-
Notifications
You must be signed in to change notification settings - Fork 0
/
RNNHandler.py
131 lines (114 loc) · 4.53 KB
/
RNNHandler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import keras.utils
from keras.models import Sequential, model_from_json, load_model
from keras.layers import Dense, Activation, SimpleRNN
from keras.utils.vis_utils import plot_model
import keras.utils.np_utils
from keras.utils.np_utils import to_categorical
import os
import numpy as np
import datetime
import random
from reader import Reader
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn import metrics
def MyMetrics(y_true, y_pred):
y_pred[y_pred<0.5] = 0.0
y_pred[y_pred>=0.5] = 1.0
y_true[y_true<0.5] = 0.0
y_true[y_true>=0.5] = 1.0
if np.count_nonzero(y_pred == 1.0) == y_pred.shape[0]:
y_pred[0]=0.0
if np.count_nonzero(y_pred == 0.0) == y_pred.shape[0]:
y_pred[0]= 1.0
if np.count_nonzero(y_true == 1.0) == y_true.shape[0]:
y_true[0]=0.0
if np.count_nonzero(y_true == 0.0) == y_true.shape[0]:
y_true[0]= 1.0
confusion = metrics.confusion_matrix(y_true, y_pred)
TP = confusion[1, 1]
TN = confusion[0, 0]
FP = confusion[0, 1]
FN = confusion[1, 0]
precision = TP / (TP + FP)
recall = TP / (TP + FN)
fscore = 2 * precision * recall / ( precision + recall)
return (precision, recall, fscore)
class RNNHandler:
results_directory = './RNNresults'
models_directory = './RNNmodels'
def __init__(self, model_name, num_categories, loss, optimizer, optimizer_name):
# GET THE MODEL
fp_model = open(os.path.join(self.models_directory, model_name + '.json'), 'r')
model_str = fp_model.read()
self.model = model_from_json(model_str)
self.model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])
fp_model.close()
self.model_name = model_name
self.num_categories = num_categories
self.loss = loss
self.optimizer = optimizer
self.optimizer_name = optimizer_name
def fit_and_eval(self, x_train, y_train, x_test, y_test, nb_epoch, dataset_name): #batch_size is always 1 and shuffle is always False, so we don't pass them as parameters
self.results_file = os.path.join(self.results_directory, dataset_name + '.' + self.model_name)
self.write_result(self.model_name + ' ' + dataset_name + ' Loss:' + self.loss + ' Optimizer:' + self.optimizer_name + ' Dropout:No')
self.write_result('Epoch|Loss|Accuracy|Precision|Recall|Fscore')
res_loss = []
res_accuracy = []
res_precision = []
res_recall = []
res_fscore = []
x_train = x_train.reshape(x_train.shape[0], 1, -1)
x_test = x_test.reshape(x_test.shape[0], 1, -1)
if self.num_categories > 2:
y_train = to_categorical(y_train, self.num_categories)
y_test = to_categorical(y_test, self.num_categories)
for i in range(1, nb_epoch+1):
self.model.fit(x_train, y_train, batch_size=1, epochs=1, shuffle=False)
self.model.reset_states()
(loss, accuracy) = self.model.evaluate(x_test, y_test, batch_size=1)
self.model.reset_states()
res_loss.append(loss)
res_accuracy.append(accuracy)
(precision, recall, fscore) = (0,0,0)
if self.num_categories == 2:
y_pred = self.model.predict(x_test, batch_size=1)
self.model.reset_states()
(precision, recall, fscore) = MyMetrics(y_test, y_pred)
res_precision.append(precision)
res_recall.append(recall)
res_fscore.append(fscore)
self.write_result(str(i) +'|'+ str(loss) +'|'+ str(accuracy) +'|'+ str(precision) +'|'+ str(recall) +'|'+ str(fscore))
self.model.save(self.models_directory + '/full_models/' + dataset_name + '.' + self.model_name + '.h5')
return (res_loss, res_accuracy, res_precision, res_recall, res_fscore)
def write_result(self, text):
fp = open(self.results_file, 'a')
fp.write(text + '\n')
fp.close()
# def save_weights():
@staticmethod
def plot_results(title, metric, results):
lns = []
for k in results.keys():
result = results[k]
myplot = plt.subplot()
myplot.grid(True)
myplot.set_xlabel("Epoch Number")
myplot.set_ylabel(metric)
x_Axis = np.arange(1, len(result)+1)
#myplot.xaxis.set_ticks(x_Axis)#np.arange( 1, len(x_Axis)+1, 1))
#myplot.set_xticklabels(x_Axis, rotation=0)
tokens = k.split('|')
loss = tokens[0]
if loss=='categorical_crossentropy' or loss=='binary_crossentropy':
loss = 'crossentropy'
optimizer = tokens[1]
line = myplot.plot(x_Axis, result, label = 'loss:' + loss + ' opt:' + optimizer)
lns = lns + line
box = myplot.get_position()
myplot.set_position([box.x0, box.y0 + box.height * 0.25, box.width, box.height * 0.75])
labs = [l.get_label() for l in lns]
plt.title(title)
lgd = plt.legend(lns, labs, loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=2)
plt.savefig('./RNNresults/' + title + '.png')
plt.clf()