-
Notifications
You must be signed in to change notification settings - Fork 57
/
TODO
162 lines (81 loc) · 2.75 KB
/
TODO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Add implementation details throughout, explaining how to translate stuff into code
-- maybe in the margins with the Tufte class?
https://en.wikipedia.org/wiki/Shallow_water_equations#/media/File:Characteristics_saint-venant.svg
new chapters:
-- self-gravity
-- radiation hydro
-- AMR
-- mapped grids
* general quadralateral grids
* moving grids
- 1-d moving grid showing
-- MHD
-- relativisitc
-- WENO
-- higher-order
o method of lines integration with RK3/4 and high-order reconstruction
-- implicit hydro
-- shallow water
-- cosmological flows
-- understanding simulations
* convergence tests
* sanity checks
* parameter studies vs. hero calculations
-- volume of fluid
sample of public codes
-- Athena
-- Castro
-- Enzo
-- Flash
-- Maestro
-- Pluto
-- Zeus
=======================
Chapter 2:
-- in "what is a simulation", add a discussion of DNS, LES, and ILES
-- add BC and difference on a grid examples perhaps through a ipython
notebook.
=======================
Chapter 4:
-- add a notebook showing FTCS and upwind on a simple FV grid
pyro exercises:
-- try out different limiters
=======================
Chapter 5:
-- exercise: notebook showing burgers' solution
=======================
Chapter 6/7:
-- add a figure for section 5.2.1, showing piecewise constant
reconstruction
-- add a discussion (interlude) motivating how limiters are derived
-- bulletted list on different Riemann solvers
-- derive the jump conditions and the entropy conditions for the
Riemann problem and show the function we zero.
-- implementation detail: for Riemann solvers, usually the godunov
velocity is set to 0 at symmetry boundaries
-- it is important to odd-reflect the gravitational acceleration
at reflecting boundaries
examples:
-- 1-d Riemann solver
-- 1-d Godunov
pyro...
=======================
Multigrid chapter:
examples:
-- 1-d relaxation
-- 1-d MG
=======================
Diffusion chapter:
examples:
-- 1-d diffusion solver
pyro
----
reference for the choice of epsilon in numerical derivatives as
\sqrt{machine epsilon} -- this gives some suggestions:
http://mathoverflow.net/questions/28463/optimum-small-number-for-numerical-differentiation
----
tcolorbox for exercises:
http://tex.stackexchange.com/questions/172475/how-can-i-define-a-custom-tcolorbox-environment-with-color-as-a-parameter
http://www.scriptscoop2.com/t/e6de0140d668/counters-for-chapter-and-section-environments-when-using-tcolorbox-for.html
http://tex.stackexchange.com/questions/254401/use-the-exercise-environment-from-legrand-book-template
http://www.latextemplates.com/template/the-legrand-orange-book