This repository was archived by the owner on Mar 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_fr_only.py
266 lines (225 loc) · 8.13 KB
/
train_fr_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""Main training module for the Joint Learning Super Resolution Face\
Recognition.
"""
import logging
from functools import partial
from pathlib import Path
from typing import Dict
import tensorflow as tf
from skopt import gp_minimize
from skopt.space import Integer, Real
from skopt.utils import use_named_args
from tensorboard.plugins.hparams import api as hp
from utils.timing import TimingLogger
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print("set_memory_growth ok!")
except RuntimeError as e:
print("set_memory_growth failed!")
print(str(e))
from tensorflow.keras.mixed_precision import experimental as mixed_precision
from tensorflow_addons.optimizers import AdamW
from base_training import BaseTraining
from models.discriminator import DiscriminatorNetwork
from models.srfr_fr_only import SrfrFrOnly
from repositories.lfw import LFW
from services.losses import Loss
from use_cases.train.train_model_fr_only import TrainModelFrOnlyUseCase
from utils.input_data import parseConfigsFile
AUTOTUNE = tf.data.experimental.AUTOTUNE
class TrainingFrOnly(BaseTraining):
_CACHE_PATH = Path.cwd().joinpath("temp")
def __init__(self):
logging.basicConfig(
filename="train_logs.txt",
level=logging.DEBUG,
)
logger = logging.getLogger(__name__)
strategy = tf.distribute.MirroredStrategy()
timing = TimingLogger()
super().__init__(logger, strategy, timing)
def train(self):
"""Main training function."""
self.timing.start()
dimensions = self._create_dimensions()
hyperparameters = self._create_hyprparameters_domain()
with tf.summary.create_file_writer(
str(Path.cwd().joinpath("output", "logs", "hparam_tuning"))
).as_default():
hp.hparams_config(
hparams=hyperparameters,
metrics=[hp.Metric("accuracy", display_name="Accuracy")],
)
(
network_settings,
train_settings,
preprocess_settings,
) = parseConfigsFile(["network", "train", "preprocess"])
BATCH_SIZE = train_settings["batch_size"] * self.strategy.num_replicas_in_sync
(
synthetic_train,
synthetic_dataset_len,
synthetic_num_classes,
) = self._get_datasets(BATCH_SIZE)
validation_dataset = self._get_validation_dataset(BATCH_SIZE)
srfr_model = self._instantiate_models(
synthetic_num_classes, network_settings, preprocess_settings, train_settings
)
train_model_sr_only_use_case = TrainModelFrOnlyUseCase(
self.strategy,
TimingLogger(),
self.logger,
BATCH_SIZE,
synthetic_dataset_len,
)
_training = partial(
self._fitness_function,
train_model_use_case=train_model_sr_only_use_case,
srfr_model=srfr_model,
batch_size=BATCH_SIZE,
synthetic_train=synthetic_train,
validation_dataset=validation_dataset,
num_classes=synthetic_num_classes,
train_settings=train_settings,
hparams=hyperparameters,
)
_train = use_named_args(dimensions=dimensions)(_training)
initial_parameters = [0.0002, 0.9, 10_000, 0.0005]
search_result = gp_minimize(
func=_train,
dimensions=dimensions,
acq_func="EI",
n_calls=20,
x0=initial_parameters,
)
self.logger.info(f"Best hyperparameters: {search_result.x}")
def _fitness_function(
self,
learning_rate,
beta_1,
learning_rate_decay_steps,
weight_decay,
train_model_use_case: TrainModelFrOnlyUseCase,
srfr_model,
batch_size,
synthetic_train,
validation_dataset,
num_classes,
train_settings,
hparams,
):
(
HP_LEARNING_RATE,
HP_BETA_1,
HP_LEARNING_RATE_DECAY_STEPS,
HP_WEIGHT_DECAY,
) = hparams
tensorboard_params = {
HP_LEARNING_RATE: learning_rate,
HP_BETA_1: beta_1,
HP_LEARNING_RATE_DECAY_STEPS: learning_rate_decay_steps,
HP_WEIGHT_DECAY: weight_decay,
}
learning_rate = self._instantiate_learning_rate(
learning_rate, learning_rate_decay_steps
)
srfr_optimizer = self._instantiate_optimizers(
learning_rate, beta_1, weight_decay, train_settings
)
summary_writer = self._create_summary_writer()
loss = Loss(
None,
batch_size,
summary_writer,
scale=train_settings["scale"],
margin=train_settings["angular_margin"],
num_classes=num_classes,
)
train_model_use_case.summary_writer = summary_writer
return -train_model_use_case.execute(
srfr_model,
srfr_optimizer,
synthetic_train,
validation_dataset,
loss,
tensorboard_params,
)
def _get_validation_dataset(self, BATCH_SIZE: int):
lfw = LFW(resolution="hr")
left_pairs, right_pairs, is_same_list = lfw.get_dataset()
left_pairs = (
left_pairs.batch(BATCH_SIZE)
.cache(str(self._CACHE_PATH.joinpath("left_pairs")))
.prefetch(AUTOTUNE)
)
left_pairs = self.strategy.experimental_distribute_dataset(left_pairs)
right_pairs = (
right_pairs.batch(BATCH_SIZE)
.cache(str(self._CACHE_PATH.joinpath("right_pairs")))
.prefetch(AUTOTUNE)
)
right_pairs = self.strategy.experimental_distribute_dataset(right_pairs)
return left_pairs, right_pairs, is_same_list
def _instantiate_models(
self,
num_classes: int,
network_settings: Dict,
preprocess_settings: Dict,
train_settings: Dict,
):
self.logger.info(" -------- Creating Models --------")
with self.strategy.scope():
return SrfrFrOnly(
depth=50,
categories=network_settings["embedding_size"],
num_classes=num_classes,
scale=train_settings["scale"],
training=True,
input_shape=preprocess_settings["image_shape_low_resolution"],
)
def _instantiate_optimizers(
self, learning_rate, beta_1, weight_decay, train_settings
):
self.logger.info(" -------- Creating Optimizers --------")
with self.strategy.scope():
srfr_optimizer = AdamW(
learning_rate=learning_rate,
beta_1=beta_1,
beta_2=train_settings["beta_2"],
weight_decay=weight_decay,
name="adam_srfr",
)
return mixed_precision.LossScaleOptimizer(
srfr_optimizer,
loss_scale="dynamic",
)
@staticmethod
def _create_dimensions():
return [
Real(low=1.0e-4, high=7.0e-3, prior="log-uniform", name="learning_rate"),
Real(low=0.5, high=0.9, prior="log-uniform", name="beta_1"),
Integer(low=1_000, high=10_000, name="learning_rate_decay_steps"),
Real(low=1.0e-4, high=1.0e-3, prior="log-uniform", name="weight_decay"),
]
@staticmethod
def _create_hyprparameters_domain():
HP_LEARNING_RATE = hp.HParam(
"learning_rate",
hp.RealInterval(1.0e-4, 7.0e-3),
)
HP_BETA_1 = hp.HParam("beta_1", hp.RealInterval(0.5, 0.9))
HP_LEARNING_RATE_DECAY_STEPS = hp.HParam(
"learning_rate_decay_steps", hp.Discrete(range(1_000, 10_000 + 1))
)
HP_WEIGHT_DECAY = hp.HParam("weight_decay", hp.RealInterval(1.0e-4, 1.0e-3))
return [
HP_LEARNING_RATE,
HP_BETA_1,
HP_LEARNING_RATE_DECAY_STEPS,
HP_WEIGHT_DECAY,
]
if __name__ == "__main__":
TrainingFrOnly().train()