diff --git a/analysis/private/_procedureAnalysis.R b/analysis/private/_procedureAnalysis.R index a7b2647..74133ef 100644 --- a/analysis/private/_procedureAnalysis.R +++ b/analysis/private/_procedureAnalysis.R @@ -94,6 +94,52 @@ getWindowPrevalence <- function(tb, timeA, timeB) { } +getTteRes <- function(tb, outcomeCohortId) { + + ##CORRECTION needs to be time to event happening + tab2 <- tb %>% + dplyr::filter(cohortDefinitionId == outcomeCohortId) %>% + dplyr::mutate( + event = ifelse(is.na(cohortDefinitionId), 0, 1), + duration = dplyr::case_when( + event == 0 ~ as.integer(cohortEndDate - cohortStartDate) / 365.25, + event == 1 ~ as.integer(eventDate - cohortStartDate) / 365.25 + ) + ) %>% + dplyr::select(duration, event) + + + if (nrow(tab2) > 0) { + # get surv fit object + survFit <- ggsurvfit::survfit2( + survival::Surv(duration, event) ~ 1, data = tab2 + ) + # retrieve tidy survfit + survDat <- ggsurvfit::tidy_survfit(survFit) %>% + dplyr::select(time, `n.risk`, `n.event`, estimate, std.error) %>% + dplyr::filter( + time <= 3 # only take first 3 years of data + ) %>% + dplyr::mutate( + outcomeCohortId = !!outcomeCohortId + ) + } else { + # if no data return an all zero row + survDat <- tibble::tibble( + time = 0, + n.risk = 0, + n.event = 0, + estimate = 0, + std.error = 0, + outcomeCohortId = outcomeCohortId + ) + } + + return(survDat) + +} + + executeProcedureAnalysis <- function(con, executionSettings, analysisSettings) { @@ -191,21 +237,10 @@ executeProcedureAnalysis <- function(con, bullet = "checkbox_on", bullet_col = "green") # subset table for survival analysis - tab2 <- tb %>% - dplyr::filter(!is.na(cohortDefinitionId)) %>% - dplyr::mutate( - event = 1, - duration = as.integer(eventDate - cohortStartDate) / 365.25 - ) %>% - dplyr::select(cohortDefinitionId, duration, event) - - # get surv fit object - survFit <- ggsurvfit::survfit2( - survival::Surv(duration, event) ~ cohortDefinitionId, data = tab2 + survDat <- purrr::map_dfr( + procedureCohortIds, + ~getTteRes(tb, outcomeCohortId = .x) ) - # retrieve tidy survfit - survDat <- ggsurvfit::tidy_survfit(survFit) %>% - dplyr::select(time, `n.risk`, `n.event`, estimate:strata) fileNm2 <- glue::glue("procedure_survival_{idx}")