-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_cifar.py
191 lines (165 loc) · 6.27 KB
/
train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import print_function
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10, cifar100
import tensorflow as tf
import numpy as np
import os
from model import resnet_v1
from utils import *
# Training parameters
epochs = 200
# Subtracting pixel mean improves accuracy
subtract_pixel_mean = True
# Computed depth from supplied model parameter n
n = 5
depth = n * 6 + 2
version = 1
# Model name, depth and version
model_type = 'ResNet%dv%d' % (depth, version)
# Load the data.
if FLAGS.dataset == 'cifar10':
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
elif FLAGS.dataset == 'cifar100':
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
# Input image dimensions.
input_shape = x_train.shape[1:]
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
# If subtract pixel mean is enabled
if subtract_pixel_mean:
x_train_mean = np.mean(x_train, axis=0)
x_train -= x_train_mean
x_test -= x_train_mean
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('y_train shape:', y_train.shape)
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
def lr_schedule(epoch):
"""Learning Rate Schedule
Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs.
Called automatically every epoch as part of callbacks during training.
# Arguments
epoch (int): The number of epochs
# Returns
lr (float32): learning rate
"""
lr = 1e-3
if epoch > 150:
lr *= 1e-2
elif epoch > 100:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
model_input = Input(shape=input_shape)
model_dic = {}
model_out = []
for i in range(FLAGS.num_models):
model_dic[str(i)] = resnet_v1(input=model_input, depth=depth, num_classes=num_classes, dataset=FLAGS.dataset)
model_out.append(model_dic[str(i)][2])
model_output = keras.layers.concatenate(model_out)
model = Model(input=model_input, output=model_output)
model.compile(
loss=Loss_withEE_DPP,
optimizer=Adam(lr=lr_schedule(0)),
metrics=[acc_metric, Ensemble_Entropy_metric, log_det_metric])
model.summary()
print(model_type)
# Prepare model model saving directory.
save_dir = os.path.join(os.getcwd(), FLAGS.dataset+'_EE_LED_saved_models'+str(FLAGS.num_models)+'_lamda'+str(FLAGS.lamda)
+'_logdetlamda'+str(FLAGS.log_det_lamda)+'_'+str(FLAGS.augmentation))
model_name = 'model.{epoch:03d}.h5'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
# Prepare callbacks for model saving and for learning rate adjustment.
checkpoint = ModelCheckpoint(
filepath=filepath, monitor='val_acc_metric', mode='max', verbose=2, save_best_only=True)
lr_scheduler = LearningRateScheduler(lr_schedule)
callbacks = [checkpoint, lr_scheduler]
# Augment labels
y_train_2 = []
y_test_2 = []
for _ in range(FLAGS.num_models):
y_train_2.append(y_train)
y_test_2.append(y_test)
y_train_2 = np.concatenate(y_train_2, axis=-1)
y_test_2 = np.concatenate(y_test_2, axis=-1)
# Run training, with or without data augmentation.
if not FLAGS.augmentation:
print('Not using data augmentation.')
model.fit(
x_train, y_train_2,
batch_size=FLAGS.batch_size,
epochs=epochs,
validation_data=(x_test, y_test_2),
shuffle=True,
verbose=1,
callbacks=callbacks)
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
# set input mean to 0 over the dataset
featurewise_center=False,
# set each sample mean to 0
samplewise_center=False,
# divide inputs by std of dataset
featurewise_std_normalization=False,
# divide each input by its std
samplewise_std_normalization=False,
# apply ZCA whitening
zca_whitening=False,
# epsilon for ZCA whitening
zca_epsilon=1e-06,
# randomly rotate images in the range (deg 0 to 180)
rotation_range=0,
# randomly shift images horizontally
width_shift_range=0.1,
# randomly shift images vertically
height_shift_range=0.1,
# set range for random shear
shear_range=0.,
# set range for random zoom
zoom_range=0.,
# set range for random channel shifts
channel_shift_range=0.,
# set mode for filling points outside the input boundaries
fill_mode='nearest',
# value used for fill_mode = "constant"
cval=0.,
# randomly flip images
horizontal_flip=True,
# randomly flip images
vertical_flip=False,
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
# Compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(
datagen.flow(x_train, y_train_2, batch_size=FLAGS.batch_size),
validation_data=(x_test, y_test_2),
epochs=epochs,
verbose=1,
workers=4,
callbacks=callbacks)