diff --git a/README.md b/README.md index 63888b1c..e7ac3ade 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,8 @@

VideoReTalking
Audio-based Lip Synchronization for Talking Head Video Editing in the Wild

-            [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vinthony/video-retalking/blob/main/quick_demo.ipynb) - +            [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vinthony/video-retalking/blob/main/quick_demo.ipynb)      +[![Replicate](https://replicate.com/cjwbw/video-retalking/badge)](https://replicate.com/cjwbw/video-retalking)
Kun Cheng *,1,2   diff --git a/cog.yaml b/cog.yaml new file mode 100644 index 00000000..6bf82eab --- /dev/null +++ b/cog.yaml @@ -0,0 +1,29 @@ +# Configuration for Cog ⚙️ +# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md + +build: + gpu: true + system_packages: + - "libgl1-mesa-glx" + - "libglib2.0-0" + - "ffmpeg" + python_version: "3.11" + python_packages: + - "torch==2.0.1" + - "torchvision==0.15.2" + - "basicsr==1.4.2" + - "kornia==0.5.1" + - "face-alignment==1.3.4" + - "ninja==1.10.2.3" + - "einops==0.4.1" + - "facexlib==0.2.5" + - "librosa==0.9.2" + - "cmake==3.27.7" + - "numpy==1.23.4" + run: + - pip install dlib + - mkdir -p /root/.pyenv/versions/3.11.6/lib/python3.11/site-packages/facexlib/weights/ && wget --output-document "/root/.pyenv/versions/3.11.6/lib/python3.11/site-packages/facexlib/weights/detection_Resnet50_Final.pth" "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth" + - mkdir -p /root/.pyenv/versions/3.11.6/lib/python3.11/site-packages/facexlib/weights/ && wget --output-document "/root/.pyenv/versions/3.11.6/lib/python3.11/site-packages/facexlib/weights/parsing_parsenet.pth" "https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth" + - mkdir -p /root/.cache/torch/hub/checkpoints/ && wget --output-document "/root/.cache/torch/hub/checkpoints/s3fd-619a316812.pth" "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth" + - mkdir -p /root/.cache/torch/hub/checkpoints/ && wget --output-document "/root/.cache/torch/hub/checkpoints/2DFAN4-cd938726ad.zip" "https://www.adrianbulat.com/downloads/python-fan/2DFAN4-cd938726ad.zip" +predict: "predict.py:Predictor" diff --git a/predict.py b/predict.py new file mode 100644 index 00000000..216591d9 --- /dev/null +++ b/predict.py @@ -0,0 +1,552 @@ +# Prediction interface for Cog ⚙️ +# https://github.com/replicate/cog/blob/main/docs/python.md + +import os +import sys +import argparse +import subprocess +import numpy as np +from tqdm import tqdm +from PIL import Image +from scipy.io import loadmat +import torch +import cv2 +from cog import BasePredictor, Input, Path + +sys.path.insert(0, "third_part") +sys.path.insert(0, "third_part/GPEN") +sys.path.insert(0, "third_part/GFPGAN") + +# 3dmm extraction +from third_part.face3d.util.preprocess import align_img +from third_part.face3d.util.load_mats import load_lm3d +from third_part.face3d.extract_kp_videos import KeypointExtractor + +# face enhancement +from third_part.GPEN.gpen_face_enhancer import FaceEnhancement +from third_part.GFPGAN.gfpgan import GFPGANer + +# expression control +from third_part.ganimation_replicate.model.ganimation import GANimationModel + +from utils import audio +from utils.ffhq_preprocess import Croper +from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image +from utils.inference_utils import ( + Laplacian_Pyramid_Blending_with_mask, + face_detect, + load_model, + options, + split_coeff, + trans_image, + transform_semantic, + find_crop_norm_ratio, + load_face3d_net, + exp_aus_dict, +) + + +class Predictor(BasePredictor): + def setup(self) -> None: + """Load the model into memory to make running multiple predictions efficient""" + self.enhancer = FaceEnhancement( + base_dir="checkpoints", + size=512, + model="GPEN-BFR-512", + use_sr=False, + sr_model="rrdb_realesrnet_psnr", + channel_multiplier=2, + narrow=1, + device="cuda", + ) + self.restorer = GFPGANer( + model_path="checkpoints/GFPGANv1.3.pth", + upscale=1, + arch="clean", + channel_multiplier=2, + bg_upsampler=None, + ) + self.croper = Croper("checkpoints/shape_predictor_68_face_landmarks.dat") + self.kp_extractor = KeypointExtractor() + + face3d_net_path = "checkpoints/face3d_pretrain_epoch_20.pth" + + self.net_recon = load_face3d_net(face3d_net_path, "cuda") + self.lm3d_std = load_lm3d("checkpoints/BFM") + + def predict( + self, + face: Path = Input(description="Input video file of a talking-head."), + input_audio: Path = Input(description="Input audio file."), + ) -> Path: + """Run a single prediction on the model""" + device = "cuda" + args = argparse.Namespace( + DNet_path="checkpoints/DNet.pt", + LNet_path="checkpoints/LNet.pth", + ENet_path="checkpoints/ENet.pth", + face3d_net_path="checkpoints/face3d_pretrain_epoch_20.pth", + face=str(face), + audio=str(input_audio), + exp_img="neutral", + outfile=None, + fps=25, + pads=[0, 20, 0, 0], + face_det_batch_size=4, + LNet_batch_size=16, + img_size=384, + crop=[0, -1, 0, -1], + box=[-1, -1, -1, -1], + nosmooth=False, + static=False, + up_face="original", + one_shot=False, + without_rl1=False, + tmp_dir="temp", + re_preprocess=False, + ) + + base_name = args.face.split("/")[-1] + + if args.face.split(".")[1] in ["jpg", "png", "jpeg"]: + full_frames = [cv2.imread(args.face)] + args.static = True + fps = args.fps + else: + video_stream = cv2.VideoCapture(args.face) + fps = video_stream.get(cv2.CAP_PROP_FPS) + full_frames = [] + while True: + still_reading, frame = video_stream.read() + if not still_reading: + video_stream.release() + break + y1, y2, x1, x2 = args.crop + if x2 == -1: + x2 = frame.shape[1] + if y2 == -1: + y2 = frame.shape[0] + frame = frame[y1:y2, x1:x2] + full_frames.append(frame) + + full_frames_RGB = [ + cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames + ] + full_frames_RGB, crop, quad = self.croper.crop(full_frames_RGB, xsize=512) + + clx, cly, crx, cry = crop + lx, ly, rx, ry = quad + lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) + oy1, oy2, ox1, ox2 = ( + cly + ly, + min(cly + ry, full_frames[0].shape[0]), + clx + lx, + min(clx + rx, full_frames[0].shape[1]), + ) + # original_size = (ox2 - ox1, oy2 - oy1) + frames_pil = [ + Image.fromarray(cv2.resize(frame, (256, 256))) for frame in full_frames_RGB + ] + + # get the landmark according to the detected face. + if ( + not os.path.isfile("temp/" + base_name + "_landmarks.txt") + or args.re_preprocess + ): + print("[Step 1] Landmarks Extraction in Video.") + lm = self.kp_extractor.extract_keypoint( + frames_pil, "./temp/" + base_name + "_landmarks.txt" + ) + else: + print("[Step 1] Using saved landmarks.") + lm = np.loadtxt("temp/" + base_name + "_landmarks.txt").astype(np.float32) + lm = lm.reshape([len(full_frames), -1, 2]) + + if ( + not os.path.isfile("temp/" + base_name + "_coeffs.npy") + or args.exp_img is not None + or args.re_preprocess + ): + video_coeffs = [] + for idx in tqdm( + range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:" + ): + frame = frames_pil[idx] + W, H = frame.size + lm_idx = lm[idx].reshape([-1, 2]) + if np.mean(lm_idx) == -1: + lm_idx = (self.lm3d_std[:, :2] + 1) / 2.0 + lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1) + else: + lm_idx[:, -1] = H - 1 - lm_idx[:, -1] + + trans_params, im_idx, lm_idx, _ = align_img( + frame, lm_idx, self.lm3d_std + ) + trans_params = np.array( + [float(item) for item in np.hsplit(trans_params, 5)] + ).astype(np.float32) + im_idx_tensor = ( + torch.tensor(np.array(im_idx) / 255.0, dtype=torch.float32) + .permute(2, 0, 1) + .to(device) + .unsqueeze(0) + ) + with torch.no_grad(): + coeffs = split_coeff(self.net_recon(im_idx_tensor)) + + pred_coeff = {key: coeffs[key].cpu().numpy() for key in coeffs} + pred_coeff = np.concatenate( + [ + pred_coeff["id"], + pred_coeff["exp"], + pred_coeff["tex"], + pred_coeff["angle"], + pred_coeff["gamma"], + pred_coeff["trans"], + trans_params[None], + ], + 1, + ) + video_coeffs.append(pred_coeff) + semantic_npy = np.array(video_coeffs)[:, 0] + np.save("temp/" + base_name + "_coeffs.npy", semantic_npy) + else: + print("[Step 2] Using saved coeffs.") + semantic_npy = np.load("temp/" + base_name + "_coeffs.npy").astype( + np.float32 + ) + + # generate the 3dmm coeff from a single image + if args.exp_img == "smile": + expression = torch.tensor( + loadmat("checkpoints/expression.mat")["expression_mouth"] + )[0] + else: + print("using expression center") + expression = torch.tensor( + loadmat("checkpoints/expression.mat")["expression_center"] + )[0] + + # load DNet, model(LNet and ENet) + D_Net, model = load_model(args, device) + + if ( + not os.path.isfile("temp/" + base_name + "_stablized.npy") + or args.re_preprocess + ): + imgs = [] + for idx in tqdm( + range(len(frames_pil)), + desc="[Step 3] Stabilize the expression In Video:", + ): + if args.one_shot: + source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device) + semantic_source_numpy = semantic_npy[0:1] + else: + source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device) + semantic_source_numpy = semantic_npy[idx : idx + 1] + ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy) + coeff = ( + transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device) + ) + + # hacking the new expression + coeff[:, :64, :] = expression[None, :64, None].to(device) + with torch.no_grad(): + output = D_Net(source_img, coeff) + img_stablized = np.uint8( + ( + output["fake_image"] + .squeeze(0) + .permute(1, 2, 0) + .cpu() + .clamp_(-1, 1) + .numpy() + + 1 + ) + / 2.0 + * 255 + ) + imgs.append(cv2.cvtColor(img_stablized, cv2.COLOR_RGB2BGR)) + np.save("temp/" + base_name + "_stablized.npy", imgs) + del D_Net + else: + print("[Step 3] Using saved stabilized video.") + imgs = np.load("temp/" + base_name + "_stablized.npy") + torch.cuda.empty_cache() + + if not args.audio.endswith(".wav"): + command = "ffmpeg -loglevel error -y -i {} -strict -2 {}".format( + args.audio, "temp/{}/temp.wav".format(args.tmp_dir) + ) + subprocess.call(command, shell=True) + args.audio = "temp/{}/temp.wav".format(args.tmp_dir) + wav = audio.load_wav(args.audio, 16000) + mel = audio.melspectrogram(wav) + if np.isnan(mel.reshape(-1)).sum() > 0: + raise ValueError( + "Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again" + ) + + mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80.0 / fps, 0, [] + while True: + start_idx = int(i * mel_idx_multiplier) + if start_idx + mel_step_size > len(mel[0]): + mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :]) + break + mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) + i += 1 + + print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks))) + imgs = imgs[: len(mel_chunks)] + full_frames = full_frames[: len(mel_chunks)] + lm = lm[: len(mel_chunks)] + + imgs_enhanced = [] + for idx in tqdm(range(len(imgs)), desc="[Step 5] Reference Enhancement"): + img = imgs[idx] + pred, _, _ = self.enhancer.process( + img, img, face_enhance=True, possion_blending=False + ) + imgs_enhanced.append(pred) + gen = datagen( + imgs_enhanced.copy(), mel_chunks, full_frames, args, (oy1, oy2, ox1, ox2) + ) + + frame_h, frame_w = full_frames[0].shape[:-1] + out = cv2.VideoWriter( + "temp/{}/result.mp4".format(args.tmp_dir), + cv2.VideoWriter_fourcc(*"mp4v"), + fps, + (frame_w, frame_h), + ) + + if args.up_face != "original": + instance = GANimationModel() + instance.initialize() + instance.setup() + + # kp_extractor = KeypointExtractor() + for i, ( + img_batch, + mel_batch, + frames, + coords, + img_original, + f_frames, + ) in enumerate( + tqdm( + gen, + desc="[Step 6] Lip Synthesis:", + total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)), + ) + ): + img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to( + device + ) + mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to( + device + ) + img_original = ( + torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device) + / 255.0 + ) # BGR -> RGB + + with torch.no_grad(): + incomplete, reference = torch.split(img_batch, 3, dim=1) + pred, low_res = model(mel_batch, img_batch, reference) + pred = torch.clamp(pred, 0, 1) + + if args.up_face in ["sad", "angry", "surprise"]: + tar_aus = exp_aus_dict[args.up_face] + else: + pass + + if args.up_face == "original": + cur_gen_faces = img_original + else: + test_batch = { + "src_img": torch.nn.functional.interpolate( + (img_original * 2 - 1), size=(128, 128), mode="bilinear" + ), + "tar_aus": tar_aus.repeat(len(incomplete), 1), + } + instance.feed_batch(test_batch) + instance.forward() + cur_gen_faces = torch.nn.functional.interpolate( + instance.fake_img / 2.0 + 0.5, size=(384, 384), mode="bilinear" + ) + + if args.without_rl1 is not False: + incomplete, reference = torch.split(img_batch, 3, dim=1) + mask = torch.where( + incomplete == 0, + torch.ones_like(incomplete), + torch.zeros_like(incomplete), + ) + pred = pred * mask + cur_gen_faces * (1 - mask) + + pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0 + + torch.cuda.empty_cache() + for p, f, xf, c in zip(pred, frames, f_frames, coords): + y1, y2, x1, x2 = c + p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) + + ff = xf.copy() + ff[y1:y2, x1:x2] = p + + # month region enhancement by GFPGAN + cropped_faces, restored_faces, restored_img = self.restorer.enhance( + ff, has_aligned=False, only_center_face=True, paste_back=True + ) + # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, + mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0] + mouse_mask = np.zeros_like(restored_img) + tmp_mask = self.enhancer.faceparser.process( + restored_img[y1:y2, x1:x2], mm + )[0] + mouse_mask[y1:y2, x1:x2] = ( + cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.0 + ) + + height, width = ff.shape[:2] + restored_img, ff, full_mask = [ + cv2.resize(x, (512, 512)) + for x in (restored_img, ff, np.float32(mouse_mask)) + ] + img = Laplacian_Pyramid_Blending_with_mask( + restored_img, ff, full_mask[:, :, 0], 10 + ) + pp = np.uint8(cv2.resize(np.clip(img, 0, 255), (width, height))) + + pp, orig_faces, enhanced_faces = self.enhancer.process( + pp, xf, bbox=c, face_enhance=False, possion_blending=True + ) + out.write(pp) + out.release() + + output_file = "/tmp/output.mp4" + command = "ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}".format( + args.audio, "temp/{}/result.mp4".format(args.tmp_dir), output_file + ) + subprocess.call(command, shell=True) + + return Path(output_file) + + +# frames:256x256, full_frames: original size +def datagen(frames, mels, full_frames, args, cox): + img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = ( + [], + [], + [], + [], + [], + [], + ) + base_name = args.face.split("/")[-1] + refs = [] + image_size = 256 + + # original frames + kp_extractor = KeypointExtractor() + fr_pil = [Image.fromarray(frame) for frame in frames] + lms = kp_extractor.extract_keypoint( + fr_pil, "temp/" + base_name + "x12_landmarks.txt" + ) + frames_pil = [ + (lm, frame) for frame, lm in zip(fr_pil, lms) + ] # frames is the croped version of modified face + crops, orig_images, quads = crop_faces( + image_size, frames_pil, scale=1.0, use_fa=True + ) + inverse_transforms = [ + calc_alignment_coefficients( + quad + 0.5, + [[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]], + ) + for quad in quads + ] + del kp_extractor.detector + + oy1, oy2, ox1, ox2 = cox + face_det_results = face_detect(full_frames, args, jaw_correction=True) + + for inverse_transform, crop, full_frame, face_det in zip( + inverse_transforms, crops, full_frames, face_det_results + ): + imc_pil = paste_image( + inverse_transform, + crop, + Image.fromarray( + cv2.resize( + full_frame[int(oy1) : int(oy2), int(ox1) : int(ox2)], (256, 256) + ) + ), + ) + + ff = full_frame.copy() + ff[int(oy1) : int(oy2), int(ox1) : int(ox2)] = cv2.resize( + np.array(imc_pil.convert("RGB")), (ox2 - ox1, oy2 - oy1) + ) + oface, coords = face_det + y1, y2, x1, x2 = coords + refs.append(ff[y1:y2, x1:x2]) + + for i, m in enumerate(mels): + idx = 0 if args.static else i % len(frames) + frame_to_save = frames[idx].copy() + face = refs[idx] + oface, coords = face_det_results[idx].copy() + + face = cv2.resize(face, (args.img_size, args.img_size)) + oface = cv2.resize(oface, (args.img_size, args.img_size)) + + img_batch.append(oface) + ref_batch.append(face) + mel_batch.append(m) + coords_batch.append(coords) + frame_batch.append(frame_to_save) + full_frame_batch.append(full_frames[idx].copy()) + + if len(img_batch) >= args.LNet_batch_size: + img_batch, mel_batch, ref_batch = ( + np.asarray(img_batch), + np.asarray(mel_batch), + np.asarray(ref_batch), + ) + img_masked = img_batch.copy() + img_original = img_batch.copy() + img_masked[:, args.img_size // 2 :] = 0 + img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0 + mel_batch = np.reshape( + mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1] + ) + + yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch + ( + img_batch, + mel_batch, + frame_batch, + coords_batch, + img_original, + full_frame_batch, + ref_batch, + ) = ([], [], [], [], [], [], []) + + if len(img_batch) > 0: + img_batch, mel_batch, ref_batch = ( + np.asarray(img_batch), + np.asarray(mel_batch), + np.asarray(ref_batch), + ) + img_masked = img_batch.copy() + img_original = img_batch.copy() + img_masked[:, args.img_size // 2 :] = 0 + img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0 + mel_batch = np.reshape( + mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1] + ) + yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch