Skip to content

Commit 0f03675

Browse files
Spell check and topological semantics fixups (#355)
* index.start.html: Spell check * topological-semantics.tex: Replace period with question mark * topological-semantics.tex: Split up long paragraph * topological-semantics.tex: Expand terse sentences * topological-semantics.tex: Split out tricky paragraph Technically this paragraph answers part of the question that starts the previous paragraph, but readers should be able to follow.
1 parent d541bf0 commit 0f03675

File tree

2 files changed

+22
-19
lines changed

2 files changed

+22
-19
lines changed

content/intuitionistic-logic/semantics/topological-semantics.tex

+21-18
Original file line numberDiff line numberDiff line change
@@ -69,24 +69,27 @@
6969
only the !!{element}s of $\Top{O}$ are. $!A \Entails !B$ iff $!B$ is
7070
true at every point at which~$!A$ is true, i.e., $\Prop{X}{!A}
7171
\subseteq \Prop{X}{!B}$, for all~$X$. The absurd statement~$\lfalse$
72-
is never true, so $\Prop{X}{\lfalse} = \emptyset$. How must the
73-
propositions expressed by $!B \land !C$, $!B \lor !C$, and $!B \lif
74-
!C$ be related to those expressed by $!B$ and~$!C$ for the
75-
intuitionistically valid laws to hold, i.e., so that $!A \Proves !B$
76-
iff $\Prop{X}{!A} \subset \Prop{X}{!B}$. $\lfalse \Proves !A$ for any
77-
$!A$, and only $\emptyset \subseteq U$ for all $U$. Since $!B \land
78-
!C \Proves !B$, $\Prop{X}{!B \land !C} \subseteq \Prop{X}{!B}$, and
79-
similarly $\Prop{X}{!B \land !C} \subseteq \Prop{X}{!C}$. The largest
80-
set satisfying $W \subseteq U$ and $W \subseteq V$ is $U \cap V$.
72+
is never true, so $\Prop{X}{\lfalse} = \emptyset$.
73+
74+
How must the propositions expressed by $!B \land !C$, $!B \lor !C$,
75+
and $!B \lif !C$ be related to those expressed by $!B$ and~$!C$ for
76+
the intuitionistically valid laws to hold, i.e., so that $!A \Proves
77+
!B$ iff $\Prop{X}{!A} \subset \Prop{X}{!B}$? We require $\lfalse
78+
\Proves !A$ for any $!A$, which is satisfied because $\emptyset
79+
\subseteq U$ for all $U$. Since $!B \land !C \Proves !B$, we require
80+
that $\Prop{X}{!B \land !C} \subseteq \Prop{X}{!B}$, and similarly
81+
$\Prop{X}{!B \land !C} \subseteq \Prop{X}{!C}$. The largest set
82+
satisfying $W \subseteq U$ and $W \subseteq V$ is $U \cap V$.
8183
Conversely, $!B \Proves !B \lor !C$ and $!C \Proves !B \lor !C$, and
82-
so $\Prop{X}{!B} \subseteq \Prop{X}{!B \lor !C}$ and $\Prop{X}{!C}
83-
\subseteq \Prop{X}{!B \lor !C}$. The smallest set~$W$ such that $U
84-
\subseteq W$ and $V \subseteq W$ is $U \cup V$. The definition for
85-
$\lif$ is tricky: $!A \lif !B$ expresses the weakest proposition that,
86-
combined with $!A$, entails $!B$. That $!A \lif !B$ combined with $!A$
87-
entails~$!B$ is clear from $(!A \lif !B) \land !A \Proves !B $. So
88-
$\Prop{X}{!A \lif !B}$ should be the greatest open set such that
89-
$\Prop{X}{!A \lif !B} \cap \Prop{X}{!A} \subset \Prop{X}{!B}$, leading
90-
to our definition.
84+
so we require that $\Prop{X}{!B} \subseteq \Prop{X}{!B \lor !C}$ and
85+
$\Prop{X}{!C} \subseteq \Prop{X}{!B \lor !C}$. The smallest set~$W$
86+
such that $U \subseteq W$ and $V \subseteq W$ is $U \cup V$.
87+
88+
The definition for $\lif$ is tricky: $!A \lif !B$ expresses the
89+
weakest proposition that, combined with $!A$, entails $!B$. That $!A
90+
\lif !B$ combined with $!A$ entails~$!B$ is clear from $(!A \lif !B)
91+
\land !A \Proves !B $. So $\Prop{X}{!A \lif !B}$ should be the
92+
greatest open set such that $\Prop{X}{!A \lif !B} \cap \Prop{X}{!A}
93+
\subset \Prop{X}{!B}$, leading to our definition.
9194

9295
\end{document}

misc/index.start.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -129,7 +129,7 @@ <h3><a href="https://ic.openlogicproject.org/"><em>Incompleteness and Computabil
129129
<h3><a href="https://bd.openlogicproject.org/"><em>Boxes and Diamonds</em></a></h3>
130130

131131
<p><a href="https://bd.openlogicproject.org/"><img src="https://bd.openlogicproject.org/bd.png" /></a>A textbook for modal and other intensional logics based on the Open Logic Project; includes the material on normal modal logic,
132-
intutionistic logic, and counterfactuals, with appendices on basic
132+
intuitionistic logic, and counterfactuals, with appendices on basic
133133
set theory and classical propositional logic.</p>
134134

135135
<ul>

0 commit comments

Comments
 (0)