-
Notifications
You must be signed in to change notification settings - Fork 988
/
predict.py
552 lines (498 loc) · 19.9 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import sys
import argparse
import subprocess
import numpy as np
from tqdm import tqdm
from PIL import Image
from scipy.io import loadmat
import torch
import cv2
from cog import BasePredictor, Input, Path
sys.path.insert(0, "third_part")
sys.path.insert(0, "third_part/GPEN")
sys.path.insert(0, "third_part/GFPGAN")
# 3dmm extraction
from third_part.face3d.util.preprocess import align_img
from third_part.face3d.util.load_mats import load_lm3d
from third_part.face3d.extract_kp_videos import KeypointExtractor
# face enhancement
from third_part.GPEN.gpen_face_enhancer import FaceEnhancement
from third_part.GFPGAN.gfpgan import GFPGANer
# expression control
from third_part.ganimation_replicate.model.ganimation import GANimationModel
from utils import audio
from utils.ffhq_preprocess import Croper
from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image
from utils.inference_utils import (
Laplacian_Pyramid_Blending_with_mask,
face_detect,
load_model,
options,
split_coeff,
trans_image,
transform_semantic,
find_crop_norm_ratio,
load_face3d_net,
exp_aus_dict,
)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
self.enhancer = FaceEnhancement(
base_dir="checkpoints",
size=512,
model="GPEN-BFR-512",
use_sr=False,
sr_model="rrdb_realesrnet_psnr",
channel_multiplier=2,
narrow=1,
device="cuda",
)
self.restorer = GFPGANer(
model_path="checkpoints/GFPGANv1.3.pth",
upscale=1,
arch="clean",
channel_multiplier=2,
bg_upsampler=None,
)
self.croper = Croper("checkpoints/shape_predictor_68_face_landmarks.dat")
self.kp_extractor = KeypointExtractor()
face3d_net_path = "checkpoints/face3d_pretrain_epoch_20.pth"
self.net_recon = load_face3d_net(face3d_net_path, "cuda")
self.lm3d_std = load_lm3d("checkpoints/BFM")
def predict(
self,
face: Path = Input(description="Input video file of a talking-head."),
input_audio: Path = Input(description="Input audio file."),
) -> Path:
"""Run a single prediction on the model"""
device = "cuda"
args = argparse.Namespace(
DNet_path="checkpoints/DNet.pt",
LNet_path="checkpoints/LNet.pth",
ENet_path="checkpoints/ENet.pth",
face3d_net_path="checkpoints/face3d_pretrain_epoch_20.pth",
face=str(face),
audio=str(input_audio),
exp_img="neutral",
outfile=None,
fps=25,
pads=[0, 20, 0, 0],
face_det_batch_size=4,
LNet_batch_size=16,
img_size=384,
crop=[0, -1, 0, -1],
box=[-1, -1, -1, -1],
nosmooth=False,
static=False,
up_face="original",
one_shot=False,
without_rl1=False,
tmp_dir="temp",
re_preprocess=False,
)
base_name = args.face.split("/")[-1]
if args.face.split(".")[1] in ["jpg", "png", "jpeg"]:
full_frames = [cv2.imread(args.face)]
args.static = True
fps = args.fps
else:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
y1, y2, x1, x2 = args.crop
if x2 == -1:
x2 = frame.shape[1]
if y2 == -1:
y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
full_frames_RGB = [
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames
]
full_frames_RGB, crop, quad = self.croper.crop(full_frames_RGB, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = (
cly + ly,
min(cly + ry, full_frames[0].shape[0]),
clx + lx,
min(clx + rx, full_frames[0].shape[1]),
)
# original_size = (ox2 - ox1, oy2 - oy1)
frames_pil = [
Image.fromarray(cv2.resize(frame, (256, 256))) for frame in full_frames_RGB
]
# get the landmark according to the detected face.
if (
not os.path.isfile("temp/" + base_name + "_landmarks.txt")
or args.re_preprocess
):
print("[Step 1] Landmarks Extraction in Video.")
lm = self.kp_extractor.extract_keypoint(
frames_pil, "./temp/" + base_name + "_landmarks.txt"
)
else:
print("[Step 1] Using saved landmarks.")
lm = np.loadtxt("temp/" + base_name + "_landmarks.txt").astype(np.float32)
lm = lm.reshape([len(full_frames), -1, 2])
if (
not os.path.isfile("temp/" + base_name + "_coeffs.npy")
or args.exp_img is not None
or args.re_preprocess
):
video_coeffs = []
for idx in tqdm(
range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:"
):
frame = frames_pil[idx]
W, H = frame.size
lm_idx = lm[idx].reshape([-1, 2])
if np.mean(lm_idx) == -1:
lm_idx = (self.lm3d_std[:, :2] + 1) / 2.0
lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1)
else:
lm_idx[:, -1] = H - 1 - lm_idx[:, -1]
trans_params, im_idx, lm_idx, _ = align_img(
frame, lm_idx, self.lm3d_std
)
trans_params = np.array(
[float(item) for item in np.hsplit(trans_params, 5)]
).astype(np.float32)
im_idx_tensor = (
torch.tensor(np.array(im_idx) / 255.0, dtype=torch.float32)
.permute(2, 0, 1)
.to(device)
.unsqueeze(0)
)
with torch.no_grad():
coeffs = split_coeff(self.net_recon(im_idx_tensor))
pred_coeff = {key: coeffs[key].cpu().numpy() for key in coeffs}
pred_coeff = np.concatenate(
[
pred_coeff["id"],
pred_coeff["exp"],
pred_coeff["tex"],
pred_coeff["angle"],
pred_coeff["gamma"],
pred_coeff["trans"],
trans_params[None],
],
1,
)
video_coeffs.append(pred_coeff)
semantic_npy = np.array(video_coeffs)[:, 0]
np.save("temp/" + base_name + "_coeffs.npy", semantic_npy)
else:
print("[Step 2] Using saved coeffs.")
semantic_npy = np.load("temp/" + base_name + "_coeffs.npy").astype(
np.float32
)
# generate the 3dmm coeff from a single image
if args.exp_img == "smile":
expression = torch.tensor(
loadmat("checkpoints/expression.mat")["expression_mouth"]
)[0]
else:
print("using expression center")
expression = torch.tensor(
loadmat("checkpoints/expression.mat")["expression_center"]
)[0]
# load DNet, model(LNet and ENet)
D_Net, model = load_model(args, device)
if (
not os.path.isfile("temp/" + base_name + "_stablized.npy")
or args.re_preprocess
):
imgs = []
for idx in tqdm(
range(len(frames_pil)),
desc="[Step 3] Stabilize the expression In Video:",
):
if args.one_shot:
source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[0:1]
else:
source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[idx : idx + 1]
ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy)
coeff = (
transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device)
)
# hacking the new expression
coeff[:, :64, :] = expression[None, :64, None].to(device)
with torch.no_grad():
output = D_Net(source_img, coeff)
img_stablized = np.uint8(
(
output["fake_image"]
.squeeze(0)
.permute(1, 2, 0)
.cpu()
.clamp_(-1, 1)
.numpy()
+ 1
)
/ 2.0
* 255
)
imgs.append(cv2.cvtColor(img_stablized, cv2.COLOR_RGB2BGR))
np.save("temp/" + base_name + "_stablized.npy", imgs)
del D_Net
else:
print("[Step 3] Using saved stabilized video.")
imgs = np.load("temp/" + base_name + "_stablized.npy")
torch.cuda.empty_cache()
if not args.audio.endswith(".wav"):
command = "ffmpeg -loglevel error -y -i {} -strict -2 {}".format(
args.audio, "temp/{}/temp.wav".format(args.tmp_dir)
)
subprocess.call(command, shell=True)
args.audio = "temp/{}/temp.wav".format(args.tmp_dir)
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
)
mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80.0 / fps, 0, []
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks)))
imgs = imgs[: len(mel_chunks)]
full_frames = full_frames[: len(mel_chunks)]
lm = lm[: len(mel_chunks)]
imgs_enhanced = []
for idx in tqdm(range(len(imgs)), desc="[Step 5] Reference Enhancement"):
img = imgs[idx]
pred, _, _ = self.enhancer.process(
img, img, face_enhance=True, possion_blending=False
)
imgs_enhanced.append(pred)
gen = datagen(
imgs_enhanced.copy(), mel_chunks, full_frames, args, (oy1, oy2, ox1, ox2)
)
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter(
"temp/{}/result.mp4".format(args.tmp_dir),
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(frame_w, frame_h),
)
if args.up_face != "original":
instance = GANimationModel()
instance.initialize()
instance.setup()
# kp_extractor = KeypointExtractor()
for i, (
img_batch,
mel_batch,
frames,
coords,
img_original,
f_frames,
) in enumerate(
tqdm(
gen,
desc="[Step 6] Lip Synthesis:",
total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)),
)
):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(
device
)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(
device
)
img_original = (
torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device)
/ 255.0
) # BGR -> RGB
with torch.no_grad():
incomplete, reference = torch.split(img_batch, 3, dim=1)
pred, low_res = model(mel_batch, img_batch, reference)
pred = torch.clamp(pred, 0, 1)
if args.up_face in ["sad", "angry", "surprise"]:
tar_aus = exp_aus_dict[args.up_face]
else:
pass
if args.up_face == "original":
cur_gen_faces = img_original
else:
test_batch = {
"src_img": torch.nn.functional.interpolate(
(img_original * 2 - 1), size=(128, 128), mode="bilinear"
),
"tar_aus": tar_aus.repeat(len(incomplete), 1),
}
instance.feed_batch(test_batch)
instance.forward()
cur_gen_faces = torch.nn.functional.interpolate(
instance.fake_img / 2.0 + 0.5, size=(384, 384), mode="bilinear"
)
if args.without_rl1 is not False:
incomplete, reference = torch.split(img_batch, 3, dim=1)
mask = torch.where(
incomplete == 0,
torch.ones_like(incomplete),
torch.zeros_like(incomplete),
)
pred = pred * mask + cur_gen_faces * (1 - mask)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
torch.cuda.empty_cache()
for p, f, xf, c in zip(pred, frames, f_frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
ff = xf.copy()
ff[y1:y2, x1:x2] = p
# month region enhancement by GFPGAN
cropped_faces, restored_faces, restored_img = self.restorer.enhance(
ff, has_aligned=False, only_center_face=True, paste_back=True
)
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
mouse_mask = np.zeros_like(restored_img)
tmp_mask = self.enhancer.faceparser.process(
restored_img[y1:y2, x1:x2], mm
)[0]
mouse_mask[y1:y2, x1:x2] = (
cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.0
)
height, width = ff.shape[:2]
restored_img, ff, full_mask = [
cv2.resize(x, (512, 512))
for x in (restored_img, ff, np.float32(mouse_mask))
]
img = Laplacian_Pyramid_Blending_with_mask(
restored_img, ff, full_mask[:, :, 0], 10
)
pp = np.uint8(cv2.resize(np.clip(img, 0, 255), (width, height)))
pp, orig_faces, enhanced_faces = self.enhancer.process(
pp, xf, bbox=c, face_enhance=False, possion_blending=True
)
out.write(pp)
out.release()
output_file = "/tmp/output.mp4"
command = "ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}".format(
args.audio, "temp/{}/result.mp4".format(args.tmp_dir), output_file
)
subprocess.call(command, shell=True)
return Path(output_file)
# frames:256x256, full_frames: original size
def datagen(frames, mels, full_frames, args, cox):
img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = (
[],
[],
[],
[],
[],
[],
)
base_name = args.face.split("/")[-1]
refs = []
image_size = 256
# original frames
kp_extractor = KeypointExtractor()
fr_pil = [Image.fromarray(frame) for frame in frames]
lms = kp_extractor.extract_keypoint(
fr_pil, "temp/" + base_name + "x12_landmarks.txt"
)
frames_pil = [
(lm, frame) for frame, lm in zip(fr_pil, lms)
] # frames is the croped version of modified face
crops, orig_images, quads = crop_faces(
image_size, frames_pil, scale=1.0, use_fa=True
)
inverse_transforms = [
calc_alignment_coefficients(
quad + 0.5,
[[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]],
)
for quad in quads
]
del kp_extractor.detector
oy1, oy2, ox1, ox2 = cox
face_det_results = face_detect(full_frames, args, jaw_correction=True)
for inverse_transform, crop, full_frame, face_det in zip(
inverse_transforms, crops, full_frames, face_det_results
):
imc_pil = paste_image(
inverse_transform,
crop,
Image.fromarray(
cv2.resize(
full_frame[int(oy1) : int(oy2), int(ox1) : int(ox2)], (256, 256)
)
),
)
ff = full_frame.copy()
ff[int(oy1) : int(oy2), int(ox1) : int(ox2)] = cv2.resize(
np.array(imc_pil.convert("RGB")), (ox2 - ox1, oy2 - oy1)
)
oface, coords = face_det
y1, y2, x1, x2 = coords
refs.append(ff[y1:y2, x1:x2])
for i, m in enumerate(mels):
idx = 0 if args.static else i % len(frames)
frame_to_save = frames[idx].copy()
face = refs[idx]
oface, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
oface = cv2.resize(oface, (args.img_size, args.img_size))
img_batch.append(oface)
ref_batch.append(face)
mel_batch.append(m)
coords_batch.append(coords)
frame_batch.append(frame_to_save)
full_frame_batch.append(full_frames[idx].copy())
if len(img_batch) >= args.LNet_batch_size:
img_batch, mel_batch, ref_batch = (
np.asarray(img_batch),
np.asarray(mel_batch),
np.asarray(ref_batch),
)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
(
img_batch,
mel_batch,
frame_batch,
coords_batch,
img_original,
full_frame_batch,
ref_batch,
) = ([], [], [], [], [], [], [])
if len(img_batch) > 0:
img_batch, mel_batch, ref_batch = (
np.asarray(img_batch),
np.asarray(mel_batch),
np.asarray(ref_batch),
)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch