-
Notifications
You must be signed in to change notification settings - Fork 377
/
convert_ckpt.py
53 lines (42 loc) · 1.36 KB
/
convert_ckpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
from collections import OrderedDict
import argparse
from pathlib import Path
parser = argparse.ArgumentParser()
parser.add_argument(
"--ori", required=True, type=str,
help="Name of or path to LLaMAAdapter pretrained checkpoint",
)
parser.add_argument(
"--target", default=None,
help="target position for the ckpt",
)
args = parser.parse_args()
ori_ckpt_path = Path(args.ori)
target_ckpt_path = ori_ckpt_path.with_stem("converted_" + ori_ckpt_path.stem)
ckpt = torch.load(ori_ckpt_path, map_location='cpu')
replace_dict = {
'llma': 'llama'
}
renamed_ckpt = {}
for key, val in ckpt['model'].items():
for replace_key, replace_val in replace_dict.items():
key = key.replace(replace_key, replace_val)
renamed_ckpt[key] = val
new_ckpt = {}
discarded = []
for key, val in renamed_ckpt.items():
if key.startswith('image_bind.'):
discarded.append(key)
elif key.startswith("llama.") and "bias" not in key and "gate" not in key and "lora" not in key and "norm" not in key:
discarded.append(key)
else:
new_ckpt[key] = val
to_remove = ['prefix_projector_norm.weight', 'prefix_projector_norm.bias']
for _ in to_remove:
if _ in new_ckpt:
del new_ckpt[_]
print(f"discarded: {discarded}")
print(f"saved: {list(new_ckpt.keys())}")
new_ckpt = {'model': new_ckpt}
torch.save(new_ckpt, target_ckpt_path)