This project is an assignment made in the context of my Master studies
- Python
- Pytorch
- Numpy
- Matplolib
- Pandas
- Google colab
Fashion-MNIST dataset (source : https://github.com/zalandoresearch/fashion-mnist)
- 10 clothes' categories
- Training set : 55000 images
- Validation set : 5000
- Test set : 1000
- Data preprocessing
- Data augmentation
- Make the NN flexible to efficiently swipe hyper parameters
- Searching for the best Hyper-parameters
- Preprocess Wandb
- Run four times Wandb. At each run, re adjust Hyper-parameters according to last run results
- Evaluate the final model