forked from MIDL-Conference/MIDLLatexTemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
midl-samplebibliography.bib
131 lines (120 loc) · 4.9 KB
/
midl-samplebibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@article{esteban2017mriqc,
title={MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites},
author={Esteban, Oscar and Birman, Daniel and Schaer, Marie and Koyejo, Oluwasanmi O and Poldrack, Russell A and Gorgolewski, Krzysztof J},
journal={PloS one},
volume={12},
number={9},
pages={e0184661},
year={2017},
publisher={Public Library of Science San Francisco, CA USA}
}
@article{bosse2017deep,
title={Deep neural networks for no-reference and full-reference image quality assessment},
author={Bosse, Sebastian and Maniry, Dominique and M{\"u}ller, Klaus-Robert and Wiegand, Thomas and Samek, Wojciech},
journal={IEEE Transactions on image processing},
volume={27},
number={1},
pages={206--219},
year={2017},
publisher={IEEE}
}
@article{bianco2018use,
title={On the use of deep learning for blind image quality assessment},
author={Bianco, Simone and Celona, Luigi and Napoletano, Paolo and Schettini, Raimondo},
journal={Signal, Image and Video Processing},
volume={12},
number={2},
pages={355--362},
year={2018},
publisher={Springer}
}
@article{hosu2020koniq,
title={KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment},
author={Hosu, Vlad and Lin, Hanhe and Sziranyi, Tamas and Saupe, Dietmar},
journal={IEEE Transactions on Image Processing},
volume={29},
pages={4041--4056},
year={2020},
publisher={IEEE}
}
@inproceedings{yu2017image,
title={Image quality classification for DR screening using deep learning},
author={Yu, FengLi and Sun, Jing and Li, Annan and Cheng, Jun and Wan, Cheng and Liu, Jiang},
booktitle={2017 39th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC)},
pages={664--667},
year={2017},
organization={IEEE}
}
@article{hou2014blind,
title={Blind image quality assessment via deep learning},
author={Hou, Weilong and Gao, Xinbo and Tao, Dacheng and Li, Xuelong},
journal={IEEE transactions on neural networks and learning systems},
volume={26},
number={6},
pages={1275--1286},
year={2014},
publisher={IEEE}
}
@article{higaki2019improvement,
title={Improvement of image quality at CT and MRI using deep learning},
author={Higaki, Toru and Nakamura, Yuko and Tatsugami, Fuminari and Nakaura, Takeshi and Awai, Kazuo},
journal={Japanese journal of radiology},
volume={37},
number={1},
pages={73--80},
year={2019},
publisher={Springer}
}
@article{mccormick2014itk,
title={ITK: enabling reproducible research and open science},
author={McCormick, Matthew Michael and Liu, Xiaoxiao and Ibanez, Luis and Jomier, Julien and Marion, Charles},
journal={Frontiers in neuroinformatics},
volume={8},
pages={13},
year={2014},
publisher={Frontiers}
}
@article{perez-garcia_torchio_2021,
title = {TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning},
journal = {Computer Methods and Programs in Biomedicine},
pages = {106236},
year = {2021},
issn = {0169-2607},
doi = {https://doi.org/10.1016/j.cmpb.2021.106236},
url = {https://www.sciencedirect.com/science/article/pii/S0169260721003102},
author = {P{\'e}rez-Garc{\'i}a, Fernando and Sparks, Rachel and Ourselin, S{\'e}bastien},
}
@article{paulsen2014clinical,
title={Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study},
author={Paulsen, Jane S and Long, Jeffrey D and Johnson, Hans J and Aylward, Elizabeth H and Ross, Christopher A and Williams, Janet K and Nance, Martha A and Erwin, Cheryl J and Westervelt, Holly K and Harrington, Deborah Lynn and others},
journal={Front. in aging neuroscience},
volume={6},
pages={78},
year={2014},
publisher={Frontiers}
}
@inproceedings{butskova2021adversarial,
title={Adversarial Bayesian Optimization for Quantifying Motion Artifact Within MRI},
author={Butskova, Anastasia and Juhl, Rain and Zuki{\'c}, D{\v{z}}enan and Chaudhary, Aashish and Pohl, Kilian M and Zhao, Qingyu},
booktitle={Int. Workshop on PRedictive Intellig. In MEdicine},
pages={83--92},
year={2021},
organization={Springer}
}
@incollection{rekik_adversarial_2021,
address = {Cham},
title = {Adversarial {Bayesian} {Optimization} for {Quantifying} {Motion} {Artifact} {Within} {MRI}},
volume = {12928},
isbn = {978-3-030-87601-2 978-3-030-87602-9},
url = {https://link.springer.com/10.1007/978-3-030-87602-9_8},
language = {en},
urldate = {2022-04-21},
booktitle = {Predictive {Intelligence} in {Medicine}},
publisher = {Springer International Publishing},
author = {Butskova, Anastasia and Juhl, Rain and Zukić, Dženan and Chaudhary, Aashish and Pohl, Kilian M. and Zhao, Qingyu},
editor = {Rekik, Islem and Adeli, Ehsan and Park, Sang Hyun and Schnabel, Julia},
year = {2021},
doi = {10.1007/978-3-030-87602-9_8},
note = {Series Title: Lecture Notes in Computer Science},
pages = {83--92},
}