-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20201043.nb
4983 lines (4932 loc) · 270 KB
/
20201043.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 271354, 4975]
NotebookOptionsPosition[ 269463, 4908]
NotebookOutlinePosition[ 269811, 4923]
CellTagsIndexPosition[ 269768, 4920]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Practical Test", "Title",
CellChangeTimes->{{3.8915595239028473`*^9, 3.8915595340930705`*^9}}],
Cell["Name: Puranjyoti Bera 20201043", "Section",
CellChangeTimes->{{3.891559616943377*^9, 3.891559635759856*^9}}],
Cell[CellGroupData[{
Cell["\<\
Q.1) Plot the fifth root of unity\
\>", "Chapter",
CellChangeTimes->{{3.891559645735234*^9, 3.8915596532500362`*^9}, {
3.891559697082456*^9, 3.8915597036981792`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"a", ":=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{"n", "/", "5"}]}], "]"}], "]"}], ",", " ",
RowBox[{"Im", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{"n", "/", "5"}]}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "4"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"AspectRatio", "\[Rule]", " ", "Automatic"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"PointSize", "[", "0.04", "]"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b", ":=",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "t", "]"}], ",",
RowBox[{"Sin", "[", "t", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",",
RowBox[{"2", "*", "Pi"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Blue"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c", ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Thick", ",", "Magenta", ",",
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{"n", "/", "5"}]}], "]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{"n", "/", "5"}]}], "]"}], "]"}]}], "}"}]}], "}"}],
"]"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "4"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"d", ":=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Thick", ",", "Dashed", ",", "Purple", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{"n", "/", "5"}]}], "]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{"n", "/", "5"}]}], "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I",
RowBox[{
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}], "/", "5"}]}], "]"}], "]"}],
",",
RowBox[{"Im", "[",
RowBox[{"Exp", "[",
RowBox[{"2", "*", "Pi", "*", "I", "*",
RowBox[{
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}], "/", "5"}]}], "]"}],
"]"}]}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "4"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"a", ",", "b", ",", "c", ",", "d", ",",
RowBox[{"PlotRange", "\[Rule]", "1.25"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.859512303605146*^9, 3.8595123876424923`*^9}, {
3.859512455783411*^9, 3.8595129467942677`*^9}, {3.8595131160469627`*^9,
3.859513118745767*^9}, {3.859513160803441*^9, 3.859513225730754*^9}, {
3.859513283279254*^9, 3.8595133396889524`*^9}, 3.8595134810875993`*^9, {
3.859514100252679*^9, 3.8595141566935773`*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {{},
{RGBColor[1, 0, 0], PointSize[0.04], AbsoluteThickness[1.6],
PointBox[{{1., 0.}, {0.30901699437494745`,
0.9510565162951535}, {-0.8090169943749475,
0.5877852522924731}, {-0.8090169943749475, -0.5877852522924731}, {
0.30901699437494745`, -0.9510565162951535}}]}, {}}, {}, {}, {{}, {}}}, \
{{}, {},
TagBox[
{RGBColor[0, 0, 1], Thickness[Large], Opacity[1.], FaceForm[Opacity[
0.3]], LineBox[CompressedData["
1:eJw1m3c41f/7x42KyChFpaJFi4rS7q5oGBkRDWWlhMxSZEVSKHtkJrJlZnPb
O3tvjnEO55x3ilKo3/tz/a6vf47H9T7nXN6v133fr+fjut6265tfM2RjYWF5
zM7C8t/r//98g//9pn/ggPDSPwJerqqX8/fTAdHYDNNvJL8YvvTI288cWMF/
boBkz8++lZOpT2E5vzOzjORXa8/wOfs5wclcp/hIkj88tO58XegKnCXv26xJ
dlhF62xMdYfxk5JHzpO8X2iHAPcHT7B0km9cRbJzwYXgC37eYFv+O7TyLwFC
N4/LnCj3hXERlQ92JCs2P2xSKvSHwpDbA3tIVotQeH87OxC2CUirNC8TUNPw
TdgwNRgu3JpZeETyvRTrfqO492C8Lbx3BcmDv2a070eFwZKWyjnhJQLSjMQL
lHyjgD3eozp0kYBWjnWqm6s+gIzYoZfrSD6RLifpURYN1WfPxU3/JqBgpWeO
dkEMiPV+51IkudywYqIkJxZSPkXFxywQ4Bhpy7Ul6xPsTPF6c+YXATyCOWer
k+PBhGdXs+NPAjR6jNvXJSTAI8Lgat48AVtD/jy4GZsIdlof5gTmCOgsEQpr
D08GjY8NPx59I6AO31s9eZsGClk3V1gSBNzqy4mvkksHouiyiimTgFR9nw+N
5elgZSQbqEgnYNX5cZmmkgx4WitKS5ki4LWxe1h4Thb84VzdYTlJwBOnYZeX
R7KhpvrFouQEAWX9950eZGbDyQldVr8xAta3PTuz7fMXKIwan/0zQMCv1t2P
FT/lgrHLtfoX/QTgWtNkzp158FbtzyhLHwHvqQy20g95UCRv0TLVRYDSc7mQ
LeH5sKSanH2jhQBRg1l2D79CkPM4+bO6jAB/R+Edwo4I3zmCrOORgMWPKLDI
VgrLRlIDjsUEeIyzs41fKoWghATLdfnk/lj6tcc3lULCpWfYmEbAJP/p/fOD
ZfBh0dvxXRgBZnp8XwIXK6DuYfG/wRAC/r7l7z0ElXC3R/bpriACSmxeSVW7
VIL3bXulIB8CHt53Oj68ugq0dq+N43Ej60nlq3WtUDUUx0y3KpqS+/ucUn1f
qhYatduFuR8SIGKiKhP+pBau0soflhkSwPKsKK4+rxbKeOw3COgQ0ETLObMO
6oB68WqNghoBb6OT9iko1oOMvufjNUcIeBcqfkpJvxEEV2Tbj3xnAu1tQOnq
iy1woOxeciOTCUG0rqxvBi1Qd1N9Z8Y0EzgMC33aXVrgx+yKH/pjTPgUHU71
Km2Bc3tHJY1bmeBkrHXi66lWkHNYwcn5mQmyxEicw+E2iNPzFH2jx4Su110S
Rps6QOvrjhBnbSaw0/44FB/rANMCawcLLSYcLTKu4NHsgCt9qkEnrjKhfuMs
X5RfB2xdX7fL8jgT7lidHXDl7gTRrYa9NjxMUNmlkKyy1AnR0pf2TmYwwPT6
v+zC3m6IH5Ja5E5hACPDTK3xZzd8vWGRvi+OAaqmjw52C/RAy0eX+muhDJDe
cyGg/2oPnD0+OX7VhQHHm3LORpb1gHnnlV/fVBlwTnZo1cqEXrizS4x/nkqH
m5F9h/ZY9INu8eo9J8foEKMpFWnt1Q8OPRHqz/rpIPl3t2VeQj88y1OnD3+l
A8ud2gOSo/3wtSdXTTuTDhmOn87UqQ3ATFCfDrcdHaoDzEdyDw/CIUGX58or
6HCC5qd5hT4Et2q22qxfmgEFLknuVVzDkPNnj1fbjxnQN/j8t0B8GAoWRgSO
UWZgQ9CgM5fBMLwVe98eXTYDTUd/c0DvMAR4PN/L4jADB1JLTRf1RkBcc1hp
ljEN+QNUmrT8KHymyBvg+DRIBKikOmqNwj1LOsWtfxqaE4O9Kg1H4WGPrORS
7TSsE896d95llKy3sEPvYqbhV0ruIZbCUXCmjJ5R0JoGqQ3+j7z2j8GuODbb
o/k0IHhcd1RxUoCv9+yRijQaVFGXPrlsoMDmnyIfFOJowN13zfbUDgpoTIr6
X/Kngca8AHvUKQqY/ogR/2FKg9SQTEUJMwpQIxjC20VowH7VatGgjQKvIzy5
Rx2p0BZRYrAreBx0qtY8T3xMhX/lpjMXY8bhSmQo1cSYCl2t5/T008bBqpdR
M3SdCkY6T7i9asZhnA+G7A9QYZXkWo6Pv8bJeiyJDe+ZgrtVZzi6NCcg5UFF
if2BKYg2aG6WXzsJHGuPsUaJTsGVQObO/K2TICHqFlywfgpuD78X3LFvEoy/
mHwdXJoE6StydSMXJmE/K6Oko3ESlqu3sKx9PAkzN69VuJtMgtS+sLATnZMQ
+/Q7p3DsBPTwN+zz95uCCj0xX7PgCXi+PPjyYOQUiFBihwo9JkBH25e3KnEK
dIf39chaTkDMBoeY/tIpkNbSSVl9dgI+26ra5DCnoD5IX8iiaxwaupIGReSp
4BphLlvONg5KDQVcyQtU2CU8+jBgngK/xWsXjrDTYEDJil2PSoG7ISe+5/LQ
4Oe12EjaVwo4Gb1fTNhBg2w/i4G8EAr03WUKHlOiQd7un1nXJMh1p+nOsETS
oNQjR+DdtTGY/2uqfOz0NLQ+3dnzRW4Mrppu3T14cRokX/C97pEZgy0PnqU+
V5kGwatt+bzCY8BLt6/9qD8NpftVWs9SRqEp/NZgyGuy7nQ2HcuwGoW+DT+O
7mifhg+pEnf+vB0BypBCcrD+DHSGclOdnEfgV3X/Yp7xDOjmlz9mtR4BY+lD
Se1WM0DvaPywoDUCZrJXN867zICV6kJk7vYRcF/uZKd+nIFLN9bu+Wk0DK4C
2g+9Rmcg7mbY3rufB0Hk1oOr5TfpwHWM6WzjNwgNb6QTufXosG2LW7q7zSDI
pu8VVzaig5nzm6yAs4OwuuudS4kNHUZcg1bdahoAx0c2r5T86ZCr+rE9mN4P
Vl0rLmxpID9v7f+Lb1cfSP7+0Od4lAGhDw0sKSv6wGiHuJn1aQaYHNr7Mm2i
F7KGNNJ1ZBkgF7U55HB8L6QG1h4XUSOvUxOshvb2wn5D550nTck5dLqlbEyi
Bzo57LIGPzDgc157csehLkhpuN3ZxM6E/efzIhv5u8A4Xzjsy2ompBa7KpR8
64Tq7K2d/nxMgNNKs+/SOyE253SUjDATRtvNnk8e7IT71mV3NkgxIf7pqlc2
EuQcdi7aLHOXCTpnvei3drWRc2ei4XcaEyK+sCzUrmyDvt58FbtsJrC6PvWU
mmoFxYueMj/ymND3pMJoIbEVdF/l7WkqY4Ln1SetKgdb4cf2eOc97UxIodew
HznRAgG+d/nN5pgwX90tcndzC1Td3Cz7eIEJcnluzzl/NUNn/EKN1RIT5FPf
nHrzvBmkQ/dU3lhBQAtnwxuJl02wf26dSa0AAW7m8o28AY3wa+xM1NHDBBwy
mjSfvt4IweY2L0rJcyz86eQaFGqEP+uH4mSPE+DlXGChHtYAlKbSXCkgIDK2
yHvfx3pweDPdm6VE5hyf7+lRn2vBOrjt/vn7BJh4Ht+zzqIWuirThFTJczXh
gJKP4+FaqMrL+qtJnrsKu5gWF7NrgFXzsOlVKwI6UmfE3uZXQ6OibfqAAwGm
qQTLuopKOBQsd+6lPwHpT1VjH7hVwvaBENHV5DnPr99nkHe5Eh4nb7R7ReaA
bkMZK8XGCug4cibIOIKAb6+pD050lsMrV6Z+Txx53crg9cPgcjAWebAkmkhA
3qWSk4E3y4HXw5FLP5kAgXR2n2EyZ2T7GLp8JXMHy7Hg9+cnS8HT5XmbfB4B
eh/bJ1QSSiF520U2zQIyV6lNn7hlXApCA/4fbxURUKRr+rB6AGHf5i6pq6UE
qKa07fKhF8NvSerL7hoCtIquFnVwFYCaGttb505y/QIe7Hd+lw/mq297C3QT
MPXM3nX3unyo+qSzGNlDQJCtqOHdTXmw1XqeN4rMYcsCOge8xHNAivXpZrlR
cv2SNbZzJX8B246LuqFkjtNi2tFdJL9A/T1WHhqFgOm6NfaGR7NhsxdrqDmZ
A++Pm+HshUzQ4h223T5DAN8mrk/y1RlQIVPKPEnmyCNat5Qj5DNgY8eFWiUG
AVvMvukfV00Hl2N7E26SOfT85GUBlvg0oE/zfdYgc+pccHOne+pnWMWMELoy
S0B7A3fCi4IU8EmvW7/xBwG6HEmSc6XJ4DK8ED9H8ti50xt1a5JA9sz3iDoy
9072bmfb3ZEAYjftMrTJnHzlnYmtY188hHMlNm0mc/SupsDzbSNxENs6erWV
ZAuKe+ZDRiyscKyyFCdz+H3245zWQzEgtOWocgfJ6WUcDTbNH+HvQVWpZ3/I
XFy1eOlJaTT8Q+pWATLXL0hurjXL+ACBmu38n0ge4+k8UiMXBW5sU1ySpBdc
l58RSBCLgHHNZe7PJBeebxhVmw6BPf2xO/xJj+BnqWTZ0hgEh2rmjy2QvOGX
d8FwagCs7KhV1yC9ZOmZYnyEtx/Q9q2wiSf52rP1OpqWPpBi6xM5S7JI0fq5
9XFeEP/9xlcp0nv6i8JEnzx8DY1KimwmJFuFsT5uOvASPlVonQkl2adX6Izc
iBPcErJ0LCX5fh579Nj9p5Dj5VU1SPKzG2nUub5HsIcRve47yaaB7+8eb7kJ
1a+SDZdJbmYdi2HZfw5VD8SV/CP5T+2vu2HL9/DgUd+tv0kWVa28cXzBCm0c
zFxoJF/cXp4WYfkcRwwvMFpIDs2fTXSYf4Ht7QJ300hec1HJSlzqFd48TO94
SXLv2SSWBjMP3P6oW02N5NXfq3c9SH6Htn8oHetJVh8+qLVs7YuKrTvuNpP3
3yATKnPBzx83m8UznEm2q3ANeZEeiH9a3V33knxMo3m8oCkYPV0GROrI9fUw
1XNl0N/j7JvSch2Sw8xFBzZyh2OzjZopg9yfgfo5zdN7I/GUdtoWK5Jv+oyn
Ju/8gPmtS+0Mcn/TT1xMzJaKRskfd/10SbYTD2jNO/8Ru3WXterJ+pC2q+/L
VY1BALbd+0kO3NCr88nsEyY9metsJb2ubGeyrL9DHHYmXygQIvmT0o0eOy/S
YHjz4zTIerTWVhg/mpSIm6oWQ7JIrxMfFzumPpGKn1OsaSu/E3DKWOfaqrnP
yDDy2rCC7I/rOrd0brCm44nXdaRGkvOjyllini8DlVqGumvJfovMN9g3dyAL
zfRlny5RCXDtL+oUy85CHrtTy5mk1+kcEvijfiob6Zzz3rpkP3uFcglGyH/B
8qZ9gx/IfqewVj+ZNMxF+5vR23MGCYjRGjsxQslFF4Hho+dIr7tlKbunQy8P
+Tdyu5STHiceUMuZdCcfWZpjK9LI+eO+a+w51/VC3LX0+ueBVgK4DLYdbWsr
xOaKzo5nzQQob0/f4a9ahKs7DzKLvpL92fJHhEWpGJ8ZYrtE/X9eH37Z9QKi
mXmUTWY5AdmrqZfXliIamYSfKCXnocRxl4qGbaUovB1OVZcQEG3mvvNSeCk+
/2G4VEDO0+CM0wWrg8tw4OuRl5czyfkbND1Y4lmBrDtpIowoAuz1VOPP1Veg
6kV1bidyvnMkaIYVc1bitOm/M6tJLzzne6I6wa0SDyy8er6KPB/O/lW2v+BU
hTKl4UaxngR4V7zeYGNZg9Z5d8PMnpD11mMUba3WgEPNxfLnZQlIdK3c8Cig
AUWMFI4EkOfbje0/o+52N+AG/73iQ6fIflBfmbj3TiOWVezap0Wej0/47B/f
MfqKLA4uFYO7yPqPHpHY79CMd/mn4Cx53nK9tWSPwGb8SnAcZWMh699GcYiN
tQVXhOfLFS+SHnYlq/qObAtqOOTlbfzBhHemaxX6a1rw7W4BQcNRJrSfi2ug
N7dikfOaao0iJkxv9r3b860VE9jbljxymZC3/nFDydo2bOGd08/LZMLeRh0e
e/U2DHzaW76QwIT+X817c7vakH/XmwW+QCac+S7uIT7QjoW2JY7vTZiwxHbG
MG2sE8eCTAN2rmPCx8MymlfZunBx/bzk3TVMuD43fGhiexfSZBZsfVYxgaqg
7sym14VqmgPiA38YELj7uf/3oS7U2BTJz09hAF3yHfNDbzemWYW9mSG9UXtL
/o/fdb2Yw8yWcJBnwI+V48qV1F58UTUnknGBATHDIU7uHH3IE2TzZ+AUA8ZW
h8KCXB+q3W4x3yLJAOeGM0ou2IffBBR9T65jwGbTlkOHs/pR6dJ2/fkeOggF
t93CgEFsK8u4aK1Lh2cxjM++6YPIoehVK0nm0ZDEtCHtxkH03JdgS1Gjw0V2
05xB9iEUUUt6dFyWDubP/nq+thpC1STdJp/ddHipzPPPXnkYXyZKr1imzsDt
e6bmN51HcLHYeWcLmZfZLeem696OYPgerblsMk+fSFprIhM2goyb+ZL+t2ZA
6dt2U/acETxYMT91SmEG5qZMhB7NjOC48LOYs3tn4Ia8kZz99VEcUN20zDVJ
5v2+QwXWYmP49kWA89db0/C8+q6EzZEx3LfM4NmhNg2ejwttrS+QfLBpj/nl
afjbfODd3btjqHBeZN0P6WlISbU+9jNwDP8G6bF8XDMNA7R3W/asoOByysHi
yCLSG9es4Hw+QEHLMZYscSEaDJparWulUVCQ2Wnsv4YGe68q2W3/RcEVnqvX
LLDSQH2rlHrG2nFU4fURTKFToTc2pdTr0jiGX4r5gGVUqJQcuXQwbRzZj2VI
B5NeqKjtfnK1/QRmvtwvsC13Cg6eVvjb6D6B/oSKgkXKFDxbccra038CO8d1
k4uip6BxYp3hQtIERj7unpf1mgKb+EEhv94J3Bqp+nON3hRoXZc7Xn50Eu0O
0hc9Vk/BjHJvBOv0JFZd9BFS0JwE3lvCKwXnJ5Fj87XKSYVJGAtxqNjFMoWK
xXu+O8Ak6H0qOnlYcApz+DUHwvZMAtu6vTUrL0zh7/6aE0F/JoBp8nwpNGQK
m0p2B7lHTMApu055g/NUFL4qw245PA7fb6VFhCpRsf6di6xe2ziISxDUei0q
yj+g2CtWjcOC2ucbgmZUDBTgnuZJHofBoqULN0KpeID/0UZFG/L9e/Y+c5ul
4safv7YlcY+DqL6cvXkoDSP3rlnYIEWBlMKXkRhLw+/cSW1KuyjwzeWtBmca
DVfM9u5wFKTA+4vrLFwraPiGyZBu+UN6YIHgOlE6DSnS0m+kKsbgSVGw1bdT
01h8sNr9B+mNj1/Ghvd2TuPtV6IGrmajIK/XyMU9PI1/ZQMPauiOwpcL4b+P
UKfR13tih+i1UTi3tKhs9Wcaww/OvU08OgrlWxN8/bbNoIzl+gmXpRHQWmC7
+MBwBsPlNgiqvxkBwTe5F1UZMxhIv2zHDcPg/yVh2Wt+Bm/eUrvxavswWHd6
UcuWZ/Ccd+mrBfZhENXjUF7PS8dav6b58tohOEYc3nhbko7KATtXzKoNQdcZ
ZpbZIzrG2F3bna8/CE+vyLdGTtBxgj2C/4hjPxx+5WKuR6fjotjJf1/0+uGG
ewnH1h90PC+bfvnwxX54aJAj4sTCQM3LA6zr1/TD/BaFUuZmBs4oOg16vO8D
wZyqu3bKDBQ94iQvl9ULG1ujzh9PZ+Cv4U+sQmPdEGniIyiUw0ApHcvs1spu
uFT4OptZyMCPBSnRr+K74aTbxMXXNQz8d5N6edi0Gxw1VgbfG2Jg0bmfHkq/
SC/sVCkp5WLi32iWA1u5u6BFUr93+Q4TC+znd9ZJdsDVLkG8Y8BEiteBR+q8
HfDB5ehCthETV71oXepmtMOAWuhdeWsmNoo6rG9JaYcbz5mtq18zEafv7HXY
1w4xn65yUdOYuMveg7ed9EYJ1u1PirKZODZTsHnVijaIvbFry+t8Jj5dMmc7
QmmFX1Wym1ZWMNG6beyNc3Qr6JgcTArsZKLO5hCnwa2tMPROjpX/NxNnviic
S9vQAnVMVR+tZSYedJbp2UNrBt609ktBrAS6NS8LTMc1wzGe+7t/ryZQnR7r
qrajGfbNm7trbCbw1bzp9ZyNTdA9MTege4JArr6m21T2RhgrWzxfa0Gg0cCq
Y9YdNbCJ8XtrsTWBz99s08kOrIErClZiSTYE5kx0JxCaNWC8cjrf1J7ARxlJ
wxq91TDmxdPt705gQ7uDT/9gFeAeJbWH4QRetW1Mn5qogKN57dEjkQSGrFG6
0hZXARYvNq1XjSbwi9vCYu6DCvCRfHJbKI5Ac9GEn49p5WD46du9y2kE/tqj
MZtDLwOdpJcTB0oJdO694dg6jmAQ94JHrJxAuaTH3zbeR1Dks1EWqiTQLsbc
78ZUCfgevrFprIZAnkiJ8VJaMXwWn6/a2EzgKr47UieYhRB6zD+hrYVA+6Rf
QRfNC6Fl9sWHl23k9cCf4orfCoDrUUxTSyeBCdZuVy98z4fCdTEbuQYIvFH/
T3h8PhfegmHoy0ECDxyru1Fskwul91Ukfw0R6N5CLfH5lQPbqg54Vo4SWKBR
6ib2+wvYSFrxsUyR+7Pt2OO1S1kw29C48RSVwJ+cvFZonwVjC7GHzWgEpv96
E2S0nAnFapE+RTMEqjocakv5mwGBg52LZM5EpscXTxbWdDDtex7+7RuBN61G
2TdypkHekcD3w7MEfmq1eynO+xm8ZSAh7geBMz8OHT68OQVmVhvkO84RWLZj
uGO/aDI88xMVU5kn8BJf+6KIWBKIHI1Z2/uTwNZHpeXzhxNg3WYuH79fBK75
otXXfSwe2BSUH8otEMh5xeJe9pk4GDpdvd/3N4GBf8zxjnwsbDJJWn/gD4Gs
3v849qvEwGJBoxaSvPK0XuYPjY9wI/scvWmRQFP1BeFnuh+g3FjtjOISgWP8
JZ+MGiOhQnsbFUmejJj70tsdDsExnvQDy+T9HFcYkaWEQtsBJwU/kjOtbMLj
mSFgUjDC+o1k5QdS+iv/BEHx2Pt1l/4SWB95PPHOykDw4w+yDyB5bFaOls7v
Dztcy6Gf5FDT9aH/hH1hizKv9uZ/BJ68X38/QPkdxN00biW9B6Vr6Td3GHqA
oX5d1AuSz/7kW058/gocf4vUJJLMNP4CB/xcIOTlvcv1JAt14A4NNQcYOeMt
SiHZ+51YxRXHJ8BxJPTaHMmdWapOFpomoKjwYpD0OOTlhUFfXS2wOH6hjPQ4
DMx0eMSdBljlMbBMehxujnPr5go3wF0f1fzp/31/kGGtULQlMrNiX3STXLXz
C2P3Y1vkq++rLSC5v0T9b1CMMy6W/zEKInkrz2ZuobcvMUmNR9+YZMv9SRJ+
Nq8xdHlLtgzJbj9f2HDoemHDDhmdRXI9IrT4Fwt2+WDe7H2DPJJ/hLreNdvk
h7fNsfQRyc07Bh5t5Q3AnU/UngqTfPq6dkYNWxD+SD/kXkauP734cobpr2Dc
8snqG+l12LWPMs9Nel7lhEOzG7mf38/JmR3rjMBB7ecXeUiWbA/NLK+Lwsej
shvekvUABXqSO4c/4Hf3zPInZL0k/hp+Edr+EWdtwj4MkfWVHvn+dfPXGPTm
6ewBkuOG+tv+1cSi+HT7jRmyPqPSPl1QK4rD/MjpD0dJjuR69c0yJx5X9szJ
PiPrefLzh+9e6QmY2hYaNknWPw8htyIjNglNNgcEPSD7ZcO5gbYkL9LrditW
65D9BE12Yo1haXjeL2VBmey3GzPk5Luejo+Oxd5fxyBwfsCuxv5eBtawmlpI
kP2rFqTbdt0lC2eTHpYMThJk/hcpKFlNel19yVq3CQKb2Ln/bvfNxm3sP+vy
xgjye5dYu6O+YGlvu2c2OU8Mi3ObfxblIhdPLt/WfnKe9Jw1k5TLQ0nPc+H2
vQS2eF05rtOQh+z1W1tFuwh855ORk9ybj+fkrHKXmwicZk5L0+cL0eKK6vRq
JHD7j4pfjwVL0ZPBc5RSRKBT382TrTdLkaj64ZNVQK7PlfqxPRGlOP4p3fFE
Djl/u4w31e8sw+ZvNbJ9KQSeMrnE3XaoHLcIWHBbhJD9xzJiNSVfiZ80V+YV
BBLILR8tPetVifoqtc5LfgTeHo/eP99ciSuffnto+JbcDySezFyvQjPZlRmN
LwjsOcZ2z1uvGrfMqTTOGpH1n9MpEfu0FrexOKRNGhIo27lHoPNLLVLX2420
6xMoJvyd9u9HLTon0CSDtcl+npmTlLWow2FpCf8yFQKHtliaOhrVY74AbX/c
EXI+3+I1KtBqxAHecAXRwwS2PQ2WdQ1sxNiPvJV+EgS+4Xu59WJ7I34/nF6v
K0agQdKSd5byV8zbVAzRQgTqnmapPXGxCVnbRgOzF5j4hdNU3HxjCzbxiH3N
nmOiyZV/y0LHWlBX/Pej1G9MvFQk2F90vQVLVpz/5k5l4las8fjj14I9NCuB
sW4mnlgpypTjacWqJ2qF+78wkTH18Bgfaxue2xG8d4sxE/MedUZfnGjHS49O
Xy27R76/wM17cmUH9hVHp9/RYWKk4K38F2Id+LOTctpeg2QtSljcgw5kBmgG
q55lYqf7iqBEWgc+Dc8r0uJn4sf7rw550TtxPV+W30wqA4WWt9JdGN1Y5esw
8jyegVsVslRu8vSg99SrWPZoBrrFW1XvkejB3QsNQb/9GWjX11SbadqDym/H
bjjZkvlplHO71UwPmp/WZZ27wMAEeC8WNNWLu9hvdHg303HZKVHiSF8//jUb
qDlaS8f7bu4rPRf6sZw3saS9lI63MpU39wkO4KSwSsmvDDo6MeZ7dNUH8HFi
Loz401H2aRryNQ7gUVfn7Uc16bjrvtzYTOEg+mhvf73cMYOLd3aZGQQOo8Ub
G46Exhl8avumPCNzGM/GjDUrVM7gkguf4q/mYVzzVuGibdYMdpqw0qVXjuB6
3UF2O98ZvFis9c8MRvDLw/2UNUoz+Oj1lTzurBHcMCUm9aZwGr3GUp9XBI3i
1YzEt6OZ0+gYkjVFiSHZQ/CpdNI01k47rGXJGMXJxrVLFSHTuONRnu/+hlFc
OhOxOuTJNGryPaAr/xtFVy9vfl7JaVz7YY9i5f0x3DAewXWe9ANG8gxNXYqC
nxxDVZt9aGizk5d18iwF61NeG2u505BXo9DKWpGCdb91dl5/TEOX9uCbzvco
uG/FTdoqZRp2CVSP6AVR8LGNXNNFFhoueG48cv43BdN/Grmf16WiYqvULu3C
cdyiuF5Q6joVW9uk5TRrxzFxTqxIWIGKr9TjHRQ6x1E1S/h2nzQVz6gfltxO
jKPd5bHTKzmouFnonIj7jglk3IXb61Om0IhDdZ3U6wl085stl5ydRFvLtm0z
ypN45MJ1hysTk3h6O4vZ9tuT2OEUmHu7dxIpX2XvqT2YxEWb4/lmZZOoFnPs
eKTTJH5mk1e97DuJm87qbp1Jm8TbXcFfqw5OYlKc+LAy3xQGaX4y4DeawKBj
K76I1U1hvdHU3+PaEyhe0exV1z6FSjlX1LRVJ9ApxNbp/tAURjiLi/sfn0Cp
VmrSux9TKCXWQSvjnMD7F9e0Bm8lPW7PZgOxhHH0yZzd4GlBRa7pur2iFAru
ZAtPoaylYeVeG8tPXRQMrbOdrBSmodJcTMvuegrK5/BPR+2mYXcrZVQog4Jy
6UlysidoGDfbGVfmSMFvaknsoEvDnbX2TyQ3UdBnqPodZyoNeVS9T7kqjCH1
1PKt9vPTeH6TzNOsM2M4kVdlVagwjWclQrWHD5H+biunEKE+je3uTYf2CY2h
b9WPg8qG02iV7a3hRRlFv5HrYfdeT+NzAY6Tbs9H0ZZvTlT/6zSaa7Yc1UkY
wbd6Yqm+12bwzAvHT1xhI9gso12WemsGW8Ue78h8O4LCf6I0KvRn0Gk1VXXe
agQ7Qz9+67OaQRb7lb1KZ0ZwHnbVFfrNYIuyVcWrj8O4NSDr+oXWGUxX2V9R
Rx/EuHH+pevyZB8PdNV3NQ2iYEBD2mk1Or4/fdmuP30QTXaL2AjfpOO8M/f3
hseDeJ+j4nCZER35FXMPKSwNoBVnr3iqOx1V9GqUK1YPYL+vscTKSjpeaLoQ
S9nWh46nrVfGyzBwxbiBwM9/vegy0vfd8wyDnPPSp1hHe9GSkZVuJMfA00+9
ulljetFbhydo9TXyOutlmVSxXqxh29VGNWVg5pv3+7MP9GD2kehHwuTcov4t
ulEq3YUXdI3fy7Ez0TvHtlVYsAuV+tv6CzmZGFulQrVc6EQixLFxPy8TJwql
eXiLO/FunUbW/EYmrn0a9HfVpU5cdLlmdViSicaKbb2sWh147aR40GUtJgZM
yLgqP2nDy61HeiZimChfu7KXW6sNTc28HlskMFHjX1xO5fE2NKs8FfIjhYkr
Lk2I7V1qRcr9M5YUcs4Pmh1MKnZpxTcHnig+rCG9TEw3R9i7Bf+N/M5aQ2Pi
n76sPpT/ilw7Pqokk+eQaBvH3BqOr6ixJ+Cn7z7SE1IkitUqG1HtoEe6uSR5
rl40SC4/24i67EI3+WUIdLUX45OTbsBnDzXuTsoRaC3Fnt+5uQ5FRhuUx3XJ
nOveXBfXXYtffQriTt0j8MN1uWKLgFrsiNvL6vGAzO2z4u8JnlrENeX53GYE
mi0rnAtjqcE/pxdFYuwITLb7JlE4XonXb7L9ESXPdQX129Y7oysxCpZ5qAEE
Ftcpt7jdqcR4tteCccEEHrS9tO1EVwU6Oexn44gg8Nz7DXu1a8oxmF1VUjue
QBYhTflg13KsN73T2pdI4MvTx7Z8hXL83fdHX5XMGbcuuInvzSvDrL1CKqIZ
BNaJXZ6LTShF5tfSY+pkTjnLZVuXe68UU8zFT78hc4xlUyW9SrQUj1hX7s0p
IfApN1t3wmFE61NiJXOkB+5sMO18trYYk2YKClY0ENhbNPrHrzkPZddfdjMn
c9Q5geCR06p5aCC7VmGhj8Dlh6uyR1pyUdD08WZbMofxayjGCLbloOtl9wH9
YXJ/Dstvg45srCjo7e8aJ1CiLpJeqEGywY0fImTO8yqQjZfuzMJ6RpyAHul1
WzOGddd3ZeKlkcePGkiPc0vX0YvsTsc6BS+Hc0wCfQvFeH9qpWO38JF2eTJX
3jl2Wck/PQ2vsOkfVCRzZ7bNW8n6jFSMWFL9c/Q7mRtz7+veykzB9hfBRiKk
x+3nqHpAyUxGyX9mAyxkjj1qefbnSFYiNn2ebU8mPS40cm7penYCel+Q0npC
5t6BYcOeyux49PCVHJYhc/H8jrI1vl8+4TX+sKVo0uMeeVybYH6JRUv/dF9F
MleLZTB8L+fE4ItnjfsYJE8kRt6fzolGxeWnRhvJnG4mc5/3aO4HDKQUrflI
ctbnowK/zKJwRb5V9k4y11dfOXTI3jwCpbba6kSQfEP3yY/f5mF49XMGDx/p
BV7fccDC4j2KrGbBZyS/zGw0GbUIRuE6ees+ku2nbooqWQbizdc2+46QnjGk
LG6XYemP8cPm424kG/ydX1hr5Yvu97dHN5N89SX/iYHxdyiT9Ux3Lek1zvMX
6rwmPPDLLcMdiiTjX+6PMpOvsOpbz6Q9yRX/5sv7Jl1wlqMmNY7kKM9NWnNN
DuhzePfTWpJbvAty9rc8werl6QtjJI8ld14u/GiCrxbXrv3P4xQObXt6SEEL
A/MCR//zuLObPMZl9M+DV5l19n8ep2LBFiKleQ/ao5Pf/OdxHILGh2l7rSCZ
clZvhmSpk5/fZu+xg538h091krzCrye9SOAFiKS5C+WSfP7v/u7NAm5w7bLC
Tx+SKasuFlivewNw16Vbn2SziJBb1WvfgvSzU4UHSG6OVh54/doHrmx0jWaS
6xEVb2i877UfaJcaeSSQ/MuvSavGPQD4Zpef3CLZoahml457EOBezXsrSPav
9FGbfRUCbtRX1+PI9ecQDWlgexUOe6Zbz7WR+1d44qCm3fNIcGPhibpLsuez
ictPjn+AH5tmVCjk/l+xUQ/ulfgI7j6cSZ2kt61OCFNz2xMDYnGv1WVJNrif
Y3VgZyzkH5RQTSTr6YARLphsjANPdVvZu2T9ifncnWAXiId1BhYnU8n6zNwn
dSWIJwH4Wve5zZH1K18w6ZTIlgSn58MFTcn6Nt42udOVngpEdoXkP9LbZOud
JamTn2H9PsE6fpI9t2k1XRxNA4+j5XmbyX6SJFKYc9Pp0Lpzw3shsv+wTlH9
wXAm6H33vveF7M/CGMvxZ9pZkNromf6G9LgL47PNbr1ZcPYEQ12T7OeImR9n
fNuzYSxn9ccesv8X54clTGpyICVF8t4Lcj5IymfJa8jlAltMs/XGIQJVf403
HyvLhVONWoPx5Dzp/+wQwyjIg+emLzCNnD8ljR6iaz8XQErErXqDdgJPcipf
qd9XCGu55LOKW8n6v103bR9fCFtqN/zmayHQp/jwnqYPRfDwAzU8opHA7vti
sNW/BFoPHVS7U0XgscCln5F8CDkVJQfsKsh5X3bl5CYvJJ3mvZF3GYFnLEef
PL9QClzsHOwxxQQ6blrXv/dUGVy/sbXF7At5f7/XPijaXwHDUUOn3seQXrlm
Rdgfswrw+ra3nDOaQPMEjmvSmRXwc8PATfNIAitFNJf9j1fChtUPSre/J703
ZeYo/8UqYIzIOgm/I//+55fDKNo14M6GTwxsyPn7bWprWVQNdD3ms5CzJnCL
Sdxc8FgN5Btnvd5iQfLC32uHjWpB/u/rjZkPSQ/m2lDBb10HZtSlBivS++SP
CPyydG+A4xrNmornCMx52jvZX9cA225UxkWeJj3PMWX5zJpGWAh4vot2nMBD
IY7Xp30aQazGINWA9MBjUbbRo++/wqVGbgFiO+mdKz6onExqhldpD3brshLY
zs/exTnWCt1SNZ+y8plIjT4678zSBqsGOQLPkee5dGlV3Ny2Njh4y/VnVToT
9fatjmm63Qa7RgLWF8Qz0XNfrKRSZxu0v7UYuBzIxKXZjVwPatrBe78fuY5M
1LxHa5qK74Q+9ujTVVuYONkR2VhR1QnJ5z3y9YWYmBJxzjyU0gnlH1ybF9Yy
8fwLptsxkS44f26pgZeDiUa7K/YfCuoC6YtlB8a+MbCPODO33rUbHp6zKBOv
IL3O4sp72xu9oHJ56MhxfQZuf7qpjftZLyzt3KR47zYDC+4+TQsK7oUw6VuT
7hoMFA58KB3U1QuRvUNZXy4x0PbgO71TGn0gnMFFSd7HwIcpUg8Flfth5Vza
rRWzdGQEmku2nBqE5CL3x4+f0vGuzmV7w1uD4Hwt8XCgOR1X/TJT+f5sELYb
ELmpD+h4TNpA//uXQfhizLO3WouOOUF6cp4Hh2CBsn4o4BgdOeIXlDZuHwaO
AYmo5PkZPH8oQCnDcQQefnmo1Wwyg8rnqsXE346AUeGG60IGMxjUc8gwJGwE
mhzCM7XI/MsUCftrmjcCufl/gsquzKB7l7300OwInDiaLX9y9wxqHn4pPmgw
CldVelzLBqbR+qeA92G5MRCsjt924hLpceWasObaGLxlDVnwPT2N+m25naM6
Y3BO595LitQ0hpQ8+uTwfAz2UG8XWYhM44F8ccOnmWOwN6D0t/QCDQV3uPNa
iFAgVLydXzeBhnIfQsJuz1Pg3fFsJX12Gl4LrBRJZB0H/jQ2Ra/fVLTfxt4w
yzMODNUTp9MJKqoat3o8FhsHopLJMtlPxVLjeG3QGoenXAWaq7Op6P2jInsq
dxy2vg24dtiAisw04zazJxMQO7nqq1DxFP42p3gKv5gAvq7LEy8zp7Bj6RVf
hdcEPFBLBXr8FFJhhTFb7ASUKB2oSvSbwk0ouPVC2wRIRhy5PfJgChMvVa+u
kJgEgfLq32fWTuGAgXNm7sgknKKef/5VZxLTiu1cPtEnYfiShEmA+iQ2CGXV
ey1Mgiv77F+Ny5P4zVwl5zL/FKjxLohUSE5ibklBmBlMAS1TLEl9eQL55OMz
HMKnIOXq7/kr7ydwvF6IxUONCpeIZqeIxnHMUntv/EGbCry7ypujcByjf7qN
pz2gQtnGKJnwzHGUu8D5J9+BCkmihJZryDjyv51Xt0ukQkvANjXue+P4fPuu
NYn/qODkPXlv5R8KnpU6eiYxjgb30rSji7ZT8K6M9EvJdBqcrZSQ+r6egh5j
D41T82nQ2CK6aicnBS0913OHNNLAP13spQ1zDAvs8LbodxqoSnJKTRSM4cb6
JKnFU9Mw0vlp5/i1MRQQVvxaVz8N6W+VeZ2cRjFwDfsbx/ZpOJksKrvTahTj
H0aFHRiYBplG/p0V90Zxgwy16DFjGmbbA2bn5UfxTkR9VjbfDJz/ZSK2Z/0o
ZrN+DZm9NgPqRc0DZfEjeMI/vka1YwaO5z09Uxk8jPvNxntWDMyA7eKhQz72
w2jx8YpcJmUGqoucojT0hvFG3pEdv7/PQG3JIE/NvmEs4cyukVlLB7kP/4av
FQ/hizBlcQslOtAula1bMzqIm2pklpuK6cDQpLVL7RxArojsiaRKOuQGnlwn
zDGA/1Z2fXNqoAPHLpMPS9P9eKPayWhDLx2+e1+oSc7sR5M7h9IZP+ig/YNn
seB8P1apPz19bQ8D7N5cG/t4tw8PBnM9H/FkgNv5Jydq/Xswua7mvY4fA1iE
VqlZP+5BsSM7jLtCGCCit9ND6HoPcjU82pj8iQEnMs+9VBTswZdBW2y/lTBg
T8c2b/2QbjRMf1RKI0ju1yrRCOvC9Kh93h6KTJiJTO11D+/AErYXHkuqTNgr
/kjLyL4D9xlNs97XZIJy/Jb1stodiKzjd0X0mCD919hsSrgD1VbZxu+3YYKR
1Z8Yemg7Bl+D/YmRTHI+ZrLOBrfh96+mpyVpTMi83qO0/V0Lrm/db3qBwQTL
i3x2XuYt2EP4c6vMMoGr+8THH6otGHLaJFDtNxM+Rt1kzRFowbt0In+Rk4CB
d/zvhaSa0dBIxooiRsDXNWUqKy59xbru4r2O+whoDKvk1+P8isc95s6vlSSg
sIMjL6e+ETtvf/cRPUqAf8DHeSWVRkxO2OdLuUCA5JahdrEbDdi+zV33jzYB
eZ7uWhFGdXh2+GDJZl0CLvkt+nrvq0OBMybm0gYE6EtVxj6n16KxTEDd1YcE
dEfw+Zy3qEULgdnLYk8IkNblFH/1tAYzItZ+NfQkwC1kKe7fyyqMMhHl4X5H
gPNcrXvQpSo8/N4tMMGHgD0HnY/s4azC1F9V9o2BBPC3V0ie9qxE+aoU/9wo
AiSePLm2x7cC+b7m3NmcSUC77pb8beFlmLGbkueaTcBK7s8y2zTLMGn5vjEl
hwB5iziTjfxl+E/B/6tbIQFnR/aqLbuW4qoTP501KwkoyGouFewuwXtN559b
VROQ1Cs6VKVQggmVj6pf1hJwp4ez1KSkGFlVKUpejQQoRebbh38qwscxaqvF
Owg40bHoHmRdgKU3Q2znOwnIOHP1GctUPm44ulKmoJuAlLlMV/1b+Vh174Cv
WD8BGzr2BvOdz0PeEPVyj1ECZASU9Nbx5uD17Jtu3BQC1K2/9J1/8QX9Fl77
uIyT9+utUG08l42OBeEO6lMEMIuToxL7slD7VnucM52ANtNInpG4DCw9fCUq
i0HAYENy/fCmDHxfGjcwwCTAcp+9Wp9XOr7+kL9r3SwB01ExLc4Tn5GRWCa5
7TsBa1Kiw280kN7Xf8te9AcBN5zWaIhnpKBfA+coxzwBBh8lB5Psk5Dn3+tf
dJI5A4hbuvqJaHbRUrX2JwEHtQ9t4b2SgDrhlrV6CwQMaeuUqQvE4fDomimR
3wRwrDdWoy/Eokqs4OX/nqtkNZFwcByKQYXs8HqRRQKubpZg8U2MRspCFiOH
5KJXgezrvD/gxwRzNbklAh7xbv0pTItEmZTY+RqSz927Z8uVHY794/v6zi8T
8EX4+JlvjqH48MDg3wySBeitjK/yIahz/b3Bxr/kfrKaHYtdH4Qz+85xPiFZ
pVGh2nrYH39afKHXkDxem3DpTJIvHhgf5ic9DpIDA+rYpt/hypOJj1VJlvKf
fP/CyQNrRf8KvSJZX7tNc2H9KwyApj8ZJF87MXHDKOkFGsqs2drx33OKP7Vn
PznZoVBkqiP9v+cgJR23WidZ4kPOZJFFkv+t/NT0JEkP//f/chza66XF4jKK
/g9FomeM
"]]},
Annotation[#, "Charting`Private`Tag$3092#1"]& ]},
{RGBColor[1, 0, 1], Thickness[Large], ArrowBox[{{0, 0}, {1, 0}}]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {
Re[E^(Complex[0, Rational[2, 5]] Pi)], Im[
E^(Complex[0, Rational[2, 5]] Pi)]}}, {{0, 0}, {0.30901699437494745`,
0.9510565162951535}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {
Re[E^(Complex[0, Rational[4, 5]] Pi)], Im[
E^(Complex[0, Rational[4, 5]] Pi)]}}, {{0, 0}, {-0.8090169943749473,
0.5877852522924732}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {
Re[E^(Complex[0, Rational[-4, 5]] Pi)], Im[
E^(Complex[0, Rational[-4, 5]] Pi)]}}, {{0,
0}, {-0.8090169943749473, -0.5877852522924732}}]]},
{RGBColor[1, 0, 1], Thickness[Large],
ArrowBox[NCache[{{0, 0}, {
Re[E^(Complex[0, Rational[-2, 5]] Pi)], Im[
E^(Complex[0, Rational[-2, 5]] Pi)]}}, {{0, 0}, {
0.30901699437494745`, -0.9510565162951535}}]]},
{RGBColor[0.5, 0, 0.5], Thickness[Large], Dashing[{Small, Small}],
LineBox[NCache[{{1, 0}, {
Re[E^(Complex[0, Rational[2, 5]] Pi)], Im[
E^(Complex[0, Rational[2, 5]] Pi)]}}, {{1, 0}, {0.30901699437494745`,
0.9510565162951535}}]]},
{RGBColor[0.5, 0, 0.5], Thickness[Large], Dashing[{Small, Small}],
LineBox[NCache[{{
Re[E^(Complex[0, Rational[2, 5]] Pi)], Im[
E^(Complex[0, Rational[2, 5]] Pi)]}, {
Re[E^(Complex[0, Rational[4, 5]] Pi)], Im[
E^(Complex[0, Rational[4, 5]] Pi)]}}, {{0.30901699437494745`,
0.9510565162951535}, {-0.8090169943749473, 0.5877852522924732}}]]},
{RGBColor[0.5, 0, 0.5], Thickness[Large], Dashing[{Small, Small}],
LineBox[
NCache[{{Re[E^(Complex[0, Rational[4, 5]] Pi)], Im[
E^(Complex[0, Rational[4, 5]] Pi)]}, {
Re[E^(Complex[0, Rational[-4, 5]] Pi)], Im[
E^(Complex[0, Rational[-4, 5]] Pi)]}}, {{-0.8090169943749473,
0.5877852522924732}, {-0.8090169943749473, -0.5877852522924732}}]]},
{RGBColor[0.5, 0, 0.5], Thickness[Large], Dashing[{Small, Small}],
LineBox[NCache[{{
Re[E^(Complex[0, Rational[-4, 5]] Pi)], Im[
E^(Complex[0, Rational[-4, 5]] Pi)]}, {
Re[E^(Complex[0, Rational[-2, 5]] Pi)], Im[
E^(Complex[0, Rational[-2, 5]]
Pi)]}}, {{-0.8090169943749473, -0.5877852522924732}, {
0.30901699437494745`, -0.9510565162951535}}]]},
{RGBColor[0.5, 0, 0.5], Thickness[Large], Dashing[{Small, Small}],
LineBox[NCache[{{
Re[E^(Complex[0, Rational[-2, 5]] Pi)], Im[
E^(Complex[0, Rational[-2, 5]] Pi)]}, {1, 0}}, {{
0.30901699437494745`, -0.9510565162951535}, {1, 0}}]]}},
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->1.25,
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8915599328722816`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.8915599454035172`*^9, 3.891559945543189*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Q.2) Plot the open disk:", "Chapter",
CellChangeTimes->{{3.8915599563124003`*^9, 3.8915599917520046`*^9}, {
3.891560259737656*^9, 3.891560264913283*^9}, {3.8915603113662543`*^9,
3.8915604592590675`*^9}, {3.891560773438297*^9, 3.891560773954186*^9}, {
3.8915611836402636`*^9, 3.8915611943610888`*^9}}],
Cell[CellGroupData[{
Cell[BoxData["ClearAll"], "Input",
CellChangeTimes->{{3.8915613275265574`*^9, 3.891561342104142*^9}}],
Cell[BoxData["ClearAll"], "Output",
CellChangeTimes->{{3.8915613347881956`*^9, 3.8915613428757257`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
"Print", "[", "\"\<The open disk Re(z) >=1/2 is given by the figure\>\"",
"]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"RegionPlot", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"x", "+",
RowBox[{"I", " ", "y"}], "-", "3", "-",
RowBox[{"4", "I"}]}], "]"}], "<", "1"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"BoundaryStyle", "\[Rule]", "Dashed"}], ",",
RowBox[{"PlotRange", "\[Rule]", "5"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[", "z_", "]"}], ":=", " ",
RowBox[{
RowBox[{"4", "z"}], " ", "+", "1", "+",
RowBox[{"2", "I"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"w", "=",
RowBox[{"u", "+",
RowBox[{"I", " ", "v"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"root", ":=",
RowBox[{"z", " ", "/.", " ",
RowBox[{"ComplexExpand", "[",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "z", "]"}], "\[Equal]", "w"}], ",", "z"}], "]"}],
"]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{
"\"\<The image of the open disk Re(z) >=1/2 under the function f(z)= \>\"",
",",
RowBox[{"f", "[", "z", "]"}], ",", "\"\< is given by the figure\>\""}],
"]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"RegionPlot", "[",
RowBox[{
RowBox[{
RowBox[{"Re", "[",
RowBox[{"root", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[GreaterEqual]",
RowBox[{"1", "/", "2"}]}], ",",
RowBox[{"{",
RowBox[{"u", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"v", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Magenta"}], ",",
RowBox[{"BoundaryStyle", "\[Rule]", "Dashed"}], ",",
RowBox[{"PlotRange", "\[Rule]", "5"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}]}], "Input",
CellChangeTimes->{
3.891560115278652*^9, {3.89156019090656*^9, 3.891560241948626*^9}, {
3.8915603417773657`*^9, 3.8915603534112225`*^9}, {3.89156038740318*^9,
3.8915604216305404`*^9}, {3.8915604683250155`*^9, 3.891560478120123*^9}, {
3.891560538334735*^9, 3.8915605618407187`*^9}, {3.8915606911319656`*^9,
3.8915607089216843`*^9}, {3.891561687314821*^9, 3.8915616966682067`*^9}}],
Cell[BoxData["\<\"The open disk Re(z) >=1/2 is given by the figure\"\>"], \
"Print",
CellChangeTimes->{3.8915615558422303`*^9, 3.891562390762703*^9,
3.891562695954979*^9}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGBwAGIQ/SPRQK6Sl9UhZo+zlnMlLwYNk0/o1p7d9knIQYvf
SiXOmRNOH9uiJjHlOoPDcTAtABeH8WHmwPgw89D1w9TBxGH2xYNpJofDT+2W
B8Rxw2kRhZWRvE8FHb5O8lhrOoUfg0Z3P8x+mHkw/TA+uv9g+tHtxSUO0wfj
w9yBrg/mngMVNhPbJnE43Ak7E/QpgxduP0w+1PfIloBtwg5zOTv2SRXyOjBs
8k0teifk8ErrjbEzIwec3mk2SSnOmMth9vOHqnHBHA4SyilZn3gYHN5nuzo6
Fwk4vNp7ZFdAAIOD6Ybrx0ylBR3ut9znqvzLD6dh7rKxPNC78JWQQ57UXGON
8/zw8KrzcDxkuoUZ7j+DnZ1XpbIQ8QWLv6yUs5tMS3jg4vHKbRGftLgcgnmn
Lw3w44HrPzP99PyAafwY8X3uioS180dhB4uNzEdNVZgc5nCLX/zfz+WwS+TW
tSdv+Rz+Ja+tXcjC49BaeNmB9yu/Q+qWvZJxxvwOkQxbDpqysDgY7Mn01CgX
dtgktuD/Okl2h72pj7sX/hB2mBnqHsBryu6g8UKFdf1PYXi8MK00T7hewOtw
6exXO+eDjA63/h1mX18LjP8Day5KzWLCSH/ljxJXZEsII9ybOblloQyHw4F9
mh0LRdgckjY57DK14XDwXv/5qpQeIj/s83P/d9KawSFFSdmFV5TP4fk8QTfe
vzwO83VyOKbs53TwE9m1MKCODyM93XvT4st7lAMevuF36sSmHBd0aP4REM37
lQGefqM8G3XiJrM49HzrMnI+yeEQVCh3WOoGl0PJnrmvnuwRdqhzYK1YaMHv
cKOM3d55u6DD6z+bJaa0Mzg0slzUctbkdQAAbnCC8Q==
"], {{
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
0.3], EdgeForm[None],
GraphicsGroupBox[{
PolygonBox[{{15, 5, 1}, {8, 4, 1}, {22, 7, 6}, {15, 6, 3}, {18, 6,
1}, {19, 18, 4}, {16, 15, 3}, {12, 10, 6}, {11, 8, 1}, {5, 9, 1}, {
13, 7, 2}, {9, 11, 1}, {7, 12, 6}, {14, 13, 2}, {6, 10, 3}, {6, 15,
1}, {17, 16, 3}, {23, 22, 18}, {4, 18, 1}, {21, 19, 4}, {19, 20,
2}, {23, 19, 2}, {15, 16, 5}, {7, 22, 2}, {34, 63, 7}, {64, 37, 9}, {
19, 23, 18}, {52, 29, 4}, {22, 23, 2}, {62, 41, 10}, {18, 22, 6}, {
54, 30, 5}, {63, 33, 7}, {26, 45, 3}, {48, 40, 14}, {49, 60, 16}, {
46, 26, 3}, {38, 57, 20}, {55, 36, 9}, {44, 32, 13}, {41, 47, 10}, {
61, 24, 8}, {58, 39, 21}, {59, 31, 5}, {36, 64, 9}, {35, 61, 8}, {31,
54, 5}, {51, 50, 17}, {28, 52, 4}, {24, 53, 8}, {25, 62, 10}}],
PolygonBox[{{37, 42, 11, 9}, {53, 28, 4, 8}, {30, 55, 9, 5}, {45, 51,
17, 3}, {43, 48, 14, 2}, {33, 27, 12, 7}, {47, 46, 3, 10}, {39, 56,
19, 21}, {29, 58, 21, 4}, {57, 43, 2, 20}, {60, 59, 5, 16}, {27, 25,
10, 12}, {56, 38, 20, 19}, {40, 44, 13, 14}, {42, 35, 8, 11}, {50,
49, 16, 17}, {32, 34, 7, 13}}]}]}, {}, {}, {}, {}},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Dashing[{Small, Small}],
LineBox[{64, 37, 42, 35, 61, 24, 53, 28, 52, 29, 58, 39, 56, 38, 57, 43,
48, 40, 44, 32, 34, 63, 33, 27, 25, 62, 41, 47, 46, 26, 45, 51, 50, 49,
60, 59, 31, 54, 30, 55, 36, 64}]}}],
AspectRatio->1,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{Automatic, Automatic},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"ScalingFunctions" -> None, "TransparentPolygonMesh" -> True,
"AxesInFront" -> True},
PlotRange->{{-5, 5}, {-5, 5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.891561555844735*^9, 3.8915623907946177`*^9,
3.89156269597077*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The image of the open disk Re(z) >=1/2 under the function \
f(z)= \"\>", "\[InvisibleSpace]",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ", "\[ImaginaryI]"}]}], ")"}], "+",
RowBox[{"4", " ", "z"}]}],
"\[InvisibleSpace]", "\<\" is given by the figure\"\>"}],
SequenceForm[
"The image of the open disk Re(z) >=1/2 under the function f(z)= ",
Complex[1, 2] + 4 $CellContext`z, " is given by the figure"],
Editable->False]], "Print",
CellChangeTimes->{3.8915615558422303`*^9, 3.891562390762703*^9,
3.8915626959864397`*^9}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJx11n9I3HUcx/FzXWOuzjb1mt50O7chl8MaxNXaqru4cv0zNAlGZNcc7J8Z
Sb+g+8OiIv2j/ii7BdYyXUwZpdIvGnShiGy5+mN/tHQQW0QS1YiYJI4FF33f
n+fr2Adu/3x48J33+n5+vD/vb9Oh3s7Da0KhUHNFKPT/2FXItGRykfTkysRP
xeL2mYNv7Hy//0q1PLg7OdqT2CTPLd0/3pHdLK8MPjyRzG+Va+MnH4ssNclu
lMmL2v9THiYPk4fJw+Rh8jB5q/Z3ysPkYfIweZg8TB4m77T9jvIweZg8TB4m
D5OHycvb7yoPk4fJw+Rh8jB5mLxDlqM8TB4mD5OHycPkYfIO2qg8TB4mD5OH
ycPkYfL+7d61JRe5UXmYPEweJg+Th8nD5O26Zc+ObObqNHmYPEweJg+Th8nD
5J37orkuv/Cz8jB5mDxMHiYPk4fJmzGnyMPkYfIweZg8TB4mL2HzVR4mD5OH
ycPkYfKw7hfbz7TuF2fdL866X5x1vzjrfnHW/eJMnurC5WHyMHmYPEye1wfK
5vij6s9Z9ees+nNW/V3fZ8rOw8/xR/IweZg8r4+VXSd/Hn6OP5KHyfP6ZNl9
8NfJn4ef44/keX247D77++Cvkz8PP8cfySt3jvx99vfBXyd/Hn6OP7YEdVjp
+sW2GfxtcB/E5SeD92qUW4OxXr4W1FdUng/+foN8u43y2eB5SP4+8N/TOBT8
O1fAc/Y8hU/b3+v9/fGM5ctX7f3knfb+8hM2v7Q3f7nb1kf214/vM8z3E+b7
Ru/vvj8w3wfX70e1TH/F9D9Mf8L0D8z9jrl/9X7ufsScQ+W7c4g5h9ofdw4x
5xBzDv9ouXxnpmKd1gs/G04diGRK7qyuu1Qc3SYvtu75IZZokk/tremKDMTl
VyaPHO+IbZHvO9vwWXKxQW6v6D7W82u9fFNjzScdx+vkxkcPvNs/GZUv9FaO
9TxVK/85tv+t0Rc3yidnix/237VBfnp5oDb3+nr5Lxvl9UPPr5uqXyNvHP20
/UpLcVrv1ze7Ov/4sjy4GO0tjF2Wdz94MTzVNCevZgKn8Kv2/+V99ntypeXJ
a+19tB/+eMTmI4/bfOXfbT3kBVsvebOtp1xp6y3vt/2Q99p+yS/bfqa9/Zbd
eZA77LzI7jz5502mPrWerj4x9YmpT0x9YuoTU5+Y+sTUJ6Y+MfWp93P1ialP
5bv61Plx9YmpT0x9Yr8+6Qd4uO+9eG6qVJ/NQ4VoPll6Tr/A4fGjH/TnS+v7
5uxXg6Ox0nP6ic7PSFMysVyq398WDm/NFkvrT7/BJ5Y33ZH5JiZ/2dJVn5sv
7Q/9CD/XVnVbduBW+bW+zpr8OzUy/Qo/MBTennuktL8jI2/Hsl9XyfQzHF/8
557E3TfL97a9VJVvXyvT73Ch75fW7Hc3yJ8vnA/nz1zTeaAf4om24UxiekX+
8aHsheKlJZl+iY/uuzjRMbyg5y+YdZ7opzrv9nvyCcsrPXf9Fn9s76vnp2w+
es69r/vL1kNusPWS6df4mK23nLL9kOnnuv9tP+VnbL9l+r3W286L/JGdJ5nv
Abxk51E+b+dV5nvBO++yqweZ7wm8w+pJdvWW/g9B11m8
"], {{
{RGBColor[1, 0, 1], AbsoluteThickness[1.6], Opacity[1], EdgeForm[None],
GraphicsGroupBox[{PolygonBox[CompressedData["
1:eJxNl3mYjmUUxs9rHbuZYQxjDGOMNTQpacgyNCaMjBQqIZOdSFK2oVDJUhES
baJUIu37vu/7vu/7vm/nvp7fe73fH/d1nuUsz3POee/n+9pMnF0xq5qZTY3M
qrtc4/ChpTnqO2o4ajrqsC7dukjp10NKrwG6tRzp2Ei3IWu1HWvx3cjRmLH0
MtCVv0yk4jdByvc67LIczVJ8ZCMVsym6itmcNfnOwa/8tURKdz3+ch0t0JVe
q5Q4PR3dHN0dhyIPdLQhhuza4UN2+awpZlukYl6AToGjEN08RydspNuetdaO
DkjF6YiU3oX46OzowljxD0AWct72+OiO7Mi5OxKzK7rSuwh/RY4e+JW/g5HS
PQQp3welxM8jT9mcN5u8bMBfL0eF40jHEMfh+FJei/GlmL2RitkHKb2+6Cr3
JdhIdyO++zn6Mz7MMQApvYHoyt8gpOIfgZTvwSk+ypADOO8AYl6MTil3KMH3
MPzK3yb2yx3DGcv3UHSldxRrijPVMcExkfMWkYuRxJDdsfiS3dGsKeZm4oxy
HJMSczS6Ixxb2D/eMYY11WEsUnGOQ8r3CSn+xiEV/0TkaM47Bh8TkfJxCXFO
coxHV3qTWJfvk/Erf5OR0p2ClO9KdMdx3jJL+mYk5x7KeTWfQQzZnYIv5XUm
a4o5C6mYs5HSu9QxzTHHcRo20p3L+nTHqUjFmYeU3nx05e90pOJvw98Cx5n4
ko+FSPlYhFTMM9CX3mLW5Hs7PpY6qhhLdxlSvpegq/jLWVMccZ6+P32H4rMW
zFcQQ3bn4kt2lxFnpWNVSsxzkNI7D92zLHkDxNurWTvbcT5ScSL2xe/xOyEb
vRP1meutaMBceuLwRtilM6/LHTTXG9IQm/idyGAuLm+Cvbgoy5K3oZklb0km
511IHbZa6Nlp7OWQr5jre5I7cW9r/Iq3c/Gbxzzmvjzs87HRXPxaaMl7kI+9
uLoA+0Lm8tEBm5j3O2DTiXnM9V2w68pcNt2YF7Df2ZI3oBtzcUwR+z2Yx1zf
w5J3orslvK+96eRqkiXvaA6+xF+90BWv9sFvMXsxvxdbwu+9yW9fbDQXT5bg
SzzczxJO7499CfOY0wdawumDsBHHllrC42XYDWEum6HMY94fjP0w9jQXlw5n
fwRz2VcwL2W/nPz2JAf6DtRfi9kTl4pbf3S87bjSEm4V14mPxB/ikass/E5S
L6svxQ3iiJiDxCPi1/HYK8YKYurb1Te8kvhaU7+Liydgo3OIY2NerrSEpydR
45jfJ1jyZsRvyBjix++EfMRvyVhyNJr7LSS+uKPKAqesYi5OEQ+Jw5ZYwn+L
LeHIRfiIuVi5+NrR2gnmJku4Vdz3pKN+FN7hp5W/KLyTc9mPuVZSfDqTePM4
42rOFHOZ5ss4o84dvyUz8bec/QXcbaklHF2F7nxixO+E5vE7NIt8z+B+lfjW
/BoLv8n0be2y8JtP3+5OC78j9X1fa+E3lr6V3RZ+D/Vz3GjhPVYd91j4HaDa
Xmfhd4x6dq8F7lN/7bPwFs7B99UW+Gm/hXdI97rcwjuhvtJ/hCsscPwNFnKs
nlI9tpEP/a7eYYEv1cvq9zTusZPz6/e8el19/qwjIwpnvd5CDcs5y3rOswOb
LPytwad6VG9+/DtiiiW/LyZTt43kqxd5mc7dx7Ffydn3kYft3GcB995PHrZw
51Hkcjc530DNiqjbLuq1mfuUU5M91GIT9Sgl93s5z1bqpzM+72gaBTtxjL4n
fXMvOrKjoKsiPEDMbx23kJfqvv4Q5/rBcRt1+MdxH3X403EPNf/ZcQf5reW2
j5CzVj5+hdy08fFr5OZObNZRt2fIjb65p7i3vsUnuGsdHz9Gzn5z3EVdc3z9
JXKguz5Hngp8/Aa5/85xs4We+8XxjoW++d3xLn0Ruf4H5L2Gjz+kHrV9/BG1
b+zjT6nHX473LPRXXV//mFo28PEn1OZuzqpz/ut430LvZrnO59SynY+/oT/y
o8BN6ps8H39FP7X08ZfU+FbqpBpl+vpn9FNzH39B7W+nZmu560/cVzV/gR5R
zLZRiKvz1ovCmXW/hlG4o+6UFoV7KU56FGIpHzWjkJOXqYHyfz/9od54kN5S
Xz1MP6mX7qVv1DOv0h/bqMOv1OJRekj9ozw1iUKudL9mUbijcpMbhfwor3+T
W72N31v4vl+n59Rvb9IT6gfV+T9q/Ti9pb5SjltEIc+qf7Uo9MBbjsIocJhq
/gd1/x9aP5cg
"]], PolygonBox[CompressedData["
1:eJwt0ucuREEYxvGZDSGEELJCiBYuyCW4AK5k9d57XT167713N0EIIQT/J+f9
8Msz786ZM3Pe2fzS8pKykHOuGDHYVnrnhsg6XCKTeoJsxTxe0YMK7CKO+WGy
HrN4RjciOEQS86NkIzbhqQfJWuQwviHbMIUM6guyxQV7LuIdvajEPhJ4ZoRs
wDp+MYAanCKN+TGyGcdIoY6STbhGNvWk7ZnI+MDepTMu4xN9qEIh8w9kB2bU
J+onshNdSKc+s73GcY6wD8b6hkcU+WCt1uQxviPbMY0s6ivrrc50jwIfzGnP
F8xZL9XzNyxY79WTDyxZb3TmH6yh2nryhw3rjXoe4t1b1nvd8Sq+0W9rvrBi
367f4nl+z+5WPY+l3rH/hu48mfrI7lY9TqU+sV7rDm6R64O71Tf/A9EkXKQ=
"]]}]}, {}, {}, {}, {}},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwt0rs71mEYwPG36OCYQiHhpQw2W5utraWrre3dLNjabIo0N+d/EHLKOZQo
Uo5JOaaTsyh9nquG7/V5tt/93M8vGqu8VXEiEok80kmFc4Ma9V1P9E1N+qFZ
bapZP9WiLc1pR0+1rVbtal77atOe2nWgDzpUh36pU0da0B8902916Vgfw2yG
6478G7InzMtFxrOXcezjKX7iGfbzNAd4lp+ZyOdM4CCTuMQUDjGZw0zlMtP4
guf4kue5wnSO8AJfMYOrvMhRZnKMl7jGbL5mFt8wh+vM5Tgvc4JX+IX5fMs8
TrKAGyzkO0b5nkX8ymuc4lVOs5gzfKx7uq9a1emB6vVQNarWXVWpXDHd0W3d
1A2V6bpKVRK+G2YP9wy7CvsOuw77D28S3uP/P/UXWYlQMQ==
"]]}}],
AspectRatio->1,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{Automatic, Automatic},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"ScalingFunctions" -> None, "TransparentPolygonMesh" -> True,
"AxesInFront" -> True},
PlotRange->{{-5, 5}, {-5, 5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.891561555844735*^9, 3.8915623907946177`*^9,
3.891562696019513*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Q.3)\
\>", "Chapter",
CellChangeTimes->{{3.8915616572208624`*^9, 3.8915616608198037`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
"Print", "[",
"\"\<The the horizontal lines y=1,-1/2,1/2,1 are given by the figure\>\"",
"]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"grid", ":=",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], ",",
RowBox[{"1", "/", "2"}], ",", "1"}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ycolour", ":=",
RowBox[{"{",
RowBox[{"Red", ",", "Blue", ",", "Green", ",", "Magenta"}], "}"}]}],
";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{"Im", "[",
RowBox[{"x", "+",
RowBox[{"I", " ", "y"}]}], "]"}], "\[Equal]",
RowBox[{"grid", "[",
RowBox[{"[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",",
RowBox[{"ycolour", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"f", "[", "z_", "]"}], ":=",
RowBox[{"1", "/", "z"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"w", "=",
RowBox[{"u", "+",
RowBox[{"I", " ", "v"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"root", ":=",
RowBox[{"z", "/.",
RowBox[{"ComplexExpand", "[",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "z", "]"}], "\[Equal]", "w"}], ",", "z"}], "]"}],
"]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{
"\"\<The image of the the horizontal lines y=1,-1/2,1/2,1 under the \
function f(z)=\>\"", ",",
RowBox[{"f", "[", "z", "]"}], ",", "\"\< is given by the figure\>\""}],
"]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Show", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{
RowBox[{"Im", "[",
RowBox[{"root", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]",
RowBox[{"grid", "[",
RowBox[{"[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"u", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"v", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"ContourStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",",
RowBox[{"ycolour", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}], "]"}], "//",
"Quiet"}]}], "Input",
CellChangeTimes->{
3.891560841528344*^9, {3.8915609020344543`*^9, 3.8915609301235485`*^9}, {
3.8915609776937013`*^9, 3.891560982289112*^9}, {3.8915610251053247`*^9,
3.891561031549367*^9}, {3.8915613063236732`*^9, 3.891561312150844*^9}}],
Cell[BoxData["\<\"The the horizontal lines y=1,-1/2,1/2,1 are given by the \
figure\"\>"], "Print",
CellChangeTimes->{3.89156240536382*^9, 3.8915627204342947`*^9}],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJxt1M1Kw0AQwPFYfBCVIL6CJz2ItOJJ8AUEL9JW8RE89iBlKR48+gAeiiwi
YkuvXiSCSlcUUuglB6VIUfzOTjLBPwbC8EsyuzMbdqc3ttc2S0EQrP/eacyu
roTnzte3vzq5d5ytOfuprsNV+CFl7V19D/fhVRNWTPimXoHL8Fma7sbqU9jC
c5V0gBf1LBzCB/7BSN2CDTyZxdwlmHHgC0zUj7CDL3w/Q/Q/RL+FD319MfqJ
UX/hRAZAfQ71FD7y+RHmizB+4bZ3D/k9fF94wser87/r1oWb87l3JX8h9x5s
/n0fqRuwgS+lf/U17GAZL1bvwwY+lv+nbsMWlvkT9S3s4Fe/nZ/UH3AWUe9I
3YQNPCX7Rz0Dh7D0N1afwBZekv2vXobL8I2cL+o7uA9vyfmlrsJ1ODsfsX7B
Yu4fHo314w==
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[1, 0, 0], Thickness[Large],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85}]},
RowBox[{
RowBox[{
RowBox[{"Im", "[", "x", "]"}], "+",
RowBox[{"Re", "[", "y", "]"}]}], "\[Equal]",
RowBox[{"-", "1"}]}]],
Annotation[#, Im[$CellContext`x] + Re[$CellContext`y] == -1,
"Tooltip"]& ]}], GraphicsComplexBox[CompressedData["
1:eJxd1E0rxFEUx/GJjRdh4WFi4z2wIaOUprwBRSlDNl6ApSKEhaWFFzAxeaqZ
LGzsRqFGjZCSZBjGw8xg5pw7X/X7959On+Y+nHv/9572sZn4eFMkEhmt/eox
PH0ertN7iVwqkfvpbXhHPFVnqoqjsdXaW8Ft4st680QZr1iHb7woHqh3j37h
X3s+cFns+ZWwMfWOJ8Udlt8btr8TRXwhXrb8XrF1j77gfnHF8nvG0zbBE54Q
+3yPeNDGe8B94qQt8F72/w63ipeswQ0OERcs3zw+s3xy2HmOt8ULNn5W9vMU
H4rnrf0xtuXFkjgu9pg5kvaNdaSz4i0fH4d8cFm86fnjsF58Ir71Blhji3jD
9x+H74V7xAf+fXE4D3hEnPfzg8N5w3Niv/MFHM4zHhav+fmX/SzK/P/u8vuF
w33Es2KvNyUc7jtutviJh7w+4FBP8Lr4yusP7vT6hLvFvn9VvOv1D++LPUYy
Df8BGt32gQ==
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0, 0, 1], Thickness[Large],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,