-
Notifications
You must be signed in to change notification settings - Fork 0
/
ps3b.py
531 lines (436 loc) · 18.6 KB
/
ps3b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Problem Set 3: Simulating the Spread of Disease and Virus Population Dynamics
import random
import pylab
'''
Begin helper code
'''
class NoChildException(Exception):
"""
NoChildException is raised by the reproduce() method in the SimpleVirus
and ResistantVirus classes to indicate that a virus particle does not
reproduce. You can use NoChildException as is, you do not need to
modify/add any code.
"""
'''
End helper code
'''
#
# PROBLEM 1
#
class SimpleVirus(object):
"""
Representation of a simple virus (does not model drug effects/resistance).
"""
def __init__(self, maxBirthProb, clearProb):
"""
Initialize a SimpleVirus instance, saves all parameters as attributes
of the instance.
maxBirthProb: Maximum reproduction probability (a float between 0-1)
clearProb: Maximum clearance probability (a float between 0-1).
"""
self.maxBirthProb = maxBirthProb
self.clearProb = clearProb
def getMaxBirthProb(self):
"""
Returns the max birth probability.
"""
return self.maxBirthProb
def getClearProb(self):
"""
Returns the clear probability.
"""
return self.clearProb
def doesClear(self):
""" Stochastically determines whether this virus particle is cleared from the
patient's body at a time step.
returns: True with probability self.getClearProb and otherwise returns
False.
"""
if random.random()<=self.clearProb:
return True
else:
return False
# TODO
def reproduce(self, popDensity):
"""
Stochastically determines whether this virus particle reproduces at a
time step. Called by the update() method in the Patient and
TreatedPatient classes. The virus particle reproduces with probability
self.maxBirthProb * (1 - popDensity).
If this virus particle reproduces, then reproduce() creates and returns
the instance of the offspring SimpleVirus (which has the same
maxBirthProb and clearProb values as its parent).
popDensity: the population density (a float), defined as the current
virus population divided by the maximum population.
returns: a new instance of the SimpleVirus class representing the
offspring of this virus particle. The child should have the same
maxBirthProb and clearProb values as this virus. Raises a
NoChildException if this virus particle does not reproduce.
"""
if random.random() <= self.maxBirthProb * (1-popDensity):
return SimpleVirus(self.maxBirthProb, self.clearProb)
else:
raise NoChildException()
# TODO
class Patient(object):
"""
Representation of a simplified patient. The patient does not take any drugs
and his/her virus populations have no drug resistance.
"""
def __init__(self, viruses, maxPop):
"""
Initialization function, saves the viruses and maxPop parameters as
attributes.
viruses: the list representing the virus population (a list of
SimpleVirus instances)
maxPop: the maximum virus population for this patient (an integer)
"""
self.viruses = viruses
self.maxPop = maxPop
# TODO
def getViruses(self):
"""
Returns the viruses in this Patient.
"""
return self.viruses
def getMaxPop(self):
"""
Returns the max population.
"""
return self.maxPop
def getTotalPop(self):
"""
Gets the size of the current total virus population.
returns: The total virus population (an integer)
"""
return len(self.viruses)
def update(self):
"""
Update the state of the virus population in this patient for a single
time step. update() should execute the following steps in this order:
- Determine whether each virus particle survives and updates the list
of virus particles accordingly.
- The current population density is calculated. This population density
value is used until the next call to update()
- Based on this value of population density, determine whether each
virus particle should reproduce and add offspring virus particles to
the list of viruses in this patient.
returns: The total virus population at the end of the update (an
integer)
"""
for virus in self.viruses:
if virus.doesClear():
del self.viruses[self.viruses.index(virus)]
popDensity = self.getTotalPop()/self.getMaxPop()
for virus in self.viruses:
try:
self.viruses.append(virus.reproduce(popDensity))
except NoChildException:
pass
return self.getTotalPop()
# TODO
#
# PROBLEM 2
#
def simulationWithoutDrug(numViruses, maxPop, maxBirthProb, clearProb,
numTrials):
"""
Run the simulation and plot the graph for problem 3 (no drugs are used,
viruses do not have any drug resistance).
For each of numTrials trial, instantiates a patient, runs a simulation
for 300 timesteps, and plots the average virus population size as a
function of time.
numViruses: number of SimpleVirus to create for patient (an integer)
maxPop: maximum virus population for patient (an integer)
maxBirthProb: Maximum reproduction probability (a float between 0-1)
clearProb: Maximum clearance probability (a float between 0-1)
numTrials: number of simulation runs to execute (an integer)
"""
y_vals = []
viruses = []
for timestep in range(300):
y_vals.append(0)
for i in range(numViruses):
viruses.append(SimpleVirus(maxBirthProb, clearProb))
for trial in range(numTrials):
P = Patient(viruses, maxPop)
for timestep in range(300):
y_vals[timestep] += P.update()
for value in range(300):
y_vals[value] = y_vals[value]/numTrials
pylab.plot(y_vals, label = "SimpleVirus",)
pylab.title("SimpleVirus simulation")
pylab.xlabel("Time Steps")
pylab.ylabel("Average Virus Population")
pylab.legend(loc = "best")
pylab.show()
# TODO
#
# PROBLEM 3
#
class ResistantVirus(SimpleVirus):
"""
Representation of a virus which can have drug resistance.
"""
def __init__(self, maxBirthProb, clearProb, resistances, mutProb):
"""
Initialize a ResistantVirus instance, saves all parameters as attributes
of the instance.
maxBirthProb: Maximum reproduction probability (a float between 0-1)
clearProb: Maximum clearance probability (a float between 0-1).
resistances: A dictionary of drug names (strings) mapping to the state
of this virus particle's resistance (either True or False) to each drug.
e.g. {'guttagonol':False, 'srinol':False}, means that this virus
particle is resistant to neither guttagonol nor srinol.
mutProb: Mutation probability for this virus particle (a float). This is
the probability of the offspring acquiring or losing resistance to a drug.
"""
SimpleVirus.__init__(self, maxBirthProb, clearProb)
self.resistances = resistances
self.mutProb = mutProb
def getResistances(self):
"""
Returns the resistances for this virus.
"""
return self.resistances
def getMutProb(self):
"""
Returns the mutation probability for this virus.
"""
return self.mutProb
def isResistantTo(self, drug):
"""
Get the state of this virus particle's resistance to a drug. This method
is called by getResistPop() in TreatedPatient to determine how many virus
particles have resistance to a drug.
drug: The drug (a string)
returns: True if this virus instance is resistant to the drug, False
otherwise.
"""
try:
return self.resistances[drug]
except:
return False
def reproduce(self, popDensity, activeDrugs):
"""
Stochastically determines whether this virus particle reproduces at a
time step. Called by the update() method in the TreatedPatient class.
A virus particle will only reproduce if it is resistant to ALL the drugs
in the activeDrugs list. For example, if there are 2 drugs in the
activeDrugs list, and the virus particle is resistant to 1 or no drugs,
then it will NOT reproduce.
Hence, if the virus is resistant to all drugs
in activeDrugs, then the virus reproduces with probability:
self.maxBirthProb * (1 - popDensity).
If this virus particle reproduces, then reproduce() creates and returns
the instance of the offspring ResistantVirus (which has the same
maxBirthProb and clearProb values as its parent). The offspring virus
will have the same maxBirthProb, clearProb, and mutProb as the parent.
For each drug resistance trait of the virus (i.e. each key of
self.resistances), the offspring has probability 1-mutProb of
inheriting that resistance trait from the parent, and probability
mutProb of switching that resistance trait in the offspring.
For example, if a virus particle is resistant to guttagonol but not
srinol, and self.mutProb is 0.1, then there is a 10% chance that
that the offspring will lose resistance to guttagonol and a 90%
chance that the offspring will be resistant to guttagonol.
There is also a 10% chance that the offspring will gain resistance to
srinol and a 90% chance that the offspring will not be resistant to
srinol.
popDensity: the population density (a float), defined as the current
virus population divided by the maximum population
activeDrugs: a list of the drug names acting on this virus particle
(a list of strings).
returns: a new instance of the ResistantVirus class representing the
offspring of this virus particle. The child should have the same
maxBirthProb and clearProb values as this virus. Raises a
NoChildException if this virus particle does not reproduce.
"""
for drug in activeDrugs:
if self.isResistantTo(drug):
pass
else:
raise NoChildException
break
if random.random() < (self.maxBirthProb*(1-popDensity)):
resistance = self.resistances.copy()
for resist in self.resistances:
if (self.resistances[resist] == True):
if (random.random() < self.mutProb):
resistance[resist] = False
else:
if random.random() < self.mutProb:
resistance[resist] = True
return ResistantVirus(self.maxBirthProb, self.clearProb, resistance, self.mutProb)
else:
raise NoChildException
# def TestVirusResistance():
# one, two, three = random.randint(1,10)>5, random.randint(1,10)>2, random.randint(1,10)>5
# resistances = {'drug1':one, 'drug2':two, 'drug3': three}
# virus = ResistantVirus(0.5, 0.0, resistances, 0.5)
# print(virus.resistances)
# try:
# newvir = virus.reproduce(0.0, ['drug2'])
# print(newvir.resistances)
# except NoChildException:
# print('fail')
# def TestVirus10000():
# virus = ResistantVirus(0.5, 0.0, {}, 0.0)
# success = 0
# fail = 0
# for i in range(10000):
# try:
# virus.reproduce(0.0, [])
# success += 1
# except NoChildException:
# fail += 1
# print('Success: '+str(success)+'\nFail: '+str(fail))
# TestVirusResistance()
class TreatedPatient(Patient):
"""
Representation of a patient. The patient is able to take drugs and his/her
virus population can acquire resistance to the drugs he/she takes.
"""
def __init__(self, viruses, maxPop):
"""
Initialization function, saves the viruses and maxPop parameters as
attributes. Also initializes the list of drugs being administered
(which should initially include no drugs).
viruses: The list representing the virus population (a list of
virus instances)
maxPop: The maximum virus population for this patient (an integer)
"""
Patient.__init__(self, viruses, maxPop)
self.prescription = []
def addPrescription(self, newDrug):
"""
Administer a drug to this patient. After a prescription is added, the
drug acts on the virus population for all subsequent time steps. If the
newDrug is already prescribed to this patient, the method has no effect.
newDrug: The name of the drug to administer to the patient (a string).
postcondition: The list of drugs being administered to a patient is updated
"""
if newDrug in self.prescription:
pass
else:
self.prescription.append(newDrug)
def getPrescriptions(self):
"""
Returns the drugs that are being administered to this patient.
returns: The list of drug names (strings) being administered to this
patient.
"""
return self.prescription
def getResistPop(self, drugResist):
"""
Get the population of virus particles resistant to the drugs listed in
drugResist.
drugResist: Which drug resistances to include in the population (a list
of strings - e.g. ['guttagonol'] or ['guttagonol', 'srinol'])
returns: The population of viruses (an integer) with resistances to all
drugs in the drugResist list.
"""
pop = 0
for virus in self.viruses:
resistnum = 0
for drug in drugResist:
if virus.isResistantTo(drug):
resistnum+=1
if resistnum == len(drugResist):
pop += 1
return pop
# TODO
def update(self):
"""
Update the state of the virus population in this patient for a single
time step. update() should execute these actions in order:
- Determine whether each virus particle survives and update the list of
virus particles accordingly
- The current population density is calculated. This population density
value is used until the next call to update().
- Based on this value of population density, determine whether each
virus particle should reproduce and add offspring virus particles to
the list of viruses in this patient.
The list of drugs being administered should be accounted for in the
determination of whether each virus particle reproduces.
returns: The total virus population at the end of the update (an
integer)
"""
for virus in self.viruses[:]:
if virus.doesClear():
del self.viruses[self.viruses.index(virus)]
popDensity = self.getTotalPop()/self.getMaxPop()
for virus in self.viruses[:]:
if type(virus) == ResistantVirus:
try:
self.viruses.append(virus.reproduce(popDensity, self.prescription))
except NoChildException:
pass
else:
try:
self.viruses.append(virus.reproduce(popDensity))
except NoChildException:
pass
return self.getTotalPop()
# def updateTest():
# viruses = []
# one, two, three = random.randint(1,10)>5, random.randint(1,10)>2, random.randint(1,10)>5
# resistances = {'drug1':one, 'drug2':two, 'drug3': three}
# for i in range(100):
# viruses.append(ResistantVirus(0.5, 0.2, resistances, 1))
# P = TreatedPatient(viruses, 1000)
# P.addPrescription('drug1')
# P.addPrescription('drug2')
# P.addPrescription('drug3')
# print(P.update())
# updateTest()
#
# PROBLEM 4
#
def simulationWithDrug(numViruses, maxPop, maxBirthProb, clearProb, resistances,
mutProb, numTrials):
"""
Runs simulations and plots graphs for problem 5.
For each of numTrials trials, instantiates a patient, runs a simulation for
150 timesteps, adds guttagonol, and runs the simulation for an additional
150 timesteps. At the end plots the average virus population size
(for both the total virus population and the guttagonol-resistant virus
population) as a function of time.
numViruses: number of ResistantVirus to create for patient (an integer)
maxPop: maximum virus population for patient (an integer)
maxBirthProb: Maximum reproduction probability (a float between 0-1)
clearProb: maximum clearance probability (a float between 0-1)
resistances: a dictionary of drugs that each ResistantVirus is resistant to
(e.g., {'guttagonol': False})
mutProb: mutation probability for each ResistantVirus particle
(a float between 0-1).
numTrials: number of simulation runs to execute (an integer)
"""
virus_vals = []
resistvirus_vals = []
for timestep in range(300):
virus_vals.append(0)
resistvirus_vals.append(0)
for trial in range(numTrials):
viruses = []
for i in range(numViruses):
viruses.append(ResistantVirus(maxBirthProb, clearProb, resistances, mutProb))
P = TreatedPatient(viruses, maxPop)
for timestep in range(150):
virus_vals[timestep] += P.update()
resistvirus_vals[timestep] += P.getResistPop(['guttagonol'])
P.addPrescription('guttagonol')
for timestep in range(150):
virus_vals[timestep+150] += P.update()
resistvirus_vals[timestep+150] += P.getResistPop(['guttagonol'])
for value in range(300):
virus_vals[value] = virus_vals[value]/numTrials
resistvirus_vals[value] = resistvirus_vals[value]/numTrials
pylab.plot(virus_vals, label = "Any virus",)
pylab.plot(resistvirus_vals, label = "ResistantVirus")
pylab.title("SimpleVirus vs ResistantVirus simulation")
pylab.xlabel("Time Steps")
pylab.ylabel("Average Virus Population")
pylab.legend(loc = "best")
pylab.show()
simulationWithDrug(100, 1000, 0.1, 0.05, {'guttagonol': False}, 0.005, 100)