>F>G3XUt`k?~O(HBlI3z^i19HqiK5qoJWt0LMfWM6X+55DITVDSINL z!-_Xg$As7f0ZHiednrgqt5>0B>VOggW)t6a*f3nq38z8~6G2O<-GR}OKxk}SIf7Hz zn$$qhK=ImSRojP6GyqIb+684pt+ud;hmkq|1Qks!+1LvSTNFKJ9V0cB7HW2+C2RLLj^ zXr66|VVvP)k>)TPQ|qL*f5n(i`U}QSeIkTTmyY^8pcb>WAm#(}5P)YY2LBaPA|Mkw z(47Fgk7+rT_?~5s1T13^C>?`^EHtE98Q;Yir0LS!<)2Dxpe4k^@w$1J~G&u{-o8% zgtaaXjKWT|^Rz{EM=O-0jNa0OmaqzC#)kA6z9iLkDi%&}D}eRBn9|o=*QKJDhKH6L z{bg+xD%CzA3Obd2=G3PjCOZ0M%vJhcA|lxXvphO6?2Tts1cb#k@7U;pP{hmR<|c`0 zc0$)H8)9E47CaOGB}IrpzmA&DJ5jD0Df@WoP-xG%!dO80j6(JTqysX02<{^Fmo4?M zpam;529o0*#DS$TlBP>eF~W}n8iNWJ45CZp(-euyQl(&}+}NwE0v|j!a3g^Mf})PB zP|6Wx0Z>%z><%Ui;O-ROrEt1$>RdzHK0!`}7E|7bEnpwIC?3by8Z)TO*S>dnuylk7 z0IyXV(q3OzANV!4BR+(Cu;Ww)Bhh~fy^OIFwnovTINOgY5XX>Ae6vOzg7qq1(8k!J z%|mb0Cp?=Wn8lvb?Sp{e5i@)a$ZM79`}$h~xKrV>){vy~w6~TRQ{2$dsdSu@929ij zTyB)s4R#$J9f^g5oeCF|S0VUm0!NlievM-tqyC{#G!XJyK@4_`S0#xM^iM`((TTCK zp~+4wyonNvNPeZSG9aU)6^&6Xc)909LSOFr;{xgAQqfzYSpvHcZ=8Fdh~ zA^BW3Bupc-2;zcZu-G3XjMP}s*pWp1(QZ=6jWs6gpvHPLxB~%!H8TCNbddvZM=KKn zR{a_?J1SR*m?5uqb(`y+EevXm`N+DcdeLCQCpTEUWb}aewY|)h*9Ewbq3qi+pyBX{ zSL-&GrEMMhZfK3kjg%m?Fp`!!9q6kr^+|+anTFDdAk;4qk;;TJAag86Un#DO5oY{nILiZ_5Q6qD}=3b)$zV+pm5tqbA=fhH+CVtSD)kWuh zJBb?69$1Yrh4dDu^b zz*cD{2}NQj7Aot_(d+)A=&yYT_oa24jn9EG6vIyX6TC{guCuw@Jze zL#A#7u_6CLz6bm^T21?H09(6cjw(kg6!Vj2tMne40uD~!#QXF>77^^X%;HJ0B|$}f zU;;}BF!Vx}XW&?zI(TTx5Cz_wBN~o@31KIdv5uDtK_)zr^J63cZfqF$&B==5U<5`C z-Rf^CplOWxYWVbE0B2d>_#DfFdC+E-j?v6OhEtI+m5EMu>TJ(y&o+cHe=9~TM;FCj z;#7x{xqLwv&<2a&BU5#cM3GKqkJwjY!m(LMj7SJ1b4NxSMyX|C3zmRnEIr}Ixde}~ z%QLsp5;i7qb+*siWv_FrxnHgGx0&@@AeJUq-s zBg{@pdawhHZ>KT6 z_|8GM>6=)oou|@F-pCTIz^CZL%U5Fw(Xq6d^aoTz!TwxYCnPl!=CWaXeLOJQOsl?R z5eZo>VJTf{tT{X{^g-5iBQ zcRfu_eR_720|jrEf#5YZ!9X=A@Io`-IP*BHm`4~AFGx}PV$n)&?8U}`uo4LE4D*?p z!@z_sNPIejRO-g&gak83$y%l(#3@JQ7$`%Ey&&&i8e2aOfojAYyWU*Woyzq>=o?a% z`Y+rkT%jtBbs&R2SEnEWIqOp*GS-N|+DRgy>PB38(G(|$#ZHhexyyB5=Xb0R9 zj#a_@a3Xf#y4Zy-M?hR6S$q3?P!lhRB zWPX9^XF3iG#yR9j0s^jg3BiTMRN!N3dg3w9a3a_ zCWnc>Z9=TerHYr9Tpl?c6~_9>eV)NWqNh5);)lcW8;P0Nu|zCy!qllC8!o@jLmb?u z0+JF)$2XfwgD+!o_Fl@YH>|OIYtVNoHj7wx>=CUjzG2`@G;BCam2e9A^9wvJJ#IyS zTStEZNO2QJ9L%)LS;S^MYB?3gD_Ba5_xKcMW3mGJ{$3B>Iq0?Ij zIW9U4y@&Kq-Pu2Guw-NY+pGxz92IiegqB+zBGEZc?d{fEUA~;;$Ppq13|qO5)*0$%DO8HGR-b60uswQt$U(APa!JM~HbE>x%WMHvXioIF=|SMY^h>|J6cU%bIRf%8X-zxI!PjiX(V`Lx3d9_%Jv5gzGAS7=sTZ@oKO@+ zQ7IInbXZu#g%1^@Nj8j_Y=%a_22Eo=E6oZvb+V_%isSJc`gVc^WsuKcJ$Zn%qvVc- za)MHNXT7Q1m@JWv_9?0W`PmeO+Md?tYmuzbT6G0RNcm(8UT2u?X47<>2iDcau)DDU zA9R||R_QJ{*&ZE)!j}lltRHn-nHD!aS(f0bu9~p`BKHjppp7@5v#?!r;R&{N%1bH_ zE~+S%*7<2M4MkTP(OP+(lA?e|C%sN}c)LYZIWoz9{dPg~hpiaVrH0nPtOMZ_tJf#1 zjq~}!pr5|#c;8=*I?gW$P`Zs(^IEdir-%m^Z`&1d=BJ}USuUzZTNcazCbb)Mc}A(-h92F~S{e)`4H48>IU34ZQvRlO2azv%ySx-m!g3^**q6&J z^_LXcy{&J0D1@q{dTU8}y~YlcoS!AHmK2r0Yj%xEiPEZVipz17I*>}*U{hRdn z&L}}qURsX9IObmRs`MEC|2@w6fAU2+=l_j!3jF*(a`yMq=~6NQgy|pW{J#`HcrwQi z4Wkn_T`bDnIsY$t+idd}=n4p#*7Rr`>FhC`%Ety%;@zmbK(IsfmR|3@60?w*B0D#b9EJ4|T# zr0?shmjHIo|Hnc`W&$`sSr!;beI6=WMd&|6&i@ZO=l>}@Mm`(~C)uKNF*xV{o%8<& zvq1EcbN;_96`wc)FKxs{0tIV=1Ix*D=lp++r+qllxeglwS2`)qVxlZmreg{Ca7Dp9 zIjsaqMPNnZgsgaidG4J5*Heoa3G1Bm|9aSobN=5s|L>gt2lFILwR8Tz^i(os1aQv( zV`?Dpl5_qa$^CZh}kvQx}3 zQ9I}Vo%8?B`G0ng1??F1ECm$~v`Xjqo%8?tZ5ig-$Fe*H&iQ}m{J&}(3Ns@T_3Q%` zjsQwCbmwd4=gt*>++^h8|%&WlB~jOG0L3 zr_los^_*6^WH>DYZE2RFKVK%U@|EPA|2Ib;@pVtvBwP|_anAp{Z-}PI#mW} zRsAclKl}V!&iVgp`K(Q`rW-c@TxqwQ^Z#Yys^kp0G&GRwbVlAe|1aG^Q@SfHp`J}~ z`RRQ|V)JxH35xR4atzWze>wAm^cd&=uQ-ep>F_u~?RtjXVjak&6a1d_QE@N4bfdNI zXbhO=uj$w-F5=@aSuc}6h10D8yX&~ECt?YkI7)22k6v$8JR>y=KPoh<(^6z!B1q3| zj!s*_&0qx99_h@qxJ=W6-UwK*-iOjx2`RsU)_Caz=U)S(BSCigdTcZhn21C|Be?h` zo}q9ao{!3yjQRzake(7v%#K54WOrYR+Y~85OWAFh*d>(Sh8-}*U9p`k)DS3oa8R@6 z*dFI8zs*{4ZpOyNt%xtD>$Z(EQAB&(jLot+hA=wLHP|NeHt)YRuF;Xs)JrGr%%$rb zgQe?2oNKVN;>K6bsw!lC|0}o#o37---4loC{%#|A6tNrKduisVkk%8?40o$*lv@|~ zDoS^@_I8?U&8J*WN6m#u!_^gO%L8o&C@Q~=7nvR*u8#_jjE^d7j7C;&N7{w z2yxYqH;V)>T(`pwJW?`vVg$wro9T3D>RvBKU~;@DGGJyXT10uJoz(@;fK~pIpx@XO0x+EW|BQ&_r%k|7 zsl&#JI$G+eqtl=CPSlZc>xlI#Eh)!ao*aB6&z<}Kp1z?+r97sV@khPR{Ugr(f4JGx zx&M!GN$37Q{q9oB{hiMJf9$@rQw;}{LZh7c|9ru_iF{*v>i=r~+*3G?D@Ex#n)p&{ z;-^2~9ZlTO#GUwmoEfEnpl8}8+!AN0rT*>Q|MxV$fBRG!pcDUJ$p7y;cI(9dJMsUp zn6aRZ|JC>Zb-)17;QoiYwlCrz=i^Yop@2gHhXM`-918r|DNwv+O+$PAs=C)MFaBW- zYHtW8<1?8UQx7XcX)rfC70Q|5C|a$b$_gh4yqAG{aKIBq?B8psKF{jW zgLy5-j}IP5rW2VXqDt17OfIO-D|} z$sBsXUc^7_Wi*wY35#k4Ru$`;{$7$dU#~o^rZ^Upu8eNzh;}rK6UIbZvj?8lAY;nJ zX;KU?=m*mzXhyYBoNgN%kA;I&(AUTA(B-wG7*y5ENBqMff>@mpBdoWCf#DvGk)S^k zjOp+UG+GTJ7VwXahet;^WC3U6)LcS-Aw06*KNJqeA|ZcN2isq{+=6buIs-b|^dc}C z!y`Hs*z}T1_m2kryC;VHkx2t0a&#np#nqxXw(1;r>AmS zBB`bM3?NeR>BESY%!iJ~XJ&EaiimJX#fc5k=GFRP*`St>7d)Ihs633&CL=%Ic+I9D=O+T&)$~=-b}AeT$gAHhd#)jIX?C zo@s2OZ%c3g_HA+x9LB)}*PoAZ_-X%N-#l4||2rRt0uBWn3OE#43JU!Ctj6~G3+rCj zQGB=!_!aKQajor>FH@ouOdR4vMEnp?#LFMGGaG z>%Cn4W&bkG^DnUX^UusIdgo`1LT&Z89hocfpx9uBLaWp)G{03USkW8yH3eFN_ za=B?0yL#!pXPQE{ZOfKzTY7sp%YCq_bYiB-Amtmv=*Z}BC@90&ZU_T2$#gOf^6i1~ zA(@_H(}Qi+1QA!C#3mH^h-{kU{cSgJx6(%kHFht9X_#WO7oewOcwQ(p?`WGgU07sd?0d;F9$0 z%nS{xPYKgM0XD)DW0b^00b?BxN5{i~s5ymLd51BmMyd&sr?%21U!9aE#LOhZe!|2= zqoj2zHmSO3no)9)(rABcwlIAjWHpiWf?6V_4x?XkwFD`u#gCF!@h2ukE^{Q7o=qLp za$cX3Ib4=`1Mnh?ikWT$Pt7_Ne>5N`-N532Sn~qLrq@ykD1Ehopi!sf?}`_>Mt5sd zm|~>~q;#T;b?a$9Sk4ueSAj-n%xp3JFdIt0%$}DJMoRmlcVO&v+pnjtr;g|?4arRk zS(+3wn?x_@AIq?e?k~GCTS6#Zn%yl@&e53Q=4>%(Ft#~JMs3-AtvE8zw4OcVG8&Q#Mu7~JvKZ=9s3eOaUBn&Jaw>@ytRs_61uU~GP&&H;l%So2 zA-$!?VpkaMP8k)!h}orQc(LY$Pe`1i6F;ODik~KL7mwg^$>e8qnx6CP01l7 zFWX$v$m~>lZ88zs3^KLR$v#LTnXZ?yCfEvfLrh1;WAxOgJZC3zE_RRZhK9Bu!nyu7;P;z^cLPBa9DSs#onoE4)#fd?iW}?ozl4P07 zq`k4a#Y`?!8c-b-w(@(6T7~2^)N*Aomzm9q6lr>+6WY&ZGbHg$SKWfr5DDv?e_+v+Q4^F-E4xImRL zh5qU0zu;oTq79k9I$HTenhg0PURiSclrFqAr>VJE=1}ZlGFO;ZF5jta#*hw1MkmH7 zbwoi!0)pA=-ya?s zRQN@k2AO@pg|*^S2E~FYokl*zAE4&>C8>nBb|L!0Mo$=G9=r7V9*g*C}}_!?v&{hBp~fCrSi*KFNpf#dzip!Y`Qo&H^P-xG%p2FC~z$c^uhNa%|v60t2%`9!w>r7UI*e<0w-k zN|Yl>Fg$f;21;ZBsv%NwdX=%!1EGj_Q|B6F=Y-0n$0{f+-vIH;KJ;HaW@!l6-J?_q z=d#}6!O{_8w@y^Pu&U43)dv*|79okDaAZ1vv1$NpcaI*$XJJlADbS!TDMVSXkhO3O z@l~009-CPDOVfl@N{B9xzP^P8M?mPDg!NBet7x6z3Ie!O;p(xW{L15GEinevP#&ms zT+K~s1v8bfXq09OF68izObo_CSB;HECnBMksY6LOEL%a0{LR+%-$DOmG!~s08ylMJ zw8EPxv4~`yt**_YwJzE&m81s>JQT3w1gimg;c**Diu~M?((qCQCHs_>R7vMg|{@jiM4Tnd( zTDLJ3Z0pcXbZbm*gw$|Ush-WBf7M$+B7|pxC7%KmJ^~ZAF`;-{yW7>LY=Ac18QLEj zG4_67!A7e{D$S;|YJ$lobYCGutAbp?q=EAa_zs4DC)SORP7J9|6F=z7>KdOM3w07R z!e`ijm6x-*(MT{n;ve!UHr6m(=xdbmv%(UB4d+&%nuIXdM^&bTm`z z;^yHzBXlyIhKZOny?lnrf0!!siVBYdhtm?=OpL!63{o6e_u24pn)3Ncz0n87gR#^H zhTvJh8GODID>9#)N|V~5DyT`XL@8txO^r`;gq|ox!4(uS446q3WFOI0CJ5UI%fo&e z1g=yUTR0Xf>&<0O7R%CM!h_s`0$ua9c9ClfHH%Ecx`EI?z<*P=P_E@A=5*TX~S^+!$ zF4LD9tz%`fzJv_aV<>X|1E|1ntYgO0`7-93-6pUG!zyGfCG4oX6>_;9>^ks{gzogDYhi2 zs1HnF2`-La$np#vi&F;=O&Ovb)Cxy5WU&{*PAX#^FBO7Jc$V&eO+JredH-uEplOWx z>Ljo)bE8Rnz`tw)``vSp{fAUswnjc|x&~L#jwTC=S}=L_dZ@)&vY#_1T-Bl>?ZIW` z$$l@S`<@|UXqJS4pY#DIl|FY88^#_dl|EQKH~(^8OPpUYJ@b)aS0^2-{3&T$@>8-8 znR=M5?j-6skrr27ZKG%|oQ0YpMZPdAwA~VAl#8?Sj@ourQ95;PkSVzk2Bvyxc9Ni= zHH%U!3AnW7OFl+A8!>C66&AI_d|WyT6&ok31HGNbW`yq?#9b&xWz^17X(oTKL@V$q z`tWj@S3-1%Mkf6Ml_2we+!V1SH51ZL@;Bju(PonVaY=qcR}r#W!UE=L0b+AiK|LpTaXEyv9K&Q_#O$#| z3>nW+6ZZf6APi!>whC95=4TIH3q_mxjP%x-+Jqrb#BLgfFI{nz>Y+Ng%UVYOX@uZC zcJW||iC#u6hKJku*T_r~?hBo|H%fL(NSNKB!SKkX3Xf64M2KQRvT2{degT4q2Rrc_ zMe}9DptlcUN$`8K#SFb$53M@sQ8>v|`ck{u8v%qbp@FJ`gNIp#k4c$Hm6ZNG)7&Wz zi?nux%8=48OsvfEsw7ic6}ux9(I0d9BqM-6E-X%mc}I-vxJig(EwPnrDKMmyz|FJB z8h5=A&(K|VEW$u{Fxn!5gC)Y0Ox9Hj*)&xTe1j%}eJAx}J>_8HcIWl9ru22ytw7bq z@Rot#H8z_t)aVA={!ma5$C=0FmU*1b;{_?4KP{mX?RE$&fzWm~pK_l&KQ+7Oqtj@_X~}R~^b9ZJB&NI@m~_!~B)vK&FH-QrpyOPoSS{%#K2NUxlD@#C z&0?LuP?@DrIGg5^c;i;P(r8^L>*!Kv9X%71NJG{m6vmAmh%x_d)`S3#M#`b(7Kcd78K?FdSx3v4Q&}1}C7J7J zozV^zSQNi?wIxfP@U+s*1)LNfwX#;9XrXWithvJ2LWaso)=g=RgZD`mGsYFo2nZCK zEuad;zRRZFWIlbSr5-KiF)#p&5$TxwI-(P0h~u_vHia#E4yfhlmDNYsVwUFsip&#NY6I|6;u-m?rEZqmuD@v zDhQIOrg+4^oH{OL>2@^nrPjnxf4)1KxS@%cucSY_CSJBi93|Y`%NVSS?PQpo);IbR z)oQ7KJNf@9$P8j{z3#(-2_Bgo;yB_C2M8Mwcq~rEVPj3ge`+3^68qb!GC*t96{I~o zvafIZ4L8S^UH_-rQw z+&GI-j>Hm1Z9PI&Qe^kGzUd){XG!C&CFS)Rvz$D(C9jqgmA`9toK5`Fs%?tPag^F} zO4?vkT#kcPWF9FgK~Y{>j={)bQu3vl>S%EXnRIx#tnO z_vcMz@8qQ3XM{eTWN!MUNM=vLRm2rA9mFLKelQJ|Si?w0Xn#k8$R&v51xCWi^7}4$ z&QhS4Qg0Z^Ev%Pf7!9Gepb2KKL^fG*7s4!ihQm*+z3k~|mcUj|A#tMdkWwYmNB=A8 zXZcw44E_v+0nk4TWHnAlM9We)2H2tXkbFhQ>LAX8>w3H;o$KmBHEZ0kVKmaoZGV>C!-+|#zGb5>aCE`5V8Lw z_;36~3E_Cc39BctB)JeAKk!1)DHWD#$Vf&)hCcmc86KOn)DlAT91apM(ZK=z^vlU- zHgxj;iGwW=Q#1lj{=bqlF#MdalmAc3JHc$;a;`H~?OZbT>5nn-6=I8iI?Z$YA3Z49a{QfQDv_?oz%VL{R zh^LEi^8Y#c{}dYltCHv?Kl1GXd%64&{ik zl29@e9SbZo6i5V_L7lZ0TJ+n+9syzJ9`%HE*35L(PkuQ0|D61PJVT%!H&o(|#rXqr zXzLSS66=&WB_@(z%QM?rVrp1Cd9ayq#mWDNjKYeO|4&Noc=~x5vHzzmkw)sKr)Mrk zC;y+5|8FG762Uw9|7>&Eh!l8|?Mx(4v?e&TWTtcS|HXLPM<@TElmE}j|5p}0YHFP& zA%vC!(sU8O?d1P+^8aDquOD86+{AioF79f!Zh;La|omv6!zfjWk>JzlAo8W0@BGWT@$dqg@|3lOS$y* z42&XO5V?;d0xQ0s;PwFNMbmx|;Yp0xiA5wv$GxJ+AA@vBbli(_B(R%CBa+_1{Xod6 zg(ULV#gGYi7PE&d8q`Rml_icJ<7}aHI}N{Qs^m{751{r?@u4$Wau}%*>|J@S;E) z?Y)#;Il+(Pu_t|(BEvnF9eYG8i#^pdzlOyXRAHV2)vxD3#a&eT3#8(*A_?UTr`1N8={y&{Z@brR=noj;dme(<9vVA5WOwM1H+e{>%uD~uSzgdM_+|0CS z#xjr{+py!XrD7hor<8I$%Ud4qpHn$d?KD|4)}=;^e-Q{|`Ep88cG0 zM$Cy`t|2)2{~(%UT>K*QpOgO&hY#1&wUye@xR#~d;7{ZHBd5v=7mQIC!viSc}t$w>iDUq12WYjo&Q$I2qeKd`TuYi z^C_g`mMkPr{y!)GUmp9H^1E4JUHFS-;rC8bYsAU_XBs1zoPrtCOiJeD z|LgN%i-k?6ja(v^uyM;f*<883fbMp;JT)@j^Go0L>wMTv?sU=UGe-YDRe`?<{rfMh zdt2GmDeK-6i}~NBc02k1%F@-A1b|tY1m(y>5{vQ-bR|jtJEv|0N4%97T%MUk+IUb&h=Qf{PwJgbul zdZOnYGxMaGbgrH#Er~m2O`Jf;(Gq4o8J5{bJVaAQM*^X-@mM%W1$}*+wruW|vz{5{ zBmUtKL99-Q5jPUC5t`Ecehf5P4dO4G0dVu?{(iZ2!O>xVctocHOS>kQ?jH^KcTWuY zBa;S14>2xavf4<@|sjg ze*J_N)ba>YOsHu-RqTO=)ofNm!e)}0m5%)^$w24i|I>-&i< z?JBs3Rj{^p6?~=*pV%d}tKieE_{7%Ku7bNs6OOH}T?LJ>c2VsrxRX_IVeKlogH>=r?JD>pI0cwA2MeQnh-&0RDHpb4ZT?OxDQ}m45Rq!6R$evZZ3XZceSYEpd=2->HYFEL# z8HqY-SHZhzkgsX4RKenx*=<;6ZI#e3ewn?4jX-PdDtJ2^0Z;8JcpK|MOYJK77bXeZ zl`2^L5WfXO?5c!*@k9J(Mxf@}Rq#euK~wE2cs*4RZ?vo6+`0yQPG1&}?+MZVvhn5o ze`lJ?^mU-&}v^TG#yf=0tO2(>t2{jX!L>x$&ZgyBe;l z|8@PX^*wd>*Ck7~|7ygh7Y*kwa<8wCh8s(+u~FSu%PO$w8XDBGT2}GT#5mN^T2{f< zwmMSFD&E8hHC)Roz(6qEL$$2p4U9)!S*eP}FmYqjf=k7&sAUDOLj_^G3YNyi_9Lbc z@2y=0Pcq}kVC^b+;!J#Edums~51)-sEL6J+9$$%1ELgh=esCT>u|VxA_&&3v?yg-0 zkFg&3YgfVd*cj}pT?LPxk56o%b`?Cr#^CbWRq$Q54tCbAg6~{}PwY9htKi#g7F|}m z3Ld@ypV+0ftKeG~;}hFay9&N}20pRvwX5KvHTcA~)vkgE*-GA8y9&O+W>J6bD)>69 zU`y>P_!{%8ZLVDf53n)VRJ#i9XVbK=b`^YeH9oQ4+EwtCW%$H;YFELRnLOyOT?Joa zW6)K*3ch$2KC#Z)RqzEyqK&ny;PY&dH`K0z&yjXb`+slUt+fAt&ay|A9bUGg<3k<8 z?LTY(yY_W$pKW_V>mOVHxpjxh*i4mSL_q1bRy{ay7})%_X>Py3_ZVAtiPG8BBV10Qv+mQ{R#IHY>CmQ{S7_ATm> zT2}EnMySKJtm3n*7qhjj;yyC;sfAiraWBOnAh)eeB+F7w+I!fH%GI)p&rq0vdVMXc z_%wMw)NC!QxSJ6wQ_Cto#b#8xmQ~!vsz}wcichlDJyXjnSlEVoT`jA)lTF%dYgxq| zY|;&xWWR4uDu0UYX~T2}ErEI zfj|z#DIBa+#ZvSEp&Y7Ose;8gAPv(vf;rHK7gVZZDf;k!^dVNMf~DvK;zi&vdVVdd zcrSApT~o^{5Ho_Xn&(xjVkt&q0V8pBr3#i}BoH+MzuI$aSq0)o;E|fFWfkvYRa{le zDsE#O_CPJGcqi+{{#sVSLR8d=T2_G|6%6-yEvrD73RqyYQWZUffEjf=MN z)=O2#6Xcdwi?$)xOI61Y&%sA6+D2V3RUMC?jgMNi4ZL2eI(|UcEvZG@*z2XLu#d4aQ!oI=;(k zWgCyZRCRoZ+3Ab6A=yh+$G7Z%v+Dp}suQRVh(JoAT$pW0e zMo|%Jv98i~a4F0r4={dpb1kd5pWO25O|`7ztLNgQ9;;;)UunljePJ!D_%h?UH`cO> zFHyi5?f*B{y}EAsZOivA`}wk0FWb`bXva+*tJ}ZOer@}++CJ8HRqG#G-_{!R{F~<= zkOAOZEk|1}aNpxjxLaKBbB#6szveeIKd0%3O@G_uZM?rR+jv&Poej@xsH?xNesA5+ zf%cR?lSRAO^hIwN9@vD>WYI1tebKn@UyILV(JmT&(YU{Q89tLmyD;=cn zBG4C&`^%grcERV1#{H!(d?t%_ap#N1{Y4VrlSR9b^F`zS0)>T57VVohe9^c+K|xKEMY~|}MdQAc0vjibc5&j1#(f9HG)@-nLc|x1`{Nw9 zU3B=Oao^5qViy>`Xxty8aH7egT}=3*aetK4#4a3s(YQat+ie#KzG&PC!f0riEZPNu zFBjyAKrYqP`jK#TeBQY%y813-?}htKY||Z5Qdi zXx#7RT+lAad(pVxLm^p{MZ5U!MdM~^I1UtjHoHfLdod%4V2#P5w-V+>m?7NroFeOM zf&1OuX}PWzxZg#tmdWDUTHwBo)8vv`;AW8+-2eY6dH?_2ju&<)?VoF(Zf|eZxTRfdD-)Jecoa4UJ9dZ54^-|X*&G$9G;QzCC-tkdY>HnYJXF~623`Ib| z1OkL24npd+*({xT|intYY~+ zWdb341{UX>`}+N{m)C1$1Kjt0PP_M<=W{;C^n>Y1Q>t+%%>G@5KN`m9Kh{_16LpI( zdg_1C{~)8B6!7}XF3vyDaMm&Tybgk(Xawa`IZ5C}jPv!P|CTWqc4(KA0$vpX)PVPt zlK@^70knD<<)nWX5zaRv{I{h9Zx5^q62OZXGHL?UdKu-Ue-{yCMDZrRsqQH!0lbJI zBMKP#?aUr)sg~U#E?Q%(B0 z{42AZMDR^H7qSGpFo#Tm^b!7bS2^k6n^52tdVW`+3sQ{3`PZa!kqAESFVm0sJ4~d1 zkNe&yc|AlVe2@FyCwR?SqA--iK4+np7^5w8wq#L)=b8YWBGAeURIUNX8!by$>YAHK|;rUyu9V z`}w&=!u7cCy^o(;q*#yp-g{Hvnp7^5s>glrJ)DmeY1HGs_iis-lgdTn^tkW6>vFgz zm5WsAao>CAV7MlgPgF72-H`^@r1G0p+{mC>I-2W@U{coY+HvK>K59oX8*1`?XTp1N4LvQk>azU5>3x26Yef|&Q7ez(| z$pj{PX0~u3P zkf2=^V?C~tW>k=%T@_;;t^QTmRrbNP{Ei|)yQ(v!T@_;y?KUqbO}i?_Lf(`}qIOk`1u1z6}iMQ$}NE1u3W1QK(mCR*;5T9c4cD-OLJ7Q>&wVh;1^n zf^^mDDA2dCUPxiBjsp4-q>$EH9R(C5SYo8QR!0F}Ebu$2ApNz7BBxKHHC6@bu+=d@ z50gABTWKN!0;XTZ1 zp9)fYi(-+}!a(nnSwX6A5kpQ3BWtV73etb8qtFp-nH8i2S4W|9*fJ|f6|Rl~>LO5j zRggYhM3GbXU|f`0K{{~}Lr&e3iYcRl6yqX_oJhcKD6@i;<06KfNa*~x%nDMGtD}$s zQAP#n$wd@7=y=j1!!x?IIfM zWtG)&jw4AW;~1}wU8a(8l(Q0vDj7#`g_`I8rMiTt6H+}}JySgf_p|PSuI;e<-{gGW zndaE(2skYE7wtn}?|+`nW_`&z%(B-~U~!mVF%LKGHx-&(#@CEq!$Cu_!J~geKT>yC zS9+o8e`bYH-7D{ne-hhTW`$7SE01yl^C6iPLWQq9%5hxf&#VxteC1J&VT;SG5GsA; zQI29}GP6Rc_LWCD!W6OI7gmtuyu}V<|H-Tns(t0fa)|3ir1rg_xy*&%Fb!YG2e~Da z=C|qiFE5q@xI;X%g4Dn2DEqm;kPcWKWgqU?&8#3rusX_K9>+)L_HAm03XwV|A3R z-1kXqtd6pUDWp19N7>AMpY+G-D4X~#MoMILl#TpGCQY(B$_6emQYWjUtmk(n>6Fz` z)^Xn_#j-leS}rltE~}%g;dNwEF{`7jX3BWcoJrm{%qp(^8`V-)^4G;UwG`5;WLDgu zmI8_u%p#0cOCillX2tbtDN8w)>(o+~Fy&gc6jH9>{J)p(Mcn^C#&gP3=jrR-=`MD+ zam{z#>HGm!0KATm9o3E=_Ko&{-D7*lHqrWx^+{L*IBJ;#8i3X2EVIq@N7Fdtm&S*T z{S3PerG|F;h5BFXeuA4yxY8>{>gWsZHM!u-$GQr8SbC*M7cJrLEAcBdy;7uzmT-4E zaxT46q=lAn_vQFbNUs#Bpe5XW8IGUnl_LGKgu5^0yNi_167If)+l)x_EaC2p@r|Ee zDN;L2xI5@wOs4cokwJOp!OSn6oB9~q%QZ-As`-lAOB0aN& zyMvMiYgMFVmT-4ch^1GGG|Uq2{yr)v(lWeIl&U5wF~UTIO&B1sQ3sZyj^re}{U zw`2t!OnRkAsVt#fK>q>`VwEC|vVSERfrVFbocoB zDR|+eSBR9x5}y1uu2Yf5Si;>w5d-gy3X#58!rjSPEWKienz0u&FxX;B)!d!5FX1CpE&%g#Qw?W_3a~FSxzPEu2sXJ z%b845D_MRmfSs>`E;=&kfjO0|!4{y-*N!h51t;1W3^|o7##RlZK9p0*s%+ITX!Hg{ zUM0)3o4_t)26hp}7|pC3Yx!58lC|1RfERKFy9gkO#f-D~S5_s9w$H^uk37FU*nf|+ z+W1#`rAW6e;TwWfZ|RjH#kPdIpTvArdZkFIE#dAbaKCqYrAVPI;qJ%rXqfa$kuqDt z-H-7amq?K<;qFKAn6LCokrG?N-H+g*Rq2%?4Yq{4AI6-2dZkEvE#dBmc*R(xxt4JE zgLr&YdS#zj-x23~cU*Wa{Q#bZkzOg%SW9^J{oLL~>S_sh-^VSomzt8<%e5-fQ%iXE zJzT3I9kqnJ@8;el(oajc`z}1?B)w9koR)C+op`oYdZkD+E#dAvxXp;v(h}~zo$oHv zNlUoFLR!Mzw{n{iX`?0FeG8uGlU^xOMN7E*W<0AUz4B5uBf%y-!6v=(5;b?< z$m2|BHFw{@-!q-m+Q$&tMN+@=l@-G z@97dAN$BobuFaX=W^#Qj#G}`IGWjCwhy#zu>IQlH*1BpwdD=VQ1e!E z2JHP0nK~HX2JQbYLzezKeVzVNxRLTJr;=65=T2=d=qLE!Pi>;cg6q&uIH!`u%Bo>& zvH#{&vSwK|YzEs$t7eewbU>Z25lI75lkHI)Gpmz+u#Q43J#TaLQu4>?l2 zOs!-swE!kHE)c-vRI;F2fRY*)>0xpzSy!zZ2FD{AjX9MpuT~8sJxfj{tE^SSK;D8K zn#IPr)4CHJZTa)TW%u(VD|Al^*K0%J=zwr`6Ajs;|CVk~X`*|+nCDE`2 z8j|Yrf6P~2c)vW8VX4g>^7V<5<)R`obi<>Ule z=PJNS8h#pDCMXtif-HMg4|@z@tb%OHEa(i zpmQo&>Z=;I8&w85m8|_$4cmnY;hL#B`bqf!*=iplB>zQWIMOUfF`hQ z44bA2Y%8ayax{T$;X2FK1V-A4oXV-1z&0hpl~XxI6WB&hmS$-J+raNLzb3HtI9&1k zKTntNyM(Tu4?JVs``lAq-??gC9i4AEuXb#AWZ3^{ud=tX{lPZGy2X08zq$D( zbAQun)34yT%0)APEFnR;V7g4AXsqAnOd(T!!0 z$67`8xP>U@3Itias2)e@+CY%ijOuY@6%Yuryiq-l&Y1}WS?{PGH;?-r3n10wK42Ux zBGuz4aT^G-L{dF&E@r?3LDo#F$5HY&C&(g70Z#IgB&2TxLDp0XV3Kko4eOtfz=d_f zAd4&oILWa=3O5jB&7}Y)IW|b*Vr*?iUwrskBsn%X(IXIS6ALCeHpm%c5}>t4I5^?M zWC{dZX@nzNgq&c@SUAZw2TlfoV2fBV$u$R=V=T(%8sQ*!jOm+Z8sWhF0C5Q#;a=f4 zfkz`8nJ)x_Y{jI00Hc(3An4L4I!Ib$-8nVFkzYej&=CtKxs$(uo!lM^Cb^T7TLjPl zXW{%m$urk8+P%k}<@(kYcC~l@(K*zy*>RWsOZ#klGu!WN{j963w^}~2lv=FjC(S)g z3r#l|4;yn0KN%i0B}1-L`pRD?=8 z1-OH_<{StLwR8$_2Rg$Q2nzLd3UK?mFolXb1-N}E{0IcS8ok2zayP$PBitU$fCqxZ zHNx$_46Z=%DvfZvIJ#jP;dU}^s7AOQm@f_lhiHVOByJ!$SR>pvUc*n*2)7k;tAXGk zjc{9d%w#Vd^;5ddxbrm-WOE$#xJ~Wh3Iy3LM?G#MZU_$q**-@-ZUes&*iT12Zau1N z0zo#|QIA{4>7HbbI>K7+=2vQjTf=qNS0mhNF3dg};Z|XEIREdiTdYfXDxsfelgH=& z(fznP#kJ9u3GV-oIr}=+IqtQ8XMfb*$F|mXkM-ZyN36XqYbBg^& z^~UaoWrjQS|IpX!yTHvfx_m*A%24LCekpE*_60@yLYbH)_>t-hij;*iF^lm_-xm~V z3T0vz;q1&86sZYiViw|C$`=&r2xVdx;Er)$P^2J~iJ6ZwBVSOY9h8ar5LNKLphz_+ z6Elx7BE6tY%m-X(BBh{A%=;*z@C8L0L7AAjTxcS7piInr9F0g9C=&x2VuQgK6e$8_ zV&1{ziZ3YA0?NcdP8g#RsQ_hS{)Ev?4vO@Dgpst23|U}b&?orJkQvKcTr-)9F>mtt zJXta3k0@601v3<5Xn*kJpvWypW&?m^vM(rd$&uLrUgshc`QymMyoN{5_<|y59GRF` zF+Jf6iac>-VqW1w6S?8Y#88sh7Zmy6$izT$*ktkrMGiPJF~8>~Ao9MEiFuJn=i6hA z0g^^%NCNwUx5a|UNdjA+=OX)+Vhn7mHX41wTNPtyGqo>xi((9HqQ>StQ89)#Py2#5 zE5?sVDP>|#(pJVk!DgR z=2&mId{rW~q)g1wA#nMsL@G&{m?K@`@>Pk{kuoudQ{nPeiByp?F^9ONiS&>%F$cM& ziFA-MF$a?2@>PlSk1{d)IU14fQ6^>|M(@bt7%m%o>Wd-!8F!RDyJ>SRmN#mES*$NTgEh2PAaD@<&tFKq;lF4 z%&1SRV%?;2+G384Ws}Nji*RLqS{17%mD3h-D`C;3a@qo>v1U>^ja>MrRk37JIgLCW zva47zDWIJ%iFEPrw|S>ePpe|Nq=0q4T++p}K0uAcv?^9hDyM;+gTatp#bQYTO>Q~P zJ$*X6syBU*DQAJ*L3Y&@+OWWWU|LnLSS-2i15_tiV?ATh{g_l1x5hVs@SSXz>-^vm&S&=l^qb2@iw+-#pKC?t^FM|L;4;IQBbo>_6Ba zuqWEyvyHaywNABsZ>h6fVt&Uw(zM%@W&AgsZr;i8mSLEFtNw1?-*s~?cK)AR#X7_$ z?es!hGcP9I1{)!0J=o(}kSO5EYO4)A(7xnWu`W?Slhs-qXw+V(Rk1)(z>^&vh*WZ` zSf?nU$&L;T{tbrQDwZs2z$4p;X;rLU6!2u1Ciq88t6~Xb6WWDb_b;X=oUz@>6AQCB^!ip7q~X-9Y+mQ|0+ zX@|L$u=r6q?GVSt8c5}|gSd%sS`|wnmD3JzD`7>Xa@v0GZ!C;dPTR-zHbMA32G)GC z-f=uC@8#UUP1?}*@XF|TZD_lhcB3}5U0jmvTco^|>|`3-7AdFg;NH!yMapU0IW{&e zQcl~(v0bN4E7{5;7h4u7k8KNXT%T6Ojz!98n>jW%EK*L}#IcRmrrtL4J7APHv<*j z%l53Tw{@{~oaL}3VE(~eXTHSrC)04_R^#1w4@K!UAWqKO$R$)uet!BNR2E3KHcRRP5g?k$CD2Jb0%?dsZc#y@%_QFy= z4S1Bt&#h)np9Z|86kipK`!wJ!VIHgeG~h+E`7HMn@MNz5K|VjXidBCCnyk4-!)hVq z^PzQCvHVX19%b}%t5^r90dGF8mE=~jAW#F|hrB+?%0LZxkk`lhV~L;!Jjk{quT=D9 zqT+1}`F33IEzybx$0wkgrZ^T)c5erFjA>OxTG2pJFs-UkD;juZOskr%6%7;&xmE1W zqd`9a4FmQAw&~G;M?}D)#TufJg2cxm9fB zqX7?WHgFVUM;{G%prAk=Tl;9hi)tv?<43@g-8w-=5knQ(Zi?nT0qamY<%xaOYO=>id-S=0E^lVb2p{%~YTBK!@%Ast2X0=GiCbiTc zi=SI9)UT=dMm~vI%-m|Bf=vbQ1g{VYHEb$)$1(emTP@VFso)*MRrB0xp_WYr?=ZNofnZZ*5mXu#Xb<4b~8{cj8N*q26w_%`$S z!Ui=O@HX-LmYr%e;BDmZ38z-|w}H#kp%rgEzu)az@z(M9V$+JZ7R!_U|6u?BlL^V5 z^`3j(|8_s*?&VtPy3_ejXRR~IvCuKm{<%G9zr;4rHs1QFb(Xb_)v7t~qju3>JzO;hlmSMgzxpcG z98v^iR*U>>sD5PS4L}LtuNL{(NNok605BLbt3?hrQlo*~zrR}KTq89a$oU%#{%VnD zja1It+@?itHBvcmp{ChiE%K?6%6XGHB8M8O9Lnqat3}>4QaO;%$FV@g|CwzfX1Iiv&dSNB%U zf&9PGi1Yt$x+l+_|Mze$cirLqyEE)ebj$|@z$yD2dpp}Zw(G3Nt!36`mNzV3^L}%I z*#;VbG~*)UAj7+c(fULBJiQriCFRPgCat0UQhi%nTZ65oUEkRNeGPX*8z@($)1?g< znA)#j@_@d{XMZ=!AMj`9mt{{j6cuL_7SsReb4LUM#%r%noE-4`eU~Rht^Yt6V4iP+ zlI zOf70n-=~|d=%f2T{^jjIVcR!fj~eV91hR;CI^9{Wt0v81)2Be6j<}zKHiQ~y8E2V3 zTV!f|o$h`9_QuEf3?V!M=ED09@*}%7Wwf=1ODn?spf3t@$FXCoDKZ_c8hAx zdj1}rsG745^)NjDpQ=lEBB8Hmjpx_yzqza3on7y{u5})CPIuZIFE|F;H`?#A{oPh+ z>tKBwb^z?Ny9d}F9FbkhHyexz=XZmM|tpA#aTWRuB?%=!Gf zR;@Zc*=_^Q5pzN$l2iy=+p=ZHUTuEOFj7b=gst&-TA5n>jbS8@R0xAp0}>XxhBJ(` zkqTj}5)xV$w)lo&B#cxD14Ti{UhO|a*vt^AB4fkiSVLetrxnebwK?953_ZM8d#O)& zuNiUsRkN@AM^1<&lCj}&F9Iz`c=Jy&(yS2aBgHT&i$Ke;!6Yoq36U^T43e@4wAA77 zjC1~gQRRe46{!%m#BO&Tb$Vtdr;W0*xT z3{(mb*#v}Ths-fy7+Czd1&}J}^ZFwzD?~m);wqEUHc+qtsf8>!T3T&C2E_tqX0k%$ z45Tn36fIChWC^4Y1ScPu#+t_Fgvbj>43g3wKu!QHeH=E3oN6)xQV0W00km}3|B8t% zasd*BsX48nBFV*)Yuw%#WPhXmdB2MqXG#2Fyo%7AI zAy1FY36VH4HazY~4`3a)y$KssPKXqW3Ss-(w7Imn<3@xPg|3MGJ%l5#{+Elsc;wx8 z$tAr$?ox-v+RB^Oy8X?MwZDC4sMq7v6vKC4dTH;8U6QH84t(_0o?|CI z;2k!(WqZSzmN_AE9#Yt{b~SI_ZhYGmY*{lyWIq%e7Iz)*?9!#5qt|rmuqj<1zP{_j zS9w#fc>J?}51u_UM4m(n;X80>YV!oahavm=KHic4{QV>IU;a8LL{>$y;c<@^+p%>g z-pR#GK1H!%aToJ8gmr$8A{~T1>D`guVY~iyeCB=_s>rk`HazY~w?ZOoWV6W_X-<4ZGUdlj_Z)Tiekg!uER}9Ny*Q4{R+2YdaugHYle5!_!e1v zhL4^ZBI6>3@Qs*eb?>9$a0Cs9A9$}{vw7-YI^K{I>U{p;FzyDl0bi``R&bqmQVd&< z!(YqW5Qg*ruDVxs3BOB7@_gtS=RV;sbX#3dx_Ua7I&X3uca%6B_Gj$Lww1P9tf#E^ zSv{7QEotTr=DSUQGtDtIH@*hy|ILQG^k3>{>s!H%R9t}&iR7BrJ+A`9IqzzinlHyx zbn``6CR0PCl@sG6O7~r8qcp-S((u7~@D@rxZ7j`rCf4H&WS&agyro1H{=L4TMN& zCq_xCH_D?L`*CEXw-e(eMK+gH>{CM|xl@XwJgRyA)DWrel%gn$s?Q6AZWg`erM}Z3 ziE0|Fdz9;ILTsF*`iiDf1EHH@qa?LNNT$Ndwg)4d78)NDhqQR|-VGlIVEeAm>&WGJ zV@#T?gajmTF*Oqijf;(v6d3ruo97#6aAf3xqqObg#&C#iYKUxbl%inIHZIu*Lga)a zMoB6}Na8|j8nPewfklQmN^y|NHI3DO!F5KyIAWZnUX9zhK~4||ku{DOC8;1^A@$J~ zE=Y37QHq0&<1mOcewhr^#$9*A#)0!S2%(USB?V}4UGENAdd6@5Apo} zWlySmjr%s&pCSMM9k~CsaJ=m3YX87K#!u#Y1;(+4 zLxx}LztGRp{j7UP#?(I$77D(keiogy+fC0IX_&b`ER=nn#l^9t)$s9fqGQLzaUGtg zmF~e`*nczf?hW3ND|g)X((>7Xuuu$k79YpDQUm^YyLO5H>fDvuR#+$rlZrdmwr%3c z&Lo_^KO_`|oyAEg+@pz!eU@MTIxX5=>7^FvP5JTlM~~*g+KNynb`~$8aF5VRS~n`( zkWefp6-QalL_6bzk};{cL+#onO}KO=;_eR#g=1%N66*3Gu7S4vEv?{R4e4X|eK&ir z`R3Vn#&>rILP9CoS-gb0JkYsw&(dyij^gRlB_W}p>?|&hbYnxm+>eFZp$emI@AY;$ z?0x^|Hv%D{zU(YlLYVtnv}nJ$)qD&y5E81)q~iACc+l}X#N8h%J^!msLL1tHIpg-@ zX*?K6s+PIlVJVJX-~BWp5Gpx8UP9sSzU;Cq`}Q?*;T9{$?V=3%$6UBY=f_DX+?`ao zrgIB7nEz$lJEq(pDpZc&fr->Be1z{E&1EJR99nbtTg&bbiA`b7*ab<5p0b&p?mJgv zQnP2y#&NF)LP9qfsU2w>uB$hrh3-H|TQZ1En$6nV{P^)eh@4?!b0vhi(dBC1qZ!Q$10gbqQHtAuubOrtZbRe~6B{R? z4XsB#%Vkf}_|Twd88GbH>77^4353W#CN^F|;jY7cO|w*tHV`5g8Ktl4urAvU=IF>%Mk#JJ7G}ct+;qrVCN@q&(^-YlHG6@^_EDfloxbi8?|A36pM;t( z41_Yz|7MfWbXH^DxsMQ=Z9ce9<`Au-A}pu<3uV zAEMg@w-a8zut-iv-WKtC`dJs@M6A^z49OQ33FqWs7Lv)pR>p`Va&j;WsDkLD*%uax z;pAZEqvECc!yJuB1}6veA#QJW{KOcM;7tx@9$^+D=H9SK+7`vcw-Ran01K^^$rlz0 z+T=v?J`M*~dT;u|BI%kO%v>xmPc7GrNVFyg^BzXyurWp?SCfN*yeh1r!pb*}03xB9 z9LzhIqc9dA=H9SKk`~3p*~%c7ikUKBSR_1?6Um<_+wvETBr`0MoG}JJ@Z-p#TF>TA z?+tepyxQcH7aWw0+wpzj4zUq&2J$8j%8pf7UcPX9Wtcyrp2J#(n0v$RVq@ZLV9_nE z_lDalLqt=szOcyIMNS)joeHa%>qO+~A_wyt*;qg(6sun3-XaI{D(a%Fq#W{vMZPU^ zFt1Rd4drM=t}Svfjnb?4hDClYQB0f-8Pck_W7ZcIxwOcM z-@RdTY)qWvSagqZAZ!vKnXL72_TLMZ9_Dw=V@Easke);l~^>AwH*gJ-$ z;z6(80hdoMy?k<|cS!R$dj7cNPsL%8Motd)P@g{D+lD02LTUHt7SbM%c)t9k`cQHB zdO`D(gFV={?}*j?o!c>x#o7{hS=^evEeDO_b5-|Im97?>O(ES5EDiSP>}>i?nodu=_CDw9&MM zDs|7V;2P&0oF1C@(vTmE!y-+c9PHkdlrf&6ohjOWcRLFIe#>Lt0rS5+VyhUF8y0En z8e!w;uzULTyY~K}1sE+PQuLih?bW|h92N=e8u8-ju)Dq9^f@>8$D!VPrY&{u-17Me zcl*L3pTQ zarO&C1{a4#f;&0b9cgJ3nvFQk*jIRi?4S)d-c-MSYjId4zLSI9PJ{2Ra|YkRTPj|- zX+`Jaut$y^-+gfFB{~W%4L~b{7u*=D_ z16ISpWao@$ht1RN*6Tan8y5NAM6uYkfB6w=)@7Jjvn>}_OZ4@wgQ{k`n2^*%WBIc^OxpIb34-? zOv8=aj6TD6h6fB?^zZAh(e2eui80*|gh?Q$zwF|U^D~Uj&J5&d`SUU|FMOaMD0g8S zRwfo^AWQ-|rMRWI$YpUcjs$W_aZ8*|&sH}p&BG*!Q;J(mOL&_xx~X9j#EEgSyY@xZ z-J<9YqA+RTl%hZ&fcb){VbZ@TMJ;GRWn;h+0hVuRe?`W>8dzGVL`!`2*k8;$ToN=5QzFRp8^adOiS;8o77O)>1 zQGqbo!H7|kMhvpmHciJ7BM>G_7^OIvSU|=LiV|^T38NGT8GOL4Lfq6a*}{l%lEy>G z^VVXVypN|~(BamgMKBA8pdiU0! z8afy*Z|}o*F8Y`KMQ`#OgLhqJdZjE(t}#s>0H!B+I&!=ZU>t57ZhE+v@pS$DaC!Tj z=+W-21)aPpcY2fdF2B_m7P-hYnyAJxWBkZ!)pyWSCLlK~a*%0+iDT*QWUE%L+w8Nk zWB2gh?Rwexe~~we!xQi=(L{&eh$n7U|INYM))RgD^gr73Sxyc95wG{XqaWTE8tM33 zarh=>*yDZs4qrK_BZlcs@%65H=)Df!)OinfoYiG-Zg~9pv2m2{vEIFhpGrB7nTPh? zt7p9Y%&AYmEe_v!eqJ1oVs&=e3Ugj$Hds_DAepZ6DaiSoc|{T7I-VV7b)%j(LP>Cnx~EGFBPe z7+yCF)9=tv)_toB$C&?L@W+7~lGQcot`|HX@V^|g&X}u%Nx_5kI;$ahofwDZBwnt% zDBMZdBk{KR?LZAl?8GP>h{U78MWIeut+vZ7JSD3ksht=nDYD}rAcS92Ye;gZ6m^WJ z(199~-HB0>3h^kNFSiYwN1%ozcuH|cQ0(cvk8vc&Q;IuGvOLJT)jLzPd zqa%5qQrtn@F6RC-<4C5b6nB7{3hlcN)R0_HDQ-Usb}bV)I+E=v#qA?|#yc5D@;#-v zy|^jW!~Uc-B;!+x+k?Aa+*XWkY7NQx#5hS~XHN=~a3? zMivN@`;AiE8XA%*pBxC2+l^8jofYo6mFulI_8UM_y{*Cy08Yo@qSz=&^|q2)gj>qE>B@1-DN_!cK^px3=kWP|3&8*X82JC|U5~oD!2JJu$6-f4%>V1{iMF}6 zk=7knpXFOit);X1E%Vhd|M$cEKLqptKfwHdlm2eq7rHqYoai_C3pq6;Q)}8x*~%vF zcGKXsMbZHC{Ja_xtBGN8x10tTRHJFE;Rh_;oElQAiGk9hTf)inyc*J|iDA;BBVmBW z%+ZlLO$?M4-6CE;9enqnA;1JLs`uZEOqVwkj|Bzb^=Tpn_2NRuW8N-Ih*eM9L( zUJWVJ#4u^mfin#xk7~G~kS0wGlolNb1+eaNYDkHu7zVj}hLI*sF$}WznAgdxAtjm^ zCavDU3Ll2AZ@Jz`lO_gAt2Z!izyw)NO)t@lPx6}}s!qtM>8Sw>cGz)bJv4wt#SnQl zm&b-lYb5ZA3610%Y$SO#-8BG`zk`|PS~)e{VgseMN^r*Ky6dU|Eb5D&S3{mM;{GPB z?m#{O12d$hvF^xSMlle4AOQF}0&{A}XGRQ^R(GJv!0|GthTLWp!$^~XF!G#H3;yY>(KItRGlYEvqaO z%_qzSrk_m@m^vHZG7dFtG)&T;($COa;5Kruyc(gD?n3^y|7FU&VV-`{YBldS@54Ts zS0fbDNd}&<*`PQ4BSiV z5>g81)sS#bF>nvIQWvF+@@hyqrx-|id=Gi0&Z-#~`vr}yR4moI$ZoLr(C_WIm%9 zNdEoJX+1QrhHPgP1GnO+)69+$=G2hkj2I}b!E8Zb^B#FMWHTd%NgKpB(})9W892m| z!Hi&Y3|iNKs1@|O_ zuV!fMcb~N4TuC2LH*r@Oq5+T<0Mz$#Y6iy!N-NIgSbwImIREdiTdGTVCSjmwhbQ2% zx?ge+cI|deb6K3vIa3{*!2kb8`=jD&h>aktRwMzG1zL(AyNy6KBJrOr z&=QZQWxMA23=&EIWPujbB$D(qlWRnxzbGi)=4@TWDecKMBDtR|$U+{;vuZ>lKUqb# z02_e~lA)(hPp%Qk`(#BkA3tPVN3&`~!aiBie2CFlvpE`(q)%2furh+0hO8Qqm`_$T zjf?>%*N9|%vZ8sPH)Kz)5sCL?K|oG`Lw{C{NU|rZ$QsEACfA4rd$OX5$_FObh-7-Q zAh48zsj$g4B5|H9NK`H`xu!ty{+9&-nE*zTRg)hZ67Oe}^=;BK?!?}oRg^cHEN zC-N|p8ygh&d*)5no=&b2dEv;ao2U#Rt48F46NSWGH!x*}4|nn{%Bm50;K%|sO8ZZ) z5jo(~XtxI?U&i`8j=l^}{ ze!$($wcK^P^Gj!yvy)@4W32szeX8weTeYpT^%d(-%T7zSMQ09~J*LM@os4shV+|(^ zWrhU(Yx=9;M*kmNS+yd8pscR>5geWnbrHy_6^R37flj*JPy<1F5!8x=fwDj+5)xVz zH+zghB0-=m(D4>6+V*Tsi(FZ?A|aqG&@o!Rdypd%i2!ARj^gR&ov&n&NB}4cbc9a& z4lzh1{*whdj9I@{)apuWMZ&*Epm_3})xf{bgybNDL?oe1P1#*PQFty`p~p!I?#+wIWfVEbx9j-L~cZ zRMbQ9aNAC0-jU-A>tFkGx2#%`K(G-wt`*dM*gZNqxYdfpfwDk*u`#us#2}F{P!?zp z9gF^N28l$0vOv4B!(TEEL8Y}KL0}_LT>WqtnL596uBo&6y-wvzZp^A}75fV$?uqD5 zJg&PN72ytSh3&7Res|{FnXjKO>iXO7vT9qL9~@Wn-;UspUvq@b&ku?# z!fkZ&IXDuV&E7L7pLe~h&mCrOR;|dSr%~gHE5fbRN`HkBX4NK~Kf<^`ThLg&8)q(R zMdm!RBHD}xNw=Xo%c>RG^2h>hLhtX+-MQ#QhCH%B8*yxGa|MG$Ry?vm8_4N_78J5- zMJ7D5K^m+=RfWOo*n)UupS$dp~iu!jxO z6ZFMbQp?IVO}KL@|Kj7iWr3R}T*zZXyc3XHT+2E)5f_U&hLh(nYs-|@?$1q%6>lP} zL3WdhCc3BBvgl0{W;E|Ty_R)vnlPhj@aeT_^q$p(3C8}IIV!0g6q_l#8ByNaO3Mf( zwF9-|LMj`&4J3Z>wKE_#S9be_>^909rq{AHjVAR9`DbRbLyaa(I(Wc5zoeFpYJ^PL zZRu4Uf{hPwow8qzkSn`RU*Y`z^jfy9(S!*(Yp&BPwQIYS!Zy#JUdskHn#2j&Y>cy{ zmVIo5Oxf)SlG`vgKmroS2DY>ja%H!pXs)}YmR)UxOxdwMgXODV#Idr$jgTul)@Y)- zq?UbdgiP77LXASKA7ZTK?ppS|X#(aWC=76k*E=uvTPeCr)>vz-HGQ9Mx}uNn|M-`; z|AcMdd_8KgcaXpO@^?DjS?;W5Uz{cn#0OHydmwU}H_kH7GJUql)cQKz`~1tBn)K^+ zH%{2(P5a%uhZcXnrQBTGT`;h~6dI4GkoGuMo7HCjxQ)$QqR-@C-v0AHdLZqiuy@e+ z?)C4SIEnNBMBUB0gm6ML&y$|6?zh}sTyMJiI~O@ef%g9v`yqR#?V#;u>j7(qNn~q>Nda)8m^LB)+{wG=L_tLzSxRqNB={Zjp;z5EGSXd zFvSGRX>klbh|AHJCQ?e_%xTJVzF9Wp>5(P1EOUza9O8BGUseDIXl?2y>~bZwta{Rf zyPwk08<9J!mW5C;x#EK|ep$TxF1e)F$6e~M+~G*z*6nY8to`j!^Q@4H`2;d+elI3* zFYQXHmi|LqzB{z#AG`xkRX;cL&AZ`2SVg7DgY3baPg2r3IiJ)|16hHrLU<5XT50ki zyD5Q~d~O19a?AFHF)d4KS&S9)Ib`;QU6{FPOX&wF02XM)1j}p^JG*r0=jb(^27{EY ze13iE6_0=R@4>U-L0H74$%E{`;jqmU^dQ6VIj-;H9r@4SKQjO2uS;sv1@D^+p0D!D zdg*rTBZ+t7=l}(9=lQ`hYhoKIEZ(C6ICCEQu74e$xgUndN#}nKnN4vkWLicxn~Vie zQp?6GF<P?iP99y|4UD)`wMr8>vLD8 z^9$z;r`{2AxZ&)-&bF6rJ*{)CS6S9sZZz*R-(~v9lxzH#@jh6ns5i9KKd0}i`(wlO zU)_IaL|C%Yq=YWyes-~6unoRzkRXB`I36sc(gHSXzmy?I1#9lGv*`5c8MU*uBtxdkG*WiUiH=Xlx7LP(b1vZ8xH zi)z`~LL(}O$8h8*s%5JSji|I06?+l;UI?l3>lSi#4Tjk>YS|1!BQj_f;C*xrw<>nX z5R&D$s%N6_-&(fI5K`rrH0+y&k_Jx@d^50zhDKz_Q9}Q1$z(Rx(1?sXY!B-nLvm3q zyKM-`^6MCKq}+$uenTTFM9Nh5;%Gu`4Y@hKWKJMqpX`(@EMb^GvonVPYaq1D`SVGq z)4IU?9?hS}EbJS3>C_7EJrhcP{P)Z{_)dg zCADnu5%W1@*2D2OZ8~pj|82A;*zhAJSY}Ne!^P-US=fiXqg=_WT*<4wH+(;#|LS$W zFR5iekeJUQvjC2E=+O1+%Nmlz>=6mEqqo}`FBi+vb0WYVyG)zdhbne`<^pe}`aCxt`?K=EU{Rra0R0z6Am-D0LB={T9o7%VUvb6K7*lQrg-)z?2 z=EslEh$Nl=5#&a{k(`rhVlgAaJ_Swssj5|{4Y*Ug9c}Y3w?^2xASPOF<6BRANS~z9 z>dYR}Vb@OYyn4=z2wNM(d=k0EzmCpWpykOK5%xOJh`biF4b4cwHY3932O5#rV8yo` zj2&)9gxwD`BCn>+l;20kJN7?_iI&^sR$iMftkvaV}|gRM3dL1WURVZRVK~VM_&#$cwRE+uLv*v&VvvEWeHy@!qr<5jI#5 zQsvk2LLAJRU&-;ZvR~Q!BL5PoBW7q^S^ZBGiUd)BL64nf!=oqrY?_84=;mepQQ0kde{N)xp4z zYYf8u{i?_(?RL|1M$$yUvX*e0|5>!$HHH%%J0_0n00W@a>K*)r{Wl};-rya%a>s2i zEuTFjBHa9c_DSTfF&uB#F7aQTyK?ahEdW%JkC96$=?tOxg)RVR(Q=FbXkucY<(I!s ztBO~8DNEo@`SJBfkLDen5fSeS0;M1<}Ds>qanNwjmt3q1l7c53OI|FTk!`m`PK5bv=!%SNPW5QyV-lqH_x^+zPo!yL}(sx_DSSc`~l3W zbX!J+po<7S1kR%6<}&tU`FE(oLTK;xb~)^Q|K~SmM1+eG<9Fzx%Sw zuI$^_$i*-89Z*HyMO$>q5x%;hU@F+b56U#=4Wx1t7yCOT?cWxHGX3w0B<6fT;5tUy`J}VEW4_~B`yTrgSOciEHMhQC z?PFO6djJlZvrXTcs!T17zcXHHc+PO8{%!pga1$-B{D?@&A$@MJ5;yuMfs*+2>DdvH zWTO#LN^`NUAhE{QbDPO+t+Ka&{>to#$Xh}B6D+3<-M^2~Y& zou)-ZCJWN%N6S!t(CNw95s{UG^mv!jmaB(pj5xF9s`{C^!^(!|M?|Iyjh;YC$Fwe? z@3gnMm5J;W8WH8Rvc>p$)_N?(+@MYJuIT;3`}zQswQ{D{a}Kzf0`iLVRC zDlE|ah{#kxI`NN~(YBT$aau%VCm_8<|G-UjT0~?bAe|Q7Y?&VsSqDfj&DW_ki@E+p zo&nN{uVG@(O4F14h{zp4I`LK1ZdplvkslHH0!SymLZv#COI73wAf5O!C4^`r<+R9k zf;ECDQQp7}8z}J<>-@;Iv1#&#QJC5}47LqeqB#G*RQH%JVV36yPp!x1u68?JPr2GU zA9J>JJn3j-f7IT>_K?kEeb(B+@`9za`593EKVfQZe8kw?@VKFs{waN1_~&x3*>xf* zM5Ah!GY2}+r%(T*J)d>Kzp^xN5WBHMvR zXgS4ybjXm2A6)kp1%Jik&0k-Tk?g&4>^hMLK_j%B;18#!j=f`8DwexqOoJ(x2d9-@YSO_j``}Uz?HZCqWbRe)e(K zF*#4nj)*)8q(8xd!c>t;tpUIo&hU_X|@z?*2xPydJB zgHjmh9rVhn9TO`evm+wk0_jh%56d8JG+C&n?)ep5pyPNt~SLRyn{v?XTLCH@a%}l+(7yh>_|(S&}_tMeu7un zvUAXe8*i##zjby*WON|?3AWPfWccTUbtyR=h+dF;eqrg*w(Y>kmviXr;eYN z`De@Ug1fv|_v(@S#cQ9;j);s8q(8w{c>iA4^Hpm5XIzx0hFoc1PbiCsOb{A9ft-%N z1v`FP5x#=jd57OR=gQ{?-ak7cazSW>meUC~ck7n=#Fc&M{dhlECGIZbXIiV=GJNKLNqjgR;a49xbXOsRcu(Wx6}M?}^L(w|^0`n6u( zl6w505MFiOs|L1wx_;ti`4N#RLZc^;Q{ih+kk+dQR`~3Q$PJ+pQBJ9^#^he7G%EEo zA6VC}T=m@T56+H=d=R8R!78lxE|1X%*3fHq6yMeMM(;@Hh~kMa4#WBXWxCnAgsOy= zo_deoUF7=7RpV;qd;zlmZ#z=q{J*ibJ+^z{{J&DG-ckqW|2=Q+X?n*r)VS7oGb}b| z>i?pjuKPFK;+I^dbu7UcaB)ZfnMY@52J*A~c^R1(bM_ycH4G+bAfg6OzdBZ2XaffE z8Gthx%x(tSfZ<4BYj=x_!R%$A4S0#u>DlTgwPk4?TNh{pUQ9`e%@}cE9UB)2!8ioj zY-s}qruOTXJfLs#+28%b#)5J58z>|}aow=6j$I10fi7r(vOj?~(CB%R zrFCpYAcV$VA^nAQN}C+b$GI`F6M+ycy)n&W!=}R?nI4YIav6+B2 zV92V1U<3*p!R#fV4H(jo045ngVIA8E2*J|FVaP&qqhcokZJ^+#%1|~D&;|;orVM5O z0BxYKLluX_az`Ee2Q;Db*?8E0#PiOJ{)UMtJ-1KlS+Zg;1un01lXIfufWv41tG(3rqb+E2S|7Hyx4dGx0=zW`o0gldHEuQjDmwo! z0eM&GmrVc9{F~A`7IvIl@fSRv>Y}>@pWb)EYPDTviGJ3zzC#F>KENIaDGU56tYevn zHqc`{T`R3)8wDX0`%L^Y%?FRf#b z1#Q5GFk*XOj+m_$v;iMPvnBVR8O)9g+JFyG)3H8gV}~b8}MGV!t{`7T4^1-F=zwcgOYT&6(cUJV^anpSo#>f8^H++OY7L1K?s#T zT<)S`UeEQ*)(qN!cM_Ohg{5_D%%BZ;2iZ;@;fUFXK^yRPj5uL0gV}~b8}K%axY+;% z7uK-}gAgpeMQ_F7(lf5Kj{O#dQ0Xmt3wa)1%h9skf)Fe{+RY8oveSYPDm~gw7;TH_ z8;N}uv;l7tz$z4Ayj%X!?AeQ?&g1Rv}~gw1WS*09Z%g$ z>)1g-2$de~T6*bUkI|Oav44U#;5GD8pzWxob!?ZQ4VX@u^xVqz%Wermu=M&}h26;Z zXlWh$BnY9>>vtu!<{ezWJ!u6%8}JGOFGVoV|EqKfk%ShWXTbmeZTCReGS_v^Eza8< zhhYBy1fx%|cdrnruU z7)_#Q`vZw}-C!{fSyN2amesNPLWq@E+YMOCn;K|0aB*J(2DEWyFggj3hEd#s949vb!=Fm6&6yNjAiEnt+0^H#HHo3I<_kiVinXc zShbqQ8ouTFW#0lJT0#B7c3xb;FRo*=0 zK!{b)tl-N7n$pM z5UZe$A+HLr2FSx<9ka=SR%qB14CvPpU0la*2ST)hI)-F6j?=|;YW#0p> zu#m{+7R}}dT4AH7k(Sl53xW``y^n8 z8HN?tv4w(GSg?V{LN2XiAB84ZJS3A(tCX52{RljnAJRRDU8t~btY~t^V2NFbbKoZ} z7W3QYw{iZT2(HixHIV;*!qdt9D&+s?y3(90oMRlD9Jkt!*eBcmYztWb0Ve?bYzbQI z<_F9zP0yN|86PutFuY*ss{ez&FWf-8tE^rm5@}@HD5-)PrtJsGj%hVkQCU4pLz=XW z3;8r&bPl}%eE^;5nv-vTSv_k+v_kL4H9&W7j+*Tlv_kJA4>Oo)VS%#`gI4Ihl*A|L zU0FRFFldF|gLw-Vt!o8x8m?7twyD)@@pffaARmzz5qFKC6{j=65vrG&0y z#|5p>qB2Drkk?L`kfXjAlm#t6`E-?ojNGpcR_4rPP;;>(~}Sh*nV8%dws@iN#(BT48CsGG+_e z5J8AlP{)vvhGqXBxK*}Ohe;`CFhOg%D!E%>;Tr_nWs23SN$j3p-6r(Gs7uh^Saq>nI z>)Ryd*@+`aLA}V}K|b;=k{nJ%WT0MT?I6EU-(-1Kpk8F?ARiY^i5Aq0tQ_PQD9p>? zYmQ7h3hG5h4)T$WQlNo)k&T1=LWO)QF0U8Viwqp(NBA1G(i^#Bh^!mrBO%KQ3BW2w zc8)!`N$mcRVTGoX!hKO>*&x3jA-l@&Ly=j7{6cM%RSndOtQzD;2-#GQP-M~|KSIc& zLLDY?9f~X(Y&6Wo0MTQLWanUSkpk8FfARiaa zjt1&QCJgd%(X41$z0i6=S?24c)oR{v-iMu{tX^oopbUM&W^>$P2QwT*3+)$_p^v*< z30>Ta7%enmP=-E+Yj@6QfeWn|l%bE}I&Jf40z_!YpbUM4_GEduz+Hk@wz{3>1JNc9pO=_Gzj?P=Zm z5=;AkW2qF>ixe;Nk-PDr%uB{0vRqd$lDjlw%1OLhchTv7ubg|jpZUE`WrcNTr%pX=-C%K(!WOAs8Zjk>y#r69ZGRP6%?@cWoB#UxqOQOFuAu&ULHBF) z2$I6yP6y(C9SvLLJJE6kp=Z4_Xzog zx)S?i+e9u@k#B^23Y(Hb*FOeUKj^Ov`bKJs{r7HxaBCOvpTy~sX7KJpkXWIf1H zimW5#BadRTqVtuE6xl||M;^gMLB|jyMV1lrk%ws=lv*q#;6#2AjhK>BGKXl#<4@=8 zc=Z0bC-MHD--Blm8Ar%}hJ%>vZ2cxB0ljqe`D@;5oqJ0+{`*UK29b+|{AV~ohd-{N zjNF;SA6L}RKRB}po<1A^anDEv-9)duN4=ToOyzx;{1Y}@~*+Z3V(9W z!xa=}(+{IucwG9)t@jo9;jbnIG7172nf|0G4*s|_qcA%o4}LTxG3D$}{biYf5+DAs z;mP2yPASYNma0LD2*XlgpM19{y%#eqM25egJN9HhL)c>*3af z#`;J(Th{O|it_{TXVK{WeUb;B4GV5o>Mxw)hd*p6Jc!?y?awQ2RC*aD#re1RGYT`Y zTpCpo#TCHvNNH4nf&3Z%!g1NT*%)SW-{eLGUQ$qS_K*5C`ZrSwvwgP|`wRHt&puyn zcHXGlMrRafa8PIeAhUF$zrbIdjqQg1(b+%B%g-+IkMo!Mv5b<6vIFM^Q#=*guCK|z zDf0XOvsw%NMgHPZ`Tne|>`W{X{5MUit*AJo5L@_dXWLhw#_<;UZ@A&sTV`bE`2yI? zn*8hHl05&}KWtovMgD+4vpB!7p;E908dXSk9t55d7@1#^hmYOwZ1B($=%=ILkFfj) zoc*JWz?A&L?Bc1p@Z+S+Okbn>30vQ&XhUn#{`^J7*|{0;Y-ap8SK65-#$FcJ{{*(j_W zc$A{dl0Zgbq7QmtMiJfnKW;PLpAVyRQEt)M8(}9-gh3R4G73sPPz3)UN+-W?a<&g1 zClUIOzl{F$x)Gyq>317&@c)e-b<6chcQtC^c^QHGin5EY$4-&nzc;jq#MIu<2NL^1 z=W6snsrY{f!^i~x1Ak#~a=%7*Ia8$9(3>eg(ewUmwFnJ*T#gw#u@L&3EYI6UyhCfd0M?dSI zl9rZCze^e1Z{VO5`g{Ec59&9Ff7dT=lbd$k@ zQU|BfqonjtO{FlgHu|T)-{S{MOBpbj9=m_apaFyEY2eQWq!AAuJEcDtQ%c$ZxcUEM z?>*q0s?zuI+?(DJ5ELn)sz@1HC@MG%Rq0iVK$6MK1Tx8xOr}sx$hfY$>e|<~uC85i z71Xt%sEcJ4JNB~b+C{7=7XI&h&$&16O=c$W&CTro_D?>3mf3Tj_kGTL+CB9>s0t}Y zNPmIC;Yi6UC{_;q8}h&_|2-UXTKRj}sL}G@!yx(c-$RCt z8Y%w`1vyIo8z{gcrgMnbJ6!pDBp4`%5BCm{|1K#Ru5f|&j2^IA#y}D>I>A;sd^l7) zR^tNShRjn1S0UexdhtU&;cH3ldM5{2Y5yf@Qi}C2dxwu~BM4?+`%6r9YaR68m zl14JB&mE3WZ0i!5sTp^X^z@dYNl?;UexVaDeoPj`-091_x}a)5*_?^=yxaw{!4P;@=C#Ioq4x= zM${wC9$}t6z!MKu*Mx(fDEmNqs_|g2?&~$7>VijdOAS50TO=m3)aIYGMSX)Dab-SiE*(LrpZEhy`ax z!j15;BwZJDZPn4b;Dkg?7^Yq@15Nl>!ZHAUb9s~prnU+VbcD6BP@r~Rv@BX(9gWNi z!g>)-eNa!ZLEGHRGSVo)vDfgCOyWftj_G1AI5z<@V6C)ZZd&1EjJV*5_K(MKA}XXpS$!t6YmJXZqv8Se>-sdLWpVY320}sY>P4kqLo#C?^m^ z%Hu;@2$t4Hva4DsA}w@h7PFx4;W{*5;gARL(C%`Oxe#A@`2^@zVHL>-Yoha_Q<-u| z5AAnA7hhgK0M=}k6P1N|b)}5UErj>Gjo2p*97aZ%)v#)nsK!R5g1|CBW@rs5pWu^3 zNnn^aQk^L0U`cgzq-gRP1LZfLMi$pkiyR3>5gIpGsWdAgZzO;Xx$ znTy|?S<#xTPf>H96iUD{bEE`7ar2+*x#hN&N zvr8iZs7nwG1&Ni)BZX!@t%^8&#sQ^Nv0hMla%3S)k%V>;kH$)CX9Vjp!7L4+K~)~= z(RlW{@S*v?ye)TV{{KI)GbcAZ_#zyd{}*pxuJt}e9oy{u-|W)Ce}{gDa^O%79Lj-1 zIdCWk{(qVScUFoAZ7VXw8B$v4>*Ru&+$W?dk6Xle4$(j=VgYH^uWwdUC3y56CsNo<3MmL@Z2 zl_5J0ElnO;n*4uqX%a3L{2urJ%XAm%+-JIHg9m^QT(`LruCXq&^Lcm)!0+tu_}1~D zqs-y3zhb}IUTH6}{bYO8cD8Mvt()~D>mAkxYpK;{dC796C1@FB-fMou{Co3ZrZ-I2 znZl+K#^1nG;Q7Wy#$JZc4OMzkR*B>K(E#5C~5~qoW3-1Uw3N^xLLDc;d zk|F&@lyw!X5P&}sein=Lr}RG^dWxdKs2{5zTkb1g3u_yrMtFx09a=JCP|1k#dBhCO ziE`6QXVm}d9iVM#DwO>#^w>zH7|Bz>tg!-&5NCoN9?!e#g5M-_N(}w_}(J> zq9fJiHYShQFU_-!&Lj47^J1g&i0x}$Y-Ap>pPCo*<`Mg`d9e|B#P&8TRzF-4!&_Zu zY&e1dfAF@04M+dOxKA&9)3j-1c-(u*SGLstdd0YJH=q8`TehA*?xkM_H9k4z+;N}l zzVrRz%hyo7|7yRh@1TdDxoyjP>w;azJ+tD{&!YQ29{1k)H?OZ6`J1{3hviA{_synv z#Lzrq-!(5bB#+p)`a$|Z{)qopC+ zb~i6}TpqD6n-}Y!N9>E{#g5G*_PM@`zRL>ZiXQ56J0_3VXU(%6ok#4`X2t6Ip%^xt z7TQp;no!@a*33swpZ(D@ILsFPSl#Pa;YTk>K6-sx7qhn@*1L5vTMJ^nS{JjnAl9>W zF-r?#p4P?8Er|7KUCh*iSohY&j4g_tq#q=$R9o4#+*n(J>*2RPt#ExuT zOxJ?g5v_{p_qQO{xplGMS`h2hy4bI#@#1^B?OSlvK^xBDt&9EA0$az{#eQxEnLdzDlUoeKzi$TTi`b_3B^8?Zkg$Zb|*iFZf-n2aS99@zsybc;Sh0J7RbI*5j28 z*@Wz`Sgx(wl4Nv^I~3yT1-&SO7!2FzSj@Zy*kE!_Rs26+SPJd zvl;z2&C`vrwJ!E`3u4yR#rCuyW@%mQs}{t}t&8n$LCn;;*q1Gc8Cw_oq6INS>tdgq z&enI)J-q>k9khecw=VWs3v6QRVxKlIRwtmCJnYDAM8#@DIR7uzJ*IO%<-WkZ#NEgB zrRyHoMwiLC(|L(=nX{i`x8oki2FE0a%f8Egl|5)5Xxn02Yb&$atuI-xum-HhS-!PA zVA*6j#nQq2rujPaD)TVY&!)#rXPf4ljxv5=TxlF?*k^duaF$_?p^N@~{Vn>KevDoe zpB66=j}YF2*?&YBq5B1r@PGYzlZLK>(DHf#EEljDWb?>eL0vvUHj~T|+?Y>}O(nDC8a7CBEe(SqPk$Kq`CSk18uR}4aqqX=^z~z# zZW#A{-({Drd2ZXd_ezdk^@3~9xQ{>n{N&CJ=io5gzuxaUX3)cruDLpO)6}u!{<-6I z=N;bAxM!~H`?qfg?@tFJ*hxrfhLoPicqtOgbB3SSm^IW>D`X)v}lwe&{v$h9!H z^j7DQYhiNf4d;<-VRq?Vl}E0H>7{pN9=R6gm)=kwxfUjv-l{xuEzB^zm3ib^m|}V> z^2oI?$MgpC$h9!Z^p@w5Yhjk@4djt)VVddnw=UPxJk#sTBiF)2)4L*%TnjTz@A5oy zElf4N%ks#zFxT{+mPf9I$)V0HX)CgsaY|c|F?70=-f}Z&vnmtcZCxGx42fjMmhI8cR2sxoaa2s@xJ3` z037-q%7H^Ua3}{3<-nmFIFtj2a^O%79Lj-1IdCWk4l)P4$&PuJ&-s)ud->d(?2u28 zP5N>L+vgKx)4p86!}1BTiC?Z@yL^Id>X$3%&L_wwf4PFLe1dHHmn-PZC&&(4=L$OV z39{qXxq|k5g6zO`uAnWSAUkrMD`?Fp$PQiS3R?0BvSZh|g62Ge{NQ!2pedgqJ9?cf zXv`=0tN56eM0i}k`U!s&tuloa-B>}574PZ7kPI^Et` ziLT%VleyDc4!)@<-SJr{o?_*k zYHGnplqXu@se#iSVRTVl3r<_25mEPY<`iW^Po%cC5jACA;{oRBXtcF@;MWgoVl+5> z3q~T~B_7@LfRF!Bz!R&I9LL91RyX!QZnU~hxT)E(?m&H_RMz{=OXg`}_N16EAQv_~ zx&WTss#WH$?uMLFAs3UAnpxM?Y)DQ8Glkpw57)%VxwSFy-W3f*1L&b0{0%{EhgRUL zRhgPN3VFfQ;`35-8@oUbvlhI+-(8PuV=#Dmi-Ld0JaxI@NTgI7Z;ceiR{^d$5a=_wCZ#)3hQKM_;+R?*JLh_)7yk(wCm1ca=$?mhE~j+&S_4PG8# z&z4~4Tw4Vms8v;X_2I}V6=*RzshN?EKsiF{i^Fd%`$7{l7lgo5Cb%w*B;s%ZTiyRw zcR)Tg(ON7%YF<@)pgWfJxeJYNX=2{oW(})644GJC)SQW$RNW5xxshO!J6ZLNCI*!T z;QbGeKL%bBt8xk~>_$4Ut7vp8<6Mx7!&rGGuKG|D^JYcEjWyWd0#R^#sA_OwC(^M( zD-InsE@^fEU8Q8*_e*cprtl`l16AM&7fQ~D28KL1T=c~n!Tl->4PZ=I0X}uXL95E{ zq{)sckqmG1l+Y}xvq3s0vK;BQ;x62HfP~FO-gq{ z2;BJAhEy-_sBDcHkyI+$qLNZWR~ev_#BR&*MEpBV%$ymo4MxFpXBE6*l~s3F>X8f# zED{+tEF=QgU@)xHkjdJNfo9?>W^oUCuJx(Ptx7;DFsmq3)F_<)_tgDK=l-L+r|Txy zAm@$F9**lB{q0-rC)%F1Ew#RD^;y2MtTTUNo@;v7w9;fSUS&MeaFL;_{yP0Q@eMH` zd@gJd+JOpfe~B`snSL9M4bY?_vEDEc7=Wz^ZxMji1nvl+|iTOei z{N~n!Yg+X@ZB;3}hUYm85(nzp6tD*W&L=vz~V-jje{Rz+#CW9e5-Jai_ zqs_Qr9;}XFl?3PMA$Ykhj(@L;1cR!At2-Wv!MHXcrUoa)F_5c1u((tCRBh}ngYkSK z9*4&6sRzf@@RDF$vKd-NjMtv!G2RsttOpO zStGpRnEeqgABi+zspd4)n79|mB2qQ}<$|?+G%<%R`N4~|@Vr1+U4>&KkW{L|MJ1(% zCfg4O()E(1U!Pp^j3$=0vZl*wG(Nj1t&=e?g*mgF!-ip^q@4IqCW>a%>Y-5YutpeO zaQvc4F3qV5Cg8!CXs8@NNzIHGYla{tcW?=;B|zTyha8m15}u9esKMP{iA6rY)z9O(lYkJ~%$ z*>`GVa2f2^!DGuUZ3^^8J}|U+eAGO)|34r7|8;U*=NjVN<~+kW-8s6gNxf)#L!f3fZ*-F#&MU|kRjYpzsS zcfGysn(E9$O$Wb&UluK|2*HZp)XIsTQom=(e0TsoKDaI#PE-d^gLOX7++ZwGEk2Uj z%ugE1fgYz1I^A6#RK8XqJ-)Bznd7Uhhlk?xr9zbqeE^fea-nULK{8{59}+R2<;BN` zpHyI8)O)H!;Z+Bd3+sKz&oZH{_=)*zR{;G?$^5O+4+^Ua3#)>@+Jmuu&2l7{Y;PNK zVtCTN49KIB#%@RN|VBG@XXA{vaL!bMx zpbS{(3r7+M)fcXvkL=9)wqYlxZ=9DY`;k2hYw@tf2<1N0cTiu!4RbSP-)0FQ8IaV? zfdnjK-@y?dmK0R@W$+b*2Owb%elXR4<7`ZUQ~|cOT?%L(xMo2L5>g)AEnHUEsI;^i z&ly1f2M_GVgD|Rv<66}R*&!sIGciF@mi)&OL^5dO3`h>^A-CGkIkliVG9?-bHhTPU zdM(emosO6{OvePUD$-^NAQ{kOnh8!!iapIWWm8Hg%pJO*bZ$V@pP89ibUy_EkUk2a z@gq+*iP*!MtL3*{**Rp-K+l|LwGU?czH(npt+ZYz>YFl(y;DID6(4{gm0LXpatv44 z@Fd^|S86gJpBqFqEgn9snT(WJNX4Y2Q`FUyWFvLoefPp!ni#1*eOM8Vs`q7UCdx(@ zlad-)Hvt&g;h$n}cdM4xaQ@#{cbm?gbQ@e}xU9~zoxL6RI~Lo2vR`T+ZhO%dwSEU) z{@Yt_wM;dCWNtF|Ha%#XXZ*_edt)ENLx#orAM}6F_ZA-%=Lw$)8--4ws%XE;B%YAM z{V<)Oy6c|L%HeJ7mM#Z)M;yTIfU?E_Yy{%GCK42d%QNk^Dwe=TWC268W>ML)ftym%W5xXin^IaGZQzYYZOVFXiqZ260L#GO=V1QE%HFQXwO52#lX3c{%CcuHr6Q8!TXAOqyQVVr69xeU>z{v zfi9iytB-%%Q_%cmo^)r*11D$k#+b^G@&wXIhG<*z~6%sK+ zG$$ekty>8^e1Y~nV@*K@&4RW0gIu5uAv?3OZP=;lRf_3bJC1+8Ak*iK^EN+EwBF&3UnNu;WQbxqZL=BKtA6 z$84urf3#j;9box~Wrca4`6BZ`(~~B@@fYL8#uCHRhAQw5d98jd+yqF7hY7a{<8`ls zx>kQHl6VRaX9g3V>g+FgL^UZ0hr%L_VLITcN|pcx&Z|e?@%+$&DdtAYaqF|JDhz7{ z;)RshT$N+9g z|B*XxDcF$dp>kOC2>Ys4gKA&$IBtlxB-9XJvOjQ0^XS284Gf9KYQRy0x_6IiJQr65Xm`d(oPP8WTu%;pI|#@9}pPY|Qi^Olop>1N_M&dAVrJ zqBi9SZpr{_QkAnXl_2)m3JPc{T6s>8fF%?PlYl182v-=-b`0Pd6ajFbA zg2SDxFHJCs9!+owU3(&GkT2;19vml!BBzT5w;uS`_@IPhs*%}>q!T&77EL**8I?%~ zP~cABm>$PpTd*1YI|CjZa)xFVNjoxuF-2gaCfUTVbbl2pbozR|-~FZgb)&F)9owm^X=p8{p}rX`)!}vUbbzs-E6ziw!v0qn`=AKc8smP^;hf1))%c0 zT5q)e(YnrBVV!L~-rCRF&hj(dXn5XozvX(%d6qSna?4E1XiFc9%lwo11M^Pv-{B?0 zKbRZLe)DwmNOLdnd$`y1FVi!odrW_UmksMoD@>=DMwmP%oAG<&yT+%%BjTUoL`1D| znIUFaYM5*o0{#)E=|}2&>K)<_22)3)DD)JM?kr}G7>Gw4Zq!3yw-1-mP*Vq^XhkSN zc4p${S1GU)1DanYz{44^|9%SW$bkL#6JQ4h>~J0hwr9W&=Mmsx4A^5b1-4_r9+L^s z&48WjDbU4$o$CqE$$<8UDbT@y_J;}3&VWZPr$8G69<`hRtvn-N-bRs@jz&FXWVe^M z5vbW<(m8vI-I)Z_)%!RCc!`rPp{icwq)Q0!1qSRWV2?5ae2xM2Us0fk0rg)I zU=IfDJ(vQ!^E3`7z-|mU=wk}(%7BADCcvW@(0wBXc40vGjRbfkEZ2Pv+46ArOrTJ| zL8lYOL+F+Y61tvcUH3aS5T(LxEVCh$KyT&HTQ8x|8#wgVO9=FO4!vM1M4>NoXmuw7eSt$mgDCV2 z4h;<=&?XKIPNLAOIW#zlK(FFZ-!ck)i$i_O2=q-3J*|#Hw{hrcbp-klhb}soLNDXc zMduRer5rl{1`552L+9T>pf_^p>}?c!0f)}sMxcM>(CND|(!YdLg$cM9Fiq2s#~=Mq9=Fp>D z1o|b1cJ4=^TRF6IKLXvtp&iCj=sO(RVJv~Z&7tlE6#6#~buS>$J2=!Hq0rYj)E*(w zS2@&t28DjZq2@CP^lJ{)UrnH*jzjfV6X<>h?Y93O0u>%-PzWW^$2j!oofNu*Lx0{$ zp#R{|y&qBN9uD365rKZiq2K;Sp%-!Jx4#kSg&ex46NNs)p?f+J=))ZP#UKj(fkVF- zM4;bu=qHmX^ehhjWDe(Hw{Ip;fkSWJL7>9>9D4JP z3{?0RhhF~tEDAsJ~JF zNBuf|h5K{&EAB_!x418MZ*;G8&l67-OT{KJ;vVZh+TGsui|ZrTbFTYb*Sh}Ts(1NZ zC%Z@3dcOKSR7ryuw~%Uu2(P9|Rr;p0pof7i?eJUbStv-D11gw$T={ z&4Ky;(J3wVq>5SeIL;Sch7VvKlSBg%^bTEw5R&!;OZE zEE_D9mf4muF!Ohs_nO}`KW*M(zRG-txyHQ6TxK31{3d*C?qu2zUJqV`dk@!}&NDTb z0;cJvk<#4%Tk$xkBySsc82@JclW~(VY+PU*XY4PW51C4ShZ_wr6Lp7g8=A>@aXkP| z>M1VXTsl4zs(YoA(Ey7AxJOC~PInVifx!xxAqVu>`U*jcpD-i_E65V@V+Mw`r0Xg8 zEe6J50)CT$;nen36#Nt5*!!Zg@GcX1d@FoTZ|9LGt47QOc0#39LsO}b?VhGM)bvH9G zY*cO~V8Ot^7@PqMdIfwJ0qZVTz;|W9x<4`S@z*WvLcv=Z7=sCT3j;%M`Bw^lkAX3m zfZtWX*HZ8~3iw(AKAVB@{1^rQje#+kfbU>nxWx4f1@pcfg9(`T<#^+Zf_W#3!34}Z zQMh~5hl1Z=$-rO&ew`%)FDg+m??f?}fO#kC-FSnlP$r5S)REy_s6{V@%YZ#FC4l z8SFTw7Xnp!!%Qy*XRzWbrWaq8AbQ&|y%?Iox|v=Ge40ST0ZcCjXRzXNTrYSoBj7$< zFN9{Wy}91mcYZ^l;#jU1f-_k0L+m!HScaUUVW!z=N1x49#E% zGQAKuoS4!`v;Nc96!2~>vB?6zwBH*qp5g3}m z9>w+E)_*90ietE52+m-|(R}>4a~r`5f9FHZo!c@{;a(1XdKZOW!=X>_BG5l`=#JeK zn&QwMy9pG=VYsv0{V~{{ke&O{a{8I4(}DZ%6nAdx&o7|*)Aa8oiKA||WOgq0_!BM%r; zsWlHZr#v|gXz=i1<)0rYybHi{t^sgOl3mdP$y1O9t5;S1LW@yRdstpi`O3`xKa zZAqvhfh0Z^gjH+is?LQUZZEA4!zII<67eVTi6E?68naMSf=PTD2)pCyPhDBKDbw*- zJG@g14-=@1r96pG0bzHnIgi?$v2dprOGal1-#1$1g?N)eO*pO9xz99 z9%_y+c>?4bHhf&pD%hA=(C(uZS=ZWDB#%c9Fhx@iYDOT5uliuAR6en)@Jdz-S3dpV zG(Kx!=}+RbJy<3hvrtolN%>)(st%VHZpy3>`W;{{uCgka{4$T`Jk*>((#uN*7gr0e zU{m8!xN!*nt<;U*pB%wUMq?IgN_lcPkl;uR7w-!;Wo85%oyNh}4ZImjX#&Y%NCUM@ zYZ}VpOX34L*zh&IC$F-E&HsZs_hs(Ea7KTr^E>VVa4wv)PusiN?zPQ^6ZGq>M_9I4 zrh^B-P39h^`%H7d1K`=leuhU3OZ4CC&)4@CcZfdWSK%^Yi0&y}Fl+MfOQHuY{2aq2 zz%N=Wl>?dQXKotOX?QS+4z%za2D7l23+7PI_Q-UiZ1L?>D}OoC}x z$3o4ab3I~5m;?k};#pR7j~utZ}PwJCMn6!2(QaG9vw=BZ3ca8op9QJYfBO#zQ~4;ES~Dz|wm zQ{vndjajHEzGMtYu)BwAl5Z7i3b~3&3|Wy}jT}(DH07XXlqYL|0zbhp$S=5Zspk^J zl0Y(wG+>F=G}IVhGQ!IQ4|5b+CdA_kv1CQEnwN>D9Mp{RWSEx;cuHMbs2Q^|%WdG0 zl~@u;uHt2)H4SC)CszUseo^4Qcfl2mUMeT1_>v(cf$F6#2{oiDSp^*EqzKRR6j~}1 za;}sUb1IXSNCoB;gNhmzNLBz7ekS3Dbiuut>K-<+$Da%$3)rJE3pFK}EC&)CQo`-% z;f0n@)-7yeOnEYZJYbCGJZf|N+#EQ>Hm^`~O4V*zRp$7(IhylOb1IT6fCl&7@aR>c z=49W+CiVoA%aI6*M|&c*LHJ}7emEtk<6jhNlG?ku${>7=2|u0M6H$XIlS?7v@VY#n zN-NZy9N*@|qKf1aWCDwdz(h@|NG|4;4v)hXYErf-8TJ?GBCGT{KdgA)FA zsiTmeNOc7I)l!>)_aw&_Rs~=I>;Le)B~6b#)dADP>cf8~JtR5nQ|%!&{GrF8&;3wX z?i}D-e}sQs>M-PIxzR@agnmP+9niBkZ@1jDYFT0CALv7uBmwJFZcG5PzpWBL`28st z@Z+&c=`Dr=TL*pbfspu8P9%|xgf}I$BOx3sQV!rak~Q;!m~DI0Uq|KGQ1yAVD~cpKpw9k z>}yhHWS0u8ZP*EURmue9xaOe4M+aPmm1XX$1B9wFWkf1gF}0^6O#T$UZ-wirc$Kcu zIW6@!O6Ie^6h3W*>#5q3(79|dg|AxSdL0~)o=~VESqHI+E#)bE*$UU|H0Pn__*3}0 z6_$&(yXLATdz}Aw*Zp1R-st+(wE?{UhaImw7TI63FSfmDTV#F3I^1%B#cW<{`ouKP zxW#yw;da9m{fGLE`VQg^;&|b0;S>=55B!qu6dv-bmzv_;Z#ph1tSL?j#ijRh;Q5>> z@FHNS))x+~k>2TyA2%~mTLXW>D+8XoP&`x{_ssCc;GK|A9XuRF+ELP#!t-GDQj`79 zC5fcSpE>~&BnjS$BTu7NRb%6)HRVU&qvwf-Kkp!*QmV_9xGBpM`aHm9Pd+e1! zq_D!C8*E6xdoS>m1HK$l8-l|ZdJ(MW~{6^D!%=1+~1OGpQ=6%|@Sjq0;TVa;W3dRCh z%PNB&Uo7bJ_$n%bf!biX$KU7)2G&4mkX=#W&4@FRe2xPB5Bx|Iu4V76-u|I?UF!J zurAdfQotWn`*D4NnJ^7{8dMcD4ux?}}YrSR*QnmRE%0 zRR?4K`qa^w0LlC|O906Lm>~3n1n>!ha9M#lP+ASn^8>z!rz)C=2R-G9c&!J%*1?0x z5||+L#Ux32a`%5MNhFijr}{vG_)774#sZtj0X{lN_}8U+BR^{+ZNyLLH>P?4{X+Zz z>+bsa@B-H`%cAvACBg^QOKwQ@#1ybr(q<_jS-|%HuhO~ax~_K(cRuPI@7V4bW#4R{ zWP96I4PNxtfv5a4EbYwKmg;)kQr za!()_4ttK7GrsItPav9zz+<%}`&Xy%D9(wJg+(PLoQ2HeE#Kx#2i!OozL66lV71a3T8r|D3%6-oE5U_I3AP0{F?&gB0Z_YH z3!S>HK(nWpEl`!*;?#W9&YGeo+DX!@Q}aOiFjo0CKV9gThQCAFaw&yVbCHi#!y@q! z^J1wvK*##dEr03fDy(hI$Aywe2yWd~1|u!oxH>f(NtunsBqfGMQnP?_1gnB2AMGm4 z&{*#gMMBBoq7f1U zD^gQ{k8Qng89%zv1vXri4F_wR8O8-ulaYwkU#*FVK}l0;5)cJh|FgFLxrG(kQyiR$2K9tfC=gJfKz4#4m(0fuL9lEAUViI@_}Sdv?Z*$1%OChhCp5!vwI5XsZN}42Y)21OG_Y zV?TG!4~1nw8GL);Jz5+N(hEVxShf7bPH)^97!#?n~O z(-=)aJFW|Y6D+LeRY7nhQw23Yj*bfgLD(Gh#NmBTPqelQ)`nMsKQ<5S4RcrkwsJf$ zgM^0D-2Tk5sd1QE%%A_x)RL^V!Lk2H@kcQ;#1U+YiPPcpq}dfc?xbg3z6TB$!vA2-c2ooG7R)Xuoi z_<`|R<2}Y};7z=^ajE`Z{WZo(#=*uTjiUQA_e*-c_=Wo+_YLmz-Hq;mdz#zp?%}q% zzH`0fdP3YKKJ2>Fb-63;s&*}Oo#g88>frp<`H}N^=Y7t>TFo<}^9> zz*&Xuj+-2RbTm4Ajwy~Ijw9iHz)$Qi*zdFd#eSxJHM|&5YCp!_&bHU~u5E|y4%?;h zRzQVqrfsCHhs|XD%KEDHVe1Xn^Q`soLck>JAnW0lUo9V6p0R8(d~SHj@POf3!&!#a zhQ)^QhW_B^aGy9)94K}KKL`I7o)xyjy@yT0Dq)V%2;LT9QVILF;G0pWGyCxW?%sIz z1;kaOIKH#d2p)S`M8-j(Sb7AP$0GwoKo~0vU_?ehI8hORZ#ES;SrLE;A}|%gg`R>= z2WyVk5P?~pFhx8(gP*DBhb2k^7y2psAtHkp`pN=0AEW}O$^sZc1Qsd+&|gx435ozj z5P>p90KPO-fcfQwOW6;RQ1J`qmlK0CO2p3@7|!fWq+sr&8G{L!`)Gz+(r;7nM@%yY z6Y#&8X1ItRYgH-t--Ys<#n#}I*tq94LD_-aKz z9JVBI!J+7fhzwq^D*}n-Du1RGiU33qfuNEg-@X#U5K|Ha;TimDrB+Z6zPep3)1X$2 z&tMPcd5#j@jY`>3|FSw>EAXl((adWFgi;T)I{uCZ1`{xUM+1GE5d(FPvovEc0YAo) zfnN3~_-PJ?U;=)MfzgWw1@B{E3?|^86!1z4epCUkB;f4~jMsH3m^Ua4CScy6AoL9i zzJO`QU;_Rl*9;E+DELVZhF}7If`QRz00r-1U<@YUuN1J#z(*7?HSl2uM!yPF^EV8P z!9?@d3Rq>}MGBZ2cp(SF+xArRl^hJgMDrC4j2?q1_$~&gX|4^Itg_f(iIK1}=Mcj;dMRz`z(xz}IsyTuY{!d6$T{hza;#N{7I{x8C7H zhn9>OR3eO0Is}Nw2nZt;0hpN){lXMQ03wLMWJO?%{vIk&t_VN`5eO&(u%t}|mMQ`e zK?IgSIO{Y=_M{Iv%~Sd)2+!c>D*9m~o$4Q;=!b|5UN}zCKlHgDiNFFyKZIxS^A-JY zTZ6!b_KJRp$l!&;6#XTywIc#yML&dR@T(O4aFCh61(Tv5A~JZvsOazh@JU2qnW7)U zGx*aK{c!h&z=e*Aeu&86g${}UEYVYe#fkt#5P?Oq0It(efoZY;Mi7BhWD8(lky_xF zEx_;$-lyn?O+c!@m!cmcGI*hRP?{w zzJUnTDEc8hgO4idhqHeKE_fCF5Rt(PBNY8_Z=++<3PnGJXYfHqKb&Qt`j1icLqrBI z@MkFSwh3r)eT;)fN3{)6$isZ_C&LeKVpS%&lAo35i4|nM1y}| znlYGwzh{~uRQ0(zoq43k;0$;p$AbSss`&3*F$8C@x_cQIJt9)@{S1u31biO{gNtDb zeuje~n1KJu!QfSfg82X(y}%GKAAm!s>O*}7*9^e~+{875-)5?LCkI0?0YA&Y=$wgy zzhhtwCSZ7M51);I(EAA(9>c;%4KOr=UC;EQcQgXk{lfHOa0aXUSpm1F;O7-^djfur zfzinq1^>vv7)-!>6)>Gq>aJ117ZC8D85pl75Y2+fz!;nX3j*%{Pto13b6?=@8C~?)aNyy!|EnOxx48sn#dJ_kV+RwiRxoSl$31fM;9EEhktGH-Bl~VZPd2Z=PvB z#;h~FZo1QSmdS5A9^SA2!uYuHDr3Sp1N;N-H@s^2o8e4@&oCNZ68ud6nEncVt$v!m zulOs>^f!yY6XAJxv7PX#uwA%ZhzX|%y>-9nUWNoU_v^FiXp?@RRp{A${td7q1Lv_C zgTB}p&ydlhMv*B%-%b4hCIIZ#ODJq;$&eC};QDOp%hl!L2(0g>K1^M=x6Y;NhKwFD zQmw8xQ`ZbmrLGrG-PGM`b)!b8)%E15%f+eGdAPc#cTsg<>?pOm9$Z~6PNl9pR~MW_ z)eRXvdZ=1mH?A%hr&8CItE>GeOPyD(?kKJ<7pGF!g{w=SLDdZ{Dak6?Be}Xx-Hxo(WfjHYTwN|srLH4W*X`TisJbDey~EV0>%i1C zgHx$%&r>&hn_AtdtZIB1PhBofrLG-Ucf}7>9TY`Y$-23^T%1asi>d4O+6`14G_ovp zPNuFIoJyU8r|$f*R2`%)EAQ+)b-6f|IvY>jCzGf;D2l9lXXUBO#i`U;cP%c+Xi%2AEMtvaT`o?g&cM|*?95V^RZ;X@T`o?gPUPx#sQNqTpt95n zTwN|srB27yjrFQiH%i?>r8aVPxj3pWwSlYKQbE;0>ax_W=jw8CDs}6)x=ALg4!%&s zRc$u4maEIfsno4u>bh;uGIoTz-lZCux@K@Hbqzdq4|k`j17p>no>VT+=^brG)aG8a_`9aL6PRC9H?IHGQ2Dhyk4>?G@!zig{0aDyyf zg<`uw2o zLgk>Y=a_IXu}V78bF6Crdt)kyNnlmI?UF!pVSTC`Qozsc!&+ovnNSKl*|_0<;EjD< zDuDbf2il0Am>*90fu7fJd;daPdMsKSY`up2kdD>x;?NP}R;5+|+hBH{qbP^o=>c?{ z|NC_x>fEon?{xp(?RSrHcW`~~dfauTE8&{%>IWVHUUlB#JQH@^M>`L5eCBx6afKu9 znC9qX|JD8q+!Hv%zT7?%cGy3$ZMXf&7PFmf>uvoRJOdE`xIg zQ!PEs``|>ut?-7xQuA=L)AVoCHq#}hsA;mvWBk$hg7Ic!%DC7#%xE`!Xn4?Yv7y>9 z$o)a@@{utqERt;5KCR@GN8bkh~e3N}W6; z*Jn*z zI&~wnO7=9aE*Ga#x0I{%EmNx-ouzIGSC@-Zsawp|c`MZFMyZz|HZ9`na&ankr*d`n zh+3UDEAJL^b-6f|x&>TazpRoSss1o-n$Okc;#BJ9adl&|s`03-yqn9_<>FN8=5Te@ zoz%vT&Z>8_xw>4OO5H53uGc$ibtBcE?M*Yex?G$}-3+d7-92h`qq91w>0DhdPNi-d zS9i_=st#5(vc9vYaCNyjmAaF;y6!(vbbm{BQ=K|*R#8l3>YBl+)J@>(_GcA^H>(<#ado*kmAdgvUHAT*)u|hq)qR#S zbQ3UR+tW#{&YM-T<9Oz=D)uWuqQq7c{iG?%f+eGjpFKdZlkG#RmiOVZX{Qii&Lrda&;H=Q>!b< zY84~6x?G$}-Egk1vq~K_vaFIF#?|HGRO*H@b={udMN?IYW>w!3Xt+S0aFwt2P_Y<+BY>$lc7tdCl6w*C=L75J=EtwXFwSaq;Q z@SNoy_owa`^jGVf#L40ynDgJ`zR!IPtVyhPFLIycKE~~K?X_I3w~OECtM&85PQtGS zo&IC+O;BxFU>R%aXK|W;Fuwz*5^mR@pzm$I*u2hMZa&34%-qGSH+^n;$#lPXvv|Jv zhPd5yt?Bosm}#+Tyy;j|d$_IezVRvJoyNS@J7S= zh6ck5!(>B=;fNNN82;Z3mJe0!xy8DNoE6b4$MP^Dvqqvf$^u`RuY80Eh`-3EurMMc zApR^1eE-FQDOBJ)SpXx5z_+r%cdv>iRA7%RfDuICD@EYn@4Q0=o>2rKf(ZOm7TEKL zIm@WP)3N|Y5P_#;fv;bkLyyjhPs#!qK?I(V1t9l!Q-()n0gNC5+hqaBy=_$Bepvt` zh`@b{z}ru%jJ`(^fCwURw=D4WxED54h8tu7j35HnL%4K6^@nid%S50=KAwl+8T?>b zKLo!>;9{+;A0sk&F|OzjR?_2<4T^pU&*1A7{orYu=oegyeu&861*f8a_6>g}0s|EN z5T3ywr|6%3!?gr1Di>0IfQSrUR4$}I{iSD$#Vh3mVFVGlLQc^4OK*LKFgWA{VR#0w z+1Bk!`IYAhn!7C*U!TkwbJWJM(5gEMrdpSX0e{&c;-zct=1u%jLtW^ZQ z{7_}V<%$4A5P?4_0{`^TLy=-c5r7CHPz~WyD+Wi|^cZ-pY%+#t@Nq>yc=aYG3l>E` zL}c)SSZIt0hzwphToC|oOjKZ*A^;IY zK)D9672LN_fdz^HL=XYx-UIGiQ-LZ)03wJ$C4@^23ZA8+!;?9R$q=5w&sHpeSFEUh zkD?zUGI*hfA^@&FsK6{m03wLMOeH}b$3IU5s+0slcm`jo=!b`l2wdo@=!b|5UN}n8 zZ$IZ$A}~YI58)a7bVWZr6-D4ecSS!$Wbi__j6na*RKTAR=)ai=C>JHr9~c!_Aq!vx z5m+u;u;s_~HAG;kYypO6@Jr+bL2!h?h5m|uh{)iDV-*3o2~P#aD*_Nf1WFYFaCAZi zlrQxbh#&&Wml_^3SwRFAD;7X_2CrOI!M9HcTxh2x2qH3g!L8)b9es`<0;ekaAv}Xu zF7M*QM+7b$q3DN*3|{E07z~bxsK7i$03wLMTtxuR5mAA#A^;IYAalP6+yGI5IT?X| zE+Q~nHVr>4negLR%FGb18s(fWE5eA3fVfc+7+B^f%%XA^dk;hq0p%_>JO#3c2-L|b z!te|}A?wGNLkL{3$qB-U3|_E8xYR?zr;*+)=r8NX@C^P~-2We{i|gEPy6=TM01@|8 zcVD;8^_J^i*9ESyYl^EkoB(*uxz%}|bER{F)8qKr@v7r4xF7I>J!t#Uc9!iZ>))&s zEITa=%^#cV%tq6NrY>;rf1u$$!wmiV`jGgQST4LKEZ6-TNZ2o$J|5mRK)+3fe_gsb z5QXDac#dj095C}##-fQD@U9ty6IY&cA2`Dvc0iB(%?}4a99{B*SBEg@i|fdAqdq+b z7}4XMa9jVO+Az)qcilC$(LgkShs5Gh@Cbqae|)tfWv)w)MrN?J4VWo$(vn8c@{)6D z9nKZBv3g=W0RAvSfvS*C%4iRklrPrkfir@ETJWDy0p88=P@F0)<}^B>mz+!g2hu{5 zQlCaQ^^>K;H8^3>CRa)W2{NNV8KVB-yy$@WlPaDG~`2ry*#ITQb zCs`G_CXGJikC)1@h@8~S`ZW58XBGD6XzC4Z%!Ff)=l~TR-mFYu>y3IM;5k35!lFlb zR$+_IOihla!T&pRXk-n)wd^x(OkN#X&`w4} z<#i{kH0qjJC*+SsBhWi%TUebw4hf;=7LSk`Ser)Q>!nib{B6#{HQJQn1o*zkYD4Id zEQU_@;OVfSs?NsK=ySbPYM{lXrN)NR=xZI{xz_3SFEnb@M&~wLRjbnIRvlluE(#Yl zE1d2Jbq3u78lH%MqfH6UjMoOEaJQf;mQzJnrTZcsSXL}LYTU|nA7H~H#GQsrZm*GX zwP=*5I#?d^sj6it-5bfkwBnFa!y;+)Y0jKF?oV9xzBZ=KiiR6&@CF2ouCqRh)oFBL z&YU_Hi;x=FEA4^Pyl}f${}tOO<)?Xvh~zkL&vXxVq?{rs_cpRi?(8nr8aD$AXdZmv76r4iNL8(ApSeo27s#Fc9ntG;>WNFF<5kO7p(22P46`cC#MORp<@RY_SJ;~;p}k(x}|61hT_uFo-Ce5kMzvf z@_zG@Iocar0m~A;Sheb76icIrdgg1nsI1h~SQjOBjD4(j)`a&6u=@Z~6T=FIjZc4+^xO5#6 ztd9pm@E}bj7+0@0B*pZ6Oa=})+BO+9GuEWh>-}`d3mB~SyX#S{O5GQaMqrli3x|WT z%22=)s{)U;*;AgzG`hf_&PK{@Ku!&BOrt-1>4^PYT80v89$8c}*G}$O|40zFMM2)(dlr@Mw>F78w{<%aR;nbL}TT_n5smh zY4nDVYcj>8q()Yxr@%)6pD(xHR1?$2#InY?H0@QH7EDh@A}~#RB5F_~jqdQvq*B{^ z)6*K2n!18EH-@TBqx1VRspyK#OUM&I^q0D)(Hv@y6WGo0e<-_YSowyTV8OqU|LWOQ4QQ^S*{ z^hwZyaQm*)?_M3Fx!v_47)C~-2Qrd0rpIAQARF2~B{WN->9LRw99+0(-}#M3IRZPj z5vcerZ3~=;j9_^Y8L5di=@Wnu2NuQL8CO+uHvdoQ+<$cUbZv1>a6aLj>Uh>M3-0zW zvVCS-W3yNkKvN zwa6)TDMjR@X2#NMfRYVX@d&LpW@djPqv~T1tJ950D%n{~Qfg?jL%IP-H$v;t>Ar@8 zq}o^t54Z;-5!@8cnQp?vNEC8dV0PuD{3Gfz2q2SFQCl~x{4_``_? zsnl`SRv&|xzf}F}x^x`*rP6OBerkSYItE#eTa)&??`W@$@spt;z`{dBy@XnkUX4s( zXc3sGNvqQ}K!lT0`|Fpi(Z(dUcOIyUhJ%6T<})?vC~~54#pI-BCWUkaYR(eYox!<& zZ7iJ=3?yREqtzbR$t_*F8WSN^->=&)5i}#}(_zSaTuW>J<;xmX;j$jsCfB4_0x^EGE&9{OYg6!L;PVKN=)o!kPWG}_OQY!! zQi83;q@+exr>lSw-z_uTvOuGLd2Wp~gKf4a4yP-T4=gMiA2qKrjehE+C1BnDpDzDK zn^NS5e4rqq+QOKm`H4$I8XeS0OTcZxP0e1DM$dF?#=dt}qKh_W&q>tC`*+}U5gycr z^FOu0NO{&#gvN9L$)(<^Ey$_iYt!hHZYFlu*6M*@->;3~t&BcZ!;Cd)AF`w6ZNpAY z52sf^%fcfk_U9*SwBCX`mzdY< zJDJ8B?D}u?Z|JuRr->H#JooX!!-jdLGtH;C2DuIw_6V=K&Ue+DMfb<>V&8}2Z>DSX zH|x(gKVjbNc+>G1y#A+i+~&AQKUqJ>-P>&w$A~>$+g&$Vj*5MX`Z`jquf>t)u{t(Df9;I**3)oA(B^0K}`zg%1;&T-%4zDm4O++=ys za-H;s-`>@m*}X7n)kD6EvH#1-LPjtOuU2(ND)NfVp-tEckWl+y}n2mzz8C6Ar}yYhn`T~%)NjMND)Nf zkFpIve0A>{YTP-p4g1#38AJpglEZ%-d;__4;QFJdCuzox{ zuF8z9TtJE-0$XH;eW_k`l;JL!0V9aOowC4>LylFI&);MLj35GcC;}yKo=X`vD*_Nf z1a9X7g4iRmlM39%1*8ZfaI4IKm68hFB1hnOh(=V%)EGfDDX;$E$D9f%4{>1x5s;rb zlD>gdK)y~WMGyhyIw79=p#n?gBw+**Q0@of(HSbRSQfwtA|PMKlTM&e0r}#t6hQ=( z`*nC?f(j_t$k*kh-F_+{-+q%Kh=6=8RoXA70`e_WDS`;#EmQ3F1mUeQ?~w3^ zzMq>mKkc|d``bm^Q&Q>Xc2q@XQ!4jaKS7ErEtr$TBhGmj8%S##Lk_LuZULqiu zwDf*76*x&|z-O?Dz&M#^6VlLat>FyJTva|k==D@nu@Zn6}f!B5V>-`z^!M`YmdZq2|ub2v`Wza#K| z94>`t;C&T%;;Ih`+@-)FJOfw!-$3i5-dEZya0t)9mG>Os)ABgc-bH~!cm}RK4hY}6 zc?8~FfkSu(-c3$B^d0L6+$6&>JOek%aQO80A#kq@$M6hXaWn&cA2rn?!!bMqSA3Sh z7pNoA-bsdIcm{sBoER8sbS3a!3LL^SaM*g%U4&0+!&?8#1m2S0B%Mx7O7LR3LE;r( z2VXdPzhAGob-{>?4SKUI0AI2vi4l4OWQP2eev%02xd49Q-lGB{7my-|fS@qEam6E4 zK&LQ3L`Fc|FAKnI<8MSj{7n|X2qN&SEC4em`Yg4$PZq!kBJh(e07LjsD8rAk07ejj zy|MsInN&&oK^DLWBJjN|0MkC|FGc)D7QhH1@HH2}854EBA@1e^QUnqBk_$*<9BRWG zGBplzXv9w3|L>z~)VY7>cEXMS0nUFor#oJDRM_|0)8N(rQd>9hOBhZlL3KTy3z{2lqWaz6dOMM;k&Bfz0OCHhJU)I~_Qc z8>CSJ<|h1b8{8KO!m(^msJc1<@8`gkd0$PVNZHpk^^h0r+J>Ey$D6tXIX~A4OAT6? zUX!RzRC|IA_>c(O38$>Frf$f}R%eUJswV9Ur2MQdxMb7HRIn89lhnXtK=siCoYkeI ztDBBOQpr;E16M3k%GuD=1vsbT`m^q9@EfKP=d3Uu2|RUR4194wi&AdSQ0n@oBavD% zxA@eQd1KQNz|5Y#!gVN(jGp5w55YZ0yjnmiGupo@5)7(}dP7rZOo3#3o27teLDJmR z2~tpr1ureFX_NMV7jwoyvgUzttRv8Y$nIGv~x2W%x`TEv0bwEzZ z_#$#r%GFKnWizEUPtD8>_+oH}IRM+^u^=31p`0~MhskCZlao^RYHDXP94%OT>XJJf zD`DF&81tOynO-_=A{ol`Y;pt0+6*XDM17iECc|;4C{@x^Q8Z~{ma5)OPJp4RTv$d~ zw8;S(f&14m+J}W@ZMKG#lSNS3Vj;h3lP}U_M@FfyDHifg5EB*F_Gk=c^0`!1xz;q9 zkrRw9Dkn8F+++eu+_LS^>)u}4m|3RoG$`GwCh(>$ZP^x!j?CZGIG2H&3eU|M5o8S7L)o1yarPg9H z`%Mp-CK-1c7aHC*RO)x@*XWJn9N}uA7l;@4x2EYNC>QBak+g}T(GYh!IBE&7K_MKA zggXMEFh9Ue$C8arThgBAkG;lkq^b1|~<9iBP#O5>U^Gl7pL0#57B- z=)X73G@D~hCqNOiMFQN))GC*yxidISgzL-F3|cjFT-|g$l1kZBOj2rSUDFugWETkW zO#zJzo#BhiXAwPkDi5oNdbumnG#ZH|V~b5p4Nf$n7fg0R6whX8WU#bAPzj5ARZ=ry z$NnjAZ4-LDWEVt>%u8t#P3Yc|nfnzy0Z|-t*`YPcTib-rEt$DR=B2dBo=wA{t2qh= zK04_njYjs)4}&{XxYQHP6tR!J{5=3BWtCNMc)q3vCZVenzH)dQy%rXj%RRxGP^B+k z8w(|>RqZ_KX&Q!!#Jd0Alt`M9tD4Z6CVO)j4;X2bk5ePH34iWF@X981qlsQZb-JRk zQPb8pp#x2J0SJ#mX=K_oUyV=s4k{N%*q2jP{Og*~jV8MQ)JFW&{EbcMOp~pU{s;%V zG%|l8T$HJW9UGkTu~q`Z0Y$ee12#0Fb4|8F+GZ)BS+KHc03=`_b`sK2H6@va?KCX_ z=abSvNo8%Q={O|Ax?L19YFMHPoouq+9?#loWEd~oAPnrl$uBH}$9(D@t+olhY_i_I z$h_3t`X+RyjVd}bC9ZGk zr3MY7Ree^Z-Lo zSp>qcbWsi;wP09f$BHH&a)2G0a!@k@O?XeLH<&TI|6wBvD~}l=7=BfT8^KR~NL{V` zO?W*DTZhIhYE$r56q-`j{@eM5nNk{nV>)nR1fCSgY9an6ybFbewA z5XB#TTC3rW>5$kOHCaw%Ots-_7XEjpH0q2-;E_`QYMJXj4_FHYx~hq6*Ddofld*WPVx6{Kl$KZIlx_DiL44 zsGh6F*^FuA9}0PcA!h&|J;mLgOBo!Qi0@!j&sF~mx_Q+BPa?jHaX9|6b@$Ov+NPP^ zXsIiq`v9D+*rngVf!**g`3xA^1FiO}={|!xckSD~TSQlM=vs^r0`5e7PvdYr2>f5G z5#L0k67dy|YR|yG;hRP+1iSY`y7%gg!-rw1!-tWH_%27aXZ#Dgd9wrN#5zcK*HF*E zKSi8Ic31C=@>bC`0}-9OK=K!w*oF=d-J{(LZK#S-a=?^W8&@RMA^zox2n|vo5#0(o zF%NE#&>^ifYLL1EP!buj`tl|?2GM1Y#VKU>j7(X z%kP$M=BwteroT)>(EWe!8f}I-hMf9^`hvO@y6H&F|NQsX6!eP(*q^fwtX`*Tjpn5d z#`nMl$~DD~O3`blrF`MYDK^wbYE}q7uJXUXpnnqmhoAKyL%l{!v0~Ms{+Rx%^_=EW zQ!Gd`nbB6+@1%{<|3jzbbdQ{3#=1jRqfVLLx_Pq)Pcb3Yq3m59K7y1sW@`*OoVkOh z7_m+|=%klU-po-`4D{`W&PSzSXj2O<6HU47^TY{|4~fdAOL&pCb%6Y@lK{b50YIi&(ht5!^mF55J$Q;)SXz>PLu-Y9r!@ph=zDYVK;#*en z7F&;eop$_pYwcD0qqEj1nYy2}Gu0^(-=~VV*wR!7zvA9C5#OAO_odpbty=THGoumu z@ig@7Gy~9%0@aPR|@q9{1Po z60WVTs?I~s=8oST?d{j?18sL~qihE2bZZvNLQAxHow=fEm#Lodgt49Bnqh$ck$!^S zjzpx<-|+m|>~{QRs(*zF70QbKXR{kjHi*d^HGVsyX3MG#T2y_zW{vRws8zLYgYcz7 z$?%A9YPp|O6rKqGkJnL~FPvISx>}nzoLY0bs?8HlttnmA<_@Qp+gJ+!I)#$gdADzc zQ_G!O6@-WX$Lpxg6;7=_T^l)PIJLTTRhuJ>TH~v9RhvDW+L!67Hd{EgFVaoj5;nY4$SGAeLspT%?3;(GKC9m_{W(ueFNxE8_F`Qb?PZewm|Bu(PHbXeIkJ8iH zv0kRuiX05$UD)jgBe&15JUOy#%jDx*!y77;G^yIWx$qyt|6{m^smJaOI5)-z>1p+F zcR028(^KtO7gNhMHge^R_dsp@=u%Z0%&pNRe4_~^uhYexOuf|D+$FPu@bLe59kq^d zYVU&8;WY^*ucOu;PVJp^Rci~UHYHuvTEnSLPFJ;-aB8_bWra5w{vWUNZq4D;a(8Zq z*Cdp@j#^VVwST2+BOAl1h?m{1|C-gFHK6Uv9xo31foLbPreALFbd3xXN`%#$uAyN<@vwT+ zH8xC$39C0ilm{26F-gFHR6AFjbo30UJLZPsF z(=|jK8;$j*4iV9K`ESIC!=u6k#wHi27h+M6khE>YNn`y1IOE{%` zu$k6MJBL-uMVe`?v{P86T$q{GN;`&C%Eg#zt+Yc}rCflS)=JxlRmw$|X|1$fSfyNO znbu0%hE>YNm1(WCO<1K|P?^R`-+hNEwTi=_5K+p*;ET_Cevlf(uu8dDGOd-i46Bq2B-2`Hi?B+$=rOI8z8zL67doc3(&k~6a&co? zD{U55DHk-RwbG_xm2wedS}Sc5Rw)-QrnS<>VU=>RVp=P06jmu0D5ka2hGCU*QDRyv zZ4g!|7b2#y(oyxXQhk0a`a`n~^0}$g&BuqE?%q6HbwzS2-O{8(U2gpUQ%xh&c0$dtdeb!@JE2Bcz3G~e zolrfj-gM2#R`>sR>Acgu**r_p@BeLaS92Y9wRT={4sbkijCEM;v+Qr#zOt3DZnIXm z9JaJFUo!VKJur5bEkSquve(J20}sN033|Njer!vf}PXl)E76UZwLXmyMaPlMxU z-Mr^+pd=Sr>6^2Cx$;ZKI^8DZJpO;Ucgw$!_>4^s|&A|4^-1w?fCFo`A9WwwT>Cbw2F}``h575SXt|fT4(OGipcywenzRh zg;f7x*jT1r3{{bKZtGK#wf~nN@0jpf`Cv7TwZ0o(D<7?#*=z`Jgq8wGIuhm5*A} zSnH7RTKTXwjkOLAua%Em(^l)~L0GFs+$wHtZn-z*ba4KeRFi--1>wns?ir<;Xj1)$ zp##GO>U`juDp>w6H>w7NRmw%JX|1$>SfyOZn$}ADg;mPMt7)yYZ&;;Vu$tCN`-D}> zMXG77w0BsgT$q~HN_&M>%EhQ@t+Z!YrChFfS}W}lRw=)tCU4*TmxDw1uu8cs@iev+ z$Nyft74rYrxXZheTy>nsoNdtW|Mjy!u#ZEX@NH_@c*|K z7#7G9HUJjl!L$v4hXpc+SIb9)X{|O>c(r^?nAU1DhF8l+g=wueLwL1(T$t8sz2VjJ zkzrb^^@LZ;$A)RG)*W6gA04K(T32|re0-SJYMtTL@)2TMt967|%g2amt=1l1EuYn$ z)@p6x)$)1WX|2{8R;`fPoz`kC;nniF-D#^9$Nyz@vvl4I-p{@DJuf`#Je@t6-TT}l z+(lf!xju9$&b!VpoGqMI$2Lb_M;`mn_JF;N?V9aVTV3lj>ly28YkjN9vcodKlFxk9 z959zQT`|ou)igddE;qI|+6~_u`WkZU59`P2OXw~lMgQAh!?IpI&SS#6`JqEEd6eX@ z8DtX(NdT(0oq#y$D1z|m_; zvi;;IIf{O+BtO_avt8kbqPUWhxSUGzuS0V@Z&F7|9#r|+xLGQR zZ7PZ@E{V&oBqJg1o~}`n7rkYhXBe)ebk2l%ARafKvt8I+Vzr6QG-{I81F`E$9Fg1@QYq;QQOii?)S zd6g7wL$e)93Ko_J4FNm8%DCWSLbyf{#YIWtJW9&KZ(}?yO|1K-oNb!(h_z$5Mi9kC zO5)tm^yu4IedbRk<>L9{?;jcT&%_m!#JQA|4Q*S+eN$dZ89lOJfnE+J1@)Hdp9KDy zxB`+mr;JPFx&Pkt zZ3Vv&#pIF1Sd^5|m)#R;b$ZP=i(AZBQbOG>r;-x-DDnzoB653e_Rycf5SmAgamF}- zXz&(Rg#SV_tv!D}<@SqdXSY3QqujF zfSya0ZcWIdX@zWztja!AsU6HsvqnhfqL zw@H6VMw2O;QU8&&?2- zKP5Ty%AzG(lt!~*!DS0Z%u|xXxd5EBtdcb30boP#oMzrrGU}0s7flZD0dUf?NYao4 zK-&p_W&Qu7B%jwE+mijA@G~|iEwdyI&HrD8#v~=VP43mUQiYV{ze9e-Ka!S7l7^=D zU2h*uyn}iz9_Q?*loY2IyLREHf39vBC23ie*U;U|AinpcvB=6-!>kX4eCLSwsi=i?o$wPsC(S8IL-RhKV@e-_IxZ>H z?Cnmg!q5AhG>0S&P5X3;>bc~Jy)Wt^I};9kSE+UQiItOPm!zRt|I^4}&1c+GQbMyc z8uXFb$SL_p(rl76H0dw!?7Z-0ypl4ccFl?@<{x%2Pfk%`8bnGyZRQ5=E{dj)xxX zp>yg#l4g>mp^5*Z`z_?*Dk%r*w?{@QDIxEpSU9hTzof5$QIdw{{~O*X=mjV#r+T2# z1bw$;eq}8n`vG8S4Fi_Od>eay)FbeCl;gRQas@X~b|od88vs)B=>;#qp5JQ2UH||% z{x73jtMhK~&h*ytJn^jZwDq{$JKO`@`CLa`0as~s5@3$ArsJVwxudniZvWoi*Ph#U z*ftKG2)JmSWgTFRww$-jwKOunG_N&xFndfpO#@7MjYo{*jKvM-4KoaJ`egkgeIwmV zq~^c;Yt$2(IFvbtCUP3c=KK5VjA=tqAd7;kTuZ`Dc`KBo;`KH+o=k?(xb4gw|NgkTc!>wM>b`S%4NnTe;9-7d# zW8-joBzavVd1y)xx8R^%Z%JNfNgkTik?&IDD4IZteI%R>S8qvPCrKWf*2Brup4KIK z9VL0FUa#=DjU2~CxA0_)23WF$p&ivr@;XTJ&=5f;x?~)E*KMYxpf!Vgo6(wvy51v) z^^&~yk~}oIlW>eIKPf5LC*OZ1+~h9FYbVJ=(|ed@hcJP?B(JR`4^8l)$f&iF`~rve zHNJUyyd>vsNe-HrWjWdrxg@8# zBnM5&ax6`q5pgP(?(OifbT=d+o?v6jxso_u8SkD6XC)?zLlcQCwX~+-nEt zqPRMexYv%(MRBzyajzYoi{ffY;$AyG7sb_-#JzTaE{dxmiF@q`T@+Vc5{G8-*9*}_ zan&SouN|X{;;KsGUOPw^#l=hFUOP$`#VL}w*ACM~adDEk*N)Rgaj}xP*ACQ0aehhM zYe(v$xGIvk*ACT1ag`-;uN|w4;wnkvUOQM9#Z{EVy>_%Nh^tuvi({V8YlQ29n27R% zgP_Li0@1J>)H}4UpHE4ig|`>VE6M*X1Qs>{aQtuZcG7v*qyO{f?@bH5X@NH_@TLXc zw7{Ddc+&!JTHs9!ylH_qE%2rV-n77*7WhAEfkwR{To0}Iqi`LiC_BDxpxnlJj*a|E z^6go@hOE#34|lA4N%GJFJjxBN{A|3Ej1sd^b~f5c!x`s4{xf+v{_n24r}Lime&?Ox z?d7fJ&Fy*UIg0WCCVM(~Dta=xZ@K^DUg93@e%oE#ZF60A{otDG8sw_yigdnoo_2og z{J`168Sl*HxbHaPSmBuHXy+*J$YB55{*(P{`viL%ds(~3_NQ&PZGkPp*2GrSX0o2Q zZbjz?`dMpPBP>rXCoO9&?_0W9{FZFyJLW^?FU@1kEzKp&Hq#~3_ok0c{Y*7Y(Z*NC z)5Zc+6U-FGC6h)NDtei}JIKkS)^b!FJ!>egd0_W8k+ z=Z@_bu`Ud|H+a*s#G-A2@gE<#GN;jK5$nvb`y)1N{lNE8uv)CAQS7JhiC8CwJs7*@ z$j8P16RiH^biaNZuZUPjhCQ6L^6I>j&x17&o{dVWa!$lLFznIPubwU~(=k|k_0}(= zFLe{K_6&PGb6JKJ<>mzIF3b36V+1;J!QB)W)sA6LK3NpKuEL>U{gq?)Et+3R#M(0K z>HK;A&6Rb*hPyv}vhhhy5o^P+XG>Aaw!eI^@vWcV{pR*05qpPW&zH~cwKuL`uxaLN zLnh?tAY!c<_F~P9aX-c{3pT4Xao&pCRYj~7!(MKjHs^S?)4}FFbybtHo)@u}412Y0 z%BnLpJ;ApZpT>$<3yKAGq5ifk*y8m32LqFXBK9_5my`Mq{qjVxRqhH0T4!4? zV$B(*C*87jkM;2dV|IyHGr<1b9vHpc9(-rZp3BGd?M199!wjVNw)K{p)@+javhp;s zS#6QgLrEXM$ayCGLox(JfrBSQRTbI&dSZp3zWhr zIs{c({zH!wEk6{fI7ZR&tip;fl6#v)S+R_wgJZcZ503B6S5}baXA~W2%ltBIa$V;> zfvUnNI&7CV-T10$FEng(Hdba7odZhNh`JN^jai^7F^WzoF+~j#Htzy~s>mohI~BR} z?TJI>(0syatiUKb)kU8#w6jkPTqi*71z0#v#p6cD!&A24WD#Ix9wFPsGdUasu5K&fXMqS6#S1C_0OU8!T2X%fW zXe`C3tD!0L^I!&d^EsIxiyBKZ>M|MVY*%Yv+%olvAgctUE{4XGbwR^>E0do$M{_>c zs>K=gd#ELbCq2#ivdiKx?g~^4qfUp0vFS;79^V{Ya->C|e2h97s{OL0D$&aXOtJPw8Fiq^xntE&7fssmB2f9!1RXCccahLojz$wDY46}YjgIZ- zOCt+285O_H&E866;flQ45bWK2YrXpGkZ2-L92?@l!!oG^LVepXhtG z?ZJLYr@p>$cFlO?XmPC>#i;e?>RzaLeo)et_8%7Mq(dVwM@2Gfhk5J%vxk-?B@cF0 zuU<#6EwUh^_I{fAbX?nZNe^AwGEN?UQ;=1FQHQ>%-(Y6b9!W2YH{U*Buh?VqGm5l% z(0J_T-WMgrmWW^!d4EA?e7kF_+ddXF=3^A;3&D&JKE9Z>tx2HrGK%!8V79+%d{CpQ zSg$;cqJ1>?q%7ym{}IRL+>E0AJ%7iV(`TO&Wxd5H`t3yiJRowzM&yKXZJ&!#^gAp( zd)SS=mAea6PDash+P7lyp~}U@Z#oB~LgNE+`$|qVZP>FCxeA=d?2J;!n&H9He>CZK z;7{>8%*H5n+`1VoH!#a7vlICfoUE*jqGKR)_c*s=Jo-(5kKDc8)!c8np1V%D*1Fzvb#hg5Wpdth?sm>|4sq6V z7H~Xu9Cxfj(SI99X@|pp8J!cDZSP~RX3u5&+jhvd%r@HA48{Hi>sjl!)@jx**2>mQ zmYbH{mU)&TmU@-~=BMW4=2hm2<~HWiW(WFx!S7A8O?^z&Ou3AI8xI+m8AltN8H*YX zhO>rm4bu!=43!PJ^ndFQ>6ht8>znC|>J7*U;V&wHz3Wg4r9uZc;ur`C6;T1~UaK4( zDv4_#aoE9DIXdtX=Ro4Hi>-2!dmwSx$yPbZL6A7?W~-d!B1jx|v{g=W5+n}0+A1fx z2?CcVfShfc$`MCFD31zYH(M>2Tm^~4j<(84&Vs~YS3AVX?t;W&XIteYhe6`7yRCAP z%OG*s;Z`}xX^=SVa;u!=Hb@+Hx>Zhc93&3A-6|)!4ibkQZ zup_Q=k~1N3*cDef$(@im?2N0NZldf`-gCTL)O;dhWJnx# z)m2V%Gb9c>>nbNX8WM-yb(ND`4T-}JyUIzdIq|_Gh-lC2*=Uk2(5% zuthF`Q{8#Y(eI5da|xX4&|{8%zigpP;8d3$b96jlOI-q|I`x>N;|p8t5;)bZ#~dB6 z*m9S^sg6D7==jGLyaY~l?J-BkQ?}$KaH?~UIXXVGMK6I<-FwWXTJ{n+)xpPHs)a9s zQ(b(_rCRzDIMvC=9G&0T;+MdwZa(Jde94x-1WtAIF-PZLwg4t@I`mzJ7V#B2pR*+} zo*U0F>K?E)FdiGnFv-gmHyFk;OmcEXYz)IBA6LZQWtimRir8p|Ngl3%`t*kFc9 zj;)9dVwmLDir7GgNp7u(4Pcn$)rweuhS6TjR>k;t+K*xM8(_;~Jl2?q5>~Va7)&n{_6i0rC0j&t^vVUQpWbbCLX^*s~ARA}vPq74vTMQuBCo zXLD6^0kagaGvGIJ^#C#YSX8$j#ybPQ!8}01fw? z0QBa00mG348=4RF)C!?%bk->5Dp(ghrfVgFH3#32`a0E!u zJ%APffUm&@XaN8?0bfB2kaDR7hC&Mf00KHf3$S8de>rFYRt`^lp#_KoE4M&0v;aqd z1l@gT0RZ?KtcMl=fD`Z~v;ZlWT3`sY001DM1GE4u=Jl6_7GUM@v zq+DwML0};OAfPR@KP%?-mxdN#?4aJQv2V5>H`4J>y|+6NV(AdZ9qFKhNm6S z{v^bf+y5`9A4h-$9XCh-jhCIA2gyrWUf zRj>}cKlU_Vy;9JEtQ>^fp?%0Al=S|R!8!oodEFwY9Vr*yUu)3Lis5M+yg#zECBMI$ zP(O|U2|9Iv3%woyc>7m_0RV6U7Q*Wx<7(Q#k~IF z&;qO+o;Gs!sf)r=`~S&Rp8@c^?lZ1-YPrz<%{c9}7@jsj`;(<+x&8lu`f&tE&}jnP z@T@x*k`Q`9Ac1e7m0%$NoQ6-~1(9;;1@(m{000Cu)hOmFSR39Sdz!Ca4BA!*MY499 zWXfm9I81qULv*iU=r;j&>VNbu@lNn|_Qrc7Jg+?G z^(#F=&k|3-)5#O>$>)A)-0HsQ4!W1RC%8MIm4Up*xo(~7B3c_*;+o*<=!!EAb49px zXmudyT;d$>?4W-SofU|1>K&IIyBtd$6C52KaR#p=!lAQYvIp%;?BnenjA!lf_6WP) zcF`8JEw+u*cei!2#iO}Khi)89vM$nBw@$EjvR1W5Sap^QmYv4umL--6md=)VON9BA z`Mf^AIcQ#jev6=!Io_Pl^iucAbkP(v3^7eGbwaBJdAT$J)_;;tt2ugd|9J((?`p1} zOuPi*vYJ^a6VHJlt4T8P3<$FHBNLB-AdBBJaUTe>j4l)RfFNrgGVwPMWTi?bp0LhN z*F_KkeO0%Db#_`Vb@l|-o0G`upzys90{LJCCx0c#C*_j-5g;D`5YUxCB&K!9#D5fic%7^qo{k7rKlD1e&mYS5s&^53odEFicY%EXfB@Ylu#c2W-E|V!2LK2d z2==jJUVlxnkCnsI`M^GI@Pcx^DFlS<1Avzw1p5F00Xp2B$@?Sal6@1wJ^(<#0I-i0 z^ZILmeXJaw&I|T&Js8UMs&^8y4**_%64(a-2+(Z=`$)NDUjXa_00i_0`&corzdG2* z%HioeU>`TNK)D_r3&2ajc!?JPUj9z74*(FL`xfjY<&u39z&-##KtHgL74!P5fqkqT zp3V*SaT6ny>-AtC0KEJiU>^V=K(_(xBju8PyHQfSUEhM3+&_E1t{0O(gHZ& zRd*2@03`4g*bWT<0H>}kGw3bYR^2jMxve9o$v2u7i8`#Hrkx;IC2KE8K%ijX_0l*3P2J9o{l6|AV zJ^(;Kcd(BY^ZKiReXJaw&Ix@Nk1xME#doPVM0|IeL+oVA_Nju(!Tj&IOz|2vM7 z4y*mVeUtqIdslm9dq#BfKgl-N*56jc_LlW;>p|-h>j-NjYn0`=<%DGw+TU+&DPggg z&zZk7Pd9flS2AZX{egZ#V4-Q4slKUz@rm&$`W?Y>#ui4O(TH;YHyGYGbTpJVxb;`{ z+x4^cz4h_>?5O(x@Gp9zn)8ZWemMtEjBKJOs!6XHd`u3zlO#MDRI^?&NH+L_BnwXl z)wEX(lD*I%NyC#tHSZOJWZO7M^6+F31#oJTft-jZgQy!2kVK_Hl8GmSs5=sn^p{|a zdiGQXQMV=_>6by0izkDq0~3&Zph1$1CxdGCE4Er4sn{V@8C26>F{lpN{et8istl_6 zuNVx?U2qgt2Gs;u43bHlo<@~HH3Jrd#2caqQe{w0fyE$k3+b6u8N@lTp*#^eCr<`( z608c6K!Ki2l|h^ZtAZqAqK8vu5U0VaAPF7m`BWLid9W%-VrY6qRR(b)tO_0_C-TWD zRT;#Yuqr6!=ZRq6i6|8o9YMkE2uD!30WNwX&Vf|{DMwF~6g?3q!K$E?r6+?p3pNDG zd3rL4(_mFl%G8rVoCm9dQm&p1;zU>#l(O|?5NE=wpp>sCgE$pd1<4zsXINzr=fbKW zdB^k^s|?~~SQR9_hMr`VL7WY%f}|hP!>lrh(_vMR_G~zgBD`yy537PCmJGsq6amyT zkbZq|AVmOm45Z&P$={Re7#Pn$Izo^PJ{cUxK;kdc#~g264`;3euUMoPU);oHeV0 zB(;QIbR&Z}Z&n3K1_r(AMh0=_tO}B333}O$4C35b6?`sUcO!#1dsYR>_C3AuMh0>I ztO}A{ZhGa74B`x06(k$d^wJv{#5uGfknY>kYj0!_XVDT+-D0H|-^d`&qg6q&6B#6@ zV`UI$(h^YJG^Cf`$RN(8RY8Mz{f!9b4WMjVbt0l?RS>|f6GR8PQ%Ur&2)zPF2D>qk zd;;_m92xA&Kr-ggYj9++3j^u2OD@8Z!Oj$vufmbRP7I`~$z?b)*pY$M7;+ts40d23 z>99%ULL3=vPeHm{Nw35a!KgsH5U6n}4gw)WiVC!49PKpZ^pM20VVq7pJtT4OP)0I69|5%)-lS%s4tp#juct=Nd7N&Uz5B@LWU2 z(PTreU>M<^Lw8C?B8An|aa(YN=zdDSgz707&BybMXVqI_D zbDgDtMQ^@n-l^}RU#y>?zo<_#R5e8CUm2F^;|&uHoeg{F?zuj%@ul&cG0C{ZIKkM_ z7^iz~j4+t_{ zI@tf*J$li^6?O41G4ToV1|tv$7iL(xw@xdWfCLmeq{@UIR&dDZ%%@-Ehvgww%1tZv zVR?uZ^UF82QD9HD-&i?sfj&_~KIZ`sM$d<)KLb~NPQUI_2ncO35e3LTz6N_x4ap${ z0HC|-wm=PkTD|e&nC`ix1+pn%A_I5@b+oF;nV`2q1CwBgZ{Pw@KN5T)1GxHq4-G`h zQT?EN7zk&@P#OuX13ieZ{645WiRf_m00DYCR1W|s*KLF9k#eDWL!o-C7@jT&ZNK+b zjH}7dQ>C_l589pqeD&*sebE1TU@zE5+Fr8H2KE5}HPmed``F9l+GmKRn$8A;r-%g6+zy(-%?_nVok zKm(b891msn)B|G%KCdeikh-ai=)Ut*`z1!1Ftd6jeZ9W*{v31a$ONPx(p(yuP&XLS z`iX%j;02^X28T|kPf|}Ak#{0>vi~iEgY^J~?SOMVU_9%hP|Uq>J>+LXIhe;7e}*L zwNQc%Zy=QG)r2KHescgX{|MLzO#}jTd%!+YF4^}H*arXz7z_5XVqQPwchU;-qjwA& zU-%Cmr0X-m`-2gImwy=S0{{f*c7uJ|-FGI~2LK2d1NO0EUVl?~f2^Y#1^@sAzy_?sin$6lfc9a=8l zUJR^*!J2>kN2vY5jL&X;x8Z_R`wu}s19$u#XkP(?!8Pm}>ay9RmAybsL^zYVJmoeII~*4B!Pc0{b*q(Dh!h4*;m4E(z=- z<$`^qz&=(CPZt6EV4~!!cMz&a*6*d}_dxXk00p|8P(4yERBt3yj}^nyg`ssf_W%9; z?e2C`>rRK(WdL9OhF~8|^E_|>>?7L_l6`Kl4*;m4ZU@*$$_4vIfPJhOo-PFTeN?|n zVCGbG-6Zb}>8F8x4B)HZ0PF)Ng$MRC`{-_oWS@)K#{p17-4Dz@S}xd^!0dx!csiQd zm-O{VV`pBUwMVjVDzgs&zWVi|upA+l@0BWe)4)&39!M@>OA1j8Z zqrkrJzi2S1-p~}uzW2dC2JqFd2i1q@hacS>c>li>-v9sAyB3}PZ|5!Jb$Bj&zW2=b z^zl^lb{?+v-?^rZoR5;-7lzl=#E*&?I&Blb06LI zDyk;8zaWtAm}MDpoL!z;?= zxG_cs$z3oAq>GUe6RYXp{U%8U$!#zQq^p|+b|fZyPVSaLavux=?~@&~sO%rzc{;k9 z43ZmR5J=Zw3(ahnt?j$1KyoJx0_lQo(SlnRBn(Q`Dafrb2&5~-z7y-SHH>U6t0wot zAn-BCl_{~P*vS2PCdnYV83uuLt-Ewmm5u99pzGVk1}AsJAn-Za-zs;!6ok>eqhNzcXOC~#^o4L?M$|<0ni$Mc&GoWe-PmIr zy7-+Nd7>t&_rze1?o`y?bm-xz4(K{&fm1JvK^)tusM)J>k;FJuL4iYiTj(>u9Bu6C zG0!&s`lz17;Vmweqi?UO?cV-@bEZoi-r-U?+8tsa`n&!4POQY?4K9_V{j18eEZ=8% zP+8*e{+7zo4qMrs`L~JlzL&VpjH6#bMc=N4uD(`@>%=(vNtJK&^@3$Nof6lPar7H4 z`)U0hcb`9yxDJe?AARX7mF5?F>nDk8&p0}Yl!|-w*R=YVBo6OvsrJ%gsYJ`1!Do5S zN*vzVQaQQ<;cNW({?YU3l5FAq;+-v(qdO2q`psOuc=RU{hj+GAj_yE2uRi_PxlyMi z4)1KK939#tGw!!u?u+ICK`-9fQaL(TPo5*_c&X&rN=`onC-quEq&Z3_U5ai*VEtMnlZ7|b<*!biPXr2%_ zytAcpWC9O*CakM{wVO@i@XnUX5sx5f8&u4VTrCdk7(TPjCfjG)n8;P>jA9!ebE z*-|+Yx+cAdo)V@16HTFlJiN1|awG&ydeFPSzwARC9+?5IDTE72>FKoph@0nLu>~UGFb&cxOxHh?APM`$3mxBkyF8 zIJ~o^a%43+Y1wV_&X428_nT)T+Sx)r92&2{hZFSGW^z)wZ~|A0aj85wfvd^5R1TcL z)nHsI|4rbkGcJ|;CUDglm&$t+xT=gx<-7@8Jmcv1$b2_}Qy53TZ|1rQTpZ(4d2Rw1 z%eYjIo51-Qm&$JwxGIdJ<0Et11g?2I|Ohru&;|=3M;|k+@_7=w8o@Jg%o~~#ep@2t^?g>b; zmkI6ucXr3SBV4as=j|C?LG`8pV_k#USlE_gbQo?L4xuQ2s{X2>m+i3a16w~^16whh zQ@_W0)3(a`lXbQA19Nd}Km9UmeN^!ntJ`wh?6w@%2P~`2H!U+P11yb9x6F-EKEf{V zQg6Vt%G+6=7u{b_0NrYM*)-L&+fWrl{8d>xysmoSCe0qVeYLw#-}LCqte>HkOttc2-)LRAQb>IPaaMp^pLLsj54Ab=A9 zc?KYWuVPzx*QAF0MpXGw3xuRY6LI48Z$bS5;MD&J;>o1Si!TG>$<&Oj=f$fh?Lxf( z0KWPsKtBMSe!LJ(+K-e=?e__^9{`+yiJ@}727>pdZv_Uj=i%|vU?B7$-oWfof8soe z?|<(SGv2BpCJ;n2;eXp|h3CoqEjKR=Y?MiYy>Zf=!cgCV-*ZE!e|GlIq63% zbwc&HS*Q!ZJK{Sb-YiFN2wMj&%+;RTZeZp7^BtiNv2u94GV~$N0w~w#gFXZRlcKR@buE1!s2%|DyzVe`eo`)V{&`S;05}1VZA9;77wZpKH9|Q&UIF?q zR8Q!?*|@YEZj#~Npdl*=fl*ozk_8B|2!h`tFC#M$WF(gfxE+`t6O#$J{g$2&lL@#T zmL3d~3AjC#X1>S-+%C$0(7Y{fc&8*3mEP%W7;gZ8m-63b=ahgR2a^H_*Wt}YGT@VP zsdjUq#{s|z2!zT*0~Rai%-6%^dh|8$lX5BeVo3ar8yLjv)#KA4@c{7hkAZ;zfB+rd zT_gsQa>>At!9V~w0TaMLR?b(T1q=zS93C$T29lR68K|D04jBjlFaIbQ2mmP1;rvHp zAo<=T13v=;0pJ8Af`P1@uK-*xN)LnbZ?GH~$bHNpUawwY5i$?}Uj8XC5C9OMLyJyI@KkIV02 z<$U!zL-klWi1$PFz#rwT*XLKy{~r_g|1WvAdS-fhcw#+S+<&=uyFYgia@Tg}bv@}Z@hrHUn!`L6kZd9gXc+|V3pdS*IqT8YjY zv@#V(P5HZVqj8$Cv$3MlYq)OMVVGm+Yp7<(slTJ&uV17eu5X|(sC%lzUNilRo}`|{ zLS33|qt&%OIk9z0X(W$py68#jNh}QN$cdj?Yr9O&lDUlxswc4!$W~`+^msmEsQp(N zR8L}Ikgm>DE3@>~I_FCn>>OI1!603oiO*KIa9)E!20Jm3uGRSq=nfstJzNGmGLSC* zRW6yM+9zEL$spdXLXkF7P5N`NV*L}hzWn9947O(==~=<@!-F6EHob)ml9O0SB3N9LGW+@gajnh7C#XdFYr7lJi&yBr{Vmdd;@o zgMUcXJmf$Y0?7y-jC7ewp1G4KOC%?<5J*P4VE&I9dW*hzC4=Nh76M7A9n3qzUiEpF z=Q2pnWFe6FKfzpi^5)$)c)SdfLsk-w((jIhBP#GT{d^b@;hNzZ(-| zkQ~cGAc+-&?x#n)kKcjQ+=Z`@oXbKWSs@EruawWXv%gLT$-yiHo>Y_ngN9MrxA&-O zlR9Itzg$aWLt(@$vcArlfj>cr#1=TuBCA(viP5JJtp> z$rAByRtTi2Y)RWktVjx6_)`S)PD0yR_-8%Q_L=6PmFP)$A4>(usgI;3FCF_n(xoy2 zZ)B+;ZRp^`9WQpJq#EwLiSC@41!LNg#pH3yQDg#MpNV<~nY|+eOsXl>t29oZT zlv1=*J!9)sy+&am>99!;_x-f}+>y*;vqVqAyIE=-$tRHXs?LXg7PC} z5N~X$Af1Scd^ESL`TV;whdtL*qd7h@#dBa(h0rvs*Tg$9(zUx@$QxiQWv4z?Lsx{B(9P{yuGD@)aj_y z$+kH6ibxq$_qXtePxs&auPTh4pEpVd)%`65vJJTSu3ZeTBJn{eVeD4-w=hUI!m7P9 zdefrMAIYG)zlA{qIcHy^Q=yU<&u)-GyuTF+C)gew%a!6+VWKDD{Vf%ws#&s>2u3rI zdU-5cN(7@Q$hFuSb%}FQ?QIF5kzZGs@3eWDV8!N zg2?eFAnmv;XG#Q7ctt?^DX^p|5kxCN1f(Aq%bF5F6p;{+ey%KSN(6H=kPZMWZ%PE; zVjvw-SmKlj=3*cnq*&&Z2{<4d z2xesFAf1p{{*(x2W+3(QSOS#@W?~@q@>m9y2xep;_3~H>l?Y~FAocQC z4wVRc8A!c6mP93j9tINU1G1<@(9OV9X;dQUVqmH~DiL%tFjXRz2s#*;Dw9eC?G#L% zN+p6e2BylT5nIeTSGMM~Jh7a%Y_ZHWePkJl z?&zy%$!>mR{>8k>G{F3+d4#!@xx6`>>4E8_se$*hcei($HxT-bfPAK+UOoElz+LFv z{{&A*Pn^l-iSX#~-oLo>Z@eDb`46}{yW-Iy%&}-a;k}D&D5}TzB7_`f16=|`A~?TR ze;zqS2*CT;AOQsEP9Onf&6|`90W&0HnAUotJ1Uh@j}nmK?IFqdtR zLpfK0CZWgidw^oz!anRZLpeyV6>8#;{qPQW`-_2j0KoG){FaG%q+Bv@IhY3kCqT^# z3)P>M^Y!ly^=IYqculB3bP>M(MWOxx!1Fqs{7C9g%BA{$4fO|r6QE`YgzC@A`TF;Q z`m=I)yaua3Klehpz6h&72SB+F=Vq$)r{z-pzhd?008W6K01*0)$u}hC%=BdShv(t( z>QI09!1(sZ2jJEFpXi1a`b4?ztGfmUf&@^Y!?~rzKvFIl_$3$!04IP;Fk$6f1saDQ z582O(`S;fY>}Ta5y&9Ou`8`ms#|PwzCjbC1{}R{_00_|G)LCLbDVOa30_+EX6EF)5 zWaWGXx`TnN93HO<29iqw(fi|Ha5U5(0C-;a3sjGkqxy5@AAx#S4#n}Hp7R=^T#pa1 zllBFGH}4|U4*(FLI|c1a%BA*Q1_l7Y378ow4|O0`&R3ut7|6=uaRm(IoL(r`M}mO> z@bWK!fdGI2-AOQzluHIK1p@)#1k3;fSvg;Uu3#W5hsWda{=Z`0i1+{3cqe(^@s{wK zJ->N2c;550_muJ2-51=O+|%8i-4)z!*A>?`bo+mIR~1)A=O4};&X1kFor*J$O1n=AK4Gvzp#(8H?~LFp4pDsmfObKn%jz4U!mRqZ_r(Qtx(3k(Q?MJ&XQ

    X@UQ*w?LuEcmoQ#Z76Yx?xxirV!rpoZk&X{FF+NV zjCY_^lDOwV$b}L~yalC_#1RfcGL%T71sIj2E@u$3p+pkRZG0 z5b~i!5^qC=>dAhW1rnk}5>0%BBoki{GNMEhZ$zmw$#M>t5+#y&CrTyBvImzFC6ah6 zN+n7B9)zSQk;HpZDoOXtAS+5F@n)1t(hW06ixNq^8>NzT#|-kKL=taDsU+PpgTyG2 z#QRYyN%zbkGfE`!hLlRuO*2T15=p!xrIK{l405AH5^qVVB;7WHP#t-G*MC`Rf;F`O*X36{tLNMJW*(}fyqjpEG3e9M$#6C zY$=h{F_OGRE?r6>Cyi$$=^0$Ult_+aBk$jht z^h<-BDUlq_Nc#0c(v(P!Vk8|AAZtn_M=~;X+LTC+U}WmNDUnQIWa`8zksQuQI>JKc zlt>O^BptOObxI_MGLp^&kUJ%kLl{YC7f7BG$-#`IGZth|iR2(g(peDFr$llfBk9Zv z`BNe}fRS{zh6E~+?9WINu?Hc8N+kO+l6n=8LM4)Y8A&}A$e|L+K8#GAL?x2FDXEb~ zC6c`uNxd{kqY}xUjHI3)CWrWF8+7k8R+-_N_$P7 zUp(tQ(>&cgah@FRo9?~tuhH-SHFHP09=Z;==DGU0;#?V=m!01^r#M@q?0=Wzx??N4 z`>&m&xIbXtYgsc{zaf$|MptuT6$S3TU_Sz z=Jn=@=C{q!rpKm3rUj+}rg&2(<5lBk1g#= zlW3)0{G5$FqXx$|7?x1KeTh$f&9&)3y%&AVMU=j)hGn!Yj*Pw6UFmx4-9x@++H~>h z%l`a6MtQGqH~)Z`4RI4{-MzluZ16SJq;LF&8>6JM#Pef@yT=#D-JP1fSp2l-z9!l< zZi>jV%C}8t_PjMFpHg>kp{+H}z4SHKrpq_{xZ9Zu%C3DaVjI5tO8KDih@vgZXY)1E zr2o7!qvDkrRg@!(&faV@>H}rdrm212sg~ets7-%#w~@q+H{Q`n^m!fBUJna<9w&%l`6nm8*Bk=%TLu;j67pFKL$4CQwg#(5hUA zdfkgD7YFZ)u2lD?ua-8AUrzZ(%A<{0@5O9wtXy;cJaa|9#lD)F^tGqB%QjV>3^;vc z-BWen%DJOg86X)ugYYdNfPws5~6F zxm=$dA1FVc-O_8)4<~)`+I0Ku=>4=&9&KwluXL9I%7qG1{ugmyX!TY6@zlT5m?7PP8e6iXzdN=3=DUU8q z+I*vAIpz8mSA!21$NT)+H0~yKdMOWbzn87mfFjEAy>GW(KK)}~6;1jw?jP4}CR#SENnhHZd+`3;3CfdP`-?xWr&IolQ)_qxYxnFzH*xMMLe8T z84+)2ANyVRliw@JF^3-p_wVzS)uzYfv+la{ZoIAggs<*qIi)<>ytQBNSG#;=v}rV& z#D6s|-aGH@DxVzB7w?!n>!Zhmj{8b$(ibqh$rzt$?gFDHbLIHAvek9wEw<2CN}ERY z7?aNtpLu#yeQe2g@p;dj8}f6PD!!7MG`4Zn)Qs_&SASEyUxWX|XWqYbN|w9BeI+#M zbEy3i?&XNjx~R#EeqT?Dw|w5He!j7*eZ{qD{OPpM7oTgMw@9gPD#d5XRU_NQnU#Do zn)L7Jy${}>B|hJUTGh^vI}l$yW6Y^9yZ7|@H0jVJRqCzyh`KAPK0WqjeA$!Qe z(WK9)^JTn#SG`w{t@)H|ISytyw!F8mur^I*z+1;l&YRtQy0Ur2;k+jvTYQBy>C#$#riKy#({=AfhQ!Ub_-GSu_OZ_4_&|7Q1+r;qln>dUW5pA3!PE#rPG>uG$y ze{cVnS2k7r`Jv_6h1{wl?c@Z66^u-L#)YksTI za*Y40WuG^z{^bkbTblII(3mtK)~9QE@M4Zc|L$z}|5%_b_T|#1L!-=l{-eMDI%#)% zgMahh8DsRbBYZhE>7Vhqk@vBGLdGLQ8!U_PZx~!|L+-EM_T|u|4~Iqqi+^(c==0Zh z6!U+ydco|Su~uJpP5LMG+x9Q5G=K8;S3&>RJ*Qu(bw9$FO_Tmn{aXEViaoCW`{$Sa zHGZ94>CPIXFRLbfQ2qY=o92G<=lQ(P{U!5Ny1nQ4dS4bz`hfaH`6u~MfN`a+e@~f> zE89x>omZTIcXdVV zs#86D88zv>p?=)Uzw6Mb1p`c{{JXDZoMY~DBQgV_#h$q*)H4(OJ6j$emC`CpZm&w& zL~3`a&vlCQXvzqNdd~p=)=PKyjGJ7?=hm!O66pui{>+s0=kaF#mA@Uj)c*O=NSCI} zAIO`1Z}kuBKL4>`q*IgHM&8keSNQLFq(hV15^C+5{_O(>Kb+$}7-`p}z6-Tm8~^6V zcYdAsYoAD)CiQKoB?kJx7&`D;+40$Y=!Bz2+_x??S6cn6D|nWzp3&RC_xSFe-ZAri z7EO93v0~*X8<*ELMnjQ9kJmQ-? zWw)Hntq;*?A(M}4{qvT+UGqcZF&zK5)a}rDk9${pr;zynd?@~J=PB;7xi7o7yFYMu zcb9itU8h|uT@zi+T|Vav=Mi)h;7I2?&Z17ERQ#6zjbGmJIrgY+=$trUoy0NOaOToT09H0#@+w1=EMQYl@gOC+8nmi4( zW|!Excgq3g(vDWv&w6)=2_O$clc%B9v%85=Lw{4QY;>$HJZVf!0QneNJPWqIsP%o`zeit37zQXr^+pb*Xu^BTB~vke{K+(}1f=S;LtrvC6rW zU*`s54#fnJr=iKykZW9pJg3(6QGV%KW9jFuhQ|buuc5`WpvzF9#q#D^lvCZWPfz|K zYfJ!n8=5=~yPB4Ec4&A(xpH>sg(<%*i3uQoLzAb0m#vodyDw)ecgk4`Cl&fSCV)H+ zEuMy6Px7r>J@?8e<<9)!y>1P=8xuf2hbB*huWC!@7dd`hx%_fbg+b#A#RQPop~=(m ztL~bCl^oZVV@>a`FIahM47z|wlcxdLgPgBk)?ZRyIrYu?Lt~Z4F#+U(Xvx1!La>KR zrtUA^@=N7PuKay|9at`u1f z87hxdu75YA)6x%a#{`gHqREp$?Afn7=jQpYq;g~C=OY@oYaJ6no{1(;La|p%zHZt3 zKxyU9rW;qUT`U+AK)#64 z^%_6FHhp4D0Qo1HJPF7=0$qj_7(BDKWX2&(NSGY0C_1|JPXSTk1jmM@kxA^(MuNX zt5r58fcz9Ko(5)FPFFeq+oZz^VhTOhzTHXMT-y3lqfvQyQbi)$~m&cmo67P({K&y z&&Y4l!G`5wjukXNJ0lQ8Xm_s?|2j^|VU`1^FhgWunb2_XMQ zi>HCw#pN@iX6+rX{Mg~M`WN0g5)(k4juuZtwF6@-ugQC)kFv1l2lMJa%o!6vK943( zg0=NW7A}t1QeSCXp}@sIs-(mOkoTj-({SyRLZjmgmHkAq?&`F#_h9sXksqYR(|~Qn z_EG!emj4j9boljIAD5^V6F{DjCQm}PmYJ*EJ(}VDxPpH#elVz8wwM6&g|v7Qv?-;c zJ~-7}pAh@e#}kfxSMjTu0P==3c`}}xR<@}3RVj=AudSnI)Y#N1DuDc<5N{LbcN(~z z?DV_$!t+8=0pt;BaWr&WH1ovN-6gzH0pts5a_V>)*QND)rHeP;6&28Fb0mC=i}-t1 zz4(J;qsD7vG;TXx2qt+cN7aBWcKVd->+O5H`IjXI^4^-+FlMYaP9nD0 z@;CGy`nD?M-!^=-KEun-F=MoG8nRt1n0fi~SDXCXhxbb9Q@&KpyV^L7*(M!|UHsQy zr~SXYDmiq_^r=y!2`;?>8nne7U3swX`n55mw58H$ZF!4#>bNhJ^3TsTsKDo?O2v%S z#%Z|r;d>7U^{-jSzwMhZ@}5{XDrST>PUE$}{%obMeRs{j`P+K)Z&p4Zlc0^$fNj&^ zzL~a_-QoYHe#a3v>Q#*zPH@RY8nNx{UaN%GgL zC*&Eb;wWSjTvHOWMGetbN`tl)me>*#DzA+htgVzrZIh!e6@0noo_|lXB^hJ34u~0~ zjnlAgjX%e4&d=ig^XIH;HRAsJF$1;nZ6xyf8~x7Msm|KJ8CFPKlRV7xjz50Qh}&`+EQsq_xYUh)i+#?i|MN^mBw^S z_vf<}J2KTjYu${6MUMOu(?=VpL0#YF2Z|1;blSh>?D}uK_ix1X*2Za6_u+e64&Rya zv;SMe_G#Z|${f>68>eAiuPfh=&e>(Ie`_dG(MR@`*&%du9*;O<0Oi|aO{p&O7qu#x;-q%Gl@=U?o34N^o`3IgfEk4xY z-{0hP&)+s*_jT5$Rp-dRe8QK;yZx8@*N%Erul(<8B0Fi;AbAsxJv{!=qk6O`vbTY+ zqo&McbzR#(_)(&z!`P1gbyv2Qzxl9oWCv}Tcr!50<^SHWu7Eq|U|)MpnYTl0Uf$T; zr`8^Locox6_xQ+}nJ#YewbQ2in2SAFkvVqo%&ygdrSY^iN!`NB@0oJNIp-vLh=7C@6Xl`}8|AlLctGBCxs|5N@zz5FL&h5@c z&VaLjV*YqwTuwpl!8n zrfrC=g{`9PEp$`hCF@@6|HIz9z}Zy2|Koe@bH58A%*Z7q_cX5A8X}j3q#~CH<9^P} zge06fC#fXeBuOe!lKU;87|o+~}&Xf%QY?i9T(@Lp;;(AizzeUa;oYoBWa)gMf8 z4RW=2UG54xf1;5CH#rwM?{|)%nuG?7jvqrOe=7I=_q z6>d-)sb$D7WFL8rJWVE&zBGzt6;v#o_w+=menF4Rcb<9y#1AErNsZXjVURkM0tw87 z4J9syLB>#~WU$0ZQQjb1OqQTbq?jZ|L4vqPjDo;0QH+9oaJLu*abSWN1u5VzF$#%<^aZg&uaOq1PS2!h)BS~19U)a}F|Q%JWJgG~FJEd-Akryl*U5ra&x+(rz7 z(m@D<#<;Z@Wa{Co#URrKw-SP&_-!c$nU=SO7-UjIb0G-&+h$^rDQlaGL8h6_5`v(H zy-Ex+oof>@$P}zs3PI4OHWq_yzHKA~K~LIH2!c|yffzI<#wzuNAgDX*2|>_p))j+H zk$Hs>1g&KqA@~`ahb|X`Y^td(1VQ;&O9+Cdv8EVgYQ@WhAm|Wl2tiO7Ru_XzJ6KH! z?lHz^uc~5@4Z%x=AV}F&gdoV+nPQNQl?)*W@^xh)2-0;WG024Lib4=%>q~?nh}IQ^ zAV}8bg&+vl<%A%})fWpv5Ua}yL6EA;2tg34OAA4esV@?OAX1kSf*?^xgdhmiVIc_e zbVvw-I2{y%AWa8^APCcbAqcXxPY8l2?G=I`NqdAK2-0pL2y(Pb2!a^x6oMc{JA@zz z(P|k(GWPn;7nl9PtCT_1q&`?a@O$8M>eK%$-MbG8TpOrGqxv87zwck>f5e~XzscX! ze~Ir8-xt1=?>S$>H`v#~ce&5+J?7o%ebqa|JBCL1Z{#iQIqliwS>u`I8Rxmh)7(?h z{RiE*Z*tFbPj(M*U*oRkcDRnX-f}H;-RH`2b#&En1)Rs}je|>_4?CmI?#{-}GLAEJ z&%W02q+`6}R!0j*CG|h*7wTs9S#^qfJB|EbU3HRg$ab=bOe4ccCvpV|M!ur)2VaOJ zBZDJd%^UR-Ov+ZainrPzXDeISeqa1ianle}|H!0uyYiYC2I*Z{FM*l-uB?;5OoCU|ieZr9l{FHWN%6{R z3CtE(WtA8PNnTkgftf6?tdPJ=npc*KVUXvQWfGW4^vY5R%w&4yRWS@wy|P3CGr3-Q zMFKO)URf-LLAF<3mcUH9S6-69OuknZNnj@7D+|Ri$oR^O5|~N($^r?@gbd{cF$|Kv z^1K9QvcB@11ZL8{GG7dXystbfftkdw%#*-Oj!~Ww!yxr5b0sj7`<169Fq8b1Ibs-O zf8{9&%%p#1wghJKzw)FQh8=)1O9Hb!fbxVGhFyU2xEO|gfby6GW;+4pQ85gA0p$@f z47&kkrUYjD0p(#a3_Aj4h8TuDf%1?9hKXys7>0cTy(3bnm4=;x@_+ z-j=}ZR7%+{fk8%kOAN!wl=7woW@l5%Hr@WeQlOy{`7km+5{c)r(&X-xcMj{lw(|R;vzATmJfG&!}lf|e6+FdcGIG#bAF{RfLDvt zJq}jZ4`$czcw47^t&+{|s(f|t`Ip68Nz!G9Z>_g3tN!Nt19_LlTZ+HKSY)R=&3o;l zwr%UhTZs7|W5;n?mA$1NxJYf;YDe!;!@^gct`~1E`JSE6Y3&}&+P=KWu&eJHF!tt= z`>4xVGx7Hrk!*172Bnj;Uus>db&Zo7e|@!HoQC2tT&7I@?+12*r^Ofay{F+Xm0M5$ z^xX#WuGB@D2ICQa4^hcxR~#|s$GxuBrcwd|9?|!3#;3jV(cv*=$KR>7 zbA0*HK=tK%aT<_E_&r1>+xYaj!4nr}Yw=cxAH99zuzGPCl1KPGQ>JV048QKO2GiPV zFAcb%>z`khsu!n0c|_l1bh3{(e0nT0ucMYau;tD{S5TL48kR@+Jv%4VzWD0nQd5#G zwe5c>Qyudw)Qi)=Ji_lGLfJQ0gq|x^rMmWBi^QcXtBkD|r=fX7-@{3wcI;7S=Qk@| zq*N6WtQcGq8j*7yI_mB*FH!;y;N7sCxh zn?jv}p9CKaUJ_UkXhiScyWY3oH`sf|Ti`9_ndhnNe$Cy%wcFL#dCaL_zx${oLw!YU zPTnRHh=(RqB7d>!7g3{L;-qf74fH z=qDe#;mek(CAELq`tWU+bA0N3SE#{`8#unKJJn#j_LRkLJS zu2F}wsqw%n3Z(cBED<+9wbc{8>aeuz-Kp7(K9$3sovRuwU3w8|z*jH*JHM2Q@>_$2 zXL({k#NS_SQ1RK#W8cO1=%q$t4yZ5>jjwxtVj0Klb+~t?PIaiypzWcFzGuLZI3*FH>wG`f=&9nz-N#0rAoZ~B5TVflg zpu(e>)*M$2(dIx(&#bH$?&Z8hGiv(x&oylIr;NWj+C0bs;w$w0bw7^1L4#hAmr>Y6 zM$HzjRYm#v-owA~3NtqmFy%N_C_WcJzrd~w&sb%HsjT;BZ|MJkRsb~wy&G9*%Z!S= zMFSRC4vw?xxka1*&46p}Z`wtJdWu!DWLejD*YFZ&S<#YZB%ZUA=Nj6dk6A1wv=aXg z$Mhoq)zKIB`BTvEQc$tcOAMB>F_JmBy*3MG3+yK|*-+P(!xK`{9%oIbA^tqH2ll(C zUp#!{ue(0Wt6*?6hPbf*oE<#0wT4p^HYy~VT29Mwb#ws^13uLu4vm?5jt#REGA(bz zbk*b&HA|Xlw48O_jw;7z1Dv^WHo#)ySj0L-{FQ1S>b*6Ugy90SO6+2TqimS8Eq%JD z1|-;VuqIP0U}D0WhmON>oD#8vL6)LrtqVD29-n|9^BT6zikJU5I`YAG+FV$+%s5m+ zsvE2=FeOIISaQtx^;_QgVfNue9ylV7&qAC{dHfyfDq7l-V`inWhLZ~pH++|HUj9X6s<|B5RKA-PkU?3t@Y${Mo2h-kEVBLHwmsdUY<=aN2`ue@rQZqbgY}Ba5_E zYp;E7#~TT4jW+SeM{@Esx{T4$)l*wV2Q^&|`FyY(=266PrNbF&kuH& zzto!A1M7(|v{0`pV9Ig)9iNa1P6wHYg$<^%0YXKZ(wHRg1dt?_6LIqsMH)V^VC=?1 zmMrO*yoo1e?ysw<829_<)j5t?!7+$SbQDGiOao(rmTg(Rfwq!04$t$eARDZqa$@aY zwsF~DIn42h;~Id{3UsDez_N_az3qPB^A6-4mx&azG%wpTp-k(H-lbxH$0;w*Z?Kei zpH&S%4HuS^Rip-!n6{4fLG5LbeHJ<^=*@+A3T2}$_c!glebGs6En5SlK7*-rwVc^n zg9V4Ln$NT0m|DN*&(mwKeI6%2KKu{|=_7?5_a!zFT<0z1C=iG<{@BGk2X-DD0-N;p z{_2M~}9$22Hz%xy50jW_34PxjWZPvL}w3(y<-^m5~G*im?mBEA;d>=hO;1V)ZS(TBF|yN^sgQ_Pt>+SJH7+6KDO(}bmeXP zL>wnI4Q3kN?kLn@=63YEN}u-gRC}fqN}A~yVlb60O`cKOS5SqAp(}j0LC@|9?Gsq4 zKBIm5^xF2?XZmRVX`Ti+3d7nb#>DxS_CD+7Z2wR1|CeQ3 z{G#oRI+D#y8GANk=jBTx&JzptiRrobIF7&L6ZX0&P#}HuT1$?ZJNEKDERI;5(t#sR z=~5vcg#XkuHWxM z#3n61A0A>^*ABr#iui2ydkR+U6fllu8w_RhrBcwaYKgPF#+qe(*In9|R4Aa5f%YY= z#RqlO#4V*XoF5PB0-zeybh)lFRU{z}rNrvQsXW@ovLQ389Yo{{JGdH`u7rdby9nsqH#^1fnTN1>32;}f%%LJ=N&H?SVl+F&W0waPrKF?~x9ZJj_TwYk23nV7|w_+F&S`h<-WVt36gES6#sNfHTFh zirYlQanpts4`XsnE6Y;WKg!oywwjgJR$XcQ@ile@NE}Oz1ttga6mB10GrCqM4Mfmr zOM{_oqRU*@l?w{Ervi~IwGb2;Pk^if4Td6H3Uh{n2=tw33u}%O*V=N#aWD&VfH?wA zIKibr4KSv;Wu-cPLV1+Sv8zEw04)#4*TeLKILPhDNW;F`%#vaCD>M*OwFSTk>j*Y; z8Y+8m{2{)W{YMIg7#PoEnp!ff)L+AG0SYGTOX`H^9bjI!v<0$E1AA$*B zM57|bq{k9P&Jh%%ls-I%Cx*n>9q_0C>(cb(^B`;hqYW*Kmsw{iW>-TFxc1>@7AlM@ zA`r)^+_Y{)8(4FEye3zT<0!{X?qXP(P<4*GLc~{q7Ir2`Ki$|fTHl&uDwEHsv!RoK zoTR~g!VfWUMn(KN(BR?VG{}GdJX+71W8+D@wy?Wl?IK64RjftC*BYYGz!cUhjM`XT zgQHB6%lW3%a9&7UsOBHmr^%e%$f#j}s@ z{(p3jr#}2MT$eZ(ID0$3aYWTW)TwG&@*Js86Zv2Mi{@C?R_5*f_-+j6NIZPP17Ms> zq091ZItW6zSH&R_8*14lhEy4_fy-30VLAt?EHxh%20Z#f)`+9@hcXz@y z-+>vHSVN{TA91FAZJ4ehv*+>9M{p^##HzQK9n)ns%9VIYZ?a?hu&d;& zx2GM`rd3Ox>5Xk?<$-G=GPqZgMv({6T54-YN*x%UP;reAC> z@l__))nF>yz&RK9DirW+rh9C8d~yv5iqx=_N3SRv$0gLKRa0jOk=Bm8oAm`?Qr{5eY_Nc=*m4f;kVjzCj}=kYLd=6}L9Aj+PZm zcR`KuQ@%Gr*$ej^xK{!3Uqc)ZOb5UQ4StVZXUTHtCDGoTCCZYx&B3+;me`j3TzLf; zAkKx28M5qP$&xIoQ&`FpVyW-{Ybnp`=l_-I{{O1bwos4Ym%&kiKLXPNW&HE~S-v-Y zJ-mm!qdk9krg~bsPtq9tEnFvD&%1iL{LZ<~`i?`6Tt^LcuR2YwNOqEb%1N4B3I27C zpJzQM*hnbKpJU%zj#Z4qg1^r$s#h8jXJ&D@)lAcHD}RhBIKZjRgVdB7{|*|EtHNOO zJ|fO6;^f?ZfAYb1cq;!Tx6W~93@6ta{+|6epY!Z%idnkJ^ZskMJ1dr4-p?~~6Sgu{ z0qiL*x6W~9y(X`TGiN^9U;NaVWtu#-pZE3PtF(Q+7PU@G?|~;5`%V@&Z~Qw+59}Og zW@+-gpRCt*AWy}n2abp{i!*tjpgNO=#Z8TWC&~MWcu`}s^qQi|lJPtho4oVyB-}d2 znU$F#p$K|lw~F^q;AzKJFnW3sfmmaWsf_-QelFj-nzlNWM>4!geBF|HJ@FoH7H zt+Kk!vI=v@X&sYJfbtwH9vCk0BLXgZ7Us7A+kl1q8&*JJ=fPRn0PFPL+JH(-osC-2mio867rF<~{`qB>hiV5X2w;g|n z-ox!nphjc4mgS`Ll3YP=#}aKlu;W5wMq}niEMn`C@u6I#`L`USmK-ymKFfzab`u=t z_>N`313SRcxKu-~4}OO@ zs&inyMa#|+aT_Z+T_dp+%Y(8HzVrOc$_Fio<%`Cx&EzuPbz{>1locvYxj`3u#ouwDBaZ7ku7fZZV{v9ECtK*LL--Evp@k+Ac#4XB9<52yG#GJQ zL|{_kroeG#DktqZp`|Gm%u!YX0_0R^5V>1PF~Qzf9xQa zFL2V56qK)&C|nL;D`G6pjOJvWh}!4KH$d( zDjH|Tb+RVS%sl&VS#n$LZm?H?*)JMrCU{bo!|L<62+#{K>I#42GKkU}E|2&$u^bU+ zCV1G3%&Ul^TU{ULM&-ENqfrHN!KKjjMAJ@OaH4T*>$}Wpqj6lLfW!qWWQFTK&U!ct zLWS_HMvhSv=c4iI)(d{e6MVtP++!)Rj&Tg&6NMUl$1FkJ=f$hpiBiAMImP!(IAy{# zox*~c`!V7hSjo9_EmXjmcvXX|Y^tr&R@(yCNz*k zkrY|syZMPYu!_cQg5Z>|$;Um6TP!8dwYll=eF+>!Vc!L5IWKM#1&5FWEe;~r6!dI- zM^_VkH$S;06m(Pc56X+PFgQ5$&1;sT{O9Oj-}2P{DOc#0xC=+!OD(R4YPPSa<23of=lTo#dSoyXiOaQSW%Rpj{YS*{jjZJ94<3a zAYj38WCB5-Eu$a(*L?`3OHP_=^QUpxGafM^NpI;ziV+*8xb#En3~{3L2-_%eDa6l zrpCX+nG#z8dfABhMb_N(8S)TM#WYu$Yl43#;nq1`s*szgrU=>eb{(FI4L3jCuixiz zE0OObA4gt~yh!Z;#zy)_u8TB`REUu958>V6jo}61hr)M;`-MA%>xVB6{TVtEdM~sx zG$$0NcLUrI$_izM+`%7%dxEbA7X+sV^MieY*}*!&()32bLxHygO9M{??g`ux=n}Xx zP$}S`w+epj-{^nd|A0T{zs29iUyDWc1WceJ;c_iFED-k|4<=YVIMXR+r|&jimvPbW`fPeqUF{=xl`d%gQvYMU_9eWSa% zyNcW8I_~<|^_uHh*HqU?R}WV+SEkEFqZWSTT<@IcOgcw6dpMgrFLinxKRP~kyyke; zG1W2B(ZkW)QN`g_kE^@Y_3At|sSa1Wsaa}eRVCk%U1T+Rn#9Ra(iQX^X%DiV1}-G$ z$KKP8e!5)ZF(MkCcTc&hW;aMKCLs|*eY97T+bb}dB8lnV+nR`^alpr1{Q5s`QuecLI2OOR~k8&P6<^dYwppz*4N zlY{f^yfex<5f_S_QhpaAi+k-+{t~jG=AB(dfF7erI54TPTNCAokc67Sbr1o1$dGIy zKm&VRQ{I?P9YvY$YRR8vclgdu5BUwef+MGLI(NYDrbd2^e^RE zVM?RQl@k&StFJ5+5)5vCiSYN^`{f7|>N{3BCbkoA&LW1s_mG^`M*YB+& zBLo>dkJ2`Yt43kk~CROSf@%Cx>-ND%3zY!m{4(aK>V;F+rI76OiW z%GV+wt8DT{k!%xgufr@*G~BR zp|OpHj1SCEeij0sE>!*$rnF~sd*SaN?u`i(+Id1*B?R7eE6atzmMmqz5ZKgJNeOws zHl&G=V9g}uKSE%|EafX9@aj_KLm`Wow+|2!ym(OAECl9-l|RZEi>q2>ajk!}mFVX> ze_z4)o_`I!s@5v6{3`mqdV`?w=PR0tey-A?jwtaeZI$OlpI7SNRQPkB(V|q!k5gV1 z{+_3-6eUyU;nt#`Ba2FjQVFD#oubb@`#K4Kjt)ibC2hCPkT=t zPuP9Rz0bYTJ>Q*l=eVzTH*#O>`rY+~YpZLa>jBqjstsuBs^t9JdD!{3dPefG9&J3bSurY@}C9TC-(S7!BlaLL3W(c`jf_2=SMOsO)4mE3% zmJ;l$BMnIlNmi&Qe;)~1!*BPJ<`S%I_J^dIBuVP0-&;Z!n0^asDj}nu_P5H&>MSK$ zVr1WB65^VF))}*lnTRUO^X(VAsz3Xq5kS(iG zfi#qmQUCZ}60)T`T9XD6?77WDNPQVrGfe79u!mhyQdg1{>NS6pglzJO+T;oe8NJY= zyoBt|{%%r7f>Bo`2;sEOVtGDw2FuDmQ_qleuZDk8Zp@7uDZ zf&?i|%8L-)BtUsmg!Eo|&9$VQ1ZhVumLS=rtO)6zxO+DN_q27#2LWJn{3Cb)H(skE~FO<(D$N}YZ39?`LRESU?NToo8&*f;B~e9`o-qAwaJ-2}yvS z!k$4dL+PRXCdyaa(8RAvScK5KzoskSi`eM5f(ZvS-Ml=bd?!ro&R6FuTUh-6txDw4 zNR{x*H2&Wkp)SGCfU6annNO~w_W%Ds{6*s|0+7@$_1S~mSRMUe(0~I>ETs5EFo^@ZR5ahriL>}W z$kJ@Yl$o5$9bnL)4_KmkBDWmH-|>ko^O@mqUfeF~&)=RtJBt~qfQ_eWZ-o~i$urKwt@aTe_dS((iXsV4m2vf{?+Xm|^T z<fsS1t8S)?Bs%gokUJX#7kT4`YQnF51e?lg%Nh&XsOaMNzU^WrSd zkKC&8*Vxj+>*vr&c^b2aMz2rI1s^SlgDo15(GGPRi?dKaGMhVHg~QWCo=_5A16X2N zNzrr{jMc})S+F0ONpm2@?*qUf#u(xg>v|1D=U)r4@)3u+O`%Hy5ugIUlYGB!z# ziOpRvC*Im<7MvH%&64q=-21`QuXyRO-rk=2l{Zs#kqdA$N&e9gpl44;St z-LN>j&ql_J+GbWODPGaI%~dv$URX6|cVP7HLfrhsP<-5s8kY5F+~zKuWs`X151g&h zPZV9PP?e~7PS!R=DZ*(!kE+p##i%m!=JJZsR1DyPz<4V0&lr@2)TM|lfdF^5S^ zd2x21jeMq}@yzyPrSVALICleA#PO*ijwMI`HZF;cY%nds1BaRC-$`H^D(fCzG z#(r8svonj$5?c;gq8Ay6Ua0}BH;srlDN<1LbVGvy-S)~3UTq+};5$|?f5(=@CpeO! zZ?L}qzg+39M5ae7P&@xdp-rI<#{T~#J(u_R=lUD@zVY4V3wfXN*7I!f-07+1{>(jy zo~OU<>h3(~%yFD@Om>u2pHrKX_sAlWAlH$QvRj#@^ll!908z96UWNWk|2f|zK{sPH zuVT1&Y95D(P!d`iEp(5JwppBocydT+Gd^9Y!QkPQ1cR$toP~6flCGJQ#uX&KW^oq6 zNlH2|oJI=EWYstXV)FTXUj1MCcYa0bmbg{pEOL@l{>`ajaTe=HpMI!Ogz^99r=x3} zcwA1H!V2HvmR!6T3~}t7I1PbXVrZO2Inp;jB3`x1Yk0v*+LK)(qpbsfPQ+nErtrz9 z8k^`w`QK{jB8pF(t-67fj+-1D^f<_Iiov^mpc~}Gi-tF%9jQoUoXl5d@mn5nTE-;= z1~JF+cYGoaS&PP5d?V>Zdg~0nRRd`X-*LV$Z+{TSCwFs(sV^^X7vJdTdk>%GYvXLT z&hU3E02UlNF~@OMgSNnVCNItc9Ld+I-=2QDPyqtn3gEwUpeuKdvp`1%SAn>zD1X;n`6iat zj%(*Qi(zD$+ScNxmKSFMiljB7FK9c9n;QQPn_gNYEJ%^O3_nw|E1sIU-c9eFM6I|v8y06VgHY%+PgeSwL2=XK-(j!AT7W@6ES_VC zCQ@GXuz{z6wC1$%-TcJwfmbX(v7UMxDyJ>PB-V%{3bDSEMD))tlLOEEi)?TMJKK zP!xYqm_r(4V)0w-cou3^u$ho2zC)Fv zszbxyB_c~KezPUda`)|P!PA-odmH3|Y2)wsL>$V6x@PQx`u@L-vRR3|8JR|{`b&lP zglC6u3tvjD_+JW*3^fd%39hGB`)z_wYOOy#&@E7w+62t?5AfIUeMkNEqrN8I-@LDT zCwbd=RnMFBhJfole)mrI40ktoY1batEY~frip~Sn<9>j%8jTjX(2?V)L%r*ls!_Eu zIYZWx@uY?FADV%G_1Ch1X?b0Abc=Khin5y8&th4z%~8wHvVbXeEvTu5t(=c|j#hTHOF!PFvBMmYQg%(egZBVoggeveRgJo-0_=>Soq* z+VXa^rRB8cENOLvY&q@4cC_--r-HI}wCVNC>x#uOb4vQ8ZuTwDGmBa#qt)%A&9t~v zZ(hJ+kV$E&fwY-61zYFl1uUYNj8-?HPNU`Jjab%IJ8EPtrwv=u>W0voX+MY74b2Ne zmb7|sEjizyC9NJyOHLcGq}8Ks$!Yy|v|%rw7g%rENS(KUUFKeC9NKFOHS*sq>a#kQF2< zr7@<`XklFG{{Iis(EX7kk#{0XA~PfTky|5IN2*2KH1^-F@XGM4@Pu&xaNBULa3J(k z=;P43(9@wQp*up?h3bYb3Z4yq9!v#a2u=%*40aD@1uF*r4jiU2|6U0^9LNjY9B37| zG~n`o?|ph!?OW@cCcxr?N+JA926qUgDnV&UfG9Zsop|M)~{R^}cI`>j~Fg zuD-5oT$j0g&L3%vzctRMocB0ycV6dg;4J6(lWHE`bF6ec<(T3a>gejY%2Cj^jI!cV} z*-X}nkq`Hhuf@pD6KV}H@~&I0Dn_xD(d0dRq zv-4X>REqUdP6{#K(e8P@h}a+AH_7|JE+TeNr`WjmMC@r!u|b=O*qxkW-Li<-_uF^R z=i@e$G2(pQGw4KpGFpu30dSSaBp5XlSKgLl8 zO2oeAdSu-niP)iB$Bq-Rhqn=tS9w&JP3Oqhx~oL&1WnW`ckUu$PiG_UuJVX5O(SZ# z@{9zd5pr5@$56>l|gw?5Ia~esKq=xXyTSCk*TUXwcVyBenB^bS5 zLs=}$ilSeZG(rk}?UbZQeJ+%DC1muH>CO@|YIvgjB*nHWCnT7sPfsFo^45Lcls)3C z{MF;;i4G|=K^1e;?+{iVmSRhl6=F<}La)q~V2|EigGl_%^?P2FC1N`L24ZD~6x*+? z7h~rNs*NQ#NU(`L>XVTYtYMuBq^lGwN3IuRzwdwg4bnwi)fC&@PeMkoJXRi(V%wFc zB^bTDSeY)ybmKAQlmu%;Co4(k{H@{VGe{?K5q@j1@N89alDhY!^0Amqza217LPk%V zl`kY%Y-w#WLWs06E&|1N-ytCzJhTnzC?Oj>v~>ju z)P3OsNz4r0%0W3KCi~@hulABiHM-51@}oGDx`DK^T9Ra~sXZbRh+eXKw-j3J5i_GV zNgp7?q}YDtehK!?!Gq*FF*|C?-mt%fj9R%XYsJ{*UWp) zyPd}3>*uZGIqTW#nc?Z}so_3BWAPWbySU4_4!IV)@?EW6UgvJ-T<7I<58hIJQ@w%g zCxb|N%CxuzPxmQe+bp_K%$(Vpd+?*D>GMCo{KwIe52n`ZH*H?~JbIj>F%~)y zr(R*6r>Pg=VmF}cSU~OVk!PC49OX$PqH=QrP^F-GM{1LPPtnyee9teScKI|dvB?!p z%edZoF~2ftRsQS4C(-Mg@yai}op7PEf^L(efzcx3n00Myy>Ku3i3UZ^Eubd)l&#n} zh_cmVf^$1{^xQ@Nm^a?kV3Gwx%bo-OVmEC>i+=6% zY9D?xAX~$d?SRXp7J@%C-s6Wj+PJ*E%eWg#+j8vQ%=O)m=NC|Weah6Lf~my&wYHV! znDz>7dyOv|RD5=`wu-qPXdm6*l-?|PP>z5l=c-=8#Z>G}r zmNlwC+cnnk5xKH}S?{}a-=VZYsH%#gM&QE`ddHOoV1O^B(v=A5RA4|aqcXPb=~Q4S zFQ=j#`gAHVh?h|r`^a=EFld)iDd(t+pH2ma>ryHjkD+!t6*Ewm*1Ym76+6?Zm?^rP zN|%+=shCl@oJto@(y5qvxSZ-F4Of~@#SFaVR6o(kqUlu3R9jA^2a_~YH7Wq3Ye~%y zqY=H*X_#@fQ$nLh$4aMRR?;#WJqA=d4KsI^(dZY@q|-2aWf_fr$4NR3vo@B|=oglx z(=c0MDGj~KB%OvC`^sqaJ44JgEepV8S8`IT7)ryma}zk9YFWTcZ>5$CR0a6JE;%(b zqP3zPXJKQ*>|w2_2W^(~W|pm1)ZHvB51Easl-ke@%6a!PPO7BThW1cSeUm-4)Z(LM zK~EcMUCSuveWNwCp@&SP2GOu(K@S^hU8|U8qCJfX8Z8UDTT?4kAJ#LCH=N+MEa+xK zO?6S}XSlqd-(W+nYn{?~bLy^k)KvE*r@r2vx}2Q4iw(7|zmijTwxRxws+Hu_o$RQo z;z>^3(T4gg)xxAv^S*YS4fPqSc}Sz?E!M$?T30g2soUFAOV90F7F=sX{WDc6r19qE zZf8SHW42hdcUv3kH8d!68gE`}*>==4Y_y#E8XIaodbFInjU6?OFD;|i_y0AN!Aj)* zNZIgn;kxvEzfJIy;O&7Q19#Dr`Z6V?>v8-@0<^fhO(F8Rpv|?GMgSNiA zzESSMUG6vP+wN=bPc5na3uSh>hWl{*4)Nz9&Izm}DI*8Jf8HfQ?GPzTW51oYFEbPx zRH?gw=M*amS`67Do}ZwmiI`kk+yWyx{Z<0}Jgp}~DL9U7@QH1TPjL3^lAuFr%G6>o=m$y2Hm&#K^aT|fOHeybnw-3`ju-Cn&0W%z7UzkL zg*W*k9n^a)LG3@ScxGO|7mKT*n^0Lqm>L(Jsy0Ch%+JGI$ z@ppVK2Xz*7)57jZO;jmc=?bI=?d9>HkQfrxu-P9i<3DkFPg4(uPF{M82 z!%LniHHx)js^83s)rUO+7yJ~I6mfiVd;@BQLH`Xk5=&5PTFO*9QZfg(=j%I$UzrJB zlgr_W&craYU>p(Nn-_v68az|;6VwWq^0eqlR5Wjm9go*DuuU!34+f$OFs2!I-bNfx zBe1dI_xuDk;I(GEir#@x(rjZ1YWqvs%4>L3IX*AoT#e%%iwdhP{|<4`>GS9`(2sKy z)Ml9Slnxpi#i%E*H>f9^bW$sFa_QKg%W)hm=={0{00oVhL(&Y+2AL^Y~;0 z1<=q*d4+M%)K0_DpBQ5raXeXqE|{9lCaqY48Yx@x%=q>`4w&IytDXd|gVIRbI2~W;@0UTdIxiM5~EJ2N;EqS(gWBc(=g6+CeKd%}2 zAa74tuyAV7KtRZ8*HV+go-*mxB>4L*pxO*xv293 zoLoUQ=N3$|W=hBAO+4r3KD*jD)vV5O%nVHDsTHj4a7?CPYK|7%Q=~16#yFsYLiGmP zO4dmH1nt$8`cdd5d@F?uG=7ITw(V??BVdP+TQJeOoKAXaGVhbPK;u}${Tm9cSWd*( z!Qmy&NwA;IFSy%aYSEEa(Ysj+%gU-#1DQ`-$F`BY?O@tLJhh_c_v82cc}CkB?5Lm0 zY3t~b=TFb9)c60@l-Dr+U%k+4q3qzUV4uLzKz_jIpXIOSTk31+ebd|BbHJ11KJA|5 z4!E9lRd?=l4s`tJ81HbYGt^7Si=-h<jC0uI)OL_`om2Olr@@YX|TohB5jWG?BjtFakED0Wtym~rmG^%8NI$oL!u>t=4ExiwS$!XC~P6UUtiwwZaP zAdbQpGKb9MCYo6@rO~GfOIkuqJ0_YMOpOsE(#B-$*~~kmx$`dglbQ@Y_a5T0L{?#1 zB3(x2j=fx>$5|g|dq|6G4X~vU$E69kx>1x!ud?QuafB1?VL zG^|>fSV=K$Y{N9Z>n`m}s)VJ=QSD1ut`9Ps6b;wagZgrMdM*DBanwb?I7iVomS|+% zpqbSU;?%6+Forb;YZn_3pE$g^!5PXkd@t3|x}fx!e0dJ!_0GKI{gaEgcClY-1f z6AcWe(q2^N;X-{hlR-4t;iu5fYeQv2*RQ>1?3w0p9Hy}pQwZFGb8CL0zQNK$bkYrp zvAX!K9GZx;#j%TH6mc}f!;(S`L=*L_OIrUZw{*iGx424RNpa3ZjTYc3*j;dqJtziZ ziMj?$xgfBvE7y5E4#OKZq^X6V%fJmRYzonIGW8Nj!KPxy5?9#poVeDOCz@rVo(1!S z(klud1K9KzP1LcjTE|ZsUYde}?`kM6D#q4=x(MZM#PR3`SmB_{NnCDbd0rG|eV=g! z8jbSpCiFvX5y;+PJj(4E5ns+q#kVwx+GbWox2Ki*^Q{Z)nl!MtOd%^gs^QO4I*-Mu zT*Cvb6o|R8L@k>}+PEOD82F*9Bpf)gI!Qsab%9RuIZPZ%#4?LP&xY<{AK!Bal_7@l<6 zMlkn8btcn`m*T_jb!sA+yS%El@s8g5^rs;XvR(>gKwLs&iRv~*Jv0`JioF8+I`Tvu zpB%?)mOvUwfmD{CsAf}C!^@2)hve9LxYaP%EaIr_Fp1}}L{;meX4YAXS=TTvTs!gR z9h}rrz(gDbFI-FTj5C(F)Q0EdHMvna?g3EshuaKTBKdrPI80f5iG_tGmY~sa=-yI3 zyQebwOgkH9YuqX>W|Iv+sZPUTO~q*s7CYVl|6y{u68Sc=GqN%=J2EM9N2F7vVWeF6 zKjE*#?}V3zAEyxj287#(>xN5*ehVE8y%|~@ni(1!x-FC)svQc`2!Z>9Zv+{n?F!Clmk z;3*mhV36-RUp-%G@2}ni-YwpR-Uq!=?@ito-YQ2|ojqmcksQr*Nv*X^$Mt}9%noWD5tJ5$aD&ikFCoi{q0 zIWwH94VSj1bZ< zFjYN5NWZ~U)!qHlD@u=*s_M>+LTJCL`@9JtdWk7HErj$FZt}PoqQQ97aY9Ism!pmq zL)3tPhR3Q3{zVgLLX%^9;1^7WzY^)zlc1&$a=^kH716-uQ)@F$)Hne9U&B; z@r2Z<49X?CGjDn}^!t9)F)}Dy?InbCCp99TD)mzsB3=;nD|1vm!a;gAD0E64E{5o> zLh5K4w40=aknYh3-YS6{tJOhuKRWW5m5bzWqZ7^0dfvQijFCv(?kqTlmOOI$Qs zkxJE*WUUz4eu69#Bir2M2QiY$B+rVGjalTV7+KeqED@qylCQ+b?67*N7x$nE`ze&@V^Pv5cX4PxZh8R}p$a??Vh-%~G0t@~!Rl^D5xFPSMuI-XF=ijnqi zqTg*V;FF!H))XVHv(z?Xq(xV{^y<()= zL9#-OWS&(kh>=QRk`N>1YpM}3Ql>T8EJh-|)Vg9MFk0;?Mm$s1wqnFFPrXry&^y7^ zY%%i3E^?O``Sn|p6eFkqQZEuCC(Ego#mMpcC`7&+39tPvxJ#*!D<`TrQ* z{=ani>2QtEtD!6!(eJvzM}gk{!~T)JU+CW4a3^_3gaA2KW8;r=45=h7u82;3OZC8gNlcLhwpe) z4|>U1f;u^#$1CkrH}mPU+^P#zGpO6dcTg;HwF=;<%EhxbOeZ%nz~Cu8(4w+aE@m8c zRs4M}b8+DBSTK0Saj_ibpPKm0GEfhR0P0b)%1ZVeL!sIslgVZhqob z359Ag>YQm=r;C>I7z#K?y*zn!;u%@ zu>|$5rA%>hO|RXW+xg)qrU`oB6buM{NNUERx8P9#9{1)as825CX)#drXi|Ji%VCYi z-*Fs5(eQVC^0@@&2FzZ5f;#hBvt4!jIqoTuW+Gw77EdZ*3c{r*KS8~Kt=X>pvUK6O z%Reoxlr421wq{GC9W2I5!`$+Bo6_RM%;})AV+rbaOxa5NQ^w2NIS*4&u|IL#+`!O> z%{=oH)LYrQsCsZL><8TB9s38KMdHMZlO*Cx*@0;akA0w<=O?I}vo%{iq8*k-GnEF7 z!SQz-+5CHnHDP{&`bS%{T|;KifrnBJ@8*;40mYqs>Jq0uGJmU^Aruw6T%&}OZ~ zDw(>g+pt|$qg=_CmioEduzlF|KTyfkLEeUK)2jaiY^i6x4co>aoGtlErY`w5Y%^1> zOP($D<+o-_FU0vDU`vAl*swi3w8ZCReg9uenV>`-jI;{B9qto48p;d)9ega98CVqP z9SHg7`>*tE_ub{I>;00R$P>?_p6c#B?!h#+-y&Bt=ey3{&Vb`}$Mx!8>N2$rJvHyA zd{2`r#^1SxvenknigcnNJ>=k#;7f6WXWhi=} z>*6NIzmrtP$OLmvvtai-4Lr@0v8fFHos=DOOS57}<5lxy{%dy3CC!2zjmTHAq}X*y zoac-t?h1PR=;E>)nV3*yZA+gd6dDa`tM+}!i;B$YKXG1iV9)uc4!$=FmD|4z#8PCIr~ zgEF2c^Ix*-l*l*O84IweD|DlFWW{CHDUoNLSXXKdR{X?rtrN?l);`5eY)8;=NvC59B?ncj}|XQkih)MylDNZQY79!zbfGBvWgysg zX;Y!;JUcfr$hr)4_L1xOO^I=)*g^2b5j!WG9kKKON#~#cHxIrQ>>fB680!DSf1kgU zZ?3PlcZIi==Pgfn_kQRI+WD3( zo5Y774qZH=$8$eCX2$bD#K94apG3g-xk=_*ChaP8PCJ!$Oa@~&g-o%FV3$E0`{gt? zCU8#7PcrW^i}{;whPVW*;mIDh9vn&DKMHY_r;hVUa4bbo}b z^P=KW3KkV{>`{1f2-A0dlDV2$6qTOf)K6oJY_Nv02JsznaAU-iScAmhr{xL6<0AOyz9u!S7H#4*?N#j{QPum3HRyMInoZNE_Z7L8)4>$B|ld#NB z+IgAjdWfaGq&cwsm}?E+%}<;Gu|IcXvwAFP<7JlduKVBe#K0aYxVr;QTw+N(FSFTU zzB<7w#7z*edhvIh|8Sl}u>jqfAO3h{9X_A{Y3R2^!!4c#xtWq&3H@! zoP14{8%<^!U02?X#__9kv=t+o$hDDBhl=*eBK?KSRJ3Tjxwyp654`>uuVR^)PoR&u%#zDQVTR&wkXo1l{R3v znEtGN#Kq5&t7N|&TYAdC<@=Ii>yPYE5~QLMSr&Oba#y5Zq-~^T#1}pu{vf&kI;cGY)XR9zwwUt_h^dwDHm3%|qA+L}bq#}t$4xg`{sBC!eoPQG|b@*5O`sHEj0x@XZ5vIN% z1L;*@>hogII3!nH5|HxjrQR+EjeCaFnNo0Ed-Y){IB2svLkf1wQXi6l`Wd_Gl!5dv za8U0rmTQ z)CXlCy(V0JP7cl?l5Rr7t9-dyeLzb2x={t5?avQ)(F*NVg7ZB^gMs5+?`b z;Me3%8Az`aS6j%z{p58SNN*HZ2gt##YJV9>?@3bcmxDdjYbBt5lOxHOgA+)e1k`ON zR7DOhRjWxreNk0IGLT-{q)wBA)zl0Ls9Rl-zvbY5^>PWQUofc7mx1&qC-pu#SWcZP z0d>o2@_`JbMjPZWIk;U7%0Oy=LH?A0`i0@@AQ?z6Y#@(HK>hA-wVe#4`hIdm2GZ-l z)vhv-Uc;z9D+g<;nhc~@F{<p}kU!+$Zt{r?q!&=B_sYT6L^jIwn_TQ$gZs%j z8Az|^Qj;=}IzNyP9FC_6RWsrHqFJJj1`AQkJ?fCSV{e8_Kd@Pz7@f%Nhs@{|mu zx0I?+%fZEDw+y64K;%~ms9VmeJ~?S;oD%0TK5Lf(^s)N6z6kbt^x1$kEnQV$67 zjtr!J3gm4WNWBTjb{RPNL~V7l9IQ!Xa)NHzMb647sRJF^BLk_Q0eMRXQf~nArVOOo zS@jY*7$$eiKx*wzwn;$UCZBATfz)!IY>|P~-i-Vr2gj0+WgrbOPu>tlYSC}^Rc8w! zdhy&y^-38uoIE3hhCaJ7TNTIgqEWkVQ~S`p>m}&{>S#c3apsM?v(*>%^Zy#kDn0&x z6}sbZA38^O`OSjw1$)xn{E$F-|2zJkzAt=3yr;aAy?)PQo?7lz?xF5Vt|hLkoLijN zJ3e&`QctJ_YKY7uwP-^B^MA1<^VLJWZJLTYv+r0ua5FzqZNk;&sBy%zNIaDQZDtCN zJo1yaj(WdR=}x8sOMz;O<7UkpWCMM;Q*gF7GFjA7FHJ?QC_mHnmnUn|yxFnkIMC%L znS-A6Kt~Ufhs?|;%;tCe4xiW*ST=4Zlw|IC*qmu)%-E8}(=gSeEl*S_@&YoSJgWkJ z!I_zBGapXhOpV9Chd#tl=Ro(Ln`9n&R!j>mKTsEIVuG4~{>1OlMgTPbscB64nww<) zcv7b2?%UUb8$!V`LR#XWch`^^>f!O|8BaN2l*E$E8xNZ@ePlj+kRNBG*$!%dkp~`Q zqplxtJdfbVyfg9Gp1I=5c_ydwa15x^$26fl97o=WW7y$QmDNd-JD`_+COEBwE_LSW3p}GNw&zmEz>i#xV$}D=C(T|H6UQ>+(^O`DT8O8LkeO(b-7+IRpbVsV41K(*3qztKE4*-N?K`WR-%@HI zw{hI z#J~;67Ml)F)e(OqQJUTm(~V!``x09O@{{b68H*D%dY#SzT$%Y3rgdCPxUht!MjUDs zg(?&$Vo7$*jJ$@Y_bNP&1)ExkDZqKohu?8ZMjSg3w*CP2U6&-gWyUC~Xo8`Rf%IGg z=NO)4Ty=18z&Xi+EE!^#$yX~!hH9Y($+Z|Yjyw1y=cSTBzm zFCHvzTKqfgWu}@Ro~&>1!gVUGnQ2Job5h9`#yN^$X-~wVnTIFqSu>-NoU4@-vskij zky=a_pCi4ncFa2;G{{0c?TITDiq$Yx===YM%8ShYe|xxhI2?K|)FgN`I3XCKr};Mq zoc=Zb*1n&7^L>|l*LYidKJfH$A9d%sy{=WR8LnZjdd{DntDWPVEgXM3-f$!w?HxXK zr}{9Bq<=B_lsrxPk*dlO%HY5GYn237V%pYTh5k$bDRNn~qR{(qYn#V3zPCs+*I=iN zT-UAO$GqZTR%(%Cj=pkYdIvxnF$~}qN#?dICDw!b%ZZs2t`%`!M$F3$Zlf|{J#@I77~DW* z#Cn+UG-5ugz^zk8tVat^Bj(v2%_e0TF};IxkBqo^lDTC%WW*VtF4RoTj2fNhN#=zq zr(HA2%ojKF)so;!>GS!#`oHwA$Q-7}EU%Viu8&TOk52VSGM`0#0rcwsnp2|pI`rW8 zRj!1qBW<2JN#>NOZ^ZOO)7G9^UuAm$8?@aUY4MaYUgO1OvGL9t&S_?`U2WIdzpa<}G;EB9Y0^~Rd zNZh{+S~ov=yTMalRNXX?%V*|kAnn~;ROnP_te%1n-zCWc3L9)iBEO>iP0gV&_i1cQ zHQXiHzpxb2OsnZhjx0>|-P+-Js~_b;Zpa{|@^LmIX#&r)2L!W}>Rl@8sc$Ah9_y zcpsj;wJ_IoR&lEQ?{+*c_$>(#as+hLoG{9_qT5PR8P8$hqm4K^LBZ@v^ay7jiO1cQZ-n#-dhOkWr(E z+UaC0?t~Q?b)QHlgV+($D$xU09!Mu+u^%kB>9+LgWR;lcC+9}5cUY26#=!DUp6layk(UK_Dg4uLVvgVgUrCMEcFI z=|n67fRsqT&orHgx$;Yi^gBz_iI^k4oQU3Lnoh)A>7_*aRiS30R`)Vrc$ZAStr#Ao zW~Bw*0n+MT=GJaWKCZo-JPch~c2Y;V585mz2TyaW%y-L@lY_^&l-%$IO(TabTdRA) z^IJ}?yLF}=y@JND)xF@sZ9z`mH`BO-=C9SgKAWmjs8M0hG;+`gx4PGBM^3}tq@N>k z?jAexbJW2vjXNiI7lXWR!c;T=&{ZBZso<`~M2cd?j*Qczw8RC>q=utQ|=D5BXd9W_!Ok(x^}F} z_g&Zi(l-sq-{HG9j^$sD2%TM_9i5&1Zhpv9lryZ-_=O<6;LE5(5nQafR&2QrjH#n`oGz3Gi)w2{ZGD`_6jxc(%Qv$gN~zuWe+78}y@cyaqCcm4K*c5K4Z z+^^!>wNID478!ARv3B_77shvTU!fhV`1p03+w|79J+br)_g{0`IG>!-BInGL+R?Qe z?jEsdZJWTmQ~JC+<+ga$GIn|VVmj&TsjD5?8d_O#*Y+M{49#N|l67TsZQsrMUoT#d zdmnuMyAAcHYezQJ*Z)h~YR+S$(}^n08f%A-x?4vF9o3F`mUO;p=Rj@S|3}@MfK%1B z|KEGOG~_#f}GYIQ$P*&o+h*L9uK_gvLxxgj49jOYAkm=H`uPg_8`WQh;cR)qC1Dqfq7j(K8A`= zhn`CGKn`Lo(jyPxI*i!au2_!kMU1M5aSjw55TAN&77h&xAGaJS*N1#+uGA4z zXF<*&#=_8_3A=P`fE&UINaL@B#%$kZDo?v1DLxAQNfoCvee_fcnZVy_rEu!*R$S!e zdgA1;<%BVoul>63UJTSNY}@W+nPG;xkc=~@BF5|NmZSTp4~*lVjPX$%x#c^KLzAy< zbhAbk6m~mb>vp~lTo03J9wyVFF>mabE7tOm6uxyz=;g;aedDLo(qbEdzj`<8=Y>>U zRR58w#v~^WTUH2Tfz*S@xsKzY&L($@s$hRx-ulMpFm@~QLW2g%} z^i+D^<3p@o(ylx6he5Nl=iZ6mk3!Mp+3Vw4T!8CXvoi4PLTG$hx=?Q7C`i`7Rv)|i zEKUzTALr@#6dDy0j9RQ_;Ublz9abMX#$n3{W7O$U<#-bJNoa_smwb4B3oxd#Bik`10?&fE z!%S68AX_xP?Z{{eXsA4H@}pusq*D7#BQ>7kW#mQ;Ehlf$3&*PsT0a|?2mL@Nq{Qz~ zh~J@z)8q0}-56`2*?zQ(isVHXjsy9xh~qWX1rx^uXp|GLc(LOW zq{bGXGBk~X-I2ZEz?sgZc7q}Eg^)lkYQ-kKFI^>irP-tMjunf zf)S$_ws!amh<_MqH^S}O0AmC-jxFRmsRU0q+(bKdCJ1I}E}dx90l8>Y&F3u27fX>BBrzZDG)fGDaX%@hdk1D7!Euw z`vd3%e#i3@ql_;>+H|Aur@y^{-ihBrhCeR^L4e}nmaQ-0m%CQ3yH*Z|EhdaHuH)DH zrJlf>vM=I&Lc9|8h-9>sTLB5=xLgMQI5#be*%gBrA5imJaHYw4?Z@>{u$DZaj=J)@ ziQ@;Pk>-#hPTNYXS&bmr{c!1wAM6DCE29|+LGvvJP>C?r-Y_GaK#+{|-zHUoa|jr;qq zib0zA?Y%lrDsk+1$_=S)91vKs@A|C6ar!>#hj^(Ahb}zpU%psqKM-81Iww`YQ;C6==Bc;CYQr{r0i&9;Eh687-O`#EfeFvd=v?ea=H;BT2ZzxeD&IqW536v1pIRzb|!;@jvP7{`~?9@s+JJ-5iU zCj(kX4kJ99LH-WE?an9Fjh&D-_eku8BjW~qF2Q5L#p*d~IMcgaEauaB4x287v2yHg z0oNu8`1^LmT{8P5i-nPl8^sZ0-aHla-jf64_$Q+ux%QldR&qS$2i(l zxi7uy^Zz~n&HukH)-JYGG+5-fh$X7^mu5OL;u$LR{a7|Ok>=UA+x@@xJBK})94b0` zi#>7nd-&v)bn|0c8K=9x*+8KuZEgd$1Uotp4b`f-n6?NMuIaKZSN{U}_CrQ|82JGD zAGQA5+DJIgYO#=v9BK9abjUpX{o5jOd*HKA&_m~jK#STYi|Sn;;Z1WL{`Ks6Xm88B zDD}1-N^*N7OovRwMP^S>7VYG5*t$X(-_J3N3o>nl!k3ray|;0&BMS&dz$PHZoetZ~fyUAe2?Y3yrdP9o22k+4Ne8>#wH5(h*27D#_=>gx9&@%JE*NU6@@P=BxJ7fdS zs%yN05=`Y)5OWtUI&%6vETV{`KBr9B=7Wpqo}_F^p5c!uqFi76jUi5|r<0VPl+ zSa7uU#TCePRVmqh@H_AlI)*JuVnWM^oM$6)LLp-O-s|XuA3>OsjcyQ>j_h{2K0_au zTctX4{EJ;2^@&0#lZ;;Z6x<7kvI^x1bi*~YI@)JMIiHqByE`1p_A86kjCu*R${|y= z4^=_mjgEpW%2Y)ANTrSHa(ETNR# z@o`*^+a>jO?-7pr1R<0uQ{q8RYBiMm6&#nvCex~ERfuvPEt3`?4`mK>PODjVL9OA~ zyH*eHKm+AWf24vFpOHJjMtf%UFVYf&JeiEsM!k{1JLLba5>tm3>iK+2U3&^l5^okJ zLfN<$uY!YDak(vLC+$79pQAor808+2X#N}w<)1=Lj!b++tEAPClv%V}i1PBfVez|@ zp_ZIHc7rI(LWZD4y9a8JVSDlx1M+5_lTPu=2cCUow`w?Y0YoynpLWDTMEaeQBmUCx zbMn3Aoi52xTBkH=<%v36E_u%Cf?k^rap7Jm38$VRFwJNJH*kamCzaxr75K)tB#0fVX5IvK4;5Sh?|D`~oQB=nv!Q569*D{+pw&C5*Bx)Mo9}wNQyAb?xY$ zK`W;55v379sR(5@D~hg6=RvKX?MyS(6Hrgh?N8)(76pSSjcq<%f29dL;xe`cnv2%` z;zgxH|~79KX=GHHU}G?peB3>x2VGT~i2U+IYK~%yajl(rEw4 z4Es;C99kQq1X>a8k}{NOribmgsRgy4RBX_aIS`cS4^ouW%v_-+j)Ju^Tnj;uIOHvf zh~7HV0eDtHYD?Qqq4_a!Jb@_k`V@Yyy2O~Q{u(Mg&0JUND&o>FB=xgz(m3j4g;CD# zz3ebb2`X0v8h6(!(6VS>5#?NT=Y3S5^Z^#T&XE5fO3IziqsFv^a`6f{n`AcJ@9VY56KT(4$a1LC)r}g5Yy^b@ja#$dKS2QJ)C$0s_o^u zp)YXMin%k!rCObjZk-OfKQ|8g)F&d)Or&ZC;j)9UBi)4>vzlPec zH&7r2xlzX@}$wD6E^#_@v$-p~0R=MlSR%jaEBYXej zEl4ESvkTDk-Z-qMsRZh6N(1dhrE&T%+tHhzq;S}55|Yf!AhT_-(UzHV_k5+nXs8x( zcpG{4`*zF%F^5=;)lkC-G~vss4X2v2b5lt+6n7#*6kp~*v1X7# zr+Ej|Hb1Ln=6gcZDL-25kckk_zuC)(HpdyY84jKKJy5q^F7n)uxw!NP6G!JMY8>_$ zA&eg!$Fqx7B%m69mZ4WEw*^~|7&Wm8FcnJPEp#4oGa2eT2utG-lu;9=hMGYA##$p~ zycG{$*tNyJ6l%YH_Q*233{4KbGH;wwtar0yvL^lxXJmTMx0s{@Jdum`7ZL(+se~=D z-)?;2uty7F%zk{-PKNCPHMa5BKNg+Zh}n^hy0fN2sk13RW+sYVQ+ba+8IycSD+n6P z3S6#B$v_Deo2aF(O$S4|534SQ1orw7Di^b+Qs!h0wSE7|Slps6 zCVwFpYR~R+`=);#pV!&=G&9>l1?;%r=} zfEI#YSf2L{n&vp3YY&(Pi86K{3_PdejI5$c-pVrIbsFYtTtthcpTn*e4|xt-RS09Q zZqTt4Hj+@AXDa_RPiH;01u?22#u-qobAmXbfqC&+U2-uL_xW~EOFfr=G8Pd&L!K*e z$q?f_Xc|`;jZR2h&l!eJoH3{O`cp44sNbUXxjS_wF0o=~Y1Dc>4qHVSV|0V{{E*xfoB>oDW(4@UK z+ctL&B$|aJ9FLI08J9Pg%rLzI^(%=Rl8Z}}&yfmRhvM}kgfQl5yV`eUzX7iOILy)c zrxoT%GEUJ)j4s4Y`cMAoPsT)Q@oo~=XFXjtZ(!VO`G%MIhF73TH|0xJ;5$gfxs%;F zLvcoP&9IK}vrs>`y7fuILtGNA8c7Zv9JaDBMuS7CMU_&(-Dc)~u6nK|wv}X@IukKo za}u4s49)BQyzn3QdQk3~`k87|4rMFX&VeQ>E|u7K#hHum*rfUTK>dW>MsJ2qz@QrS`)B%34;OR^>2NXUwB6^j=eA?hOXL1ZlJDC)64nQ@k0 zL!XUZp|zlYG;nYVbLaMZ+YS zb5xje+O#%Eav7a{I!6-t3z{04Ert+TOU$O*(42UK_^}`;Z9XG)l`aUv-C`5H%Awf& zEaRp`4%FsHAD!xY9UA*cAg%9;GXyigd9BfdmL7JgeP|ZW>YKzIjm1JSsfcx5myU_Z zPmzTztPgX@L;~|fNRa#jHt?7Joc`&~i@})7En_OHlR*$Iu~`k{Lh*C2uIFAqpf+Td zN64&`(D+9jlexL_+cKHA(DEh0@e0!gXQk)Hac}EzG)#nI_6My;Tj~4!cwx+95tz!% zVdH5Xkf=W@Zi=4A0A@tj8r$lX$B-BFZ6Bi`2kvh;HFXI3dx8wDrxmSjP>ceV$Wez{ z%3J4m8=$XQkfx$Ue4(Z6tJj&{N)Tw|*W7$kkF!KHn6VbV9F0Z7FiYh>aZcRpfO;P* zU8@)|oFz(NDlvzTqkVydi=|adVEcbC=~e3`IlG}{^!=|#FXqBMu7C4*pEDrHd9!k^ zL)YL);Wy(sp z@;WpawC*y0J`q@AeVFoE1ZIEmdX*IC)*3a4_!HCV#RKCpBSBCy|J%*-UxNw@_?`P7 ztM$x=G|llA`-Tn289(Fa7^RnkV0vxPON$veYhsa`QdK8MV}UTtfh@qGfQbpavkY0{ zeV7WG1m@G2&(rwMz+b1DwN>=WAk4cRDI2YxzXCy3p5KqPOejv7a&D7S3e?`JH~8p+ z;oE$laB}rf^G8MC+tSdX&ZuLXR84>;xpK-z*>`o@=DIAb|i-@R}s2pobl&d%z^nX3i! z3buXXXc!B{)b&4`@O2f+Er(C9TkzC?CDVtgtWIFsbwA6C%K*NOjNQ_O#4G zd7S0>@nS@!2}i?7C}w~5C+CNI_+0xLtRV!ZJX3{D>x8&ihpM{Jhrr)Fck}OEhvAjl z$rWBhjG@Kt`F=r6F$8Kmupaj;f>x1R*|{NOp%_&#)m|_F@`7ra_<}iGiklWf+9H{) zw^s3R=99_i%1lwNZ|hUNBh#+ptT-uET6`==0~dPjfffGnFMzU=CxB98K$j z_b;THvb|pqV1~`SWm2&RMUNt-4sfTG!)=py0%?Og(29og;x#=eUfFbN)Z0~1+n3J= zKF`Uy^TJR_b6ACsO^w7E4WoB>MjQu$pUfHe-)1;7C-_^H51*p}LNRN%>CDiThlU@! z+M9NlmusA<2%3zlP!1Dz}Yyhu3j5425A1q^j2NzQ1_GeT1 zk#KrpoGYZOU_9YRauo4&H!_Sz7!l{wPfuJPSGZ*Wff& zj*z~*GxLEFx(QF|rV7qCp-qPyhtAzIg?wTZJ-6b>cz?(@+3d}_qkz4UBtB6Rvw?!` z%4Wri>*0d|S*?K<>b?YXf5JIE;`Gkyn}>jZY1C#<9TRI__M*QP@j4;uGaCODG6}_{TxsuILGg_qN7bL4GGDA9Fqxd!&Ru(n1ki1qH9i z?p$oW8nUf3yz3__9UH$`2!U_{S`hLdRdM%|LMSYk$M0nE+C+Sxxr*)Wev2| z(JjpGK7o{c_e0xehvSN&ddK6r(VQ{UgdrYzz4GJ1S|}L1%a&$(1Pf6n5S6f%P!LBr zI2dFHrEHh-9yJ&di{wM-*B(@9+I{AyH{Op2HX9_pA z=&l}&NM;p8;T08^%D7x+VH18A_}1bR#;sNY0eQ5+-67-w?Rwg*n*lo^L1nS1{ttV6 z)Rr_i+uNob_SAnO{!8rf-BkO#)@NQp!Fm4$l2)Zypc+CnAA>EXLqUz(1VhE`s3tB4 z7N5(9R`L!n0CI6rM0c91)9bI>%Q)?-o(gA?nPqoSX7VTyj3SPa5K3L!$3cgaQXzcW zN;v6!TrMhhyZ?~U9QG6;j4`!y%P`OJPL=$?Kc2lKlb?&$88`u@q?)LfQM9Fbo>3Zv2#wWf%Mz6 z{qiCMa0PL)fQ9h?6=|h3SxeOYUs8ILRJ7DENhgT}31#u!VyR-IME4`#U!8TB`H88; zI7%;|YhxbhumAtx;Aq;Bn*`b;h~tkZgxn-jsSH#_(Tc#u`V4w7{T{JR&_2*NVI=@% zkMy^yy+MAlX|?HblO$*$LoA-~QICwVKpDB^IztVz3l0oVgFKTS`SV$8fMpXEReib~Wz zQi8k<<{KhCmI80(njCdQYiQs-+p38>jLYV`8%g;gN z@^ee4dj!JImrGkjlRDt@i7CrZC*H&5MmR@EXJZ^q8=;_4I_vUZ|A5MK!)Gj7bB^vp z&nH0>k-+7J36wS2336^(0#~*%r87bbWj>n9-JTzS9OH2d#8BG2gtQ7*LM<%0b6ukd z^6HP@N~^X5o)o;id2t0a=d4D03@$|O-|XaGRSmtXEW=MM*#Mtko<1`5kPa?qN%(CG zIhq@Ufez%%mYw(W+*VKDMz0`2{QIPZ7OfXM8L9a0xeq1X3p zTaj!4l&i^PZjZZ-%gr^&Z{nzOG}j9S?N6IIZrN37)Ic|-{~$pl=^@yaRcJC*aHbkg z2d=xE%Hp;1z|$UqOxR73_b|gOaQrMNDxHDCQI)_QN`!rUA%DcMU&gJ{P}k8(t2l#_ zkQeqEq}6Lc^toMA-lo(-@B6M6*T6+kxpqEQa>Wamv6E%R=DTw=t%ZX2XU^_6yx;m- z7E5IuCqexgvY5^uD5FFyyeYvuE@$aO4H1{9(}FSuGE@OM$-7Rg*PVxY(r=js1&^$* zKC-$7brV;;Mkh3N5>>RjAdal5U5wKLBy+5`e}tOY92pOh1YBzUNwws(c^oaPe}ev7 z$h1FuR@FZ1+s=z?F$+c;33{Bd1*M<8p|q^w*cBfesK0%1^2)N`P(e9@RUxqn_kK%4 z`liV`7Ns+R|B&=upr~f-N~`4~fh*Huv8s3vG+ndYa?R2K;ve{Ld*HtvXPA$FmhsIL zxT#$3gG?h_IwjJqoI1ofL`$MwhSGK6THg+gMoGyDdx!cqz-KD{Tpd6x`6D1zqsVUA zNq|P;S*<{kQ`6)pv6F8>ZOO<9V;sYvY2UHCtSJ$YFbQ*OGEm1EH4ny|vXy{3PT0w) zPzPN4+MbX!7cGvag)q>({>;GIpmRr`cw;)u5yZWBVVs~v(QZIVmD&Q=BL=~eFX^L{)j9p*lxt8r#&7G1E%%_NHGJv&EL})e`|@@g?-(>9cMwG=p_ovw z)n0&FDg@MIXj^jdB^?q)j{CD`f5#cAp^?g@RrT zc<%dVC2&thdEz&pVam)&1n3UNMcOl3Ae0!itgw7}5*pOX!}Av9KnaqmPp?B!^#5enKbAiHgxxI3T&6K5I{pxYU@X@Ru6P;$I;4hdwOcNa97Ir7&Gts7Ll+GKPFAEmt#61ppXdz!t&Sr0Xz zw70Q&8;MS6 z@Tl2+;pn%4tXqGEDn8%)V^y9%GgM#znke=AYV*hD5uQ*)nNM6s0bxNw9E$IcnuTt0q4UA6J?o+Lg2jjn z7AjElHh=Hid>51sJaKkkSQjK3eJjl(GS;xW`?-_;BFQn(zmqVl@QEY8@K z{{a2hB-wxtYN_CQ4^ zIkgaCeyI{MHE71?>_^iI%8;0Y*okWTb|REoUAlevp35k;nrjhi5Qd9=446_BJ{RhT z%bq=TI13*#HCOJu=Mm1>6+$`twNUGyXRp_2q1|CVBsh&36*jbV$V)5AFWALL(hmKQ z`7_r-HWmD7P$Z*4@J5f0?7N-NVh~6~tDuyU7S((pjx1>OJ9O25vz>-yYtYv(Wf-&$1z;;v8#&K2q(_ibGm%P)n%arg@;n_1P(|rVk{4TioEhB>`vc zn6yi8ZzDAF+JA0;um%@*+y3mh9+NZHOekl+ChAz>hw&a3G!G_eHcw{=%xHy>BYC;a zXE=)I$Zzw0xbg|4Q!}0)TdN0 z-`pi1Qe5(_9!!3YiwubqE${Y$rh8vAwI9^s;^&j!9-3>#(J&=B|B}Ql=+{L({JH0w z(@<+>GclZMOojoC4{229pU?JEH+<^@am!vAP0e9JQ*$m_>|^0Ek+ z{F(W0lxMF(C!{`cjd^nEQIte7 zxX_{cmEo(FGrI`PkxYrHGyx><;}uI5`T}3)aa7^x{Sf_8!&%?=Jv1Y;S*axr9^Q^e z_R=E|AS>@&+-oR0YBy6Mv=_K|_U3&dC!mp`Z#Dk&6-fOu>iW9#&vAO8m;am9D1%jR zes%S57S0@ZJLubX7mmhKVVDC7uH+-l=_^#tnB4@XDuLMwNh#%{8;neWujTJ7v4aj# zWWe`1GzalJE!re_BqZ%5-b%=cZxc%pQxV-K@)6blb6IDZJf<-tfc}GS zj)h?|=%4&A4-VUPg!qvEhZ=!-=1`8x!Z)F0c|)cr=N@Atl}wN&avne7?ODf4lZ?WF zT=7%VFhdG9(iP_p%6a5d>ZUp*twR;_z|U2RxXt#4G~)Nex$t|}iTww=S3;}e7FV6U zJe;PTZy6H4lEXgycSg@$)+@K6)Mn|$#pmyRp1>MO+%XyE7*$#?L`*&FDUqx@knng+ z-mzyOATyhF;O{~>i|WuyWxEQf3akOO*r%t;pPr6@w3y{LVwU^iG;(!kLhG1C*C(cn z;IuxKDTjUNzhE3kF_w>Ek@lDbQ&R!M;N|FNA1&4(Q4E!dyRRdMW~m+skm)cjx&^LK zg%+)3A;T`n@4LysqptkK0#oVD>maS|ac0J@yU=^ODCi;P2Cch2!!lL~;Ft8()efmh zy?F5NjOF3iPG21Y4P6H}%SLFAVvQ%pQJkqIkI~^dsR9)pV7yEE+`~XXxZwNS;4-xh zw<1#-v_0Pa>*kPcw`ReI`AWgUHW}H7Sh#U zzQWEjp+~OGT(CnFTH`M7JHGinQi0MQB#i9hu=o9yv10FXy3$(v1}|5x@PYc2Qo83|&@!yc4pBBPaWX5N;qK~8E;j%&PZ(hJrif|2+I1*2D&E%_}C z=~P`(|CRrY*5O^0@3N=wTla13f25koZyhPUSuS|hL&)=WdSH3=F>4O#6=RZ;%qdVX z-(s2BMlZ-PPoI-_Xce>)HA6KKaFSXo(m7-Id@d0Ke&Cz?XVTw8+xXtw2Hlx1yM=ye ze}XGkV~Id3j5SlP?+21&YEx=9bI2ec3nOSH$`>wPg9~KRZV#kW>PtR#Z6nu821nib zpP%|i`iJ~c2a;UsA;G1-X{-t45{^lzGRHu{&doN_(=o^_{j3|ergq>K58QHU9io?ONS}0I>QuIGwO3R zcKws`-y+jd83Apj=aG8+Mt;JK@m?$?U2<&1b(pd!eR191INN^(WZAT;J)3d>TB*s> zKY0XXF1QGSjV3J)P4I&ZhQ{b^vs6*8Y)04Emxn=c-_d>H#~ui#3Ip1FH_N0v9R{gN zFVha6xqvHtb=s*J+Q!k?DGYNUf0tUow15ATB{8=Tb2byL;|1yRXFJf#H$R3Qi&EPq!z8`?5g?Xi3J z2;y&t1~*j)d7y;Vu1Agw zya!U%{i*8~A{6bK4X>!cWJbIVzAtVZ@Rx@;*JPud8dc2PFVJkC;M=_#>1PrwHe&KK zqw$enbeoPNI*FCg^%HlILO&m!oT0Zf!0M0 zy{J$Qu2bb`%|v7hp9_&>6`Cq!{9L5A+Up$faluTdksCl@N~nu=!4uufMq%C4pxx>~ zviBBk$Wm{Y4y`zY50lxpHZ=JXXYBSqOfqNkuUV6U#G2#F*VDrExkw00Dz zsD?~8hl-MjH%K+AX|njzP-tnEUUu-sba)YX^_KBbb7)WSnL4DZ334Tua05D?$C5}o`eJX#I8!9cnIsu|sSE_v9vMv4 zq%{%shofdgJmFS(DnRC*dnW}>s3U;-b(^Fus0cPeJnf?Ud3f3SGWz5&Uuci=v~`{N z0`e~3eub@=gG>E*5hu{~;%GVw10B$}dPPp!`S1YKh1Qoe`9(`*?3ae3(V;uL_w+!) z{-=igp>`nHqkcH)d_9D;q-}~|UxY>?igNffq>{yGzVN}@@>vWk02<22U-5Z=0|era zWZbX5gXbt`tr;{6I)Y;7IP7kNPu=#%hWa?+LoO9GFCO}Yqv;?Fv|r>}*r_mb(v3LA zDJ+2)QCcH*mwuBCB|*8{rumyfMPc<(`a_gfB8p5{@eoS|Dr%__Ee;^+jlJPhplaBz z?CnthV$XxL8%v=DbwogI5g;tNTifc?qemB9K+S*pVtpAKI=3Axc>t9t z9%X&^EL4%@(Q_bo#*&5~K@ZJv#QZ!5DD@A!bTgtI<;#ZD1}3F(H0_0fru0imA8ejCn)ibK zihh{{{fHcF-drd<`oT4G+g_-pW_<%u@Ab?ZvZ&n2XEcszpNDEHxsxZoa+AidQ@}fH zVYc&l477;9ncU&H79zsT4(&*`fSxm9@$26$gi_8t(F@!dTrN-~?$rcK!v9yIo%^T$ zUrX|YM7e~%_+>GH*kaKjr2n^Ky=KWVofs($HvI@zgiS^N;QxbzqsBo^!BB{R+I#+I zrU{wp1q&Q+S;_rEc^?Odk%n@#Gt5|G$aERCmbA~1RW^<_yz?+B=w0J6#!((p&S+YV z@!JNC)MR;0=9V`@i!JGtK_OYaF$%bC#L*6o)1Ict#Ku6X&a(PsOa{j^o0opLz6_cp zqc(EQ%W;OvzMAd>`#5aQkO606kl2BswA*FPMpYtp2Q1m6GdkRu9|*_^jHZ<|w2P22 zaTREYJLTYkw!b8*6t?j@nPG--ww&xp6LkAfDLIPfLP6=-4Ix*{pl)dN%89RsL8CgW z(9GTeQe7Gzq#W3W(~8W$dzjQii$$cTSntS8l}JLhm5C^$xT$2=_OT5-aER)NqcBO5V8 z=P0D6#;a>B5rN;NS6c}!L4^meZy$|gLtcul^!7%Os4>{zAYZb7zFWHu>TUdDOt4kk2V&9hK~&FtaHX_IgBZ-Q)yZj-guS$EDCX!YBxx zkV*!1cjNTwi$U$JJ+xRYIe&hmC(bB&uKRL&GJ-^%!GuCOQIKQTGn)uVHWQmoYlPG@ zdKRw>gMcq<31tBW13OIrj?-`Z3MgB+@GBX(0xr=L$~X-grJZ~(In+XG#>$vCn_Y1F zgj*^qco?*VB<5$Hnu#;~f_|xdvPY1pHJDJy9sQ8z%yt5DBoVkp5mC_}QxiYF7>L*Z z84>+6a9ePtaJ8lB7O0y}{sE9s7cRcdo z{dG_m`)b6Hxf@q9JNqC-rxTEV^!CL*CIXrR)fhYw5Q!w~dr&yqpOCYmC1|Rz zU3VxNNo&=>;4qXBzkHsv%>c*7JwLDTxE2H>D>qgp&&TPrHy#f=8iXKGcd);VWZ`=E zefxX(P}erLphn@=3g-7dNU>=IWXSYUu-6LsDu;_)Sfd6-mP1f&JH6m22&g@~kcz8u zsq_rL$2Txi`6r|eiR7r<7>Z-=!^2SK9tV1I-36q%eB z9SA(;oF655>lU!+1f&vER)>(YP%X*&qx65OZu))OeqXon&$d>r1`UOBDUdc#Y5l`@ ze5!hUI|%I0{g&U>j?)ciF=orPAV}07Oeo|X3es{ui_r&(WNQf0Vq})jE>u#i7cFu( zw|w+G9gu?>eb11F+{2d9ro9V%GR4T9A-=L~(!#~EWv-l0s%>OF+;Vq#42f!ISBGT74sD&_z_cRP=_#n zM+y2Wg|ulmh%cPp7jXf>GOf>hy4T|j|9PYLnJXYj)?Xn@hP_`iA~PN8HO(cpU1u4w zMEXV&>FN+9$1BsP6Sd!>REmE-lYi>!itf59-gQ+5uCDP{bOQgY%vwF`F4Q(E<;hf^ zF*t)UPH$-C91zTZJC^N#2WKi@zq5Tv6oO>_6|&Uf;EiO?G31V1s2nc-@c)jgj?F<$ z!v1o*OUsm7k6iLcJ$~&REk@t`zoV&Rb5NJCzd)9)xU=Bs()-XL`OM;rLNukQQ)D9H z-&csQ^ETOFiyVF`s`{r??H-wS{g3dkh;)J80~d9nK&>dy#4&xiW9~#qo0V?ATyize z(7JGP+nWp!tc_T7v%?u@PK(-jw`O?-_k!wCb=UBa-2i#lJ2t6I}8w})vN|DCK zRwZV~Riser=)q){n1kSa&BjE}i#Yv*W3kT-HxB#Q-x*&izpAX<4GmK)Cj@njn8lJN z268yT_#I+7U86Z&V+K~Ba4Iv_;!n5_WiW`5EV(@bT&f)ozgF=p{|@R$>2gQg()}%t zDQRPLTWt_L3pKcvdJV_&U&!Z_pbh8ff5Et?pOKRL4JTBIh>^4w)(wo~AjUt$lZAc# zWPwYzl|?%~*Yv#6Vm(OPm7ejVY&woz*lWj2xCMd-I;{~Vbez7%OY7KJ6As(`uZ*9^ zt0%qK*$xfs8`fCwXrZ)zLzzk%v~GC!I=>b7Lw)P0mHZ`DG22oUg4!{*|&f?~m`hgUi5BY$UfzLkH-7In-# z5Ie?Hc0DEZ8$#$2e?Ti_2a%F|7H}SpBN4Nl047L zNS2;<<7IW&A!JKNuai5TtOA01{H5NqH8{3;E@TY&FFT;Xqzi1Xh+<%Tb2Q~acD=*>7qvL<( zIFOT^UZ9m~uyztuO}|%o%i}0rhG9Vb@U%ztB5aF2lr37vzEpDu>I}q9zRIFT6BK4dU#1G;3!v_bbNLnL z3TUd|;XUsv2jc9>X9j+6_+YJ#de77jmADjhBNX)w>DU9b4+si=E zmE|UXc*!s|OFIJUt~Dlj@PnW!`D7H|$`s=GEyJy@Wx(%M(NA7rF-UFD`eDU) zCN6G{RfnBaN0_MTmr%^?0n8)@nc$#ZVMt+<4??LWW14x@a;WPWny~$-9#m7&5u)y% zC?LwAq9gUBnptyDbfhWq?*5xo3LviCb^K-hCj-%u+T4-uwYCp%aZl5WG#>%N9Q$8j z=2DpQSUBSfIhq$3ir83pR0U?zY7nphc*dxo8tSeuHs>76Sh_xSr_=C3tKhIKw-)^gy2Rx1ju4jR?Zowm5>`Z?3s_niA zQ{#Vy`H*pk#5~7fV=Bj>r0WXm)E)r5#k`vdH!-N9q#(pCCz1!BUK8QEK&YpLtp$_( z-daV_{-t^?_FxEjlk$PPih|`8F$q&4PRt!Jm6WwbM<6_@_4STw3IY)zo z`hNZArVolO_C1>g)MzSTw;7K~OfSZGY#5CLC1fw>Zs6@Qu|Ja?3ROtJK5l_HRFG9E z0{BGMTuz7jYC<2tg97^tzLF{3P-pfw!d2A+n*8iuJw37y;{6Znn8{4RY0KQ$-b>JX z6(Y5?A_P3M&MeNR{o@!0{|V>-id zT3fjJTH9ve{{H!XR^Vb>{L`x0X4}RiPWFGniP~F|b6pYJ$fzedk2BVzPHITJaIkg1 zgn1e2LB>5j?p)6x@j?b!Ej1SSl!&2-)ad=^og+=>w1*vjn}|4gVYOXBl@6nVx6}-YH%qxb-LoqB5XC|E5Yf`aG({^E+AUpsJ>PS`U zN8l=T$6vgq3{3~hBX*V@ganPVY9^P)qRvo8JLpc=(Hk{_K6_e5;8HIZiB0FS5hiK_ z_7}{YOD@kpb)82oFprF#R5cefV3O@B_Aw69l4;imYSHWCi%|{pGbkg|Luf-n>*l5i zHAp2z0M^i`JKF=5uR{@)4&ti+jB#wDMiBpF_fFi|J4zhLI-u=C}QWk79AnncZnPyOnOT?}_xEbTTFr<3vu=*KLj zG6*$<1vL!4r-2Yx%zOupq_|=T6m2>&W@T^*aLo)`i*$xV(@f=J1}_-(>%I}#wq++y ze|3$K);SY+Maz%g5kHAbOpB?@TR9bBqGn)!!#todcR@62FImsqZ=3lL8_gU?-1KdX z)3i6Vdr)lbbtjv72kJ{lXfCWc03{R0Zhm_8GSqJ0Y5M5(Oh_gx7d}EGAyKnKtqZn~ zJ#f!rJ8+k@%n!|93Qc3)rcIhE1&Qvem5XNP;`Ddl#<@Skp?>We!%$~ATs-W>@eS76 z2ov=K`wM2?+!hrFrXq0HDJ7-&x?#hadIaVshBxgcEd+|p7e-XbXh40wc&Xb&CXkLm zIr5yS)JGCBJ&YzTfksNWFenE8J5hY`)eK0YeJL#oDH@1@H^^<*dt?}ji;Y`i*II)k zOwupzbB9`GN#$hBqPSMcVo1u3W_B*G#nGF$8jZrtt8UOLnA-@<6^u~Y1zI%Zx8-b|G$acerpsKPVLuM?D6gMK zI)aW6N9C)VkWvM;O@bmh4c^^7bl@IrIrn@Kk}ZX^)5q*6f@HlzWk;6<;q+xzHhGUx zv15jng3gR}xX7z%HmfHg+k=B%zaG|MgL=vxibFj=P|X4~QHtb(m@>RcXBE`3huV5=vp`A(rdv$#Zb<$v7$UwM$7!$2 zi?u(zfyTyCX5sikoKYTFn7zUrVWKy13B^Pyaf{n3n%rEH^SqM6%l4=6xyL?PaZQl~>6(0KUsJKNLOAVulC45#if zPVg97n9b(58zzW-d?Jf@*a$C@+Xl$UK){g(ym=(0tD|OYmC;3gpQH z>h_ZdG@3Z9m?kn5QYsu`b?YPHcSGsZbKg+QVdE$361as)?7$kb7$S`O)~KNux|(J3wjsMx3xOnnqD}z=}W`rDQo-u z|8@QP|IJb{QVNpJ5@`}_aaXZCF>TRPA{8Ptk^j#})&Do?U+JdU17v5e6XO4)mc<;@ z+KT$=|1AIzYrWyhiD?*rM; z-wCk4Ga#Q5kEK2PL`+f0Jg*lL_Zd~`s)oyFr}3cKoQxqt4AGbCWj(a#=)brzKN+gh z{P_`Oqj1_!6Mb+uU!nqw>)K0OwJD0w{6^?5FI?7Y0xQ^^y` zUDciU*+<|^Y~7NS`|Su5|1U7jDa!ZS--aiY9dV3+UhSiJx;suR>@Qw^g_Y(Y|-4?jC{<6c;snym?^zg6N)%q z;}0p_htj}v8Mf8Wp^5OPHz7GKrE297p)PF)$a|!SL^{(Ti_cJVTeb)qPQ}i&(-uJU z+ZLNMcN8E>|Egrv?-lUnW1?WVS1Oc02$XyuK*w1dIobt5lMp6qZ6y?QBZV2jxQM+a zF{`l)^w0@Vy!X9LoJtOqd#vEQIH*B??M8ns2ba>{6_IsrK9GG|{{H;MNbR5$b$wFH zJ813@Uq0qaJG^y%eY$7eZun+4f6?~UUQp(AF!GAV23)M%Qq=dmF~UTxt%PFQQJ8@Y zFD!<_yi9+DFwgH0EnAxm<*{EXw{G+wVmBxozA;E&ISvVec*AqdLC6@!h*}*B6Lx0>p3#?l!?)6D%Y^5`s%ea8Gb)DHLd-6pBl+ z;u0XigF|p9xJxO8wv_+5_nx^4R|0+i@AH2Cl01BV^K{O4&N+8>_U@eT%$(5`X8d_K zFKM4KEz6TDi#G2Z@bVbBy-yqZ-Rv3UF_05^DlLG$GQ#G@JIK9rXIY^?$yvL0uFd`j zc{prL`41lqBY*zTbMvhwOM8?fo{|Mc$viGHPT>BXT`g@34T{ zlS6Dx-^7LxZWaq^w!Y}57rJR<9x`3f%|eVPxH)pmkR>~(kUM|1-0_+{By;l?9!t25 z!%E06#3a0-0Wxto`Yk{!K|`MjC9mwf0mS=YP7c(~8vC+F;ooglye z-}P1xNCGz@H&-@prn(9a@OuWA#V+m8toO@P%vGi@x>=4fgPRxfe;ZP!DaoLlCZxMB zan<}b?q@yMdjH>W-6?r+abeQHzP%t(O~&rR|7;=KA3Z6Q;uA&wa=chQXN8_zJ-DRn zmYan_oP~}queN^*xCsfpvUAhtVrj3qTIBL_w+DGI4q;9({Pa+BnjzYc)ydVj4Q}sS zyM|;;I5N3rVY6)SBgH-R|5S?n55zTQ)SX_3z}_hu zoY7AH>UDk7j~8!~Yk5Cb2}%7e#2I{W#a}}p!+#6Fn*&IX5C0*5*R8WU-=>e`TIXHKbuNX3IB(tCIzQqxxCzO?vT^fhz`VZW zr~gWB{g3FH*+V!sBNiOw7x zMKT~*_4;`~NiTh5RlV=8k_X)v6u(gs?)7}<_i*DULUy#!>>p}$Cx4&4KY8_?6xhi7 z)Nra>pO9RkPvG*F1aK1)f@SAs-^nSDE_jh!&D$T@_OprknGyKiV@ywNdM$Eo(aygY z?fgjYb_*Q2!Sfpk2>C#joaXZ@z9HA}S11EBf24<+XR`I`kOyr?R2muC8G5t&>2fFD zKySJxM*SE|{&87~Rp~Y#dUN`mQ0u;sTzz^!=@P-Q<&YEXi*CBmO$#%F5vCqT;o_|$ zkm>25arN{3(;(yfq4;Gkoh;MSRpIA{WN>K~69`G4x-aQPPq^H$>Mu1XAFn~430D%3 z9m|e-O>LS){`qD_TlY(_+jw2XU)$X`gyc$GHT#qs=O*08m7SY$`}X>DT?6-xyqS3Z z+%+bixxkOjJ4zSLI>TQ`5-Zla(e^g!^|MtT=!5r_f&H+@`jT(>fFO0I0&Oxx5loay_5+%DpEuG_k{OjqVE@8&LMmUc}ma?Rt? z={z0$$X#yrZoyXafOD>3EJ;TK?F!_g>Ke$9yKn#qLP3(A!2gj4_4z;YY_vDoGs;1d zoi!PEFUXq}v9Er~5lzUgevc5a@Wn(@QI7;?Mp`jI=# zIwp#FfNsvwt^_xO=N^yUbX817C3W*M|GvCN?sA-Im>Wr-_Sf4LgQvlV&P-T)a5s6D zxO1UCD1+>NQ_gww_V47M?`k}%JFgPCb*Y?VwReFK+m=hGyU(r)Zo;)(Uvx7T-PDU2 zp0+b9v~$DAwaDgg%`;z$I9kv$SgnPNN zbCX|ME{$y7Q{+x{@dDGVS>8+EL?s}TR&?A>kqZTYN2E$Nn$<|$@R(;icd$;3t*lL3a72R<(aUH!T#-qAz;9 zxvA#sGiJmkLMkjyu~NzmP`qPVB$GDfdx%?XXPVz%`M)Dy2JEngyjGbuWjiK!-X76^ zf$y_{QPB^T`1UX;Cg z*x*r??@6|#-k~QKh88`Z+Po92zpeXybj&*Pazed-J-j}UZ;`Kf0r#oE#y+x~zXOCJ zX}A4G9Q^Yoc|7TTfMY*g+Z(qOt^*lBw$K#ogZfWc6#;ib|5zlv%i^9PY>QsD^n5Rnqzga=cR@Upm$)DnOuy@_bDL5N!q&-1%1W5sh=T!jT4vJo$-k>=BX zKCBL00{cDLf>&6)+7Yqy*e(~jSa0I>y=~rwn2gSXH`i_iC*dBd?3{eHaofq2v&n^Y z_K(v;O*H!l(?a*$OfJmf{^pX?&rj!Fa38Y1VUj7Dbn5w+H!DB4Xeg9d{1h^br~>F=Oq^nc5EPLy4o@p=Yp%FBpD!{x8u?yts`4$ z!k3B}PxICZCXeGA)T{im0(r*WM#)SeyYI}I)*aFUyxMiKVeY?fkXxy56IS{j2+>@d zuyIuWgYZjLPjHgovMu>Nh1Z_oq#rsNt>2^(7|B1z==OM$3mxpafA?8K&Mx9Ua5wR; zBzh!;rlq85Dvx<-`dY`r!8Ev_aE~A4q^&<7w$qpbWdDPzy(a47$g9N-`o+BQCl3;% zS1e5aME+dfu0iL!6(F##o9U&()^fqiK=iV!ezj&H*O!_=ts z=apCH=2IjjQ{Wsn-1kF{HHryu=Lgwy`mQY6t1=`b#*O)@=av{p1i?KaX`8Bd8+V4> z*XP&PSYDQVm~rifWs5hs30F{YpSbWRd!O&EGqHN{8<2nI+qG-z92>6hta-${`ATzA z*B@4vi{(Aje$_y70pow^%JO5}Wqg#|xm~LyIiB#bR=Hu2kt|5FVROJ@@{GTp`32c? z+?0NOBV1~qJjB)=($(C_8~4}2QY}L?a~8j=TJjke{|9T9YMh&$-JH1{$&SvBJoYX2 z?)Kbp6F`4k9_vksPt z>vQWi>mqedW+xNF*tHw9Ewv1&{=fSd8SH?&1v9Ug6(%FQXEP<2hVAuW$nK*fR~+ge zM@lEK1AV48BD)tCi%c(CgzUz2I%?&PsEOWD6J1S9@ao~-6+W>w-XF7DNErm$1v_6` zMiy6eR=DTHOGkFc8(dSSw)1OlY1awQ?ypp{?c?RusEJNb!wbff=*x zWY?KDp;!MrOe(fs(`(xByJXkQF%^m?bSE@fl~@Yy5Ogc72>L8^Fs2O0>uquqnvm;j zOT2U=tgxb1A(5G#(A#sqw%pA3fP2$Ipw*;BPw_ILTx9!&8pgYAACS0u&x^D?@s!Y1 zY}+-(Mt)2=MYjJGvT1B@FGBOEVHsA?VfNrgE`4%tu6wJPzq@~(J7yiZg%>`3ZHa+N zL;=)_iP-sTZSX2C7PRI+b~OraEo=2dgBzx)hse!$4?4HF6-DSRSZXDgD;WMo1Sx30 zS|a`B%re7ShTQn`w>)xB)oz5zumwK*67t>w8X@Hp@F>i%>Lzi z1oNQ6t8hxg?&h(@NDrTl#`mp;K<1+a-%>s!(SjB!h=}_>~y+6G_J$<1~f0T8YO4B7Bv! zcUX7#W0jo-9ZBCjYS^QjH%ZUYTV{SZY$WNJygq$pQ25Qdg-JT5UPpfjE$<2`Mk9O_ zw4ZzQa_00{yMZC;^~(Hkb;nE+X8Y8?QDq-OZy=_*{L@2L>xU0rLed3)#1bz*i*PAu zKl8pq+rw`d@cryETk4eOOUUHC1sVqU4j}ZtZL!3=t?B*I=kShZ^u4h+r`>F3HT+;P z^IsBr_c^`4;Va7~Uc9H7KbhRO7;mdE5UTVm%Lq?}$Hv?3VGtkRmBb{#1p&=Axef=W z&LPJ~-D}jbQ739nwZxZYs0Xjz{Mjq`m~d5zA3-x;UH&qjKieJVjxJ|?M;t5q^Y!}O z-&S%$rp)NHi-&rDbqP1xdBN$H2sed}I68I5zQ>i;z^_HxlkP{?3_nErOc*}Wk^q-x z;0-qPf*7@u{%Yh=(q1$w3MAajECfCwU6I-%kNE&hE7@B zp?E)X6fgFXmPndK}^GPMS5JQl;I8AIXu2SGLUDXD9StBefF0 z8DY5;`uoV0^Q)5H--IDTuW|a?5__bhlh>L#m*Pe-X64e6BfWb>m(ffhJyyLbl-{NV zIsBJ?T-(=>oxE|kgBe@jkt6fdjQxhgqb&1jwa}EG99h?U!O1yGC_mTHp`^S_D#>LF zHITzyZ;jI|tVx=zIWvCDsqN%&xu}>H%a%~S$L`zQ1qph5ip47|5Z9Pu|Rj zEFvQc#q}#Oqc))#(GE`d7?@xiPY(Umq{^lbc5>*_EA_w8+U zsnh&dc9IfaXi)0Cd8F;Z)&Xl;^d~fdT?*!hQ!8BGzlTKBxvO?>}Hrc6&(V9~{_Kl_-K)1@bSE=-)$GvOp@RnYTa?=rAEVS0OK z;iatzy=+dcJSZ?$O^gbzVhm*>H2LROmK_bevd_O`7~>eo?n5`eyVUCdDL>wAnAYU> z)sY*14MO$ksn8F?V8Rdwl=o?MG<0Vasogr|;M_U`zc$he)uG2(-|ZNin7$ZDNdv4D zVfxpEQRq_)O$`4v0&1cKWm#hscyC$Bj;jZ@zuvN%^f|x8NQPG;^jgv#7kqwi)YhmL z5OMK;am`kZbG0+n@z$}xQP+Oo{;j>T?TT%34#(VCZ<>zeMHCYj2x z=hy_+-MGit$;cWu8d~Y!=)Z>>U~lNA>Pj)^nPE&mZK^g_YXY_ZGk>kxJAhfqjM6x2 zD(&ht$F=%?WM7D9Oy?0llQzNY3Rh0+M)rmbe|xk}M?%jVsFWSsaVj$@FOlu?(j?}h z#8>s11xL1;^wEs}?IS4z@xL?6eJNwK|FEyZ+w%U36c8vEnA5+VIbEbI!Zo~WTY(xI?D@nXO{RS2yY|TUGtcA>4v1-3`w3@KkDiF38dk`9n;g-6(h;K zWD-dpdhu<$=ef|Z`asfWF=|aDgX0(^(qrV;x3kg ztwgk$B$g)z9LWp+I)w7N#Ww@=2`(PwCcDQkot(U98>w32eVOIG&y(GeO=I4SzlG&P zG?7PEA~n#VwM_M{87{YbcYn8|jYiey*6V8Mk$M3CI|R!*)CXCKzh50%$y5t#LGyBv zoyThAn^rA?M87$(ujA@(aFJ*M5f*ONVYv~@O$2=+8-*`PtCpbJq|MSH4zi=ydhdYh z1`_4<Vr|f^* zI>~RG$p?B>0d%bECNn zft;Wu18i^G;@S&mUaoJS`f%x;;pB!};kAnoJtOECo%lsIQBsd|fn8577Mi(aZ#YBx z6rbYU5&e{0z`JT>G=+rwNEZmIHjS0~9QgwqFbV&WpSUVqTHL0QqFR9{DB||j!~`WW zZVJ<$$cBoYVOz1YM)xB5?Bqf__Z>CHjUz302laWX96hLU#IBq)Mrh$^zND+ki z{b!2emherCtgqzt`FaPm=ggDbbmaVHUw!22cO8oqXrOkjGRI5>nf^W zkVLjtt>!S0^lhixweDynb!T;c{_=cjxPTM6kF|@Yr*HZ;lLMh#2$mOlf^d6S9bP?t z<>__n>BFX+f+gQU+2JhkCqH&St7{m~tB2b1(~9+WAW&XRPzeNR>jenr&gwTdr4 z;Z21^3HaQ5%=Knl?~q1|SD%i5{7WWpL-`w83T_Z|hlVtfwUoL9?}GF+lk~igbu02s zC-JFc)~4huN6xKS@V7SdB{_HMX~4j`B}sat@7p|?9xW0!l)$+Pw>>}FRVp$>N&T5) zQLUz~-VE=-vriumI;9y)67L4a<=fDdoO!tLLe!t`}H3guFH@E9QTCl+ep5 z#Zq{SM-ZjHLAu3APM&W0Y|dYo$t>^f)BbFBQk8x=b!Bz#kVOv&`b7>2EMH_zCFhYC zaT>|-bHjJ#M)GJ82 zvkN5MEqkG#o80~6G)JPawkJLlcs=WHlaFGAyL~ex@sU1r3 ze4&i2qUfx^?c@RWrCa}zNsU*KYR%l&>`2gNayu%V4&``~g_&BL%BcRcj}Xb0T)Hok zI5Khv-&2*8yhi@T%Rr9o)BAqI4j~>F7w{2NYJ$xBI z8z9J#Xy$o*k$RC*HK{YXzgca|DCtG|Li57?Ka(+A$5r(hSJgAJv{H8@r!AYo!8$-Dl1{Aq7A zsnxsG%;UE}d&0HIYAr?)w69jSDTz*h*2&1rz@c7NMJTMwJfy3rbDd2d-@2{GR@Pd1k@oiPnGd9%rE7gldvWo&AAWteTK ztiP@wt1qBCsv8Q2X0O1V@4>=1Jm-J^Kh^_bV;r!LH}i|0Ws9xmj2~_>h3&fhR@1L2 z-T0U$Y_x(_UgRxmg+08y)~_iAtxZRPR?}y`!nRUzt1;bj{KZn(+}mQLL+h1Q8$aQI z9kAloRk}I$>&k=8M>w<|pD6?uk9UyY>%9K!^$HG#59f&qG1Lb-<%V#{Vr~Pu8P_Jb z=B4q)V$km7^{|P>y#7(6s!rQt*o25*a>7u3NYX!wR~# zcbs|EIf;ZVZ@Hmy*Q?|LFX^pP_95sMxgkuP!w1TB3-^_Hz_!w9!SA0%m`T^JZ}R*# zvEjHK<8nOSoHEUjwdS@qloO8awyIekrx24cq zQ>5i>;T;+tFVl@#e)2*9{?GKuulIYAVI#Y4h* z7?fTl(!);9SJm6&s(ed2wTkLc`rW@I{qGxx7PlHj&KFO8`px@ZsC%cZyvyBnS^aHz zf4Ocx$Js;+Y(|)LC8F3d7irs|?)}DN;Or_dnWSDGsZ~h-sRj+1!~4l~^J(6^^IA#z z=w6*yp8lCMYGADRbH|TFNC4+T-4n2!C@Zh<7m+s(?<>=NZoj$a1+pv`Y{@8kvDDxe zD@doKs}_u#;3Vf>Hh%KWaqvHAz`@B4fv%|DeP;jF&C#Y8mfnQ+cOSX#>N{31ufE1^ zAm_S-j~r9_IEi{U`@QbBrQ{qhfvupl7yIgn4aij7~x$4c5<1ukBzq$F8R7hN0=!bIk$??)}Z^rJ6M_nheJS{8F34~{O zH<|7p}7Bh!6!miy>qdHeZ+?$I+-3-z{=xW^9{H9rnFK=Tr~iM7r5 zJEyMfiZ)_oWs0z6COlfMTgb=|1lvFc{4?S4%rsJI@aEZ{#{Wc)@)DOy2{&X5UXe?O zMz%XNvVC}zTz8$9C-M)j#<8Hs6|pY?CzUXq&JoW&}4#G z;%SlaNSWK1p9b7c_35SQFr#|S_k&;dag54E1PNSDDb%B_>R8qgOJpO%BV@W$goH;0 zfc-d_@4Mpj=aKN})zcdIJtKm|4NG?{JxFS<+ASB(ErPZyk+lMk)v+U|JCienF2Q_c znt2YA(zH^cytPJ=@VxoouiCN!MV+yX$t*Gd61qjU_u20S|H8xNj{7^AD`q*|_9-(~R5#H-;QWV&$`yN8wR>pXR=)b7|Y%42Md_t~!q%0x3`7o&}7ytLw{G)N+cb;@^b$;(0;OyY6=Ja%Y zay)jNbNuY+<*4Rx*fZ>F>e_;B9@bmdU#%mo&8+^G zhn5YNsg?nja7$fF0gK-J!hFuW!93qQ(LBIh(`<*+16xhgOl?g5?7wUVo5pTrzhQf^ zt=O`x&G?V;x$%Z^r7^)+$LImf!gj+XL$slup*Wl_c&<;=Z_v-s_t3Y~H_%tqebOD% z&C~VL)zw*maoEhvW0IKOOk<`flSlgp8=)-*kEZ%pqOU=lyB-TsY)n+2 zp3(791AF%G*Qj69sQB)&{yqB*jE#?pjT^W(-TZ9M`8Op>_W^V>6?FgTgxL7Ov0eS+ zdnWY8*llOo-q50zN{ha+QT_bm;$yq^jN!~eo9S1|Z@uE)3)*;aZR+)n8cG`ckX$!k z?|<+bMIB0Zy&)9hXgqZ&EvGBi9ePX-T zOsz3yYFCZPw;N!BBp8xXtL>8tb=P^sf)MDuI&EvUY1z6CIp9%ZxcN{)zphYSoU5)< zp`ibuxH!;Vt4-?`b;zAZOL|n?R?;sfE1*yRAtKmN6$5C7SO_8cC|^e@oap!F)nGJFVL zYjA9Q6ntDQ<6~obCU6~jutuvx-G?y&)9wgD@Q_ucBnSH2I9z|pL2l-Xi3o2kl3i+iu!{)0;(43m!U+Z`~JQhT}sG5UtQ28o>}%Ya}0~+)3=6&UVlY z=nK9XH&7jIp~8(;R4MIjlNA8NvtSrhz_8?7$VX=K3;tWm$3IvaQwC;VGe6(Ur(UMI7#En(}WjFTdV6D^`@Z4bi0$ve#ws+F4MM8DL_+{^LsbbRs@(VY(T&&6Oj}*D0id~&3h3+xD(Uw=CI848 znzHo)&ka;%ykwm6^j2c|deDX&r^;&bl|{nlh_`AX2J-4_~Vj-%PV5>ix3jyx##VZ3%l@$vwz2heOsX2;-4+vCPZl`03|X3F5t zhh-XnC)~a=WuZYU67)HQ?En4!i{yso z+)IGW3uMB`On-YRE`417{KcWRIMhmq<%1`eo8(=2Gk>ux@~mU>-uwk8aviJfUR2b| z4aocZcTJnSGnYpZs4Xb@S=U;<3PW{K+0VM6K~N!s8GhD&UhEO+*J^10iUk4G zMgV=)h$U)!jBK7b06p~(L2DYY9KDtWm;>?MeWQF}4>w2d`ZEDi7mL2*GK z9k>tE512pYNel4$9FleH-e2EkShAtCmuFV>-0*#nnmZMaqj`IPprHK6UTgJn2T4(- zAA3WCKsSRKe(d>|zibSjpSA6WvPD)`$O9M{!|*=-sv-Qke`15t&6`)u4b5N(f1#N; z%=Z15Yrfl+vcAP~K|2`1&`x~-zaFr(^e-D$7k2^{2Cx!VR7_HaA6q=_%BNrlfMNUs zIJ@CX#{D$G>&>AiW$XZl;j0Xnj9$;`{Zk4IDQANwFnX1nNC)rHNB()jdj)w|p%DyT zXvB}*ofZF@k>2aEy9KIY>~hsGbT<|Isr}YFzk8T7!Q9AQ9QH>`%jSteCa8vy3t)wT zyV2wHw4h%m+5X#L(T9bszX9rD*h0N*)E?a4 zF05x?fBk2Otb_LMr5&?03dBR$k*^VDH`*=V`uNiSBQgFuym7st4y}# z`qqHicdAt=+8>$`u9+%}lcF)4Zg1{!s8~OM!t#v*R8*Vd{;=eZiq8YN_`j%ThQ_(T zS=DjTG0>6AzTV#0_SiPw7GT|NZD)CH`NmSje8?PQ)|q}W5%xMef^`{p8Y7I1VY#6( ztjy1X_4w<$(Yiq90MiZf2d~vO*SrCh|0{n{MPb)=uuDw#2hUIoR(HF{_a78j)xTWn z;Bw{b$M%J_>;f#TzE*hcxV3^5dQt4GYf)4A)^1GxEZL48UIeys2YZNF*#sgliH^5zno@i=*vJ*4q2S83P#UH2D=z04fdi|2`7^IL)r?H48odpZlak ze!=U^?+{0!X1)Z<(?RZM`cel-xp|8sx0_YwT2hf$@YL>%65QTTs5o6^zs1-CO_=WrnNKPvA8`RsD@uW=#!&u2dr z;w#+SK#sr8H{SB@JlW%MZSIW0CB-Bn!WO!=BrTwQ-P|5QB)xCXdT%ccpa)jEK#set zzeIBVLWlc7!n;j>T|H*3Pj-efP0IbS0W-BgDjNQZTd=@yvn?rZ;};I*$bAQo zkc|Q15i~DLk)tU+|1B`FB-!>@TcUN#05PKoy|I;EMt8hho}z<${zdSpP-pjSoaJM*+iyTjr$(9c2G;_Hc9!Y@)2ogg!w>PQkte=RGVqqdH$S0*>vS^dn6 zdFy@2j#hpf>-)~ZM`$2!;}nh)tf9xNxeR-jwH?QT;t<$vL&VMoocmS zi1}V{yC-h?U5`(2g^tyzTyQot%XdLoL(lTcq%#`$I-FROyeYSJJ=xcI?VG>CHp zrjd-ct%^c=PydIWwPQBZoG>wvEKiu(2wyiv6Pe$LjG=Qzg)}9*YS%u#`~_t85%M34 z#%P8_nmZIzwnRJl=MV?1%t+QR#WC$AW`yB2+2t1P>{4wm*>MYvau|<^)BFUtg%ml_kVFqY z5mhUne>I97(7o-jkL;S_f2@9qcrkSs%`rz$x?{=*n#s2-KEoRmHr$!=rH)EmdHk{$W;FV!|!AUils zQByhx=eSiFC4>fB)Uz(T^jV z%gUD}bm3QiCEr0|T*1u$SVr}CZI-ZP%b1k|F1T$KzZeHbKDiaTcA1!_;!K6-hR2z1Yp)LH;wEqMDwyrzr#Iz{Mm?(Okm5 zY@UL%AUs7UD>)W*u}C$({QUV4x9aE%Mv=)&dgQ-2EayV2K+ z9Cf`k%~(B+Y@70N*|WtaF^iq_t3h8V^hLrY@l$__EZ>Z-UgXIA{dc3^o5=P*D-V1Y zKauQMaQ4FU4v;yndh?WJ&7P3`ubuCjmePx#3EJqw<@C$uDY(fE7Zv1ZNm`w<4c`6U zgzR|dxSH{)s_gr4_@PJnTh4{#tlN-BCrfQ1IAo)_M1R>lMdtL$$3Twtt@+cFv=3yj z=MuMX$5s+kk<+im{`!O5=G|;b&JXa*<+1J`YJ-daS$ivubCI)}vx3-wq z<$k$lc~a=l51U)g-kiC9>H2=+w%da~Pk05_!{Rz-RH^KiNO=Py&2YeF`5|xjr=-Xn z?>pM>9%Pyj(rab@_vcHcol9o>43uTyRvGi=Yx=QXA5yUG{HL`^-b{tmz~_p^X9&*r z88S%*eyQo1NZsoAaV@+f}qdx*r(@Aq;O@Ad!d6N zr5AOcmdXziU7UZ2>?{Z$gs|v%Ggg<{m=xSs;@0NhhJCG#&c(9(Bt-6wTY1d;)0n_Y z!KA=Q(yc`9KQawub)KeA%N$Ky{69u((>QNBlb!RO!<_A$6`XF4H;%K84UTUdy&a7l zg&hX_U3;p1k$sfCqrHmV%l3yY-S(SphOMuyiLI#3WPJel1T3+RwRW;rxB5W7z>Aix zmhT}8KnqK-#R~TZ9x*RBk26P^i8-I?Z_^dicGDbFf~mEsw8_CfV~?||*-30HTZauW zeu4}DyN&aVLyT>V<&3!vFAXORzZ#|(dKl^(3K$suJ^e}jHvJ;~6n(tDqrR@bq~2Sv z)jiRr>ymZLb>HfS=(^|{>B{PSb$aGGbCKD{tYT&|!{I){rc6b~4|XTK)?U>ffISLx zw4=4%wXL*OwL$Rs{GZ1d)~wYsZoZ`r#;~#_%a$n}JS;XU-eWXYmogb6vQ&@4>XJHR z=geyNkx*?0CBeonnYA7x5M07wjLlL#9IJ~PjlHu}55wwWjInQ)>Y-R&RBs%RrFsZf z7tt99W~m;G)rIxOp;@X2VRa#caa5M-fmmITHIC0xoq*LrI^(3wYWH}k<{mQ8I61S{ zV*r8!7~|9|)p1zuZ!~_FrMf>>`{|6cvsCxP>il}+k6EhwVs$>oI6q5uAFR&H8W(4& z?v2&HtZ`MA>Rwpwqcg6}Qr#1)U953)mg*i@?adgsW~uIu)m{eUt}NBvu-emTOvzFm zi`5=FviPdJ-!htv8E6FmfE=zS=tTr;NAxm`|tTyOaQ)YGEFxIRwncT`i zRhIKlu>%M8?AJZPKU8Q`ri0$FL>bW<5$z3zmCA@#h-hapa05$j#jhnGpg+sBHLOzv z__sh6ZHxwP5Xx2fH%CO6-mqO6(F_rxIs-Q}6?8O3L~Emg8>I?}CWvTdHgF?T0nr!{ zEm^}EWke%Hw9py2@v5MsAtIVHh6~Dw28d{;Gh9|i)JH^9qv579q8=ie7!3E65p@yK zSZ{cwjHrW%hI+$uWkhX6G++(f@K<=+T8OA`Fnmx(gdn1x*~lm(2qNkljI1KUuO=Y4 zAy&s|Rs{IhKozwOMu#$@IwET6jd_$2)esS4G3Hf7_*F$Wh%uicz`qKrsL2@plo6E? zQA2MGQbtrlM0LhkP#IAX5!H;w;>w5$h^T5XmR3fTM?@8!v79oZ93m>~j1`p;Wf4({ zF;-SaltDyAow1rSqBJ5Z=#4}fQ3?^|jmCP)h?0mXr!zKGMg$|GEMsh}j3|MKG6rJ{ zWkhjA;1o*XyHE@fIGa*H6h#D1tmFv4B7opVx-iF*1N;l43Y=~!APOM@XI=`3f{4IL zm;#~zB5*#YfCxeaPR$e$fr!9angSvK5jbH}K=>m9=WYrJKSba(PLA-)4+ySHg&Cb3 z;GYjw;N(sLkrxp-&r?A7A_Av;3J4!W;OtKU;X(vX1Qih8h`>3a0>TRsI6YKAcp?I4 ziV6t0#*hmZ%HX6?0pX4aoIffc+z^3NNd-h6MBuDa0g)RKIKfmv}nOk5QJCIkp`SUJF- zMH@JsRX`XKfiqhLgaHva$(1Ag^yr2#-<1RWb*KWTz6uBi5jYE0Kxh$x6Jj}ni~q-J zb7`E9oM)UnoWD3HJL8<~ogvO5&RmZ7j@yo-j*X6ajzmXKM=M8FN1(%Ee`CLD-w*i! zXW56_qwS6DW$iw8#`eT^4zdC+u}!lj*gD$k*h<-~)`!3g{9+wxZEvk$&24#ZNwX}s zBw8XZRV`lT-_57ZznUk(xdLL&Yx-ciVA^DwVd`yaU})oUZORsbn+9$h zlYtW$Y;0{TX|xy~7!DW~8Acj97%K3Y0gvfd=*Q{1=xgYGbnk!(*r=PX>j^ACX`L7I ziFv@BWVSF1;8ucOOe>}`Z~#W_3++Yi9_=#iG;O@LgEmB41Udl!JQByih3znYe3^ne zZW={NfW*40?b=-7J^mYgc_^0sH<?6}T}v zZZ0OaNT7l|I$fcxf_N&(t#$LR83QcQI1^$5<5~%6NWjbq9>eU8tWL9_%*Qu zb*B+?QBjS5VtWc{$Xrr{1SGbjmKre36-A7HVq2=FKEv@qN)O(Ks;Q@Al!N7f#4w7f zqhs!<=n18m+6;471=E^hYB9`xMT~!9E5LBS(o6`$kx_D&{S#YKNKNLUA|xQO1+`R_ zVIHesno~>_hIy)jX+|-X8AdtC4@hiEF_jpGBg*712P8J3mC@)Iuuhvr_(87{1a;fhJW{7KIem85AJ_i6PWdA)St60_EQLClabg z_@P&V)T9vMH(w43NUT9E;m^MkraHyoOh5@!jbd<8poFPPF*rX^!c?IcoGK_`DpL&3 z8sr%N#7cnSKL=p~p#-T&A;Mfj4hcxCKrP|4LJ3ozVsM6`gegZcIN4Cbl%*J)cPL@X zPz+8%lrW_!24^F3jDKP&!0^2zOibjEfW(qi4bD-NFu@dq(-kF535vm)iyY&hSe&{e zOk(7afW%@{4bEqjFhwZ_r#5m-?nIzoxLJ-be5r7*IN1PJEFM7weHQ@kJI~tVf!}7rAe-9?213WW2?C zjuPQ!_Q-RK^~i+yBD*ctBmd!xoVHkxtcNc$* zk8Fl7GSp%{au~kION;f$T=*gzE!HDn;fox!SdT1)FEYIqOVg3INdx~Ad zPGqCmnyioUo$;J;y>Y6so3XYrzu_;#MZ+e;w}xJ@`X8wOSAP}O{%7g?=^N_{=^5Qk z-7ei+UA(Tju9(iqWWZYgPs|V|lqtnnwGUy9f01^Cww<<|HXl5m+F#!O&?~H)o6DaZ z&b@MHl+Vbh?y==cmX7J)qksHB_kJKXfz&T+ZD3!njh9;hT=Y>mdNBO!+rQty9?&ZD zeHqvXF;;T0dq%58Q|c>VdLza{PIbJ$7yc<=dLhP4j`0`QtX07DM2v}?I`hMpg3rwg zm>!5>$sx;x+KXGRQowXa3>@g(Ua4&4t*%m z`FjOSSH!^evHJ>6d((cO0wxAA3^};GXyewim&-8$(X83beHJ7wKL4eMp$+7az$n(t zupVv!>|K%}+^Ed$>iGQQ>OwIYq09y;Mhzft7Uu zbBkWtEyut*yMVb#Qn_I{Vy+wmtL_5khPobDf)_B?$#H%+Q&qVhSdSMl*9cy2E62d% zynwk%&TR7Ju6>nbV5wffTp=mK_f3w0b$bDGnWR|*x|WzQQ;vZ}d;xQbj(Ir-R`dnT zML09NAld!?9XSTp^##lYda0Ql11tLi=DfPku(mH?(#ft`%Y5LUTo0`73z&1{=;jqA z9#2!~=N1%mmZS+6p~>|$r`)uewJGMH z`dF<+F$V}-UCv#@D7O_tG5giOgRlWW7-OmAY&HJNEY|~D00c}5Iq|T{se}a&WEdaV z1;CiN_u)R7ED+ZJh4y>Nd9`PT9RLDm57{c*AurbhdjJGXGC6Z;c7^-)VR8&?0}wE~ z$>F)&-w$#OYy=Q6yU2lZ{GS{HTLA>jPJ)+q$uY1QK)~#vmv6~2upL0aY^N89$}zAZ zK)`HM#rVLM0HJ@k%G<+c0HOUBdSRg)1KR-v%x1D(xX4tFfeiryW|R7Rs}#ljMsF~Y z>nTYw8_8Xj{`Cn43_o5r$lI5o?boY*AAO1g22yVauGjytNI@ZA+dm2pgv|HJQgrNsn2^LR2DGv)%8HwEMVrTj@>{A zp#{v3>UtoY7BD}kK9>)K)GKX@}+v`{%n*1(Y`zdqcnyP)Z0`G6NESF8YQ*Cjf4i6ehSb1Q&;Mh+uLo&%5z^ z7Rz;T5jlq_L0{@J9b9nEA&Qg35BG&m>4)J|7C*Q!okJ9(KbSHdT)@sDijpIbNB;o- zWC$*F=MY86p?|L3o_pw?48aBQ9HKBe(V1EL%g0C=f(z$4L?M#)L|4GCXH^-33+y>W zK{|z!A-E8qLlhuKDkQXne=-CY>~n}9l9ns)vdxChG6Wa)bBI84XmaPxaq*XA2#x^Y z5CP<<@RKY(~SBTH9^g5!-s(H@1PcP+M7BZtE-SY3nxY z&#>O#(OTPD)M~Q4w4Ac6vrM=2wlubsvE(wpG@mlBGfy}7Ha9jGHJeN?O{YxjOw(c2 zzp<&P$;3Wn53|eJ@oWrRn+;$!##_d{#-EKNjUA0ujV{A`!zIHu!yLmvL#UxFto*;y zpVqI}f1~fCZ=x@*x9A@0j_OwGChB70R=^+~!`xv~m}SgZCIVLd-LNO7PJUR26#z0Sh5{hC4 zu~KS<0x(u}u~J@z0x(c@u~Jfn0x(K-u~J5b0x(2%u~IsP0x&*xu~IID0x&pru~H(1 z0x&Xlu~HU=0x&Ffu~G_!0x%|Zu~Pno0x%$Tu~PDc0x%kNu~O!Q0=Q5Vs5uuarA;UR z<53qY-+Yx>zaQK>-+Vx>zaKK>-+S zx>zaEK>-+Px>za8K>-+Mx>za2ApkrRF~)SUl;5B&F~D@OQgVX=xag99ekrp-0bGd5 z1EjPD1z?=%Vx^o01z?crVx@$J0PsxYB1~X2Tr6cXXiE$$U96PKpe?zW5_k-k$YW3e z7fA9dDTzT-jc3IHizK>-jb3IHitK>-ja3IHinApkrRAxsp!r!)m^3DKd@Qp!=#mJl2Y zEh#}k1rQSo0?JNMl@JOFDy7r}1wbSy0HnMG1wbGu0HmY@1wb4q0Hllr1wa@m0HkyT z1wa%i0Hj<51ware0Hj0&1wafa0HiF00PswN5K!nKNZULo(Q7YjTP&x>u5>5f715qmB6HuCfQVExU(s-0gcm$LVK&ga7KxrIG zCH#RP<>LRMHaCs)q4TtJyK|v)g0qh^)LGRT;50j4IW9T&I+i=8I}#in9d#VV9J%f9 z?YDpjSZ|+eA8n7dH?^0u`)1kwKgBk{*1;BHD*`HW{&IRCrw4L+Ag2d%dLX9L2FR1`!N;gLkKK_G1)oI@1r18BW)_)x6(r}e^#L$ThE)(giBvEDN&Kh*P2 zfM*NE2Ki_M;Xt9-ATMozrwB!XFBRa?K~dmC1$bUiG~uEqghPU2y*I5FP6mpKyr?2P z4k$M8qz!~KfMNp=+5iv!i2`>jz|(%Bz>Nyr}9LBl?w1Eo+z+T0iM4@fk%=V1pHG7 zhwj7%a6n%e9(dAD6tGl)$LmCakqYokohUF+0Uo3i1$rvL({rLgM+JCf4h0@b3!OZy_VJshvP&=8mb6S#G!zT|NCk_Xq?yK^#5!)``^&%?_?bJ9ETmN98(>AVC}z% zgR$SU@3sGEkGF@}OWI9v*8hZUg>9@Y+E&+A2=f1Bz&ZaFkpC|l^8e+B{C`(1$(Fg6 zI9T;B0K5M$n>U$f!|wlv=0LOFbknrMG|SY-RNv&!{>7eW*Rzvh?|*gH)A-7G%(%=r z+SuM$)@XxM{wap}u-4z)Pz3V+UDt2d&(!zU*VFsyKEN6Ob-GEqC|xz32lJ7+!R%pv zW=1iQObsTV_M`R&obCTvJ4zd=tpR)gKd8KL1CrnJ0XkS3wQX`Nf z`I5M!tQ>>Il%)Hbghg&D=Z>-R@?dhF+vQlN)8}&T3@a}$L5}d-AZvdv=MJ#)^5P_w z+kxBa+2?ZZ@G38tY(k*+xr3{`T(SXy%DF?Uyj-&RfXcZ8tGryY@qo&?!>YVovgv@z zxr3^_T(aSS%DGdjyj-%`fXcZOs=QpX(SXXi)2X~%vdMtTxs$29T(ZG{%DGdiyj-%m zK#+SRaVJta-jZ%C5bA@HYIE)2SOH^GKYI|A#2rNCQC6~1*ySoeeh`$zokitQ7IGvn zzX4DQ#hpgwQD$T?xgVP32K=;h@hx>)`lblu+F1R2~H> za)0ADI?GXkNpL=uKllM4VUxEU6qE!fR5?;SfPozew}lshZ2w(Q5*$)RR0i41TXa`I z!7)`t-JzRV6i{$b6;ZdzT9w_NK}m2_6;Ze7dqqJP99BitO_HK=>LMr!j;kW-21!-f zUmlbM2UZbvU3JHBP!gP3MbtIA#ZSR6IJJtXtExL5gOcFfDx$8a?)eW&f|IL=x=haU zUypbNi*R@qQI}ND)dVHM@l`}!BnSDoaioGSnA{@jLN8ktfgOXq(jHq*DlgbICpd^?UBkHW`8JnOam?R_WOg23MGiF4cCWo)}-FB_-b_MTY z{*0(o**qi6rV(|LEaCTsc302^b8AGMAnR35R0MG|ZA2ZXo8c66!L%Du$H=ia6O$Kj zD58LZNjRd?$Zsm=v4WCdMvkbX^lc*3<(mZ4b8c-cfMJiwq(MnAM@Jopv-$48j2%&j zvUxwi{2fsTRY#w15=`dNp92d1z?2?!?9XPL!~7mmsoD4glYK;`sQMF>1T%j`?aQVI zAPhj%Ue%r1K}ir4AZkxG79m7HRI;k~zDW=-U_b4a^^o zn*?D5>X4s~3QB@l0(ERxJppmeiL z8k7W42U^&q`o8u}f)E6C{3g@kn*?zPN;fJqJiSeS2pJn~xn>av}%1;pbCdP@<`3i0Oi_&=t(te`!M+IqLQ7S)y zRxq&-NV($~4D63Mu-!PUT3in?Ow8FK&9v?PZpPlvy!7DMk`j zX2tZN7)fZE71Nz!B;jQyhKv8(8H#f8|97m*1&(WI*n}6^`+aXh%aw zA&1`n#C`_W{ig#9(B59tUI148AK6aX*4k#-;%seg|nifDNfcB<}CU?jLa0b|b>1;2y zAzKKt{$&_bjEjt;VE2C&qnF_iL%QKN!wf@TLlbZ}=P#!Ra(W=A2ma6XfZsR>LOEW- zCFg_$*2r%h1fT*!#s^UZ1fK#z#syIX1fBvy#sg6V1f2px#sN_T1e^jw#{W$Fs5|L zIUb6@coGm&eupA3mIQ>9+o1@IBLN}hbtr<1A-TQF44gdK|5=nz5g11TLdxe*1jdkn zka9T`f$<|Cq&yBqaIvG{hm^yi2#g;=hm^me2#g&8A?0o;0^>$NNO>EIz?cybQqG1V zFkS?Nl&_%(j1>VP!NrM! z4k<4~5g03i4k;%?5nP-o=#cU;6oIiK=#X+T6v4%bf(|JULlIo8C?KR93`JnP2v(&0 z3q^3TqM$>{y-)-fFA4}L?;;?)#$n6|Rw(B}+j8-u&{oQ~Pz1(|&{oQ|AR-ClML=nf^64-q7ONf6VaCsHniA|Rqegp>!N+PjI` zDF;F&v7&_XA5?2sQLB{upoka|A>}=&_GnQ%}!! z{Z68N%5l)Pkz!jZzd_qZh;1piLECl|+e+BRHlOF0cH=^#odpFt(FXfaq~EVV3t z`U(2G`c(ZQlin0#s%7$H$Fg_Wz3flMf7nR2D(ht&YP@3HX8hjp7H;Y*Yjhgo3}+4N z4bz+kXN3k^91uM*^pMQQosr|0BtxQ7g$EYLFezZCQ?MJ~ofPen{Qu|$KTbYE~@2rkM`<>JgXg?B; zUcz_Ctkp^FN6@x13ANu*9f9`4)e&gFgK3ebH)lVe)P8%~RwkkL+o>bae%sFwaQu{e zRK_edrI`&UbGbK(TtsbYzE_8!G0iM>2tKW5CiTH2^Wi(%S|$>Gn4u1#K76YVp+0;= zePCriOsB17BGHFw>JaL~RCNgTVG8xZDDz=5Z7matK1@=FP#-3$L#PiEs1F92594WT znMm|uoH~U1kfaWwK5$2(`7x=N`7oA_U73jbFh(7LE{s-3pa-Mq_uo_MKy~;D<$r%= z5^BF1)h-{qnS}OhWCKQ%9iv zvg!!54_BB8?_Wl0zcg(tlTiDm)DdXEq&foa2UGiQQu`%nTbYE~FRqS2`^D4|Xul}6 zpGRuH2yH8qQ2T||5oo`VIs)w%r1o=5?H8bJWfE#XNF9Op1Jw~|AAWR%&p(&czCUd% zlTiD9>Ik%-Umbz=^HKXwsr|gPtxQ7g`>G?*zK=Qr?YpRbht$3|Z7Y*d`(Ek@wC|~o zK>HrlzFlhHowk)psC`JQ$DK)Q$ zR4X80WddqlrwTyh4CG|tG{~l#A!yqIzpyn;)iutW&SWwFf1p$2xamlCEOCr=baGUO zTmLlnoAzY;68l(tCwq0s{-?3sv?arBe`9T(Y}IXnxbnXQ&H!|RGXQ~BjpZhs0a#)g zYw2XEZV9w#%s0)+<|XE_=1%77a1KBN=KzvT)lKtFLrrakI63Ekb9x}B2XcBKrw4L+ zAg2fZ-_Qee+Eh?FZy8CaJTeKLxQtLo;LK&XIs&II!zki^mYk} z6>)Lkf0mr5_GMPY#ex4>a-Q0kSrHcp{%6T~YF}nWTpakHCFiMqnH6zy;QtIcFS8;p z4*YK;$FnZI(Ez0leSVo0k(|#fegDw6Oep<^$`SaMX|0aHw@fQ)U#26Bw)IuB-$EUM z_M59C(0(&&UuLBxZR?|Ezlk~m?Kf6Op#4VFzRXHf+Sa9Jzkxae?blaFp#6H(zRXHP z+SXgmejRlL+OMsSK>M|*eVLWIw5^w#eWH#)`!&@OXuk%vFSkP5%BgQ$oc;=OoZJ6D zRIArGZ#nlme|C;{MvJ@uQydHV-Txtu{IL5!!>|*1%syM#$vAZ+7GrRe8+{9Vm z^n*ZYGHu*6zDXgQQfMH!N&1ndZ9eLCH?i|!qr|CHS_u}dBB820@PKHg?h6uvpi1ym zA)wkPKuEMNeLxfmu!ICsrAif2!~-8^#`j$N#e#AGXRIRL9Gun0Nb@z&Gnc3 zp+E5Ze#dY7EjR~Y$s58Hz`ob<+Fr|Zt4q~kbpU7ocdG4bOTGJlQ0Z4Xm3F07am!0^ z9>Ad7FL%oAa;xmROYYDexP7#0^0JD~KW9{6e%GkL{1;U|yTywcVN_uL(?$j6Kc({7BZhcVd09p0KVej0{&AxM^N*=~_J|>1;zM%n zU=^JYGan2J%!i>51_kEB)Q9By!yYjNjC)ADtfKQ_-h)Ab`7rRopul{X_>knYM+^a@ z9uhCB=zN&C(SL%^7a#LFr={}H1C^A8ynnBP|U>=8p8R9;rm z`7q-lA><0ohanFJ1?Iz)hvesH4>AJAJ0xCK(fRw03e1;A1?Eqxe74Ik_9-u`==_I_ z3e4YYRABytDxdB0iwWgr6`jAwsKEROj0()ZU*+5E`U@i+lJ#d5oewh|3<}JLp$-NG z=EGD6Q20LElFxSe1&nk^ysV=0VWxvYf%!1h z!Jxo=nCg(^vt51x;~Ww%tLS|7{+<$7V7_V-)=*$R>>?)lY?oia_F4>Qnkbtn7`aWt);+x*nds(*)G4>qVicq=Z_c_ zn7`Sm!2C@rpY7p`jmpa^I)8&vf%)r=3d~=p^4TuGfKd<0`m>78hglB>1?I!B2ZI9h zVd_J&{%n_Dz_^FR%PKk_<~|q{m=6OW3<}JL2@pv>+rt+y`XTYMiq41G4+aJ1!|(@# zLgjCP=@0S#Kii}qhp7+o?tSUj>oTT~+a`euAGb^bl^ys0W5LDc{r@+c-)x>~KHS{e z_;2G+jh{EZ*LbCIvaz?ZA-oxW5dJLuPIxsu7VZjb!N+g{;E#jrU@Tt63KT0)tU$2> z#R?QFP^>_)0>ugxD^RQeUxCpc_PMOl5j|{lSqWPm(Zf!cOR&@GVXMm}*y{DL*JYn@ z6FqEpS!smON_uuYs z-Phey?oQ_;=NHa(=ZLe_{+oTne%XH1_N_lyKd@%4eU=SC`CjsH-J0?(dxr-v=kWAP zbMxoL;%ryUEW9**Wo~-0D;Ca)x%tKJmG0HWmh+F5-}b~~b?XpX?W5NgXBIAZuYy+0 zgEam=%O@oeQ}m^}e*jH~E?p7}%RaF%Gjr|AmG1mZ_bM^SFXjPs2;igH0EsF3LOLKZ z$Vc)3ZYO|;vH=oP)J_K^26-?K;1~h?d^SL0iawVPNDT7fJb>E>;DKy_#1!pM2P6h5 z^8juofRot(i7DEb4oD30p*(gwG00tc07nSmec1qsNq$xV+P3W)F4V+ey=VQ?dav~Mh1cZ0c~CbK z)X!u?C8p@p>1#<0a%UdEO$6{$*#Ls?XIv_E~(L8|b2;i1% zfW#DyqyrLz+?)rnNdPxx10*K7Q32lOibxFBpX0C6TQ_&h4S7%-1a*BjRAP$OrLQG1 z$YvhEkN`Ha0TNRbrUMd#4DtX51hAeBkeK$?6d;VSa}2jXVwjqm8ryVK`gt(x1k=lg zNlZ~SeI1EGR`LMW2w*uIATdR5Iv_DjIx(Q1u_0Z}x5tk8l=C+I=xWcT72|>DHh


    L81ybinm+ry8-cfwc0BjHH!VQ?e37VHoF`Umwl z>Sycs);_MiTl;qH@!EF(@BZ8VtNvqt;C<-*(7WjE_sa0?idV4$#R?QFP^>_)0>uja zUsgaaF~}G40J;S5Y&Jk*nmnTb z;lbS0e-T6JNAcIhfj8voJf!y!(o@+;i79$MeJP1SK9>jZZUXphHb7#EPNoAAgM20r z;9UgpL^eQTik?mfBnJ6Z9>6;Z;FH+^i79#_9grC0@jQS#2;i}7fW#CXO$Q_f`FI{c iK>(++0TNU6)pS5&kVoPrediction Module