-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_uno.py
executable file
·216 lines (174 loc) · 9.69 KB
/
train_uno.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
from utils.util import seed_torch
from utils.logging import Logger
import os
import sys
import copy
import wandb
import math
from utils.sinkhorn_knopp import SinkhornKnopp
from models.build_uno import build_uno
from data.build_dataset import build_data
from data.config_dataset import set_dataset_config
from methods.uno import UNO
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='cluster', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Hyper-parameters Setting
parser.add_argument('--epochs_pretrain', default=200, type=int)
parser.add_argument('--epochs_ncd', default=200, type=int)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-5)
# UNO knobs
parser.add_argument("--softmax_temp", default=0.1, type=float, help="softmax temperature")
parser.add_argument("--num_iters_sk", default=3, type=int, help="number of iters for Sinkhorn")
parser.add_argument("--epsilon_sk", default=0.05, type=float, help="epsilon for the Sinkhorn")
parser.add_argument('--alpha', default=0.75, type=float)
# Dataset Setting
parser.add_argument('--dataset_name', type=str, default='cifar100', choices=['cifar10', 'cifar100', 'tinyimagenet',
'cub200', 'herb19', 'scars',
'aircraft'])
parser.add_argument('--num_steps', default=2, type=int)
# parser.add_argument('--dataset_root', type=str, default='./data/datasets/CIFAR/')
# parser.add_argument('--num_classes', default=100, type=int)
# parser.add_argument('--num_base', default=80, type=int)
# parser.add_argument('--num_novel', default=20, type=int)
parser.add_argument('--aug_type', type=str, default='vit_uno', choices=['vit_frost', 'vit_uno', 'resnet',
'vit_uno_clip'])
parser.add_argument('--base_aug', type=str, default='once', choices=['plain', 'once', 'supervised'])
parser.add_argument('--num_workers', default=8, type=int)
# Model Config
parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval'])
parser.add_argument('--model_name', type=str, default='vit_dino', choices=['resnet18_plain', 'resnet18_imagenet1k',
'vit_plain', 'vit_dino',
'resnet50_plain', 'resnet50_dino'])
parser.add_argument('--grad_from_block', type=int, default=11) # 12->do not fine tune backbone at all
parser.add_argument('--num_mlp_layers', type=int, default=1) # 12->do not fine tune backbone at all
parser.add_argument('--dino_pretrain_path', type=str,
default='./models/dino_weights/dino_vitbase16_pretrain.pth')
parser.add_argument('--model_head', type=str, default='LinearHead', choices=['LinearHead', 'DINOHead'])
parser.add_argument('--lock_ncd_stage', type=str, default='unlock', choices=['unlock', 'lock'])
# Experimental Setting
parser.add_argument('--seed', default=10, type=int)
parser.add_argument('--exp_root', type=str, default='./outputs_uno_study/')
parser.add_argument('--wandb_mode', type=str, default='online', choices=['online', 'offline', 'disabled'])
parser.add_argument('--wandb_entity', type=str, default='oatmealliu')
# ----------------------
# Initial Configurations
# ----------------------
args = parser.parse_args()
# init. dataset config.
args = set_dataset_config(args, setting='ncd')
# init. config.
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = torch.device("cuda" if args.cuda else "cpu")
args.device_count = torch.cuda.device_count()
seed_torch(args.seed)
# init. experimental output path
runner_name = os.path.basename(__file__).split(".")[0]
# Experimental Dir.
model_dir = os.path.join(args.exp_root, f"{runner_name}_{args.dataset_name}-{args.num_classes}({args.num_base}-{args.num_novel})_{args.model_name}_base_aug={args.base_aug}")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# path to save single head
args.save_backbone_path = model_dir + f"/backbone_{args.dataset_name}-{args.num_base}-{args.num_novel}_{args.model_name}.pth"
args.save_head_base_path = model_dir + f"/headBase_{args.dataset_name}-{args.num_base}-{args.num_novel}_{args.model_name}.pth"
args.save_head_novel_path = model_dir + f"/headNovel_{args.dataset_name}-{args.num_base}-{args.num_novel}_{args.model_name}.pth"
args.save_head_joint_path = model_dir + f"/headJoint_{args.dataset_name}-{args.num_base}-{args.num_novel}_{args.model_name}.pth"
args.log_dir = model_dir + f'/{args.dataset_name}-{args.num_base}-{args.num_novel}_{args.model_name}_base_aug={args.base_aug}_log.txt'
sys.stdout = Logger(args.log_dir)
print('log_dir=', args.log_dir)
# WandB setting
if args.mode == 'train':
wandb_run_name = f'UNO-Study_{args.dataset_name}-base_aug={args.base_aug}-lock_ncd_stage-{args.lock_ncd_stage}-{args.num_classes}({args.num_base}-{args.num_novel})_{args.model_name}_base_aug={args.base_aug}'
wandb.init(project='UNO_study',
entity=args.wandb_entity,
tags=[args.model_name, args.dataset_name, f'num_classes={args.num_classes}',
f'num_base={args.num_base}', f'num_novel={args.num_novel}', f'base_aug={args.base_aug}',
f'lock_ncd_stage={args.lock_ncd_stage}'],
name=wandb_run_name,
mode=args.wandb_mode)
# ----------------------
# Experimental Setting Initialization
# ----------------------
# Parameters
if args.model_name in ['vit_plain', 'vit_dino']:
args.image_size = 224
else:
args.image_size = 64
args.interpolation = 3
args.crop_pct = 0.875
args.pretrain_path = args.dino_pretrain_path
args.feat_dim = 768
args.mlp_out_dim = args.num_classes
# ----------------------
# Dataloaders Creation for this iNCD step
# ----------------------
data_factory = build_data(args)
# labeled train loader
lb_train_loader = data_factory.get_dataloader(split='train', aug=args.base_aug, shuffle=True,
target_list=range(args.num_base))
# unlabeled train loader
ulb_train_loader = data_factory.get_dataloader(split='train', aug='twice', shuffle=True,
target_list=range(args.num_base, args.num_classes))
val_split = args.val_split
test_split = args.test_split
# labeled val loader
val_loader_base = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(args.num_base))
# unlabeled val loader
val_loader_novel = data_factory.get_dataloader(split=val_split, aug=None, shuffle=False,
target_list=range(args.num_base, args.num_classes))
# labeled test loaders
test_loader_base = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(args.num_base))
# unlabeled test loaders
test_loader_novel = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
target_list=range(args.num_base, args.num_classes))
# # all test loaders
# test_loader_all = data_factory.get_dataloader(split=test_split, aug=None, shuffle=False,
# target_list=range(args.num_classes))
# ----------------------
# Create backbone and classifier
# ----------------------
model, head_base, head_novel, head_joint = build_uno(args)
print(args)
print("------> Backbone model:")
print(model)
print("------> Head_base:")
print(head_base)
print("------> Head_novel:")
print(head_novel)
print("------> Head_joint:")
print(head_joint)
if args.mode == 'train':
# Create Feature Replayer model
sinkhorn = SinkhornKnopp(args)
method = UNO(model=model, head_base=head_base, head_novel=head_novel, head_joint=head_joint,
sinkhorn=sinkhorn,
lb_train_loader=lb_train_loader, ulb_train_loader=ulb_train_loader,
val_loader_base=val_loader_base, val_loader_novel=val_loader_novel,
test_loader_base=test_loader_base, test_loader_novel=test_loader_novel)
# Training
# |- supervised pre-training
method.train_pretrain(args)
method.test_pretrain(args)
method.save_backbone(path=args.save_backbone_path)
method.save_head_base(path=args.save_head_base_path)
# |- novel class discovery (joint)
method.train_ncd(args)
method.test_ncd(args)
method.save_backbone(path=args.save_backbone_path)
method.save_head_base(path=args.save_head_base_path)
method.save_head_novel(path=args.save_head_novel_path)
method.save_head_joint(path=args.save_head_joint_path)
elif args.mode == 'eval':
raise NotImplementedError
else:
raise NotImplementedError